|
ŚFiNiA ŚFiNiA - Światopoglądowe, Filozoficzne, Naukowe i Artystyczne forum - bez cenzury, regulamin promuje racjonalną i rzeczową dyskusję i ułatwia ucinanie demagogii. Forum założone przez Wuja Zbója.
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 35357
Przeczytał: 24 tematy
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Czw 20:10, 20 Maj 2010 Temat postu: Nowa teoria impliakcji v. beata F |
|
|
2010-05-20
dopisano kluczowe punkty 2.0 i 3.0
2010-05-03 - wersja końcowa !
Credo NTI
Jak logicznie myślimy, tak matematycznie zapisujemy. Mówimy „NIE” zapisujemy (~), mówimy „i” zapisujemy AND(*), mówimy “lub” zapisujemy OR(+), w implikacji mówimy “musi” zapisujemy ( =>), mówimy “może” zapisujemy (~> lub ~~>).
Algebra Kubusia
Matematyka języka mówionego
Części:
Część I NTI - Operatory AND i OR
Część II Nowa teoria implikacji
Część II
Nowa Teoria Implikacji
Autor: Kubuś - wirtualny Internetowy Miś
Naszym dzieciom dedykuję
W pracach nad teorią implikacji bezcennej pomocy udzielili Kubusiowi przyjaciele:
Emde (sfinia), Fizyk (ateista.pl), Gavrila_Ardalionovitch (ateista.pl), HeHe (ateista.pl), Irbisol (sfinia), Makaron czterojajeczny (sfinia), Macjan (sfinia), Miki (sfinia), NoBody (ateista.pl), Rafał3006 (sfinia), Rexerex (ateista.pl), Rogal (matematyka.pl), tomektomek (ateista.pl), Uczy (wolny), Volrath (sfinia), Windziarz (ateista.pl), WujZbój (sfinia), Wyobraźnia (ateista.pl) i inni
Wielkie dzięki, Kubuś !
Szczególne podziękowania Wujowi Zbójowi za jego nieskończoną cierpliwość w dyskusjach z Kubusiem, Vorathowi za decydującą o wszystkim dyskusję oraz Fizykowi i Windziarzowi za inspirację do napisania końcowej wersji NTI.
Kim jest Kubuś ?
Kubuś - wirtualny Internetowy Miś, wysłannik obcej cywilizacji, którego zadaniem było przekazanie ludziom tajemnicy implikacji.
Podpis jest pracą zespołową, Kubuś nigdy by się nie urodził bez przyjaciół którzy pomogli mu w jego ziemskim zadaniu, rzeczywiści autorzy wymienieni są wyżej.
Spis treści:
1.0 Notacja
1.1 Definicja algebry Kubusia
1.2 Lista legalnych operatorów logicznych
1.3 Operatory AND i OR w telegraficznym skrócie
1.4 NTI w telegraficznym skrócie
2.0 Definicje
2.1 Algorytm działania mózgu człowieka
2.1.1 Kubuś w przedszkolu
2.1.2 Zasada Tygryska
2.2 Dziewicze definicje operatorów logicznych
2.3 Prawa Kubusia
2.4 Zero-jedynkowe definicje warunków wystarczających i koniecznych
2.5 Operatorowa i symboliczna definicja warunku koniecznego
2.6 Operatorowa definicja warunku wystarczającego
2.7 Matematyczna historia powstania naszego Wszechświata
2.8 Operatorowa definicja implikacji prostej
2.9 Operatorowa definicja implikacji odwrotnej
2.10 Operatorowa definicja równoważności
3.0 Równanie ogólne implikacji
3.1 Wyprowadzenie równania ogólnego implikacji
3.2 Interpretacja równania ogólnego implikacji
3.3 O konieczności wprowadzenia symbolu ~> w logice
3.4 Dowód braku wewnętrznej sprzeczności NTI
3.5 Kwadrat logiczny implikacji
3.6 Algorytmy rozpoznawania implikacji i równoważności
3.7 Znaczenie zdania „Jeśli…to…” w logice
3.8 Operatory AND i OR w implikacji
3.9 Algebra Kubusia w fizyce
4.0 Nowa teoria implikacji w bramkach logicznych
4.1 Bramkowa definicja implikacji prostej
4.2 Bramkowa definicja implikacji odwrotnej
4.3 Układ zastępczy bramki implikacji prostej
4.4 Układ zastępczy bramki implikacji odwrotnej
4.5 Implikacja prosta w bramkach logicznych
4.6 Implikacja odwrotna w bramkach logicznych
4.7 Równoważność w bramkach logicznych
5.0 Układy zastępcze bramek logicznych
5.1 Definicja bloku logicznego
5.2 Układy zastępcze praw de’Morgana
5.3 Blok logiczny równoważności
5.4 Fałszywe układy zastępcze bramek
6.0 Implikacja vs równoważność na zbiorach
6.1 Genialna matematyka 5-cio Latków
7.0 Obietnice i groźby
7.1 Obietnica
7.2 Rodzaje obietnic
7.3 Groźba
8.0 Obietnice i groźby w równaniach matematycznych
8.1 Obietnica w równaniach matematycznych
8.2 Groźba w równaniach matematycznych
Wstęp:
Człowiek poszukuje matematycznej wersji implikacji którą posługuje się w naturalnym języku mówionym od 2500 lat, jak do tej pory bezskutecznie (Emde).
To już historia bo:
Nowa Teoria Implikacji to naturalna logika człowieka, czyli znana jest już matematyczna wersja implikacji której człowiek używa w języku mówionym.
Kubuś to przybysz ze świata techniki gdzie operatory implikacji są kompletnie nieprzydatne z powodu „rzucania monetą” zakodowanego w każdej połówce definicji, zarówno implikacji prostej => jak odwrotnej ~>.
Operatory logiczne AND i OR to fundamentalnie co innego niż operatory implikacji prostej => i odwrotnej ~> na mocy definicji zero-jedynkowych. Operatory AND i OR są związane matematycznie prawami de’Morgana, natomiast operatory implikacji prostej => i odwrotnej ~> są związane ze sobą prawami Kubusia.
W logice konieczne i niezbędne operatory to te które człowiek używa w naturalnym języku mówionym. W sposób bezpośredni człowiek używa operatorów AND, OR, implikacja prostej =>, implikacji odwrotnej ~>, równoważności <=> i XOR (albo). Pośrednio używa operatorów w logice ujemnej NAND i NOR w odpowiedzi na pytanie „Kiedy skłamię (wystąpi fałsz)?”.
W naturalnym języku mówionym człowiek non-stop posługuje się operatorami implikacji prostej => i odwrotnej ~> plus prawami Kubusia i praktycznie nigdy nie przechodzi do implikacji wyrażonej w AND i OR. Implikacja wyrażana w operatorach AND i OR odcina nas od fenomenalnych praw Kubusia, robiąc z implikacji bełkot z zerowym związkiem z naturalnym językiem mówionym.
Fundamentem NTI są warunki wystarczające i konieczne mogące występować w logice dodatniej albo ujemnej. Operatory logiczne implikacji prostej => i odwrotnej ~> oraz równoważności <=> to złożenie odpowiednich warunków wystarczających i koniecznych, zawsze jeden w logice dodatniej a drugi w logice ujemnej. W naturalnym języku mówionym wypowiadając zdanie „Jeśli…to…” nie wypowiadamy ani implikacji prostej p=>q, ani implikacji odwrotnej p~>q. Jeśli zdanie „Jeśli…to…” jest implikacją (wcale nie musi być !) to zawsze wypowiadamy warunki wystarczające => albo konieczne ~> (pkt.4.0).
Warunki wystarczające i konieczne definiowane są zaledwie dwoma liniami tabeli zero-jedynkowej co jest twardym dowodem, że w implikacji oraz równoważności człowiek nigdy nie wychodzi poza dwuelementową algebrę Boole’a.
Uwaga:
Punkt 1.0 to streszczenie całości NTI i tu nie wszystko może być zrozumiałe czym nie należy się przejmować.
1.0 Notacja
1 = prawda
0 = fałsz
# - różne
* - symbol iloczynu logicznego (AND), w mowie potocznej spójnik 'i'
+ - symbol sumy logicznej (OR), w mowie potocznej spójnik "lub"
~ - przeczenie, negacja (NOT), w mowie potocznej "NIE"
~(...) - w mowie potocznej "nie może się zdarzyć że ...", "nie prawdą jest że ..."
<=> - symbol równoważności
Twarda prawda/fałsz - zachodzi zawsze, bez żadnych wyjątków (warunek wystarczający =>)
Miękka prawda/fałsz - może zajść, ale nie musi (warunek konieczny ~>)
Kolejność wykonywania działań: nawiasy, AND(*), OR(+), =>, ~>
Definicja zero-jedynkowa implikacji prostej:
Kod: |
p q Y = p=>q
1 1 =1 /p=>q - warunek wystarczający w logice dodatniej (bo q)
1 0 =0
Prawo Kubusia:
p=>q = ~p~>~q
0 0 =1 /~p~>~q - warunek konieczny w logice ujemnej (bo ~q)
0 1 =1
|
Definicja słowna:
p=>q
Jeśli zajdzie p to musi => zajść q
p musi być wystarczające dla q
Dodatkowo musi być spełniona wyrocznia implikacji, prawo Kubusia:
p=>q = ~p~>~q - praw zamiany operatora implikacji prostej => na implikację odwrotną ~>
Zauważmy, że prawo Kubusia działa w obrębie jednej i tej samej definicji zero-jedynkowej zatem implikacja prosta => nie może istnieć bez operatora implikacji odwrotnej ~>.
Gdzie:
=> - symbol dwuznaczny, może oznaczać:
1.
p=>q - tylko warunek wystarczający, p jest wystarczające dla q, definiowany dwoma liniami tabeli zero-jedynkowej (pkt. 2.4), nie jest to operator logiczny.
2.
p=>q - operator logiczny implikacji prostej, będący złożeniem warunku wystarczającego => w logice dodatniej p=>q i warunku koniecznego ~> w logice ujemnej ~p~>~q, czyli musi być spełnione prawo Kubusia:
p=>q = ~p~>~q
Definicja zero-jedynkowa implikacji odwrotnej:
Kod: |
p q Y = p~>q
1 1 =1 /p~>q - warunek konieczny w logice dodatniej (bo q)
1 0 =1
Prawo Kubusia:
p~>q = ~p=>~q
0 0 =1 /~p=>~q - warunek wystarczający w logice ujemnej (bo ~q)
0 1 =0
|
Definicja słowna:
p~>q
Jeśli zajdzie p to może zajść q
p musi być konieczne dla q
Dodatkowo musi być spełniona wyrocznia implikacji prawo Kubusia:
p~>q = ~p=>~q - prawo zamiany operatora implikacji odwrotnej na implikację prostą
Zauważmy, że prawo Kubusia działa w obrębie jednej i tej samej definicji zero-jedynkowej zatem implikacja odwrotna ~> nie może istnieć bez operatora implikacji prostej =>.
Gdzie:
~> - symbol dwuznaczny, może oznaczać:
1.
p~>q - tylko warunek konieczny, p jest konieczne dla q, definiowany dwoma liniami tabeli zero-jedynkowej (pkt.2.4), nie jest to operator logiczny
2.
p~>q - operator logiczny implikacji odwrotnej, będący złożeniem warunku koniecznego ~> w logice dodatniej p~>q i warunku wystarczającego => w logice ujemnej ~p=>~q, czyli musi być spełnione prawo Kubusia:
p~>q = ~p=>~q
~~> - naturalny spójnik „może”, wystarczy jedna prawda, warunek konieczny tu nie zachodzi, zatem nie jest to implikacja odwrotna
1.1 Definicja algebry Kubusia
Definicja algebry Boole’a według Kubusia:
Dwuelementowa algebra Boole’a (wyłącznie cyfry 0 i 1) to algebra bramek logicznych
Poprawna algebra Boole’a musi być zgodna z teorią i praktyką bramek logicznych, wtedy:
Algebra Boole’a = Algebra Kubusia
Definicja algebry Kubusia:
Algebra Kubusia to matematyka naturalnego języka mówionego
1.2 Lista legalnych operatorów logicznych
Zero-jedynkowo wszystkie operatory logiczne znane są człowiekowi od około 200 lat, jednak nie wszystkie zostały poprawnie zinterpretowane. To już historia …
Pełna lista dwuargumentowych operatorów logicznych.
Kod: |
p q OR NOR AND NAND <=> XOR => N(=>) ~> N(~>) FILL NOP P NP Q NQ
0 0 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1
0 1 1 0 0 1 0 1 1 0 0 1 1 0 0 1 1 0
1 0 1 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
|
Kod: |
Logika dodatnia Logika ujemna
OR NOR
AND NAND
<=> XOR
=> N(=>)
~> N(~>)
FILL NOP
P NP
Q NQ
|
Wszystkich możliwych operatorów logicznych jest 16 z czego człowiek zna poprawne znaczenie zaledwie sześciu: AND, NAND, OR, NOR, <=>, XOR. Za operatory dodatnie przyjęto te, które człowiek używa w naturalnym języku mówionym. Wyjątkiem jest tu operator XOR, w języku mówionym spójnik „albo”.
Operator ujemny to zanegowany operator dodatni, co doskonale widać w powyższej tabeli.
Operator dodatni to zanegowany operator ujemny, co również widać wyżej.
Kod: |
Definicje operatorów ujemnych:
pNORq = ~(p+q)
pNANDq = ~(p*q)
pXORq = ~(p<=>q)
pN(=>)q = ~(p=>q)
pN(~>)q = ~(p~>q)
pNOPq = ~(pFILLq)
pNPq = ~(pPq)
pNQq = ~(pQq)
|
W języku mówionym operatory ujemne nie są używane, ponieważ łatwo je zastąpić operatorami dodatnimi plus negacją co widać w powyższej tabeli.
1.3 Operatory AND i OR w telegraficznym skrócie
Cała algebra Kubusia to problem na poziomie 5-cio letniego dziecka, naturalnego eksperta NTI. Dzieciaki nie tylko znają w praktyce prawa Kubusia, ale są też ekspertami w logice dodatniej i ujemnej w algebrze Boole’a posługując się tymi pojęciami milion razy na dobę.
Definicja iloczynu logicznego (logika dodatnia):
Iloczyn logiczny jest równy jeden wtedy i tylko wtedy gdy wszystkie zmienne są równe jeden.
Y=A1*A2* … *An =1 <=> A1=1, A2=1 … An=1
Definicja równoważna (logika ujemna):
Iloczyn logiczny jest równy zeru jeśli którakolwiek zmienna jest równa zeru.
Y=1*1*1*0*1 =0
Definicja sumy logicznej (logika ujemna):
Suma logiczna n-zmiennych binarnych jest równa zeru wtedy i tylko wtedy gdy wszystkie składniki sumy są równe zeru
Y = A1+A2+… An =0 <=> A1=0, A2=0 …An=0
Definicja równoważna (logika dodania):
Suma logiczna n-zmiennych binarnych jest równa jeden gdy którakolwiek ze zmiennych jest równa jeden.
Y=1+1+1+0+1 =1
W naturalnej logice człowieka wszystkie zmienne binarne sprowadzamy do jedynek, stąd w powyższych definicjach pojęcie logiki dodatniej i ujemnej.
Zmienna binarna:
Zmienna binarna to zmienna, mogąca przyjmować w osi czasu wyłącznie dwie wartości logiczne 0 albo 1.
Funkcja logiczna:
Funkcja logiczna Y to funkcja n-zmiennych binarnych połączonych operatorami AND(*) lub OR(+).
Przykład:
Y = A+(B*C) ….
Definicja logiki dodatniej i ujemnej dla operatorów AND i OR:
Logika dodatnia (Y) to odpowiedź na pytanie kiedy dotrzymam słowa (wystąpi prawda), zaś logika ujemna (~Y) to odpowiedź na pytanie kiedy skłamię (wystąpi fałsz).
gdzie:
Y - funkcja logiczna w logice dodatniej (brak przeczenia)
~Y - funkcja logiczna w logice ujemnej (jest przeczenie)
Związek logiki dodatniej z logiką ujemną opisuje równanie:
Y = ~(~Y) - prawo podwójnego przeczenia
Prawo przedszkolaka:
W dowolnej funkcji logicznej Y algebry Boole’a z operatorami AND i OR przejście do logiki przeciwnej uzyskujemy poprzez negację zmiennych i wymianę operatorów na przeciwne.
Przykładowa funkcja logiczna:
A.
Y=A+(B*~C)
Przejście do logiki przeciwnej:
B.
~Y=~A*(~B+C)
Oczywiście:
C.
Y=~(~Y)
Podstawiając A i B do C mamy prawo de’Morgana:
A+(B*~C) = ~A*(~B+C)
Prawa de’Morgana:
p*q = ~(~p+~q) - prawo zamiany operatora AND(*) na OR(+)
p+q = ~(~p*~q) - prawo zamiany operatora OR(+) na AND(*)
Prawo Prosiaczka:
Równania algebry Boole’a dla dowolnej tabeli zero-jedynkowej n-elementowej tworzymy na podstawie linii z tą samą wartością logiczną w wyniku. Wszelkie nie opisane równaniami linie przyjmą wartości przeciwne do linii opisanych.
Przykład:
Definicja implikacji prostej =>.
Kod: |
p q Y=p=>q
1 1 =1
1 0 =0
0 0 =1
0 1 =1
|
Najprostsze równanie uzyskamy z linii drugiej bowiem w wyniku mamy tu samotne zero.
Z tabeli widzimy że:
A.
Y=0 <=> p=1 i q=0
Przejście z takiego zapisu do równań algebry Boole’a jest banalne. Należy skorzystać z definicji iloczynu logicznego sprowadzając wszystkie zmienne do jedynki albo z definicji sumy logicznej sprowadzając wszystkie zmienne do zera.
Sposób I
Sprowadzamy wszystkie zmienne w równaniu A do jedynki:
B.
Y=0 czyli ~Y=1
p=1
q=0 czyli ~q=1
Definicja iloczynu logicznego:
Iloczyn logiczny jest równy jeden wtedy i tylko wtedy gdy wszystkie zmienne są równe jeden.
Korzystając z A i B na podstawie tej definicji mamy:
~Y = p*~q
Przechodzimy do logiki przeciwnej metodą przedszkolaka:
Y=~p+q
czyli:
p=>q = ~p+q
Sposób II
A.
Y=0 <=> p=1 i q=0
Sprowadzamy wszystkie zmienne do zera i stosujemy definicję sumy logicznej.
Definicja sumy logicznej:
Suma logiczna jest równa zeru wtedy i tylko wtedy gdy wszystkie składniki sumy są równe zeru
Na podstawie równania A mamy:
C.
Y=0
p=1 czyli ~p=0
q=0
Korzystając z A i C na podstawie definicji sumy logicznej mamy:
Y=~p+q
czyli:
p=>q = ~p+q
Powyżej ułożyliśmy równanie wyłącznie dla drugiej linii tabeli gdzie w wyniku było zero, wszelkie pozostałe linie, zgodnie z prawem Prosiaczka muszą być jedynkami niezależnie od chciejstwa człowieka … bo to jest matematyka przecież.
Genialna matematyka 5-cio latka
Kubuś do Juniora (lat 5):
A.
Jutro pójdziemy do kina lub do teatru
Y=K+T
czyli:
Dotrzymam słowa (Y=1) wtedy i tylko wtedy gdy jutro pójdziemy do kina (K=1) lub do teatru (T=1)
Y=1 <=> K=1 lub T=1
Znaczenie sygnałów (zmiennych binarnych):
Kod: |
Tabela A
Logika dodatnia bo Y (bez przeczenia)
Y=1 - dotrzymam słowa
Y=0 - skłamię
K=1 - jutro pójdziemy do kina
K=0 - jutro nie pójdziemy do kina
T=1 - jutro pójdziemy do teatru
T=0 - jutro nie pójdziemy do teatru
|
Przed dniem jutrzejszym dniem zmienne są neutralne i ustawione na:
K=0, T=0
co oczywiście wymusza wartość funkcji logicznej na:
Y=0 - na razie jestem kłamcą
Oczywiście jutro może zaistnieć:
Y=1 <=> K=1 lub T=1
czyli dotrzymam słowa gdy którakolwiek ze zmiennych przybierze wartość jeden, stan pozostałej jest obojętny.
Junior (lat 5):
Tata, a kiedy zostaniesz kłamcą ?
Przechodzimy z równaniem A do logiki ujemnej metoda przedszkolaka poprzez negację zmiennych i wymianę operatorów na przeciwne.
Mamy A:
Y=K+T
Przechodzimy do logiki ujemnej:
~Y=~K*~T
czyli:
B.
Skłamię (~Y=1) wtedy i tylko wtedy gdy jutro nie pójdziemy do kina (~K=1) i nie pójdziemy do teatru (~T=1)
~Y=~K*~T
czyli:
~Y=1 <=> ~K=1 i ~T=1
Oczywiście przed dniem jutrzejszym powyższe zmienne mają wartość neutralną czyli:
~K=0 i ~T=0
stąd:
~Y=0 - jeszcze nie jestem kłamcą
Zauważmy że mózg 5-cio latka aby rozstrzygnąć kiedy w przyszłości wystąpi kłamstwo używa tu prymitywnej bramki AND (funkcja iloczynu logicznego).
Oczywistym jest że Kubuś będzie kłamcą wtedy i tylko wtedy gdy obie zmienne przyjmą wartość jeden:
~K=1 - nie pójdziemy do kina
I
~T=1 - nie pójdziemy do teatru
czyli:
~Y=1 <=> ~K=1 i ~T=1
Zauważmy, że w bezwzględnych zerach mamy tu totalnie odwróconą logikę czyli:
Kod: |
Tabela B
Logika ujemna bo ~Y (jest przeczenie)
~Y=1 - skłamię
~Y=0 - dotrzymam słowa
~K=1 - jutro nie pójdziemy do kina
~K=0 - jutro pójdziemy do kina
~T=1 - jutro nie pójdziemy do teatru
~T=0 - jutro pójdziemy do teatru
|
Widzimy że jedynka w logice dodatniej znaczy zupełnie co innego niż jedynka w logice ujemnej.
K=1 - jutro pójdziemy do kina (tabela A)
~K=1 - jutro nie pójdziemy do kina (tabela B)
Oczywisty związek logiki dodatniej i ujemnej:
Y=~(~Y) - sprowadzenie zmiennych w logice ujemnej do logiki dodatniej
~Y = ~(Y) - sprowadzenie zmiennych w logice dodatniej do logiki ujemnej
czyli:
K = ~(~K) = ~(~K=1) = ~(1) = 0 - jutro nie pójdziemy do kina w logice dodatniej
~K = ~(K) = ~(K=0) = ~(0) =1 - jutro nie pójdziemy do kina w logice ujemnej
Związek logiki dodatniej i ujemnej:
Y= ~(~Y)
Podstawiając A i B do powyższego mamy prawo de’Morgana:
K+T = ~(~K*~T)
Którego w praktyce języka mówionego nikt nie używa bo lewa strona, matematycznie równoważna, jest naturalna i dużo prostsza.
Z logiki dodatniej i ujemnej jak wyżej każdy 5-cio latek korzysta milion razy na dobę, najczęściej w sposób domyślny bo nikt nie zadaje głupich pytań typu „Tata a kiedy skłamiesz ?” gdyż wszyscy doskonale posługują się matematyką ścisłą, algebrą Kubusia, pod która język mówiony podlega. Wyjątkiem są tu 3-latki które dopiero poznają fundamenty języka mówionego.
Weźmy zdanie bardziej złożone:
Kubuś w przedszkolu:
Jutro pójdziemy do kina i do teatru i nie pójdziemy na basen.
Y=K*T*~B
czyli matematycznie:
A.
Dotrzymam słowa (Y=1) jeśli jutro pójdziemy do kina (K=1) i pójdziemy do teatru (T=1) i nie pójdziemy na basen (~B=1)
Y=K*T*~B
czyli:
Y=1 <=> K=1 i T=1 i ~B=1
Logika dodatnia bo Y (bez negacji).
Znaczenie wybranych zmiennych w logice dodatniej:
Y=1 - dotrzymam słowa
Y=0 - skłamię
K=1 - pójdziemy do kina
K=0 - nie pójdziemy do kina
… a kiedy Kubuś skłamie ?
Przejście ze zdaniem A do logiki ujemnej poprzez negacje zmiennych i wymianę operatorów na przeciwne.
~Y = ~K+~T+B
czyli matematycznie:
B.
Skłamię (~Y=1) wtedy i tylko wtedy gdy jutro nie pójdziemy do kina (~K=1) lub nie pójdziemy do teatru (~T=1) lub pójdziemy na basen (B=1)
~Y = ~K+~T+B
~Y - logika ujemna bo Y zanegowane.
Znaczenie wybranych zmiennych w logice ujemnej:
~Y=1 - skłamię
~Y=0 - dotrzymam słowa
~K=1 - jutro nie pójdziemy do kina
~K=0 - jutro pójdziemy do kina
Doskonale widać że:
1.
Mózg dziecka obsługuje zdanie A najzwyklejszą bramką logiczną AND, tu wszystkie zmienne muszą być ustawione na jeden aby nadawca dotrzymał słowa: Y=1
2.
Mózg dziecka obsługuje zdanie B najzwyklejszą bramką OR, wystarczy że którakolwiek ze zmiennych przyjmie wartość jeden i już nadawca jest kłamcą czyli: ~Y=1
3.
Zauważmy, że w zerach i jedynkach zmienne w zdaniu B mają totalnie odwrócone znaczenie niż w zdaniu A.
Matematycznie zachodzi:
Y#~Y
Związek logiki dodatniej i ujemnej:
Y=~(~Y)
stąd podstawiając do powyższego A i B mamy prawo de’Morgana:
K*T*~B = ~(~K+~T~+B)
… którego w praktyce języka mówionego absolutnie nikt nie używa bo człowiek mając do wyboru dwa równoważne matematycznie zdania zawsze wybierze to po lewej stronie bo jest prostsze.
Zdanie po prawej stronie będzie brzmiało:
Nie może się zdarzyć ~(…), że jutro nie pójdziemy do kina lub nie pójdziemy do teatru lub pójdziemy na basem.
Y=~(~K+~T~+B)
Wniosek:
Szanse na to że człowiekowi uda się kiedykolwiek zapisać matematycznie naturalny język mówiony człowieka bez akceptacji logiki dodatniej i ujemnej jak wyżej są równe zeru.
