|
ŚFiNiA ŚFiNiA - Światopoglądowe, Filozoficzne, Naukowe i Artystyczne forum - bez cenzury, regulamin promuje racjonalną i rzeczową dyskusję i ułatwia ucinanie demagogii. Forum założone przez Wuja Zbója.
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 35368
Przeczytał: 20 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Śro 5:44, 09 Maj 2012 Temat postu: Logika naszego Wszechświata Beta 1.0 + archiwum |
|
|
Ostateczna wersja podrącznika:
BIBLIA: Algebra Kubusia - logika naszego Wszechświata
Ta wersja jest wersją Beta!
Archiwum ciekawostek, czyli wykasowanych wersji pośrednich algebry Kubusia - od tego postu:
http://www.sfinia.fora.pl/metodologia,12/logika-naszego-wszechswiata-beta-1-0-archiwum,6261.html#176303
… wszystko co chcecie, żeby ludzie wam czynili, wy też im podobnie czyńcie …
Ewangelia Mateusza 7:12
Przyjaciele Kubusia to wszyscy interlokutorzy biorący udział w 6 letniej dyskusji.
Kim jest Kubuś?
Kubuś to wirtualny Internetowy Miś, teleportowany do ziemskiego Internetu przez zaprzyjaźnioną cywilizację z innego Wszechświata.
Podręcznik w oryginale:
BIBLIA: Algebra Kubusia - logika naszego Wszechświata
Szczególne podziękowania dla:
www.sfinia.fora.pl
Wuja Zbója - znakomitego nauczyciela małego Kubusia, dzięki któremu Kubuś nauczył się poprawnie patrzeć na algebrę Boole’a od strony matematycznej.
Volratha - za decydującą o wszystkim dyskusję
Macajna - za ciekawą dyskusję podczas której jako jedyny Ziemianin podał poprawną, matematyczną definicję warunku wystarczającego.
[link widoczny dla zalogowanych]
Fizyka, Windziarza i Sogorsa - za długą i ciekawą dyskusję
Quebaba - za fantastyczną, finałową dyskusję
Wstęp
Każdy człowiek, od 5-cio latka po profesora, doskonale zna algebrę Kubusia i posługuje się nią na co dzień w naturalnym języku mówionym.
Algebra Kubusia obowiązuje w całym naszym Wszechświecie, zarówno martwym, jak i żywym, dlatego to jest matematyka naszego Wszechświata.
Nie ma żadnych wyjątków, algebra Kubusia opisuje naturalny język mówiony człowieka i jego logikę, działa doskonale także w obszarze matematyki.
Definicja algebry Kubusia:
Algebra Kubusia = Algebra zbiorów => Definicje spójników logicznych => Definicje operatorów logicznych => Algebra bramek logicznych
Definicje spójników logicznych => Algebra naturalnego języka mówionego => Logika człowieka
Fundamentem algebry Kubusia jest pełna, zero-jedynkowa lista operatorów logicznych zapisana w formie równań algebry Kubusia (Boole’a!). Równania te wyprowadzone zostały z aksjomatycznych, zero-jedynkowych definicji operatorów logicznych, oraz niezależnie z nowej teorii zbiorów. Nowa teoria zbiorów jest w 100% zgodna z aksjomatycznymi, zero-jedynkowymi definicjami operatorów logicznych. Nowa teoria zbiorów to fundamentalnie inne diagramy graficzne niż obowiązujące diagramy Venna.
Algebra Kubusia jest zgodna z teorią i praktyką bramek logicznych, jest więc weryfikowalna doświadczalnie.
Spis treści:
Część I
Algebra Kubusia - logika naszego Wszechświata
1.0 Notacja
2.0 Algebra Kubusia w pigułce
2.1 Spójniki „i”(*) i „lub”(+)
2.2 Operator OR
2.3 Operator AND
2.4 Warunki wystarczający => i konieczny ~>
2.5 Operator implikacji prostej
2.6 Operator implikacji odwrotnej
2.7 Operator równoważności
2.8 Zdanie prawdziwe w sensie matematycznym
2.9 Równoważność w bramkach logicznych
3.0 Aksjomatyka algebry Kubusia
3.1 Podstawowe definicje algebry Kubusia
4.0 Nowa teoria zbiorów
4.1 Podstawowe działania na zbiorach
4.2 Nowa teoria zbiorów w operatorach logicznych
5.0 Operatory OR i AND
5.1 Spójniki „i”(*) i „lub”(+)
5.2 Operator OR w zbiorach
5.3 Operator AND w zbiorach
5.4 Minimalizacja funkcji logicznych
5.5 Równania logiczne dla operatora OR
5.5.1 Operator OR w bramkach logicznych
5.6 Równania logiczne dla operatora AND
5.6.1 Operator AND w bramkach logicznych
5.7 Osiem równań opisujących operator OR
5.8 Osiem równań opisujących operator AND
5.9 Logika zero
5.10 Właściwości operatorów OR i AND
6.0 Matematyczna historia powstania naszego Wszechświata
6.1 Warunki wystarczający i konieczny
6.2 Równoważność
6.3 Implikacja prosta
6.4 Implikacja odwrotna
6.5 Operator chaosu
6.6 Operator śmierci
7.0 Operatory implikacji i równoważności
7.1 Implikacja prosta w zbiorach
7.1.1 Implikacja prosta w bramkach logicznych
7.2 Implikacja odwrotna w zbiorach
7.2.1 Implikacja odwrotna w bramkach logicznych
7.3 Właściwości operatorów implikacji
7.4 Równoważność w zbiorach
7.4.1 Wirtualny warunek konieczny [~>]
7.4.2 Równoważność w bramkach logicznych
7.5 Najważniejsze definicje równoważności i implikacji
7.5.1 Definicje w warunkach wystarczających i koniecznych
7.5.2 Definicje w gwarancjach matematycznych
7.5.3 Definicje wykorzystujące przemienność argumentów
7.5.4 Definicje wykorzystujące ilość zbiorów
8.0 Dowodzenie twierdzeń matematycznych
8.1 Schemat dowodzenia twierdzeń matematycznych
8.2 Dowodzenie warunku wystarczającego
8.3 Dowodzenie warunku koniecznego
9.0 Pozostałe operatory algebry Kubusia
9.1 Abstrakcyjny model operatora logicznego
9.2 Operatory logiczne ~~> i N(~~>)
9.3 Operatory transmisji P i Q
9.4 Operatory negacji NP i NQ
10.0 Algebra zbiorów rozłącznych
10.1 Operator XOR
10.2 Zbiory minimalne w implikacji i równoważności
11.0 Katastrofalne błędy w KRZiP
11.1 Punkt odniesienia, kluczowe pojęcie w logice matematycznej
11.2 Najważniejszy błąd w KRZiP
11.3 Tragiczna logika Ziemian
11.4 Gówno zwane KRZiP
Część II
Algebra Kubusia w służbie lingwistyki
12.0 Złożone zdania naturalnego języka mówionego
12.1 Zdanie złożone ze spójnikiem „lub”(+)
12.2 Złożona implikacja prosta
12.3 Złożona implikacja odwrotna
12.4 Zdania złożone typu p+(q*r)
12.5 Zdania złożone typu p*(q+r)
13.0 Obietnice i groźby
13.1 Obietnica
13.2 Groźba
13.3 Obietnica w równaniach logicznych
13.4 Groźba w równaniach logicznych
13.5 Analiza złożonej obietnicy
13.6 Analiza złożonej groźby
13.7 Obietnice i groźby w ujęciu filozoficznym
13.8 Rodzaje obietnic
1.0 Notacja
~ - symbol przeczenia NIE
1.0.1
Prawo podwójnego przeczenia:
p=~(~p)
1.0.2
Zera i jedynki w dowolnym operatorze logicznym oznaczają:
1 - zbiór niepusty (zbiór istnieje, sytuacja możliwa), zdanie prawdziwe
0 - zbiór pusty (zbiór nie istnieje, sytuacja niemożliwa), zdanie fałszywe
Zdanie w sensie matematycznym, to zdanie któremu da się przypisać prawdę lub fałsz.
Wyjaśnienie w do powyższej definicji w pkt. 2.8
1.0.3
# - różne
Prawda # Fałsz
1 # 0
## - różne na mocy definicji
1.0.4
Prawa de’Morgana:
Prawa de’Morgana to pełne definicje operatorów OR i AND zapisane w równaniach algebry Boole’a.
p+q = ~(~p*~q) ## p*q = ~(~p+~q)
Definicja operatora OR ## Definicja operatora AND
1.0.5
Prawa Kubusia:
Prawa Kubusia to pełne definicje operatorów implikacji prostej i odwrotnej zapisane w równaniach algebry Boole’a.
p=>q = ~p~>~q ## p~>q = ~p=>~q
Definicja operatora implikacji prostej ## Definicja operatora implikacji odwrotnej
Po obu stronach znaku ## mamy do czynienia z izolowanymi układami logicznymi pomiędzy którymi nie zachodzą żadne tożsamości matematyczne.
1.0.6
= - znak tożsamości
Tożsamość zbiorów:
A = B - identyczne elementy w zbiorach A i B
Tożsamość bramek logicznych:
Y = p*q = ~(~p+~q) - identyczne bramki logiczne
W dowolnym układzie logicznym w miejsce bramki:
Y=p*q
można wstawić bramkę:
Y = ~(~p+~q)
Takie bramki z punktu widzenia logiki są nierozróżnialne, czyli generują identyczne tabele zero-jedynkowe (funkcje logiczne).
1.0.7
:= - symbol redukcji do funkcji minimalnej
Dla zbiorów rozłącznych p i q zachodzi:
p*~q := p
1.0.8
Spójniki logiczne w algebrze Kubusia
W całej matematyce mamy zaledwie sześć spójników logicznych.
Operatory OR i AND:
* - spójnik „i” w mowie potocznej
+ - spójnik „lub” w mowie potocznej
Operatory implikacji i równoważności:
=> - warunek wystarczający, spójnik „musi” w całym obszarze matematyki
~> - warunek konieczny, spójnik „może” w implikacji
[~>] - wirtualny warunek konieczny w równoważności, nie jest to spójnik „może”
~~> - naturalny spójnik „może” wystarczy pokazać jeden przypadek prawdziwy
<=> - wtedy i tylko wtedy
1.0.9
Kolejność wykonywania działań:
nawiasy, „i”(*), „lub”(+), =>, ~>, ~~>
W spójnikach =>, ~>, ~~> kolejność nie ma znaczenia bo są to operatory wyłącznie dwuargumentowe, czyli po lewej i prawej stronie tego znaku może być wyłącznie funkcja logiczna ze spójnikami „i”(*) oraz „lub”(+)
1.0.10
Zdanie:
Zdanie w algebrze Kubusia to poprawne lingwistycznie zdanie sensowne któremu można przypisać wartość fałsz lub prawda, zrozumiałe dla człowieka.
Zdanie warunkowe:
Jeśli p to q
gdzie:
p - poprzednik
q - następnik
W algebrze Kubusia w zdaniu „Jeśli p to q” poprzednik musi być powiązany z następnikiem warunkiem wystarczającym => lub koniecznym ~> albo naturalnym spójnikiem „może” ~~>, wystarczy jedna prawda. Inaczej zdanie jest fałszywe.
1.0.11
Symboliczna definicja operatora logicznego:
Operator logiczny to odpowiedź układu na wszystkie możliwe przeczenia p i q
1.0.12
Prawo Sowy:
W świecie totalnie zdeterminowanym, gdzie znamy z góry wartości logiczne p i q, dowolny operator logiczny ulega redukcji do operatora AND.
Prawo Sowy wynika bezpośrednio z symbolicznej definicji operatora logicznego.
Definicje operatorów logicznych zapisane są dla świata totalnie niezdeterminowanego, gdzie nie znamy z góry wartości logicznej ani p, ani też q.
Wynika to bezpośrednio definicji operatora i prawa Sowy.
1.0.13
Definicja algebry Kubusia:
Algebra Kubusia to algebra równań logicznych zgodna z techniczną algebrą Boole’a o definicji operatora jak wyżej.
1.0.14
Zmienna binarna:
Zmienna binarna (wejście cyfrowe w układzie logicznym) to zmienna mogąca przyjmować w osi czasu wyłącznie dwie wartości 0 albo 1.
Przykłady zmiennych binarnych:
p, q
1.0.15
Funkcja logiczna:
Funkcja logiczna (Y - wyjście cyfrowe w układzie logicznym) to funkcja n-zmiennych binarnych połączonych spójnikami „i”(*) albo „lub”(+) mogąca w osi czasu przyjmować wyłącznie 0 albo 1 w zależności od aktualnej wartości zmiennych binarnych.
Y - funkcja logiczna
Przykład:
Y=p*q+p*~q+~p*q
1.0.16
Prawo przejścia do logiki przeciwnej:
Negujemy zmienne i wymieniamy spójniki na przeciwne
Przykład 1.
Y=p+q
~Y=~p*~q
Przykład 2.
(p+q) => (r*s)
(~p*~q)~>(~r+~s)
1.0.17
Fundament algebry Kubusia:
p+~p=1
p*~p=0
2.0 Algebra Kubusia w pigułce
2.0.1
Cała algebra Kubusia (najważniejsze definicje) to zaledwie kilka stron tekstu, zawarte w tym punkcie. Zaczynamy od trzęsienia Ziemi, czyli od obalenia KRZiP, a później napięcie będzie rosło. Algebra Kubusia ma identyczne tabele zero-jedynkowe operatorów logicznych jak w KRZ, identycznie działa rachunek zero-jedynkowy, fundament KRZ.
KRZ - Klasyczny Rachunek Zdań, rozumiany jako rachunek zero-jedynkowy, bez żadnej interpretacji zer i jedynek jest w matematyce poprawny i identyczny jak w algebrze Kubusia.
Dokładnie z tej definicji korzystają inżynierowie, nie znając znaczenia zer i jedynek jak:
1 = prawda
0 = fałsz
2.0.2
Znaczenie zer i jedynek jak wyżej nadaje w matematyce:
KRZiP - klasyczny rachunek zdań i predykatów
Interpretacja zer i jedynek w KRZiP jest błędna, czego banalny dowód będzie w tym punkcie.
Pewne jest jedno:
Gdyby ludzie posługiwali się badziewiem zwanym KRZiP, będącym w totalnej sprzeczności z naturalną logiką człowieka, to o komputerach moglibyśmy tylko pomarzyć.
Żaden programista nie posługuje się KRZiP!
Wszyscy posługują się naturalną logika człowieka, algebrą Kubusia, znając ją doskonale od momentu narodzin, aż do śmierci.
2.0.3
Błędna interpretacja zer i jedynek dotyczy każdego operatora logicznego rodem z KRZiP, wszystko trzeba wywrócić do góry nogami, aby świat był normalny, tzn. zgodny z naturalną logiką człowieka, algebrą Kubusia.
Algebra Kubusia ma zero punktów wspólnych z KRZiP. Dosłownie każde pojęcie i każda definicja jest wywrócona do góry nogami, totalnie nic tu nie pasuje. Wynika z tego, że jakiekolwiek próby opisu algebry Kubusia przy pomocy środków dostępnych w KRZiP skazane są na zagładę. Warunkiem koniecznym zrozumienia algebry Kubusia jest wyzerowanie w mózgu wszelkiej wiedzy rodem z KRZiP i zaczęcie od zupełnego zera.
2.1 Spójniki „i”(*) i „lub”(+)
2.1.1
Definicja spójnika „i” (*) - koniunkcji.
Iloczyn logiczny (spójnik „i”(*) ) n-zmiennych binarnych jest równy 1 wtedy i tylko wtedy gdy wszystkie zmienne są równe 1
Y = (A1*A2*...An)=1 <=> A1=1 i A2=1 i ...An=1
Analogia w celu łatwego zapamiętania:
1*1*1…*1 =1
1*0*1…*1 =0
Zauważmy że mamy tu 100% analogię do mnożenia znanego ze szkoły podstawowej, stąd nazwa „iloczyn logiczny”. Oczywiście znaczek „*” nie ma nic wspólnego z mnożeniem, to po prostu symbol spójnika „i” z naturalnego języka mówionego.
Dla dwóch zmiennych p i q mamy:
Y=p*q
Co matematycznie oznacza:
Y=1 <=> p=1 i q=1
Stąd tabela zero-jedynkowa spójnika „i”(*):
gdzie:
* - spójnik „i” o definicji wyłącznie jak wyżej
Definicja spójnika „i”(*) w zbiorach w logice dodatniej (bo Y):
A.
Y=p*q
Y=1 <=> p=1 i q=1
2.1.2
Definicja spójnika „lub”(+) - alternatywy
Suma logiczna (spójnik „lub”(+) ) n-zmiennych binarnych jest równa 1 wtedy i tylko wtedy gdy którakolwiek zmienna jest równa 1
Y = (A1+A2+...An)=1 <=> A1=1 lub A2=1 lub ... An=1
Analogia w celu łatwego zapamiętania:
0+0+0….+0 =0
1+1+0….+0 =1
Mamy tu „drobną” różnicę w stosunku do dodawania znanego ze szkoły podstawowej. Oczywiście znaczek „+” nie ma nic wspólnego z dodawaniem, to spójnik „lub”(+) z naturalnego języka mówionego.
Dla dwóch zmiennych p i q mamy:
Y=p+q
Co matematycznie oznacza:
Y=1 <=> p=1 lub q=1
Stąd tabela zero-jedynkowa spójnika „lub”(+):
Kod: |
p q Y=p+q
1 1 =1
1 0 =1
0 1 =1
|
gdzie:
+ - spójnik „lub” o definicji wyłącznie jak wyżej
Prawo algebry Boole’a:
Jeśli p=0 to ~p=1
Stąd mamy tabelę symboliczną spójnika „lub”(+):
Kod: |
p q Y=p+q
p* q =Y
p*~q =Y
~p* q =Y
|
W powyższej tabeli wszystkie zmienne sprowadzone są do jedynek.
Stąd na mocy definicji spójnika „i”(*) wyżej, mamy równoważną definicję spójnika „lub”(+):
Y = p*q+p*~q+~p*q
co matematycznie oznacza:
Y=1 <=> (p=1 i q=1) lub (p=1 i ~q=1) lub (~p=1 i q=1)
Definicja spójnika „lub”(+) w zbiorach w logice dodatniej (bo Y):
A.
Y=p+q
Y=1 <=> p=1 lub q=1
Definicja równoważna na podstawie powyższego diagramu:
A1.
Y=p*q + p*~q + ~p*q
Y=1 <=> (p=1 i q=1) lub (p=1 i ~q=1) lub (~p=1 i q=1)
Wszystkie zbiory istnieją (=1) i mają części wspólne.
Zbiory p i q nie są rozłączne, żaden ze zbiorów nie zawiera się w drugim.
stąd:
Y=p+q = p*q + p*~q + ~p*q
2.2 Operator OR
2.2.1
Symboliczna definicja operatora OR:
Kod: |
Dotrzymam słowa Y, logika dodatnia bo Y
W: Y=p+q = p*q+p*~q+~p*q
A: p* q= Y
B: p*~q= Y
C: ~p* q= Y
.. a kiedy skłamię?
Przejście do logiki ujemnej poprzez
negacje zmiennych i wymianę spójników
Skłamię ~Y, logika ujemna bo ~Y
~Y=~p*~q
D: ~p*~q=~Y
|
Operator OR to złożenie spójnika „lub”(+) w logice dodatniej (bo Y) ze spójnikiem „i”(*) w logice ujemnej (bo ~Y):
Y=p+q = p*q + p*~q + ~p*q
~Y = ~p*~q
Definicja spójnika „lub”(+) w logice dodatniej (bo Y):
Y = p+q = p*q + p*~q + ~p*q
Definicja spójnika „i”(*) w logice ujemnej (bo ~Y):
~Y=~p*~q
Związek logiki dodatniej i ujemnej:
Y=~(~Y) - prawo podwójnego przeczenia
Podstawiając W i D mam prawo de’Morgana:
p+q = ~(~p*~q)
Jak widzimy wyżej operator OR nie jest tworem jednorodnym. Operator OR to złożenie spójnika „lub”(+) w logice dodatniej (bo Y) ze spójnikiem „i”(*) w logice ujemnej (bo ~Y).
2.2.2
Dla kodowania zgodnego ze zdaniem wypowiedzianym W otrzymujemy tabelę zero-jedynkową operatora OR.
W: Y=p+q
stąd:
p=1, ~p=0
q=1, ~q=0
Y=1, ~Y=0
Kod: |
p q Y=p+q
A: 1 1 =1
B: 1 0 =1
C: 0 1 =1
D: 0 0 =0
1 2 3
|
Gdzie:
+ - symbol spójnika „lub”(+) opisujący wyłącznie obszar ABC123 w powyższej tabeli.
Przykład:
Jutro pójdę do kina lub do teatru
Y = K+T
... a kiedy skłamię?
Przejście do logiki ujemnej poprzez negację zmiennych i wymianę spójników
~Y=~K*~T
Skłamię (~Y=1) wtedy i tylko wtedy gdy jutro nie pójdę do kina (~K=1) i nie pójdę do teatru (~T=1)
~Y=1 <=> ~K=1 i ~T=1
2.2.3
Uwaga!
Symbol „+” nie jest operatorem logicznym, bo ten opisany jest przez wszystkie cztery linie powyższej tabeli.
Dowód:
Y=p+q
Jeśli znaczek „+” jest kompletnym operatorem logicznym OR, jak to jest w KRZiP, to zgodnie z prawem de’Morgana negując wszystkie zmienne musimy otrzymać definicję operatora AND.
