Autor Wiadomość
desca osescowa
PostWysłany: Sob 15:45, 19 Cze 2021    Temat postu:

desca sutcowa napisał:
gdyby była normalna, a nie jest, to by przyszła do mnie, zdjęła ten półkoszulek i powiedziała:
- Masz. Pocyckaj sobie wiem że chcesz.


Ленинград — Сиськи
desca sutcowa
PostWysłany: Sob 15:41, 19 Cze 2021    Temat postu:

gdyby była normalna, a nie jest, to by przyszła do mnie, zdjęła ten półkoszulek i powiedziała:

- Masz. Pocyckaj sobie wiem że chcesz.
desca sutcowa
PostWysłany: Sob 15:37, 19 Cze 2021    Temat postu:

wyniosła jeszcze jedną poduchę ale mniejszą. Położyła w rogu barierki, klepnęła po brzuszku i popatrzyła na mnie.
Nie wiem czy miała biustonosz pod półkoszulkiem białym a powinny prześwitywać sutki. Musi mieć bladoróżowe sutki i rozlazłe. Nie ma sterczących sutków. Jej sutki są ospałe.
No ale popatrzyła na mnie.

Może powinienem pójść tam, bo mają telewizor że popatrzę na mecz Polska-Hiszpania. No ale ona nie usiądzie przy mnie na kanapie, żebym ręką sprawdził jakie ma sutki.
desca literacca
PostWysłany: Sob 15:06, 19 Cze 2021    Temat postu:

Hello napisał:
luzik napisał:
... objęła juz całe ciało
Furda tam ciało, ważne, coby duch był ochoczy...! :)


DUCH DUCH !

Poducha!

Nie! Wszystko źle. Edyta wywiesiła poduchę. I wisi ta poducha jak wielki cyc starej baby. A w środku pierze.
Ja w to nie mogę wejść. Dopiero co uwolniłem się od wieszania prania żony i miałbym znów wpaść w to wieczne pranie, wieszanie na balkonie, rozciąganie prześcieradeł i poduchy pełne pierza.

Do dziś nie używam pierzyny co mi dała żona. Śpię pod kocami wojskowymi, na kocach wojskowych i nie znoszę prześcieradeł ani poduch.
Wypierdole zaraz ostatnią poduche i zroluję sobie koc.

Pozostaje mi do rozpatrzenia kwestia młodej gęsi.
desca literacca
PostWysłany: Sob 13:58, 19 Cze 2021    Temat postu:

Hello napisał:

„Czuwajcie i módlcie się, abyście nie ulegli pokusie; duch wprawdzie ochoczy, ale ciało mdłe.” - Mt 26, 41


A co to jest pokusa?
Po rosyjsku to wiem, wkuszać coś i po tym ma być pokusa. Najpierw trzeba wejść z tan wkuszania aby potem w stan pokuszenia.
Po polsku powinno się wkęsać, czyli wgryzać, nawet przegryźć coś.

Pokusa jest to potrawa. Z młodej gęsi.

Leningrad(Ленинград) - Svoboda(свобода) w filmie Bumer 2 (Бумер 2).mp4
desca literacca
PostWysłany: Sob 13:44, 19 Cze 2021    Temat postu:

desca literacca napisał:
niestety, zapomniałem napisać co to jest ochota


Edytka nie ma ochoty. Bo kupiłem jej majtki, to znaczy takie spodenki sexi sportowe i do tego jeszcze dres, ze wstawkami odblaskowymi, żeby Edytki nikt nie przejechał jak idzie wieczorem po piwo.
I ona, od 6-ciu już lat nie wyszła na balkon w tych sexi spodenkach, ani nawet w dresie po piwo.

Przestała pić piwo. A ja dzisiaj kupiłem dwa piwa, na wszelki wypadek jak by przyszła wieczorem. Szanse są nikłe.

Od 6-ciu lat czekam aby zmarła jej stara matka. Wtedy Edytka musi coś zrobić. Nie da rady inaczej. Ale stara nie chce umrzeć. Ona najbardziej mnie lubi. Co robić?
desca literacca
PostWysłany: Sob 13:16, 19 Cze 2021    Temat postu:

niestety, zapomniałem napisać co to jest ochota
desca literacca
PostWysłany: Sob 12:59, 19 Cze 2021    Temat postu:

Hello napisał:
luzik napisał:
... objęła juz całe ciało
Furda tam ciało, ważne, coby duch był ochoczy...! :)


Często się zastanawiałem dlaczego myśliwy to jest myśliwy.
Myślicielem nie jest, ale przecież myśliciel też nie jest ot tak myślicielem, bo o czym by miał myśleć, o cielęciu?
Może jednak o cielęciu.

Po rosyjsku myśliwy to jest ochotnik, który udaje się do lasu na polowanie, Z tym że do lasu się udaje a powinien na pole. Do wojska można iść na ochotnika i strzelać do przeciwnika.

Grecy byli myślicielami. Jak to widzę to starsi panowie siedzą za stołem, siedzą w szlafrokach wykąpani, ucztują a obsługują ich młodzi chłopcy, eunuchy i pedały.
desca literacca
PostWysłany: Pią 23:59, 18 Cze 2021    Temat postu:

luzik napisał:
Hello napisał:
Ratuj się


Za póżno, infekcja objęła juz całe ciało a może nawet ziemią obiecaną.


С. Шнуров "НИКОГО НЕ ЖАЛКО"
Gość
PostWysłany: Nie 19:57, 30 Maj 2021    Temat postu:

Semele napisał:

Jest jak wiatr


Kołtun
dedykuje wujowi
PostWysłany: Nie 11:52, 30 Maj 2021    Temat postu:

W algebrze Kubusia mamy zaledwie trzy znaczki (=>, ~> i ~~>) na których zbudowana jest kompletna algebra Kubusia w obsłudze zdań warunkowych "Jeśli p to q".
1.
Warunek wystarczający =>:
p=>q =1 - gdy zajście p jest (=1) warunkiem wystarczającym => dla zajścia q
Inaczej:
p=>q =0
2.
Warunek konieczny ~>:
p~>q =1 0 gdy zajście p jest (=1) konieczne ~> dla zajścia q
Inaczej:
p~>q =0
3.
Definicja zdarzenia możliwego ~~> w zdarzeniach:
p~~>q = p*q =1 - gdy możliwe jest (=1) jednoczesne zajście zdarzeń p i q
Inaczej:
p~~>q=p*q =0
Definicja elementu wspólnego zbiorów ``>:
p~~>q = p*q =1 - gdy zbiory p i q mają (=1) element wspólny
Inaczej:
p~~>q = p*q=0

W algebrze Kubusia w zbiorach zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

Kod:

T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
## ## ## ## ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5: p+~q

Prawa Kubusia: | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q | A1: p=>q = A4:~q=>~p
B1: p~>q = B2:~p=>~q | B2:~p=>~q = B3: q=>p

Prawa Tygryska: | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>q | B1: p~>q = B4:~q~>~p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


4.1. Definicja implikacji prostej p|=>q

IP.
Definicja podstawowa implikacji prostej p|=>q:
Implikacja prosta p|=>q to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku.
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
stąd:
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) =1*~(0) = 1*1 =1

Lewą stronę czytamy:
p|=>q - implikacja prosta |=> w logice dodatniej (bo q)

Prawą stronę czytamy:
Implikacja prosta p|=>q w logice dodatniej (bo q) jest spełniona (=1) wtedy i tylko wtedy gdy zajście p jest wystarczające => dla zajścia q i nigdy nie zdarzy się ~(..), że zajście p jest konieczne ~> dla zajścia q

Podstawmy tą definicję do matematycznych związków warunku wystarczającego => i koniecznego ~>:
Kod:

T1
Matematyczne związki warunku wystarczającego => i koniecznego ~> w implikacji prostej p|=>q:
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p =1 [=] 5: ~p+q
## ## ## ## ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p =0 [=] 5: p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla udowodnienia, iż zdanie warunkowe „Jeśli p to q” wchodzi w skład implikacji prostej p|=>q potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Ax i fałszywość dowolnego zdania serii Bx.
Zauważmy, że nie ma znaczenia które zdanie będziemy brali pod uwagę, bowiem prawami logiki matematycznej (prawa Kubusia, prawa Tygryska i prawa kontrapozycji) zdanie to możemy zastąpić zdaniem logicznie tożsamym z kolumny A1B1.