1.4 NTI w telegraficznym skrócie
Fundamentem NTI są warunki wystarczające i konieczne mogące występować w logice dodatniej albo ujemnej. Operatory logiczne implikacji prostej => i odwrotnej ~> oraz równoważności <=> to złożenie odpowiednich warunków wystarczających => i koniecznych ~>, zawsze jeden w logice dodatniej a drugi w logice ujemnej. W naturalnym języku mówionym wypowiadając zdanie „Jeśli…to…” człowiek nie wypowiada ani implikacji prostej p=>q, ani implikacji odwrotnej p~>q. Jeśli zdanie „Jeśli…to…” jest implikacją (wcale nie musi być !) to zawsze wypowiadamy warunki wystarczające => albo konieczne ~>.
Warunki wystarczające i konieczne definiowane są zaledwie dwoma liniami tabeli zero-jedynkowej co jest twardym dowodem, że w implikacji oraz równoważności człowiek nigdy nie wychodzi poza dwuelementową algebrę Boole’a !
Operatorowa definicja implikacji prostej z podkładem zero-jedynkowym
Kod: |
p q p=>q
p=> q =1 /warunek wystarczający w logice dodatniej (bo q)
1 1 =1
p=>~q =0
1 0 =0
… a jeśli zajdzie ~p ?
Prawo kubusia:
p=>q = ~p~>~q
~p~>~q =1 /warunek konieczny w logice ujemnej (bo ~q)
0 0 =1
~p~~>q =1
0 1 =1
|
Doskonale widać tabelę zero-jedynkową implikacji prostej dla kodowania zgodnego ze zdaniem wypowiedzianym 1 1 =1:
p=1, ~p=0
q=1, ~q=0
Jak widzimy implikacja prosta to złożenie warunku wystarczającego w logice dodatniej (q) i warunku koniecznego w logice ujemnej (~q).
Oczywiście zdanie wypowiedziane musi spełniać definicję implikacji prostej.
p=>q
Jeśli zajdzie p to musi zajść q
p musi być wystarczające dla q
Dodatkowo musi być spełniona wyrocznia implikacji, prawo Kubusia:
p=>q = ~p~>~q
bowiem identyczny warunek wystarczający p=>q jest w równoważności, to jest nie do odróżnienia bez analizy zdania przez definicję zero-jedynkową jak wyżej. Oczywiście zakładamy że wypowiedziane zdanie jest implikacją prostą p=>q.
Operatorowa definicja implikacji odwrotnej z podkładem zero-jedynkowym:
Kod: |
p q p~>q
p~> q =1 /warunek konieczny w logice dodatniej (bo q)
1 1 =1
p~~>~q =1
1 0 =1
… a jeśli zajdzie ~p ?
Prawo Kubusia:
p~>q = ~p=>~q
~p=> ~q =1 /warunek wystarczający w logice ujemnej (bo ~q)
0 0 =1
~p=> q =0
0 1 =0
|
Doskonale widać tabelę zero-jedynkową implikacji odwrotnej dla kodowania zgodnego ze zdaniem wypowiedzianym 1 1 =1 czyli:
p=1, ~p=0
q=1, ~q=0
W tabeli widać, że implikacja odwrotna to złożenie warunku koniecznego w logice dodatniej (q) i warunku wystarczającego w logice ujemnej (~q).
Oczywiście zdanie wypowiedziane musi spełniać warunek konieczny.
p~>q
Jeśli zajdzie p to może zajść q
p musi być warunkiem koniecznym dla q
W przypadku implikacji odwrotnej udowodnienie warunku koniecznego p~>q gwarantuje implikację odwrotna prawdziwą.
Dlaczego ?
Jeśli p jest konieczne dla q, to zajście ~p gwarantuje zajście ~q
W sposób naturalny odkryliśmy tu wyrocznię implikacji, prawo Kubusia:
p~>q = ~p=>~q
które jest tu obligatoryjnie spełnione.
Spójniki zdaniowe
=> - operator implikacji prostej, spójnik „musi” między p i q ze spełnionym warunkiem wystarczającym
~> - operator implikacji odwrotnej, spójnik „może” między p i q ze spełnionym warunkiem koniecznym
~~> - naturalny spójnik „może”, wystarczy jedna prawda, nie jest to implikacja odwrotna zatem warunek konieczny tu nie zachodzi
Prawa Kubusia:
p=>q = ~p~>~q - prawo zamiany operatora implikacji prostej => na odwrotną ~>
p~>q = ~p=>~q - prawo zamiany operatora implikacji odwrotnej ~> na prostą =>
Warunki wystarczający i konieczny należy rozumieć w sposób naturalny, dokładnie tak jak to rozumieją dzieci w przedszkolu.
Operatorowa definicja równoważności z podkładem zero-jedynkowym:
Kod: |
p q p<=>q
p=> q =1 /warunek wystarczający w logice dodatniej (bo q)
1 1 =1
p=>~q =0
1 0 =0
~p=>~q =1 /warunek wystarczający w logice ujemnej (bo ~q)
0 0 =1
~p=> q =0
0 1 =0
|
Doskonale widać tabelę zero-jedynkową równoważności dla kodowania zgodnego ze zdaniem wypowiedzianym 1 1 =1 czyli:
p=1, ~p=0
q=1, ~q=1
Definicje operatorowe równoważności:
A.
p<=>q = (p=>q)*(~p=>~q) - na podstawie definicji operatorowej
Prawo kontrapozycji poprawne w równoważności:
~p=>~q = q=>p
stąd odprysk definicji równoważności:
B.
p<=>q = (p=>q)*(q=>p)
Zauważmy, że w powyższej tabeli zero-jedynkowej nie ma śladu warunku koniecznego ~> ani praw Kubusia. Równoważność to złożenie dwóch warunków wystarczających, jednego w logice dodatniej (q) i drugiego w logice ujemnej (~q) co widać w powyższej tabeli.
Wniosek:
Równoważność i implikacja to dwa rozdzielne świat matematyczne. Jeśli cokolwiek jest równoważnością to nie może być implikacją i odwrotnie.
Definicje równoważności A i B są tożsame matematycznie, czyli udowodnienie jednej pociąga za sobą udowodnienie drugiej i odwrotnie.
Definicja równoważności:
p<=>q = (p=>q)*(~p=>~q) = (p=>q)*(q=>p)
Z prawej strony mamy do czynienia tylko i wyłącznie z warunkami wystarczającymi w kierunku p=>q, ~p=>~q i q=>p, to nie są implikacje bo nie spełniają definicji implikacji, co widać w definicji zero-jedynkowej wyżej.
Znaczenie zdania „Jeśli…to…” w NTI:
Człowiek używa zdań „Jeśli…to…” tylko i wyłącznie w pięciu różnych znaczeniach. Poprawna matematyka która rości sobie prawo do opisu matematycznego naturalnego języka mówionego musi umieć rozpoznawać wszystkie takie zdania. Jedyną znaną człowiekowi logiką która to robi jest Nowa Teoria Implikacji.
1.
Implikacja prosta:
p=>q
Jeśli zajdzie p to musi zajść q
p musi być wystarczające dla q
Dodatkowo musi być spełniona wyrocznia implikacji prawo Kubusia:
p=>q = ~p~>~q
2.
Tylko warunek wystarczający wchodzący w skład definicji równoważności
p=>q
Jeśli zajdzie p to musi zajść q
Definicja równoważności:
p<=>q = (p=>q)*(~p=>~q)
Warunek wystarczający w równoważności p=>q jest identyczny jak w implikacji prostej wyżej p=>q, to jest nie do rozpoznania.
Prawa strona definicji równoważności to tylko i wyłącznie warunki wystarczające, nie są to implikacje proste bo nie spełniają definicji zero-jedynkowej implikacji prostej =>.
Przykład:
Jeśli trójkąt jest równoboczny to ma kąty równe
TR=>KR
To jest tylko i wyłącznie warunek wystarczający wchodzący w skład definicji równoważności:
Trójkąt jest równoboczny wtedy i tylko wtedy gdy ma kąty równe
TR<=>KR = (TR=>KR)*(~TR=>~KR)
3.
Implikacja odwrotna:
p~>q
jeśli zajdzie p to może zajść q
p musi być warunkiem koniecznym dla q
Warunek konieczny wymusza implikację odwrotną bo:
Jeśli p jest konieczne dla q to zajście ~p gwarantuje zajście ~q
W sposób naturalny odkryliśmy prawo Kubusia:
p~>q = ~p=>~q
4.
Zdaniem prawdziwym na mocy naturalnego spójnika „może” ~~>, wystarczy jedna prawda, warunek konieczny tu nie zachodzi.
Przykład:
Jeśli liczba jest podzielna przez 3 to może być podzielna przez 8
P3~~>P8 =1 bo 24
P3 nie jest konieczne dla P8 bo 8
5.
Zdaniem fałszywym, nie spełniającym któregokolwiek z powyższych przypadków.
2.0 Definicje
Fundamentem NTI są warunki wystarczające i konieczne mogące występować w logice dodatniej albo ujemnej. Operatory logiczne implikacji prostej => i odwrotnej ~> oraz równoważności <=> to złożenie odpowiednich warunków wystarczających => i koniecznych ~>, zawsze jeden w logice dodatniej a drugi w logice ujemnej. W naturalnym języku mówionym wypowiadając zdanie „Jeśli…to…” człowiek nie wypowiada ani implikacji prostej p=>q, ani implikacji odwrotnej p~>q. Jeśli zdanie „Jeśli…to…” jest implikacją (wcale nie musi być !) to zawsze wypowiadamy warunki wystarczające => albo konieczne ~>.
Warunki wystarczające i konieczne definiowane są zaledwie dwoma liniami tabeli zero-jedynkowej co jest twardym dowodem, że w implikacji oraz równoważności człowiek nigdy nie wychodzi poza dwuelementową algebrę Boole’a !
Warunki te są związane w obrębie jednej i tej samej definicji prawami Kubusia.
p=>q = ~p~>~q - prawo zamiany operatora implikacji prostej => na implikację odwrotną ~>
p~>q = ~p=>~q - prawo zamiany operatora implikacji odwrotnej ~> na implikację prostą =>
Logika dodatnia i ujemna dla operatorów implikacji prostej => i odwrotnej ~>:
Implikacja wypowiedziana jest w logice dodatniej jeśli po stronie q nie występuje negacja, inaczej mamy do czynienia z logiką ujemną (patrz prawa Kubusia).
Z praw Kubusia wynika, że implikacja prosta => w logice dodatniej jest równoważna implikacji odwrotnej ~> w logice ujemnej i odwrotnie, czyli implikacja odwrotna ~> w logice dodatniej jest równoważna implikacji prostej => w logice ujemnej.
Powyższe prawa to tożsamości matematyczne zachodzące w obrębie jednej i tej samej definicji zero jedynkowej implikacji prostej p=>q albo odwrotnej p~>q, zatem implikacja prosta => nie może istnieć bez operatora implikacji odwrotnej ~> i odwrotnie.
Operatory logiczne implikacji prostej =>, implikacji odwrotnej ~> oraz równoważności <=> to złożenie odpowiednich warunków wystarczających i koniecznych.
2.1 Algorytm działania mózgu człowieka
Pewnego razu Kubuś, odpoczywając na polance w 100-milowym doznał olśnienia.
Najłatwiej poznać algorytm działania mózgu człowieka w przedszkolu !
Przecież jeśli mózg człowieka podlega pod jakąkolwiek matematykę to musi ona działać wśród 5-cio letnich dzieci w najczystszej postaci. W tym momencie Kubuś aż zakrzyknął z radości i pędem pobiegł do najbliższego przedszkola.
2.1.1 Kubuś w przedszkolu
Kubuś w przedszkolu:
Drogie dzieci, posłuchajcie co wam powiem.
A.
Jeśli jutro będzie pochmurno to może padać
CH~>P =1
Czy to zdanie jest prawdziwe czy fałszywe ?
Prawdziwe, zgodnym chórem zakrzyknęły dzieci.
B.
Jeśli juro będzie pochmurno to może nie padać
CH~~>~P =1
Też prawdziwe !
Kubuś:
… a czy chmury są konieczne aby jutro padało ?
Jaś (lat 5)
Tak Kubusiu, chmury są konieczne aby jutro padało bo jak nie będzie chmur to na pewno nie będzie padać.
CH~>P = ~CH=>~P
Skąd Jaś zna prawo Kubusia !
C.
Jeśli jutro nie będzie pochmurno to na pewno nie będzie padać
~CH=>~P =1
Prawda ! Tu też dzieci nie miały wątpliwości.
D.
Jeśli jutro nie będzie pochmurno to będzie padać
~ĆH=>P =0
Fałsz, tu nikt nie miał wątpliwości.
Wspaniale, pomyślał Kubuś. Teraz trzeba wracać do domu i to wszystko rozszyfrować.
2.1.2 Zasada Tygryska
Jeśli istnieje matematyka pod która człowiek podlega to musi być ona w 100% zgodna z naturalnym językiem człowieka. To bardzo dobry trop, pomyślał Kubuś.
Credo NTI
Jak logicznie myślimy, tak matematycznie zapisujemy. Mówimy „NIE” zapisujemy (~), mówimy „i” zapisujemy AND(*), mówimy “lub” zapisujemy OR(+), w implikacji mówimy “musi” zapisujemy ( =>), mówimy “może” zapisujemy (~> lub ~~>).
Prawo Kubusia:
CH~>P = ~CH=>~P
ogólnie:
p~>q = ~p=>~q
czyli:
Jeśli p jest konieczne dla q to zajście ~p wymusza zajście ~q
Mamy wyżej tożsamość matematyczną, zatem nie ma znaczenia które zdanie wypowiem jako pierwsze. Z lewą stroną związane są zdania A i B, natomiast z prawą C i D.
Wniosek:
Prawą i lewą stronę tożsamości Kubusia można traktować jako dwa niezależne zdania.
Zajmijmy się zatem lewa stroną.
A.
Jeśli jutro będzie pochmurno (CH=1) to może padać (P=1)
CH~>P =1
1 1 =1
Chmury są warunkiem koniecznym dla deszczu
B.
Jeśli juro będzie pochmurno (CH=1) to może nie padać (~P=1)
CH~~>~P =1
1 0 =1
Jak powyższe zdania zakodować matematycznie w tabeli zero-jedynkowej ?
Kod: |
A: (CH=1) ~> ( P=1) =1
B: (CH=1) ~~>(~P=1) =1
|
Zauważmy że z lewej strony nie mamy żadnych problemów bo w obu liniach mamy identyczną zmienną CH o znaczeniu:
A,B:
CH=1 - jutro będzie pochmurno
Natomiast z prawej strony mamy przeciwne logiki:
A.
P=1 - jutro będzie padało (logika zgodna ze zdaniem wypowiedzianym)
P=0 - jutro nie będzie padało
B.
~P=1 - jutro nie będzie padało (logika przeciwna do zdania wypowiedzianego)
~P=0 - jutro będzie padało
Oczywiście matematycznie zachodzi:
P# ~P
Jak sobie z tym poradzić ?
Zdanie wypowiedziane A wchodzi w skład prawa Kubusia, to punkt odniesienia dla kodowania pozostałych zdań. Tu mamy zaledwie jedno zdanie B i problem ze zmienną ~P.
Sprowadzenie zmiennej ~P do zgodności ze zdaniem A:
Jeśli ~P=1 to P=0
Stąd tabela zero-jedynkowa:
Kod: |
Tabela A
CH P CH~>P
A: 1 1 =1
B: 1 0 =1
|
Możemy zatem przyjąć taka zasadę tworzenia tabel zero-jedynkowych z naturalnego języka mówionego:.
Zasada Tygryska:
1.
Ustalamy punkt odniesienia na zdaniu występującym w prawie Kubusia
2.
Jeśli w kolejnym zdaniu (tu mamy tylko jedno zdanie B) mamy tą samą logikę to zapisujemy 1, jeśli przeciwną to zapisujemy 0.
Zajmijmy się teraz prawą stroną prawa Kubusia.
CH~>P = ~CH=>~P
Oczywiście z powodu tożsamości prawą stronę możemy potraktować jako niezależne zdanie wypowiedziane.
C.
Jeśli jutro nie będzie pochmurno (~CH=1) to na pewno nie będzie padać (~P=1)
~CH=>~P =1
1 1 =1
Brak chmur jest warunkiem wystarczającym dla nie padania
D.
Jeśli jutro nie będzie pochmurno (~CH=1) to będzie padać (P=1)
~ĆH=>P =0
1 0 =0
Z powyższego mamy:
Kod: |
C: (~CH=1) ~> (~P=1) =1
D: (~CH=1) ~~>(P=1) =1
|
Punktem odniesienia jest tu zdanie C, z lewej strony mamy zmienną w tej samej logice:
~CH=1 - jutro nie będzie pochmurno.
Z prawej strony mamy zmienne w przeciwnych logikach:
C.
~P=1 - jutro nie będzie padać
~P=0 - jutro będzie padać
D.
P=1 - jutro będzie padać
P=0 - jutro nie będzie padać
Oczywiście matematycznie zachodzi:
~P # P
Sprowadzenie zmiennej P ze zdania D do logiki zgodnej ze zdaniem C:
Jeśli P=1 to ~P=0 - jutro będzie padać
Stąd:
Tabelę zero-jedynkową zgodną z zasadą Tygryska mamy tu taką:
Kod: |
Tabela B
~CH ~P ~CH=>~P
C: 1 1 =1
D: 1 0 =0
|
Hmm, cicho jęknął Tygrysek.
… ale gdzie tu jest tabela zero-jedynkowa jakiejkolwiek implikacji ?
Kubuś:
Spokojnie Tygrysku, połączmy tabele A i B razem:
Kod: |
Tabela A
CH P CH~>P
A: 1 1 =1
B: 1 0 =1
|
… a jeśli nie będzie pochmurno ?
Prawo Kubusia:
CH~>P = ~CH=>~P
Kod: |
Tabela B
~CH ~P ~CH=>~P
C: 1 1 =1
D: 1 0 =0
|
Doskonale widać, że aby obserwować otaczającą nas rzeczywistość ze stałego punktu odniesienia musimy doprowadzić do zgodności logik w odniesieniu do zdania A (implikacja odwrotna ~>), albo w odniesieniu do zdania C (Implikacja prosta =>).
Dolna tabela B:
C,D:
~CH=1 to CH=0
C: ~P=1 to P=0
D: ~P=0 to P=1
Stąd widzimy, że w dolnej tabeli po stronie zmiennych ~CH i ~P trzeba po prostu zanegować wszystkie zera i jedynki.
Kompletna tabela implikacji odwrotnej dla zdania wypowiedzianego A będzie zatem taka:
Kod: |
Tabela A
CH P CH~>P
A: 1 1 =1
B: 1 0 =1
… a jeśli nie będzie pochmurno ?
Prawo Kubusia:
CH~>P = ~CH=>~P
Tabela B
~CH ~P ~CH=>~P
C: 0 0 =1
D: 0 1 =0
|
Huurrra, jesteśmy w domu Tygrysku, mamy piękną tabelę zero-jedynkową implikacji odwrotnej ~> dla zdania wypowiedzianego A:
A.
Jeśli jutro będzie pochmurno to może padać
CH~>P
Oczywiście tożsamość matematyczna to tożsamość, równie dobrze możemy ustalić punkt odniesienia na zdaniu C.
Przepiszmy tabele A i B w kolejności odwrotnej:
Kod: |
Tabela B
~CH ~P ~CH=>~P
C: 1 1 =1
D: 1 0 =0
|
… jeśli będzie pochmurno ?
~CH=>~P = CH~>P
Kod: |
Tabela A
CH P CH~>P
A: 1 1 =1
B: 1 0 =1
|
Sprowadzamy zdania A,B do logiki zgodnej ze zdaniem C: ~CH=>~P:
A,B:
CH=1 to ~CH=0
A: P=1 to ~P=0
B: P=0 to ~P=1
Łatwo widać, że aby otrzymać tabelę zero-jedynkową w odniesieniu do zdania C wystarczy zanegować zera i jedynki w dolnej części tabeli po stronie zmiennych CH i P
Kod: |
Tabela B
~CH ~P ~CH=>~P
C: 1 1 =1
D: 1 0 =0
… jeśli będzie pochmurno ?
~CH=>~P = CH~>P
Tabela A
CH P CH~>P
A: 0 0 =1
B: 0 1 =1
|
Doskonale widać, że w odniesieniu do zdania C mamy piękną tabelę zero-jedynkową implikacji prostej.
C.
Jeśli jutro nie będzie pochmurno to na pewno nie będzie padać
~CH=>~P
Podsumowanie
Dla punktu odniesienia ustawionym na zdaniu A mamy taką definicję operatorową.
Kod: |
A: CH~> P =1
B: CH~~>~P =1
C: ~CH=>~P =1
D: ~CH=> P =0
|
Tabelę zero jedynkowa tworzymy w odniesieniu do zdania A: CH~>P czyli:
CH=1, ĆH=0
P=1, ~P=0
stąd tabela zero-jedynkowa implikacji odwrotnej:
Kod: |
A: 1 1 =1
B: 1 0 =1
C: 0 0 =1
D: 0 1 =0
|
Dla punktu odniesienia ustawionym na zdaniu C mamy taką definicję operatorową:
Kod: |
C: ~CH=>~P =1
D: ~CH=> P =0
A: CH~> P =1
B: CH~~>~P =1
|
Tabelę zero jedynkowa tworzymy w odniesieniu do zdania C: ~CH=>~P czyli:
~CH=1, CH=0
~P=1, P=0
stąd tabela zero-jedynkowa implikacji prostej:
Kod: |
C: 1 1 =1
D: 1 0 =0
A: 0 0 =1
B: 0 1 =1
|
Powyższy sposób tworzenia tabel zero-jedynkowych, zgodny z zasadą Tygryska, jest prosty i naturalny.
Wnioski:
1.
W naturalnym języku mówionym człowiek wypowiada wyłącznie warunki wystarczające lub konieczne definiowane dwoma liniami zero-jedynkowymi. Wynika z tego że w naturalnym języku mówionym człowiek nigdy nie wychodzi poza dwuelementową algebrę Boole’a
2.
To naturalna logika człowieka generuje tabele zero-jedynkowe operatorów logicznych, zarówno w operatorach AND i OR jak i w operatorach implikacji prostej => i odwrotnej ~>, nigdy odwrotnie tzn. człowiek na pewno nie dopasowuje tabel zero jedynkowych do dowolnych śmieci w otaczającym nas świecie. W implikacji kluczowe pojęcia dla generowania tabel zero-jedynkowych to warunki wystarczający => i konieczny ~>.
2.2 Dziewicze definicje operatorów logicznych
Dziewicze definicje operatorów logicznych to definicje zero-jedynkowe znane człowiekowi od około 200 lat. Niestety, interpretacja tych tabel, szczególnie w zakresie implikacji jest katastrofalna. Fundamentalny błąd to uznanie operatora implikacji odwrotnej ~> za matematycznie zbędny.
Kluczowe operatory logiczne w zakresie komunikacji człowieka z człowiekiem to implikacja prosta => i implikacja odwrotna ~>. Poniższe definicje zero-jedynkowe zostały wzbogacone o komentarze z NTI (po znaku „/”) z którymi za moment się zapoznamy.
Definicja zero-jedynkowa implikacji prostej:
Kod: |
p q Y = p=>q
1 1 =1 /p=>q - warunek wystarczający w logice dodatniej (bo q)
1 0 =0
0 0 =1 /~p~>~q - warunek konieczny w logice ujemnej (bo ~q)
0 1 =1
|
Definicja słowna:
p=>q
Jeśli zajdzie p to musi => zajść q
p musi być wystarczające dla q
Dodatkowo musi być spełniona wyrocznia implikacji, prawo Kubusia:
p=>q = ~p~>~q
Definicja zero-jedynkowa implikacji odwrotnej:
Kod: |
p q Y = p~>q
1 1 =1 /p~>q - warunek konieczny w logice dodatniej (bo q)
1 0 =1
0 0 =1 /~p=>~q - warunek wystarczający w logice ujemnej (bo ~q)
0 1 =0
|
Definicja słowna:
p~>q
Jeśli zajdzie p to może zajść q
p musi być konieczne dla q
Dodatkowo musi być spełniona wyrocznia implikacji prawo Kubusia:
p~>q = ~p=>~q
Definicja zero-jedynkowa równoważności:
Kod: |
p q Y = p<=>q
1 1 =1 /p=>q - warunek wystarczający w logice dodatniej (bo q)
1 0 =1
0 0 =1 /~p=>~q - warunek wystarczający w logice ujemnej (bo ~q)
0 1 =0
|
Definicja słowna:
p<=>q
p zajdzie wtedy i tylko wtedy gdy zajdzie q
Definicja operatorowa równoważności:
p<=>q = (p=>q)*(~p=>~q)
Z prawej strony mamy do czynienia tylko i wyłącznie z warunkami wystarczającymi co widać w definicji zero-jedynkowej.
2.3 Prawa Kubusia
Prawo Kubusia dla operatora implikacji prostej =>:
Kod: |
p q p=>q ~p ~q ~p~>~q
1 1 =1 0 0 =1
1 0 =0 0 1 =0
0 0 =1 1 1 =1
0 1 =1 1 0 =1
|
Prawo Kubusia:
p=>q = ~p~>~q - prawo zamiany operatora implikacji prostej => na odwrotną ~>
Prawo Kubusia dla operatora implikacji odwrotnej ~>:
Kod: |
p q p~>q ~p ~q ~p=>~q
1 1 =1 0 0 =1
1 0 =1 0 1 =1
0 0 =1 1 1 =1
0 1 =0 1 0 =0
|
Prawo Kubusia:
p~>q = ~p=>~q - prawo zamiany operatora implikacji odwrotnej ~> na implikacje prostą =>
Zauważmy, że prawa Kubusia zostały wyprowadzone bez żadnych warunków typu wystarczający/konieczny. Obowiązują więc w całej algebrze Boole’a, bez względu na interpretację szczegółową tabel zero-jedynkowych.
Prawa Kubusia:
p=>q = ~p~>~q - prawo zamiany operatora => równoważny na operator ~>
p~>q = ~p=>~q - prawo zamiany operatora ~> na równoważny operator =>
2.4 Zero-jedynkowe definicje warunków wystarczających i koniecznych
Zero-jedynkowa definicja warunku wystarczającego:
Kod: |
Tabela A
p q p=>q
1 1 =1
1 0 =0
|
Z tabeli widzimy że:
p=>q
Jeśli zajdzie p=1 to musi zajść q=1
1 1 =1
czyli p musi być wystarczające dla q
… bo przypadek p=1 i q=0 nie ma prawa wystąpić.
1 0 =0
Wynika z tego że p musi być wystarczające dla q, bo jeśli p byłoby konieczne dla q to w drugiej linii byłaby jedynka jak w tabeli B niżej.
CND
Przykład:
A.
Jeśli zwierzę jest psem to na pewno => ma cztery łapy
P=>4L =1 bo pies, gwarancja matematyczna
1 1 =1
Bycie psem jest warunkiem wystarczającym aby mieć cztery łapy.