Sprawdzamy:
~Y=~p+~q
Oczywiście to nie jest definicja operatora AND!
Interpretacja znaczka „+” w KRZiP, jakoby był on kompletnym operatorem OR jest matematycznie błędna.
cnd
2.2.4
Kompletna definicja operatora OR opisująca wszystkie cztery linie to układ równań logicznych:
Y=p+q
~Y = ~p*~q
albo prawo de’Morgana:
Y = p+q = ~(~p*~q)
Dowody!
2.2.5
Zgodnie z prawem de’Morgana negując wszystkie zmienne w operatorze OR musimy otrzymać operator AND.
Prawo podwójnego przeczenia:
p=~(~p)
Definicja operatora OR w równaniach logicznych:
Y=p+q
~Y = ~p*~q
Negujemy wszystkie zmienne:
~Y=~p+~q
Y=p*q
To jest pełna definicja operatora AND.
cnd
Definicja operatora OR wyrażona prawem de’Morgana:
Y = p+q = ~(~p*~q)
Negujemy zmienne wejściowe p i q:
y = ~p+~q = ~(p*q)
Negujemy wyjście y:
2A.
~y = ~(~p+~q) = p*q
Ostatnie równanie to pełna definicja operatora AND wyrażona prawem de’Morgana.
cnd
2.3 Operator AND
2.3.1
Symboliczna definicja operatora AND:
Kod: |
Dotrzymam słowa Y, logika dodatnia bo Y
Y=p*q
A: p* q= Y
.. a kiedy skłamię?
Przejście do logiki ujemnej poprzez
negację zmiennych i wymianę spójników
Skłamię ~Y, logika ujemna bo ~Y
E: ~Y=~p+~q = ~p*~q+~p*q+p*~q
B: ~p*~q=~Y
C. ~p* q=~Y
D: p*~q=~Y
|
Operator AND to złożenie spójnika „i”(*) w logice dodatniej (bo Y) ze spójnikiem „lub”(*) w logice ujemnej (bo ~Y):
Y=p*q
~Y=~p*~q = ~p*~q + ~p*q + p*~q
2.3.2
Związek logiki dodatniej i ujemnej:
Y=~(~Y) - prawo podwójnego przeczenia
Podstawiając A i E mam prawo de’Morgana:
p*q = ~(~p+~q)
Jak widzimy wyżej operator AND nie jest tworem jednorodnym. Operator OR to złożenie spójnika „i”(*) w logice dodatniej (bo Y) ze spójnikiem „lub”(+) w logice ujemnej (bo ~Y).
2.3.3
Dla kodowania zgodnego ze zdaniem wypowiedzianym A otrzymujemy tabelę zero-jedynkową operatora AND.
A: Y=p*q
stąd:
p=1, ~p=0
q=1, ~q=0
Y=1, ~Y=0
Kod: |
p q Y=p*q
A: 1 1 =1
B: 0 0 =0
C: 0 1 =0
D: 1 0 =0
1 2 3
|
Gdzie:
* - symbol spójnika „i”(*) opisujący wyłącznie linię A123 w powyższej tabeli.
Przykład:
Jutro pójdę do kina i do teatru
Y=K*T
... a kiedy skłamię?
Przejście do logiki ujemnej poprzez negację zmiennych i wymianę spójników
~Y=~K+~T
Skłamię (~Y=1) wtedy i tylko wtedy gdy jutro nie pójdę do kina (~K=1) lub nie pójdę do teatru (~T=1)
~Y=1 <=> ~K=1 lub ~T=1
2.3.4
Uwaga!
Symbol „*” nie jest operatorem logicznym, bo ten opisany jest przez wszystkie cztery linie powyższej tabeli.
2.3.5
Dowód:
Y=p*q
Jeśli znaczek „*” jest kompletnym operatorem logicznym AND, jak to jest w KRZiP, to zgodnie z prawem de’Morgana negując wszystkie zmienne musimy otrzymać definicję operatora OR.
Sprawdzamy:
~Y=~p*~q
Oczywiście to nie jest definicja operatora OR!
Interpretacja znaczka „*” w KRZiP, jakoby był on kompletnym operatorem AND jest matematycznie błędna.
cnd
2.3.6
Kompletna definicja operatora AND opisująca wszystkie cztery linie to układ równań logicznych:
Y=p*q
~Y = ~p+~q
albo prawo de’Morgana:
Y = p*q = ~(~p+~q)
Dowody!
Zgodnie z prawem de’Morgana negując wszystkie zmienne w operatorze AND musimy otrzymać operator OR.
Prawo podwójnego przeczenia:
p=~(~p)
Definicja operatora AND:
Y=p*q
~Y = ~p+~q
Negujemy wszystkie zmienne:
~Y=~p*~q
Y=p+q
To jest pełna definicja operatora OR.
cnd
Definicja operatora AND wyrażona prawem de’Morgana:
Y = p*q = ~(~p+~q)
Negujemy zmienne wejściowe p i q:
y = ~p*~q = ~(p+q)
Negujemy wyjście y:
2A.
~y = ~(~p*~q) = p+q
Ostatnie równanie to pełna definicja operatora OR wyrażona prawem de’Morgana.
cnd
2.4 Warunki wystarczający => i konieczny ~>
2.4.1
Całą logikę matematyczną w zakresie implikacji i równoważności można sprowadzić do badania dwóch banalnych warunków wystarczających.
2.4.2
Definicja warunku wystarczającego w logice dodatniej (bo q):
Kod: |
A: p=> q =1
B: p=>~q =0
|
p=>q
Jeśli zajdzie p to na pewno => zajdzie q
Z czego wynika że p musi być wystarczające dla q
Z czego wynika, że zdanie B musi być fałszem
2.4.3
Definicja warunku wystarczającego w logice ujemnej (bo ~q):
Kod: |
A: ~p=>~q =1
B: ~p=> q =0
|
~p=>~q
Jeśli zajdzie ~p to na pewno => zajdzie ~q
Z czego wynika że ~p musi być wystarczające dla ~q
Z czego wynika że zdanie B musi być fałszem
Definicje operatorów logicznych implikacji i równoważności w równaniach logicznych:
2.4.5
Definicja implikacji prostej:
p=>q = ~p~>~q
2.4.6
Definicja implikacji odwrotnej:
p~>q = ~p=>~q
2.4.7
Definicja równoważności:
p<=>q = (p=>q)*(~p=>~q)
2.4.8
Legenda do operatorów implikacji i równoważności:
=> - warunek wystarczający, spójnik „na pewno” między p i q w całym obszarze logiki
~> - warunek konieczny, w implikacji spójnik „może” miedzy p i q (rzucanie monetą)
[~>] - wirtualny warunek konieczny występujący wyłącznie w równoważności.
Nie jest to spójnik „może” między p i q bowiem w równoważności mamy 100% determinizm gdzie nie ma miejsca na „rzucanie monetą”, charakterystycznego w implikacji. W równoważności zarówno po stronie p, jak i ~p mamy rzeczywiste warunki wystarczające =>, co widać w definicji wyżej.
~~> - naturalny spójnik „może”, wystarczy znaleźć jeden przypadek prawdziwy
2.4.9
Definicja warunku koniecznego w całym obszarze logiki:
Warunek konieczny ~> miedzy p i q zachodzi wtedy i tylko wtedy gdy z zanegowanego poprzednika wynika => zanegowany następnik:
p~>q = ~p=>~q
~p~>~q = p=>q
2.5 Operator implikacji prostej
2.5.1
Operatory OR i AND odpowiadają na pytania:
A.
Kiedy dotrzymam słowa?
Y=1
A.
Kiedy skłamię?
~Y=1
2.5.2
Operatory równoważności i implikacji natomiast odpowiadają na pytania:
A.
Co się stanie jeśli zajdzie p?
p=1
B.
Co się stanie jeśli zajdzie ~p?
~p=1
2.5.3
Operatory implikacji i równoważności to zatem fundamentalnie co innego niż operatory OR i AND.
2.5.4
W KRZiP wszystkie operatory to wyłącznie poszukiwanie kiedy zajdzie (Y=1) a kiedy zajdzie (~Y=1). Przy takich definicjach operatory implikacji i równoważności są matematycznie zbędne.
Dowód:
W dzisiejszej logice mamy!
[link widoczny dla zalogowanych]
Prawo eliminacji implikacji:
p=>q = ~p+q
W punkcie 11.2 jest formalne obalenie tego prawa.
To jest oczywiście błąd fatalny, czyniący całą logikę niejednoznaczną, totalnie niezgodną z naturalną logiką człowieka.
cnd
2.5.5
Operatorowa definicja implikacji prostej:
Kod: |
p q p=>q
A: p=> q =1 /warunek wystarczający w logice dodatniej (bo q)
B: p=>~q =0 /o definicji w A i B
… a jeśli zajdzie ~p ?
Prawo Kubusia:
p=>q = ~p~>~q
C:~p~>~q =1 /warunek konieczny w logice ujemnej (bo ~q)
D:~p~~>q =1
|
p=>q
Jeśli zajdzie p to na pewno => zajdzie q
gdzie:
=> - warunek wystarczający, spójnik „na pewno” między p i q o definicji wyłącznie w liniach A i B
~> - warunek konieczny, spójnik „może” między p i q o definicji:
Warunek konieczny ~> między p i q zachodzi wtedy i tylko wtedy gdy z zanegowanego poprzednika wynika => zanegowany następnik:
~p~>~q = p=>q
~~> - naturalny spójnik „może”, wystarczy pokazać jeden przypadek prawdziwy
2.5.6
Jak widzimy zdanie A spełnia definicję implikacji prostej wtedy i tylko wtedy gdy udowodnimy warunek wystarczający (linie A i B) oraz dodatkowo udowodnimy prawdziwość zdań C i D, czyli znajdziemy jeden przypadek spełniający C i jeden przypadek spełniający D.
2.5.7
Definicja zero-jedynkowa implikacji prostej dla kodowania zgodnego z nagłówkiem tabeli:
p=1, ~p=0
q=1, ~q=0
Kod: |
p q p=>q
A: 1 1 =1
B: 1 0 =0
C: 0 0 =1
D: 0 1 =1 |
2.5.8
Przykład:
Jeśli jutro będzie padało to na pewno => będzie pochmurno
A: P=>CH=1
B: P=>~CH=0
... a jeśli nie będzie padało?
Prawo Kubusia:
P=>CH = ~P~>~CH
Jeśli jutro nie będzie padało to może ~> nie być pochmurno
C: ~P~>~CH=1
D: ~P~~>CH=1
W zdaniu D nie zachodzi warunek konieczny bo prawo Kubusia:
D: ~P~>CH = B: P=>~CH =0
Zdanie D jest prawdziwe na mocy naturalnego spójnika „może” ~~>, wystarczy sama możliwość zajścia
2.5.9
Pełna definicja implikacji prostej (opisująca wszystkie cztery linie) w równaniu algebry Kubusia:
p=>q = ~p~>~q
Dowód:
Negujemy zmienne wejściowe p i q i otrzymujemy definicję implikacji odwrotnej:
~p=>~q = p~>q
To jest pełna definicja implikacji odwrotnej.
cnd
2.5.10
Zauważmy że znaczek „=>” nie jest operatorem logicznym, tzn nie opisuje wszystkich czterech linii tabeli zero-jedynkowej.
Dowód:
p=>q
Negujemy zmienne wejściowe p i q i nie otrzymujemy definicji operatora implikacji odwrotnej:
~p=>~q
To jest błąd czysto matematyczny w KRZiP który błędnie myśli, iż znaczek „=>” opisuje wszystkie cztery linie tabeli zero-jedynkowej.
cnd
2.6 Operator implikacji odwrotnej
2.6.1
Operatorowa definicja implikacji odwrotnej:
Kod: |
p q p~>q
A: p~> q =1 /warunek konieczny w logice dodatniej (bo q)
B: p~~>~q =1
… a jeśli zajdzie ~p ?
Prawo Kubusia:
p~>q = ~p=>~q
C:~p=> ~q =1 /warunek wystarczający w logice ujemnej (bo ~q)
D:~p=> q =0 /o definicji w C i D
|
2.6.2
p~>q
Jeśli zajdzie p to może ~> zajść q
Wystarczy pokazać jeden przypadek prawdziwy, plus musi być spełniona definicja warunku koniecznego ~>.
gdzie:
=> - warunek wystarczający, spójnik „na pewno” między p i q o definicji wyłącznie w liniach C i D
~> - warunek konieczny, spójnik „może” między p i q o definicji:
Warunek konieczny ~> między p i q zachodzi wtedy i tylko wtedy gdy z zanegowanego poprzednika wynika => zanegowany następnik:
p~>q = ~p=>~q
~~> - naturalny spójnik „może”, wystarczy pokazać jeden przypadek prawdziwy
2.6.3
Jak widzimy zdanie A spełnia definicję implikacji odwrotnej wtedy i tylko wtedy gdy udowodnimy warunek wystarczający w logice ujemnej (linie C i D) oraz dodatkowo udowodnimy prawdziwość zdań A i B, czyli znajdziemy jeden przypadek spełniający A i jeden przypadek spełniający B.
2.6.4
Definicja zero-jedynkowa implikacji odwrotnej dla kodowania zgodnego z nagłówkiem tabeli:
p=1, ~p=0
q=1, ~q=0
Kod: |
p q p~>q
A: 1 1 =1
B: 1 0 =1
C: 0 0 =1
D: 0 1 =0 |
2.6.5
Przykład:
Jeśli jutro będzie pochmurno to może ~> padać
A: CH~>P=1
B: CH~~>~P=1
... a jeśli jutro nie będzie pochmurno?
Prawo Kubusia:
CH~>P = ~CH=>~P
Jeśli jutro nie będzie pochmurno to na pewno => nie będzie padać
C: ~CH=>~P=1
D: ~CH=>P=0
W zdaniu B nie zachodzi warunek konieczny bo prawo Kubusia:
B: CH~>~P = D: ~CH=>P =0
Zdanie B jest prawdziwe na mocy naturalnego spójnika „może” ~~>, wystarczy sama możliwość zajścia
2.6.6
Pełna definicja implikacji odwrotnej (opisująca wszystkie cztery linie) w równaniu algebry Boole’a:
p~>q = ~p=>~q
Dowód:
Negujemy wszystkie zmienne i otrzymujemy definicję implikacji prostej:
~p~>~q = p=>q
To jest pełna definicja implikacji prostej.
cnd
2.6.7
Zauważmy że znaczek „~>” nie jest operatorem logicznym, tzn nie opisuje wszystkich czterech linii tabeli zero-jedynkowej.
Dowód:
p~>q
Negujemy zmienne wejściowe p i q i nie otrzymujemy definicji operatora implikacji prostej:
~p~>~q
To jest błąd czysto matematyczny w KRZiP który błędnie myśli, iż znaczek „~>” opisuje wszystkie cztery linie tabeli zero-jedynkowej.
cnd
2.7 Operator równoważności
2.7.1
Operatorowa definicja równoważności:
Kod: |
p q p<=>q
A: p=> q =1 /warunek wystarczający w logice dodatniej (bo q)
B: p=>~q =0 /o definicji wyłącznie w A i B
C:~p=>~q =1 /warunek wystarczający w logice ujemnej (bo ~q)
D:~p=> q =0 /o definicji wyłącznie w C i D
|
2.7.2
Definicja operatorowa równoważności:
p<=>q = (p=>q)*(~p=>~q) - na podstawie definicji operatorowej
2.7.3
W równoważności (i tylko tu) obowiązuje prawo kontrapozycji:
~p=>~q = q=>p
2.7.4
Stąd równoważna definicja równoważności:
p<=>q = (p=>q)*(q=>p)
gdzie:
=> - warunek wystarczający, spójnik „na pewno” między p i q
2.7.5
Definicja zero jedynkowa równoważności dla kodowania zgodnego z nagłówkiem tabeli:
p=1, ~p=0
q=1, ~q=0
Kod: |
p q p<=>q
A: 1 1 =1
B: 1 0 =0
C: 0 0 =1
D: 0 1 =0
|
2.7.6
Operator równoważności to złożenie warunku wystarczającego => w logice dodatniej (bo q) o definicji wyłącznie w liniach A i B z warunkiem wystarczającym => w logice ujemnej (bo ~q) o definicji wyłącznie w liniach C i D.
2.7.7
Definicja warunku wystarczającego w logice dodatniej (bo q):
Kod: |
p q p=>q
A: p=> q =1 /warunek wystarczający w logice dodatniej (bo q)
B: p=>~q =0 /o definicji wyłącznie w A i B
|
p=>q
Jeśli zajdzie p to na pewno => zajdzie q
Z czego wynika że p musi być wystarczające dla q
Z czego wynika że zdanie B musi być fałszem
Przykład:
Jeśli trójkąt jest równoboczny to na pewno => ma kąty równe
TR=>KR=1
TR=>~KR=0
2.7.8
Definicja warunku wystarczającego w logice ujemnej (bo ~q):
Kod: |
~p ~q ~p=>~q
C:~p=>~q =1 /warunek wystarczający w logice ujemnej (bo ~q)
D:~p=> q =0 /o definicji wyłącznie w C i D
|
~p=>~q
Jeśli zajdzie ~p to na pewno => zajdzie ~q
Z czego wynika że ~p musi być wystarczające dla ~q
Z czego wynika że zdanie B musi być fałszem
Przykład:
Jeśli trójkąt nie jest równoboczny to na pewno nie ma kątów równych
~TR=>~KR=1
~TR=>KR=0
2.7.9
Jak widzimy, w równoważności nie ma miejsca na spójnik „może”, charakterystyczny dla implikacji (rzucanie monetą). W równoważności zarówno po stronie p jak i ~q mamy 100% determinizm, warunek wystarczający =>.
2.7.10
Wynika z tego fundamentalne twierdzenie:
Nic co jest równoważnością prawdziwą (brak „rzucania monetą”) nie ma prawa być implikacją prawdziwą (jest „rzucanie monetą”) i odwrotnie.
2.7.10
Stąd mamy kolejny fatalny błąd w KRZiP który twierdzi iż równoważność prawdziwa wymusza implikację prawdziwą.
Trzeba być idiotą aby twierdzić iż zdania:
A.
Jeśli jutro będzie padało to na pewno => będzie pochmurno
P=>CH=1
Deszcz jest warunkiem wystarczającym => dla istnienia chmur
i
B.
Jeśli trójkąt jest równoboczny to na pewno => ma kąty równe
TR=>KR=1
Bycie trójkątem równobocznym jest warunkiem wystarczającym => aby kąty były równe
To są identyczne implikacje proste prawdziwe!
W zdaniu A jest matematycznie zakodowane rzucanie monetą po stronie ~P.
Prawo Kubusia:
P=>CH =~P~>~CH
~> - ten znaczek to warunek konieczny, „rzucanie monetą”, spójnik "może" w implikacji
A1.
Jeśli jutro nie będzie padało to może ~> nie być pochmurno
~P~>~CH=1
Brak opadów jest warunkiem koniecznym ~> aby nie było pochmurno
Wniosek:
Zdanie A to implikacja prosta prawdziwa
Natomiast w zdaniu B po stronie ~TR mamy 100% determinizm, kolejny warunek wystarczający!
B1.
Jeśli trójkąt nie jest równoboczny to na pewno => nie ma kątów równych!
~TR=>~KR=1
Bycie trójkątem nierównobocznym jest warunkiem wystarczającym => aby kąty nie były równe
Zdanie B to oczywiście implikacja prosta fałszywa bo nie ma tu "rzucania monetą", fundamentu każdej implikacji!
... a to gówno zwane KRZiP nie widzi między tymi zdaniami żadnej różnicy.
W KRZiP zdania A i B to implikacje proste prawdziwe!
Wniosek:
KRZiP to IDIOTYZM, to totalnie błędna matematyka!
cnd
Fundamentem wariatkowa zwanego KRZiP jest idiotyczna definicja operatora logicznego:
O tym czym jest wypowiedziane zdanie decyduje użyty spójnik, treść jest bez znaczenia.
Zdanie „Jeśli ... to ...” jest implikacją niezależnie co wstawimy w miejsca wykropkowane. Dowód wyżej pokazuje iż jest to „gówno prawda”.
2.8 Zdanie w sensie matematycznym
2.8.1
Zera i jedynki w dowolnym operatorze logicznym oznaczają:
1 - zbiór niepusty (zbiór istnieje, sytuacja możliwa), zdanie prawdziwe
0 - zbiór pusty (zbiór nie istnieje, sytuacja niemożliwa), zdanie fałszywe
Zdanie w sensie matematycznym, to zdanie któremu da się przypisać prawdę lub fałsz.
2.8.2
Przykład:
Jutro będzie padało
Matematycznie powyższe zdanie jest równoważne zdaniu:
Jutro na pewno => będzie padało
J=>P =?
To nie jest zdanie w sensie matematycznym, bo nie da się określić jego prawdziwości.
Zbiór „będzie padło” może okazać się zbiorem pustym (gdy nie będzie padać), albo zbiorem nie pustym (gdy będzie padać).
To zdanie może więc być albo prawdziwe, albo fałszywe.
ale!
2.8.3
Jutro może padać
J~~>P=1
To jest zdanie prawdziwe w sensie matematycznym
~~> - naturalny spójnik „może”, wystarczy sama możliwość zaistnienia.
Zbiór „może padać” jest zbiorem pełnym, cokolwiek jutro nie zajdzie to zdanie będzie prawdziwe.
Matematycznie zdanie to jest równoważne zdaniu:
Jutro będzie padać lub nie będzie padać
J=>P+~P=1
Cokolwiek nie zajdzie, zdanie będzie prawdziwe.