Kluczowym punktem zaczepienia w wyprowadzeniu symbolicznej definicji implikacji prostej p|=>q jest definicja kontrprzykładu rodem z algebry Kubusia działająca wyłącznie w warunku wystarczającym =>.

Definicja kontrprzykładu w zbiorach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane elementem wspólnym zbiorów p~~>~q=p*~q

Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>~q=p*~q
Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)

Uzupełnijmy naszą tabelę wykorzystując powyższe rozstrzygnięcia działające wyłącznie w warunkach wystarczających =>.
Kod:

IP:
Tabela prawdy implikacji prostej p|=>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q =1 - p jest (=1) wystarczające => dla q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla q
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q =1 = 2:~p~>~q=1 [=] 3: q~>p =1 = 4:~q=>~p =1
A’: 1: p~~>~q=0 = [=] = 4:~q~~>p =0
## ## | ## ##
B: 1: p~>q =0 = 2:~p=>~q=0 [=] 3: q=>p =0 = 4:~q~>~p =0
B’: = 2:~p~~>q=1 [=] 3: q~~>~p=1

Równanie operatora implikacji prostej p||=>q:
A1B1: A2B2:
p|=>q = (A1: p=>q)*~(B1: p~>q) = (A2:~p~>~q)*~(B2:~p=>~q) = ~p|~>~q

Operator implikacji prostej p||=>q to układ równań logicznych:
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p
A2B2:~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p

Układ równań logicznych jest przemienny, stąd mamy:
Operator implikacji odwrotnej ~p||~>~q to układ równań logicznych:
A2B2:~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Definicja podstawowa implikacji prostej p|=>q w logice dodatniej (bo q):
Kolumna A1B1:
Implikacja prosta p|=>q w logice dodatniej (bo q) to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku.
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
stąd:
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) =1*~(0) = 1*1 =1

Definicja warunku wystarczającego =>:
p=>q = ~p+q
Definicja warunku koniecznego ~>:
p~>q = p+~q
stąd:
p|=>q = (A1: p=>q)*~(B1: p~>q) = (~p+q)*~(p+~q) = (~p+q)*(~p*q) = ~p*q
p|=>q = ~p*q

Definicja definicji podstawowej dowolnego spójnika implikacyjnego:
Definicja podstawowa dowolnego spójnika implikacyjnego to definicja tego spójnika w logice dodatniej (bo q). Jeśli w definicji dowolnego spójnika implikacyjnego nie zaznaczamy w jakiej jest logice to domyślnie chodzi nam o definicję podstawową tego spójnika.

Mówiąc o definicji podstawowej możemy zatem pominąć sygnalizację w jakiej logice ta definicja jest wyrażona.

Definicja implikacji odwrotnej ~p|~>~q w logice ujemnej (bo ~q):
Kolumna A2B2:
Implikacja odwrotna ~p|~>~q w logice ujemnej (bo ~q) to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A2: ~p~>~q =1 - zajście ~p jest (=1) konieczne ~> dla zajścia ~q
B2:~p=>~q =0 - zajście ~p nie jest (=0) wystarczające => dla zajścia ~q
Stąd:
A2B2: ~p|~>~q = (A2: ~p~>~q)*~(B2:~p=>~q)=1*~(0)=1*1=1

Definicja warunku wystarczającego =>:
p=>q = ~p+q
Definicja warunku koniecznego ~>:
p~>q = p+~q
Stąd:
~p|~>~q = (A2: ~p~>~q)*~(B2:~p=>~q)= (~p+q)*~(p+~q) = (~p+q)*(~p*q) = ~p*q
~p|~>~q = ~p*q

Zachodzi tożsamość logiczna:
A1B1: p|=>q =~p*q [=] A2B2: ~p|~>~q = ~p*q

Definicja tożsamości logicznej [=]:
Prawdziwość dowolnej strony tożsamości logicznej [=] wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej [=] wymusza fałszywość drugiej strony

Definicja dowolnego operatora implikacyjnego p||?q:
Operator implikacyjny p||?q to odpowiedź na pytanie co się stanie jeśli zajdzie p oraz co się stanie jeśli zajdzie ~p

Równanie operatora implikacji prostej p||=>q:
Kod:

T2:
Równanie operatora implikacji prostej p||=>q:
A1B1: A2B2
p|=>q = (A1: p=>q)*~(B1: p~>q) = (A2:~p~>~q)*~(B2:~p=>~q) = ~p|~>~q
bo prawa Kubusia:
A1: p=>q = A2: ~p~>~q
B1: p~>q = B2: ~p=>~q


Dlaczego to jest równanie operatora implikacji prostej p||=>q?
A1B1: W kolumnie A1B1 mamy odpowiedź na pytanie co może się wydarzyć jeśli zajdzie p
A2B2: W kolumnie A2B2 mamy odpowiedź na pytanie co może się wydarzyć jeśli zajdzie ~p

stąd mamy:
Operator implikacji prostej p||=>q w logice dodatniej (bo q) to układ równań logicznych:
A1B1: p|=>q =(A1: p=>q)* ~(B1: p~>q) - co się stanie jeśli zajdzie p?
A2B2: ~p|~>~q =(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p?

Układ równań jest przemienny, stąd mamy definicję tożsamą:
Operator implikacji odwrotnej ~p||~>~q w logice ujemnej (bo ~q) to układ równań logicznych:
A2B2: ~p|~>~q =(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p?
A1B1: p|=>q =(A1: p=>q)* ~(B1: p~>q) - co się stanie jeśli zajdzie p?

Z tabeli T2 odczytujemy tożsamość logiczną:
A1B1: p|=>q = A2B2: ~p|~>~q

Definicja tożsamości logicznej:
Prawdziwość dowolnej strony tożsamości logicznej „=” wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej „=” wymusza fałszywość drugiej strony

Wnioski:
1.
Udowodnienie iż dany układ spełnia definicję implikacji prostej p|=>q w logice dodatniej (bo q) jest tożsame z udowodnieniem iż ten sam układ spełnia definicję implikacji odwrotnej ~p|~>~q w logice ujemnej (bo ~q), albo odwrotnie.