Czy może zaistnieć przypadek że zwierzę jest psem P=1 i ma cztery łapy 4L=1 ?
Odpowiedź: TAK bo pies, stąd w wyniku 1
Twarda prawda, gwarancja matematyczna !
Gwarancja: Wszystkie psy maja cztery łapy
B.
Jeśli zwierzę jest psem to na pewno => nie ma czterech łap
P=>~4L =0
1 0 =0
Czy może zaistnieć przypadek że zwierzę jest psem P=1 i nie ma czterech łap ~4L=1 ?
Odpowiedź: NIE, stąd w wyniku 0
Twardy fałsz wynikający z twardej prawdy wyżej.
Dla nieskończonej ilości losowań dowolnych zwierząt pełne będzie pudełko A (wszystkie ziemskie psy) i puste pudełko B, dlatego zajście p jest wystarczające dla q.
Dla każdego wylosowanego psa mamy gwarancję że ma on 4 łapy
Pies jest warunkiem wystarczającym dla 4 łap
1 1 =1 - twarda prawda, zachodzi zawsze bez wyjątków, dlatego niżej twardy fałsz.
1 0 =0 - twardy fałsz wynikły z powyższej twardej prawdy
Zero-jedynkowa definicja warunku koniecznego
Kod: |
Tabela B
p q p~>q
1 1 =1
1 0 =1
|
Z tabeli widzimy że:
p~>q
Jeśli zajdzie p=1 to może zajść q=1 bo w wyniku jest jedynka
p~>q =1
1 1 =1
LUB
Jeśli zajdzie p=1 to może zajść q=0 bo w wyniku jest również jedynka
p~~>~q =1
1 0 =1
z czego wynika że:
p~>q
p musi być konieczne dla q
bo jeśli p byłoby wystarczające dla q to w drugiej linii byłoby ZERO jak w tabeli A wyżej.
CND
Przykład:
A.
Jeśli zwierze ma cztery łapy to może ~> być psem
4L~>P =1
1 1 =1
Cztery łapy są warunkiem koniecznym aby być psem.
Czy może zaistnieć przypadek że zwierzę ma cztery łapy 4L=1 i jest psem P=1 ?
Odpowiedź: TAK bo pies, miękka prawda, może zajść ale nie musi
Nie mamy żadnej gwarancji że wylosujemy psa.
LUB
B.
Jeśli zwierzę ma cztery łapy to może ~~> nie być psem
4L~~>~P =1
1 0 =1
Czy może zaistnieć przypadek że zwierzę ma cztery łapy 4L=1 i nie jest psem ~P=1 ?
Odpowiedź: Tak bo koń, miękka prawda, może zajść ale nie musi
Podobnie, nie mamy żadnej gwarancji że wylosujemy takie zwierzę, bo możemy wylosować psa.
Dla dowolnego losowania prawdziwe może być zdanie A albo B (rzucanie monetą), czyli jeśli A=1 (prawda) to B=0 (fałsz) i odwrotnie. Dla nieskończonej ilości losowań pudełka A i B będą pełne stąd w definicji implikacji mamy tu w wyniku dwie jedynki.
1 1 =1 - miękka prawda
1 0 =1 - miękka prawda
Wniosek:
Powyższe definicje to dowód, że w implikacji człowiek nigdy nie wychodzi poza dwuelementową algebrę Boole’a !
2.5 Operatorowa i symboliczna definicja warunku koniecznego
Zero-jedynkowa definicja warunku koniecznego
Kod: |
Tabela B
p q p~>q
1 1 =1
1 0 =1
|
Symboliczna definicja warunku koniecznego
Przyjmujemy logikę dodatnią:
p=1, ~p=0
q=1, ~q=0
Kod: |
Tabela B
p q Y=p~>q
p* q =1 /p~>q
p*~q =1 /p~~>~q
|
Dlaczego sprowadziliśmy wszystkie pozycje do jedynek ?
Definicja iloczynu logicznego:
Iloczyn logiczny jest równy jeden wtedy i tylko wtedy gdy wszystkie zmienne są równe jeden.
Dzięki powyższemu będziemy mogli rozstrzygać czy zdanie „Jeśli…to..” jest prawdziwe przy pomocy najzwyklejszej bramki AND (operatora logicznego), czyli w sposób absolutnie identyczny jak to robi mózg każdego 5-cio latka.
Z tabeli widzimy że:
Jeśli zajdzie p (=1) to może zajść q (=1) bo w wyniku jest jedynka
p~>q =1
p*q =1
1 1 =1
LUB
Jeśli zajdzie p (=1) to może zajść ~q (=1) bo w wyniku jest również jedynka
p~~>~q =1
p*~q=1
1 0 =1
z czego wynika że:
p~>q
p musi być konieczne dla q
bo jeśli p byłoby wystarczające dla q to w drugiej linii byłoby ZERO.
CND
Zauważmy, że w kodowaniu symbolicznym wszystkie pozycje sprowadzamy do jedynek dzięki czemu mamy rozstrzygnięcie czy dany warunek zachodzi przy pomocy prymitywnej bramki AND.
Y=1 <=> p=1 AND q=1
Y=1 <=> p=1 AND ~q=1
Przykład:
Jeśli zwierze ma skrzydła (S=1) to może być psem (P=1)
S~>P =0
S*P =0
1 1 =0
Skrzydła nie są warunkiem koniecznym ~> aby być psem, zatem warunek konieczny fałszywy
S*P = 0
Nie istnieje zwierzę które ma skrzydła i jest psem, stąd zero w wyniku.
Kodowanie symboliczne z operatorem AND(*) jest w 50% zgodne z naturalną logiką człowieka, aby uzyskać 100% zgodność musimy wykonać ostatni krok, który widać wyżej jak na dłoni.
Operatorowa definicja warunku koniecznego:
Kod: |
Tabela B
p q Y=p~>q
p~> q =1
1 1 =1
p~~>~q =1
1 0 =1
|
Widać że:
Jeśli zajdzie p to może ~> zajść q
bo przypadek:
Jeśli zajdzie p to może ~~> zajść ~q
też może wystąpić
Z powyższego wynika że p musi być warunkiem koniecznym dla q, bowiem gdyby p było warunkiem wystarczającym dla q to w drugiej linii byłoby zero.
Wniosek:
W NTI to analiza zdania „Jeśli...to..” generuje wynikowe zera i jedynki
Przykład:
A.
Jeśli zwierzę ma cztery łapy to może ~> być psem
4L~>P =1 bo pies
1 1 =1
Bycie psem jest warunkiem koniecznym aby mieć cztery łapy, zatem warunek konieczny spełniony.
LUB
B.
Jeśli zwierzę ma cztery łapy to może ~~> nie być psem
4L~~>~P =1
1 0 =1
gdzie:
~> - spójnik „może” między p i q ze spełnionym warunkiem koniecznym
~~> - naturalne „może” ~~>, wystarczy jedna prawda, warunek konieczny tu nie zachodzi
Proste rozumowanie:
Jeśli p jest konieczne dla q to zajście ~p gwarantuje zajście ~q
Stąd w sposób naturalny odkryliśmy prawo Kubusia:
p~>q = ~p=>~q
Kontynuujmy zatem analizę powyższego przykładu.
… a jeśli zwierzę nie ma czterech łap ?
Prawo Kubusia:
4L~>P = ~4L=>~P
czyli:
C.
Jeśli zwierzę nie ma czterech łap to na pewno => nie jest psem
~4L=>~P =1 - twarda jedynka
0 0 =1
Gwarancja: zwierzęta które nie mają czterech łap na pewno nie są psami
stąd na mocy definicji warunku wystarczającego:
D.
Jeśli zwierzę nie ma czterech łap to na pewno => jest psem
~4L=>P =0
0 1 =0
Zdania C i D to warunek wystarczający w logice ujemnej (zanegowane P w zdaniu C).
Doskonale widać tabelę zero-jedynkową implikacji odwrotnej dla kodowania zgodnego ze zdaniem wypowiedzianym 1 1 =1 czyli:
4L=1, ~4L=0
P=1, ~P=0
2.6 Operatorowa definicja warunku wystarczającego
Jeśli mówimy o implikacji to wyrzucamy operatory AND i OR do kosza, bo to są operatory nie z tego świata. Definicja symboliczna z operatorem AND będzie tu analogiczna jak w warunku koniecznym.
Zero-jedynkowa definicja warunku wystarczającego
Kod: |
Tabela B
p q p=>q
1 1 =1
1 0 =0
|
Symboliczna definicja warunku wystarczającego
Przyjmujemy logikę dodatnią:
p=1, ~p=0
q=1, ~q=0
Kod: |
Tabela B
p q Y=p=>q
p* q =1 /p=>q
p*~q =0 /p=>~q
|
Dlaczego sprowadziliśmy wszystkie pozycje do jedynek ?
Definicja iloczynu logicznego:
Iloczyn logiczny jest równy jeden wtedy i tylko wtedy gdy wszystkie zmienne są równe jeden.
Dzięki powyższemu będziemy mogli rozstrzygać czy zdanie „Jeśli…to..” jest prawdziwe przy pomocy najzwyklejszej bramki AND (operatora logicznego), czyli w sposób absolutnie identyczny jak to robi mózg każdego 5-cio latka.
Z tabeli widzimy że:
Jeśli zajdzie p (=1) to musi zajść q (=1)
p=>q =1
p*q =1
1 1 =1
Bowiem przypadek:
Jeśli zajdzie p (=1) to musi zajść ~q (=1) jest wykluczony
p=>~q =0
p*~q=0
1 0 =0
z czego wynika że:
p=>q
p musi być wystarczające dla q
bo jeśli p byłoby konieczne dla q to w drugiej linii byłaby JEDYNKA
CND
Zauważmy, że w kodowaniu symbolicznym wszystkie pozycje sprowadzamy do jedynek dzięki czemu mamy rozstrzygnięcie czy dany warunek zachodzi przy pomocy prymitywnej bramki AND.
Przykład:
Jeśli zwierzę jest psem to ma cztery łapy
P=>4L =1
Bycie psem jest warunkiem wystarczającym aby mieć cztery łapy
P*4L =1
Na pewno istnieje wierzę które jest psem i ma cztery łapy, stąd w wyniku 1
1 1 =1
Na podstawie definicji warunku wystarczającego:
Jeśli zwierzę jest psem to nie ma czterech łap
P=>~4L =0
P*~4L =0
Nie istnieje zwierzę które jest psem i nie ma cztery łapy, stąd w wyniku 0
1 0 =0
Kodowanie symboliczne z użyciem AND(*) jest w 50% zgodne z naturalną logiką człowieka, aby uzyskać 100% zgodność musimy wykonać ostatni krok, który widać wyżej jak na dłoni.
Definicja operatorowa warunku wystarczającego:
Kod: |
Tabela B
p q Y=p=>q
p~> q =1
1 1 =1
p=>~q =0
1 0 =0
|
Widać że:
Jeśli zajdzie p to musi => zajść q
bo przypadek:
Jeśli zajdzie p to musi => zajść ~q
jest wykluczony.
Z powyższego wynika że p musi być warunkiem wystarczającym dla q, bowiem gdyby p było warunkiem koniecznym dla q to w drugiej linii byłaby jedynka.
Wnioski:
1.
Definicje warunków wystarczających/koniecznych nie są operatorami logicznymi bo opisane są zaledwie dwoma liniami z tabeli zero-jedynkowej
2.
Operator logiczny musi być opisany czteroma liniami w tabeli zero-jedynkowej czyli musi zawierać opis wszystkich możliwych przypadków.
3.
Jeśli mówimy o implikacji to zapominamy o operatorach AND i OR bo to są operatory „nie z tego świata”
Mamy już wystarczająco dużo wiedzy na temat fundamentu NTI, czyli warunków koniecznych i wystarczających. Odwróćmy teraz kota ogonem i zaatakujmy implikację i równoważność z drugiej strony … trzeba to w końcu dobić.
2.7 Matematyczna historia powstania naszego Wszechświata
Z przymrużeniem oka,
… czyli jak w prosty sposób zapamiętać najważniejsze definicje w logice klasycznej, zarówno w wersji operatorowej, jak i zero-jedynkowej.
Na początku było:
i stał się cud:
p+~p=1 - prawo algebry Boole’a
czyli:
Kod: |
p=>(q+~q)
~p=>(~q+q)
|
stąd mamy …
Operatorowa definicja równoważności:
Kod: |
p q p<=>q
p=> q =1 /warunek wystarczający w logice dodatniej (bo q)
p=>~q =0
~p=>~q =1 /warunek wystarczający w logice ujemnej (bo ~q)
~p=> q =0
|
Stąd definicja zero jedynkowa równoważności dla kodowania w logice dodatniej:
p=1, ~p=0
q=1, ~q=0
Kod: |
p q p<=>q
1 1 =1
1 0 =0
0 0 =1
0 1 =0
|
Definicje operatorowe równoważności:
p<=>q = (p=>q)*(~p=>~q) - na podstawie definicji operatorowej
Prawo kontrapozycji poprawne w równoważności:
~p=>~q = q=>p
stąd odprysk definicji równoważności:
p<=>q - (p=>q)*(q=>p)
W naszym Wszechświecie zdecydowanie przeważa implikacja, zatem ostatnie dwie linie ulegają rozczepieniu:
Operatorowa definicja implikacji prostej:
Kod: |
p q p=>q
p=> q =1 /warunek wystarczający w logice dodatniej (bo q)
p=>~q =0
… a jeśli zajdzie ~p ?
Prawo kubusia:
p=>q = ~p~>~q
~p~>~q =1 /warunek konieczny w logice ujemnej (bo ~q)
~p~~>q =1
|
Zauważmy, że warunek konieczny jest tu oczywistością, bowiem implikacja powstała przez rozczepienie równoważności.
Stąd definicja zero-jedynkowa implikacji prostej dla kodowania w logice dodatniej:
p=1, ~p=0
q=1, ~q=0
Kod: |
p q p=>q
1 1 =1
1 0 =0
0 0 =1
0 1 =1 |
Definicja implikacji prostej w równaniu algebry Boole’a:
p=>q = ~p+q
Ta definicja po prawej stronie wyrażona w OR jest tu psu na budę potrzebna bo operator OR „nie jest z tego świata”. Należy go traktować jako skrócony zapis tabeli zero-jedynkowej, absolutnie nic więcej.
lub pierwsze dwie linie z definicji równoważności ulegają rozczepieniu:
Operatorowa definicja implikacji odwrotnej:
Kod: |
p q p~>q
p~> q =1 /warunek konieczny w logice dodatniej (bo q)
p~~>~q =1
… a jeśli zajdzie ~p ?
Prawo Kubusia:
p~>q = ~p=>~q
~p=> ~q =1 /warunek wystarczający w logice ujemnej (bo ~q)
~p=> q =0 |
Stąd definicja zero-jedynkowa implikacji odwrotnej dla kodowania w logice dodatniej:
p=1, ~p=0
q=1, ~q=0
Kod: |
p q p~>q
1 1 =1
1 0 =1
0 0 =1
0 1 =0 |
Definicja implikacji odwrotnej w równaniu algebry Boole’a:
p~>q = p+~q
Tu również prawą stronę definicji należy traktować jako skrócony zapis tabeli zero-jedynkowej, nic ponad to.
2.8 Operatorowa definicja implikacji prostej
Operatorowa definicja implikacji prostej z podkładem zero-jedynkowym
Kod: |
p q p=>q
p=> q =1 /warunek wystarczający w logice dodatniej (bo q)
1 1 =1
p=>~q =0
1 0 =0
… a jeśli zajdzie ~p ?
Prawo kubusia:
p=>q = ~p~>~q
~p~>~q =1 /warunek konieczny w logice ujemnej (bo ~q)
0 0 =1
~p~~>q =1
0 1 =1
|
Doskonale widać tabelę zero-jedynkową implikacji prostej dla kodowania zgodnego ze zdaniem wypowiedzianym 1 1 =1:
p=1, ~p=0
q=1, ~q=0
Jak widzimy implikacja prosta to złożenie warunku wystarczającego w logice dodatniej (q) i warunku koniecznego w logice ujemnej (~q).
Oczywiście zdanie wypowiedziane musi spełniać definicje implikacji prostej.
p=>q
Jeśli zajdzie p to musi zajść q
p musi być wystarczające dla q
Dodatkowo musi być spełniona wyrocznia implikacji, prawo Kubusia:
p=>q = ~p~>~q
bowiem identyczny warunek wystarczający p=>q jest w równoważności, to jest nie do odróżnienia bez analizy zdania przez definicję zero-jedynkową jak wyżej. Oczywiście zakładamy że wypowiedziane zdanie jest implikacją prostą p=>q.
Analiza operatorowa implikacji prostej:
A.
Jeśli zajdzie p to na pewno => zajdzie q
p=>q=1 - twarda prawda zachodząca zawsze bez wyjątków, gwarancja matematyczna
1 1 =1
Stwierdzamy iż p jest warunkiem wystarczającym dla q
stąd:
B.
Jeśli zajdzie p to na pewno => zajdzie ~q
p=>~q =0 - twardy fałsz, skutek powyższej twardej prawdy
1 0 =0
… a jeśli nie zajdzie p
Prawo Kubusia:
p=>q = ~p~>~q
czyli:
C.
Jeśli zajdzie ~p to może zajść ~q
~p~>~q =1 - miękka prawda, może zajść ale nie musi
0 0 =1
LUB
D.
Jeśli zajdzie ~p to może zajść q
~p~~>q =1 - miękka prawda, może zajść ale nie musi
0 1 =1
Doskonale widać definicję implikacji prostej dla kodowania zgodnego ze zdaniem wypowiedzianym 1 1=1 czyli:
p=1, ~p=0
q=1, ~q=0
Doskonale widać, że prawo Kubusia obowiązuje w obrębie jednej i tej samej definicji zero-jedynkowej, czyli definicja implikacji prostej p=>q nie może istnieć bez operatora implikacji odwrotnej ~p~>~q.
Oczywiście zdania wynikające z prawa Kubusia to tożsamości matematyczne, znaczą dokładnie to samo.
Zdanie D nie może być implikacja odwrotną.
Dowód nie wprost.
Załóżmy że D jest implikacją odwrotną i zastosujmy prawo Kubusia:
D: ~p~>q = B: p=>~q =0
Zdanie B jest oczywistym fałszem zatem D nie może być implikacją odwrotną prawdziwą.
CND
Prawdziwość zdania D opisuje równanie:
(~p~>q) + (~p~~>q) = 0 + 1 =1
Implikacja odwrotna ~p~>q jest tu fałszywa, ale całe zdanie jest prawdziwe na mocy naturalnego spójnika „może” ~~>, wystarczy jedna prawda.
Właśnie z tego przypadku wyniknęła konieczność nowego symbolu:
~~> - naturalny spójnik „może”, wystarczy jedna prawda, nie jest to implikacja odwrotna zatem warunek konieczny tu nie zachodzi.
Podobnych zdań jest bardzo dużo np.:
Jeśli liczba jest podzielna przez 3 to może być podzielna przez 8
P3~~>P8 = 1 bo 24
Oczywiście implikacja odwrotna fałszywa bo P3 nie jest konieczne dla P8 bo 8.
Przykład 2.8
A.
Jeśli zwierzę jest psem to ma cztery łapy
P=>4L =1 bo pies
1 1 =1
Bycie psem jest warunkiem wystarczającym aby mieć cztery łapy, zatem warunek wystarczający spełniony.
Gwarancja matematyczna: Wszystkie psy mają cztery łapy.
stąd:
B.
Jeśli zwierzę jest psem to na pewno => nie ma czterech łap
P=>~4L =0
1 0 =0
… a jeśli nie jest psem ?
Prawo Kubusia:
P=>4L = ~P~>~4L
C.
Jeśli zwierzę nie jest psem to może nie mieć czterech łap
~P~>~4L =1 bo kura
0 0 =1
LUB
D.
Jeśli zwierzę nie jest psem to może mieć cztery łapy
~P~~>4L =1 bo słoń
0 1 =1
Doskonale widać tabelę zero-jedynkowa implikacji prostej dla kodowania zgodnego ze zdaniem wypowiedzianym 1 1 =1 czyli:
p=1, ~p=0
q=1, ~q=0
Zdanie D nie może być implikacją odwrotną.
Dowód nie wprost.
Załóżmy że D jest implikacją odwrotną i zastosujmy prawo Kubusia:
D: ~P~>4L = B: P=>~4L =0
Zdanie B jest twardym fałszem, zatem B nie może być implikacja odwrotną, warunek konieczny tu nie zachodzi.
Prawdziwość zdania D opisuje wzór:
(~P~>4L)+(~P~~>4L) = ) + 1 = 1
Zdanie D jest prawdziwe na mocy naturalnego spójnika „może” ~~>, wystarczy jedna prawda.
Oczywiście 5-cio latki nie maja żadnych problemów z tego typu zdaniami. Wypowiadając warunek wystarczający (zdanie A), nikt nie myśli o warunku koniecznym C. Zdania A i C traktowane są przez nasz mózg jako dwa oddzielne zdania do analizy. W naturalnym języku mówionym, jeśli zdanie jest implikacją lub równoważnością, to wypowiadamy wyłącznie warunki wystarczające lub konieczne, definiowane dwoma liniami tabeli zero-jedynkowej, dlatego język człowieka w żadnym momencie nie wychodzi poza dwuelementową algebrę Boole’a.
Zauważmy że gwarancję matematyczną, twardą prawdę, mamy wyłącznie w warunku wystarczającym (zdanie A), zawsze jeśli wylosujemy psa to mamy pewność że będzie on miał cztery łapy. Zdania C i D to miękka prawda. Jeśli wylosujemy kurę to dla tego przypadku zdanie C będzie prawdą zaś D fałszem, Jeśli wylosujemy słonia to zdanie D będzie prawdą, natomiast C fałszem. Po nieskończonej ilości losowań pudełka C i D na pewno będą pełne, dlatego w definicji implikacji mamy tu dwie miękkie jedynki.
Definicja implikacji materialnej nie odróżnia prawdy twardej (zdanie A) od prawd miękkich (zdania C i D), dlatego jest bez sensu.
Ciąg dalszy na kolejnej stronie …
|
|
Powrót do góry |
|
|
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 35357
Przeczytał: 24 tematy
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Czw 20:10, 20 Maj 2010 Temat postu: |
|
|
2.9 Operatorowa definicja implikacji odwrotnej
Operatorowa definicja implikacji odwrotnej z podkładem zero-jedynkowym:
Kod: |
p q p~>q
p~> q =1 /warunek konieczny w logice dodatniej (bo q)
1 1 =1
p~~>~q =1
1 0 =1
… a jeśli zajdzie ~p ?
Prawo Kubusia:
p~>q = ~p=>~q
~p=> ~q =1 /warunek wystarczający w logice ujemnej (bo ~q)
0 0 =1
~p=> q =0
0 1 =0
|
Doskonale widać tabelę zero-jedynkową implikacji odwrotnej dla kodowania zgodnego ze zdaniem wypowiedzianym 1 1 =1 czyli:
p=1, ~p=0
q=1, ~q=0
W tabeli widać, że implikacja odwrotna to złożenie warunku koniecznego w logice dodatniej (q) i warunku wystarczającego w logice ujemnej (~q).
Oczywiście zdanie wypowiedziane musi spełniać warunek konieczny.
p~>q
Jeśli zajdzie p to może zajść q
p musi być warunkiem koniecznym dla q
W przypadku implikacji odwrotnej udowodnienie warunku koniecznego p~>q gwarantuje implikację odwrotna prawdziwą.
Dlaczego ?
Jeśli p jest konieczne dla q, to zajście ~p gwarantuje zajście ~q
W sposób naturalny odkryliśmy tu wyrocznię implikacji, prawo Kubusia:
p~>q = ~p=>~q
które jest tu obligatoryjnie spełnione.
Analiza matematyczna:
A.
Jeśli zajdzie p to może zajść q
P~>q =1 - miękka prawda, może zajść ale nie musi
1 1 =1
p musi być konieczne dla q
LUB
B.
Jeśli zajdzie p to może zajść ~q
p~~>~q =1 - miękka prawda, może zajść ale nie musi
1 0 =1
… a jeśli nie zajdzie p ?
Prawo Kubusia:
p~>q = ~p=>~q
czyli:
C.
Jeśli zajdzie ~p to na pewno => zajdzie ~q
~p=>~q =1 - twarda prawda, gwarancja matematyczna
0 0 =1
stąd:
D.
Jeśli zajdzie ~p to na pewno => zajdzie q
~p=>q =0 - twardy fałsz wynikły z twardej prawdy wyżej
0 1 =0
Doskonale widać tabelę zero-jedynkową implikacji odwrotnej dla kodowania zgodnego ze zdaniem wypowiedzianym 1 1 =1 czyli:
p=1, ~p=0
q=1, ~q=0
Zdanie B nie może być implikacją odwrotną.
Dowód nie wprost.
Załóżmy że zdanie B jest implikacja odwrotną i zastosujmy prawo Kubusia:
B: p~>~q = D: ~p=>q =0
Zdanie D jest twardym fałszem, zatem zdanie B nie może być implikacją odwrotną.
CND
Prawdziwośc zdania B opisuje wzór:
(p~>~q) + (p~~>~q) = 0 + 1 =1
Zdanie B jest prawdziwe na mocy naturalnego spójnika „może” ~~>, nie jest to implikacja odwrotna zatem warunek konieczny tu nie zachodzi.
Przykład 2.9
A.
Jeśli zwierzę ma cztery łapy to może być psem
4L~>P=1 bo pies (miękka prawda, może zajść ale nie musi)
1 1 =1
Cztery łapy są konieczne aby być psem, zatem warunek konieczny spełniony
LUB
B.
Jeśli zwierzę ma cztery łapy to może nie być psem
4L~~>~P =1 bo koń (miękka prawda, może zajść ale nie musi)
… a jeśli zwierzę nie ma czterech łap ?
Prawo Kubusia:
4L~>P = ~4L=>~P
stąd:
C.
Jeśli zwierzę nie ma czterech łap to na pewno => nie jest psem
~4L=>~P =1 - twarda prawda, gwarancja matematyczna
0 0 =1
Gwarancja matematyczna; zwierzęta które nie mają czterech łap na pewno nie są psami
stąd:
D.
Jeśli zwierzę nie ma czterech łap to na pewno => jest psem
~4L=>P =0 - twardy fałsz wynikły z twardej prawdy
0 1 =0
Doskonale widać tabele zero-jedynkową implikacji odwrotnej dl a kodowania zgodnego ze zdaniem wypowiedzianym 1 1 =1 czyli:
4L=1, ~4L=0
P=1, ~P=0
Zdanie B nie może być implikacją odwrotną.