Prawo algebry Kubusia:
p+~p=1
Weźmy teraz na tapetę implikację.
2.8.4
Przykład:
A.
Jeśli jutro będzie padało to na pewno => będzie pochmurno
P=>CH=1
Padanie deszczu wystarcza dla istnienia chmur
To jest zdanie w sensie matematycznym, zdanie oczywiście prawdziwe.
B.
Jeśli jutro będzie padało to na pewno => nie będzie pochmurno
P=>~CH=0
Definicja warunku wystarczającego to wyłącznie zdania A i B
... a jeśli nie będzie padało?
Prawo Kubusia:
P=>CH = ~P~>~CH
C.
Jeśli jutro nie będzie padało to może ~> nie być pochmurno
~P~>~CH=1
Brak opadów jest warunkiem koniecznym, aby nie było pochmurno
lub
D.
Jeśli jutro nie będzie padało to może ~~> być pochmurno
~P~~>CH=1
gdzie:
~> - warunek konieczny, w implikacji spójnik „może” między p i q, wystarczy sama możliwość zaistnienia o definicji...
Warunek konieczny między p i q zachodzi wtedy i tylko wtedy gdy z zanegowanego poprzednika wynika => zanegowany następnik:
C: ~P~>~CH = A: P=>CH =1
~~> - naturalny spójnik „może”, wystarczy pokazać jeden przypadek prawdziwy.
W zdaniu D nie zachodzi warunek konieczny ~> bo nie jest spełniona jego definicja:
D: ~P~>CH = B: P=>~CH =0
2.8.5
Dla kodowania zgodnego ze zdaniem wypowiedzianym A:
P=>CH
P=1, ~P=0
CH=1, ~CH=0
Otrzymujemy tabele zero-jedynkową implikacji prostej, czyli dowód iż zdanie A jest implikacją prostą prawdziwą.
Kod: |
| P CH P=>CH
A: P=> CH =1 | 1 1 =1
B: P=>~CH =0 | 1 0 =0
C:~P~>~CH =1 | 0 0 =1
D:~P~~>CH =1 | 0 1 =1
|
cnd
Zauważmy, że po stronie P mamy 100% determinizm (warunek wystarczający =>), natomiast po stronie ~P mamy najzwyklejsze „rzucanie monetą” (warunek konieczny ~>).
Wtedy i tylko wtedy zdanie jest implikacją prostą prawdziwą.
Zdanie A jest zatem implikacją prostą prawdziwą.
cnd
2.8.6
Definicja implikacji prostej:
p=>q = ~p~>~q
2.8.7
Definicja implikacji odwrotnej
p~>q = ~p=>~q
gdzie:
=> - warunek wystarczający, spójnik „na pewno” między p i q w całym obszarze logiki
~> - warunek konieczny, w implikacji spójnik „może” między p i q („rzucanie monetą”!)
2.8.8
Dowolna implikacja prawdziwa to w jednej połówce 100% determinizm (warunek wystarczający =>), zaś w drugiej połówce najzwyklejsze „rzucanie monetą” (warunek konieczny ~>)
Wtedy i tylko wtedy zdanie jest implikacją prawdziwą!
2.8.9
Weźmy zdanie podobne:
A.
Jeśli wylosuję trójkąt równoboczny to na pewno => będzie miał kąty równe
TR=>KR=1
Wylosowanie trójkąta równobocznego wystarcza aby trójką miał kąty równe
B.
Jeśli wylosuję trójkąt równoboczny to na pewno => nie będzie miał katów równych
TR=>~KR=0
Pełna definicja warunku wystarczającego w logice dodatniej (bo KR) to wyłącznie zdania A i B wyżej.
... a jeśli wylosuję trójkąt nierównoboczny?
C.
Jeśli wylosuję trójkąt nierównoboczny to na pewno => nie będzie miał kątów równych
~TR=>~KR=1
Wylosowanie trójkąta nierównobocznego wystarcza aby nie miał on kątów równych
D.
jeśli wylosuję trójkąt nierównoboczny to na pewno => będzie miał kąty równe
~TR=>KR=0
Pełna definicja warunku wystarczającego w logice ujemnej (bo ~KR) to wyłącznie zdania C i D wyżej.
Jak widzimy, obojętne które z tych zdań nie wypowiemy (A lub C) to po stronie ~p będziemy mieć 100% determinizm, czyli kolejny warunek wystarczający =>.
Nie ma tu zatem co marzyć o jakimkolwiek „rzucaniu monetą” charakterystycznym dla implikacji.
Oba te zdania to implikacje fałszywe, bo nie spełniają definicji implikacji (brak możliwości „rzucania monetą”)
2.8.10
Zauważmy, że jeśli za punkt odniesienia przyjmiemy zdania A:
TR=>KR=1
TR=1, ~TR=0
KR=1, ~KR=0
To otrzymamy zero-jedynkową definicję równoważności:
Kod: |
Tabela 1
Definicja |Definicja symboliczna
zero-jedynkowa |
TR KR TR=>KR
A: 1 1 =1 | TR=> KR=1 /warunek wystarczający w logice dodatniej
B: 1 0 =0 | TR=>~KR=0 /o definicji wyłącznie w A i B
C: 0 0 =1 |~TR=>~KR=1 /warunek wystarczający w logice ujemnej
D: 0 1 =0 |~TR=> KR=0 /o definicji wyłącznie w C i D
|
Zauważmy, że zdanie:
TR=>KR
to tylko warunek wystarczający => o definicji wyłącznie w liniach A i B
Nie jest to zatem ani równoważność, ani implikacja prosta, bowiem operator logiczny musi być opisany wszystkimi czteroma liniami.
2.8.11
Oczywiście cała tabela to definicja równoważności, zatem poprawny nagłówek tabeli zero-jedynkowej musi być zmodyfikowany.
Kod: |
Tabela 2
Definicja |Definicja symboliczna
zero-jedynkowa |
TR KR TR<=>KR=(TR=>KR)*(~TR=>~KR)
A: 1 1 =1 | TR=> KR=1 /warunek wystarczający w logice dodatniej
B: 1 0 =0 | TR=>~KR=0 /o definicji wyłącznie w A i B
C: 0 0 =1 |~TR=>~KR=1 /warunek wystarczający w logice ujemnej
D: 0 1 =0 |~TR=> KR=0 /o definicji wyłącznie w C i D
|
Definicja równoważności:
TR<=>KR = (TR=>KR)*(~TR=>~KR)
2.8.12
Oczywiście matematycznie zachodzi:
TR<=>KR ## TR=>KR ## ~TR=>~KR
gdzie:
## - różne na mocy definicji
W przełożeniu na świat fizyki żadna z powyższych bramek logicznych nie jest tożsama, stąd znak ##.
2.8.13
Tożsame są następujące bramki logiczne równoważności:
TR<=>KR = ~TR<=>~KR
Po obu stronach znaku tożsamości mamy identyczne bramki logiczne, kompletne operatory logiczne.
Dowód:
Zakodujmy definicje symboliczną z tabeli 2 dla punktu odniesienia:
~TR<=>~KR
czyli:
~TR=1, TR=0
~KR=1, KR=0
Kod: |
Tabela 2
Definicja |Definicja symboliczna
zero-jedynkowa |
~TR ~KR ~TR<=>~KR=(~TR=>~KR)*(TR=>KR)
A: 0 0 =1 | TR=> KR=1 /warunek wystarczający w logice dodatniej
B: 0 1 =0 | TR=>~KR=0 /o definicji wyłącznie w A i B
C: 1 1 =1 |~TR=>~KR=1 /warunek wystarczający w logice ujemnej
D: 1 0 =0 |~TR=> KR=0 /o definicji wyłącznie w C i D
|
Definicja równoważności:
~TR<=>~KR = (~TR=>~KR)*(TR=>KR)
Jak widzimy dalej mamy identyczną, zero-jedynkową definicje równoważności co jest dowodem formalnym zachodzenia prawa:
TR<=>KR = ~TR<=>~KR
Bramki logiczne po obu stronach tożsamości są identyczne, mają identyczne tabele prawdy (funkcje logiczne)
2.8.14
Oczywiście powyższy dowód można przeprowadzić prościej, bezpośrednio w równaniach algebry Boole’a.
Definicja równoważności:
p<=>q = (p=>q)*(~p=>~q)
Negujemy wszystkie zmienne:
~p<=>~q = (~p=>~q)*(p=>q) = (p=>q)*(~p=>~q)
Prawe strony są identyczne zatem zachodzi tożsamość matematyczna:
p<=>q = ~p<=>~q
2.8.15
Na koniec wypowiedzmy nasze zdania w formie równoważności:
1.
Wylosowany w przyszłości trójkąt będzie równoboczny wtedy i tylko wtedy gdy będzie miał kąty równe
TR<=>KR
2.
Wylosowany w przyszłości trójkąt nie będzie równoboczny wtedy i tylko wtedy gdy nie będzie miał kątów równych
~TR<=>~KR
2.8.16
Tragiczna w skutkach dla ziemskiej logiki matematycznej prawda:
Zero-jedynkowe definicje operatorów logicznych obowiązują dla świata totalnie niezdeterminowanego, gdzie nie znamy z góry wartości logicznej ani p, ani q.
Wynika z tego że:
Implikacja i równoważność to matematyczny opis nieznanego!
2.8 17
Dla konkretnego wylosowanego trójkąta mamy do czynienia wyłącznie z operatorem AND, bo taki świat jest zdeterminowany gdzie obowiązuje prawo Sowy.
Prawo Sowy:
W świecie zdeterminowanym, gdzie znamy z góry wartości logiczne p i q dowolny operator logiczny ulega redukcji do operatora AND.
Oczywiście prawo Sowy wynika bezpośrednio z definicji operatora logicznego.
Definicja operatora logicznego:
Operator logiczny to odpowiedź układu na wszystkie możliwe przeczenia p i q
2.8.18
Załóżmy, że wylosowaliśmy trójkąt równoboczny.
W tym momencie nasz świat jest w 100% zdeterminowany:
TR=1, ~TR=0
KR=1, ~KR=0
Nasza tabela zero-jedynkowa przyjmuje postać:
Kod: |
A: TR* KR =1*1=1
B: TR*~KR =1*0=0
C:~TR*~KR =0*0=0
D:~TR* KR =0*1=0
|
Oczywiście to jest tabela zero-jedynkowa operatora AND!
Prawo Sowy działa wiec doskonale.
2.8.19
Załóżmy teraz, że wylosowaliśmy trójkąt nierównoboczny.
W tym momencie nasz świat jest w 100% zdeterminowany:
~TR=1, TR=0
~KR=1, KR=0
Nasza tabela zero-jedynkowa przyjmuje postać:
Kod: |
A: TR* KR =0*0=0
B: TR*~KR =0*1=0
C:~TR*~KR =1*1=1
D:~TR* KR =1*0=0
|
Oczywiście to jest tabela zero-jedynkowa operatora AND!
Również w tym przypadku prawo Sowy działa doskonale.
Doskonale widać, że dla nieskończonej ilości losowań otrzymamy tabelę zero-jedynkową operatora równoważności. Pudełka A i C będą niepuste, natomiast pudełka B i D będą puste.
2.8.20
Wniosek generalny:
Ziemianie nie znają poprawnej budowy żadnego operatora logicznego i matematycznie straszliwie bredzą!
cnd
2.9 Równoważność w bramkach logicznych
2.9.1
Definicja równoważności wynikająca bezpośrednio z tabeli zero-jedynkowej równoważności:
p<=>q = (p=>q)*(~p=>~q)
Schemat ideowy operatora równoważności w bramkach logicznych jest następujący.
Bramka „musi” to bramka OR z zanegowaną w środku linią p.
Tabela prawdy dla bramki „musi” =>
Kod: |
p q p=>q
1 1 =1
1 0 =0
0 0 =1
0 1 =1
|
Symboliczne działanie układu równoważności:
Kod: |
p q p<=>q| p q p<=>q |~p ~q ~p<=>~q
Warunek wystarczający w logice dodatniej (bo q)
p=>q=1
p=> q =1 | 1 1 =1 /p=> q=1| 0 0 =1
p=>~q =0 | 1 0 =0 /p=>~q=1| 0 1 =0
Warunek wystarczający w logice ujemnej (bo ~q)
~p=>~q=1
~p=>~q =1 | 0 0 =1 | 1 1 =1 /~p=>~q =1
~p=> q =0 | 0 1 =0 | 1 0 =0 /~p=> q =0
|
Po znaku „/” uwidoczniono linie biorące udział w obsłudze naturalnej logiki człowieka
2.9.2
O co chodzi tego z tymi bramkami?
Kod: |
p q p=>q | p q [p~>q]| p q p=>q | p q p<=>q=(p=>q)*(~p=>~q)
A: 1 1 =1 |[1 1 =1] | 1 1 =1 | 1 1 =1 / p=> q=1
B: 1 0 =0 |[1 0 =1] | 1 0 =0 | 1 0 =0 / p=>~q=0
~p ~q [~p~>~q]|~p ~q ~p=>~q|~p ~q ~p=>~q|
C: [1 1 =1] | 1 1 =1 | 1 1 =1 | 0 0 =1 /~p=>~q=1
D: [1 0 =1] | 1 0 =0 | 1 0 =0 | 0 1 =0 /~p=> q=0
1 2 3 4 5 6 7 8 9 a b c
|
Definicja równoważności:
p<=>q = (p=>q)*[p~>q] = (p=>q)*(~p=>~q)
W równoważności mamy do czynienia z wirtualnymi warunkami koniecznymi [~>] wycinanymi przez definicje równoważności, niedostępnymi w świecie rzeczywistym.
2.9.3
Bramki rożne na powyższym schemacie to:
p=>q = [~p~>~q] ## [p~>q] = ~p=>~q ## p<=>q
co odpowiada obszarom:
ABCD123 ## ABCD456 ## ABCDabc
2.9.4
Oczywiście bez trudu rozpoznajemy tu implikacje wirtualne.
Wirtualna definicja implikacji prostej:
p=>q = [~p~>~q] - obszar ABCD123
Wirtualna definicja implikacji odwrotnej:
[p~>q] = ~p=>~q - obszar ABCD456
gdzie:
[~>] - wirtualne warunki konieczne, niedostępne w świecie rzeczywistym
2.9.5
Obszar wirtualny AB456 wycinany jest przez obszar rzeczywisty AB123 tzn. w rzeczywistym punkcie B9 mamy zero wynikłe z mnożenia logicznego:
B3(0)*B6(1) = B9(0).
W świecie rzeczywistym dostępny jest wyłącznie warunek wystarczający o definicji w obszarze AB123:
A: p=>q =1
B: p=>~q=0
Podobnie:
2.9.6
Obszar wirtualny CD123 wycinany jest przez obszar rzeczywisty CD456 tzn. w rzeczywistym punkcie D9 mamy zero wynikłe z mnożenia logicznego:
D3(1)*D6(0) = D9(0).
W świecie rzeczywistym dostępny jest wyłącznie warunek wystarczający o definicji w obszarze CD456:
C: ~p=>~q=1
D: ~p=> q =0
2.9.7
W obszarze AB789 zakodowany jest warunek wystarczający z indywidualnym punktem odniesienia:
p=>q =1
p=1, ~p=0
q=1, ~q=0
Podobnie:
2.9.8
W obszarze CD789 zakodowany jest warunek wystarczający z indywidualnym punktem odniesienia:
~p=>~q =1
~p=1, q=0
~q=1, q=0
2.9.9
Finałowy obszar:
ABCDabc
to kodowanie całej tabeli zero-jedynkowej ze wspólnym punktem odniesienia ustawionym na zdaniu:
p<=>q=1
p=1, ~p=0
q=1, ~q=0
2.9.10
Podstawowa definicja równoważności z tego układu to:
p<=>q = (p=>q)*(~p=>~q) =1*1=1
To jedyna definicja dostępna w świecie rzeczywistym.
Nie ma tu miejsca na „rzucanie monetą”, charakterystycznego dla implikacji.
Zarówno po stronie p, jak i nie p mamy warunek wystarczający, czyli 100% determinizm.
2.9.11
Definicja warunku koniecznego w całym obszarze logiki:
Warunek konieczny ~> miedzy p i q zachodzi wtedy i tylko wtedy gdy z zanegowanego poprzednika wynika => zanegowany następnik:
[p~>q] = ~p=>~q
[~p~>~q] = p=>q
Jak widzimy w układzie wyżej, obie definicje warunku koniecznego [~>] są spełnione na poziomie wirtualnym:
[~>] - wirtualny warunek konieczny w równoważności, niedostępny w świecie rzeczywistym.
stąd:
2.9.12
Popularna definicja równoważności:
p<=>q = [p~>q]*(p=>q) =1*1=1
Dla zajścia q potrzeba [~>] i wystarcza => aby zaszło p
Nasz przykład:
TR<=>KR = [TR~>KR]*(TR=>KR)=1*1=1
Do tego aby trójkąt miał kąty równe potrzeba [~>] i wystarcza =>, aby był trójkątem równobocznym.
3.0 Aksjomatyka algebry Kubusia
Aksjomatyka algebry Kubusia to wszystkie możliwe zero-jedynkowe definicje operatorów logicznych, znane ludziom od ponad 100 lat.
3.0.1
Fundament matematyczny:
Iloczyn kartezjański dla dwóch zmiennych binarnych p i q
[p,q] = (1,1), (1,0), (0,1), (0,0)
Funkcja to jednoznaczne przyporządkowanie wyjścia Y dla wejścia p i q
Kod: |
p q Y=pOPRATORq
1 1 =x
1 0 =x
0 1 =x
0 0 =x
|
Dla czterech wartości x w pionie możliwe jest zdefiniowanie 16 różnych funkcji logicznych (operatorów logicznych).
3.0.2
Aksjomatyczne definicje operatorów logicznych w algebrze Boole’a i algebrze Kubusia:
Kod: |
p q OR NOR AND NAND <=> XOR => N(=>) ~> N(~>) ~~> N(~~>) P NP Q NQ
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1
0 1 1 0 0 1 0 1 1 0 0 1 1 0 0 1 1 0
0 0 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1
|
Równania algebry Boole’a to równoważny, lecz zdecydowanie lepszy opis operatorów logicznych bowiem jest on zgodny z naturalną logiką człowieka. Logika człowieka to równania algebry Boole’a, nigdy tabele zero-jedynkowe. Dowolną tabelę zero-jedynkową można opisać równaniami algebry Boole’a i odwrotnie.
3.0.3
Techniczna definicja operatora logicznego:
Operator logiczny to odpowiedź układu na wszystkie możliwe kombinacje 0 i 1 na wejściach p i q
3.0.4
Fizyczny model operatora logicznego:
Operator logiczny to czarna skrzynka z dwoma kabelkami wejściowymi p i q i jednym kabelkiem wyjściowym Y. Na wejścia p i q podajemy wszystkie możliwe kombinacje 0 i 1. Czarna skrzynka odpowiada nam jednoznaczną sekwencją na wyjściu Y.
Definicja operatora OR:
Kod: |
p q Y=pORq
1 1 =1
1 0 =1
0 1 =1
0 0 =0
|
W technice cyfrowej TTL odpowiednikiem 0 i 1 są poziomy napięć:
0 = 0-0.4V
1 = 2.4-5.0V
Aksjomatyczne, zero-jedynkowe definicje operatorów logicznych to pełna teoria zbiorów w algebrze Kubusia, uwzględniająca wszystkie możliwe przypadki wzajemnego położenia zbiorów.
3.0.5
Znaczenie 0 i 1 w teorii zbiorów:
1 - zbiór niepusty (zbiór istnieje, sytuacja możliwa), zdanie prawdziwe
0 - zbiór pusty (zbiór nie istnieje, sytuacja niemożliwa), zdanie fałszywe
3.0.6
W tabelach zero-jedynkowych po stronie wejścia p i q mamy:
1 - zmienna z nagłówka tabeli niezanegowana
0 - zmienna z nagłówka tabeli zanegowana
Korzystając z prawa algebry Boole’a:
Jeśli p=0 to ~p=1
Jeśli q=0 to ~q=1
zamieniamy wejścia p i q na postać symboliczną.
3.0.7
Kod: |
p q SYMB OR NOR AND NAND <=> XOR => N(=>) ~> N(~>) ~~> N(~~>) P NP Q NQ
1 1 p* q 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 0 p*~q 1 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1
0 1 ~p* q 1 0 0 1 0 1 1 0 0 1 1 0 0 1 1 0
0 0 ~p*~q 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1
|
gdzie:
* - iloczyn logiczny zbiorów p i q (wspólne elementy bez powtórzeń)
3.0.8
Po takim manewrze na wejściach p i q mamy iloczyny logiczne konkretnych zbiorów, które generują wynikowe 0 i 1 o znaczeniu:
1 - istnieje część wspólna zbiorów na wejściach p i q, co wymusza zbiór wynikowy niepusty (=1), zdanie prawdziwe
0 - zbiory na wejściach p i q są rozłączne, co wymusza zbiór wynikowy pusty (=0), zdanie fałszywe
3.0.9
Świętość algebry Boole’a:
Wszelkie przekształcenia tabel zero-jedynkowych muszą mieć swoje 100% odbicie w równaniach algebry Boole’a.
3.0.10
Definicja logiki w algebrze Kubusia
Logika to narzędzia do rozwiązywania problemów a nie rozwiązywanie konkretnego problemu.