Na mocy definicji operatorów logicznych p||=>q i ~p||~>~q widzimy, że udowodnienie prawdziwości 1 pociąga za sobą prawdziwość 2:
2.
p||=>q = ~p||~>q
cnd

Innymi słowy:
Wystarczy udowodnić, iż dany układ spełnia kolumnę A1B1:
A1: p=>q =1 - p jest (=1) wystarczające => dla q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla q
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) =1*~(0)=1*1=1
aby mieć pewność absolutną prawdziwości wszystkich pozostałych członów w tabeli T2

Warto zapamiętać różnicę:
Definicja warunku wystarczającego p=>q:
A1: p=>q = ~p+q
##
Definicja implikacji prostej p|=>q:
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) =~p*q
##
Definicja warunku koniecznego p~>q:
B1: p~>q = p+~q
Gdzie:
## - różne na mocy definicji funkcji logicznych

Definicja znaczka różne na mocy definicji ## dla funkcji logicznych:
Dwie funkcje logiczne są różne na mocy definicji ## wtedy i tylko wtedy gdy nie są tożsame i żadna z nich nie jest zaprzeczeniem drugiej

Weźmy nasze funkcje logiczne A1, A1B1 i B1:
Kod:

TA1B1:
A1: Y= (p=>q)=~p+q ## A1B1: Y=(p|=>q)=~p*q ## B1: Y=(p~>q) =p+~q
# # #
A1N: ~Y=~(p=>q)= p*~q ## A1B1N:~Y=~(p|=>q)=p+~q ## B1N:~Y=~(p~>q)=~p*q
Gdzie:
# - różne w znaczeniu iż jedna strona jest negacją drugiej strony
## - różne na mocy definicji funkcji logicznych
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Doskonale widać, że dowolna funkcja logiczna z jednej strony znaczka różne na mocy definicji ## nie jest tożsama z funkcją po przeciwnej stronie ani też nie jest jej zaprzeczeniem.

4.1.1 Katastrofalny błąd ziemskich matematyków w rachunku zero-jedynkowym

Ziemscy matematycy nie znają poprawnego rachunku zero-jedynkowego, ponieważ nigdy w tym rachunku nie uwzględniają funkcji logicznych w logice dodatniej (bo Y) i ujemnej (bo ~Y).
Tabela prawdy TA!B1 bez funkcji logicznych Y i ~Y przybierze postać:
Kod:

TA1B1’:
A1: ~p+q ## A1B1: ~p*q ## B1: p+~q
# # #
A1N: p*~q ## A1B1N: p+~q ## B1N: ~p*q
Gdzie:
# - różne w znaczeniu iż jedna strona jest negacją drugiej strony
## - różne na mocy definicji funkcji logicznych
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Definicja znaczka różne na mocy definicji ## dla funkcji logicznych:
Dwie funkcje logiczne są różne na mocy definicji ## wtedy i tylko wtedy gdy nie są tożsame i żadna z nich nie jest zaprzeczeniem drugiej

Doskonale widać, że w tabeli TA1B1’ definicja znaczka różne na mocy definicji funkcji logicznych ## legła w gruzach, bo ewidentnie zachodzą tożsamości logiczne [=]
A1B1: ~p*q [=] B1N: ~p*q
oraz
B1: p+~q [=] A1B1N: p+~q
cnd
Wniosek:
Miejsce ziemskiego rachunku zero-jedynkowego, który w kolumnach wynikowych nie uwzględnia funkcji logicznych w logice dodatniej (bo Y) i ujemnej (bo ~Y) jest w piekle, na wiecznych piekielnych mękach.
Innymi słowy:
Ziemski rachunek zero-jedynkowy jest wewnętrznie sprzeczny - dowód wyżej.

4.1.2 Operator implikacji prostej p||=>q

W algebrze Kubusia w zbiorach zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

IP.
Definicja podstawowa implikacji prostej p|=>q:
Implikacja prosta p|=>q to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku.
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
stąd:
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) =1*~(0) = 1*1 =1

Kod:

IP:
Tabela prawdy implikacji prostej p|=>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q =1 - p jest (=1) wystarczające => dla q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla q
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q =1 = 2:~p~>~q=1 [=] 3: q~>p =1 = 4:~q=>~p =1
A’: 1: p~~>~q=0 = [=] = 4:~q~~>p =0
## ## | ## ##
B: 1: p~>q =0 = 2:~p=>~q=0 [=] 3: q=>p =0 = 4:~q~>~p =0
B’: = 2:~p~~>q=1 [=] 3: q~~>~p=1

Równanie operatora implikacji prostej p||=>q:
A1B1: A2B2:
p|=>q = (A1: p=>q)*~(B1: p~>q) = (A2:~p~>~q)*~(B2:~p=>~q) = ~p|~>~q

Operator implikacji prostej p||=>q to układ równań logicznych:
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p
A2B2:~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p

Układ równań logicznych jest przemienny, stąd mamy:
Operator implikacji odwrotnej ~p||~>~q to układ równań logicznych:
A2B2:~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Operator implikacji prostej p||=>q w logice dodatniej (bo q) to układ równań logicznych:
A1B1: p|=>q =(A1: p=>q)* ~(B1: p~>q) - co się stanie jeśli zajdzie p?
A2B2: ~p|~>~q =(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p?

Innymi słowy:
Operator implikacji prostej p||=>q to układ równań logicznych A1B1 i A2B2 dający odpowiedzi na pytania o p i ~p:

A1B1.
Co może się wydarzyć jeśli zajdzie p (p=1)?

Odpowiedź mamy w kolumnie A1B1:
A1: p=>q =1 - p jest (=1) wystarczające => dla q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla q
A1B1: p|=>q =(A1: p=>q)* ~(B1: p~>q) - co się stanie jeśli zajdzie p?
Stąd:
Jeśli zajdzie p (p=1) to mamy gwarancję matematyczną => iż zajdzie q (q=1) - mówi o tym zdanie A1

Kolumna A1B1:
A1.
Jeśli zajdzie p (p=1) to na 100% => zajdzie q (q=1)
p=>q =1
Zajście p jest (=1) wystarczające => dla zajścia q
Zajście p daje nam (=1) gwarancję matematyczną => zajścia q
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>

Prawdziwy warunek wystarczający A1 wymusza fałszywość kontrprzykładu A1’ (i odwrotnie)
A1’.
Jeśli zajdzie p (p=1) to może ~~> zajść ~q (~q=1)
p~~>~q = p*~q=0
Zdarzenia:
Niemożliwe jest (=0) jednoczesne zajście zdarzeń ~~>: p i ~q
Zbiory:
Nie istnieje (=0) element wspólny zbiorów ~~>: p i ~q

A2B2.
Co może się wydarzyć jeśli zajdzie ~p (~p=1)?

Odpowiedź mamy w kolumnie A2B2:
A2: ~p~>~q =1 - zajście ~p jest (=1) konieczne ~> dla zajścia ~q
B2: ~p=>~q =0 - zajście ~p nie jest (=0) wystarczające => dla zajścia ~q
A2B2: ~p|~>~q =(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p?
Stąd:
Jeśli zajdzie ~p to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” - mówią o tym zdania A2 i B2’

Kolumna A2B2:
A2.
Jeśli zajdzie ~p (~p=1) to może ~> zajść ~q (~q=1)
~p~>~q =1
Zajście ~p jest konieczne ~> dla zajścia ~q, bo jak zajdzie p to na 100% => zajdzie q
Prawo Kubusia samo nam tu wyskoczyło:
A2: ~p~>~q = A1: p=>q

LUB

Fałszywy warunek wystarczający => B2 wymusza prawdziwość kontrprzykładu B2’ i odwrotnie:
B2’.
Jeśli zajdzie ~p (~p=1) to może ~~> zajść q (q=1)
~p~~>q = ~p*q =1
Zdarzenia:
Możliwe jest (=1) jednoczesne zajście zdarzeń ~~>: ~p i q
Zbiory:
Istnieje (=1) element wspólny zbiorów ~~>: ~p i q

Podsumowanie:
Jak widzimy, istotą operatora implikacji prostej p||=>q jest gwarancja matematyczna => po stronie p (zdanie A1), oraz „rzucanie monetą” w sensie „na dwoje babka wróżyła” po stronie ~p (zdania A2 i B2’) .