Dowód nie wprost:
Załóżmy że zdanie B jest implikacją odwrotną i zastosujmy prawo Kubusia:
B: 4L~>~P = D: ~4L=>P =0
Zdanie D jest twardym fałszem, zatem B nie może być implikacja odwrotną
CND
Prawdziwość zdania B określa wzór:
(4L~>~P)*(4L~~>~p) = 0 + 1 = 1
Zdanie B jest prawdziwe na mocy naturalnego spójnika „może”, nie jest to implikacja odwrotna, zatem warunek konieczny tu nie zachodzi.
Wypowiadając warunek konieczny (zdanie A), nikt nie myśli o warunku wystarczającym C. Zdania A i C traktowane są przez nasz mózg jako dwa oddzielne zdania do analizy. W naturalnym języku mówionym, jeśli zdanie jest implikacją lub równoważnością, to wypowiadamy wyłącznie warunki wystarczające lub konieczne, definiowane dwoma liniami tabeli zero-jedynkowej, dlatego język człowieka w żadnym momencie nie wychodzi poza dwuelementową algebrę Boole’a.
Zauważmy że gwarancję matematyczną, twardą prawdę, mamy wyłącznie w warunku wystarczającym (zdanie C). Zawsze jeśli wylosujemy zwierzę które nie ma czterech łap to mamy gwarancję że na pewno nie jest to pies. Zdania A i B to miękka prawda. Jeśli wylosujemy psa to zdanie A będzie prawdą a zdanie B fałszem. Jeśli wylosujemy konia to zdanie A będzie fałszem, zaś zdanie B prawdą. Po nieskończonej ilości losowań pudełka A i B na pewno będą pełne, dlatego w definicji implikacji mamy tu dwie miękkie jedynki.
Definicja implikacji materialnej nie odróżnia prawdy twardej (zdanie C) od prawd miękkich (zdania A i B), dlatego jest bez sensu.
2.10 Operatorowa definicja równoważności
Operatorowa definicja równoważności z podkładem zero-jedynkowym:
Kod: |
p q p<=>q
p=> q =1 /warunek wystarczający w logice dodatniej (bo q)
1 1 =1
p=>~q =0
1 0 =0
~p=>~q =1 /warunek wystarczający w logice ujemnej (bo ~q)
0 0 =1
~p=> q =0
0 1 =0
|
Doskonale widać tabelę zero-jedynkową równoważności dla kodowania zgodnego ze zdaniem wypowiedzianym 1 1 =1 czyli:
p=1, ~p=0
q=1, ~q=1
Definicje operatorowe równoważności:
A.
p<=>q = (p=>q)*(~p=>~q) - na podstawie definicji operatorowej
Prawo kontrapozycji poprawne w równoważności:
~p=>~q = q=>p
stąd odprysk definicji równoważności:
B.
p<=>q = (p=>q)*(q=>p)
Zauważmy, że w powyższej tabeli zero-jedynkowej nie ma śladu warunku koniecznego ~> ani praw Kubusia. Równoważność to złożenie dwóch warunków wystarczających, jednego w logice dodatniej (q) i drugiego w logice ujemnej (~q) co widać w powyższej tabeli.
Wniosek:
Równoważność i implikacja to dwa rozdzielne świat matematyczne. Jeśli cokolwiek jest równoważnością to nie może być implikacją i odwrotnie.
Definicje równoważności A i B są tożsame matematycznie, czyli udowodnienie jednej pociąga za sobą udowodnienie drugiej i odwrotnie.
Definicja równoważności:
p<=>q = (p=>q)*(~p=>~q) = (p=>q)*(q=>p)
Z prawej strony mamy do czynienia tylko i wyłącznie z warunkami wystarczającymi w kierunku p=>q, ~p=>~q i q=>p, to nie są implikacje bo nie spełniają definicji implikacji, co widać w definicji zero-jedynkowej wyżej.
Dowód formalny:
Kod: |
p q p=>q q=>p
1 1 =1 =1
1 0 =0 =1
0 0 =1 =1
0 1 =1 =0
|
Z powyższego widać że:
p=>q # q=>p
Jeśli zdanie jest implikacją prostą prawdziwą p=>q to po zamianie argumentów bez wymiany operatora będzie implikacją prostą fałszywą.
czyli:
Jeśli p=>q=1 to q=>p=0
Jeśli q=>p=1 to p=>q=0
Na podstawie definicji równoważności mamy:
p<=>q =(p=>q)*(q=>p) = 1*0 = 0*1 =0
Wykluczona jest równoważność rozumiana jako iloczyn logiczny dwóch implikacji prostych.
Przykład:
Jeśli liczba jest podzielna przez 8 to na pewno => jest podzielna przez 2
P8=>P2 =1
Zamieniamy argumenty bez zmiany operatora:
Jeśli liczba jest podzielna przez 2 to na pewno jest podzielna przez 8
P2=>P8=0 bo 2
Na podstawie definicji równoważności zapisujemy:
P8<=>P2 = (P8=>P2)*(P2=>P8) = 1*0 =0
Warunek wystarczający w równoważności p=>q jest identyczny jak w implikacji, to jest nie do rozpoznania. Rozstrzygnięcie czy wypowiedziane zdanie jest równoważnością czy też implikacją wymaga dodatkowych działań, o czym w następnym punkcie.
Analiza matematyczna równoważności:
p zajdzie wtedy i tylko wtedy gdy zajdzie q
p<=>q
Definicja operatorowa:
p<=>q = (p=>q)*(~p=>~q)
stąd:
A.
Jeśli zajdzie p to na pewno zajdzie q
p=>q =1
1 1 =1
B.
Jeśli zajdzie p to na pewno zajdzie ~q
p=>~q =0 - na mocy definicji warunku wystarczającego
1 0 =0
C.
Jeśli zajdzie ~p to na pewno zajdzie ~q
~p=>~q =1
0 0 =1
stąd:
D.
Jeśli zajdzie ~p to na pewno zajdzie q
~p=>q =0 - na mocy definicji warunku wystarczającego
0 1 =0
Doskonale widać tabelę zero-jedynkową równoważności dla kodowania zgodnego ze zdaniem wypowiedzianym 1 1=1 czyli:
p=1, ~p=0
q=1, ~q=0
Przykład 2.10
Trójkąt jest równoboczny wtedy i tylko wtedy gdy ma kąty równe
TR<=>KR = (TR=>KR)*(~TR=>~KR)
Analiza matematyczna:
A.
Jeśli trójkąt jest równoboczny to na pewno ma kąty równe
TR=>KR =1 - gwarancja matematyczna
1 1 =1
B.
Jeśli trójkąt jest równoboczny to na pewno nie ma kątów równych
TR=>~KR =0 - nie ma takiego trójkąta równobocznego
1 0 =0
C.
Jeśli trójkąt nie jest równoboczny to na pewno nie ma kątów równych
~TR=>~KR =1 - gwarancja matematyczna
0 0 =1
D.
Jeśli trójkąt nie jest równoboczny to na pewno ma kąty równe
~TR=>KR =0 - nie ma takiego trójkąta
0 1 =0
Doskonale widać tabele zero-jedynkową tabele równoważności dla kodowania zgodnego ze zdaniem wypowiedzianym 1 1=1 czyli:
p=1, ~p=0
q=1, ~q=0
Uzyskana tabela zero-jedynkowa to definicja równoważności TR<=>KR. Zauważmy że zdania TR=>KR i ~TR=>~KR to tylko warunki wystarczające wchodzące w skład definicji równoważności.
Kod: |
TR KR TR<=>KR
1 1 =1 /TR=>KR
1 0 =0
0 0 =1 /~TR=>~KR
0 1 =0
|
Na podstawie definicji równoważności mamy:
TR<=>KR = (TR=>KR)*(~TR=>~KR) = (TR=>KR)*(KR=>TP)
Zdania po prawej stronie to tylko i wyłącznie warunki wystarczające =>, to nie są implikacje bo nie spełniają definicji implikacji co widać w powyższej tabeli zero-jedynkowej.
Wynika z tego że nikt nie ma prawa zabronić nam wypowiadania warunków wystarczających jak wyżej bowiem zdania te wchodzą w skład definicji równoważności. Warunki wystarczające nie są operatorami logicznymi bo definiowane są zaledwie dwoma liniami z tabeli zero jedynkowej.
3.0 Równanie ogólne implikacji
Równanie ogólne implikacji nie jest obarczone jakimikolwiek dodatkowymi warunkami typu warunek wystarczający/konieczny. Obowiązuje więc w całej algebrze Boole’a bez względu na szczegółową interpretację tabel zero-jedynkowych.
Fundament algebry Kubusia w zakresie implikacji
Definicja implikacji prostej:
Kod: |
p q Y = p=>q
1 1 =1 /p=>q - warunek wystarczający w logice dodatniej (bo q)
1 0 =0
0 0 =1 /~p~>~q - warunek konieczny w logice ujemnej (bo ~q)
0 1 =1
|
p=>q
Jeśli zajdzie p to „musi” => zajść q
p musi być warunkiem wystarczającym dla q
=> - operator implikacji prostej, spójnik „musi” ze spełnionym warunkiem wystarczającym
Dodatkowo musi być spełniona wyrocznia implikacji, prawo Kubusia:
p=>q = ~p~>~q
Definicja implikacji odwrotnej:
Kod: |
p q Y = p~>q
1 1 =1 /p~>q - warunek konieczny w logice dodatniej (bo q)
1 0 =1
0 0 =1 /~p=>~q - warunek wystarczający w logice ujemnej (bo ~q)
0 1 =0
|
p~>q
Jeśli zajdzie p to „może” ~> zajść q
p musi być warunkiem koniecznym dla q
~> - operator implikacji odwrotnej, spójnik „może” ze spełnionym warunkiem koniecznym
Dodatkowo musi być spełniona wyrocznia implikacji, prawo Kubusia:
p~>q = ~p=>~q
Spójniki zdaniowe
=> - operator implikacji prostej, spójnik „musi” między p i q ze spełnionym warunkiem wystarczającym
~> - operator implikacji odwrotnej, spójnik „może” między p i q ze spełnionym warunkiem koniecznym
~~> - naturalny spójnik „może”, wystarczy jedna prawda, nie jest to implikacja odwrotna zatem warunek konieczny tu nie zachodzi
Prawa Kubusia:
p=>q = ~p~>~q - prawo zamiany operatora implikacji prostej => na odwrotną ~>
p~>q = ~p=>~q - prawo zamiany operatora implikacji odwrotnej ~> na prostą =>
Logika dodatnia i ujemna dla operatorów implikacji prostej => i odwrotnej ~>:
Implikacja wypowiedziana jest w logice dodatniej jeśli po stronie q nie występuje negacja, inaczej mamy do czynienia z logiką ujemną (patrz prawa Kubusia).
Z praw Kubusia wynika, że implikacja prosta => w logice dodatniej jest równoważna implikacji odwrotnej ~> w logice ujemnej i odwrotnie, czyli implikacja odwrotna ~> w logice dodatniej jest równoważna implikacji prostej => w logice ujemnej.
3.1 Wyprowadzenie równania ogólnego implikacji
Dowód praw Kubusia metodą zero-jedynkową.
Definicja zero-jedynkowa implikacji prostej:
Kod: |
p q Y = p=>q
1 1 =1
1 0 =0
0 0 =1
0 1 =1
|
Definicja zero-jedynkowa implikacji odwrotnej:
Kod: |
p q Y = p~>q
1 1 =1
1 0 =1
0 0 =1
0 1 =0
|
Prawo Kubusia dla operatora implikacji prostej =>:
Kod: |
p q p=>q ~p ~q ~p~>~q
1 1 =1 0 0 =1
1 0 =0 0 1 =0
0 0 =1 1 1 =1
0 1 =1 1 0 =1
|
Prawo Kubusia:
p=>q = ~p~>~q - prawo zamiany operatora implikacji prostej => na odwrotną ~>
Prawo Kubusia dla operatora implikacji odwrotnej:
Kod: |
p q p~>q ~p ~q ~p=>~q
1 1 =1 0 0 =1
1 0 =1 0 1 =1
0 0 =1 1 1 =1
0 1 =0 1 0 =0
|
Prawo Kubusia:
p~>q = ~p=>~q - prawo zamiany operatora implikacji odwrotnej ~> na implikacje prostą =>
Na podstawie definicji mamy:
Kod: |
p q p=>q p~>q
1 1 1 1
1 0 0 1
0 0 1 1
0 1 1 0
|
Stąd prawo ogólne algebry Boole’a:
p=>q # p~>q
Po zastosowaniu praw Kubusia mamy równanie ogólne implikacji:
p=>q = ~p~>~q # p~>q = ~p=>~q
gdzie:
p=>q - implikacja prosta
p~>q - implikacja odwrotna
p, q - zmienne binarne, mogące przyjmować w osi czasu wyłącznie wartości 1 (prawda) albo 0 (fałsz)
3.2 Interpretacja równania ogólnego implikacji
Równanie ogólne implikacji
p=>q = ~p~>~q # p~>q = ~p=>~q
Na mocy definicji mamy:
p=>q
Jeśli zajdzie p to musi zajść q
p musi być warunkiem wystarczającym dla q
Przykład:
Jeśli zwierzę jest psem to ma cztery łapy
P=>4L
p=>q - na mocy definicji
Bycie psem jest warunkiem wystarczającym dla czterech łap, zatem implikacja prosta prawdziwa
Na mocy definicji mamy:
p~>q
Jeśli zajdzie p to może ~> zajść q
p musi być warunkiem koniecznym dla q
Przykład:
Jeśli zwierze ma cztery łapy to może być psem
4L~>P
p~>q - na mocy definicji
Cztery łapy są konieczne dla psa, zatem implikacja odwrotna prawdziwa
Podstawiamy powyższe do równania ogólnego implikacji:
A.
p=>q = ~p~>~q # p~>q = ~p=>~q
P=>4L = ~P~>~4L # 4L~>P = ~4L=>~P
Udowodnienie prawdziwości dowolnego zdania wymusza prawdziwość pozostałych zdań bowiem jeśli zdanie p=>q jest prawdziwe to po zamianie argumentów i wymianie operatora na przeciwny uzyskamy implikacje odwrotną prawdziwą, ale matematycznie nie równoważną co doskonale widać na powyższym przykładzie.
Z powyższego widać, że w logice dla równań ogólnych punkt odniesienia ustawiony jest zawsze na wypowiedzianym zdaniu „Jeśli…to…” czyli podstawa wektora => lub ~> wskazuje zawsze część zdania po „Jeśli…” (p), natomiast strzałka wektora => lub ~> wskazuje zawsze cześć zdania po „to…” (q).
Oczywiście równanie ogólne implikacji może przyjąć dwie inne formy:
1.
Punkt odniesienia ustawiony na zdaniu p=>q.
p=>q = ~p~>~q # q~>p = ~q=>~p
Przykład:
Jeśli zwierzę jest psem to ma cztery łapy
P=>4L
Bycie psem jest warunkiem wystarczającym dla czterech łap, zatem implikacja prosta prawdziwa
Dla całego równania ogólnego ustawiamy sztywno:
p=P
q=4L
Równanie ogólne:
B.
p=>q = ~p~>~q # q~>p = ~q=>~p
P=>4L = ~P~>~4L # 4L~>P = ~4L=>~P
2.
Punkt odniesienia ustawiony na zdaniu p~>q.
p~>q = ~p=>~q # q=>p = ~q~>~p
Przykład:
Jeśli zwierzę ma cztery łapy to może być psem
4L~>P
cztery łapy są warunkiem koniecznym aby być psem, zatem implikacja odwrotna prawdziwa
Dla całego równania ogólnego implikacji ustawiamy sztywno:
p=4L
q=P
Równanie ogólne:
C.
p~>q = ~p=>~q # q=>p = ~q~>~p
4L~>P = ~4L=>~P # P=>4L = ~P~>~4L
Doskonale widać, że dla konkretnego przykładu równania ogólne implikacji A, B i C są identyczne, niezależne od tego z jakiego punktu odniesienia patrzymy na zdanie.
Oczywiście w praktyce widząc zapisy ogólne nie będziemy mieli żadnych problemów z ustaleniem punktu odniesienia.
p=>q # q~>p - oczywisty punkt odniesienia p=>q
p~>q # q=>p - oczywisty punkt odniesienia p~>q
p=>q # p~>q - oczywisty punkt odniesienia ustawiony na wypowiedzianym zdaniu „Jeśli…to…”
Jeśli dowolne z powyższych zdań jest prawdziwe to drugie też musi być prawdziwe, ale matematycznie nie równoważne.
Interpretacja zapisów pokrewnych:
p=>q # q=>p
p~>q # q~>p
Mamy wyżej zamianę argumentów bez zmiany operatora.
W tym przypadku jeśli którekolwiek zdanie jest prawdziwe to drugie musi być fałszywe, co łatwo udowodnić.
Kod: |
Tabela A
|Punkt |Punkt
|odniesienia |odniesienia
| p=>q | p~>q
| |
p q | p=>q q=>p | p~>q q~>p
1 1 | =1 =1 | =1 =1
1 0 | =0 =1 | =1 =0
0 0 | =1 =1 | =1 =1
0 1 | =1 =0 | =0 =1
|
CND
Dla punktu odniesienia p=>q mamy:
p=>q # q=>p
Przykład:
Jeśli zwierzę jest psem to na pewno => ma cztery łapy
P=>4L =1
Bycie psem wystarcza aby mieć cztery łapy, zatem warunek wystarczający prawdziwy
Zamieniamy argumenty bez zmiany operatora:
Jeśli zwierzę ma cztery łapy to na pewno => jest psem
4L=>P =0 bo słoń
Dla punktu odniesienia p~>q mamy:
p~>q # q~>p
Przykład:
Jeśli zwierzę ma cztery łapy to może być psem
4L~>P =1
Posiadanie czterech łap jest warunkiem koniecznym aby być psem, zatem implikacja odwrotna prawdziwa
Zamieniamy argumenty bez zmiany operatora:
Jeśli zwierzę jest psem to może mieć cztery łapy
P~~>4L =1 bo pies
Zdanie prawdziwe na mocy naturalnego spójnika „może” ~~>, nie jest to implikacja odwrotna zatem warunek konieczny tu nie zachodzi
Dowód nie wprost:
Załóżmy że P~>4L jest implikacją odwrotną.
Prawo Kubusia:
P~>4L = ~P=>~4L =0 bo słoń
Prawa strona jest fałszem, zatem lewa strona nie może być implikacją odwrotną prawdziwą
CND
Zauważmy, że w tabeli A pozornie zachodzą tożsamości:
p=>q = q~>p
p~>q = q=>p
Powyższe tożsamości to jednak mieszanie dwóch różnych punktów odniesienia czego w wektorach kierunkowych, jakim są implikacje prosta => i odwrotna ~> nie wolno robić.
Twierdzenie:
Dowolna logika która uznaje za prawdziwe tożsamości:
A.
p=>q = q~>p
B.
p~>q = q=>p
jest logiką wewnętrznie sprzeczną
Dowód nie wprost:
Załóżmy że powyższe tożsamości zachodzą.
Uzupełniamy je o prawa Kubusia działające zawsze i wszędzie.
A.
p=>q = ~p~>~q = q~>p = ~q=>~p
B.
p~>q = ~p=>~q = q=>p = ~q~>~p
Stąd dla naszego konkretnego przykładu mamy:
A.
Ustawiamy sztywny punkt odniesienia na zdaniu p=>q:
p=>q = ~p~>~q = q~>p = ~q=>~p
P=>4L = ~P~>~4L = 4L~>P = ~4L=>~P
W powyższej tożsamości startujemy od definicji implikacji prostej p=>q
Oczywistym jest, że równie dobry jest start od definicji implikacji odwrotnej p~>q:
B.
Ustawiamy sztywny punkt odniesienia na zdaniu p~>q:
p~>q = ~p=>~q = q=>p = ~q~>~p
4L~>P = ~4L=>~P = P=>4L = ~P~>~4L
W tabeli A na mocy definicji mamy:
C.
p=>q # p~>q
Podstawiamy równania A i B do C otrzymując:
p=>q = ~p~>~q = q~>p = ~q=>~p # p~>q = ~p=>~q = q=>p = ~q~>~p
P=>4L = ~P~>~4L = 4L~>P = ~4L=>~P # 4L~>P = ~4L=>~P = P=>4L = ~P~>~4L
Oczywiście składniki tożsamości możemy dowolnie przestawiać.
Przestawmy dla naszego przykładu po prawej stronie nierówności dwa pierwsze z dwoma ostatnimi.
D.
p=>q = ~p~>~q = q~>p = ~q=>~p # p~>q = ~p=>~q = q=>p = ~q~>~p
P=>4L = ~P~>~4L = 4L~>P = ~4L=>~P # P=>4L = ~P~>~4L = 4L~>P = ~4L=>~P
Doskonale widać, że po obu stronach nierówności „#” mamy identyczne równania zatem:
A # A
… algebra Boole’a leży w gruzach.
Co jest dowodem wewnętrznej sprzeczności dowolnej logiki uznającej pozorne tożsamości:
p=>q = q~>p
p~>q = q=>p
CND
Mieszanie różnych punktów odniesienia prowadzi do pomieszania z poplątaniem co pokażemy także w pkt. 3.5.
Przykład ze świata rzeczywistego.
Polska:
Jeździmy prawą stroną drogi
Anglia:
Jeździmy lewa stroną drogi
Mieszanie tych dwóch równoważnych punktów odniesienia to jeżdżenie polaków w Anglii prawą stroną i anglików w Polsce lewą stroną. Oczywista katastrofa gwarantowana.
3.3 O konieczności wprowadzenia symbolu ~> w logice
Teoretycznie nowy symbol implikacji odwrotnej ~> jest zbędny bo:
Kod: |
p q p~>q p<=q
1 1 =1 =1
1 0 =1 =1
0 0 =1 =1
0 1 =0 =0
|
gdzie:
~> - operator implikacji odwrotnej, spójnik „może” ze spełnionym warunkiem koniecznym
Z tabeli widzimy że:
~> = <= - pod warunkiem że symbol <= będziemy czytać przeciwnie do strzałki jako spójnik „może” z warunkiem koniecznym (operator implikacji odwrotnej)
Zauważmy jednak że matematycznie zachodzi:
A.
p~>q = q<~p
4L~>P = P<~4L
oraz:
B.
p=>q = q<=p
P=>4L = 4L<=P
Przy różnych symbolach implikacji prostej => i odwrotnej ~> mamy wyżej pełną, matematyczną jednoznaczność.
Oczywiście na mocy definicji zachodzi:
p~>q # p=>q
Jeśli na podstawie powyższej tabeli skorzystamy z możliwości wyeliminowania symbolu ~> to równanie A musimy zapisać jako:
A1.
p<=q = q=>p
4L<=P = P=>4L
gdzie:
Symbol <= należy czytać przeciwnie do strzałki jako spójnik „może” ze spełnionym warunkiem koniecznym (operator implikacji odwrotnej)
Zauważmy, że zapis A1 dla konkretnego przykładu niczym się nie różni od zapisu B, bowiem składniki tożsamości możemy przestawiać.
Mamy zatem:
A1.
Po przestawieniu składników tożsamości:
P=>4L = 4L<=P
B.
P=>4L = 4L<=P
Konia z rzędem temu, kto wydedukuje że w równaniu A1 symbol <= należy czytać przeciwnie do strzałki <= jako spójnik „może” ze spełnionym warunkiem koniecznym, zaś w równaniu B symbol => należy czytać zgodnie z kierunkiem strzałki => jako spójnik „musi” ze spełnionym warunkiem wystarczającym. Jeśli dorzucimy do tego prawa Kubusia które zawsze odwracają operator to kociokwik będzie 100%.
Z tego względu nowy symbol ~> jako operator implikacji odwrotnej jest w logice niezbędny.
CND
3.4 Dowód braku wewnętrznej sprzeczności NTI
Prawa Kubusia:
p=>q = ~p~>~q
p~>q = ~p=>~q
Dla naszego przykładu:
P=>4L= ~P~>~4L
4L~>P = ~4L=>~P
Równanie ogólne implikacji:
p=>q = ~p~>~q # p~>q = ~p=>~q
P=>4L= ~P~>~4L # 4L~>P = ~4L=>~P
Oczywiście w NTI nie ma mowy o jakiejkolwiek wewnętrznej sprzeczności bo tu mamy:
P=>4L=~P~>~4L # 4L~>P = ~4L=>~P
CND
Z powyższego oczywistość:
P=>4L # 4L~>P
~P~>~4L # ~4L=>~P
4L~>P # ~P~>~4L
P=>4L # ~4L=>~P
p=>q # ~q=>~p
prawo kontrapozycji jest w poprawnej matematyce dokładnie takie jak wyżej, czyli …
Prawdziwość dowolnego zdania w powyższej nierówności wymusza prawdziwość pozostałych zdań, nie są to jednak zdania matematycznie tożsame, bo wypowiedziane w przeciwnych logikach !
3.5 Kwadrat logiczny implikacji
Zdania bazowe:
A.
Jeśli zwierzę jest psem to na pewno ma cztery łapy
P=>4L =1
p=>q =1 - na podstawie definicji implikacji
Bycie psem wystarcza aby mieć cztery łapy, zatem warunek wystarczający prawdziwy
B.
Jeśli zwierze ma cztery łapy to może być psem
4L~>P =1
p~>q =1 - na podstawie definicji implikacji
Cztery łapy są konieczne aby być psem, zatem warunek konieczny spełniony
Równanie ogólne implikacji poprawne zawsze i wszędzie:
p=>q = ~p~>~q # p~>q = ~p=>~q
Na powyższe równanie możemy spojrzeć z trzech różnych punktów odniesienia.
1.
Równanie ogólne implikacji zapisane jest dla punktu odniesienia ustawionym na wypowiedzianym zdaniu czyli po „Jeśli…” mamy zawsze podstawę wektora => lub ~> (poprzednik p), zaś po „to…” mamy zawsze strzałkę wektora => lub ~> (następnik q).
p=>q = ~p~>~q # p~>q = ~p=>~q
Dla naszego przykładu na podstawie definicji implikacji z NTI mamy:
P=>4L = ~P~>~4L # 4L~>P = ~4L=>~P
Jeśli w zapisie ogólnym chcemy uwypuklić fakt zamiany p i q w równaniu ogólnym implikacji to korzystanie jest ustalić sztywny punkt odniesienia na zdaniu p=>q albo p~>q.
2.
Punkt odniesienia ustawiony na zdaniu A:
A.
Jeśli zwierzę jest psem to na pewno ma cztery łapy
P=>4L
Sztywny punkt odniesienia:
p=P
q=4L
Równanie ogólne przybierze postać:
p=>q = ~p~>~q # q~>p = ~q=>~p
P=>4L = ~P~>~4L # 4L~>P = ~4L=>~P
2.