Układ równań liniowych można rozwiązać na dziesiątki rożnych sposobów. Logika to algorytmy tych rozwiązań a nie rozwiązanie konkretnego układu równań. Rozwiązanie układu równań liniowych według wybranego algorytmu, to zero pracy twórczej, to zadanie czysto mechaniczne, dobre dla komputera.
Logika w pisaniu programu komputerowego wybór najlepszych algorytmów:
1. Program główny powinien być zbiorem dobrze pomyślanych procedur.
2. Im dłużej się myśli, tym lepsze procedury można wymyśleć.
3. Myślenie w nieskończoność nie ma sensu..
W dzisiejszej matematyce istnieje tylko jedna definicja równoważności:
p<=>q = (p=>q)*(q=>p)
Podczas gdy w algebrze Kubusia mamy wiele równoważnych definicji co wkrótce poznamy.
W dzisiejszej matematyce wybór algorytmu do rozstrzygnięcia czy dane zdanie jest równoważnością jest zerowy, bo istnieje wyłącznie jedynie słuszny algorytm.
3.1 Podstawowe definicje algebry Kubusia
3.1.1
Symboliczna definicja operatora logicznego:
Operator logiczny to odpowiedź układu na wszystkie możliwe przeczenia p i q
3.1.2
Przykład:
Trójkąt jest prostokątny wtedy i tylko wtedy gdy zachodzi suma kwadratów
TP<=>SK =1
Definicja operatora równoważności.
Kod: |
Definicja |Definicja |Przykład
zero-jedynkowa |symboliczna |
równoważności |operatora równoważności | TP<=>SK
p q Y=p<=>q | |
A: 1 1 =1 | p* q =1 | TP* SK =1
B: 1 0 =0 | p*~q =0 | TP*~SK =0
C: 0 0 =1 |~p*~q =1 |~TP*~SK =1
D: 0 1 =0 |~p* q =0 |~TP* SK =0
|
gdzie:
* - spójnik „i” z naturalnej logiki człowieka
Definicję symboliczną utworzono korzystając z prawa algebry Boole’a:
Jeśli p=0 to ~p=1
Jeśli q=0 to ~q=1
Kolumny wynikowe są identycznie zatem twierdzenie Pitagorasa jest bezdyskusyjną równoważnością.
Definicja równoważności w spójnikach „i”(*) oraz „lub”(+):
p<=>q = p*q + ~p*~q
co matematycznie oznacza:
p<=>q=1 <=> (p=1 i q=1) lub (~p=1 i ~q=1)
Nasz przykład:
TP<=>SK = (TP=1 i SK=1) lub (~TP=1 i ~SK=1)
Wszystkie te zbiory istnieją (nie są puste), dlatego ich wartość logiczna jest równa 1
TP = SK =1 - zbiory tożsame
~TP=~SK=1 - zbiory tożsame
To jest algebra Boole’a, zatem w pozostałych możliwych przeczeniach musimy uzyskać 0.
p*~q=0
i
~p*q=0
co doskonale widać w powyższej tabeli.
3.1.3
Analiza matematyczna:
Linia A
Interpretacja w naturalnej logice człowieka:
Zadajemy sobie pytanie:
A: TP*SK
Czy istnieje trójkąt prostokątny (TP) w którym zachodzi suma kwadratów (SK)?
Oczywista odpowiedź: TAK
co wymusza w wyniku 1
Interpretacja w zbiorach:
A: TP*SK = 1*1=1
Oba zbiory istnieją (TP=1 i SK=1) i maję część wspólną co wymusza w wyniku 1
Linia B
Interpretacja w naturalnej logice człowieka:
Zadajemy sobie pytanie:
B: TP*~SK=0
Czy istnieje trójkąt prostokątny (TP) w którym suma kwadratów nie jest spełniona (~SK)?
Oczywista odpowiedź: NIE
co wymusza w wyniku 0
Interpretacja w zbiorach:
B: TP*~SK=1*1=0
Oba zbiory istnieją (TP=1 i ~SK=1) ale są rozłączne, co wymusza w wyniku 0
Linia C
Interpretacja w naturalnej logice człowieka:
Zadajemy sobie pytanie:
C: ~TP*~SK
Czy istnieje trójkąt nie prostokątny (~TP) w którym nie zachodzi suma kwadratów (~SK)?
Oczywista odpowiedź: TAK
co wymusza w wyniku 1
Interpretacja w zbiorach:
C: ~TP*~SK = 1*1=1
Oba zbiory istnieją (TP=1 i SK=1) i maję część wspólną co wymusza w wyniku 1
Linia D
Interpretacja w naturalnej logice człowieka:
Zadajemy sobie pytanie:
D: ~TP*SK=0
Czy istnieje trójkąt nie prostokątny (~TP) w którym suma kwadratów jest spełniona (SK)?
Oczywista odpowiedź: NIE
co wymusza w wyniku 0
Interpretacja w zbiorach:
D: ~TP*SK=1*1=0
Oba zbiory istnieją (~TP=1 i SK=1) ale są rozłączne, co wymusza w wyniku 0
Z powyższego wynika, że aby stwierdzić z jakim operatorem logicznym mamy do czynienia musimy sprawdzić odpowiedź układu na wszystkie możliwe przeczenia p i q, zgodnie z definicją operatora logicznego w technicznej algebrze Boole’a i algebrze Kubusia.
3.1.4
Prawo Sowy:
W świecie totalnie zdeterminowanym, gdzie znamy z góry wartości logiczne p i q, dowolny operator logiczny ulega redukcji do operatora AND.
Prawo Sowy wynika bezpośrednio z symbolicznej definicji operatora logicznego.
Definicje operatorów logicznych zapisane są dla świata totalnie niezdeterminowanego, gdzie nie znamy z góry wartości logicznej ani p, ani też q.
Wynika to bezpośrednio definicji operatora i prawa Sowy.
3.1.5
Definicja algebry Kubusia:
Algebra Kubusia to algebra równań logicznych zgodna z techniczną algebrą Boole’a o definicji operatora jak wyżej.
3.1.6
Zmienna binarna:
Zmienna binarna (wejście cyfrowe w układzie logicznym) to zmienna mogąca przyjmować w osi czasu wyłącznie dwie wartości 0 albo 1.
Przykłady zmiennych binarnych:
p, q
3.1.7
Funkcja logiczna:
Funkcja logiczna (Y - wyjście cyfrowe w układzie logicznym) to funkcja n-zmiennych binarnych połączonych spójnikami „i”(*) albo „lub”(+) mogąca w osi czasu przyjmować wyłącznie 0 albo 1 w zależności od aktualnej wartości zmiennych binarnych.
Y - funkcja logiczna
Przykład:
Y=p*q+p*~q+~p*q
3.1.8
Prawo przejścia do logiki przeciwnej:
Negujemy zmienne i wymieniamy spójniki na przeciwne
Przykład 1.
Y=p+q
~Y=~p*~q
Przykład 2.
(p+q) => (r*s)
(~p*~q)~>(~r+~s)
3.1.9
Fundament algebry Boole’a:
p+~p=1
p*~p=0
Przykład:
A.
Jutro pójdę do kina lub nie pójdę do kina
Y=p+~p=1
Zdanie zawsze prawdziwe (=1), cokolwiek nie zrobię to nie zostanę kłamcą
B.
Jutro pójdę do kina i nie pójdę do kina
Y=K*~K=0
Sytuacja niemożliwa, zdanie fałszywe (=0)
3.1.10
Prawo algebry Boole’a z którego będziemy korzystać przy przechodzeniu z tabel zero-jedynkowych na postać symboliczną.
Jeśli p=0 to ~p=1
Jeśli q=0 to ~q=1
4.0 Nowa teoria zbiorów
Podstawowe działania na zbiorach są identyczne jak w klasycznej algebrze zbiorów.
4.0.1
Różnice w stosunku do klasycznej algebry zbiorów:
1.
W algebrze Kubusia zbiór pusty nie jest częścią każdego zbioru.
2.
W algebrze Kubusia zbiory mają wartość logiczną!
Zera i jedynki w dowolnym operatorze logicznym oznaczają:
1 - zbiór niepusty (zbiór istnieje, sytuacja możliwa), zdanie prawdziwe
0 - zbiór pusty (zbiór nie istnieje, sytuacja niemożliwa), zdanie fałszywe
Przykład.
Słońce jest żółte
1 - zbiór niepusty, istnieje zbiór „słońce żółte”, zdanie prawdziwe
Słońce nie jest żółte
0 - zbiór pusty, nie istnieje zbiór „słońc nie żółtych”, zdanie fałszywe
4.0.2
Definicja zbioru:
Zbiór w sensie matematycznym musi spełniać fundament algebry Boole’a:
p+~p=1 - definicja dziedziny
Zbiór ~p jest dopełnieniem zbioru p do dziedziny
p*~p=0
Żaden element zbioru ~p nie należy do zbioru p
Przykład:
Jeśli zwierzę jest psem to na pewno => ma cztery łapy
P=>4L
Dziedzina po stronie p:
P +~P=1
P*~P=0
P - zbiór wszystkich psów
~P - zbiór pozostałych zwierząt
Dziedzina: zbiór wszystkich zwierząt
Dziedzina po stronie q:
4L+~4L=1
4L*~4L=0
4L - zbiór zwierząt mających 4 łapy
~4L - zbiór zwierząt nie mających 4 łap
Dziedzina: zbiór wszystkich zwierząt
Doskonale widać, że wszystkie powyższe zbiory ulokowane są w tej samej dziedzinie.
4.0.3
Zbiór aktualny (bieżący):
Zbiór aktualny (bieżący) to zbiór na którym aktualnie pracujemy, zdefiniowany szczegółowo w poprzedniku zdania „Jeśli p to q”
Uwaga:
W zdaniach najczęściej wypowiadanych zbiory p i q nie są rozłączne i należą do tej samej dziedziny jak to pokazano na przykładzie wyżej.
4.0.4
W ogólnym przypadku nie jest to wymagane, prawdziwe są takie zdania:
A.
Jeśli zwierzę jest psem to na pewno => nie jest kotem
Pies to nie kot
P=>~K=1
P*~K = P - zbiór P zawiera się w całości w zbiorze ~K, zbiór niepusty = zdanie prawdziwe.
Zbiór psów i zbiór kotów to zbiory rozłączne, należące do tej samej dziedziny: zbiór zwierząt
B.
Jeśli zwierzę jest psem to na pewno => nie jest samochodem
Pies to nie samochód
P=>~S=1
P*~S = P - zbiór P zawiera się w całości w zbiorze ~S, zbiór niepusty = zdanie prawdziwe.
Zbiór psów i zbiór samochodów to zbiory rozłączne, należące do różnych dziedzin.
W tym przypadku zbiór:
~S - to uniwersum, wszelkie możliwe pojęcia
Ostatnio zmieniony przez rafal3006 dnia Pią 6:26, 22 Cze 2012, w całości zmieniany 67 razy
|
|
Powrót do góry |
|
|
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 35368
Przeczytał: 20 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Śro 5:52, 09 Maj 2012 Temat postu: |
|
|
4.1 Podstawowe działania na zbiorach
Znaczenie 0 i 1 w teorii zbiorów:
1 - zbiór niepusty (zbiór istnieje, sytuacja możliwa), zdanie prawdziwe
0 - zbiór pusty (zbiór nie istnieje, sytuacja niemożliwa), zdanie fałszywe
4.1.1
Zbiory tożsame to zbiory identyczne
Zbiór trójkątów równobocznych = Zbiór trójkątów o równych kątach
4.1.2
Iloczyn logiczny zbiorów (koniunkcja) to wspólna cześć zbiorów bez powtórzeń
Y=p*q
gdzie:
* - spójnik „i”(*) z naturalnej logiki człowieka
Przykład:
p=[1,2,3,4], q=[1,2,5,6]
Y=p*q=[1,2]
4.1.3
Suma logiczna zbiorów (alternatywa) to wszystkie elementy zbiorów bez powtórzeń
Y=p+q
gdzie:
+ - spójnik „lub”(+) z naturalnej logiki człowieka
Przykład:
p=[1,2,3,4], q=[1,2,5,6]
Y=p+q = [1,2,3,4,5,6]
4.1.4
Różnica zbiorów:
Różnica zbiorów p-q to elementy zbioru p pomniejszone o część wspólną zbiorów p i q
Y=p-q
p=[1,2,3,4], q=[1,2,5,6]
Y= p-q = [3,4]
Y= q-p = [5,6]
4.1.5
Zbiór pusty to zbiór zawierający zero elementów
Stąd:
Iloczyn logiczny zbioru pustego z czymkolwiek jest zbiorem pustym
Zbiór pusty to brak wspólnej części zbiorów w operacji iloczynu logicznego (koniunkcji).
p=[1,2], q=[3,4]
Y=p*q=1*1=0
Zbiory p i q istnieją (p=1 i q=1), ale są rozłączne co wymusza w wyniku zero (zbiór pusty).
4.1.6
Zbiór pusty jest zbiorem rozłącznym z dowolnym zbiorem niepustym
@ - zbiór pusty
Prawa algebry Kubusia:
p+@ = p+0 = p
p*@ = p*0 = 0
W algebrze Kubusia zbiór pusty @ to po prostu logiczne zero.
Nie jest nam potrzebny specjalny znaczek zbioru pustego @.
4.1.7
Przykład.
Słońce nie jest czarne
1 - zbiór niepusty, Bowiem w zbiorze „nie czarnych słońc” znajduje się zbiór „słońce jest żółte”, zdanie prawdziwe
Słońce jest czarne
0 - zbiór pusty, nie istnieje zbiór „słońce czarne”, zdanie fałszywe
4.1.8
Przykład:
A.
Mickiewicz był polakiem lub napisał Pana Tadeusza
Y=MP+PT
Mamy tu świat totalnie zdeterminowany gdzie wartości logiczne p i q znamy z góry
MP=1, ~MP=0
PT=1, ~PT=0
Definicja spójnika „lub”(+):
p+q = p*q + p*~q + ~p*q
stąd:
MP+PT = (MP*PT=1*1=1) + (MP*~PT=1*0=0) + (~MP*PT=0*1=0) := MP*PT
gdzie:
:= - symbol redukcji do funkcji minimalnej na mocy definicji spójnika „lub”(+)
Na mocy prawa Sowy, jedynym zdaniem prawdziwym będzie tu zdanie:
B.
Mickiewicz był polakiem i napisał Pana Tadeusza
Y=MP*PT
Za każde inne zdanie różne od B, ekspert algebry Kubusia, ten straszny polonista, postawi pałę.
Interpretacja:
Mickiewicz był polakiem
MP=1 - zbiór niepusty, zdanie prawdziwe
Mickiewicz nie był polakiem
~MP=0 - zbiór pusty, zdanie fałszywe
Mickiewicz napisał Pana Tadeusza
PT=1 - zbiór niepusty, zdanie prawdziwe
Mickiewicz nie napisał Pana Tadeusza
~PT=0 - zbiór pusty, zdanie fałszywe
4.2 Nowa teoria zbiorów w operatorach logicznych
Każdy człowiek, od 5-cio latka po profesora operuje na zbiorach opisywalnych aksjomatycznymi operatorami logicznymi.
Znaczenie 0 i 1 w nowej teorii zbiorów:
1 - zbiór niepusty (zbiór istnieje, sytuacja możliwa), zdanie prawdziwe
0 - zbiór pusty (zbiór nie istnieje, sytuacja niemożliwa), zdanie fałszywe
4.2.1
1.
Definicja operatora OR w równaniach algebry Kubusia:
Operator OR to złożenie spójnika „lub”(+) w logice dodatniej (bo Y) ze spójnikiem „i”(*) w logice ujemnej (bo ~Y)
Y = p+q = p*q + p*~q +~p*q
~Y=~p*~q
Związek logiki dodatniej (bo Y) i ujemnej (bo ~Y):
Y = ~(~Y) - prawo podwójnego przeczenia
Stąd definicja równoważna:
Y = p+q = ~(~p*~q) - prawo de’Morgana
Definicja spójnika „lub”(+) w logice dodatniej (bo Y):
Zbiory p i q mają część wspólną (p*q) lecz żaden z nich nie zawiera się w drugim.
W: Y = p+q = p*q + p*~q +~p*q
Definicja spójnika „i”(*) w logice ujemnej (bo ~Y):
D: ~Y=~p*~q
Dla kodowania zgodnego ze zdaniem wypowiedzianym W otrzymujemy zero-jedynkową definicję operatora OR.
Kod: |
Definicja symboliczna |Definicja zero-jedynkowa
W: Y=p+q=p*q+p*~q+~p*q |p q Y=p+q
A: p* q= Y |1 1 =1
B: p*~q= Y |1 0 =1
C:~p* q= Y |0 1 =1
~Y=~p*~q |
D:~p*~q=~Y |0 0 =0
Punktem odniesienia w dowolnej tabeli zero-jedynkowej
jest zawsze nagłówek tabeli:
|p=1, ~p=0
|q=1, ~q=0
|Y=1, ~Y=0
|
Przykład:
Jutro pójdę do kina lub do teatru:
Y=K+T
co matematycznie oznacza:
Dotrzymam słowa (Y) wtedy i tylko wtedy gdy jutro pójdę do kina (K) lub pójdę do teatru (T)
Zdanie matematycznie równoważne:
Y = K*T + K*~T + ~K*T
Dotrzymam słowa (Y) wtedy i tylko wtedy gdy jutro:
K*T - pójdę do kina (K) i pójdę do teatru (T)
lub(+)
K*~T - pójdę do kina (K) i nie pójdę do teatru (~T)
lub(+)
~K*T - nie pójdę do kina (~K) i pójdę do teatru (T)
... a kiedy skłamię?
Przejście do logiki ujemnej poprzez negację zmiennych i wymianę spójników:
~Y=~K*~T
Skłamię (~Y) wtedy i tylko wtedy gdy jutro nie pójdę do kina (~K) i nie pójdę do teatru (~T)
4.2.2
2.
Definicja operatora AND w równaniach algebry Kubusia:
Operator AND to złożenie spójnika „i”(*) w logice dodatniej (bo Y) ze spójnikiem „lub”(+) w logice ujemnej (bo ~Y)
Y=p*q
~Y = ~p+~q = ~p*~q + p*~q + ~p*q
Związek logiki dodatniej (bo Y) i ujemnej (bo ~Y):
Y = ~(~Y) - prawo podwójnego przeczenia
Stąd definicja równoważna:
Y = p*q = ~(~p+~q) - prawo de’Morgana
Definicja spójnika „i”(*) w logice dodatniej (bo Y):
W: Y=p*q
Definicja spójnika „lub”(+) w logice ujemnej (bo ~Y):
Zbiory ~p i ~q mają część wspólną (~p*~q) lecz żaden z nich nie zawiera się w drugim
U: ~Y = ~p+~q = ~p*~q + ~p*q + p*~q
Dla kodowania zgodnego ze zdaniem wypowiedzianym W otrzymujemy zero-jedynkową definicję operatora AND.
Kod: |
Definicja symboliczna |Definicja zero-jedynkowa
W: Y=p*q |p q Y=p*q
A: p* q= Y |1 1 =1
U: ~Y =~p+~q=~p*~q+~p*q+p*~q|
B:~p*~q=~Y |0 0 =0
C:~p* q=~Y |0 1 =0
D: p*~q=~Y |1 0 =0
Punktem odniesienia w dowolnej tabeli zero-jedynkowej
jest zawsze nagłówek tabeli:
|p=1, ~p=0
|q=1, ~q=0
|Y=1, ~Y=0
|
Przykład:
Jutro pójdę do kina i do teatru:
Y=K*T
co matematycznie oznacza:
Dotrzymam słowa (Y) wtedy i tylko wtedy gdy jutro pójdę do kina (K) i pójdę do teatru (T)
... a kiedy skłamię?
Przejście do logiki ujemnej poprzez negację zmiennych i wymianę spójników:
~Y=~K+~T
Skłamię (~Y) wtedy i tylko wtedy gdy jutro nie pójdę do kina (~K) lub nie pójdę do teatru (~T)
Zdanie matematycznie równoważne:
~Y = ~K*~T + ~K*T + K*~T
Skłamię (~Y) wtedy i tylko wtedy gdy jutro:
~K*~T - nie pójdę do kina (~K) i nie pójdę do teatru (~T)
lub(+)
~K*T - nie pójdę do kina (~K) i pójdę do teatru (T)
lub(+)
K*~T - pójdę do kina (K) i nie pójdę do teatru (~T)
4.2.3
3.
Definicja operatora XOR w równaniu algebry Kubusia:
p XOR q = p*~q + ~p*q
Zbiory rozłączne.
p XOR q = p*~q + ~p*q
Podstawowe właściwości:
A.
p+~q=~q
~p+q=~p
B.
p*q=1*1=0
Oba zbiory istnieją (p=1 i q=1), ale są rozłączne co wymusza w wyniku zero (zbiór pusty)
p*~q=p
Zbiór p zawiera się w całości w zbiorze ~q, stąd iloczyn logiczny to zbiór p.
~p*q=q
Zbiór q zawiera się w całości w zbiorze ~p, stąd iloczyn logiczny to zbiór q.
stąd:
p XOR q = p*~q + ~p*q := p+q
gdzie:
:= - redukcja funkcji logicznej na mocy teorii zbiorów
Definicja zero-jedynkowa:
Kod: |
Definicja |Definicja zero-jedynkowa
Symboliczna |p q pXORq
A: p*~q=1 |1 0 =1
B:~p* q=1 |0 1 =1
C:~p*~q=0 |0 0 =0
D: p* q=0 |1 1 =0
Punktem odniesienia w dowolnej tabeli zero-jedynkowej
jest zawsze nagłówek tabeli:
|p=1, ~p=0
|q=1, ~q=0
|
Przykład:
Każdy człowiek jest mężczyzną albo kobietą
Y = M XOR K = M*~K + ~M*K
4.2.4
4.