Zauważmy że:
a)
Układ równań logicznych jest przemienny, stąd mamy:
Operator implikacji odwrotnej ~p||~>~q to układ równań logicznych:
A2B2:~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p
Doskonale widać, że analiza matematyczna operatora implikacji odwrotnej ~p||~>~q w logice ujemnej (bo ~q) będzie identyczna jak operatora implikacji prostej p||=>q w logice dodatniej (bo q) z tym, że zaczynamy od kolumny A2B2 kończąc na kolumnie A1B1.
b)
Także kolejność wypowiadanych zdań jest dowolna, tak więc zdania z powyższej analizy A1, A1’, A2, B2’ możemy wypowiadać w sposób losowy - matematycznie to bez znaczenia.

4.1.3 Zero-jedynkowa definicja warunku wystarczającego =>

Zapiszmy skróconą tabelę prawdy operatora implikacji prostej p||=>q przedstawioną wyżej:
Kod:

T1:
Analiza symboliczna |Co w logice
operatora implikacji prostej p||=>q |jedynek oznacza
Kolumna A1B1:
A1: p=>q =1
B1: p~>q =0
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p
A1: p=> q =1 - zajście p wystarcza => dla q |( p=1)=> ( q=1)=1
A1’: p~~>~q=0 - kontrprzykład dla A1 musi być 0 |( p=1)~~>(~q=1)=0
Kolumna A2B2:
A2:~p~>~q =1
B2: ~p=>~q =0
A2B2:~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A2: ~p~>~q =1 - ~p jest konieczne ~> dla ~q |(~p=1)~> (~q=1)=1
B2’:~p~~>q =1 - kontrprzykład dla B2 musi być 1 |(~p=1)~~>( q=1)=1
a b c d e f

Z tabeli T1 możemy wyprowadzić zero-jedynkową definicję warunku wystarczającego A1: p=>q kodując analizę symboliczną względem linii A1, albo zero-jedynkową definicję warunku koniecznego A2:~p~>~q kodując analizę symboliczną względem linii A2

Przyjmijmy za punkt odniesienia warunek wystarczający => widoczny w linii A1:
A1: p=>q =1
Jedyne prawo Prosiaczka jakie będzie nam potrzebne do wygenerowania zero-jedynkowej definicji warunku wystarczającego to:
(~x=1)=(x=0)
bo zgodnie z przyjętym punktem odniesienia A1 wszystkie sygnały musimy sprowadzić do postaci niezanegowanej (bo x).
Kod:

T2:
Definicja zero-jedynkowa warunku wystarczającego A1: p=>q
w logice dodatniej (bo q)
Analiza |Co w logice |Kodowanie dla |Zero-jedynkowa
symboliczna |jedynek oznacza |A1: p=>q =1 |definicja =>
| | | p q A1: p=>q
A1: p=> q =1 |( p=1)=> ( q=1)=1 |( p=1)=> ( q=1)=1 | 1=>1 =1
A1’: p~~>~q=0 |( p=1)~~>(~q=1)=0 |( p=1)~~>( q=0)=0 | 1=>0 =0
A2: ~p~>~q =1 |(~p=1)~> (~q=1)=1 |( p=0)~> ( q=0)=1 | 0=>0 =1
B2’:~p~~>q =1 |(~p=1)~~>( q=1)=1 |( p=0)~~>( q=1)=1 | 0=>1 =1
a b c d e f g h i 1 2 3
|Prawa Prosiaczka |
|(~p=1)=( p=0) |
|(~q=1)=( q=0) |

Nagłówek A1: p=>q w kolumnie wynikowej 3 w tabeli zero-jedynkowej 123 wskazuje linię A1: w tabeli symbolicznej abc względem której dokonano kodowania zero-jedynkowego.
Tabela zero-jedynkowa 123 nosi nazwę zero-jedynkowej definicji warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego.

Zauważmy, że w tabeli T1 mamy również warunek konieczny ~> widniejący w linii A2.
Przyjmijmy za punkt odniesienia linię A2 i wygenerujmy tabelę zero-jedynkową warunku koniecznego ~>:
A2:~p~>~q =1
Jedyne prawo Prosiaczka jakie będzie tu nam potrzebne to:
(x=1)=(~x=0)
bo zgodnie z przyjętym punktem odniesienia A2 wszystkie sygnały musimy sprowadzić do postaci zanegowanej (bo ~x).
Kod:

T3:
Definicja zero-jedynkowa warunku koniecznego A2:~p~>~q
w logice ujemnej (bo ~q)
Analiza |Co w logice |Kodowanie dla |Zero-jedynkowa
symboliczna |jedynek oznacza |A2:~p~>~q =1 |definicja ~>
| | |~p ~q A2:~p~>~q
A1: p=> q =1 |( p=1)=> ( q=1)=1 |(~p=0)=> (~q=0)=1 | 0~>0 =1
A1’: p~~>~q=0 |( p=1)~~>(~q=1)=0 |(~p=0)~~>(~q=1)=0 | 0~>1 =0
A2: ~p~>~q =1 |(~p=1)~> (~q=1)=1 |(~p=1)~> (~q=1)=1 | 1~>1 =1
B2’:~p~~>q =1 |(~p=1)~~>( q=1)=1 |(~p=1)~~>(~q=0)=1 | 1~>0 =1
a b c d e f g h i 1 2 3
|Prawa Prosiaczka |
|( p=1)=(~p=0) |
|( q=1)=(~q=0) |

Nagłówek A2:~p~>~q w kolumnie wynikowej 3 w tabeli zero-jedynkowej 123 wskazuje linię A2: w tabeli symbolicznej abc względem której dokonano kodowania zero-jedynkowego.
Tabela zero-jedynkowa 123 nosi nazwę zero-jedynkowej definicji warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego.

Zauważmy, że analiza symboliczna (abc) w tabelach T2 i T3 jest identyczna, dzięki czemu z tożsamości kolumn wynikowych 3 w tabelach T2 i T3 wnioskujemy o zachodzącym prawie Kubusia.
Prawo Kubusia:
T2: p=>q = T3: ~p~>~q

Dokładnie ten sam dowód możemy wykonać w rachunku zero-jedynkowym korzystając z zero-jedynkowej definicji warunku wystarczającego => (T2: 123) i koniecznego ~> (T3: 123).
Oto on:
Kod:

Zero-jedynkowa definicja warunku wystarczającego =>
p q p=>q
A: 1=>1 =1
B: 1=>0 =0
C: 0=>0 =1
D: 0=>1 =1

Kod:

Zero-jedynkowa definicja warunku koniecznego ~>
p q p~>q
A: 1~>1 =1
B: 1~>0 =1
C: 0~>0 =1
D: 0~>1 =0

Stąd mamy:
Kod:

T4
Dowód prawa Kubusia w rachunku zero-jedynkowym:
p=>q = ~p~>~q
p q p=>q ~p ~q ~p~>~q
A1: 1=>1 =1 0~>0 =1
A1’: 1=>0 =0 0~>1 =0
A2: 0=>0 =1 1~>1 =1
B2’: 0=>1 =1 1~>0 =1
1 2 3 4 5 6

