|
ŚFiNiA ŚFiNiA - Światopoglądowe, Filozoficzne, Naukowe i Artystyczne forum - bez cenzury, regulamin promuje racjonalną i rzeczową dyskusję i ułatwia ucinanie demagogii. Forum założone przez Wuja Zbója.
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 35368
Przeczytał: 20 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Wto 15:52, 18 Wrz 2012 Temat postu: Kompendium algebry Kubusia |
|
|
4.1 Operatory OR i AND w pigułce
Definicja ogólna operatorów OR i AND w zbiorach:
W operatorach OR i AND zbiory p i q mają część wspólną, lecz żaden z nich nie zawiera się w drugim.
Definicja operatora logicznego:
Operator logiczny to odpowiedź układu na wszystkie możliwe przeczenia p i q
Prawo Sowy:
W świecie totalnie zdeterminowanym, gdzie znamy z góry wartości logiczne p i q dowolny operator logiczny ulega redukcji do operatora AND.
Wynika to bezpośrednio z definicji operatora logicznego.
Fundament algebry Kubusia:
Definicje operatorów logicznych AND, OR, =>, ~>, <=> zbudowane są dla świata totalnie niezdeterminowanego, gdzie nie znamy z góry wartości logicznych p i q.
Wszelkie prawa algebry Kubusia obowiązują dla świata niezdeterminowanego. W przypadku determinacji poprzednika lub następnika najbardziej właściwą metodą analizy matematycznej jest analiza wszystkich możliwych przeczeń p i q zgodnie z definicją operatora logicznego.
Zera i jedynki w algebrze Kubusia oznaczają:
1 - zbiór niepusty (zbiór istnieje, sytuacja możliwa), zdanie prawdziwe
0 - zbiór pusty (zbiór nie istnieje, sytuacja niemożliwa), zdanie fałszywe
Zdanie w sensie matematycznym, to zdanie któremu da się przypisać prawdę lub fałsz.
Fundamentem operatorów OR i AND są definicje spójników logicznych „i”(*) oraz „lub”(+):
[b]Definicja spójnika „i” (*) - koniunkcji.
Iloczyn logiczny (spójnik „i”(*) ) n-zmiennych binarnych jest równy 1 wtedy i tylko wtedy gdy wszystkie zmienne są równe 1
Y = (A1*A2*...An)=1 <=> A1=1 i A2=1 i ...An=1
Definicja spójnika „i”(*) w logice dodatniej (bo Y):
Y=p*q =1
Y=1 <=> p=1 i q=1
Zbiory p i q mają część wspólną:
Y=p*q
i żaden z nich nie zawiera się w drugim.
Dla dwóch zmiennych p i q mamy:
Y=p*q
Co matematycznie oznacza:
Y=1 <=> p=1 i q=1
Stąd tabela zero-jedynkowa spójnika „i”(*):
gdzie:
* - spójnik „i” o definicji wyłącznie jak wyżej
Definicja spójnika „lub”(+) - alternatywy
Suma logiczna (spójnik „lub”(+) ) n-zmiennych binarnych jest równa 1 wtedy i tylko wtedy gdy którakolwiek zmienna jest równa 1
Y = (A1+A2+...An)=1 <=> A1=1 lub A2=1 lub ... An=1
Definicja spójnika „lub”(+) w logice dodatniej (bo Y):
Y=p+q
Y = p*q + p*~q + ~p*q
Zbiory p i q mają część wspólną:
Y=p*q
i żaden z nich nie zawiera się w drugim.
Dla dwóch zmiennych p i q mamy:
Y=p+q
Co matematycznie oznacza:
Y=1 <=> p=1 lub q=1
Stąd tabela zero-jedynkowa spójnika „lub”(+):
Kod: |
p q Y=p+q
1 1 =1
1 0 =1
0 1 =1
|
gdzie:
+ - spójnik „lub” o definicji wyłącznie jak wyżej
Prawo algebry Kubusia:
Jeśli p=0 to ~p=1
Stąd mamy tabelę symboliczną spójnika „lub”(+):
Kod: |
p q Y=p+q
p* q =Y
p*~q =Y
~p* q =Y
|
W powyższej tabeli wszystkie zmienne sprowadzone są do jedynek.
Stąd na mocy definicji spójnika „i”(*) wyżej, mamy równoważną definicję spójnika „lub”(+):
Y = p*q + p*~q + ~p*q
co matematycznie oznacza:
Y=1 <=> (p=1 i q=1) lub (p=1 i ~q=1) lub (~p=1 i q=1)
Wszystkie zbiory istnieją i mają części wspólne opisane powyższym równaniem.
Wystarczy że którykolwiek człon po prawej stronie zostanie ustawiony na 1, i już funkcja logiczna Y przyjmie wartość 1.
Definicja operatora OR
Operator OR to złożenie spójnika „lub”(+) w logice dodatniej (bo Y) ze spójnikiem „i”(*) w logice ujemnej (bo ~Y)
Y = p+q = p*q + p*~q +~p*q
~Y=~p*~q
Definicja operatora OR w zbiorach.