Punkt odniesienia ustawiony na zdaniu B:
B.
Jeśli zwierze ma cztery łapy to może być psem
4L~>P
Sztywny punkt odniesienia:
p=4L
q=P
Równanie ogólne przybiera postać:
p~>q = ~p=>~q # q=>p = ~q~>~p
4L~>P = ~4L=>~P # P=>4L = ~P~>~4L
Jak widać wyżej obojętne z jakiego punktu odniesienia będziemy patrzeć na zdania A i B to równanie ogólne dla tych zdań pozostanie identyczne.
Zauważmy, że nie ma najmniejszego problemu ze zlokalizowaniem punktu odniesienia dla dowolnego zapisu ogólnego bo:
X: p=>q # p~>q - oczywisty punkt odniesienia ustawiony na wypowiedzianym zdaniu „Jeśli..to..”
X: P=>4L # 4L~>P
Y: p=>q # q~>p - oczywisty punkt odniesienia to zdanie p=>q
Y: P=>4L # 4L~>P
Z: p~>q # q=>p - oczywisty punkt odniesienia to zdanie p~>q
Z: 4L~>P # P=>4L
Jeśli będziemy mieszać powyższe punkty odniesienia to otrzymamy groch z kapustą:
1.
X: p~>q = Y: q~>p
bo:
X: 4L~>P = Y: 4L~>P
2.
X: p=>q = Z: q=>p
bo:
X: P=>4L = Z: P=>4L
itd.
Jak widać mieszanie różnych punktów odniesienia robi tu pomieszanie z poplątaniem.
W zapisach ogólnych to katastrofa bo:
X: p=>q = Z: q=>p
Oczywiście w zapisie ogólnym zachodzi:
p=>q # q=>p
Wniosek:
Jeśli dyskutujemy z kimkolwiek i o czymkolwiek to ustalmy najpierw wspólny punkt odniesienia
We wszystkich przypadkach wyżej mamy do czynienia z zamianą argumentów i wymianą operatora na przeciwny. W tym przypadku jeśli dowolne zdanie po jednej stronie nierówności jest prawdziwe to zdanie z drugiej strony nierówności też musi być prawdziwe, ale nie równoważne matematycznie, bo wypowiedziane w przeciwnych logikach.
Zapisy pokrewne do powyższych to zamiana argumentów bez zmiany operatora:
p=>q # q=>p
p~>q # q~>p
W tym przypadku jeśli zdanie po jednej stronie nierówności jest prawdziwe to zdanie po przeciwnej stronie musi być fałszywe.
W powszechnym użyciu jest sztywny punkt odniesienia p=>q, nie będziemy się z tego wyłamywać.
Równanie ogólne implikacji ma tu postać:
p=>q = ~p~>~q # q~>p = ~q=>~p
P=>4L = ~P~>~4L # 4L~>P = ~4L=>~P
stąd:
Kwadrat logiczny implikacji dla punktu odniesienia p=>q:
Kod: |
A1 B1
p=>q q~>p
P=>4L 4L~>P
A2 B2
~p~>~q ~q=>~p
~P=>~4L ~4L=>~P
|
W pionach mamy oczywiste prawa Kubusia:
p=>q = ~p~>~q
P=>4L = ~P~>~4L
q~>p = ~q=>~p
4L~>P = ~4L=>~P
Między pionami po przekątnych zachodzą prawa kontrapozycji w tej postaci:
p=>q # ~q=>~p
P=>4L # ~4L=>~P
~p~>~q # q~>p
~P~>~4L # 4L~>P
Po obu stronach nierówności mamy zdania prawdziwe ale nie równoważne bo wypowiedziane w przeciwnych logikach. Ciekawostką jest fakt, że udowodnienie tylko warunku koniecznego w zdaniach B1 lub A2 determinuje prawdziwość wszystkich pozostałych zdań w kwadracie implikacji.
To oczywistość bowiem jeśli q jest konieczne dla p, to zajście ~q wymusza zajście ~p, stąd prawo Kubusia dla prawego pionu kwadratu jest wymuszone przez ten warunek konieczny:
q~>p = ~q=>~p
Oczywiście jeśli prawy pion strona kwadratu logicznego jest implikacją to lewy pion też musi być implikacją.
CND
Z implikacja prostą jest gorzej bowiem spełnienie warunku wystarczającego w stronę p=>q nie wymusza implikacji prostej, to może być albo implikacja albo równoważność z identycznym warunkiem wystarczającym p=>q, to jest nie do rozpoznania, to trzeba dopiero udowodnić.
Na szczęście w świecie rzeczywistym, poza matematyką, warunki wystarczające i konieczne są na poziomie 5-cio letniego dziecka, co więcej, w tym świecie króluje implikacja, równoważność praktycznie tu nie istnieje. Tak więc poważniejsze problemy czy cokolwiek jest implikacją czy też równoważnością mogą występować wyłącznie w matematyce.
3.6 Algorytmy rozpoznawania implikacji i równoważności
Kwadrat logiczny implikacji dla punktu odniesienia p=>q:
Kod: |
A1 B1
p=>q q~>p
P=>4L 4L~>P
A2 B2
~p~>~q ~q=>~p
~P=>~4L ~4L=>~P
|
Definicja równoważności:
A.
p<=>q = (p=>q)*(~p=>~q)
Definicja matematycznie tożsama:
B.
p<=>q = (p=>q)*(q=>p)
Zakładamy że warunek wystarczający w stronę p=>q mamy udowodniony.
Algorytm rozpoznawania implikacji i równoważności:
1.
Jeśli udowodnimy dowolny warunek konieczny B1 lub A2 to wypowiedziane zdanie jest implikacją.
2.
Jeśli wykluczymy warunek wystarczający w zdaniach B1 lub A2 to zdanie również jest implikacją.
3.
Jeśli udowodnimy warunek wystarczający w punktach A2 lub B1 to zdanie jest równoważnością
4.
Jeśli wykluczymy warunek konieczny w punktach A2 lub B1 to zdanie jest równoważnością.
To co wyżej to wszystkie możliwości jakimi dysponujemy aby rozstrzygnąć czy wypowiedziane zdanie jest implikacją czy też równoważnością.
Odróżnienie równoważności od implikacji jest w technice i matematyce kluczowe bowiem w równoważności mamy pełny determinizm, natomiast w dowolnej implikacji, zarówno prostej => jak i odwrotnej ~> mamy zagwarantowane „rzucanie monetą” … na mocy definicji implikacji !
Po co komu „rzucanie monetą” w technice lub matematyce ?
Zauważmy, że prawo kontrapozycji:
p=>q # ~q=>~p
jest o tyle pożyteczne że zamiast dowodzić warunku wystarczającego w kierunku p=>q możemy dowodzić warunku wystarczającego w kierunku ~q=>~p. Jeśli spełniony jest warunek wystarczający w kierunku p=>q to musi być spełniony warunek wystarczający w kierunku ~q=>~p i odwrotnie.
Prawo kontrapozycji nie rozstrzyga rzeczy najważniejszej, nie rozstrzyga czy zdanie jest implikacją czy też równoważnością. Z tego najważniejszego punktu widzenia prawo kontrapozycji jest kompletnie nieprzydatne. Poza tym zauważmy, że jeśli szukamy warunku wystarczającego (czyli de facto matematycznie cennej równoważności) to możemy wystartować od dowolnego rogu kwadratu logicznego implikacji, tak wiec prawo kontrapozycji jest totalnie zbędne !
Twierdzenie:
Zdanie jest równoważnością wtedy i tylko wtedy gdy spełnione są warunki wystarczające wzdłuż dowolnego boku kwadratu logicznego implikacji.
3.7 Znaczenie zdania „Jeśli…to…” w logice
Zdanie „Jeśli …to…” może mieć w logice tylko i wyłącznie pięć różnych znaczeń:
1.
Implikacja prosta:
p=>q
Jeśli zajdzie p to musi zajść q
p musi być wystarczające dla q
Dodatkowo musi być spełniona wyrocznia implikacji prawo Kubusia:
p=>q = ~p~>~q
2.
Tylko warunek wystarczający wchodzący w skład definicji równoważności
p=>q
Jeśli zajdzie p to musi zajść q
Definicja równoważności:
p<=>q = (p=>q)*(~p=>~q)
Warunek wystarczający w równoważności p=>q jest identyczny jak w implikacji prostej wyżej p=>q, to jest nie do rozpoznania.
Prawa strona definicji równoważności to tylko i wyłącznie warunki wystarczające, nie są to implikacje proste bo nie spełniają definicji zero-jedynkowej implikacji prostej =>.
Przykład:
Jeśli trójkąt jest równoboczny to ma kąty równe
TR=>KR
To jest tylko i wyłącznie warunek wystarczający wchodzący w skład definicji równoważności:
Trójkąt jest równoboczny wtedy i tylko wtedy gdy ma kąty równe
TR<=>KR = (TR=>KR)*(~TR=>~KR)
3.
Implikacja odwrotna:
p~>q
jeśli zajdzie p to może zajść q
p musi być warunkiem koniecznym dla q
4.
Zdaniem prawdziwym na mocy naturalnego spójnika „może” ~~>, wystarczy jedna prawda, warunek konieczny tu nie zachodzi.
Przykład:
Jeśli liczba jest podzielna przez 3 to może być podzielna przez 8
P3~~>P8 =1 bo 24
P3 nie jest konieczne dla P8 bo 8
5.
Zdaniem fałszywym, nie spełniającym któregokolwiek z powyższych przypadków.
3.8 Operatory AND i OR w implikacji
Operatory AND i OR w implikacji służą głównie do skróconego zapisu tabel zero-jedynkowych. Dowolną tabelę zero-jedynkową można zapisać w postaci równania algebry Boole’a na podstawie prawa Prosiaczka (cześć I).
Definicja zero-jedynkowa implikacji prostej:
Kod: |
p q Y= p=>q
1 1 =1
1 0 =0
0 0 =1
0 1 =1
|
W linii drugiej mamy samotne zero zatem dla tej linii uzyskamy najprostsze równanie.
Mamy:
Y=0 <=> p=1 i q=0
Sprowadzamy wszystkie pozycje do jedynek:
Y=0 czyli: ~Y=1
p=1 - tu nic nie musimy robić
q=0 czyli: ~q=1
i korzystamy z definicji iloczynu logicznego.
Definicja:
Iloczyn logiczny jest równy 1 wtedy i tylko wtedy gdy wszystkie zmienne są równe 1
Stąd mamy:
~Y = p*~q
gdzie:
~Y - logika ujemna
Przechodzimy do logiki dodatniej (Y) poprzez negację zmiennych i wymianę operatorów na przeciwne.
Y=~p+q
Stąd mamy powyższa tabelę zero-jedynkową zapisaną w równaniu algebry Boole’a.
Y = p=>q = ~p+q = ~(p*~q)
bo prawo de’Morgana:
~p+q = ~(p*~q)
Jedyne sensowne równanie, zgodne z naturalną logiką człowiek jest takie:
p=>q = ~(p*~q)
Przykład A:
1.
Jeśli zwierzę jest psem to ma cztery łapy
P=>4L
Bycie psem wystarcza aby mieć cztery łapy, zatem implikacja prosta prawdziwa.
GA:
Gwarancja matematyczna: każdy pies ma cztery łapy
Ta sama gwarancja wyrażona w AND:
P=>4L = ~(P*4L)
2.
Nie może się zdarzyć, że zwierzę jest psem i nie ma czterech łap
~(P*~4L)
Gwarancja matematyczna: każdy pies ma cztery łapy
Oczywiście każdy człowiek mając do wyboru 1 lub 2 wybierze 1 bo to jest prostsze. Najważniejszy argument przeciw operatorom AND i OR w implikacji to odcięcie się od genialnych praw Kubusia obowiązujących między operatorami implikacji prostej => i odwrotnej ~>.
Prawa Kubusia:
p=>q = ~p~>~q - prawo zamiany operatora => na ~>
p~>q = ~p=>~q - prawo zamiany operatora => na ~>
W prawach Kubusia nie ma śladu operatorów AND i OR bo to są prawa „nie z tego świata.”
Analogiczne prawa w AND i OR to oczywiście prawa de’Morgana:
p*q = ~(~p+~q) - prawo zamiany operatora AND(*) na OR(+)
p+q = ~(~p*~q) - prawo zamiany operatora OR(+) na AND(*)
Dokładnie to samo rozumowanie można przeprowadzić dla implikacji odwrotnej ~>.
Definicja zero-jedynkowa implikacji odwrotnej:
Kod: |
p q Y= p~>q
1 1 =1
1 0 =1
0 0 =1
0 1 =0
|
Najprostsze równanie algebry Boole’a uzyskamy tu z ostatniej linii bo w wyniku mamy samotne zero.
Y=0 <=> p=0 i q=1
Sprowadzamy wszystkie pozycje do jedynek:
Y=1 czyli: ~Y=1
p=0 czyli: ~p=1
q=1 - tu nic nie musimy robić
Stąd na podstawie definicji iloczynu logicznego mamy:
~Y = ~p*q
Oczywisty związek logiki dodatniej i ujemnej:
Y = ~(~Y)
Stąd mamy:
Y = ~(~p*q) = p+~q - na podstawie prawa de’Morgana
Oczywiście jedyny sensowny zapis zgodny z naturalna logiką 5-cio latka to:
Y = p~>q = ~(~p*q)
Przykład B:
Jeśli zwierzę ma cztery łapy to może być psem
4L~>P
Cztery łapy są konieczne dla psa zatem implikacja odwrotna prawdziwa.
Gwarancja w implikacji odwrotnej wynika z prawa Kubusia:
4L~>P = ~4L=>~P
stąd:
1.
Jeśli zwierzę nie ma czterech łap to na pewno nie jest psem
~4L=>~P
GB:
Gwarancja: zwierzę które nie ma czterech łap na pewno nie jest psem
Ta sama gwarancja wyrażona w operatorach AND:
~4L=>~P = ~(~4L*P)
czyli:
2.
Nie może się zdarzyć, że zwierzę nie ma czterech łap i jest psem
~(~4L*P)
Oczywiście tu każdy mając do wyboru 1 lub 2 wybierze 1 bo to jest naturalne i prostsze.
Zauważmy coś bardzo ciekawego w obszarze gwarancji wyrażonych w AND:
Przykład A.
Jeśli zwierzę jest psem to ma cztery łapy
P=>4L
GA: Każdy pies ma cztery łapy
Ta sama gwarancja w AND:
Nie może się zdarzyć, że zwierzę jest psem i nie ma czterech łap
GA = ~(P*~4L)
Przykład B.
Jeśli zwierzę ma cztery łapy to może być psem
4L~>P =1 bo pies
LUB
Jeśli zwierzę ma cztery łapy to może nie być psem
4L~~>~P =1 bo koń (zbiór poza gwarancjami GA i GB)
Prawo Kubusia:
4L~>P = ~4L=>~P
czyli:
Jeśli zwierzę nie ma czterech łap to na pewno nie jest psem
~4L=>~P
Gwarancja: zwierzę które nie ma czterech łap na pewno nie jest psem
Ta sama gwarancja w AND:
Nie może się zdarzyć, że zwierzę nie ma czterech łap i jest psem
GB = ~(~4L*P)
Poza gwarancjami GA i GB znajduje się zbiór zwierząt które mają cztery łapy i nie są psami.
Graficznie można to przedstawić następująco:
[GA: zbiór psów][ZZ: zbiór zwierząt które mają cztery łapy i nie są psami][GB: zbiór zwierząt które nie maja czterech łap, te na pewno nie są psami]
Zbiór GA nie jest dopełnieniem zbioru GB bo poza tymi zbiorami jest zbiór ZZ, dlatego to jest implikacja a nie równoważność, dlatego matematycznie wstawiamy tu znak „#”:
p=>q # p~>q = ~p=>~q
czyli:
P=>4L = ~(P*~4L) # 4L~>P = ~4L=>~P = ~(~4L*P)
Oczywiście wynika z tego, że jeśli operator AND opisuje implikację to argumenty w operatorze AND są nieprzemienne. Z tego powodu wyrażanie implikacji w operatorach AND i OR jest bez sensu, bo to są operatory z innego świata. W praktyce naturalnego języka mówionego każdy człowiek, od 5-cio latka po starca korzysta z operatorów implikacji prostej => i odwrotnej ~> oraz z praw Kubusia milion razy na dobę i praktycznie nigdy nie przechodzi do gwarancji wyrażonej przy pomocy operatora AND, choć oczywiście żaden 5-cio latek nie będzie miał z tym kłopotów.
Zauważmy, że w równoważności mamy:
p<=>q = ~p<=>~q
Zbiór p jest zawsze dopełnieniem zbioru ~p, dlatego to jest równoważność a nie implikacja.
Przykład:
Trójkąt jest równoboczny wtedy i tylko wtedy gdy ma kąty równe
TR<=>KR
W równoważności zachodzi:
TR<=>KR = ~TR<=>~KR
czyli:
po jednej stronie tożsamości mamy:
TR:
Zbiór trójkątów równobocznych które na pewno mają kąty równe
natomiast po drugiej stronie mamy:
~TR:
Zbiór trójkątów nierównobocznych które na pewno nie mają kątów równych
Oczywiście matematycznie zachodzi:
TR+~TR =1
Zbiór TR jest dopełnieniem zbioru ~TR, dlatego to jest równoważność a nie implikacja.
3.9 Algebra Kubusia w fizyce
Dzisiejsza logika nie odróżnia logiki dodatniej od ujemnej, dlatego nie opisuje poprawnie otaczającej nas rzeczywistości. Odpowiednikiem logiki dodatniej i ujemnej w świecie fizyki może być wektor napięcia zmiennego w naszych gniazdkach elektrycznych.
Wszyscy wiemy, że napięcie zmienne to sinusoida. W połówkach dodatnich sinusoidy napięcie zmienne ma wartość dodatnią, natomiast w ujemnych wartość ujemną, oczywiście względem stałego punktu odniesienia zwanym w energetyce zerem lub ziemią (w elektronice masą).
Punkt odniesienia jest w energetyce pojęciem kluczowym, bowiem napięcie zmienne jest wektorem kierunkowym, identycznie jak implikacja w logice.
Do każdego gniazdka elektrycznego w naszych domach dochodzą dwa przewody, zero i faza, Przewód zerowy podłączony jest na stałe z ziemią po której chodzimy, to punkt odniesienia w energetyce. Drugi przewód w energetyce nazywa się fazą.
Jak sprawdzić doświadczalnie iż napięcie w połówkach dodatnich sinusoidy jest dodatnie a w ujemnych ujemne ?
Jeśli dysponujemy oscyloskopem służącym do obserwacji szybkich przebiegów zmiennych to podłączmy do gniazdka energetycznego i to widzimy, oczywiście masę oscyloskopu podłączamy do przewodu zerowego.
… a jeśli nie dysponujemy oscyloskopem ?
Mało kto wie, że napięcie zmienne wytwarza pracujący w elektrowni krasnoludek Zmiennek. Ma on do dyspozycji ogromne źródło regulowanego napięcia stałego o wartości maksymalnej Um=310V. W połówkach dodatnich sinusoidy masa tego źródła (minus) podłączona jest do przewodu zerowego w naszych gniazdkach elektrycznych (ziemi), natomiast plus podłączony jest do fazy. Zmiennek reguluje to napięcie od wartości 0 do 310V i z powrotem do wartości 0 po krzywej zwanej w matematyce połówką sinusoidy. Czas trwania jednej połówki sinusoidy to zaledwie 10 msek (milisekund).
Gdy Zmiennek dojedzie z napięciem po dodatniej połówce sinusoidy do wartości 0 robi coś nieprawdopodobnie cwanego, po prostu zamienia kabelki na źródle napięcia stałego. Do zera w naszych gniazdkach elektrycznych podłączony jest teraz plus źródła napięcia stałego, natomiast do fazy minus. Zmiennek reguluje tu napięcie dokładnie tak samo jak w dodatniej połówce sinusoidy lecz człowiek stojąc przy gniazdku elektrycznym widzi że w tej części sinusoidy napięcie zmienne to ujemna połówka sinusoidy. Po dojściu do wartości zero, Zmiennek znów zamienia kabelki na źródle napięcia stałego i tak „w koło Macieju”.
Jak sprawdzić poprawność powyższej teorii ?
Jeśli dysponujemy miernikiem napięcia stałego (woltomierzem) z zerem po środku mierzącym zakresy napięć U=-310V do U=+310V, to sprawdzenie jest bardzo proste. Należy podłączyć masę woltomierza do przewodu zerowego, natomiast drugi przewód miernika do fazy. Dzwonimy teraz do elektrowni i prosimy Zmienneka aby regulował napięcie zmienne z częstotliwością 1 HZ a nie jak to zwykle robi 50HZ (1HZ = 1 cykl na sekundę). Pewne jest że wskazówka woltomierza będzie się poruszać po sinusoidzie o wartościach szczytowych Um=+310V do Um=-310V.
… a jeśli nie dysponujemy woltomierzem ?
To możemy łatwo naświetlić problem przy pomocy dwóch źródeł napięcia stałego, dla uproszczenia przyjmijmy U=5V.
Kod: |
<= ~>
+| +|
Vp=5V -------||--------- V0=0V -------||------ Vq=-5V
| |
|
Oczywiście problem będziemy obserwować, stojąc na przewodzie zerowym (ziemi) czyli w punkcie V0=0V. W energetyce V0=0V.
W logice punkt Vo to ZAWSZE poprzednik p, czyli podstawa dowolnego wektora implikacji prostej p=>q lub odwrotnej p~>q.
Napięcie to różnica dwóch potencjałów mających wspólny punkt odniesienia (masę), na schemacie ten punkt odniesienia to V0=0V.
Na podstawie definicji napięcia mamy:
U=> = Vp-V0 = 5-0 = 5V
U~> = Vq-V0 = -5V-0 = -5V
czyli:
Ux = potencjał strzałki wektora napięcia - potencjał podstawy wektora napięcia
Oczywiście matematycznie zachodzi:
U=> # U~>
odpowiednikiem powyższego w logice jest:
p U=> q # p U~> q
czyli:
p=>q # p~>q
Fundamentalny błąd współczesnej logiki:
U~> = V0-Vq = 0 - (-5V) = 5V
czyli:
potencjał podstawy - potencjał strzałki, co jest odpowiednikiem zamiany kabelków na źródle ~> w trakcie pomiaru napięcia, czyli kopiujemy to co Zmiennek robi w elektrowni. Efektem przełączania kabelków w trakcie pomiaru napięcia jest zafałszowana rzeczywistość w energetyce, nie odróżniamy napięć dodatnich od ujemnych ! Na oscyloskopie zamiast pięknej sinusoidy zobaczymy tu piłę czyli wszystkie połówki sinusoidy w zakresie napięć dodatnich.
Stąd błędnie otrzymujemy:
U=> = U~>
W implikacji bestialsko zamienia się tu kabelki aby udowodnić poprawność poniższego idiotyzmu:
p=>q = q~>p
Prawa Kubusia działają w powyższym układzie elektrycznym fenomenalnie
A.
p=>q = ~p~>~q
Dowód.
Lewa strona tożsamości:
Mamy:
U=> = Vp-V0 = 5-0 = 5V
czyli:
p U=> q = Vp-V0 = 5-0 = 5V
stąd:
p=>q = 5V
Prawa strona tożsamości:
Mamy:
U~> = Vq-V0 = -5V-0 = -5V
czyli:
p U~> q = Vq-V0 = -5V-0 = -5V
stąd:
-p U~> -q = -(Vq) - [-(V0) = -(-5V) - [-(0V) = 5-0 = 5
czyli:
~p~>~q = 5V
stąd:
p=>q = ~p~>~q = 5V !
CND
Identycznie dowodzimy drugie prawo Kubusia
B.
p~>q = ~p=>~q
Dowód.
Lewa strona tożsamości:
U~> = Vq-V0 = -5V-0 = -5V
czyli:
p U~> q = Vq-V0 = -5V-0 = -5V
stąd:
p~>q = -5V
Prawa strona tożsamości:
Mamy:
U=> = Vp-V0 = 5-0 = 5V
czyli:
p U=> q = Vp-V0 = 5-0 = 5V
stąd:
-p U=> -q = -(Vp) - [-(V0) = -(5V) - [-(0V) = -5-0 = -5V
czyli:
~p=>~q = -5V
stąd:
p~>q = ~p=>~q = -5V !
CND
4.0 Nowa teoria implikacji w bramkach logicznych
Algebry Boole’a i algebra dziesiętna, to dwa fundamentalnie różne światy, dlatego nie ma tu konfliktu między symbolami technicznymi OR(+) i AND(*) a algebrą dziesiętną. Aby zrozumieć algebrę Boole’a trzeba posługiwać się techniką bramek logicznych, bo to jest jedyny poprawny punkt odniesienia, oczywiście z algebrą dziesiętną mający ZERO wspólnego. Szczytowy rozwój bramek logicznych to lata 1974-80, cały rozwój technicznej algebry Boole’a zabiły mikroprocesory (pierwszy przyzwoity to i8080 z 1974r).
Definicja implikacji prostej:
p=>q = ~p+q
Jeśli zajdzie p to „musi” => zajść q
p musi być warunkiem wystarczającym dla q
=> - operator implikacji prostej, spójnik „musi” ze spełnionym warunkiem wystarczającym
Definicja implikacji odwrotnej:
p~>q = p+~q
Jeśli zajdzie p to „może” ~> zajść q
p musi być warunkiem koniecznym dla q
~> - operator implikacji odwrotnej, spójnik „może” ze spełnionym warunkiem koniecznym
Prawa Kubusia:
p=>q = ~p~>~q - prawo zamiany implikacji prostej => na odwrotną ~>
p~>q = ~p=>~q - prawo zamiany implikacji odwrotnej ~> na prostą =>
Prawo Kubusia w teorii bramek logicznych:
p=>q = ~p~>~q - prawo zamiany bramki „musi” => na bramkę „może” ~>
p~>q = ~p=>~q - prawo zamiany bramki „może” ~> na bramkę „musi” =>
Bramki logiczne „musi” => i „może” ~> nie są znane człowiekowi we właściwy sposób, najwyższy czas podać ich definicje …
Definicja implikacji prostej w równaniu algebry Boole’a:
p=>q = ~p+q
Jeśli zajdzie p to „musi” zajść q
p musi być wystarczające dla q
Na podstawie tej definicji łatwo konstruujemy bramkę implikacji prostej, którą jest bramka sumy logicznej OR z zanegowaną w środku linią p. W technice cyfrowej symbolem negacji jest kółko „O”.