Tożsamość kolumn wynikowych 3=6 jest dowodem formalnym prawa Kubusia.
Prawo Kubusia:
p=>q = ~p~>~q
Uwaga:
Warunkiem koniecznym wnioskowania o tożsamości kolumn wynikowych 3=6 jest identyczna matryca zero-jedynkowa na wejściach p i q.
Matematycznie wiersze 456 można dowolnie przestawiać względem wierszy 123, ale wtedy wnioskowanie o zachodzącym prawie Kubusia będzie dużo trudniejsze - udowodnił to Makaron Czterojajeczny w początkach rozszyfrowywania algebry Kubusia.
Problem można tu porównać do tabliczki mnożenia do 100. Porządna tablica spotykana w literaturze jest zawsze ładnie uporządkowana. Dowcipny uczeń może jednak zapisać poprawną tabliczkę mnożenia do 100 w sposób losowy, byleby zawierała wszystkie przypadki. Pani matematyczka, od strony czysto matematycznej nie ma prawa zarzucić uczniowi iż nie zna się na matematyce, wręcz przeciwnie, doskonale wie o co tu chodzi a dowodem tego jest jego bałaganiarski dowcip.

Prawo Kubusia:
p=>q = ~p~>~q
Prawo Kubusia można też dowieść przy pomocy definicji warunku wystarczającego => i koniecznego ~> w spójnikach „i”(*) i „lub”(+)

Definicja warunku wystarczającego p=>q w spójnikach „i”(*) i „lub”(+):
p=>q = ~p+q
Definicja warunku koniecznego p~>q w spójnikach „i”(*) i „lub”(+):
p~>q = p+~q

Stąd mamy:
~p~>~q = ~p+~(~q) = ~p+q = p=>q
cnd

Prawo Kubusia to tożsamość logiczna „=”:
p=>q = ~p~>~q

Definicja tożsamości logicznej „=”:
Prawdziwość dowolnej strony tożsamości logicznej „=”wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej „=” wymusza fałszywość drugiej strony

Z powyższego wynika, że definicja tożsamości logicznej „=” jest tożsama ze spójnikiem równoważności „wtedy i tylko wtedy” <=>

Wniosek:
Tożsamość logiczna „=” jest de facto spójnikiem równoważności p<=>q o definicji:
Kod:

Zero-jedynkowa definicja równoważności <=>
p q p<=>q
A: 1<=>1 =1
B: 1<=>0 =0
C: 0<=>0 =1
D: 0<=>1 =0

Fakt ten możemy wykorzystać w naszym zero-jedynkowym dowodzie prawa Kubusia wyżej w następujący sposób.
Kod:

Dowód zero-jedynkowy prawa Kubusia:
p=>q = ~p~>~q
p q p=>q ~p ~q ~p~>~q (p=>q)<=>(~p~>~q)
A1: 1=>1 =1 0~>0 =1 =1
A1’: 1=>0 =0 0~>1 =0 =1
A2: 0=>0 =1 1~>1 =1 =1
B2’: 0=>1 =1 1~>0 =1 =1
1 2 3 4 5 6 7

Same jedynki w kolumnie 7 również są dowodem formalnym poprawności prawa Kubusia:
p=>q = ~p~>~q

4.2 Diagram implikacji prostej p|=>q w zbiorach

W algebrze Kubusia w zbiorach zachodzi:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

Definicja implikacji prostej p|=>q w zbiorach:
Zbiór p jest podzbiorem => zbioru q i nie jest tożsamy ze zbiorem q
Dziedzina musi być szersza do sumy logicznej zbiorów p+q bowiem wtedy i tylko wtedy wszystkie pojęcia p, ~p, q i ~q będą rozpoznawalne.
A1: p=>q =1 - zbiór p jest (=1) podzbiorem => zbioru q (z definicji)
B1: p~>q =0 - zbiór p nie (=0) jest nadzbiorem ~> zbioru q (z definicji)
p|=>q = (A1: p=>q)*~(B1: p~>q) =1*~(0) = 1*1 =1

1.
Dlaczego dziedzina musi być szersza od sumy logicznej zbiorów p i q?
Dla zbiorów tożsamych p=q mielibyśmy:
A1: p=>q =1 - bo każdy zbiór jest podzbiorem => siebie samego
B1: p~>q =1 - bo każdy zbiór jest nadzbiorem ~> siebie samego
Otrzymana sprzeczność z definicją implikacji prostej p|=>q w zbiorach jest dowodem, iż zbiory p i q nie mogą być tożsame.
Stąd mamy pierwszą część definicji implikacji prostej p|=>q w zbiorach:
Zbiór p jest podzbiorem => zbioru q i nie jest tożsamy ze zbiorem q
A1: p=>q =1 - zbiór p jest (=1) podzbiorem => zbioru q (z definicji)
B1: p~>q =0 - zbiór p nie (=0) jest nadzbiorem ~> zbioru q (z definicji)

2.
Dlaczego przyjęta dziedzina musi być szersza od sumy logicznej zbiorów p+q?
Przyjmijmy za dziedzinę sumę logiczną zbiorów p+q
D = p+q =q - bo na mocy punktu 1 zbiór p jest podzbiorem zbioru q
Wtedy mamy:
~q=[D-q] = [q-q] =[] =0
Oznacza to że pojęcie ~q jest dla nas zbiorem pustym.

Definicja zbioru pustego [] w algebrze Kubusia:
Zbiór pusty to zbiór pojęć niezrozumiałych dla człowieka
[] =[asegft, uaytfds…]
Oczywistym jest, że nie możemy operować na pojęciach dla nas niezrozumiałych, stąd zastrzeżenie w definicji implikacji prostej p|=>q w zbiorach:
Dziedzina musi być szersza do sumy logicznej zbiorów p+q bowiem wtedy i tylko wtedy wszystkie pojęcia p, ~p, q i ~q będą rozpoznawalne.

Stąd mamy:
IP.
Definicja implikacji prostej p|=>q w zbiorach:
Zbiór p jest podzbiorem => zbioru q i nie jest tożsamy ze zbiorem q
Dziedzina musi być szersza do sumy logicznej zbiorów p+q bowiem wtedy i tylko wtedy wszystkie pojęcia p, ~p, q i ~q będą rozpoznawalne.
A1: p=>q =1 - zbiór p jest (=1) podzbiorem => zbioru q (z definicji)
B1: p~>q =0 - zbiór p nie (=0) jest nadzbiorem ~> zbioru q (z definicji)
p|=>q = (A1: p=>q)*~(B1: p~>q) =1*~(0) = 1*1 =1

Kod:

IP:
Tabela prawdy implikacji prostej p|=>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q =1 - p jest (=1) wystarczające => dla q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla q
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q =1 = 2:~p~>~q=1 [=] 3: q~>p =1 = 4:~q=>~p =1
A’: 1: p~~>~q=0 = [=] = 4:~q~~>p =0
## ## | ## ##
B: 1: p~>q =0 = 2:~p=>~q=0 [=] 3: q=>p =0 = 4:~q~>~p =0
B’: = 2:~p~~>q=1 [=] 3: q~~>~p=1

Równanie operatora implikacji prostej p||=>q:
A1B1: A2B2:
p|=>q = (A1: p=>q)*~(B1: p~>q) = (A2:~p~>~q)*~(B2:~p=>~q) = ~p|~>~q

Operator implikacji prostej p||=>q to układ równań logicznych:
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p
A2B2:~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p