Definicja operatora implikacji prostej:
Implikacja prosta to złożenie warunku wystarczającego => w logice dodatniej (bo q) z warunkiem koniecznym ~> w logice ujemnej (bo ~q)
p=>q = ~p~>~q - prawo Kubusia
gdzie:
=> - warunek wystarczający w logice dodatniej (bo q) o definicji wyłącznie w liniach A i B niżej
~> - warunek konieczny o definicji ogólnej:
Warunek konieczny ~> między p i q zachodzi wtedy i tylko wtedy gdy z zanegowanego poprzednika wynika => zanegowany następnik
~p~>~q = p=>q
Definicja warunku wystarczającego w logice dodatniej (bo q):
Z wykresu odczytujemy:
A.
Jeśli zajdzie p to na pewno => zajdzie q
p=>q=1 - twarda prawda, gwarancja matematyczna
Zbiory:
p*q=1*1=1
Oba zbiory p i q istnieją (p=1 i q=1) i mają część wspólną co wymusza w wyniku jeden.
stąd:
B.
Jeśli zajdzie p to na pewno => nie zajdzie q
p=>~q=0 - twardy fałsz, wynikły tylko i wyłącznie ze zdania A
Zbiory:
p*~q=1*1=0
Zbiory p i ~q istnieją (p=1 i ~q=1) ale są rozłączne, co wymusza w wyniku zero (zbiór pusty).
Uwaga:
p*~q=0 - ta i tylko ta relacja zbiorów wymusza zawieranie się zbioru p w zbiorze q!
W implikacji zbiór p nie jest tożsamy ze zbiorem q, natomiast w równoważności zbiór p jest tożsamy ze zbiorem q. Implikacja to fundamentalnie co innego niż równoważność, nic co jest implikacją nie ma prawa być równoważnością i odwrotnie, to fizycznie niemożliwe na mocy definicji zero-jedynkowych.
Definicja warunku wystarczającego w logice dodatniej (bo q):
Kod: |
A.
Jeśli zajdzie p to na pewno => zajdzie q
p=>q=1
p* q=1*1=1 - istnieje część wspólna zbiorów p i q
B.
Jeśli zajdzie p to na pewno => zajdzie ~q
p=>~q=0
p* ~q=1*1=0 - zbiory p i ~q istnieją (p=1 i ~q=1) ale są rozłączne,
stąd ich iloczyn logiczny jest równy zeru
|
p=>q
Jeśli zajdzie p to na pewno => zajdzie q
Z czego wynika że zbiór p musi zawierać się w całości w zbiorze q
Z czego wynika że p jest wystarczające dla q
Jak zajdzie p to q też musi.
… a jeśli zajdzie ~p ?
Prawo Kubusia:
p=>q = ~p~>~q
Zobaczmy ten przypadek na diagramie.
Z wykresu odczytujemy definicję warunku koniecznego ~> w logice ujemnej (bo ~q)
C.
Jeśli zajdzie ~p to może ~> zajść ~q
~p~>~q=1 - miękka prawda, może zajść ale nie musi bo zdanie D
Zbiory:
~p*~q=1
Zbiory ~p i ~q istnieją (~p=1 i ~q=1) i maja część wspólną, co wymusza w wyniku jeden
lub
D.
Jeśli zajdzie ~p to może ~~> zajść q
~p~~>q=1 - miękka prawda, może zajść ale nie musi bo zdanie C
Zbiory:
~p*q=1
Zbiory ~p i q istnieją (~p=1 i q=1) i maja część wspólną co wymusza w wyniku jeden
W zdaniu D nie zachodzi warunek konieczny ~> bo prawo Kubusia nie może być zgwałcone:
D: ~p~>q = B: p=>~q =0
Zdanie B jest fałszywe zatem w zdaniu D nie może zachodzić warunek konieczny ~>.
Zdanie D jest prawdziwe na mocy naturalnego spójnika „może” ~~>, wystarczy pokazać jeden przypadek prawdziwy.
Definicję zero-jedynkową operatora implikacji prostej otrzymujemy dla kodowania zgodnego ze zdaniem wypowiedzianym A.
Kod: |
Definicja |Definicja zero-jedynkowa
Symboliczna |p q p=>q
A: p=> q=1 |1 1 =1
B: p=>~q=0 |1 0 =0
C:~p~>~q=1 |0 0 =1
D:~p~~>q=1 |0 1 =1
Punktem odniesienia w dowolnej tabeli zero-jedynkowej
jest zawsze nagłówek tabeli:
|p=1, ~p=0
|q=1, ~q=0
|
Przykład:
A.
Jeśli jutro będzie padało to na pewno => będzie pochmurno
P=>CH=1
Padanie deszczu jest wystarczające => dla istnienia chmur
B.
Jeśli jutro będzie padało to na pewno => nie będzie pochmurno
P=>~CH=0
... a jak nie będzie padało?
Prawo Kubusia:
P=>CH = ~P~>~CH
C.
Jeśli juro nie będzie padało to może ~> nie być pochmurno
~P~>~CH=1
Brak opadów jest warunkiem koniecznym aby jutro nie było pochmurno
lub
D.
Jeśli jutro nie będzie padało to może ~~> być pochmurno
~P~~>CH=1
4.2.5
5.
Definicja operatora implikacji odwrotnej:
Implikacja odwrotna to złożenie warunku koniecznego ~> w logice dodatniej (bo q) z warunkiem wystarczającym => w logice ujemnej (bo ~q)
p~>q = ~p=>~q - prawo Kubusia
gdzie:
~> - warunek konieczny o definicji ogólnej:
Warunek konieczny ~> między p i q zachodzi wtedy i tylko wtedy gdy z zanegowanego poprzednika wynika => zanegowany następnik
p~>q = ~p=>~q
=> - warunek wystarczający w logice ujemnej (bo ~q) o definicji wyłącznie w liniach C i D niżej
Warunek konieczny w zbiorach wygląda następująco:
p~>q
Z wykresu odczytujemy definicje symboliczną warunku koniecznego w logice dodatniej (bo q):
A.
Jeśli zajdzie p to może ~> zajść q
p~>q=1 - miękka prawda, może zajść ale nie musi, bo zdanie B
Zbiory:
p*q=1*1=1
Zbiory p i q istnieją (p=1 i q=1) i mają część wspólną, co wymusza w wyniku jeden.
Zbiór p musi zawierać w całości zbiór q, wtedy i tylko wtedy p jest konieczne dla q, czyli zachodzi prawo Kubusia:
p~>q = ~p=>~q
LUB
B.
Jeśli zajdzie p to może ~~> zajść ~q
p~~>~q=1 - miękka prawda, może zajść ale nie musi, bo zdanie A
Zbiory:
p*~q=1
Zbiory p i ~q istnieją (p=1 i ~q=1) i mają część wspólną, co wymusza w wyniku jeden.
… a jeśli zajdzie ~p ?
Prawo Kubusia:
p~>q = ~p=>~q
Zobaczmy to na diagramie logicznym:
~p=>~q
Z diagramu odczytujemy:
C.
Jeśli zajdzie ~p to na pewno => zajdzie ~q
~p=>~q=1 - twarda prawda, gwarancja matematyczna, zachodzi zawsze, bez wyjątków
Zbiory:
~p*~q=1*1=1
Zbiory ~p i ~q istnieją (~p=1 i ~q=1) i mają część wspólną, co wymusza w wyniku jeden.
stąd:
D.
Jeśli zajdzie ~p to na pewno => zajdzie q
~p=>q=0 - twardy fałsz, wynikły tylko i wyłącznie ze zdania C
Zbiory:
~p*q=1*1=0
Zbiory ~p i q istnieją (~p=1 i q=1), ale są rozłączne, co wymusza w wyniku zero (zbiór pusty).
Uwaga:
~p*q=0 - ta i tylko ta relacja zbiorów wymusza zwieranie się zbioru ~p w zbiorze ~q
W implikacji zbiór ~p nie jest tożsamy ze zbiorem ~q, natomiast w równoważności zbiór ~p jest tożsamy ze zbiorem ~q. Implikacja to fundamentalnie co innego niż równoważność, nic co jest implikacją nie ma prawa być równoważnością i odwrotnie, to fizycznie niemożliwe na mocy definicji zero-jedynkowych.
Zauważmy, że w zdaniu B nie może zachodzić warunek konieczny ~> bo prawo Kubusia:
B: p~>~q = D: ~p=>q=0
Zdanie D jest fałszywe, zatem w zdaniu B nie może zachodzić warunek konieczny ~>.
Zdanie B jest prawdziwe na mocy naturalnego spójnika „może” ~~>, wystarczy pokazać jeden przypadek prawdziwy.
Definicja symboliczna warunku wystarczającego w logice ujemnej (bo ~q):
Kod: |
C.
Jeśli zajdzie ~p to na pewno => zajdzie ~q
~p=>~q=1
~p* ~q=1*1=1 - istnieje część wspólna zbiorów ~p i ~q
D.
Jeśli zajdzie ~p to na pewno => zajdzie q
~p=>q=0
~p* q=1*1=0 - zbiory ~p i q istnieją (~p=1 i q=1) ale są rozłączne,
stąd ich iloczyn logiczny jest równy zeru
|
~p=>~q
Jeśli zajdzie ~p to na pewno => zajdzie ~q
Z czego wynika że zajście ~p wystarcza dla zajścia ~q
Z czego wynika że zbiór ~p musi zawierać się w całości w zbiorze ~q
Jeśli zajdzie ~p to ~q też musi.
Definicję zero-jedynkową operatora implikacji odwrotnej otrzymujemy dla kodowania zgodnego ze zdaniem wypowiedzianym A.
Kod: |
Definicja |Definicja zero-jedynkowa
Symboliczna |p q p~>q
A: p~> q =1 |1 1 =1
B: p~~>~q=1 |1 0 =1
C:~p=>~q =1 |0 0 =1
D:~p=> q =1 |0 1 =0
Punktem odniesienia w dowolnej tabeli zero-jedynkowej
jest zawsze nagłówek tabeli:
|p=1, ~p=0
|q=1, ~q=0
|
Przykład:
A.
Jeśli jutro będzie pochmurno to może ~> padać
CH~>P=1
Pochmurne niebo jest warunkiem koniecznym ~> aby jutro padało
lub
B.
Jeśli jutro będzie pochmurno to może ~~> nie padać
CH~~>~P=1
... a jeśli nie będzie pochmurno?
Prawo Kubusia:
CH~>P = ~CH=>~P
C.
Jeśli jutro nie będzie pochmurno to na pewno => nie będzie padało
~CH=>~P=1
Brak chmur wystarcza aby jutro nie padało
Stąd:
D.
Jeśli jutro nie będzie pochmurno to na pewno => będzie padało
~CH=>P=0
4.2.6
6.
Definicja równoważności:
Równoważność to jednoczesne zachodzenie warunku wystarczającego w logice dodatniej (bo q) i warunku wystarczającego w logice ujemnej (bo ~q)
p<=>q = (p=>q)*(~p=>~q)
W równoważności zbiór p zawiera się w całości w zbiorze q i jest tożsamy ze zbiorem q, co wymusza tożsamość zbiorów ~p i ~q
.. albo odwrotnie.
W równoważności zbiór ~p zawiera się w całości w zbiorze ~q i jest tożsamy ze zbiorem ~q, co wymusza tożsamość zbiorów p i q.
Analiza ogólna równoważności:
W: p<=>q = (p=>q)*(~p=>~q)
Warunek wystarczający w logice dodatniej (bo q) o definicji wyłącznie w A i B
p=>q
A.
Jeśli zajdzie p to na pewno => zajdzie q
p=>q=1 - twarda prawda, gwarancja matematyczna
Zbiory:
p*q=1*1=1
Zbiory p i q istnieją (p=1 i q=1) i są tożsame, co wymusza w wyniku jeden
B.
Jeśli zajdzie p to na pewno => nie zajdzie q
p=>~q=0 - twardy fałsz, wynikły tylko i wyłącznie z A
Zbiory:
p*~q=1*1=0
Zbiory p i ~q istnieją (p=1 i ~q=1) ale są rozłączne, co wymusza w wyniku zero (zbiór pusty)
p*~q=0 - ta relacja zbiorów wymusza zawieranie się zbioru p w zbiorze q.
… a jeśli zajdzie ~p?
~p<=>~q = (~p=>~q)*(p=>q)
Warunek wystarczający w logice ujemnej bo ~q o definicji wyłącznie w B i C
~p=>~q
C.
Jeśli nie zajdzie p to na pewno => nie zajdzie q
~p=>~q=1 - twarda prawda, gwarancja matematyczna
Zbiory:
~p*~q=1*1=1
Zbiory ~p i ~q istnieją (~p=1 i ~q=1) i są tożsame, co wymusza w wyniku jeden
D.
Jeśli nie zajdzie p to na pewno => zajdzie q
~p=>q=0 - twardy fałsz, wynikły tylko i wyłącznie z C
Zbiory:
~p*q=1*1=0
Zbiory ~p i q istnieją (~p=1 i q=1) ale są rozłączne, co wymusza w wyniku zero (zbiór pusty)
~p*q=0 - ta relacja zbiorów wymusza zawieranie się zbioru ~p w zbiorze ~q.
Dla kodowania zgodnego ze zdaniem wypowiedzianym W otrzymujemy zero-jedynkową definicję równoważności.
Kod: |
W: p<=>q=(p=>q)*(~p=>~q)
Warunek wystarczający w logice dodatniej (bo q)
p=>q |p q p<=>q=(p=>q)*(~p=>~q)
A: p=>q =1 |1 1 =1
B: p=>~q =0 |1 0 =0
~p<=>~q=(~p=>~q)*(p=>q)
Warunek wystarczający w logice ujemnej (bo ~q)
~p=>~q
C: ~p=>~q=1 |0 0 =1
D: ~p=>q =0 |0 1 =0
Punktem odniesienia w dowolnej tabeli zero-jedynkowej
jest zawsze nagłówek tabeli:
|p=1, ~p=0
|q=1, ~q=0
|
Oczywiście matematycznie zachodzi:
p<=>q=(p=>q)*(~p=>~q) =1*1=1
stąd w równoważności (nigdy w implikacji):
p=>q = ~p=>~q
W równoważności (i tylko tu!) obowiązuje prawo kontrapozycji:
~p=>~q = q=>p
Stąd równoważna definicja równoważności uwielbiana przez matematyków:
p<=>q = (p=>q)*(q=>p) =1*1=1
Przykład:
Trójkąt jest prostokątny wtedy i tylko wtedy gdy zachodzi suma kwadratów
TP<=>SK = (TP=>SK)*(~TP=>~SK)
Analiza matematyczna:
W: TP<=>SK = (TP=>SK)*(~TP=>~SK)
Warunek wystarczający w logice dodatniej (bo SK)
TP=>SK - pierwszy człon po prawej stronie
A.
Jeśli trójkąt jest prostokątny, to pewno => zachodzi suma kwadratów
TP=>SK=1 - twarda prawda, gwarancja matematyczna
Zbiory:
TP*SK=1*1=1
Zbiory TP i SK istnieją (TP=1 i SK=1) i są tożsame, co wymusza w wyniku jeden
stąd:
B.
Jeśli trójkąt jest prostokątny, to pewno => nie zachodzi suma kwadratów
TP=>~SK=0 - twardy fałsz, wynikły tylko i wyłącznie z A
Zbiory:
TP*~SK=1*1=0
Zbiory TP i ~SK istnieją (TP=1 i ~SK=1) ale są rozłączne, co wymusza w wyniku zero (zbiór pusty)
TP*~SK=0 - ta relacja zbiorów wymusza zawieranie się zbioru TP w zbiorze SK.
… a jeśli zajdzie ~TP?
~TP<=>~SK = (~TP=>~SK)*(TP=>SK)
Warunek wystarczający w logice ujemnej bo ~SK
~TP=>~SK - pierwszy człon po prawej stronie
C.
Jeśli trójkąt nie jest prostokątny, to pewno => nie zachodzi suma kwadratów
~TP=>~SK=1 - twarda prawda, gwarancja matematyczna
Zbiory:
~TP*~SK=1*1=1
Zbiory ~TP i ~SK istnieją (~TP=1 i ~SK=1) i są tożsame, co wymusza w wyniku jeden
stąd:
D.
Jeśli trójkąt nie jest prostokątny, to pewno => zachodzi suma kwadratów
~TP=>SK=0 - twardy fałsz, wynikły tylko i wyłącznie z C
Zbiory:
~TP*SK=1*1=0
Zbiory ~TP i SK istnieją (~TP=1 i SK=1) ale są rozłączne, co wymusza w wyniku zero (zbiór pusty)
~TP*SK=0 - ta relacja zbiorów wymusza zawieranie się zbioru ~TP w zbiorze ~SK.
5.0 Operatory OR i AND
Każdy człowiek w swoim naturalnym języku mówionym posługuje się równaniami algebry Kubusia, nigdy tabelami zero-jedynkowymi.
Dowolną tabelę zero-jedynkową można opisać równoważnymi równaniami algebry Kubusia.
Z dowolnego równania algebry Kubusia można wygenerować odpowiadającą mu, jednoznaczną tabelę zero-jedynkową.
Dowolną tabelę zero-jedynkową opisuje osiem i tylko osiem równań algebry Kubusia w spójnikach „lub”(+) i „i”(*), cztery równoważne w logice dodatniej i cztery równoważne w logice ujemnej.
5.1 Spójniki „i”(*) i „lub”(+)
5.1.1
Definicja spójnika „i” (*) - koniunkcji.
Iloczyn logiczny (spójnik „i”(*) ) n-zmiennych binarnych jest równy 1 wtedy i tylko wtedy gdy wszystkie zmienne są równe 1
Y = (A1*A2*...An)=1 <=> A1=1 i A2=1 i ...An=1
Analogia w celu łatwego zapamiętania:
1*1*1…*1 =1
1*0*1…*1 =0
Zauważmy że mamy tu 100% analogię do mnożenia znanego ze szkoły podstawowej, stąd nazwa „iloczyn logiczny”. Oczywiście znaczek „*” nie ma nic wspólnego z mnożeniem, to po prostu symbol spójnika „i” z naturalnego języka mówionego.
Dla dwóch zmiennych p i q mamy:
Y=p*q
Co matematycznie oznacza:
Y=1 <=> p=1 i q=1
Stąd tabela zero-jedynkowa spójnika „i”(*):
gdzie:
* - spójnik „i” o definicji wyłącznie jak wyżej
Definicja spójnika „i”(*) w zbiorach w logice dodatniej (bo Y):
A.
Y=p*q
Y=1 <=> p=1 i q=1
5.1.2
Definicja spójnika „lub”(+) - alternatywy
Suma logiczna (spójnik „lub”(+) ) n-zmiennych binarnych jest równa 1 wtedy i tylko wtedy gdy którakolwiek zmienna jest równa 1
Y = (A1+A2+...An)=1 <=> A1=1 lub A2=1 lub ... An=1
Analogia w celu łatwego zapamiętania:
0+0+0….+0 =0
1+1+0….+0 =1
Mamy tu „drobną” różnicę w stosunku do dodawania znanego ze szkoły podstawowej. Oczywiście znaczek „+” nie ma nic wspólnego z dodawaniem, to spójnik „lub”(+) z naturalnego języka mówionego.
Dla dwóch zmiennych p i q mamy:
Y=p+q
Co matematycznie oznacza:
Y=1 <=> p=1 lub q=1
Stąd tabela zero-jedynkowa spójnika „lub”(+):
Kod: |
p q Y=p+q
1 1 =1
1 0 =1
0 1 =1
|
gdzie:
+ - spójnik „lub” o definicji wyłącznie jak wyżej
Prawo algebry Boole’a:
Jeśli p=0 to ~p=1
Stąd mamy tabelę symboliczną spójnika „lub”(+):
Kod: |
p q Y=p+q
p* q =Y
p*~q =Y
~p* q =Y
|
W powyższej tabeli wszystkie zmienne sprowadzone są do jedynek.
Stąd na mocy definicji spójnika „i”(*) wyżej, mamy równoważną definicję spójnika „lub”(+):
Y = p*q+p*~q+~p*q
co matematycznie oznacza:
Y=1 <=> (p=1 i q=1) lub (p=1 i ~q=1) lub (~p=1 i q=1)
Definicja spójnika „lub”(+) w zbiorach w logice dodatniej (bo Y):
A.
Y=p+q
Y=1 <=> p=1 lub q=1
Definicja równoważna na podstawie powyższego diagramu:
A1.
Y=p*q + p*~q + ~p*q
Y=1 <=> (p=1 i q=1) lub (p=1 i ~q=1) lub (~p=1 i q=1)
Wszystkie zbiory istnieją (=1) i mają części wspólne.
Zbiory p i q nie są rozłączne, żaden ze zbiorów nie zawiera się w drugim.
stąd:
Y=p+q = p*q + p*~q + ~p*q
5.2 Operator OR w zbiorach
5.2.1
Operator OR w zbiorach
Operator OR to złożenie spójnika „lub”(+) w logice dodatniej (bo Y) ze spójnikiem „i”(*) w logice ujemnej (bo ~Y).
Definicja spójnika „lub”(+) w zbiorach w logice dodatniej (bo Y):
A.
Y=p+q
Y=1 <=> p=1 lub q=1
Definicja równoważna na podstawie powyższego diagramu:
A1.