4.1 Bramkowa definicja implikacji prostej
Definicja implikacji prostej:
p=>q = ~p+q
Jeśli zajdzie p to „musi” => zajść q
p musi być warunkiem wystarczającym dla q
=> - operator implikacji prostej, spójnik „musi” ze spełnionym warunkiem wystarczającym
Kod: |
p q
| |
-------
|O => |
| musi|
| OR |
-------
|
p=>q
|
Stojąc na przewodzie p, punkcie odniesienia, widzimy niezanegowaną linię q.
4.2 Bramkowa definicja implikacji odwrotnej
Definicja implikacji odwrotnej w równaniu algebry Boole’a:
p~>q = p+~q
Jeśli zajdzie p to „może” zajść q
p musi być konieczne dla q
Na podstawie tej definicji mamy bramkę implikacji odwrotnej którą jest bramka sumy logicznej OR z zanegowaną w środku linią q.
Kod: |
p q
| |
-------
| ~> O|
| może|
| OR |
-------
|
p~>q
|
Stojąc na przewodzie p, punkcie odniesienia, widzimy zanegowaną linię q.
4.3 Układ zastępczy bramki implikacji prostej
Prawo Kubusia:
p=>q = ~p~>~q
Kod: |
p q p q p q
| | | | | |
| | O O O O
| | |~p |~p |~p |~q
| | O O | |
| | |p |q | |
------- ------- -------
|O => | = |O => | = | ~> O|
|musi | |musi | |może |
|OR | |OR | |OR |
------- ------- -------
| | |
A B C
p=>q p=>q ~p~>~q
|
Na schemacie B wprowadzamy w linie wejściowe po dwie negacje.
Oczywiście układ nie ulegnie zmianie zgodnie z prawem podwójnego przeczenia.
p=~(~p)
Na rysunku C wpychamy po jednej negacji do środka bramki OR.
Negacja z wejście p wewnątrz układu przemieści się na wejście q [bo ~(~p)=p], zaś bramka stanie się bramką implikacji odwrotnej zgodnie z jej definicją bramkową wyżej.
Bramka A jest równoważna bramce C czyli:
p=>q = ~p~>~q - prawo Kubusia
To samo co wyżej w tabeli zero-jedynkowej:
Kod: |
p q p=>q ~p ~q ~p~>~q
1 1 =1 0 0 =1
1 0 =0 0 1 =0
0 0 =1 1 1 =1
0 1 =1 1 0 =1
|
Doskonale widać iż w logice dodatniej (q) mamy do czynienia z bramką implikacji prostej, natomiast w logice ujemnej (~q) z bramką implikacji odwrotnej.
4.4 Układ zastępczy bramki implikacji odwrotnej
Prawo Kubusia:
p~>q = ~p=>~q
Kod: |
p q p q p q
| | | | | |
| | O O O O
| | |~p |~p |~p |~q
| | O O | |
| | |p |q | |
------- ------- -------
| ~> O| = | ~> O| = |O => |
|może | |może | |musi |
|OR | |OR | |OR |
------- ------- -------
| | |
A B C
p~>q p~>q ~p=>~q
|
Bramka A jest równoważna bramce C czyli:
p~>q = ~p=>~q - prawo Kubusia
To samo co wyżej w tabeli zero-jedynkowej:
Kod: |
p q p~>q ~p ~q ~p=>~q
1 1 =1 0 0 =1
1 0 =1 0 1 =1
0 0 =1 1 1 =1
0 1 =0 1 0 =0
|
Doskonale widać iż w logice dodatniej (q) mamy do czynienia z bramka implikacji odwrotnej, natomiast w logice ujemnej (~q) z bramką implikacji prostej.
Zauważmy, że w przypadku praw Kubusia (w przeciwieństwie do praw de’Morgana) na wyjściu bramki nie musieliśmy wprowadzać dwu negatorów. Wstawiamy tu wyłącznie po dwie negacje w linie wejściowe co oczywiście również nie zmienia w żaden sposób układu cyfrowego.
Oczywiście na mocy definicji zachodzi:
p=>q # p~>q
czyli:
p=>q = ~p~>~q # p~>q = ~p=>~q
4.5 Implikacja prosta w bramkach logicznych
Definicja implikacji prostej:
p=>q = ~p+q
Jeśli zajdzie p to „musi” => zajść q
p musi być warunkiem wystarczającym dla q
=> - operator implikacji prostej, spójnik „musi” ze spełnionym warunkiem wystarczającym
Definicja implikacji odwrotnej:
p~>q = p+~q
Jeśli zajdzie p to „może” ~> zajść q
p musi być warunkiem koniecznym dla q
~> - operator implikacji odwrotnej, spójnik „może” ze spełnionym warunkiem koniecznym
Prawa Kubusia:
p=>q = ~p~>~q - prawo zamiany operatora => na ~>
p~>q = ~p=>~q - prawo zamiany operatora ~> na =>
Zdanie wypowiedziane:
Jeśli zajdzie p to na pewno zajdzie q
p=>q
p musi być warunkiem wystarczającym dla q
Tabela operatorowa i zero-jedynkowa dla zdania wypowiedzianego:
Kod: |
p=>q=1 /warunek wystarczający w logice dodatniej (bo q)
1 1 =1
p=>~q=0
1 0 =0
… a jeśli nie zajdzie p ?
Prawo Kubusia:
p=>q=~p~>~q
~p~>~q=1 /warunek konieczny w logice ujemnej (bo ~q)
0 0 =1
~p~~>q =1
0 1 =1
|
Doskonale widać tabelę zero jedynkową implikacji prostej dla kodowania zgodnego ze zdaniem wypowiedzianym 1 1 =1 czyli:
p=1, ~p=0
q=1, ~q=0
Spójniki zdaniowe
=> - operator implikacji prostej, spójnik „musi” między p i q ze spełnionym warunkiem wystarczającym
~> - operator implikacji odwrotnej, spójnik „może” między p i q ze spełnionym warunkiem koniecznym
~~> - naturalny spójnik „może”, wystarczy jedna prawda, nie jest to implikacja odwrotna zatem warunek konieczny tu nie zachodzi
Fizyczna realizacja w bramkach logicznych:
Kod: |
p q
| |
| x-----------------------x
| | |
x-----------------------x |
| | | |
| | O O
| | |~p |~q
---------Tabela A --------- Tabela B
|O => |p=>q=1 | ~> O|p=>q
|musi |1 1 =1 |może |0 0 =1
|A |p=>~q=0 |B |p=>~q=1
|OR |1 0 =0 |OR |0 1 =0
| |p=>q = ~p~>~q | |p=>q = ~p~>~q
| |~p~>~q=1 | |~p~>~q=1
| |0 0 =1 | |1 1 =1
| |~p~~>q=1 | |~p~~>q=1
| |0 1 =1 | |1 0 =1
--------- ---------
| |
| |
x-----------x-----------x
|
|
Y= p=>q = ~p~>~q
|
Układy A i B są tożsame matematycznie.
Na wejście bramki A („musi” =>) podajemy tabelę zero-jedynkową jak na rysunku. Tabela ta dociera do bramki B („może” ~>) poprzez dwa negatory, zatem na wejściu bramki B otrzymamy totalnie zanegowane sygnały zero-jedynkowe z bramki A, co doskonale widać.
Zdanie p=>q mózg człowieka obsługuje bramką „musi” => odpowiednią dla tego operatora, natomiast zdanie ~p~>~q obsługuje bramką „może” ~> odpowiednią dla operatora ~>.
Zauważmy coś absolutnie zaskakującego.
Powyższy układ to twardy dowód że w naturalnym języku mówionym nie wymawiamy żadnych implikacji, wymawiamy tylko i wyłącznie warunki wystarczające i konieczne, zero-jedynkowo zawsze w logice dodatniej … a to oznacza, że mózg człowieka w obsłudze implikacji nigdy nie wychodzi poza dwuelementową algebrę Boole’a !
Dowód:
Definicja warunku wystarczającego, zero-jedynkowo w logice dodatniej.
Kod: |
Tabela A
p=>q =1 /bramka A
1 1 =1
p=>~q =0
1 0 =0
|
Definicja warunku koniecznego, zero-jedynkowo w logice dodatniej.
Kod: |
Tabela B
~p~>~q =1 /bramka B
1 1 =1
~p~~>q =1
1 0 =1
|
Rzeczywisty algorytm działania mózgu człowieka w obsłudze implikacji prostej na przykładzie.
Przykład 4.2
Bramka A
A.
Jeśli jutro będzie padało to na pewno będzie pochmurno
P=>CH =1 /warunek wystarczający w logice dodatniej obsługiwany przez bramkę A
A: 1 1 =1
B: 0 0 =1
Gwarancja matematyczna: pada to na pewno chmury
B.
Jeśli jutro będzie padało to na pewno nie będzie pochmurno
P=>~CH =0
A: 1 0 =0
B: 0 1 =0
… a jeśli jutro nie będzie padać ?
Prawo Kubusia:
P=>CH = ~P~>~CH
W tym miejscu mózg człowieka porzuca bramkę A obsługującą warunek wystarczający P=>CH, i przechodzi do bramki B obsługującej warunek konieczny ~P~>~CH traktując to zdanie jako nowo wypowiedziane 1 1 =1.
Bramka B
C.
Jeśli jutro nie będzie padało to może ~> nie być pochmurno
~P~>~CH =1 /warunek konieczny zero-jedynkowo w logice dodatniej obsługiwany przez bramkę B
A: 0 0 =1
B: 1 1 =1
LUB
D.
Jeśli jutro nie będzie padało to może być pochmurno
~P~~>CH =1
A: 0 1 =1
B: 1 0 =1
Mózg człowieka chodzi po powyższych zdaniach ścieżkami wytłuszczonymi, gdzie zdanie 1 1 =1 to zdanie nowo wypowiedziane.
Z punktu odniesienia bramki A mamy tu definicję implikacji prostej, natomiast z punktu odniesienia bramki B definicję implikacji odwrotnej.
Kod: |
Bramka A
P=>CH =1
1 1 =1
P=>~CH =0
1 0 =0
… a jeśli nie będzie padać ?
Prawo Kubusia:
P=>CH = ~P~>~CH
W tym miejscu mózg człowieka porzuca bramkę A obsługującą warunek wystarczający P=>CH, i przechodzi do bramki B obsługującej warunek konieczny ~P~>~CH traktując to zdanie jako nowo wypowiedziane 1 1 =1.
Z punktu odniesienia bramki A ciąg dalszy jest następujący.
~P~>~CH =1
0 0 =1
~P~~>CH =1
0 1 =1
|
Z punktu odniesienia bramki A mamy definicję implikacji prostej dla kodowania zgodnego ze zdaniem wypowiedzianym 1 1 =1 czyli:
P=1, ~P=0
CH=1, ~CH=0
Z punktu odniesienia bramki B mamy definicję implikacji odwrotnej dla zdania wypowiedzianego C:
C.
Jeśli jutro nie będzie padało to może ~> nie być pochmurno
~P~>~CH =1
1 1 =1
Brak opadów jest warunkiem koniecznym aby nie było pochmurno, warunek konieczny spełniony
Kod: |
Bramka B
~P~>~CH =1
1 1 =1
~P~~>CH =1
1 0 =1
… a jeśli będzie padało ?
Prawo Kubusia:
~P~>~CH = P=>CH
W tym miejscu mózg człowieka porzuca bramkę B obsługującą warunek konieczny ~P~>~CH, i przechodzi do bramki A obsługującej warunek wystarczający P=>CH traktując to zdanie jako nowo wypowiedziane 1 1 =1.
Z punktu odniesienia bramki B ciąg dalszy jest następujący.
P=>CH =1
0 0 =1
P=>~CH =0
0 1 =0
|
Z punktu odniesienia bramki B mamy zero-jedynkową definicję implikacji odwrotnej dla kodowania zgodnego ze zdaniem wypowiedzianym 1 1 =1 czyli:
~P=1, P=0
~CH=1, CH=0
Ciąg dalszy na kolejnej stronie …
|
|
Powrót do góry |
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 35357
Przeczytał: 24 tematy
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Czw 20:11, 20 Maj 2010 Temat postu: |
|
|
4.6 Implikacja odwrotna w bramkach logicznych
Zdanie wypowiedziane:
Jeśli zajdzie p to może zajść q
p~>q
p musi być warunkiem koniecznym dla q
Tabela operatorowa i zero-jedynkowa dla zdania wypowiedzianego:
Kod: |
p~>q=1
1 1 =1
p~~>~q=1
1 0 =1
… a jeśli nie zajdzie p ?
Prawo Kubusia:
p~>q=~p=>~q
czyli:
~p=>~q=1
0 0 =1
~p=>q=0
0 1 =0
|
Doskonale widać tabelę zero jedynkową implikacji odwrotnej dla kodowania zgodnego ze zdaniem wypowiedzianym 1 1 =1 czyli:
p=1, ~p=0
q=1, ~q=0
Spójniki zdaniowe
=> - operator implikacji prostej, spójnik „musi” między p i q ze spełnionym warunkiem wystarczającym
~> - operator implikacji odwrotnej, spójnik „może” między p i q ze spełnionym warunkiem koniecznym
~~> - naturalny spójnik „może”, wystarczy jedna prawda, nie jest to implikacja odwrotna zatem warunek konieczny tu nie zachodzi
Fizyczna realizacja w bramkach logicznych:
Kod: |
p q
| |
| x-------------------x
| | |
x-------------------x |
| | | |
| | O O
| | |~p |~q
---------Tabela A --------- Tabela B
| ~> O|p~>q=1 |O => |p~>q=1
|może |1 1 =1 |musi |0 0 =1
|A |p~~>~q=1 |B |p~~>q=1
|OR |1 0 =1 |OR |0 1 =1
| |~p=>~q=1 | |~p=>~q =1
| |0 0 =1 | |1 1 =1
| |~p=>q=0 | |~p=>q=0
| |0 1 =0 | |1 0 =0
--------- ---------
| |
| |
x---------x---------x
|
|
Y= p~>q = ~p=>~q
|
Układy A i B są tożsame matematycznie.
Na wejście bramki A („może” ~>) podajemy tabelę zero-jedynkową jak na rysunku. Tabela ta dociera do bramki B („musi” =>) poprzez dwa negatory, zatem na wejściu bramki B otrzymamy totalnie zanegowane sygnały zero-jedynkowe z bramki A, co doskonale widać.
Zdanie p~>q mózg człowieka obsługuje bramką „może” ~> odpowiednią dla tego operatora, natomiast zdanie ~p=>~q obsługuje bramką „musi” => odpowiednią dla operatora =>.
Powyższy układ to twardy dowód że w naturalnym języku mówionym nie wymawiamy żadnych implikacji, wymawiamy tylko i wyłącznie warunki wystarczające i konieczne, zero-jedynkowo zawsze w logice dodatniej … a to oznacza, że mózg człowieka w obsłudze implikacji nigdy nie wychodzi poza dwuelementową algebrę Boole’a !
Dowód:
Definicja warunku koniecznego, zero-jedynkowo w logice dodatniej.
Kod: |
Tabela A
p~>q =1 /bramka A
1 1 =1
p~~>~q =1
1 0 =1
|
Definicja warunku wystarczającego, zero-jedynkowo w logice dodatniej.
Kod: |
Tabela B
~p=>~q =1 /bramka B
1 1 =1
~p=>q =1
1 0 =1
|
Rzeczywisty algorytm działania mózgu człowieka w obsłudze implikacji prostej na przykładzie.
Przykład 4.3
Bramka A
A.
Jeśli jutro będzie pochmurno to może padać
CH~>P =1
A: 1 1 =1
B: 0 0 =1
Chmury są warunkiem koniecznym aby jutro padało, warunek konieczny spełniony
LUB
B.
Jeśli jutro będzie pochmurno to może nie padać
CH~~>~P =1
A: 1 0 =1
B: 0 1 =1
… a jeśli jutro nie będzie pochmurno ?
Prawo Kubusia:
CH~>P = ~CH=>~P
W tym miejscu mózg człowieka porzuca bramkę A obsługującą warunek konieczny CH~>P, i przechodzi do bramki B obsługującej warunek wystarczający ~CH=>~P traktując to zdanie jako nowo wypowiedziane 1 1 =1.
Bramka B
C.
Jeśli jutro nie będzie pochmurno to na pewno nie będzie padać
~CH=>~P =1
A: 0 0 =1
B: 1 1 =1
Gwarancja matematyczna: brak chmur to na pewno nie pada
D.
Jeśli jutro nie będzie pochmurno to na pewno będzie padać
~CH=>P =0
A: 0 1 =0
B: 1 0 =0
Mózg człowieka chodzi po powyższych zdaniach ścieżkami wytłuszczonymi, gdzie zdanie 1 1 =1 to zdanie nowo wypowiedziane.
Z punktu odniesienia bramki A mamy tu definicję implikacji odwrotnej, natomiast z punktu odniesienia bramki B definicję implikacji prostej.
Kod: |
Bramka A
CH~>P =1
1 1 =1
CH~~>~P =1
1 0 =1
… a jeśli nie będzie pochmurno ?
Prawo Kubusia:
CH~>P = ~CH=>~P
W tym miejscu mózg człowieka porzuca bramkę A obsługującą warunek konieczny CH~>P, i przechodzi do bramki B obsługującej warunek wystarczający ~CH=>~P traktując to zdanie jako nowo wypowiedziane 1 1 =1.
Z punktu odniesienia bramki A ciąg dalszy jest następujący.
~CH=>~P =1
0 0 =1
~CH=>P =0
0 1 =0
|
Z punktu odniesienia bramki A mamy zero-jedynkową definicję implikacji odwrotnej dla kodowania zgodnego ze zdaniem wypowiedzianym 1 1 =1 czyli:
CH=1, ~CH=0
P=1, ~P=0
Z punktu odniesienia bramki B mamy definicję implikacji prostej dla zdania wypowiedzianego C:
C.
Jeśli jutro nie będzie pochmurno to na pewno nie będzie padać
~CH=>~P =1
Brak chmur jest warunkiem wystarczającym aby nie padało, warunek wystarczający spełniony
Kod: |
Bramka B
~CH=>~P =1
1 1 =1
~CH=>P =0
1 0 =0
… a jeśli będzie pochmurno ?
Prawo Kubusia:
~CH=>~P = CH~>P
W tym miejscu mózg człowieka porzuca bramkę B obsługującą warunek wystarczający ~CH=>~P, i przechodzi do bramki A obsługującej warunek konieczny CH~>P traktując to zdanie jako nowo wypowiedziane 1 1 =1.
Z punktu odniesienia bramki B ciąg dalszy jest następujący.
CH~>P =1
0 0 =1
CH~~>~P =1
0 1 =1
|
Z punktu odniesienia bramki B mamy zero-jedynkową definicję implikacji prostej dla kodowania zgodnego ze zdaniem wypowiedzianym 1 1 =1 czyli:
~CH=1, CH=0
~P=1, P=0
4.7 Równoważność w bramkach logicznych
Zdanie wypowiedziane:
p<=>q
p zajdzie wtedy i tylko wtedy gdy zajdzie q
Definicja operatorowa i zero-jedynkowa równoważności:
Kod: |
p q p<=>q
p=>q =1 /warunek wystarczający w logice dodatniej (bo q)
1 1 =1
p=>~q =0
1 0 =0
~p=>~q =1 /warunek wystarczający w logice ujemnej (bo ~q)
0 0 =1
~p=>q =0
0 1 =0
|
Stąd definicja operatorowa równoważności:
p<=>q = (p=>q)*(~p=>~q)
Na podstawie definicji równoważności rysujemy jej bramkową definicję.
Fizyczna realizacja w bramkach logicznych:
Kod: |
p q
| |
| x-------------------x
| | |
x-------------------x |
| | | |
| | O O
| | |~p |~q
---------Tabela A --------- Tabela B
|O => O|p=>q=1 |O => |p~>q=1
|musi |1 1 =1 |musi |0 0 =1
|A |p=>~q=0 |B |p~~>~q=1
|OR |1 0 =0 |OR |0 1 =1
| |~p~>~q=1 | |~p=>~q =1
| |0 0 =1 | |1 1 =1
| |~p~~>q=1 | |~p=>q=0
| |0 1 =1 | |1 0 =0
--------- ---------
| |
| |
x------x x------x
| |
---------
| |
| AND |
---------
|
Y= p<=>q=(p=>q)*(~p=>~q)
|
Układy A i B nie są tożsame matematycznie.
p=>q # ~p=>~q
Gdybyśmy podłączyli wyjścia bramek A i B bez pośrednictwa bramki AND to byłoby dużo dymu i smrodu.
Na wejście bramki A („musi” =>) podajemy tabelę zero-jedynkową jak na rysunku. Tabela ta dociera do bramki B („musi” =>) poprzez dwa negatory, zatem na wejściu bramki B otrzymamy totalnie zanegowane sygnały zero-jedynkowe z bramki A, co doskonale widać.
Pierwsze dwie linie tabeli A to obsługa warunku wystarczającego p=>q zero-jedynkowo w logice dodatniej, następne dwie linie to obsługa warunku koniecznego ~> w logice ujemnej którego nie ma w definicji równoważności. Zero-jedynkowo w logice dodatniej działa tu bramka B i tą bramką posługuje się mózg człowieka do obsługi warunku wystarczającego ~p=>~q (bramka A jest w tym czasie nieaktywna czyli ma jedynki na wyjściu).
Powyższy układ to twardy dowód że w naturalnym języku mówionym nie wymawiamy żadnych równoważności, wymawiamy tylko i wyłącznie warunki wystarczające, zero-jedynkowo zawsze w logice dodatniej … a to oznacza, że mózg człowieka w obsłudze równoważności nigdy nie wychodzi poza dwuelementową algebrę Boole’a !
Dowód:
Definicja warunku wystarczającego, zero-jedynkowo w logice dodatniej.
Kod: |
Tabela A
p=>q =1 /bramka A
1 1 =1
p=>~q =1
1 0 =0
|
Definicja warunku wystarczającego, zero-jedynkowo w logice dodatniej.
Kod: |
Tabela B
~p=>~q =1 /bramka B
1 1 =1
~p=>q =1
1 0 =0
|
Rzeczywisty algorytm działania mózgu człowieka w obsłudze równoważności na przykładzie.
Przykład:
Trójkąt jest równoboczny wtedy i tylko wtedy gdy ma kąty równe.
TR<=>KR = (TR=>KR)*(~TR=>~KR)
Aktywna bramka A
A.
Jeśli trójkąt jest równoboczny to ma kąty równe
TR=>KR =1
A: 1 1 =1
B: 0 0 =1
Bycie trójkątem równobocznym wystarcza aby mieć kąty równe.
B.
Jeśli trójkąt jest równoboczny to nie ma kątów równych
TR=>~KR =0
A: 1 0 =0
B: 0 1 =1
Wyjście Y to iloczyn logiczny A AND B zatem:
Y=0*1=0
Można zatem powiedzieć, że bramka AND „zabija” warunek konieczny ~> występujący równolegle w bramce B.
… a jeśli trójkąt nie jest równoboczny ?
W tym miejscu mózg człowieka porzuca bramkę A obsługującą warunek wystarczający TR=>KR, i przechodzi do bramki B obsługującej warunek wystarczający ~TR=>~KR traktując to zdanie jako nowo wypowiedziane 1 1 =1.
Aktywna bramka B
C.
Jeśli trójkąt nie jest równoboczny to nie ma kątów równych
~TR=>~KR =1
A: 0 0 =1
B: 1 1 =1
Nie bycie trójkątem równobocznym wystarcza aby nie mieć kątów równych
D.
Jeśli trójkąt nie jest równoboczny to ma kąty równe
~TR=>KR =0
A: 0 1 =1
B: 1 0 =0
Wyjście Y to iloczyn logiczny A AND B zatem:
Y=1*0=0
Można tu powiedzieć, że bramka AND „zabija” warunek konieczny ~> występujący równolegle w bramce A.
Mózg człowieka chodzi po powyższych zdaniach ścieżkami wytłuszczonymi, gdzie zdanie 1 1 =1 to zdanie nowo wypowiedziane.
Z punktu odniesienia wyjścia Y mamy to czynienia z definicją równoważności.
Trójkąt jest równoboczny wtedy i tylko wtedy gdy ma kąty równe.
Y = TR<=>KR = (TR=>KR)*(~TR=>~KR)
Której zero-jedynkowa analiza jest następująca:
A.
Jeśli trójkąt jest równoboczny to ma kąty równe
TR=>KR =1
1 1 =1
Bycie trójkątem równobocznym wystarcza aby mieć kąty równe.
B.
Jeśli trójkąt jest równoboczny to nie ma kątów równych
TR=>~KR =0
1 0 =0
… a jeśli trójkąt nie jest równoboczny ?
C.
Jeśli trójkąt nie jest równoboczny to nie ma kątów równych
~TR=>~KR =1
0 0 =1
Nie bycie trójkątem równobocznym wystarcza aby nie mieć kątów równych
D.
Jeśli trójkąt nie jest równoboczny to ma kąty równe
~TR=>KR =0
0 1 =0
Doskonale widać tabelę zero-jedynkową równoważności dla kodowania zgodnego ze zdaniem wypowiedzianym 1 1 =1 czyli:
TR=1, ~TR=0
KR=1, ~KR=0
Teoretycznie rzec biorąc bramkę B można uprościć korzystając z prawa Kubusia:
~p=>~q = p~>q
Kod: |
Blok układu logicznego z bramkami => i ~>
p q
| |
| |
| x--------------x
| | |
x--------------x |
| | | |
| | | |
----------- -----------
|O => | | ~> O|
| | | |
| A | | B |
| | | |
----------- -----------
| |
| |
x----x x----x
| |
--------
| |
| AND |
--------
|
Y = p<=>q = (p=>q)*(p~>q)
|
Punkt odniesienia p
Bramka A realizuje:
p=>q
Stoimy na negacji i widzimy linie niezanegowaną
Bramka B realizuje:
p~>q
Stoimy na linii niezanegowanej i widzimy linie zanegowaną
Odpowiedzi powyższego układu będą identyczne jak w równoważności, jednak powyższy układ nie jest układem równoważności !
Dlaczego ?
Bo warunek konieczny p~>q wymusza implikację odwrotną, czyli coś fundamentalnie innego niż równoważność.
Dowód:
Definicja implikacji odwrotnej:
p~>q
Jeśli zajdzie p to może zajść q
p musi być warunkiem koniecznym dla q
Proste rozumowanie:
Jeśli p jest konieczne dla q to zajście ~p wymusza zajście ~q
Stąd w sposób naturalny odkryliśmy tu wyrocznię implikacji, prawo Kubusia:
p~>q = ~p=>~q
Stąd błędna jest definicja równoważności rozumiana jako iloczyn logiczny dwóch implikacji prostych:
p<=>q = (p=>q)*(~p=>~q) = (p=>q)*(q=>p)
z prawej strony to tylko i wyłącznie warunki wystarczające definiowane dwoma liniami tabeli zero-jedynkowej jak wyżej. Występowanie implikacji w równoważności jest wykluczone w jakiejkolwiek formie. Równoważność i implikacja do dwa rozdzielne światy matematyczne pomiędzy którymi nie zachodzą żadne prawa matematyczne. Jeśli cokolwiek jest równoważnością to nie ma prawa być implikacja i odwrotnie.