Układ równań logicznych jest przemienny, stąd mamy:
Operator implikacji odwrotnej ~p||~>~q to układ równań logicznych:
A2B2:~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


Kod:

D1
Diagram implikacji prostej p|=>q w zbiorach:
----------------------------------------------------------------------
| p | ~p |
|---------------------------|----------------------------------------|
| q | ~q |
|--------------------------------------------|-----------------------|
| |~p~~>q = ~p*q | p~~>~q = p*~q =[] |
----------------------------------------------------------------------
| Dziedzina: D =p*q+~p*~q+~p*q (suma logiczna zbiorów niepustych) |
|--------------------------------------------------------------------|

Diagram implikacji prostej p|=>q
----------------------------------------------------------------------
I.
Przed zamianą p i q:
A1B1:
A1: p=>q =1 - zbiór p jest (=1) podzbiorem => zbioru q
B1: p~>q =0 - zbiór p nie jest (=0) nadzbiorem ~> zbioru q
A1B1: p|=>q=(A1: p=>q)*~(B1:p~>q)=1*~(0)=1*1=1
A2B2:
A2:~p~>~q=1 - zbiór ~p jest (=1) nadzbiorem ~> zbioru ~q
B2:~p=>~q=0 - zbiór ~p nie jest (=0) podzbiorem => ~q
A2B2: ~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q)=1*~(0)=1*1=1

II.
Po zamianie p i q:
A3B3:
A3: q~>p =1 - zbiór q jest (=1) nadzbiorem ~> zbioru p
B3: q=>p =0 - zbiór q nie jest (=0) podzbiorem => zbioru q
A3B3: q|~>p = (A3: q~>p)*~(B3: q=>p) =1*~(0)=1*1 =1
A4B4:
A4:~q=>~p=1 - zbiór ~q jest (=1) podzbiorem => ~p
B4:~q~>~p=0 - zbiór ~q nie jest (=0) nadzbiorem ~> ~p
A4B4: ~q|=>~p = (A4:~q=>~p)*~(~q~>~p) =1*~(0)=1*1 =1
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Operator implikacji prostej p||=>q to odpowiedź na dwa pytania A1B1 i A2B2:

A1B1:
Co może się wydarzyć jeśli zajdzie p (p=1)?

Odpowiedź mamy w kolumnie A1B1:
A1: p=>q =1 - zbiór p jest (=1) podzbiorem => zbioru q
B1: p~>q =0 - zbiór p nie jest (=0) nadzbiorem ~> zbioru q
Jeśli zajdzie p to mamy gwarancję matematyczną => iż zajdzie q - mówi o tym zdanie A1

Z diagramu D1 odczytujemy:
A1.
Jeśli zajdzie p (p=1) to na 100% => zajdzie q (q=1)
p=>q =1
Zajście p jest wystarczające => dla zajścia q bo zbiór p jest podzbiorem => zbioru q
Doskonale to widać na diagramie D1

Kontrprzykład A1’ dla prawdziwego warunku wystarczającego A1 musi być fałszem
A1’.
Jeśli zajdzie p (p=1) to może ~~> zajść ~q (~q=1)
p~~>~q = p*~q = [] =0
Definicja elementu wspólnego zbiorów ~~> nie jest spełniona bo zbiory p i ~q są rozłączne, co również widać na diagramie D1

A2B2:
Co może się wydarzyć jeśli zajdzie ~p (~p=1)?

Odpowiedź mamy w kolumnie A2B2:
A2:~p~>~q=1 - zbiór ~p jest (=1) nadzbiorem ~> zbioru ~q
B2:~p=>~q=0 - zbiór ~p nie jest (=0) podzbiorem => ~q
Jeśli zajdzie ~p to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” o czym mówią zdania A2 i B2’

Z diagramu D1 odczytujemy:
A2.
Jeśli zajdzie ~p (~p=1) to może ~> zajść ~q (~q=1)
~p~>~q =1
Zajście ~p jest konieczne ~> dla zajścia ~q bo zbiór ~p jest nadzbiorem ~> zbioru ~q
Wyśmienicie to widać na diagramie D1

LUB

Kontrprzykład B2’ dla fałszywego warunku wystarczającego B2:~p=>~q=0 musi być prawdą.
B2’.
Jeśli zajdzie ~p (~p=1) to może ~~> zajść q (q=1)
~p~~>q = ~p*q =1
Definicja elementu wspólnego zbiorów ~p i q jest spełniona, co doskonale widać na diagramie D1.

4.2.1 Odtworzenie definicji operatora implikacji prostej p||=>q z definicji ~~>

Weźmy diagram implikacji prostej w zbiorach p|=>q wyżej zapisany.
Kod:

D1
Diagram operatora implikacji prostej p||=>q w zbiorach
----------------------------------------------------------------------
| p | ~p |
|---------------------------|----------------------------------------|
| q | ~q |
|--------------------------------------------|-----------------------|
| |~p~~>q = ~p*q | p~~>~q = p*~q =[] |
----------------------------------------------------------------------
| Dziedzina: D =p*q+~p*~q+~p*q (suma logiczna zbiorów niepustych) |
|--------------------------------------------------------------------|
| |
|Operator implikacji prostej p||=>q w spójnikach „i”(*) i „lub”(+) |
----------------------------------------------------------------------
| Ya=p~~>q=p*q | Yd=~p~~>q=~p*q | Yc=~p~~>~q=~p*~q |
----------------------------------------------------------------------
| ~Yb=p~~>~q=p*~q (zbiór pusty!) |
----------------------------------------------------------------------

Spójniki iloczynu logicznego zbiorów „i”(*) oraz sumy logicznej zbiorów „lub”(+) z definicji nie są w stanie opisać relacji podzbioru => czy też nadzbioru ~> między dowolnymi dwoma zbiorami p i q.

Wniosek:
W opisie dowolnego diagramu w zbiorach wyrażonego spójnikami „i”(*) i „lub”(+) chodzi tylko i wyłącznie o spełnienie lub nie spełnienie definicji elementu wspólnego zbiorów ~~>.

Definicja elementu wspólnego ~~> zbiorów:
Jeśli p to q
p~~>q =p*q =1
Definicja elementu wspólnego zbiorów ~~> jest spełniona (=1) wtedy i tylko wtedy gdy zbiory p i q mają co najmniej jeden element wspólny
Inaczej:
p~~>q= p*q= [] =0 - zbiory p i q są rozłączne, nie mają (=0) elementu wspólnego ~~>

Decydujący w powyższej definicji jest znaczek elementu wspólnego zbiorów ~~>, dlatego dopuszczalny jest zapis skrócony p~~>q.
W operacji iloczynu logicznego zbiorów p*q poszukujemy tu jednego wspólnego elementu, nie wyznaczamy kompletnego zbioru p*q.

