|
ŚFiNiA ŚFiNiA - Światopoglądowe, Filozoficzne, Naukowe i Artystyczne forum - bez cenzury, regulamin promuje racjonalną i rzeczową dyskusję i ułatwia ucinanie demagogii. Forum założone przez Wuja Zbója.
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 35985
Przeczytał: 14 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Pią 8:42, 08 Paź 2021 Temat postu: Jak zacząć dyskuję na matematyce.pl? |
|
|
Może takie wejście będzie dobre?
[link widoczny dla zalogowanych]
edutomek napisał: |
Bo dla mnie implikacja jest równoważna z wnioskowaniem (takie synonimy).
Kiedy przeczytałem o tych tabelkach prawdy (skądinąd nienawidzę ich; ...
|
Tabelki zero-jedynkowe są bardzo dobre pod warunkiem fundamentalnie innego ich rozumienia.
Przykład:
Zdefiniujmy sobie zero-jedynkowe dwa znaczki inaczej niż to jest we współczesnej matematyce (to nam wolno) i zobaczmy jak pięknie pasują do otaczającej nas rzeczywistości.
1.
Definiujemy zero-jedynkowo znaczek warunku wystarczającego [latex] \Rightarrow [/latex]
[latex]p \Rightarrow q = \neg p+q[/latex]
Gdzie:
[latex] \Rightarrow[/latex] = warunek wystarczający, zajście [latex]p[/latex] jest wystarczające [latex]\Rightarrow[/latex] dla zajścia [latex]q[/latex]
2.
Definiujemy zero-jedynkowo znaczek warunku koniecznego [latex]\rightarrow [/latex]
[latex]p \rightarrow q = p+ \neg q[/latex]
Gdzie:
[latex] \rightarrow [/latex] = warunek konieczny, zajście [latex]p[/latex] jest konieczne [latex]\rightarrow [/latex] dla zajścia [latex]q[/latex]
Stąd w rachunku zero-jedynkowym łatwo wyprowadzamy matematyczny związek między warunkiem wystarczającym [latex]\Rightarrow [/latex] i koniecznym [latex] \rightarrow [/latex] z zamianą poprzednika [latex]p[/latex] z następnikiem [latex]q[/latex]
Prawo Rachunku zero-jedynkowego:
[latex]p \Rightarrow q = q \rightarrow p[/latex]
Powyższe prawo można też udowodnić bez tabel zero-jedynkowych korzystając z definicji warunku wystarczającego [latex]\Rightarrow [/latex] i koniecznego [latex] \rightarrow [/latex]:
[latex]p \Rightarrow q = \neg p + q = q \rightarrow p[/latex]
Na mocy definicji znaczków [latex] \Rightarrow i \rightarrow[/latex]
cnd
Teraz zobaczmy jak wyprowadzony związek między warunkiem wystarczającym [latex] \Rightarrow[/latex] i koniecznym [latex]\rightarrow [/latex] absolutnie genialnie pasuje do otaczającej nas rzeczywistości.
Wypowiedzmy zdanie ze spełnionym warunkiem wystarczającym [latex]\Rightarrow [/latex]:
[latex]A1[/latex].
Jeśli jutro będzie padało [latex](P)[/latex] to na 100% [latex] \Rightarrow [/latex] będzie pochmurno [latex](CH)[/latex]
[latex]P \Rightarrow CH =1[/latex]
Padanie jest (=1) warunkiem wystarczającym [latex]\Rightarrow [/latex] dla istnienia chmur, bo zawsze gdy pada, są chmury
Skorzystajmy z wyprowadzonego wyżej prawa rachunku zero-jedynkowego.
[latex]A1: P \Rightarrow CH = A3: CH \rightarrow P[/latex]
Na mocy prawa rachunku zero-jedynkowego prawdziwe zdanie [latex]A1[/latex] (co udowodniliśmy) wymusza prawdziwe zdanie [latex]A3[/latex] (albo odwrotnie).
Wypowiedzmy prawdziwe zdanie [latex]A3[/latex]:
[latex]A3[/latex].
Jeśli jutro będzie pochmurno [latex](CH)[/latex] to może [latex]\rightarrow [/latex] padać [latex](P)[/latex]
[latex]CH \rightarrow P =1[/latex]
Chmury są (=1) warunkiem koniecznym [latex]\rightarrow [/latex] dla padania, bo padać może wyłącznie z chmury
cnd
Prawda, że proste?
Dodano po 15 godzinach 14 minutach 30 sekundach:
UWAGA:
W nawiązaniu do mojego postu wyżej podaję rozpiskę warunku wystarczającego [latex]\Rightarrow[/latex] i koniecznego [latex] \rightarrow [/latex] na tabele zero jedynkowe.
1.
Definicja warunku wystarczającego [latex]\Rightarrow [/latex]:
[latex]p \Rightarrow q = \neg p+q[/latex]
Definicja warunku wystarczającego [latex] \Rightarrow [/latex] w tabeli zero-jedynkowej wygląda tak:
[latex]\begin{array}{ccc}
p&q&p \Rightarrow q\\
1&1&1 \\
1&0&0\\
0&0&1\\
0&1&1\\
\end{array}[/latex]
2.
Definicja warunku koniecznego [latex] \rightarrow [/latex]:
[latex]p \rightarrow q = p+ \neg q[/latex]
Definicja warunku koniecznego [latex]\rightarrow[/latex] w tabeli zero-jedynkowej wygląda tak:
[latex]\begin{array}{ccc}
p&q&p \rightarrow q\\
1&1&1 \\
1&0&1\\
0&0&1\\
0&1&0\\
\end{array}[/latex]
Prawo rachunku zero-jedynkowego zapisane w moim poście wyżej:
[latex]p \Rightarrow q = q \rightarrow p[/latex]
Mam nadzieję, że po tej podpowiedzi każdy, kto zna rachunek zero-jedynkowy bez problemu udowodni powyższe prawo.
Definicja znaczka różne na mocy definicji ##:
Dwie funkcje logiczne (na przykład [latex]p \Rightarrow q[/latex] i [latex] p \rightarrow q[/latex]) są różne na mocy definicji ## wtedy i tylko wtedy gdy nie są tożsame i żadna z nich nie jest zaprzeczeniem drugiej
Oczywistym jest, że na mocy definicji zachodzi:
[latex]p \Rightarrow q = \neg p+q[/latex] ## [latex]p \rightarrow q = p+ \neg q[/latex]
Gdzie:
## - różne na mocy definicji
Ławo sprawdzić, że definicja znaczka różne na mocy definicji ## jest tu spełniona.
Innymi słowy:
Warunek wystarczający [latex]\Rightarrow [/latex] to fundamentalnie co innego niż warunek konieczny [latex]\rightarrow [/latex]
Ostatnio zmieniony przez rafal3006 dnia Pią 14:05, 08 Paź 2021, w całości zmieniany 2 razy
|
|
Powrót do góry |
|
|
|
|
|
|
Nie możesz pisać nowych tematów Nie możesz odpowiadać w tematach Nie możesz zmieniać swoich postów Nie możesz usuwać swoich postów Nie możesz głosować w ankietach
|
fora.pl - załóż własne forum dyskusyjne za darmo
Powered by phpBB © 2001, 2005 phpBB Group
|