5.0 Układy zastępcze bramek logicznych
Bezdyskusyjne bramki zastępcze to prawa de’Morgana i prawa Kubusia
Prawa de’Morgana:.
p*q = ~(~p+~q)
p+q = ~(~p*~q)
Prawa Kubusia:
p=>q = ~p~>~q
p~>q = ~p=>~q
5.1 Definicja bloku logicznego
Blok logiczny to układ o dwóch wejściach i jednym wyjściu dający jednoznaczną odpowiedź na wszystkie możliwe wymuszenia na wejściach, czyli dla operatorów dwuargumentowych mamy cztery różne przypadki.
Kod: |
1 1 =?
1 0 =?
0 0 =?
0 1 =?
|
W środku takiego bloku może być dowolnie skomplikowany układ logiczny.
Kod: |
p q
| |
-------
| |
|BLOK |
| |
-------
|
Y
|
W takim bloku może znajdować się układ zastępczy praw de’Morgana, układ zastępczy praw Kubusia lub cokolwiek innego.
Zacznijmy od praw de’Morgana.
5.2 Układy zastępcze praw de’Morgana
Definicja:
Układ zastępczy bramki logicznej w operatorach AND i OR to możliwość zastąpienia bramki AND bramką OR albo odwrotnie.
Prawa de’Morgan:p*q = ~(~p+~q) - prawo zamiany operatora AND(*) na OR(+)
p+q = ~(~p*~q) - prawo zamiany operatora OR(+) na AND(*)
Kod: |
Układ zastępczy bramki AND
p q
| |
| |
| x--------------x
| | |
x--------------x |
| | | |
| | O O
----------- -----------
| | | |
| | | |
| A | | B |
| AND | | OR |
----------- -----------
| O
| |
x--------------x
|
Y = p*q = ~(~p+~q)
|
Patrząc przez bramkę A widzimy funkcję logiczną:
Ya = p*q
Patrząc przez bramkę B widzimy funkcje logiczną:
Yb=~(~p+~q)
Oczywiście jeśli powyższy układ zamkniemy w czarnej skrzynce z której wystają kabelki p i q oraz wyjście Y, to ten układ będzie nie do rozpoznania.
Dowód:
Wymuszamy wszystkie możliwe stany ba wejściach p i q, dla każdego wymuszenia zapisujemy odpowiedź na wyjściu Y. W ten sposób zdejmujemy tabelę prawdy nieznanego nam bloku logicznego, czarnej skrzynki.
Kod: |
p q Y=p*q
1 1 =1
1 0 =0
0 0 =0
0 1 =0
|
Oczywiście mamy tu tabelę prawdy bramki AND, układu zastępczego B nigdy nie rozpoznamy tzn. możemy sobie co najwyżej rzucać monetą, istnieje w czarnej skrzynce czy nie istnieje. Zauważmy, że żadne tu idiotyczne przełączanie kabelków nie jest dozwolone ! W implikacji nie jest poprany układ zastępczy bramki p=>q powstały poprzez zamianę kabelków w bramce p~>q.
Kod: |
Układ zastępczy bramki OR
p q
| |
| |
| x--------------x
| | |
x--------------x |
| | | |
| | O O
----------- -----------
| | | |
| | | |
| A | | B |
| OR | | AND |
----------- -----------
| O
| |
x--------------x
|
Y = p+q = ~(~p*~q)
|
Patrząc na układ poprzez bramkę A mamy funkcje logiczną:
Ya = p+q
Patrząc na układ poprzez bramkę B mamy identyczną matematycznie funkcję:
Yb = ~(~p*~q)
zamykamy tera cały układ do czarnej skrzynki (bloku logicznego) z której wystają kabelki wejściowe p i q oraz kabelek wyjściowy Y.
Zdejmujemy tabelę prawdy nieznanego układu wymuszając wszystkie możliwe stany na wejściach p i q.
Kod: |
p q Y=p+q
1 1 =1
1 0 =1
0 0 =0
0 1 =1
|
Tym razem bez problemu identyfikujemy operator logiczny OR, nic ponad to nie jesteśmy powiedzieć, możemy tylko zgadywać czy układ zastępczy B jest w środku podłączony czy nie jest.
5.3 Blok logiczny równoważności
Blok logiczny równoważności
Kod: |
Blok układu logicznego z bramkami => i ~>
p q
| |
| |
| x--------------x
| | |
x--------------x |
| | | |
| | | |
----------- -----------
|O => | | ~> O|
| | | |
| A | | B |
| | | |
----------- -----------
| |
| |
x----x x----x
| |
--------
| |
| AND |
--------
|
Y = p<=>q = (p=>q)*(p~>q)
|
Punkt odniesienia p
Bramka A realizuje:
p=>q
Stoimy na negacji i widzimy linie niezanegowaną
Bramka B realizuje:
p~>q
Stoimy na linii niezanegowanej i widzimy linie zanegowaną
W równoważności operator implikacji odwrotnej ~> nie istnieje na mocy definicji zero-jedynkowej równoważności, musimy go zatem wyeliminować korzystając z prawa Kubusia:
p~>q = ~p=>~q
Blok logiczny równoważności - wersja ostateczna
Kod: |
Blok układu logicznego z bramkami =>
p q
| |
| |
| x--------------x
| | |
x--------------x |
| | | |
| | O O
----------- -----------
|O => | |O => |
| | | |
| A | | B |
| | | |
----------- -----------
| |
| |
x----x x----x
| |
--------
| |
| AND |
--------
|
Y = p<=>q = (p=>q)*(~p=>~q)
|
Stąd definicja równoważności:
p<=>q = (p=>q)*(~p=>~q)
5.4 Fałszywe układy zastępcze bramek
Definicja fałszywego układu zastępczego:
Fałszywe układy zastępcze to powielenie tego samego operatora połączonego w sposób równoległy.
Kod: |
Układ zastępczy bramki OR
p q
| |
| |
| x--------------x
| | |
x--------------x |
| | | |
| | | }
----------- -----------
| | | |
| | | |
| A | | B |
| OR | | OR |
----------- -----------
| |
| |
x--------------x
|
Y = p+q
|
Oczywiście w sposób jak wyżej możemy sobie podłączyć nieskończoną ilość układów.
Fałszywe układy zastępcze bramek implikacji prostej => i odwrotnej ~>
Bramkowe definicje implikacji prostej i odwrotnej
Definicja implikacji prostej w równaniu algebry Boole’a:
p=>q = ~p+q
Jeśli zajdzie p to „musi” zajść q
p musi być wystarczające dla q
Na podstawie tej definicji łatwo konstruujemy bramkę implikacji prostej, którą jest bramka sumy logicznej OR z zanegowaną w środku linią p. W technice cyfrowej symbolem negacji jest kółko „O”.
Bramkowa definicja implikacji prostej:
Kod: |
Bramka A
p q
| |
-------
|O => |
| musi|
| OR |
-------
|
p=>q
|
Stojąc na przewodzie p, punkcie odniesienia, widzimy niezanegowaną linię q.
Definicja implikacji odwrotnej w równaniu algebry Boole’a:
p~>q = p+~q
Jeśli zajdzie p to „może” zajść q
p musi być konieczne dla q
Na podstawie tej definicji mamy bramkę implikacji odwrotnej którą jest bramka sumy logicznej OR z zanegowaną w środku linią q.
Bramkowa definicja implikacji odwrotnej:
Kod: |
Bramka B
p q
| |
-------
| ~> O|
| może|
| OR |
-------
|
p~>q
|
Stojąc na przewodzie p, punkcie odniesienia, widzimy zanegowaną linię q.
Oczywiście na mocy definicji fałszywego układu zastępczego zabronione jest takie łączenie układów.
Kod: |
Blok układu logicznego z bramkami p=>q albo p~>q,
zależnie na którym przewodzie p lub q staniemy.
p q
| |
| |
| x--------------x
| | |
x-------|------x |
| | | |
| | | |
----------- -----------
|O => | |O => |
| | | |
| A | | B |
| OR | | OR |
----------- -----------
| |
| |
x--------------x
|
Y
|
To co wyżej to tylko powielenie tej samej bramki logicznej. Nawet nie musimy zagłębiać się jakiej bowiem na mocy definicji powielenie tego samego układu jest fałszywym układem zastępczym.
Oczywiście jak zamienimy końcówki p i q w środku bloku logicznego (czarnej skrzynki) to wszystko wyleci w powietrze na mocy definicji:
p=>q # p~>q
Czyli dużo dymu i smrodu, zatem nie jest to poprawny układ zastępczy bramki p=>q.
Jedyny poprawny układ zastępczy wynika tu z prawa Kubusia:
p=>q = ~p~>~q
Kod: |
Blok układu logicznego z bramkami => i ~>
p q
| |
| |
| x--------------x
| | |
x-------|------x |
| | | |
| | O O
----------- -----------
|O => | | ~> O|
| | | |
| A | | B |
| | | |
----------- -----------
| |
| |
x--------------x
|
Y = p=>q = ~p~>~q
|
To co wyżej to jedyny poprawny układ zastępczy bramki implikacji prostej =>.
Wszystko inne jest fałszywe, w szczególności fałszywy jest fundament współczesnej logiki jakoby:
p=>q = q~>p
Poniżej dowód fałszywości tego równania na zbiorach.
6.0 Implikacja vs równoważność na zbiorach
Czym różni się implikacja od równoważności - na zbiorach.
Na początek weźmy prostą równoważność
Trójkąt jest równoboczny wtedy i tylko wtedy gdy ma kąty równe
TR<=>KR = (TR=>KR)*(~TR=>~KR) - definicja równoważności
Skrócona analiza zero-jedynkowa w NTI
A.
Jeśli trójkąt jest równoboczny to na pewno ma kąty równe
TR=>KR=1
1 1 =1
B.
TR=>~KR =0
1 0 =0
C.
Jeśli trójkąt nie jest równoboczny to na pewno nie ma kątów równych
~TR=>~KR=1
0 0 =1
D.
~TR=>KR =0
0 1 =0
Doskonale widać tabelę zero jedynkową równoważności dla kodowania zgodnego ze zdaniem wypowiedzianym 1 1 =1 czyli:
TR=1, ~TR=0
KR=1, ~KR=0
Zauważmy że w równoważności mamy do czynienia wyłącznie z dwoma zbiorami:
[A. zbiór trójkątów równobocznych][C. Zbiór trójkątów nie równobocznych]
Oczywiście zbiór A jest dopełnieniem zbioru C, żadnych innych trójkątów już nie ma.
Dlatego w równoważności zachodzi:
p<=>q = ~p<=>~q
czyli twierdzenie:
Trójkąt jest równoboczny wtedy i tylko wtedy gdy ma kąty równe
TR<=>KR
jest tożsame matematycznie z twierdzeniem:
Trójkąt nie jest równoboczny wtedy i tylko wtedy gdy nie ma kątów równych
~TR<=>~KR
Dowód formalny:
p<=>q = (p=>q)*(~p=>~p) - definicja równoważności
Twierdzenie:
p<=>q = ~p<=>~q
Dla prawej strony korzystamy z definicji równoważności jak wyżej.
~p<=>~q = [(~p)=>(~q)]*[~(~p)=>~(~q)] =( ~p=>~q)*(p=>q) = (p=>q)*(~p=>~q)
CND
Uwaga !
W implikacji, co zobaczymy za chwile zawsze mamy do czynienia z trzema zbiorami (trzema stanami), dlatego implikacja to fundamentalnie co innego niż równoważność
Historyczna chwila prawdy
A: Implikacja prosta:
A1.
Jeśli będzie padać to na pewno będzie pochmurno
P=>CH =1
1 1 =1
Gwarancja matematyczna: pada to na pewno chmury
Padanie jest warunkiem wystarczającym dla chmur, implikacji proste prawdziwa
stąd:
A2.
Jeśli będzie padać to na pewno nie będzie pochmurno
P=>~CH=0
1 0 =0
… a jeśli nie będzie padać ?
Prawo Kubusia:
P=>CH = ~P~>~CH
A3.
Jeśli nie będzie padać to może nie być pochmurno
~P~>~CH=1
0 0 =1
LUB
A4.
Jeśli nie będzie padać to może być pochmurno
~P~~>CH =1
0 1 =1
Doskonale widać tabelę zero jedynkową implikacji prostej.
B: Implikacja odwrotna.
B1.
Jeśli jutro będzie pochmurno to może padać
CH~>P =1
1 1 =1
Chmury są warunkiem koniecznym dla deszczu, implikacja odwrotna prawdziwa
LUB
B2.
Jeśli jutro będzie pochmurno to może nie padać
CH~~>~P=1
1 0 =1
… a jeśli jutro nie będzie pochmurno ?
Prawo Kubusia:
CH~>P = ~CH=>~P
B3.
Jeśli jutro nie będzie pochmurno to na pewno nie będzie padać
~CH=>~P =1
0 0 =1
Gwarancja matematyczna: brak chmur to na pewno nie pada
B4.
Jeśli jutro nie będzie pochmurno to na pewno będzie padać
~CH=>P=0
0 1 =0
Doskonale widać tabelę zero jedynkową implikacji odwrotnej.
Istotą implikacji jest gwarancja matematyczna, wszystko inne jest bez znaczenia
Gwarancja w implikacji prostej A:
GA:
P=>CH =1
Gwarancja matematyczna: pada to na pewno chmury
Prawo Kubusia w implikacji prostej A::
P=>CH = ~P~>~CH
Gwarancja w implikacji odwrotnej B:
GB:
CH~>P = ~CH=>~P
Gwarancja matematyczna: brak chmur to na pewno nie pada
Poza obiema gwarancjami jest trzeci stan !
Trzeci stan: są chmury i nie pada
B2: CH~~>~P = A4: ~P~~>CH
Dlatego to jest implikacja a nie równoważność !
Graficznie wygląda to tak:
[GA: pada to na pewno chmury][B2:są chmury i nie pada][GB: nie ma chmur to na pewno nie pada]
Stan (zbiór) GA nie jest dopełnieniem stanu (zbioru) GB, bo między tymi zbiorami jest trzeci stan (zbiór) B2 - dlatego to jest implikacja a nie równoważność !
Dlatego poprawne jest tylko i wyłącznie takie równanie:
P=>CH # CH~>P
Bo poza powyższymi gwarancjami jest trzeci stan: B2: są chmury i nie pada.
czyli:
p=>q # q~>p - dla sztywnego punktu odniesienia ustawionym na zdaniu p=>q
Kolejny dowód fałszywości równania:
p=>q =q~>p
to kompromitująca obsługa wszelkich gróźb i obietnic.
Jeśli będzie padał deszcz to otworzę parasolkę
D=>P
Deszcz jest warunkiem wystarczającym abym otworzył parasolkę
Zamieniamy p i q:
Jeśli otworzę parasolkę to może będzie padał deszcz
P~>D
Prawo Kubusia:
P~>D = ~P=>~D
Jeśli nie otworzę parasolki to na pewno nie będzie padał deszcz
~P=>~D
Jak widać bzdura zatem:
D=>P # P~>D
p=>q # q~>p
Kiedy zdanie po prawej stronie będzie sensowne ?
Tylko i wyłącznie w czasie przeszłym gdy nie znamy rozstrzygnięcia implikacji, bo jak znamy to powyższe zdania też są bezsensowne, determinizm zabija implikację.
Jeśli otworzyłeś parasolkę to mógł padać deszcz
P~>D
Prawo Kubusia:
P~>D = ~P=>~D
czyli:
Jeśli nie otworzyłeś parasolki to na pewno nie padał deszcz.
~P=>~D
Z tego powodu:
D=>P # P~>D
p=>q # q~>p - dla sztywnego punktu odniesienia ustawionego na p=>q
Zdanie po lewej stronie jest prawdziwe i sensowne w czasie przyszłym, natomiast zdanie po prawej stronie jest prawdziwe i sensowne w czasie przeszłym.
6.1 Genialna matematyka 5-cio latków
Logika dodatnia i ujemna
Kubuś do Juniora (lat 5):
Jeśli posprzątasz pokój i nie będziesz bił siostry to pójdziemy do kina lub do teatru
P*~B=>K+T
Posprzątanie pokoju i nie bicie siostry jest warunkiem wystarczającym aby pójść do kina lub do teatru, zatem implikacja prosta prawdziwa.
Analiza matematyczna:
A.
Jeśli posprzątasz pokój (P=1) i nie będziesz bił siostry (~B=1) to pójdziemy do kina (K=1) lub do teatru (T=1)
(P*~B)=>(K+T) =1 - twarda prawda (zachodzi zawsze)
1 1 =1
W następnej linii musimy zanegować następnik czyli:
~(K+T) = ~K*~T - prawo de’Morgana
stąd na mocy definicji operatora => mamy:
B.
Jeśli posprzątasz pokój (P=1) i nie będziesz bił siostry (~B=1) to nie pójdziemy do kina (~K=1) i nie pójdziemy do teatru (~T=1)
(P*~B)=> (~K*~T) =0
1 0 =0
Uwaga:
Poprzednik w logice dodatniej, następnik w logice ujemnej
… a jeśli nie spełnię warunku nagrody ?
Przechodzimy z równaniem A do logiki ujemnej metoda przedszkolaka, czyli negujemy wszystkie zmienne i wymieniamy operatory na przeciwne.
Mamy A:
P*~B=>K+T
Negujemy zmienne i wymieniamy operatory:
~P+B ~> ~K*~T
czyli:
C.
Jeśli nie posprzątasz pokoju (~P=1) lub będziesz bił siostrę (B=1) to („może” ~>) nie pójdziemy do kina (~K=1) i nie pójdziemy do teatru (~T=1)
(~P+B) ~> (~K*~T) =1 - miękka prawda (może zajść ale nie musi)
0 0 =1
Uwaga:
Poprzednik w logice ujemnej, następnik w logice ujemnej.
To jest groźba w której spójnik „może” ~> jest praktycznie zawsze pomijamy, bowiem intencją nadawcy jest aby warunek groźby nie został spełniony. Oczywiście im ostrzejsza groźba tym większe prawdopodobieństwo że odbiorca nie spełni warunku ukarania. Nadawca może tu sobie mówić co mu się podoba np. na 100% nie pójdziemy do kina i nie pójdziemy do teatru … to kompletnie bez znaczenia bowiem prawa Kubusia człowiek nie jest w stanie złamać, podobnie jak np. praw Kirchhoffa z obszaru fizyki.
Na mocy prawa Kubusia zdanie C to oczywista implikacja odwrotna prawdziwa.
Prawo Kubusia:
(P*~B) =>(K+T )= (~P+B) ~> (~K*~T)
D.
Jeśli nie posprzątasz pokoju (~P=1) lub będziesz bił siostrę (B=1) to „możliwe” ~~> że mimo wszystko pójdziemy do kina (K=1) lub do teatru (T=1)
(~P+B) ~~> (K+T) =1 - miękka prawda (akt łaski)
0 1 =1
Uwaga:
Poprzednik w logice ujemnej, następnik w logice dodatniej
Doskonale widać zero-jedynkową definicję implikacji prostej dla kodowania zgodnego ze zdaniem wypowiedzianym A:
p = (P*~B) =1
~p=~P+B =0
q = K+T =1
~q = ~K*~T =0
Zauważmy, że w czasie analizy matematycznej non-stop poza pierwszym zdaniem, mamy do czynienia ze zmiennymi wejściowymi w logice dodatniej i ujemnej.
Kod: |
Tabela A
Zmienne w logice dodatniej zgodne ze zdaniem wypowiedzianym:
P=1 - posprzątam pokój
P=0 - nie posprzątam pokoju
~B=1 - nie będę bił siostry
~B=0 - będę bił siostrę
K=1 - pójdziemy do kina
K=0 - nie pójdziemy do kina
T=1 - pójdziemy do teatru
T=0 - nie pójdziemy do teatru
|
Kod: |
Tabela B
Zmienne w logice ujemnej:
~P=1 - nie posprzątam pokoju
~P=0 - posprzątam pokój
B=1 - będę bił siostrę
B=0 - nie będę bił siostry
~K=1 - nie pójdziemy do kina
~K=0 - pójdziemy do kina
~T=1 - nie pójdziemy do teatru
~T=0 - pójdziemy do teatru
|
Zauważmy że w zerach i jedynkach zmienne w logice ujemnej mają totalnie odwrócone znaczenie niż zmienne w logice dodatniej.
Logika dodatnia:
P=1 - posprzątam pokój
P=0 - nie posprzątam pokoju
Logika ujemna:
~P=1 - nie posprzątam pokoju
~P=0 - posprzątam pokój
Oczywiste związki logiki dodatniej i ujemnej:
P#~P
oraz:
P=~(~P)
7.0 Obietnice i groźby
Jednym z przykładów zastosowania implikacji prostej => i odwrotnej ~> jest matematyczna obsługa obietnic i gróźb.
Fundament algebry Kubusia
Definicja zero-jedynkowa implikacji prostej:
Kod: |
p q Y = p=>q
1 1 =1 /p=>q - warunek wystarczający w logice dodatniej (bo q)
1 0 =0
0 0 =1 /~p~>~q - warunek konieczny w logice ujemnej (bo ~q)
0 1 =1
|
Definicja słowna:
p=>q
Jeśli zajdzie p to musi => zajść q
p musi być wystarczające dla q
Dodatkowo musi być spełniona wyrocznia implikacji, prawo Kubusia:
p=>q = ~p~>~q
Definicja zero-jedynkowa implikacji odwrotnej:
Kod: |
p q Y = p~>q
1 1 =1 /p~>q - warunek konieczny w logice dodatniej (bo q)
1 0 =1
0 0 =1 /~p=>~q - warunek wystarczający w logice ujemnej (bo ~q)
0 1 =0
|
Definicja słowna:
p~>q
Jeśli zajdzie p to może zajść q
p musi być konieczne dla q
Dodatkowo musi być spełniona wyrocznia implikacji prawo Kubusia:
p~>q = ~p=>~q
Spójniki zdaniowe
=> - operator implikacji prostej, spójnik „musi” między p i q ze spełnionym warunkiem wystarczającym
~> - operator implikacji odwrotnej, spójnik „może” między p i q ze spełnionym warunkiem koniecznym
~~> - naturalny spójnik „może”, wystarczy jedna prawda, nie jest to implikacja odwrotna zatem warunek konieczny tu nie zachodzi
Prawa Kubusia:
p=>q = ~p~>~q - prawo zamiany operatora => na ~>
p~>q = ~p=>~q - prawo zamiany operatora ~> na =>
Żaden matematyk nie zakwestionuje poniższej definicji obietnicy:
Obietnica = implikacja prosta => - to jest w każdym podręczniku matematyki do I klasy LO
To wystarczy, dalej w banalny sposób można udowodnić że:
Groźba = implikacji odwrotna ~>
Dowód na przykładzie …
Typowa obietnica:
A.
Jeśli będziesz grzeczny dostaniesz czekoladę
G=>C =1
1 1 =1 - zdanie wypowiedziane
Obietnica, zatem implikacja prosta, tu wszyscy się zgadzamy.
Skoro to implikacja prosta to:
B.
Jeśli będziesz grzeczny to na pewno => nie dostaniesz czekolady
G=>~C =0
1 0 =0
… a jak będę niegrzeczny ?
Prawo Kubusia:
G=>C = ~G~>~C
Mama:
C.
Jeśli będziesz niegrzeczny to nie dostaniesz czekolady
~G~>~C
W groźbach (zdanie C) spójnik „może” ~> jest z reguły pomijany. Nie ma to znaczenia gdyż spójnik ten jest gwarantowany przez absolutna świętość algebry Boole’a, prawo Kubusia.
Z prawa Kubusia wynika tu coś fundamentalnego:
Wszelkie groźby (zdanie C) musimy kodować operatorem implikacji odwrotnej, inaczej algebra Boole’a leży w gruzach.
Matematyczne znaczenie zdania C jest oczywiście takie:
C.
Jeśli będziesz niegrzeczny to możesz ~> nie dostać czekolady
~G~>~C =1
0 0 =1
LUB
D.
Jeśli będziesz niegrzeczny to możesz ~~> dostać czekoladę
~G~~>C =1
0 1 =1 - akt miłości
gdzie:
~~> - naturalne "może", wystarczy jedna prawda, nie jest to operator implikacji odwrotnej ~>, zatem warunek konieczny tu nie zachodzi.
Doskonale tu widać tabelę zero-jedynkową implikacji prostej dla kodowania zgodnego ze zdaniem wypowiedzianym 1 1 =1 czyli:
G=1, ~G=0
C=1, ~C=0
Oczywiście z powyższej analizy matematycznej wynika, że wszelkie groźby muszą być kodowane implikacją odwrotną:
Jeśli ubrudzisz spodnie dostaniesz lanie
B~>L - implikacja odwrotna bo groźba
Z powyższego mamy definicję obietnicy i groźby …
Definicja obietnicy:
Obietnica = implikacja prosta =>
Jeśli dowolny warunek to nagroda
W=>N
Dobrowolnych obietnic musimy dotrzymywać, stąd implikacja prosta
czyli:
Gwarancja w obietnicy:
W=>N
Jeśli spełnisz warunek nagrody, (W) to na pewno => dostaniesz nagrodę (N) z powodu że spełniłeś warunek nagrody (W), poza tym wszystko może się zdarzyć !
… tylko tyle i aż tyle gwarantuje operator implikacji prostej =>.
Analiza matematyczna obietnicy:
Jeśli spełnisz warunek nagrody to na pewno => dostaniesz nagrodę
W=>N =1 - gwarancja nagrody
1 1 =1
stąd na podstawie definicji operatora implikacji prostej => mamy:
Jeśli spełnisz warunek nagrody to na pewno => nie dostaniesz nagrody
W=>~N =0
1 0 =0
… a jeśli nie spełnię warunku nagrody ?
Prawo Kubusia:
W=>N = ~W~>~N
czyli:
Jeśli nie spełnisz warunku nagrody to możesz ~> nie dostać nagrody
~W~>~N =1
0 0 =1
LUB
Jeśli nie spełnisz warunku nagrody to możesz ~~> dostać nagrodę
~W~~>N =1 - akt miłości
0 1 =1
Możliwość wręczenia nagrody mimo że odbiorca nie spełnił warunku nagrody (akt miłości)
Doskonale widać definicje implikacji prostej dla kodowania zgodnego ze zdaniem wypowiedzianym 1 1 =1 czyli:
W=1, ~W=0
N=1, ~N=0
Definicja groźby:
Groźba = implikacji odwrotna ~>
Jeśli dowolny warunek to kara
W~>K
Implikacja odwrotna, bo spełnienie warunku kary jest warunkiem koniecznym do ukarania, o tym czy będzie to warunek konieczny i wystarczający decyduje nadawca.