Stąd mamy tabelę prawdy operatora implikacji prostej p||=>q definiowaną elementami wspólnymi zbiorów ~~>:
Kod:

T0.
Operator p||=>q |
w spójnikach |Co w logice
elementu wspólnego ~~>|jedynek oznacza
Y ~Y | Y Z diagramu D1 odczytujemy:
A: p~~>q = p* q =1 0 |( p=1)~~>( q=1) =1 - istnieje el. wspólny p i q
B: p~~>~q= p*~q =0 1 |( p=1)~~>(~q=1) =0 - nie istnieje el. wspólny p i ~q
C:~p~~>~q=~p*~q =1 0 |(~p=1)~~>(~q=1) =1 - istnieje el. wspólny ~p i ~q
D:~p~~> q=~p* q =1 0 |(~p=1)~~>( q=1) =1 - istnieje el. wspólny ~p i q

Między funkcjami logicznymi Y i ~Y zachodzi relacja spójnika „albo”($).
Dowód:
Definicja spójnika „albo”($)
p$q =p*~q + ~p*q
Podstawmy:
p=Y
q=~Y
stąd:
Y$~Y = Y*~(~Y) + ~Y*(~Y) = Y*Y + ~Y*~Y =Y+~Y =1

Oczywiście relacja równoważności p<=>q definiująca tożsamość zbiorów/pojęć p=q musi tu być fałszem.
Dowód:
Definicja równoważności p<=>q wyrażona spójnikami „i”(*) i „lub”(+):
p<=>q = p*q + ~p*~q
Podstawmy:
p=Y
q=~Y
stąd:
Y<=>~Y = Y*(~Y) + ~Y*~(~Y) = Y*~Y + ~Y*Y = []+[] =0
cnd

Zapiszmy powyższą tabelę wyłącznie w spójnikach elementu wspólnego zbiorów ~~> zmieniając indeksowanie linii do postaci zgodnej z teorią wykładaną w algebrze Kubusia - matematycznie ten ruch jest bez znaczenia.
Kod:

T1.
Operator implikacji prostej p||=>q
definiowany elementem wspólnym zbiorów ~~>
Y Analiza dla punktu odniesienia Y
A1: p~~>q =1 - istnieje (=1) el. wspólny zbiorów p i q
A1’: p~~>~q =0 - nie istnieje (=0) el. wspólny zbiorów p i ~q
A2: ~p~~>~q =1 - istnieje (=1) el. wspólny zbiorów ~p i ~q
B2’:~p~~> q =1 - istnieje (=1) el. wspólny zbiorów ~p i q

Kluczowym punktem zaczepienia do przejścia z tabelą T1 do tabeli tożsamej T2 opisującej operator implikacji prostej p||=>q w warunkach wystarczających => i koniecznych ~> będzie definicja kontrprzykładu w zbiorach działająca wyłącznie w obszarze warunku wystarczającego =>.

Dodatkowo potrzebne nam będą prawa Kubusia:
A1: p=>q = A2: ~p~>~q
##
B1: p~>q = B2: ~p=>~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Definicja tożsamości logicznej „=” na przykładzie prawa Kubusia:
A1: p=>q = A2: ~p~>~q
Prawdziwość dowolnej strony tożsamości logicznej „=” wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej „=” wymusza fałszywość drugiej strony.

Z powyższego wynika, że mając udowodnioną prawdziwość warunku wystarczającego => A1:
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
nie musimy udowadniać prawdziwości warunku koniecznego ~> A2:
A2: ~p~>~q =1 - zajście ~p jest (=1) konieczne dla zajścia ~q
bowiem gwarantuje nam to prawo Kubusia, prawo rachunku zero-jedynkowego:
A1: p=>q = A2: ~p~>~q

W algebrze Kubusia zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

Definicja kontrprzykładu w zbiorach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane elementem wspólnym zbiorów p~~>~q=p*~q
Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)

Analiza tabeli prawdy T1 - część I
1.
Fałszywość kontrprzykładu A1’:
A1’: p~~>~q =0
wymusza prawdziwość warunku wystarczającego => A1 (i odwrotnie):
A1: p=>q =1 - zbiór p jest podzbiorem => zbioru q
2.
Prawo Kubusia:
A1: p=>q = A2:~p~>~q
Stąd:
Prawdziwość warunku wystarczającego A1:
A1: p=>q =1
wymusza prawdziwość warunku koniecznego ~> A2 (i odwrotnie):
A2: ~p~>~q =1 - zbiór ~p jest nadzbiorem ~> zbioru ~q

Nanieśmy naszą analizę do tabeli T2.
Kod:

T2.
Operator implikacji prostej p||=>q
w warunkach wystarczających => i koniecznych ~>
Y Analiza dla punktu odniesienia Y
A1: p=> q =1 - zbiór p jest podzbiorem => q
A1’: p~~>~q =0 - kontrprzykład dla A1 musi być fałszem
A2: ~p~>~q =1 - zbiór ~p jest nadzbiorem ~> ~q
B2’:~p~~> q =1 - istnieje (=1) element wspólny zbiorów ~p i q

Analiza tabeli prawdy T1 - część II
3.
Prawdziwość kontrprzykładu B2’:
B2’: ~p~~>q =1
wymusza fałszywość warunku wystarczającego B2 (i odwrotnie):
B2: ~p=>~q =0
4.
Prawo Kubusia:
B2: ~p=>~q = B1: p~>q
stąd:
Fałszywość warunku wystarczającego B2:
B2: ~p=>~q =0
wymusza fałszywość warunku koniecznego B1 (i odwrotnie):
B1: p~>q =0

Nanieśmy naszą analizę do tabeli T2
Kod:

T3.
Operator implikacji prostej p||=>q
w warunkach wystarczających => i koniecznych ~>
A1: p=> q =1 | B1: p~>q=0
A1’: p~~>~q =0
A2: ~p~>~q =1 | B2:~p=>~q=0
B2’:~p~~> q =1

Stąd mamy:
Linia A1B1:
Podstawowa definicja implikacji prostej p|=>q w zbiorach:
Implikacja prosta p|=>q to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q
B1: p~>q =0 - zajście p nie jest (=0) konieczne dla zajścia q
wtedy i tylko wtedy gdy zbiór p nie jest nadzbiorem ~> zbioru q
Stąd:
p|=>q = (A1: p=>q)*~(B1: p~>q) =1*~(0) =1*1 =1

Zdefiniowawszy implikację prostą p|=>q w zbiorach jako:
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
możemy ją podstawić do tabeli prawdy implikacji prostej p|=>q.
Kod:

IP:
Tabela prawdy implikacji prostej p|=>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q =1 - p jest (=1) wystarczające => dla q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla q
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q =1 = 2:~p~>~q=1 [=] 3: q~>p =1 = 4:~q=>~p =1
A’: 1: p~~>~q=0 = [=] = 4:~q~~>p =0
## ## | ## ##
B: 1: p~>q =0 = 2:~p=>~q=0 [=] 3: q=>p =0 = 4:~q~>~p =0
B’: = 2:~p~~>q=1 [=] 3: q~~>~p=1

Równanie operatora implikacji prostej p||=>q:
A1B1: A2B2:
p|=>q = (A1: p=>q)*~(B1: p~>q) = (A2:~p~>~q)*~(B2:~p=>~q) = ~p|~>~q

Operator implikacji prostej p||=>q to układ równań logicznych:
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p
A2B2:~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p

Układ równań logicznych jest przemienny, stąd mamy:
Operator implikacji odwrotnej ~p||~>~q to układ równań logicznych:
A2B2:~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Stąd mamy to, co już doskonale znamy.