Y=p*q + p*~q + ~p*q
Y=1 <=> (p=1 i q=1) lub (p=1 i ~q=1) lub (~p=1 i q=1)
Wszystkie zbiory istnieją (=1) i mają części wspólne.
Zbiory p i q nie są rozłączne, żaden ze zbiorów nie zawiera się w drugim.
stąd:
Y=p+q = p*q + p*~q + ~p*q
Definicja spójnika “i”(*) w zbiorach w logice ujemnej (bo ~Y)
B.
~Y=~p*~q
Co matematycznie oznacza:
~Y=1 <=> ~p=1 i ~q=1
Zauważmy, że oba diagramy razem opisują zdanie Y=p+q w kompletnej dziedzinie, czyli mamy odpowiedź zarówno na pytanie kiedy dotrzymam słowa (Y), jak również odpowiedź na pytanie kiedy skłamię (~Y).
5.2.2
Symboliczna definicja operatora OR:
Kod: |
Dotrzymam słowa Y, logika dodatnia bo Y
W: Y=p+q = p*q+p*~q+~p*q
A: p* q= Y
B: p*~q= Y
C: ~p* q= Y
.. a kiedy skłamię?
Przejście do logiki ujemnej poprzez
negacje zmiennych i wymianę spójników
Skłamię ~Y, logika ujemna bo ~Y
~Y=~p*~q
D: ~p*~q=~Y
|
Definicja spójnika „lub”(+) w logice dodatniej (bo Y):
Y = p+q = p*q + p*~q + ~p*q
Definicja spójnika „i”(*) w logice ujemnej (bo ~Y):
~Y=~p*~q
Związek logiki dodatniej i ujemnej:
Y=~(~Y) - prawo podwójnego przeczenia
Podstawiając W i D mam prawo de’Morgana:
p+q = ~(~p*~q)
Jak widzimy wyżej operator OR nie jest tworem jednorodnym. Operator OR to złożenie spójnika „lub”(+) w logice dodatniej (bo Y) ze spójnikiem „i”(*) w logice ujemnej (bo ~Y).
5.2.3
Dla kodowania zgodnego ze zdaniem wypowiedzianym W otrzymujemy tabelę zero-jedynkową operatora OR.
W: Y=p+q
stąd:
p=1, ~p=0
q=1, ~q=0
Y=1, ~Y=0
Kod: |
p q Y=p+q
A: 1 1 =1
B: 1 0 =1
C: 0 1 =1
D: 0 0 =0
1 2 3
|
Gdzie:
+ - symbol spójnika „lub”(+) opisujący wyłącznie obszar ABC123 w powyższej tabeli.
Symbol „+” nie jest operatorem logicznym, bo ten opisany jest przez wszystkie cztery linie powyższej tabeli.
Dla kodowania zgodnego ze zdaniem wypowiedzianym D otrzymujemy tabelę zero-jedynkową operatora AND.
D: ~Y = ~p*~q
stąd:
~p=1, p=0
~q=1, q=0
~Y=1, Y=0
Kod: |
~p ~q ~Y=~p*~q
A: 0 0 =0
B: 0 1 =0
C: 1 0 =0
D: 1 1 =1
1 2 3
|
Gdzie:
* - symbol spójnika „i”(*) opisujący wyłącznie linię D123 w powyższej tabeli.
Symbol „*” nie jest operatorem logicznym, bo ten opisany jest przez wszystkie cztery linie powyższej tabeli.
5.2.4
Kompletną tabelę zero-jedynkową operatora OR opisuje:
1.
Układ równań logicznych:
Y=p+q
~Y=~p*~q
Dowód:
Negujemy wszystkie zmienne (bez zmiany spójników) i otrzymujemy definicję operatora AND:
~Y=~p+~q
Y=p*q
To jest oczywiście pełna definicja operatora AND, co zobaczymy za chwilę
cnd
ALBO
2.
Prawo de’Morgana dla operatora OR:
Y = p+q = ~(~p*~q)
Negujemy zmienne wejściowe p i q:
Y = ~p+~q = ~(p*q)
Negujemy wyjście Y:
~Y = ~(~p+~q) = p*q
To jest prawo de’Morgana dla operatora AND, co zobaczymy za chwilę.
cnd
Przy okazji mamy dowód iż operatora AND jest logiką ujemną w stosunku do OR (bo ~Y), albo odwrotnie.
5.2.5
Zauważmy, że opis operatora OR w tej postaci:
Kod: |
p q Y=p+q
A: 1 1 =1
B: 1 0 =1
C: 0 1 =1
D: 0 0 =0
1 2 3
|
Jest jednoznacznym opisem bo to jest dwuelementowa algebra Boole’a gdzie mamy do dyspozycji wyłącznie 0 i 1.
Jeśli równanie:
Y=p+q
Opisuje na mocy definicji znaczka „+” wyłącznie obszar ABC123, to pozostałe kombinacje p i q muszą mieć w wyniku zero.
Opis powyższy jest wiec poprawny matematycznie (bo jednoznaczny) pod warunkiem, iż zdajemy sobie sprawę co dokładnie oznacza znaczek „+” w powyższej tabeli.
Wykluczone jest, aby znaczek „+” opisywał wszystkie cztery linie powyższej tabeli, bo negujemy wszystkie zmienne wejściowe p i q oraz wyjście Y i nie otrzymujemy operatora AND - prawo de’Morgana w leży w gruzach.
Mamy:
Y=p+q
Negujemy wszystkie zmienne:
~Y=~p+~q
Oczywiście nie jest to równanie opisujące operator AND.
cnd
5.2.6
Przykład:
Jutro pójdę do kina lub do teatru
Y=K+T
Y=1 <=> K=1 lub T=1
... a kiedy skłamię?
Przejście do logiki ujemnej poprzez negację zmiennych i wymianę spójników:
~Y=~K*~T
Skłamię (~Y=1) wtedy i tylko wtedy gdy jutro nie pójdę do kina (~K=1) i nie pójdę do teatru (~T=1)
~Y=~K*~T
~Y=1 <=> ~K=1 i ~T=1
Czytamy:
~Y=1 - prawdą jest (=1) że skłamię (~Y), jeśli jutro niepójdę do kina (~K=1) i nie pójdę do teatru (~T=1)
~K=1 - prawdą jest (=1), że wczoraj nie byłem w kinie (~K)
Definicja operatora logicznego:
Operator logiczny to analiza zdania przez wszystkie możliwe przeczenia p i q
Pełna definicja spójnika „lub”(+):
Y= p+q = p*q + p*~q +~p*q
Dla naszego zdania mamy:
W.
Jutro pójdę do kina lub do teatru
Y=K+T - logika dodatnia (bo Y)
Zdanie wypowiedziane W znaczy dokładnie to samo co:
Y=K*T + K*~T + ~K*T
Dotrzymam słowa (Y=1) wtedy i tylko wtedy gdy:
A: K*T=1*1=1 - jutro pójdę do kina (K=1) i do teatru (T=1)
lub
B: K*~T=1*1=1 - jutro pójdę do kina (K=1) i nie pójdę do teatru (~T=1)
lub
C: ~K*T=1*1=1 - jutro nie pójdę do kina (~K=1) i pójdę do teatru (T=1)
... a kiedy skłamię?
Przejście ze zdaniem W do logiki ujemnej (bo ~Y)
~Y=~K*~T
Skłamię (~Y=1) wtedy i tylko wtedy gdy:
D: ~K*~T=1*1=1 - jutro nie pójdę do kina (~K=1) i nie pójdę do teatru (~T=1)
5.2.7
Świat zdeterminowany
Świat zdeterminowany to świat w którym znamy z góry wartości logiczne zmiennych p i q
Załóżmy że jest już pojutrze i nie byliśmy w kinie (~K=1) oraz byliśmy w teatrze (T=1), czyli dotrzymaliśmy słowa (Y=1):
Y=~K*T
Mamy świat zdeterminowany, gdzie znamy z góry wartości wszystkich zmiennych:
~K=1, K=0
T=1, ~T=0
Y=1, ~Y=0
5.2.8
Definicja operatora logicznego:
Operator logiczny to odpowiedź układu na wszystkie możliwe przeczenia p i q
stąd:
Kod: |
K* T= 0*1=0
K*~T= 0*0=0
~K* T= 1*1=1
~K*~T= 1*0=0
|
5.2.9
Doskonale widać działanie prawa Sowy:
W świecie totalnie zdeterminowanym, gdzie znamy z góry wartości logiczne p i q, dowolny operator logiczny ulega redukcji do operatora AND.
Jedyne zdanie prawdziwe dla naszego świata zdeterminowanego:
Wczoraj nie byłem w kinie i byłem w teatrze
Y=~K*T=1*1=1
Wszelkie inne formy zdaniowe będą w tym przypadku fałszywe.
5.3 Operator AND w zbiorach
5.3.1
Operator AND w zbiorach
Operator AND to złożenie spójnika „i”(*) w logice dodatniej (bo Y) ze spójnikiem „lub”(+) w logice ujemnej (bo ~Y).
Definicja spójnika „i”(*) w zbiorach w logice dodatniej (bo Y):
A.
Y=p*q
Y=1 <=> p=1 i q=1
Definicja spójnika „lub”(+) w logice ujemnej (bo ~Y):
B.
~Y=~p+~q
~Y=1 <=> ~p=1 lub ~q=1
Definicja równoważna na podstawie powyższego diagramu:
B1.
~Y=~p*~q + ~p*q + p*~q
~Y=1 <=> (~p=1 i ~q=1) lub (~p=1 i q=1) lub (p=1 i ~q=1)
Wszystkie zbiory istnieją (=1) i mają części wspólne.
Zbiory ~p i ~q nie są rozłączne, żaden ze zbiorów nie zawiera się w drugim.
stąd:
~Y=~p+~q =~p*~q + ~p*q + p*~q
Zauważmy, że oba diagramy razem opisują zdanie Y=p*q w kompletnej dziedzinie, czyli mamy odpowiedź zarówno na pytanie kiedy dotrzymam słowa (Y), jak również odpowiedź na pytanie kiedy skłamię (~Y).
5.3.2
Symboliczna definicja operatora AND:
Kod: |
Dotrzymam słowa Y, logika dodatnia bo Y
Y=p*q
A: p* q= Y
.. a kiedy skłamię?
Przejście do logiki ujemnej poprzez
negację zmiennych i wymianę spójników
Skłamię ~Y, logika ujemna bo ~Y
E: ~Y=~p+~q = ~p*~q+~p*q+p*~q
B: ~p*~q=~Y
C. ~p* q=~Y
D: p*~q=~Y
|
Związek logiki dodatniej i ujemnej:
Y=~(~Y) - prawo podwójnego przeczenia
Podstawiając A i E mam prawo de’Morgana:
p*q = ~(~p+~q)
Jak widzimy wyżej operator AND nie jest tworem jednorodnym. Operator OR to złożenie spójnika „i”(*) w logice dodatniej (bo Y) ze spójnikiem „lub”(+) w logice ujemnej (bo ~Y).
5..3.3
Dla kodowania zgodnego ze zdaniem wypowiedzianym A otrzymujemy tabelę zero-jedynkową operatora AND.
A: Y=p*q
stąd:
p=1, ~p=0
q=1, ~q=0
Y=1, ~Y=0
Kod: |
p q Y=p*q
A: 1 1 =1
B: 0 0 =0
C: 0 1 =0
D: 1 0 =0
1 2 3
|
Gdzie:
* - symbol spójnika „i”(*) opisujący wyłącznie linię A123 w powyższej tabeli.
Symbol „*” nie jest operatorem logicznym, bo ten opisany jest przez wszystkie cztery linie powyższej tabeli.
Dla kodowania zgodnego ze zdaniem wypowiedzianym E otrzymujemy tabelę zero-jedynkową operatora OR.
E: ~Y = ~p+~q
stąd:
~p=1, p=0
~q=1, q=0
~Y=1, Y=0
Kod: |
~p ~q ~Y=~p+~q
A: 0 0 =0
B: 1 1 =1
C: 1 0 =1
D: 0 1 =1
1 2 3
|
Gdzie:
+ - symbol spójnika „lub”(+) opisujący wyłącznie obszar BCD123 w powyższej tabeli.
Symbol „+” nie jest operatorem logicznym, bo ten opisany jest przez wszystkie cztery linie powyższej tabeli.
5.3.4
Kompletną tabelę zero-jedynkową operatora AND opisuje:
1.
Układ równań logicznych:
Y=p*q
~Y=~p+~q
Dowód:
Negujemy wszystkie zmienne (bez zmiany spójników) i otrzymujemy definicję operatora AND:
~Y=~p*~q
Y=p+q
To jest oczywiście pełna definicja operatora OR.
cnd
ALBO
2.
Prawo de’Morgana dla operatora AND:
Y = p*q = ~(~p+~q)
Negujemy zmienne wejściowe p i q:
Y = ~p*~q = ~(p+q)
Negujemy wyjście Y:
~Y = ~(~p*~q) = p+q
To jest prawo de’Morgana dla operatora OR.
cnd
Przy okazji mamy dowód iż operatora OR jest logiką ujemną w stosunku do AND (bo ~Y), albo odwrotnie.
5.3.5
Zauważmy, że opis operatora AND w tej postaci:
Kod: |
p q Y=p*q
A: 1 1 =1
B: 0 0 =0
C: 0 1 =0
D: 1 0 =0
1 2 3
|
Jest jednoznacznym opisem bo to jest dwuelementowa algebra Boole’a gdzie mamy do dyspozycji wyłącznie 0 i 1.
Jeśli równanie:
Y=p*q
Opisuje na mocy definicji znaczka „*” wyłącznie jedną linię A123, to pozostałe kombinacje p i q muszą mieć w wyniku zero.
Opis powyższy jest wiec poprawny matematycznie (bo jednoznaczny) pod warunkiem, iż zdajemy sobie sprawę co dokładnie oznacza znaczek „*” w powyższej tabeli.
Wykluczone jest, aby znaczek „*” opisywał wszystkie cztery linie powyższej tabeli, bo negujemy wszystkie zmienne wejściowe p i q oraz wyjście Y i nie otrzymujemy operatora OR - prawo de’Morgana w leży w gruzach.
Mamy:
Y=p*q
Negujemy wszystkie zmienne:
~Y=~p*~q
Oczywiście nie jest to równanie opisujące operator OR.
cnd
5.3.6
Przykład:
A.
Jutro pójdę do kina i do teatru
Y=K*T
Y=1 <=> K=1 i T=1
co matematycznie oznacza:
A.
Dotrzymam słowa (Y=1) wtedy i tylko wtedy gdy jutro pójdę do kina (K=1) i do teatru (T=1)
Y=K*T
Y=1 <=> K=1 i T=1
... a kiedy skłamię?
Przejście do logiki ujemnej poprzez negację zmiennych i wymianę spójników:
~Y=~K+~T
E.
Skłamię (~Y=1) wtedy i tylko wtedy gdy jutro nie pójdę do kina (~K=1) lub nie pójdę do teatru (~T=1)
~Y=~K+~T
~Y=1 <=> ~K=1 lub ~T=1
Czytamy:
~Y=1 - prawdą jest (=1) że skłamię (~Y)
~K=1 - prawdą jest (=1), że wczoraj nie byłem w kinie (~K)
Definicja operatora logicznego:
Operator logiczny to analiza zdania przez wszystkie możliwe przeczenia p i q
Analiza matematyczna:
A.
Dotrzymam słowa (Y=1) wtedy i tylko wtedy gdy jutro pójdę do kina (K=1) i do teatru (T=1)
Y=K*T
Y=1 <=> K=1 i T=1
Pełna definicja spójnika „lub”(+) w logice ujemnej (bo ~Y):
~Y = ~p*~q + ~p*q + q*~p
Dla naszego zdania E mamy:
E.
~Y = ~K*~T + ~K*T + K*~T
Skłamię (~Y=1) wtedy i tylko wtedy gdy:
A: ~K*~T=1*1=1 - jutro nie pójdę do kina (~K=1) i nie pójdę do teatru (~T=1)
lub
B: ~K*T=1*1=1 - jutro nie pójdę do kina (~K=1) i pójdę do teatru (T=1)
lub
C: K*~T=1*1=1 - jutro pójdę do kina (K=1) i nie pójdę do teatru (~T=1)
5.3.7
Świat zdeterminowany
Świat zdeterminowany to świat w którym wartości logiczne p i q są z góry znane.
Załóżmy że jest już pojutrze i nie byliśmy w kinie (~K=1) oraz byliśmy w teatrze (T=1), czyli skłamaliśmy (~Y=1):
~Y=~K*T
Mamy teraz świat zdeterminowany, gdzie znamy z góry wartości wszystkich zmiennych:
~K=1, K=0
T=1, ~T=0
~Y=1, Y=0
5.3.8
Definicja operatora logicznego:
Operator logiczny to odpowiedź układu na wszystkie możliwe przeczenia p i q
stąd:
Kod: |
K* T= 0*1=0
~K*~T= 1*0=0
~K* T= 1*1=1
K*~T= 0*0=0
|
5.3.9
Doskonale widać działanie prawa Sowy:
W świecie totalnie zdeterminowanym, gdzie znamy z góry wartości logiczne p i q, dowolny operator logiczny ulega redukcji do operatora AND.
Jedyne zdanie prawdziwe dla naszego świata zdeterminowanego:
Skłamałem (~Y=1) bo wczoraj nie byłem w kinie (~K=1) i byłem w teatrze (T=1)
~Y=~K*T=1*1=1
Wszelkie inne formy zdaniowe będą w tym przypadku fałszywe.
5.4 Minimalizacja funkcji logicznych
5.4.1
Definicja spójnika „i” (*) - koniunkcji.
Iloczyn logiczny (spójnik „i”(*) ) n-zmiennych binarnych jest równy 1 wtedy i tylko wtedy gdy wszystkie zmienne są równe 1
Y = (A1*A2*...An)=1 <=> A1=1 i A2=1 i ...An=1
Dla dwóch zmiennych p i q mamy:
Y=p*q
Co matematycznie oznacza:
Y=1 <=> p=1 i q=1
5.4.2
Definicja spójnika „lub”(+) - alternatywy
Suma logiczna (spójnik „lub”(+) ) n-zmiennych binarnych jest równa 1 wtedy i tylko wtedy gdy którakolwiek zmienna jest równa 1
Y = (A1+A2+...An)=1 <=> A1=1 lub A2=1 lub ... An=1
Dla dwóch zmiennych p i q mamy:
Y=p+q
Co matematycznie oznacza:
Y=1 <=> p=1 lub q=1
5.4.3
Najważniejsze prawa algebry Kubusia wynikające z powyższych definicji
Spójnik „i”(*):
1*1 =1
1*0 =0
p*1 =p
p*0 =0
p*p =p
p*~p=0
Spójnik „lub”(+):
1+1 =1
1+0 =1
p+0 =p
p+1 =1
p+p =p
p+~p =1
Fundament algebry Kubusia:
p*~p =0
p+~p =1
5.4.4
Przydatne prawa dodatkowe
Łączność:
p+(q+r) = (p+q)+r
p*(q*r)=(p*q)*r
Przemienność:
p+q=q+r
p*q=q*r
Mnożenie logiczne wielomianów:
(p+q)*(r+s) = p*r+p*s+q*r+q*s
Wyciąganie zmiennej przed nawias:
p*q+p*r = p*(q+r)
Powyższe prawa plus prawo przejścia do logiki przeciwnej są wystarczające do minimalizacji wszelkich funkcji logicznych.
5.4.5
Zmienna binarna:
Zmienna binarna (wejście cyfrowe w układzie logicznym) to zmienna mogąca przyjmować w osi czasu wyłącznie dwie wartości 0 albo 1.
Przykłady zmiennych binarnych:
p, q
5.4.6
Funkcja logiczna:
Funkcja logiczna (Y - wyjście cyfrowe w układzie logicznym) to funkcja n-zmiennych binarnych połączonych spójnikami „i”(*) albo „lub”(+) mogąca w osi czasu przyjmować wyłącznie 0 albo 1 w zależności od aktualnej wartości zmiennych binarnych.
Y - funkcja logiczna
Przykład:
Y=p*q+p*~q+~p*q
5.4.7
Definicja logiki dodatniej i ujemnej w operatorach OR i AND:
Funkcja logiczna ze spójnikami „i”(*) oraz „lub”(+) zapisana jest w logice dodatniej, gdy nie jest zanegowana
Y - logika dodatnia, dotrzymam słowa (wystąpi prawda)
~Y - logika ujemna, skłamię (wystąpi fałsz)
5.4.8
Prawo przejścia do logiki przeciwnej (prawo przedszkolaka):
Negujemy zmienne i wymieniamy spójniki logiczne na przeciwne
Przykład:
Y=p+q(r*s)
Uzupełniamy nawiasy i operatory:
Y=p+[q*(r+s)] - logika dodatnia bo Y
Przejście do logiki ujemnej:
~Y=~p*[~q+(~r*~s)] - logika ujemna bo ~Y
Przykład minimalizacji funkcji logicznej:
Y = p+q = p*q + p*~q + ~p*q
Dowód tożsamości:
Y = p*q + p*~q + ~p*q = p(q+~q) + ~p*q = p*1 + ~p*q = p+~p*q
Wykorzystane prawa:
1. Wyciągniecie zmiennej p przed nawias
2. q+~q=1
3. p*1=p
Mamy:
Y=p+(~p*q)
Przejście do logiki ujemnej poprzez negacje zmiennych i wymianę spójników:
~Y = ~p*(p+~q) = p*~p + ~p*~q = 0 + ~p*~q = ~p*~q
Wykorzystane prawa
1. Przejście do logiki ujemnej
2. Mnożenie zmiennej ~p przez wielomian
3. p*~p=0
4. 0+x=x
Mamy funkcję minimalną w logice ujemnej (bo ~Y):
~Y=~p*~q
Przechodząc do logiki przeciwnej mamy funkcje minimalną w logice dodatniej (bo Y)
Y = p+q
cnd
Oczywiście układ równań minimalnych:
Y=p+q
~Y=~p*~q
to nic innego jak definicja operatora OR.