Gwarancja w implikacji odwrotnej wynika z prawa Kubusia:
W~>K = ~W=>~K
czyli:
Gwarancja w groźbie:
~W=>~K
Jeśli nie spełnisz warunku kary (~W) to na pewno nie zostaniesz ukarany (~K), z powodu że nie spełniłeś warunku kary (~W), poza tym wszystko może się zdarzyć !
… tylko tyle i aż tyle gwarantuje operator implikacji prostej =>.
Porównajmy gwarancję w obietnicy z gwarancją w groźbie, doskonale widać 100% analogię wynikającą z definicji operatora implikacji prostej =>, jednak groźba ~> to fundamentalnie co innego niż obietnica => bowiem matematycznie:
p=>q # p~>q
Analiza matematyczna groźby:
Jeśli spełnisz warunek kary to możesz ~> zostać ukarany
W~>K =1
1 1 =1
LUB na podstawie definicji operatora implikacji odwrotnej~>:
Jeśli spełnisz warunek kary to możesz ~~> nie zostać ukarany
W~~>~K =1 - akt łaski
1 0 =1
Mamy tu prawo do darowania dowolnej kary zależnej od nadawcy (akt łaski)
… a jeśli nie spełnię warunku kary ?
Prawo Kubusia:
W~>K= ~W=>~K
czyli:
Gwarancja w groźbie:
Jeśli nie spełnisz warunku kary, to na pewno => nie zostaniesz ukarany
~W=>~K =1
0 0 =1
… z powodu że nie spełniłeś warunku kary, wszystko inne może się zdarzyć
stąd na podstawie =>:
Jeśli nie spełnisz warunku kary, to na pewno => zostaniesz ukarany
~W=>K =0
0 1 =0
z powodu że nie spełniłeś warunku kary, poza tym wszystko może się zdarzyć.
Tylko tyle i aż tyle gwarantuje operator implikacji odwrotnej W~>K.
Doskonale widać tabele zero-jedynkową implikacji odwrotnej dla kodowania zgodnego ze zdaniem wypowiedzianym 1 1 =1 czyli:
W=1, ~W=0
K=1, ~K=0
W obietnicach i groźbach bardzo dobrze widać sens logiki dodatniej i ujemnej w operatorach implikacji prostej => i odwrotnej ~>.
Definicja logiki dodatniej i ujemnej w operatorach => i ~>:
Implikacja wypowiedziana jest w logice dodatniej jeśli po stronie q nie występuje negacja, inaczej mamy do czynienia z logiką ujemną.
Obietnica:
W=>N = ~W~>~N - prawo zamiany obietnicy => na równoważną groźbę ~>
Obietnica => w logice dodatniej (N) jest równoważna groźbie ~> w logice ujemnej (~N)
Groźba:
W~>K = ~W=>~K - prawo zamiany groźby ~> na równoważną obietnicę =>
Groźba ~> w logice dodatniej (K) jest równoważna obietnicy => w logice ujemnej (~K)
Piękna jest też następująca interpretacja obietnicy i groźby.
Kod: |
p q p~>q p<=q
1 1 =1 =1
1 0 =1 =1
0 0 =1 =1
0 1 =0 =0
|
gdzie:
~> - operator implikacji odwrotnej, spójnik „może” ze spełnionym warunkiem koniecznym
Z tabeli widzimy że:
~> = <= - pod warunkiem że symbol <= będziemy czytać przeciwnie do strzałki jako spójnik „może” z warunkiem koniecznym (operator implikacji odwrotnej)
Obietnica:
W=>N - ja tego chcę, biegnę do nagrody
=> czytane zgodnie ze strzałką jako spójnik „musi” z warunkiem wystarczającym
Groźba:
W~>K = W<=K - ja tego nie chcę, uciekam od kary
gdzie:
<= - czytane przeciwnie do strzałki jako spójnik „może” z warunkiem koniecznym
Odróżnianie nagrody od kary to fundament wszelkiego życia. Zwierzątka które tego nie odróżniają, czyli wszystko co się rusza traktują jako nagrodę (ja tego chcę) skazane są na zagładę.
W Australii żyje sobie żółw błotny który na języku ma wyrostek imitujący żywego robaka, ryba która nabierze się na ten podstęp musi zginąć.
7.1 Obietnica
Definicja obietnicy:
Jeśli dowolny warunek to nagroda
W=>N =1 - twarda prawda
Implikacja prosta bo dobrowolnych obietnic musimy dotrzymywać
Spełnienie warunku nagrody jest warunkiem wystarczającym dla otrzymania nagrody
Prawo Kubusia:
W=>N = ~W~>~N
Gwarancja w implikacji jest zawsze operator implikacji prostej:
W=>N
Jeśli spełnię warunek nagrody to na pewno => dostanę nagrodę z powodu że spełniłem warunek nagrody … poza tym wszystko może się zdarzyć.
W obietnicy nadawca ma nadzieję (marzenie), że odbiorca spełni warunek nagrody i będzie mógł wręczyć nagrodę. Jeśli odbiorca nie spełni warunku nagrody to nadawca może dać nagrodę lub nie zgodnie ze swoim „widzi mi się”, czyli wolną wolą.
Po stronie odbiorcy występuje nadzieja (marzenie), że nawet jeśli nie spełni warunku nagrody to może otrzymać nagrodę (akt miłości). Odbiorca może zwolnić nadawcę z obietnicy np. w przypadkach losowych.
Zdanie wypowiedziane:
Jeśli zdasz egzamin dostaniesz komputer
E=>K
Implikacja prosta bo dobrowolnych obietnic musimy dotrzymywać
Gwarancja w implikacji prostej:
E=>K
Jeśli zdasz egzamin to na pewno => dostaniesz komputer z powodu że zdałeś egzamin, poza tym wszystko może się zdarzyć - tylko tyle i aż tyle gwarantuje operator implikacji prostej => w obietnicy.
Analiza matematyczna:
A.
Jeśli zdasz egzamin to na pewno => dostaniesz komputer
E=>K =1
1 1 =1
stąd:
B.
Jeśli zdasz egzamin to na pewno => nie dostaniesz komputera
E=>~K =0 - dobrowolnych obietnic musimy dotrzymywać
1 0 =0
… a jeśli nie zdam egzaminu ?
Prawo Kubusia:
E=>K = ~E~>~K
czyli:
C.
Jeśli nie zdasz egzaminu to możesz ~> nie dostać komputera
~E~>~K =1
0 0 =1
LUB
D.
Jeśli nie zdasz egzaminu to możesz ~~> dostać komputer
~E~~>K =1 - akt miłości
0 1 =1
Doskonale widać definicje implikacji prostej dla kodowania zgodnego ze zdaniem wypowiedzianym 1 1 =1 czyli:
E=1, ~E=0
K=1 , ~K=0
Zdanie C to ewidentna groźba. Intencją wypowiadającego jest, aby groźba była groźbą, dlatego praktycznie zawsze pomijany jest spójnik „może”.
Zdanie C przybierze postać.
C.
Jeśli nie zdasz egzaminu to nie dostaniesz komputera
~E~>~K =1
Nie zdanie egzaminu jest warunkiem koniecznym nie dostania komputera, zatem implikacja odwrotna. O tym czy będzie to warunek konieczny i wystarczający decyduje nadawca.
Oczywiście na mocy definicji groźby:
Jeśli dowolny warunek to kara
W~>K
zatem powyższą groźbę musimy kodować operatorem implikacji odwrotnej ~>:
~E~>~K
Matematyczna wolna wola
Matematyczna wolna wola to operator implikacji odwrotnej ~>
W przypadku nie zdania egzaminu, nadawca może nie dać komputera (C) lub dać komputer (D) co zależy tylko i wyłącznie od jego „widzi mi się” czyli wolnej woli.
W skrajnym przypadku może wyjąć monetę i rzucać:
orzełek - dam komputer
reszka - nie dam komputera
… i nie ma szans na zostanie kłamcą.
„Rzucanie monetą” jest matematyczną wolną wolą, ale nie jest wolną wolą człowieka !
Człowiek rzucający monetą staje się maszyną, wobec której nie można mówić o „wolnej woli”.
Wolna wola człowieka:
Wolna wola człowieka to świadoma decyzja negatywna lub pozytywna, nadawca powinien umieć uzasadnić decyzję.
Decyzja negatywna:
Nie zdałeś egzaminu, nie dostaniesz komputera
oczywiście domyślne jest tu „z powodu że nie zdałeś egzaminu”, nadawca może to rozwinąć np. bo kompletnie się nie uczyłeś itp.
Decyzja pozytywna:
Nie zdałeś egzaminu, dostajesz komputer, bo cie kocham, bo widziałem że się uczyłeś ale miałeś pecha itp.
Oczywiście matematycznie zabronione jest tu uzasadnienie zależne, identyczne jak warunek czyli:
Nie zdałeś egzaminu, dostajesz komputer bo nie zdałeś egzaminu
Matematyczny dowód pkt. 8.1.
Prawdopodobieństwo zajścia „aktu miłości” w obietnicy:
1.
Zauważmy, że nadawca dobrowolnie obiecuje nagrodę, czyli chce tą nagrodę dać. Jeśli zobaczy że odbiorca starał się ale mu nie wyszło to z reguły i tak wręczy nagrodę (akt miłości).
2.
Obietnice „szyte są na miarę” odbiorcy, czyli nadawca nie daje obietnic gdzie spełnienie warunku nagrody jest niemożliwe lub bardzo mało prawdopodobne. Stąd najczęściej odbiorca spełnia warunek nagrody, nadawca wręcza nagrodę … i wszyscy są szczęśliwi.
Oczywiście obietnice to przyszłość której nie znamy, jednak jeśli obietnica wypowiedziana jest między przyjaciółmi, znajomymi czy nawet miedzy osobami obcymi to z reguły jest dotrzymywana. Czyli prawdopodobieństwo iż nagroda znajdzie się u nadawcy jest tu bardzo wysokie, myślę że na poziomie 90% lub wyższym.
Odrębnym zagadnieniem jest składanie fałszywych obietnic wobec wrogów których chcemy zniszczyć, tu podstęp i fałsz jest na porządku dziennym w myśl zasady, wszystkie chwyty dozwolone byleby zniszczyć wroga. Zauważmy jednak, że nasz wróg dał się złapać w pułapkę dzięki temu że spodziewa się nagrody, czyli również doskonale zna symboliczna algebrę Boole’a (algebrę Kubusia)
Każde żywe stworzenie, chce mieć jak najmniej wrogów i jak najwięcej przyjaciół, zatem w powodzi wypowiedzianych obietnic te fałszywe stanowią margines. Zauważmy, że stworzenia żywe żyją w grupach w ramach swojego gatunku. Tu również działa algebra Kubusia, człowiek nie jest tu żadnym wyjątkiem.
Zauważmy, że jeśli przyjmiemy „akt miłości” i „akt łaski” za dobro i wykluczymy linie fałszywe w groźbach i obietnicach to otrzymamy taki wynik:
Dobro-Zło = 4:2
Zatem matematycznie nasz Wszechświat ustawiony jest na dobro.
Weźmy na koniec typowa groźbę.
Jeśli ubrudzisz spodnie dostaniesz lanie
B~>L
Gwarancja w implikacji odwrotnej wynika z prawa Kubusia:
B~>L = ~B=>~L
czyli:
Jeśli przyjdziesz w czystych spodniach to na pewno => nie dostaniesz lania
~B=>~L
... z powodu czystych spodni - tylko tyle i aż tyle gwarantuje operator implikacji odwrotnej ~>.
Równanie jest absolutnie genialne:
B~>L = ~B=>~L
Po prawej stronie mamy 100% determinizm, dlatego to jest matematyka ścisła.
Po lewej stronie mamy matematyczna wolną wolę człowieka, czyli jeśli syn przyjdzie w brudnych spodniach to nadawca może go zabić albo darować lanie (gwarancja wolnej woli) ... i nie ma szans na zostanie kłamcą. Tożsamość to tożsamość, z matematyką się nie dyskutuje.
Determinizm filozoficzny i fizyczny
Determinizm w ujęciu filozoficznym i można sprowadzić do jednego zdania:
Jeśli ktokolwiek zna moje myśli z wyprzedzeniem to moja wolna wola leży w gruzach, mój Wszechświat jest zdeterminowany.
Determinizm w ujęciu fizycznym opisuje genialna implikacja. W jednej połówce implikacji zarówno prostej => jak i odwrotnej ~> mamy 100% determinizm (=>), zaś w drugiej "rzucania monetą” ( ~>)
Oczywiście determinizm fizyczny to również równoważność p<=>q, ale ta występuje głównie w matematyce, w świecie rzeczywistym króluje implikacja.
7.2 Rodzaje obietnic
1.
Obietnica z natychmiastową wykonalnością:
Jeśli zdasz egzamin dostaniesz komputer
E=>K
… a jak nie zdam egzaminu.
Prawo Kubusia:
E=>K = ~E~>~K
czyli jeśli syn nie zda egzaminu to mogę mu tego komputera nie kupić lub kupić i nie mam szans na zostanie kłamcą.
Po egzaminie następuje rozstrzygnięcie
2.
Obietnica z odroczoną wykonalnością:
Kto przyjdzie jutro dostanie gotowca
J=>G
… a jak przyjdę pojutrze ?
J=>G = ~J~>~G
Oczywiście jak ktoś przyjdzie później, byle przed egzaminem to też może dostać gotowca ale nie musi. Po egzaminie ta obietnica traci sens.
3.
Obietnica w której spełnienie warunku obietnicy jest bardzo mało prawdopodobne:
Jeśli wygram milion w TOTKA to kupię ci samochód
W=>S
… a jak nie wygram w TOTKA ?
Prawo Kubusia:
W=>S = ~W~>~S
Jeśli nie wygram w TOTKA to mogę ci nie kupić samochodu lub kupić i nie mam szans na zostanie kłamcą.
7.3 Groźba
Definicja groźby:
Jeśli dowolny warunek to kara
W~>K =1
Implikacja odwrotna bo nadawca może ukarać, ale nie musi.
Spełnienie warunku kary jest warunkiem koniecznym ukarania z powodu spełnienia warunku kary. O tym czy będzie to warunek konieczny i wystarczający decyduje nadawca.
Gwarancja w groźbie wynika z prawa Kubusia:
W~>K = ~W => ~K
Stąd gwarancja:
~W => ~K
Jeśli nie spełnię warunku kary to na pewno => nie zostanę ukarany z powodu nie spełnienia warunku kary. Poza tym wszystko może sie zdarzyć.
W groźbie nadawca ma nadzieję (marzenie), że odbiorca nie spełni warunku kary i nie będzie musiał karać. Jeśli odbiorca spełni warunek kary to nadawca może wykonać karę lub ją darować zgodnie ze swoim „widzi mi się”, czyli wolną wolą.
Po stronie odbiorcy również występuje nadzieja (marzenie), że nawet jeśli spełni warunek kary to nadawca nie wykona kary (akt łaski). W groźbie decyzję o darowaniu kary podejmuje wyłącznie nadawca, odbiorca nie ma tu nic do powiedzenia.
Przykład:
Jeśli ubrudzisz spodnie dostaniesz lanie
B~>L - implikacja odwrotna bo groźba
Brudne spodnie są warunkiem koniecznym lania z powodu brudnych spodni, zatem implikacja odwrotna prawdziwa. O tym czy będzie to warunek konieczny i wystarczający decyduje nadawca.
W groźbach naturalny spójnik implikacji odwrotnej „może” ~> jest z reguły pomijany bo osłabiałby groźbę. Nie prowadzi to do niejednoznaczności, gdyż definicje groźby i obietnicy są bardzo proste i precyzyjne.
Analiza:
A:
Jeśli ubrudzisz spodnie to możesz ~> dostać lanie
B~>L =1
1 1 =1
LUB
B:
Jeśli ubrudzisz spodnie to możesz nie dostać lania
B ~~> ~L =1 - prawo do darowania kary (akt łaski)
1 0 =1
Zdanie prawdziwe na mocy naturalnego spójnika „może” ~~>, nie jest to implikacja odwrotna.
Nadawca ma prawo do darowania dowolnej kary (akt łaski)
… a jeśli nie ubrudzę spodni ?
B~>L = ~B => ~L - prawo Kubusia
czyli:
C:
Jeśli nie ubrudzisz spodni to na pewno => nie dostaniesz lania
~B => ~L =1 - twarda prawda (gwarancja)
0 0 =1
Na mocy definicji operatora implikacji prostej => mamy:
Jeśli nie ubrudzisz spodni to na pewno => nie dostaniesz lania z powodu czystych spodni. Poza tym wszystko może się zdarzyć. Tylko tyle i aż tyle gwarantuje operator implikacji prostej =>.
stąd:
D:
Jeśli nie ubrudzisz spodni to na pewno => dostaniesz lanie
~B => L =0 - twardy fałsz, zakaz karania niewinnego z powodu czystych spodni
0 1 =1
Doskonale widać tabelę zero-jedynkową implikacji odwrotnej dla kodowania zgodnego ze zdaniem wypowiedzianym 1 1 =1 czyli:
B=1, ~B=0
L=1, ~L=0
Dlaczego zdanie B nie może być implikacja odwrotną ?
Dowód nie wprost:
Załóżmy że zdanie B: B~>~L jest implikacja odwrotną.
Obowiązuje wówczas prawo Kubusia:
B: B~>~L = D: ~B=>L
Zdanie D: jest oczywistym fałszem, zatem zdanie B nie może być implikacją odwrotną prawdziwą.
Prawdziwość zdania B: określa wzór:
(B~~>~L)+(B~>~L) = 1+0 =1
gdzie:
~~> - naturalny spójnik może, wystarczy jedna prawda, nie jest to operator implikacji odwrotnej zatem warunek koniczny tu nie zachodzi.
Jedyne sensowne przejście z operatora implikacji odwrotnej do implikacyjnych AND(*) i OR(+) to odpowiedź na pytanie dziecka „kiedy wystąpi kłamstwo”:
Jeśli ubrudzisz spodnie dostaniesz lanie
Y=B~>L
Jaś:
… tata, a kiedy skłamiesz ?
Y=B~>L = B+~L = ~(~B*L) - dotrzymam słowa
Negujemy dwustronnie:
~Y=~(B~>L) = ~B*L - skłamię
Skłamię (~Y=1), jeśli przyjdziesz w czystych spodniach (~B) i dostaniesz lanie (z powodu czystych spodni !)
~Y=~B*L
Jaś:
… a czy może się zdarzyć że przyjdę w czystych spodniach i dostanę lanie ?
Y=~(~Y) - prawo podwójnego przeczenia, stąd:
Y=~(~B*L)
Nie może się zdarzyć że przyjdziesz w czystych spodniach (~B) i dostaniesz lanie (z powodu czystych spodni)
Y=~(~B*L)
Zauważmy, że ostatnie pytanie Jasia jest mało prawdopodobne bo odpowiedź dostał wcześniej.
8.0 Obietnice i groźby w równaniach matematycznych
Równoważną do analizy zero-jedynkowej gróźb i obietnic jak wyżej, jest ich analiza przy pomocy równań matematycznych.
8.1 Obietnica w równaniach matematycznych
Zastosujmy świętą zasadę algebry Boole’a „Jak się mówi tak się pisze” doskonale znaną wszystkim dobrym logikom praktykom, ci od cyfrowych układów logicznych..
Definicja obietnicy:
Jeśli dowolny warunek to nagroda
Zasada „Jak się mówi tak się pisze”:
Dostanę nagrodę (N) gdy spełnię warunek nagrody (W) lub gdy nadawca zdecyduje o daniu nagrody.
Wprowadźmy zmienną uznaniową nadawcy:
U=1 – dam nagrodę
U=0 – nie dam nagrody
Równanie obietnicy:
N=W+U
Gdzie:
N=1 – mam nagrodę
N=0 – nie mam nagrody
W=1 – warunek nagrody spełniony
W=0 – warunek nagrody nie spełniony
Zmienna uznaniowa nadawcy:
U=1 – dam nagrodę
U=0 – nie dam nagrody
Analiza równania obietnicy.
A.
W=1 - odbiorca spełnił warunek nagrody.
Równanie obietnicy przybierze wówczas postać:
N = 1+U = 1 – muszę dostać nagrodę.
W przypadku gdy odbiorca spełni warunek nagrody nadawca nie ma wyjścia i musi dać nagrodę, inaczej jest kłamcą. Zauważmy, że nikt nie zmuszał nadawcy do obiecania czegokolwiek, że nadawca obiecał nagrodę z własnej woli, że chce dać nagrodę. Nie ma tu zatem mowy o jakimkolwiek ograniczeniu wolnej woli nadawcy.
B.
W=0 – warunek nagrody nie spełniony
Równanie obietnicy przybiera postać:
N=W+U=0+U=U
Wszystko w rękach nadawcy który podejmuje decyzję o daniu nagrody zgodnie ze swoją wolną wolą, niczym nie ograniczoną.
U=1 – dam nagrodę
U=0 – nie dam nagrody
Przy niespełnionym warunku nagrody (W=0) nadawca może zrobić co mu się podoba i nie zostaje kłamcą. Większość nadawców tak czy siak da nagrodę pod byle pretekstem niezależnym (U=1 - akt miłości), ale nie musi tego robić !
W tym przypadku nadawca może wszystko z maleńkim wyjątkiem:
Nie spełniłeś warunku nagrody (W=0) dostajesz nagrodę, bo nie spełniłeś warunku nagrody (U=W=0)
Równanie obietnicy przybierze tu postać:
N = W+U = 0+0 =0
Zakaz wręczenia nagrody z uzasadnieniem zależnym, czyli z powodu nie spełnienia warunku nagrody (W=0).
Nikt nie może robić z człowieka idioty, przede wszystkim matematyka.
Przykład:
Jeśli zdasz egzamin dostaniesz komputer
E=>K
Równanie obietnicy:
K = W+U
Jeśli egzamin zdany (W=1) to:
K=1+U =1 - gwarancja otrzymania komputera.
Zmienna uznaniowa nadawcy jest tu bez znaczenia.
Jeśli egzamin nie zdany (W=0) to:
K=W+U = 0+U =U
Wszystko w rękach nadawcy:
U=1 - dam komputer
U=0 - nie dam komputera
Akt miłości nie zaszedł:
U=0
Nie zdałeś egzaminu (W=0), nie dostajesz komputera ... bo kompletnie się nie uczyłeś (U=0)
Równanie obietnicy:
K=W+U = 0+0 =0 - nie mam komputera
Akt miłości zaszedł:
U=1
Nie zdałeś egzaminu (W=0), dostajesz komputer ... bo widziałem że się starałeś ale miałeś pecha, bo cię kocham, bo tak czy siak zamierzałem kupić ci komputer itp. (U=1 dowolne uzasadnienie niezależne)
Równanie obietnicy:
N=W+U=0+1=1 – mam komputer dzięki dobremu sercu nadawcy (akt miłości)
Nadawca może wręczyć nagrodę pod byle pretekstem, ale nie może wręczyć nagrody z uzasadnieniem zależnym identycznym jak warunek nagrody.
Nie zdałeś egzaminu (W=0), dostajesz komputer ... bo nie zdałeś egzaminu (U=W=0).
Równanie obietnicy:
N=W+U=0+0=0 – zakaz wręczania nagrody z uzasadnieniem zależnym, czyli z powodu „nie zdania egzaminu” (W=U=0)
Nikt nie może robić z człowieka idioty, przede wszystkim matematyka.
8.2 Groźba w równaniach matematycznych
Definicja groźby:
Jeśli dowolny warunek to kara
Zasada „Jak się mówi tak się pisze”:
Zostanę ukarany (K) gdy spełnię warunek kary (W) i nadawca zdecyduje o ukaraniu (U).
W groźbie nadawca może skorzystać z aktu łaski ale nie musi tego robić. Przyjmijmy zmienna uznaniową U, którą nadawca może ustawić na dowolną wartość.
Matematyczne równanie groźby:
K=W*U
Gdzie:
K=1 – zostanę ukarany
K=0 – nie zostanę ukarany
W=1 – warunek kary spełniony
W=0 – warunek kary nie spełniony
Nadawca może ustawić zmienną uznaniową na dowolną wartość:
U=1 – ukarać
U=0 – nie karać (akt łaski)
Akt łaski w groźbie zajdzie wtedy, gdy odbiorca spełni warunek kary zaś nadawca odstąpi od wykonania kary (U=0 - akt łaski).
Analiza równania groźby.
K=W*U
A.
W=0 – warunek kary nie spełniony
Równanie groźby przybierze wówczas postać:
K=W*U=0*U=0 – zakaz karanie jeśli warunek kary nie zostanie spełniony.
Zauważmy, że nadawca nie ma tu nic do gadania. Może sobie ustawiać swoją zmienną długo i namiętnie na U=1 (karać) ... a i tak ma zakaz karania z powodu nie spełnienia warunku kary.
B.
W=1 – warunek kary spełniony
Równanie groźby przybiera postać:
K=W*U=1*U=U
Wszystko w rękach nadawcy który może zrobić co mu się podoba wedle wolnej woli:
U=1 – karać
U=0 – nie karać
Przykład:
Jeśli ubrudzisz spodnie dostaniesz lanie
B~>L
Ubrudziłeś spodnie (W=1), nie dostaniesz lania ... bo samochód cię ochlapał, bo dziś mam dobry humor, bo cię kocham itp. (U=0 - dowolne uzasadnienie niezależne)
K=W*U=1*0=0 - nie zostałem ukarany, bo nadawca zastosował akt łaski
Zauważmy, że nadawca może robić co mu się podoba z małym wyjątkiem, nie może darować kary z uzasadnieniem zależnym identycznym jak warunek kary.
Jeśli ubrudzisz spodnie dostaniesz lanie
B~>L
Ubrudziłeś spodnie (W=1), nie dostajesz lania, bo ubrudziłeś spodnie (U=W=1).
Równanie groźby:
K=W*U=1*1=1 – kara musi być wykonana, zakaz darowania kary z uzasadnieniem zależnym
Nikt nie może robić z człowieka idioty, przede wszystkim matematyka.
Koniec 2010-05-03
|
|
Powrót do góry |
|
|
|
|
Nie możesz pisać nowych tematów Nie możesz odpowiadać w tematach Nie możesz zmieniać swoich postów Nie możesz usuwać swoich postów Nie możesz głosować w ankietach
|
fora.pl - załóż własne forum dyskusyjne za darmo
Powered by phpBB © 2001, 2005 phpBB Group
|