Definicja operatora implikacji prostej p||=>q:
Operator implikacji prostej p||=>q to odpowiedź na dwa pytania A1B1 i A2B2:

Szczegółową analizę operatora implikacji prostej p||=>q znajdziemy w punkcie 4.1.2

4.2.2 Najmniejsza możliwa liczba elementów w operatorze p||=>q

Definicja implikacji prostej p|=>q w zbiorach:
Zbiór p jest podzbiorem => zbioru q i nie jest tożsamy ze zbiorem q
Dziedzina musi być szersza do sumy logicznej zbiorów p+q bowiem wtedy i tylko wtedy wszystkie pojęcia p, ~p, q i ~q będą rozpoznawalne.
A1: p=>q =1 - zbiór p jest (=1) podzbiorem => zbioru q (z definicji)
B1: p~>q =0 - zbiór p nie (=0) jest nadzbiorem ~> zbioru q (z definicji)
p|=>q = (A1: p=>q)*~(B1: p~>q) =1*~(0) = 1*1 =1

Z definicji implikacji prostej p|=>q w zbiorach wynika, że najmniejsza liczba elementów potrzebnych do zbudowania operatora implikacji prostej p||=>q to trzy elementy.
Zdefiniujmy trzy, różne na mocy definicji elementy których będziemy używać.
K - Kubuś
T - Tygrysek
P - Prosiaczek
Zbudujmy zbiory p i q spełniające definicję implikacji prostej w zbiorach:
p=[K]
q=[K+T]
Dziedzina:
D=[K+T+P]
stąd mamy niepuste przeczenia zbiorów rozumiane jako ich uzupełnienia do wspólnej dziedziny D:
~p=[D-p]=[K+T+P-K]=[T+P]
~q=[D-q]=[K+T+P-[K+T]=[P]
Podsumujmy:
p=[K], ~p=[T+P]
q=[K+T], ~q=[P]
Zapiszmy diagram operatora implikacji p||=>q dla powyższych elementów.
Kod:

D2
Diagram operatora implikacji prostej p||=>q w zbiorach
-----------------------------------------------------------------------
| p=[K], ~p=[T+P] |
| q=[K+T], ~q=[P] |
-----------------------------------------------------------------------
| p=[K] | ~p=[T+P] |
|---------------------------|-----------------------------------------|
| q=[K+T] -| ~q=[P] |
|---------------------------------------------|-----------------------|
| |~p~~>q=~p*q=[T] | p~~>~q = p*~q =[] |
-----------------------------------------------------------------------
| Dziedzina fizyczna: DF =p*q+~p*~q+~p*q (suma zbiorów niepustych) |
-----------------------------------------------------------------------

Doskonale widać, że w diagramie D2 spełniona jest definicji implikacji prostej p|=>q, a tym samym definicja operatora implikacji prostej p||=>q.

Zapiszmy pełny diagram implikacji prostej p|=>q:
Kod:

IP:
Tabela prawdy implikacji prostej p|=>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q =1 - p jest (=1) wystarczające => dla q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla q
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q =1 = 2:~p~>~q=1 [=] 3: q~>p =1 = 4:~q=>~p =1
A’: 1: p~~>~q=0 = [=] = 4:~q~~>p =0
## ## | ## ##
B: 1: p~>q =0 = 2:~p=>~q=0 [=] 3: q=>p =0 = 4:~q~>~p =0
B’: = 2:~p~~>q=1 [=] 3: q~~>~p=1

Równanie operatora implikacji prostej p||=>q:
A1B1: A2B2:
p|=>q = (A1: p=>q)*~(B1: p~>q) = (A2:~p~>~q)*~(B2:~p=>~q) = ~p|~>~q

Operator implikacji prostej p||=>q to układ równań logicznych:
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p
A2B2:~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p

Układ równań logicznych jest przemienny, stąd mamy:
Operator implikacji odwrotnej ~p||~>~q to układ równań logicznych:
A2B2:~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


Nasze zbiory na których operujemy to:
p=[K], ~p=[T+P]
q=[K+T], ~q=[P]

Definicja operatora implikacji prostej p||=>q:
Operator implikacji prostej p||=>q to odpowiedź na dwa pytania A1B1 i A2B2:

A1B1:
Co się stanie jeśli zajdzie p (p=1)?

Odpowiedź mamy w kolumnie A1B1:
A1: p=>q =1 - p jest (=1) wystarczające => dla q, bo p jest podzbiorem => q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla q, bo p nie jest nadzbiorem ~> q
A1B1: p|=>q =(A1: p=>q)* ~(B1: p~>q) - co się stanie jeśli zajdzie p?
Stąd:
Jeśli zajdzie p (p=1) to mamy gwarancję matematyczną => iż zajdzie q (q=1) - mówi o tym zdanie A1

A1.
Jeśli zajdzie p (p=1) to na 100% => zajdzie q (q=1)
p=>q =1
Zajście p jest warunkiem wystarczającym => dla zajścia q wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q
Sprawdzamy:
p=[K] => q=[K+T]
Definicja warunku wystarczającego => spełniona bo zbiór p=[K] jest podzbiorem => zbioru q=[K+T}
cnd

Z prawdziwości warunku wystarczającego => A1 wynika fałszywość kontrprzykładu A1’ (i odwrotnie)
A1’
Jeśli zajdzie p (p=1) to może ~~> zajść ~q (~q=1)
p~~>~q = p*~q =0
Nie istnieje (=0) wspólny element ~~> zbiorów p i ~q
Sprawdzamy:
p=[K] ~~> ~q=[P] = [K]*[P] =[] =0
Zbiory jednoelementowe Kubuś (K) i Prosiaczek (P) są rozłączne
cnd

A2B2:
Co się stanie jeśli zajdzie ~p (~p=1)?

Odpowiedź mamy w kolumnie A2B2:
A2: ~p~>~q =1 - zajście ~p jest (=1) konieczne ~> dla zajścia ~q
B2: ~p=>~q =0 - zajście ~p nie jest (=0) wystarczające => dla zajścia ~q
A2B2: ~p|~>~q =(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p?
Stąd:
Jeśli zajdzie ~p to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” - mówią o tym zdania A2 i B2’

A2.
Jeśli zajdzie ~p (~p=1) to może ~> zajść ~q (~q=1)
~p~>~q =1
Zajście ~p jest warunkiem koniecznym ~> dla zajścia ~q wtedy i tylko wtedy gdy zbiór ~p jest nadzbiorem ~> zbioru ~q
Sprawdzenie:
~p=[T+P] ~> ~q=[P] =1
Definicja warunku koniecznego ~> jest spełniona bo zbiór ~p=[T+P] jest nadzbiorem ~> zbioru ~q=[P]

LUB

Fałszywy warunek wystarczający => B2 wymusza prawdziwy kontrprzykład B2’ i odwrotnie:
B2’.
Jeśli zajdzie ~p (~p=1) to może ~~> zajść q (q=1)
~p~~>q = ~p*q =1
Istnieje (=1) wspólny element ~~> zbiorów ~p i q
Sprawdzenie:
~p=[T+P]~~>q=[K+T] = [T+K]*[K+T] =[T] =1
Istnieje element wspólny zbiorów ~p=[T+P] i q=[K+T] - to Tygrysek (T)

Doskonale tu widać, że w zdaniu B2’ nie jest spełniony ani warunek wystarczający => ani też konieczny ~>.
Dowód:
~p=[T+P] => q=[K+T] =0 - bo zbiór ~p=[T+P] nie jest (=0) podzbiorem => q=[K+T]
~p=[T+P} ~> q=[K+T] =0 - bo zbiór ~p=[T+P] nie jest (=0) nadzbiorem ~> q=[K+T]

p|=;q można zacząć w przedszkolu dysponując trzema pluszowJak widzimy wszystko tu pięknie gra i buczy, a zabawę z implikacją prostą ymi zabawkami:
K - Kubuś
T - Tygrysek
P - Prosiaczek

Powered by phpBB © 2001, 2005 phpBB Group