Definicja operatora OR w układzie równań logicznych:
Y = p+q = p*q + p*~q +~p*q
~Y=~p*~q
Zbiory p i q mają część wspólną:
Y=p*q
i żaden z nich nie zawiera się w drugim.
Symboliczna definicja operatora OR:
Kod: |
Kiedy wystąpi Y?
(Y - dotrzymam słowa)
Funkcja w logice dodatniej bo Y
W: Y=p+q
W: Y=p*q+p*~q+~p*q
A: p* q= Y
B: p*~q= Y
C: ~p* q= Y
Kiedy wystąpi ~Y?
(~Y - skłamię)
Przejście do logiki ujemnej poprzez negację zmiennych i wymianę spójników
Funkcja w logice ujemnej bo ~Y
U: ~Y=~p*~q
D: ~p*~q=~Y
1 2 3
|
gdzie:
„+” - spójnik logiczny „lub”(+) w logice dodatniej (bo Y) o definicji wyłącznie w obszarze ABC123
„*” - spójnik logiczny „i” w logice ujemnej (bo ~Y) o definicji wyłącznie w linii D123
Przykład przedszkolaka:
W.
Jutro pójdę do kina lub do teatru
Y=K+T
Matematycznie oznacza to:
W.
Dotrzymam słowa (Y=1) wtedy i tylko wtedy gdy jutro pójdę do kina (K=1) lub do teatru (T=1)
Y=K+T
Y=1 <=> K=1 lub T=1
… a kiedy skłamię?
Przejście ze zdaniem A do logiki ujemnej poprzez negację zmiennych i wymianę spójników na przeciwne.
~Y=~K*~T
U.
Skłamię (~Y=1) wtedy i tylko wtedy gdy jutro nie pójdę do kina (~K=1) i nie pójdę do teatru (~T=1)
~Y=~K*~T
~Y =1 <=> ~K=1 i ~T=1
Czytamy!
Prawdą jest (=1), że skłamię (~Y) wtedy i tylko wtedy gdy jutro nie pójdę do kina (~K=1) i nie pójdę do teatru (~T=1)
Definicja operatora AND
Operator AND to złożenie spójnika „i”(+) w logice dodatniej (bo Y) ze spójnikiem „lub”(+) w logice ujemnej (bo ~Y)
Y=p*q
~Y = ~p+~q = ~p*~q + ~p*q + p*~q
Definicja operatora AND w zbiorach:
Definicja operatora AND w układzie równań logicznych:
Y=p*q
~Y = ~p+~q = ~p*~q + ~p*q + p*~q
Zbiory p i q mają część wspólną:
Y=p*q
i żaden z nich nie zawiera się w drugim.
Symboliczna definicja operatora AND:
Kod: |
Kiedy wystąpi Y?
(Y - dotrzymam słowa)
Funkcja w logice dodatniej bo Y
W: Y=p*q
A: p* q= Y
Kiedy wystąpi ~Y?
(~Y - skłamię)
Przejście do logiki ujemnej poprzez negację zmiennych i wymianę spójników
Funkcja w logice ujemnej bo ~Y
U:~Y=~p+~q
U:~Y=~p*~q+~p*q+p*~q
B: ~p*~q=~Y
C: ~p* q=~Y
D: p*~q=~Y
1 2 3
|
gdzie:
„*” - spójnik logiczny „i” w logice dodatniej (bo Y) o definicji wyłącznie w linii A123
„+” - spójnik logiczny „lub”(+) w logice ujemnej (bo ~Y) o definicji wyłącznie w obszarze BCD123
Przykład przedszkolaka:
W.
Jutro pójdę do kina i do teatru
Y=K*T
Matematycznie oznacza to:
W.
Dotrzymam słowa (Y=1) wtedy i tylko wtedy gdy jutro pójdę do kina (K=1) i do teatru (T=1)
Y=K*T
Y=1 <=> K=1 i T=1
… a kiedy skłamię?
Przejście ze zdaniem A do logiki ujemnej poprzez negację zmiennych i wymianę spójników na przeciwne.
~Y=~K+~T
U.
Skłamię (~Y=1) wtedy i tylko wtedy gdy jutro nie pójdę do kina (~K=1) lub nie pójdę do teatru (~T=1)
~Y=~K+~T
~Y =1 <=> ~K=1 lub ~T=1
Czytamy!
Prawdą jest (=1), że skłamię (~Y) wtedy i tylko wtedy gdy jutro nie pójdę do kina (~K=1) lub nie pójdę do teatru (~T=1)
|
|
Powrót do góry |
|
|
|
|
|
|
Nie możesz pisać nowych tematów Nie możesz odpowiadać w tematach Nie możesz zmieniać swoich postów Nie możesz usuwać swoich postów Nie możesz głosować w ankietach
|
fora.pl - załóż własne forum dyskusyjne za darmo
Powered by phpBB © 2001, 2005 phpBB Group
|