5.4.9
Metody minimalizacji funkcji logicznej
Nie warto zapamiętywać dziwnego dla człowieka prawa absorpcji i wszelkich innych praw logicznych poza wyżej poznanymi.
Absorpcja:
p*(p+q)=p
5.4.10
1.
Dowód z wykorzystaniem najprostszych praw logiki:
Y=p*(p+q)=p
Y=p*p+p*q = p+p*q = p*1 + p*q = p(1+q)=p*1 = p
Wykorzystane prawa:
Mnożenie wielomianu przez zmienną p
p*p=p
p=p*1
Wyciagnięcie zmiennej p przed nawias
1+q=1
p*1=p
cnd
5.4.11
2.
Dowód metodą rachunku zero-jedynkowego:
p*(p+q)=p
Kod: |
p q p+q p*(p+q)
1 1 =1 =1
1 0 =1 =1
0 1 =1 =0
0 0 =0 =0
|
Tożsamość kolumn pierwszej i ostatniej jest dowodem zachodzenia prawa absorpcji:
p*(p+q) = p
5.4.12
3.
Dowód metodą bramek logicznych (funkcji logicznej Y):
Y=p*(p+q)
Jeśli p=1 to Y=p*(p+q)= 1*(1+q)=1*1=1
Jeśli p=0 to Y=p*(p+q)=0*(p+q)=0
niezależnie od wartości q.
stąd:
Y=p*(p+q)=p
cnd
5.5 Równania logiczne dla operatora OR
Matematyczne fundamenty tworzenia równań algebry Kubusia dla dowolnej tabeli zero-jedynkowej.
5.5.1
Zero-jedynkowa definicja operatora OR:
Kod: |
p q Y=p+q
A: 1 1 =1
B: 1 0 =1
C: 0 1 =1
D: 0 0 =0
1 2 3
|
Twierdzenie Prosiaczka:
Równanie algebry Boole’a dla dowolnej tabeli zero-jedynkowej otrzymujemy opisując wyłącznie linie z tą samą wartością logiczną w wyniku.
5.5.2
Najprostsze równanie dla powyższej tabeli otrzymamy dla linii D123 bowiem mamy tu samotne zero.
D.
Y=0 <=> p=0 i q=0
Korzystając z prawa algebry Kubusia:
Jeśli p=0 to ~p=1
Sprowadzamy wszystkie zmienne do jedynek.
D.
~Y=1 <=> ~p=1 i ~q=1
Definicja spójnika „i”.
Iloczyn logiczny (spójnik „i”(*) ) n-zmiennych binarnych jest równy 1 wtedy i tylko wtedy gdy wszystkie zmienne są równe 1
Y=p*q
Co matematycznie oznacza:
Y=1 <=> p=1 i q=1
Na mocy definicji spójnika „i”(*) mamy równanie:
D.
~Y=~p*~q
co matematycznie oznacza:
~Y=1 <=> ~p=1 i ~q=1
To równanie opisuje wyłącznie obszar D123.
5.5.3
Prawo przejście do logiki przeciwnej:
Negujemy zmienne i wymieniamy spójniki logiczne na przeciwne
Przechodzimy z równaniem D do logiki przeciwnej otrzymując:
Y=p+q
co matematycznie oznacza:
Y=1 <=> p=1 lub q=1
To równanie opisuje wyłącznie obszar ABC123.
Zauważmy, że mamy tu 100% zgodność z definicją spójnika „lub”(+), opisującego wyłącznie obszar ABC123.
Definicja spójnika „lub”(+)
Suma logiczna (spójnik „lub”(+) ) n-zmiennych binarnych jest równa 1 wtedy i tylko wtedy gdy którakolwiek zmienna jest równa 1
Y=p+q
Co matematycznie oznacza:
Y=1 <=> p=1 lub q=1
5.5.4
Równoważną definicję spójnika „lub”(+) otrzymamy opisując same jedynki w definicji zero-jedynkowej.
Mamy spis z natury:
A: Y=1 <=> p=1 i q=1
lub
B: Y=1 <=> p=1 i q=0
lub
C: Y=1 <=> p=0 i q=1
Sprowadzamy wszystkie zmienne do jedynek korzystając z prawa algebry Kubusia:
Jeśli p=0 to ~p=1
A: Y=1 <=> p=1 i q=1
lub
B: Y=1 <=> p=1 i ~q=1
lub
C: Y=1 <=> ~p=1 i q=1
Stąd mamy równoważną definicję spójnika „lub”(+):
Y=p*q + p*~q + ~p*q
Co matematycznie oznacza:
Y=1 <=> (p=1 i q=1) lub (p=1 i ~q=1) lub (~p=1 i q=1)
Równanie to opisuje wyłącznie obszar ABC123 w powyższej tabeli.
5.5.5
Oczywiście zachodzi tożsamość matematyczna:
Y = p+q = p*q + p*~q + ~p*q
Stąd:
5.5.6
Symboliczna definicja operatora OR:
Kod: |
Dotrzymam słowa Y, logika dodatnia bo Y
W: Y=p+q = p*q+p*~q+~p*q
A: p* q= Y
B: p*~q= Y
C: ~p* q= Y
.. a kiedy skłamię?
Przejście do logiki ujemnej poprzez
negacje zmiennych i wymianę spójników
Skłamię ~Y, logika ujemna bo ~Y
D:~Y=~p*~q
D: ~p*~q=~Y
1 2 3
|
5.5.7
Związek logiki dodatniej i ujemnej:
Y=~(~Y) - prawo podwójnego przeczenia
Podstawiając W i D mam prawo de’Morgana:
Y = p+q = ~(~p*~q)
5.5.8
Z techniki dochodzenia do symbolicznej definicji operatora OR wynika, iż wszystkie zmienne sprowadzone są tu do jedynek, zaś cała logika jest totalnie symboliczna bez związku z bezwzględnymi zerami czy też jedynkami.
Zero-jedynkowe definicje operatorów logicznych otrzymujemy dopiero po przyjęciu konkretnego punktu odniesienia.
5.5.9
Definicja:
W dowolnej tabeli zero-jedynkowej punktem odniesienia jest nagłówek tabeli.
5.5.10
Symboliczna definicja operatora OR i jej związek z tabelami zero-jedynkowymi:
Kod: |
Definicja |Zmienne| || |Definicja
Symboliczna |do 1 | || |Symboliczna
Dotrzymam slowa| |Logika ||Logika |Dotrzymam słowa
bo Y | |dodatnia bo Y||ujemna bo ~Y |bo Y
Y=p+q | |Operator OR ||Operator AND |Y=p+q
Y=p*q+p*~q+~p*q| | || |Y=p*q+p*~q+~p*q
---------------|-------|-------------||--------------|-----------|-----
p q= Y |1 1=1 | p q= Y=p+q ||~p ~q ~Y=~p*~q|~p ~q=~Y |1 1=1
---------------|-------|-------------||--------------|-----------|-----
A: p* q= Y |1*1=1 | 1 1= 1 || 0 0 =0 | p* q= Y |1*1=1
B: p*~q= Y |1*1=1 | 1 0= 1 || 0 1 =0 | p*~q= Y |1*1=1
C: ~p* q= Y |1*1=1 | 0 1= 1 || 1 0 =0 |~p* q= Y |1*1=1
Sklamię bo ~Y | | || |Sklamię bo ~Y
D: ~p*~q=~Y |1*1=1 | 0 0= 0 || 1 1 =1 |~p*~q=~Y |1*1=1
1 2 3 |4 5 6 | 7 8 9 || a b c | d e f |g h i
Punkt odniesienia to zawsze nagłówek tabeli zero-jedynkowej
|p=1, ~p=1 ||~p=1, p=0 |
|q=1, ~q=0 ||~q=1, q=0 |
|Y=1, ~Y=0 ||~Y=1, Y=0 |
|
Zauważmy, że tabele symboliczne po obu stronach znaku || są identyczne i nie zależą od zer i jedynek.
5.5.11
Tworzenie tabeli zero-jedynkowej z definicji symbolicznej:
W nagłówku tabeli zero-jedynkowej umieszczamy punkt odniesienia, po czym kodujemy tabelę symboliczną zgodnie z przyjętym punktem odniesienia podstawiając:
Lewa strona znaku ||:
p=1, ~p=0
q=1, ~q=0
Y=1, ~Y=0
Prawa strona znaku ||:
~p=1, p=0
~q=1, q=0
~Y=1, Y=0
5.5.12
Tworzenie definicji symbolicznej z tabeli zero-jedynkowej:
A.
Lewa strona znaku ||:
Linia przykładowa B789:
Spis z natury względem punktu odniesienia, nagłówka tabeli:
Y=1 <=> p=1 i q=0
sprowadzamy zmienne do jedynek korzystając z prawa algebry Kubusia:
Jeśli q=0 to ~q=1
Y=1 <=> p=1 i ~q=1
stąd równanie algebry Kubusia dla tej linii:
p*~q =Y
co odpowiada linii B123 w tabeli symbolicznej.
5.5.13
Metoda uproszczona:
1.
Jeśli w tabeli zero-jedynkowej mamy 1 to przepisujemy nagłówek tabeli
2.
Jeśli w tabeli zero-jedynkowej mamy 0 to przepisujemy zanegowany nagłówek tabeli
Dla naszej linii B123 mamy od razu końcowe równanie:
Kod: |
p q Y
1 0 =1 /p*~q=Y
|
5.5.14
B.
Prawa strona znaku ||:
Linia przykładowa Babc:
Spis z natury względem punktu odniesienia, nagłówka tabeli:
~Y=0 <=> ~p=0 i ~q=1
sprowadzamy zmienne do jedynek korzystając z prawa algebry Kubusia:
Jeśli ~p=0 to p=1
Y=1 <=> p=1 i ~q=1
stąd równanie algebry Kubusia dla tej linii:
p*~q =Y
co odpowiada linii Bdef w tabeli symbolicznej.
5.5.15
Metoda uproszczona:
1.
Jeśli w tabeli zero-jedynkowej mamy 1 to przepisujemy nagłówek tabeli
2.
Jeśli w tabeli zero-jedynkowej mamy 0 to przepisujemy zanegowany nagłówek tabeli
Dla naszej linii Babc mamy od razu końcowe równanie:
Kod: |
~p ~q ~Y
0 1 =0 /p*~q=Y
|
Zauważmy, że tabele symboliczne po obu stronach znaku || są identyczne i nie zależą od tabel zero-jedynkowych. To tabele zero-jedynkowe powstają z definicji symbolicznych w zależności od przyjętego punktu odniesienia.
5.5.16
Wnioski:
1.
Algebra Kubusia jest totalnie symboliczna, niezależna od bezwzględnych zer i jedynek.
Taka musi być poprawna logika matematyczna!
2.
Po lewej stronie znaku || istotny jest spójnik „lub”(+) w logice dodatniej (bo Y) o definicji symbolicznej w obszarze ABC123, odpowiadający na pytanie kiedy zajdzie Y (dotrzymam słowa). Resztę wywalamy w kosmos i będziemy pomijać w dalszych analizach!
3.
Po prawej stronie znaku || istotny jest spójnik „i”(*) w logice ujemnej (bo ~Y) o definicji symbolicznej w linii Ddef, odpowiadający na pytanie kiedy zajdzie ~Y (skłamię). Resztę wywalamy w kosmos i będziemy pomijać w dalszych analizach!
5.5.1 Operator OR w bramkach logicznych
Prawo de’Morgana
Y=p+q = ~(~p*~q)
Z prawa de’Morgana wynika układ zastępczy bramki OR w technice cyfrowych układów logicznych:
Negujemy wejścia p i q oraz wyjście Y bramki AND, otrzymując bramkę OR.
Doświadczenie
Zbudować poniższy układ logiczny i sprawdzić zgodność świata fizycznego z tabelami zero-jedynkowymi operatora OR przedstawionymi wyżej.
Z punktu widzenia świata zewnętrznego nie jesteśmy w stanie odróżnić który układ logiczny jest fizycznie zrealizowany, bowiem oba układy, po lewej i prawej stronie, dają identyczną tabele zero-jedynkową operatora OR.
Oczywiście dla wejścia p i q oraz wyjścia:
Y=p+q = ~(~p*~q)
Zero-jedynkowa definicja bramki OR (operatora OR):
Kod: |
p q Y=p+q |~p ~q ~Y=~p*~q |Definicja symboliczna operatora OR
A: 1 1 =1 | 0 0 =0 | p* q = Y
B: 1 0 =1 | 0 1 =0 | p*~q = Y
C: 0 1 =1 | 1 0 =0 |~p* q = Y
D: 0 0 =0 | 1 1 =1 |~p*~q =~Y
1 2 3 | 4 5 6
|
Jak widzimy odpowiedź na pytanie:
Kiedy dotrzymam słowa?
Y=1 /obszar ABC123
Mamy w punkcie odniesienia: Y=p+q
Natomiast odpowiedź na pytanie:
Kiedy skłamię?
~Y=1 /linia D456
Mamy w punkcie odniesienia: ~Y=~p*~q
W laboratorium techniki cyfrowej wymuszamy na wejściach p i q dowolne zera i jedynki przełącznikami. Próbnikiem stanów logicznych sprawdzamy zgodność rzeczywistości z tabelami zero-jedynkowymi wyżej.
Znaczenie światełek w próbniku stanów logicznych:
0 - zielona dioda świecąca LED
1 - czerwona dioda świecąca LED
Pewne jest, że algebra Kubusia ma 100% pokrycie w teorii i praktyce bramek logicznych.
5.6 Równania logiczne dla operatora AND
5.6.1
Zero-jedynkowa definicja operatora AND:
Kod: |
p q Y=p*q
A: 1 1 =1
B: 1 0 =0
C: 0 1 =0
D: 0 0 =0
1 2 3
|
Twierdzenie Prosiaczka:
Równanie algebry Boole’a dla dowolnej tabeli zero-jedynkowej otrzymujemy opisując wyłącznie linie z tą samą wartością logiczną w wyniku.
5.6.2
Najprostsze równanie dla powyższej tabeli otrzymamy dla linii A bowiem mamy tu samotną jedynkę.
A.
Y=1 <=> p=1 i q=1
Definicja spójnika „i”.
Iloczyn logiczny (spójnik „i”(*) ) n-zmiennych binarnych jest równy 1 wtedy i tylko wtedy gdy wszystkie zmienne są równe 1
Y=p*q
Co matematycznie oznacza:
Y=1 <=> p=1 i q=1
Jak widzimy, na mocy definicji spójnika „i”(*) w równaniu A możemy usunąć bezwzględne jedynki otrzymując równanie algebry Kubusia opisujące powyższą tabelę zero-jedynkową.
Mamy zatem:
A.
Y=p*q
co matematycznie oznacza:
Y=1 <=> p=1 i q=1
To równanie opisuje wyłącznie linię A123 w powyższej tabeli
5.6.3
Prawo przejście do logiki przeciwnej:
Negujemy zmienne i wymieniamy spójniki logiczne na przeciwne
W tym przypadku „i”(*) na „lub”(+).
Przechodzimy z równaniem A do logiki przeciwnej otrzymując:
B1.
~Y=~p+~q
co matematycznie oznacza:
~Y=1 <=> ~p=1 lub ~q=1
To równanie opisuje obszar BCD123 w powyższej tabeli
5.6.4
Równanie równoważne do B1 otrzymamy z obszaru BCD123 gdzie mamy zera w wyniku:
Mamy spis z natury:
1.
B: Y=0 <=> p=0 i q=0
lub
C: Y=0 <=> p=0 i q=1
lub
D: Y=0 <=> p=1 i q=0
Sprowadzamy wszystkie zmienne do jedynek korzystając z prawa algebry Kubusia:
Jeśli p=0 to ~p=1
2.
B: ~Y=1 <=> ~p=1 i ~q=1
lub
C: ~Y=1 <=> ~p=1 i q=1
lub
D: ~Y=1 <=> p=1 i ~q=1
Definicja spójnika „i”(*)
Iloczyn logiczny (spójnik „i”(*)) jest równy 1 wtedy i tylko wtedy gdy wszystkie zmienne są równe 1
Y=p*q
co matematycznie oznacza:
Y=1 <=> p=1 i q=1
Na mocy tej definicji w liniach możemy zapisać równania Kubusia:
3.
B:
~Y = ~p*~q
co matematycznie oznacza:
~Y=1 <=> ~p=1 i ~q=1
lub
C:
~Y = ~p*q
co matematycznie oznacza:
~Y=1 <=> ~p=1 i q=1
lub
D:
~Y=p*~q
co matematycznie oznacza:
~Y=1 <=> p=1 i ~q=1
Definicja spójnika „lub”(+):
Suma logiczna (spójnik „lub”(+)) jest równa 1 wtedy i tylko wtedy gdy którakolwiek zmienna jest równa 1
Y=p+q
co matematycznie oznacza:
Y=1 <=> p=1 lub q=1
Na mocy tej definicji linie BCD123 możemy zapisać w jednym równaniu logicznym:
4.
~Y=~p*~q + ~p*q + p*~q
Co matematycznie oznacza:
~Y=1 <=> (~p=1 i ~q=1) lub (~p=1 i q=1) lub (p=1 i ~q=1)
5.6.5
Oczywiście matematycznie zachodzi:
~Y=~Y
stąd pełna definicja spójnika „lub”(+) w logice ujemnej (bo ~Y):
~Y = ~p+~q = ~p*~q + ~p*q + p*~q
To równanie opisuje wyłącznie obszar BCD123 w tabeli zero-jedynkowej
Stąd:
5.6.6
Symboliczna definicja operatora AND:
Kod: |
Dotrzymam słowa Y, logika dodatnia bo Y
Y=p*q
A: p* q= Y
.. a kiedy skłamię?
Przejście do logiki ujemnej poprzez
negację zmiennych i wymianę spójników
Skłamię ~Y, logika ujemna bo ~Y
U: ~Y=~p+~q = ~p*~q+~p*q+p*~q
B: ~p*~q=~Y
C. ~p* q=~Y
D: p*~q=~Y
|
5.6.7
Związek logiki dodatniej i ujemnej:
Y=~(~Y) - prawo podwójnego przeczenia
Podstawiając A i U mam prawo de’Morgana:
Y = p*q = ~(~p+~q)
5.6.8
Z techniki dochodzenia do symbolicznej definicji operatora AND wynika, iż wszystkie zmienne sprowadzone są tu do jedynek, zaś cała logika jest totalnie symboliczna bez związku z bezwzględnymi zerami czy też jedynkami.
Zero-jedynkowe definicje operatorów logicznych otrzymujemy dopiero po przyjęciu konkretnego punktu odniesienia.
5.6.9
Definicja:
W dowolnej tabeli zero-jedynkowej punktem odniesienia jest nagłówek tabeli.
5.6.10
Symboliczna definicja operatora OR i jej związek z tabelami zero-jedynkowymi:
Kod: |
Definicja |Zmienne| || |Definicja
Symboliczna |do 1 | || |Symboliczna
Dotrzymam slowa| |Logika ||Logika |Dotrzymam słowa
bo Y | |dodatnia bo Y||ujemna bo ~Y |bo Y
Y=p*q | |Operator AND ||Operator OR |Y=p*q
---------------|-------|-------------||--------------|-----------|-----
p q= Y |1 1=1 | p q= Y=p*q ||~p ~q ~Y=~p+~q|~p ~q=~Y |1 1=1
---------------|-------|-------------||--------------|-----------|-----
A: p* q= Y |1*1=1 | 1 1= 1 || 0 0 =0 | p* q= Y |1*1=1
Sklamię bo ~Y | | || |Sklamię bo ~Y
U: ~Y=~p+~q = | | || |~Y=~p+~q =
~p*~q+~p*q+p*~q| | || |~p*~q+~p*q+p*~q
B: ~p*~q=~Y |1*1=1 | 0 0= 0 || 1 1 =1 |~p*~q=~Y |1*1=1
C: ~p* q=~Y |1*1=1 | 0 1= 0 || 1 0 =1 |~p* q=~Y |1*1=1
D: p*~q=~Y |1*1=1 | 1 0= 0 || 0 1 =1 | p*~q=~Y |1*1=1
1 2 3 |4 5 6 | 7 8 9 || a b c | d e f |g h i
Punkt odniesienia to zawsze nagłówek tabeli zero-jedynkowej
|p=1, ~p=1 ||~p=1, p=0 |
|q=1, ~q=0 ||~q=1, q=0 |
|Y=1, ~Y=0 ||~Y=1, Y=0 |
|
Zauważmy, że tabele symboliczne po obu stronach znaku || są identyczne i nie zależą od zer i jedynek.
5.6.11
Tworzenie tabeli zero-jedynkowej z definicji symbolicznej:
W nagłówku tabeli zero-jedynkowej umieszczamy punkt odniesienia, po czym kodujemy tabelę symboliczną zgodnie z przyjętym punktem odniesienia podstawiając:
Lewa strona znaku ||:
p=1, ~p=0
q=1, ~q=0
Y=1, ~Y=0
Prawa strona znaku ||:
~p=1, p=0
~q=1, q=0
~Y=1, Y=0
5.6.12
Tworzenie definicji symbolicznej z tabeli zero-jedynkowej:
A.
Lewa strona znaku ||:
Linia przykładowa C789:
Spis z natury względem punktu odniesienia, nagłówka tabeli:
Y=0 <=> p=0 i q=1
sprowadzamy zmienne do jedynek korzystając z prawa algebry Kubusia:
Jeśli p=0 to ~p=1
~Y=1 <=>~p=1 i q=1
stąd równanie algebry Kubusia dla tej linii:
~p*q =~Y
co odpowiada linii C123 w tabeli symbolicznej.
5.6.13
Metoda uproszczona:
1.
Jeśli w tabeli zero-jedynkowej mamy 1 to przepisujemy nagłówek tabeli
2.
Jeśli w tabeli zero-jedynkowej mamy 0 to przepisujemy zanegowany nagłówek tabeli
Dla naszej linii C123 mamy od razu końcowe równanie:
Kod: |
p q Y
0 1 =0 /~p*q=~Y
|
5.6.14
B.
Prawa strona znaku ||:
Linia przykładowa Cabc:
Spis z natury względem punktu odniesienia, nagłówka tabeli:
~Y=1 <=> ~p=0 i ~q=0
sprowadzamy zmienne do jedynek korzystając z prawa algebry Kubusia:
Jeśli ~q=0 to q=1
~Y=1 <=> ~p=1 i q=1
stąd równanie algebry Kubusia dla tej linii:
~p*q =~Y
co odpowiada linii Cdef w tabeli symbolicznej.
5.6.15
Metoda uproszczona:
1.
Jeśli w tabeli zero-jedynkowej mamy 1 to przepisujemy nagłówek tabeli
2.
Jeśli w tabeli zero-jedynkowej mamy 0 to przepisujemy zanegowany nagłówek tabeli
Dla naszej linii Cabc mamy od razu końcowe równanie:
Kod: |
~p ~q ~Y
1 0 =1 /~p*q=~Y
|
Zauważmy, że tabele symboliczne po obu stronach znaku || są identyczne i nie zależą od tabel zero-jedynkowych. To tabele zero-jedynkowe powstają z definicji symbolicznych w zależności od przyjętego punktu odniesienia.
5.6.16
Wnioski:
1.
Algebra Kubusia jest totalnie symboliczna, niezależna od bezwzględnych zer i jedynek.
Taka musi być poprawna logika matematyczna!
2.
Po lewej stronie znaku || istotny jest spójnik „i”(*) w logice dodatniej (bo Y) o definicji symbolicznej w linii A123, odpowiadający na pytanie kiedy zajdzie Y (dotrzymam słowa). Resztę wywalamy w kosmos i będziemy pomijać w dalszych analizach!
3.
Po prawej stronie znaku || istotny jest spójnik „lub”(+) w logice ujemnej (bo ~Y) o definicji symbolicznej w linii BCDdef, odpowiadający na pytanie kiedy zajdzie ~Y (skłamię). Resztę wywalamy w kosmos i będziemy pomijać w dalszych analizach!
Ostatnio zmieniony przez rafal3006 dnia Sob 6:57, 02 Cze 2012, w całości zmieniany 13 razy
|
|
Powrót do góry |
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 35368
Przeczytał: 20 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Śro 5:54, 09 Maj 2012 Temat postu: |
|
|
5.6.1 Operator AND w bramkach logicznych
Prawo de’Morgana:
Y=p*q = ~(~p+~q)
Z prawa de’Morgana wynika układ zastępczy bramki AND w technice cyfrowych układów logicznych:
Negujemy wejścia p i q oraz wyjście Y bramki OR otrzymując bramkę AND.
Doświadczenie
Zbudować poniższy układ logiczny i sprawdzić zgodność świata fizycznego z tabelami zero-jedynkowymi operatora AND przedstawionymi wyżej.
Z punktu widzenia świata zewnętrznego nie jesteśmy w stanie odróżnić który układ logiczny jest fizycznie zrealizowany, bowiem oba układy dają identyczną tabele zero-jedynkową operatora AND.
Oczywiście dla wejścia p i q oraz wyjścia:
Y=p*q = ~(~p+~q)
Zero-jedynkowa definicja bramki AND (operatora AND):
Kod: |
p q Y=p*q |~p ~q ~Y=~p+~q |Definicja symboliczna operatora AND
A: 1 1 =1 | 0 0 =0 | p* q = Y
B: 0 0 =0 | 1 1 =1 |~p*~q =~Y
C: 0 1 =0 | 1 0 =1 |~p* q =~Y
D: 1 0 =0 | 0 1 =1 | p*~q =~Y
1 2 3 | 4 5 6
|
Kompletna definicję operatora AND możemy obejrzeć w punkcie:
Y = p*q = ~(~p+~q)
Jak widzimy odpowiedź na pytanie:
Kiedy dotrzymam słowa?
Y=1 /linia A123
Mamy w punkcie odniesienia: Y=p*q
Natomiast odpowiedź na pytanie:
Kiedy skłamię?
~Y=1 /obszar BCD456
Mamy w punkcie odniesienia: ~Y=~p+~q
W laboratorium techniki cyfrowej wymuszamy na wejściach p i q dowolne zera i jedynki przełącznikami. Próbnikiem stanów logicznych sprawdzamy zgodność rzeczywistości z tabelami zero-jedynkowymi wyżej.
Znaczenie światełek w próbniku stanów logicznych:
0 - zielona dioda świecąca LED
1 - czerwona dioda świecąca LED
Pewne jest, że algebra Kubusia ma 100% pokrycie w teorii i praktyce bramek logicznych.
5.7 Osiem równań opisujących operator OR
Korzystamy z definicji symbolicznej operatora OR wyprowadzonej wyżej.
5.7.1
Symboliczna definicja operatora OR:
Kod: |
Dotrzymam słowa Y, logika dodatnia bo Y
W: Y=p+q = p*q+p*~q+~p*q
A: p* q= Y
B: p*~q= Y
C: ~p* q= Y
.. a kiedy skłamię?
Przejście do logiki ujemnej poprzez
negacje zmiennych i wymianę spójników
Skłamię ~Y, logika ujemna bo ~Y
D:~Y=~p*~q
D: ~p*~q=~Y
1 2 3
|
Definicja operatora OR w równaniach algebry Boole’a:
Y=p+q
~Y=p*q
5.7.2
Równania minimalne:
1.
Y=p+q
Przejście do logiki ujemnej poprzez negację zmiennych i wymianę operatorów na przeciwne:
2.
~Y=~p*~q
5.7.3
Dwa kolejne równania otrzymujemy negując dwustronnie 1 i 2
3.
~Y=~(p+q)
4.
Y=~(~p*~q)
5.7.4
Równoważna definicja spójnika „lub”(+):
5.
Y=(p*q)+(p*~q)+(~p*q)
Przejście do logiki ujemnej poprzez negację zmiennych i wymianę operatorów na przeciwne:
6.
~Y = (~p+~q)*(~p+q)*(p+~q)
5.7.5
Ostatnie dwa równania uzyskujemy negując dwustronnie 5 i 6.
7.
~Y = ~[(p*q)+(p*~q)+(~p*q)]
8.
Y = ~[(~p+~q)*(~p+q)*(p+~q)]
5.7.6
Ułóżmy to wszystko w tabeli.
Kodowanie zero-jedynkowe operatora OR:
Kod: |
Wszystkie możliwe równania algebry Kubusia dla operatora OR
Dotrzymam slowa: Y=1 |Sklamię: ~Y=1
1: Y=p+q |2: ~Y=~p*~q
4: Y=~(~p*~q) |3: ~Y=~(p+q)
5: Y=(p*q)+(p*~q)+(~p*q) |6: ~Y=~[(p*q)+(p*~q)+(~p*q)]
8: Y=~[(~p+~q)*(~p+q)*(p+~q)] |7: ~Y=(~p+~q)*(~p+q)*(p+~q)
------------------------------------------------------------
Definicja | |
Symboliczna | |
Operatora OR |Kodowanie zero-jedynkowe operatora OR
W: Y=p+q |Y=p*q+p*~q+~p*q | |
|p q Y=p+q | ~p ~q ~Y=~p*~q |Y=~(~p*~q)
A: p* q= Y |1 1 =1 /p*q =Y | 0 0 =0 | =1
B: p*~q= Y |1 0 =1 /p*~q=Y | 0 1 =0 | =1
C: ~p* q= Y |0 1 =1 /~p*q=Y | 1 0 =0 | =1
Skłamię: ~Y=1
D: ~p*~q=~Y |0 0 =0 | 1 1 =1 /~p*~q=~Y | =0
1 2 3 4 5 6 7
Punkt odniesienia względem którego kodujemy zera i jedynki
to zawsze nagłówek tabeli.
|Y=p+q |~Y=~p*~q
|p=1, ~p=0 | ~p=1, p=0
|q=1, ~q=0 | ~q=1, q=0
|Y=1, ~Y=0 | ~Y=1, Y=0
|
5.7.7
Tożsamość kolumn ABCD3 i ABCD7 jest dowodem formalnym prawa de’Morgana w rachunku zero-jedynkowym:
Y = p+q = ~(~p*~q)
W komentarzu (po znaku „/”) uwidoczniono linie biorące udział w obsłudze naturalnej logiki człowieka.
5.7.8
W naturalnym języku mówionym każdy człowiek posługuje się wyłącznie definicją symboliczną.
Jeśli w definicji symbolicznej za punkt odniesienia (zdanie wypowiedziane) przyjmiemy:
Y=p+q
to otrzymamy tabelę zero-jedynkową operatora OR.
Jeśli w definicji symbolicznej za punkt odniesienia (zdanie wypowiedziane) przyjmiemy:
~Y=~p*~q
to otrzymamy tabelę zero-jedynkową operatora AND.
... co doskonale widać w powyższej tabeli.
5.7.9
Sprawdźmy na przykładzie które zdania będą zrozumiale dla człowieka.
1.
Jutro pójdę do kina lub do teatru
Y=K+T
... a kiedy skłamię?
Przejście do logiki przeciwnej poprzez negacje zmiennych i wymianę spójników na przeciwne
2.
Skłamię (~Y) wtedy i tylko wtedy gdy jutro nie pójdę do kina (~K) i nie pójdę do teatru (~T)
~Y=~K*~T
Oczywiście to co wyżej to logika każdego 5-cio latka.
Tata, a czy może się zdarzyć że jutro nie pójdziesz do kina (~K) i nie pójdziesz do teatru (~T)?
Negujemy dwustronnie 2 otrzymując:
4.
Nie może się zdarzyć ~(...), że jutro nie pójdę do kina (~K) i nie pójdę do teatru (T)
Y = ~(~K*~T)
Zdanie 3 będzie zrozumiałe w tej formie:
3.
Skłamię (~Y) jeśli nie zdarzy się ~(...), że jutro pójdę do kina (K) lub do teatru (T)
~Y = ~(K+T) = ~K*~T
Oczywiście zdanie to oznacza to samo co doskonale rozumiane zdanie 2.
Każdy 5-cio latek bez problemu zrozumie zdanie 5.
Y=p*q+p*~q+~p*q
5.
Dotrzymam słowa (Y) wtedy i tylko wtedy gdy jutro:
K*T - pójdę do kina (K) i do teatru (T)
lub
K*~T - pójdę do kina (K) i nie pójdę do teatru (~T)
lub
~K*T - nie pójdę do kina (~K) i pójdę do teatru (T)
Ostatnie trzy zdania, w szczególności 7 i 8 to horror dla każdego normalnego człowieka.
Oznacza to, że matematyka dostarcza więcej zdań prawdziwych, niż człowiek jest w stanie zrozumieć, co jest dowodem, że język człowieka to twór z obszaru fizyki a nie matematyki.
W sumie mamy fantastyczną możliwość wyrażenia tego samego na wiele różnych sposobów.
5.8 Osiem równań opisujących operator AND
Korzystamy z definicji symbolicznej operatora AND wyprowadzonej wyżej.
5.8.1
Symboliczna definicja operatora AND:
Kod: |
Dotrzymam słowa Y, logika dodatnia bo Y
Y=p*q
A: p* q= Y
.. a kiedy skłamię?
Przejście do logiki ujemnej poprzez
negację zmiennych i wymianę spójników
Skłamię ~Y, logika ujemna bo ~Y
U: ~Y=~p+~q = ~p*~q+~p*q+p*~q
B: ~p*~q=~Y
C. ~p* q=~Y
D: p*~q=~Y
|
Definicja operatora AND w równaniach algebry Boole’a:
Y=p*q
~Y=~p+~q
5.8.2
Równania minimalne:
1.
Y=p*q
Przejście do logiki ujemnej poprzez negację zmiennych i wymianę operatorów na przeciwne:
2.
~Y=~p+~q
5.8.3
Dwa kolejne równania otrzymujemy negując dwustronnie 1 i 2
3.
~Y=~(p*q)
4.
Y=~(~p+~q)
5.8.4
Równoważna definicja spójnika „lub”(+) w logice ujemnej (bo ~Y):
5.
~Y=(~p*~q)+(~p*q)+(p*~q)
Przejście do logiki dodatniej poprzez negację zmiennych i wymianę operatorów na przeciwne:
6.
Y = (p+q)*(p+~q)*(~p+q)
5.8.5
Ostatnie dwa równania uzyskujemy negując dwustronnie 5 i 6.
7.
Y = ~[(~p*~q)+(~p*q)+(p*~q)]
8.
Y = ~[(p+q)*(p+~q)*(~p+q)]
5.8.6
Ułóżmy to wszystko w tabeli.
Kodowanie zero-jedynkowe operatora AND:
Kod: |
Wszystkie możliwe równania algebry Kubusia dla operatora AND
Dotrzymam słowa: Y=1 |Skłamię: ~Y=1
1: Y=p*q |2: ~Y=~p+~q
4: Y=~(~p+~q) |3: ~Y=~(p*q)
6: Y=(p+q)*(p+~q)*(~p+q) |5: ~Y=(~p*~q)+(~p*q)+(p*~q)
7: Y=~[(~p*~q)+(~p*q)+(p*~q)] |8: ~Y=~[(p+q)*(p+~q)*(~p+q)]
-------------------------------------------------------------
Definicja |
Symboliczna |
Operatora AND|Kodowanie zero-jedynkowe operatora AND
|
Dotrzymam |
slowa: Y=1 |p q Y=p*q | ~p ~q 2:~Y=~p+~q | Y=~(~p+~q)
A: p* q= Y |1 1 =1 / p* q= Y | 0 0 =0 | =1
Sklamie: ~Y=1| | ~Y=~p+~q |
U: ~Y=~p+~q | | ~Y=~p*~q+~p*q+p*~q |
B: ~p*~q=~Y |0 0 =0 | 1 1 =1 /~p*~q=~Y | =0
C: ~p* q=~Y |0 1 =0 | 1 0 =1 /~p* q=~Y | =0
D: p*~q=~Y |1 0 =0 | 0 1 =1 / p*~q=~Y | =0
1 2 3 4 5 6 7
Punkt odniesienia względem którego kodujemy zera i jedynki
to zawsze nagłówek tabeli.
|p=1, ~p=0 | ~p=1, p=0
|q=1, ~q=0 | ~q=1, q=0
|Y=1, ~Y=0 | ~Y=1, Y=0
|
5.8.7
Tożsamość kolumn ABCD3 i ABCD7 jest dowodem formalnym prawa de’Morgana w rachunku zero-jedynkowym:
Y = p*q = ~(~p+~q)
W komentarzu (po znaku „/”) uwidoczniono linie biorące udział w obsłudze naturalnej logiki człowieka.
5.8.8
W naturalnym języku mówionym każdy człowiek posługuje się wyłącznie definicją symboliczną.
Jeśli w definicji symbolicznej za punkt odniesienia (zdanie wypowiedziane) przyjmiemy:
Y=p*q
to otrzymamy tabelę zero-jedynkową operatora AND.
Jeśli w definicji symbolicznej za punkt odniesienia (zdanie wypowiedziane) przyjmiemy:
~Y=~p+~q
to otrzymamy tabelę zero-jedynkową operatora OR.
... co doskonale widać w powyższej tabeli.
5.8.9
Sprawdźmy na przykładzie które zdania będą zrozumiałe dla człowieka.
1.
Jutro pójdę do kina i do teatru
Y=K*T
... a kiedy skłamię?
Przejście do logiki przeciwnej poprzez negacje zmiennych i wymianę spójników na przeciwne:
2.
Skłamię (~Y) wtedy i tylko wtedy gdy jutro nie pójdę do kina (~K) lub nie pójdę do teatru (~T)
~Y=~K+~T
Oczywiście to co wyżej to logika każdego 5-cio latka.
Tata, a czy może się zdarzyć że jutro nie pójdziesz do kina (~K) lub nie pójdziesz do teatru (~T)?
Negujemy dwustronnie 2 otrzymując:
4.
Nie może się zdarzyć ~(...), że jutro nie pójdę do kina (~K) lub nie pójdę do teatru (T)
Y = ~(~K+~T)
Zdanie 3 będzie zrozumiałe w tej formie:
3.
Skłamię (~Y) jeśli nie zdarzy się ~(...), że jutro pójdę do kina (K) i do teatru (T)
~Y = ~(K*T) = ~K+~T
Oczywiście zdanie to oznacza to samo co doskonale rozumiane zdanie 2.
Każdy 5-cio latek bez problemu zrozumie zdanie 5.
~Y=~p*~q+~p*q+p*~q
Zdanie wypowiedziane:
Jutro pójdę do kina i do teatru
Y=K*T
... a kiedy skłamię?
~Y = ~K*~T + ~K*T + K*~T
6.
Skłamię (~Y) wtedy i tylko wtedy gdy jutro:
~K*~T - nie pójdę do kina (~K) i nie pójdę do teatru (~T)
lub
~K*T - nie pójdę do kina (~K) i pójdę do teatru (T)
lub
K*~T - pójdę do kina (K) i nie pójdę do teatru (~T)
Ostatnie trzy zdania, w szczególności 7 i 8 to horror dla każdego normalnego człowieka. Mają one związek z logiką zero, totalnie sprzeczną z naturalną logiką człowieka.
5.9 Logika zero
5.9.1
Logika zero jest logiką totalnie przeciwną do naturalnej logiki człowieka.
Logika zero i logika człowieka to logiki tożsame.
5.9.2
Definicja zero-jedynkowa operatora OR:
Kod: |
p q Y=p+q
A: 1 1 =1
B: 1 0 =1
C: 0 1 =1
D: 0 0 =0
1 2 3
|
5.9.3
Definicja spójnika „lub”(+):
Suma logiczna (spójnik „lub”) n-zmiennych binarnych jest równa 1 wtedy i tylko wtedy gdy którakolwiek zmienna jest równa 1.
Y=p+q
co matematycznie oznacza:
Y=1 <=>p=1 lub q=1
Obszar działania: ABC123
5.9.4
Definicja spójnika „lub”(+) w logice zero:
Suma logiczna (spójnik „lub”(+)) n-zmiennych binarnych jest równa zeru wtedy i tylko wtedy gdy wszystkie składniki sumy są równe zeru
Y=p+q
Y=0 <=>p=0 i q=0
Obszar działania: D123
Logika zero jest totalnie sprzeczna z logika człowieka bowiem w równaniu mamy spójnik „lub”(+), natomiast w rozwinięciu słownym spójnik „i”.
5.9.5
Definicja zero-jedynkowa operatora AND:
Kod: |
p q Y=p*q
A: 1 1 =1
B: 1 0 =0
C: 0 1 =0
D: 0 0 =0
1 2 3
|
5.9.6
Definicja spójnika „i”(*):
Iloczyn logiczny (spójnik „i”(*)) n-zmiennych binarnych jest równa 1 wtedy i tylko wtedy gdy wszystkie zmienne są równe 1.
Y=p*q
co matematycznie oznacza:
Y=1 <=>p=1 i q=1
Obszar działania: A123
5.9.7
Definicja spójnika „i”(*) w logice zero:
Iloczyn logiczny (spójnik „i”(*)) n-zmiennych binarnych jest równy 0 wtedy i tylko wtedy gdy którakolwiek zmienna jest równa 0.
Y=p*q
co matematycznie oznacza:
Y=0 <=>p=0 lub q=0
Obszar działania: BCD123
Logika zero jest totalnie sprzeczna z logiką człowieka bowiem w równaniu mamy spójnik „i”(*), natomiast w rozwinięciu słownym spójnik „lub”.
5.9.8
Ułożymy wszystkie możliwe równania algebry Kubusia dla zero-jedynkowej definicji operatora OR.
Kod: |
|Logika człowieka |Logika zero
p q Y=p+q |Y=p*q+p*~q+~p*q |~Y=(~p+~q)*(~p+q)*(p+~q)
A: 1 1 =1 | Y= p* q |~Y=~p+~q
B: 1 0 =1 | Y= p*~q |~Y=~p+ q
C: 0 1 =1 | Y=~p* q |~Y= p+~q
D: 0 0 =0 |~Y=~p*~q | Y= p+ q
1 2 3
|
W logice człowieka wszystkie zmienne sprowadzamy do jedynek korzystając z prawa algebry Kubusia:
Jeśli p=0 to ~p=1
W tabeli symbolicznej używamy spójnika „i”(*) w poziomach i spójnika „lub”(+) w pionach.
LC: Y = p*q + p*~q + ~p*q
W logice zero wszystkie zmienne sprowadzamy do zera korzystając z prawa algebry Kubusia:
Jeśli p=1 to ~p=0
W tabeli symbolicznej używamy spójnika „lub”(+) w poziomach i spójnika „i”(*) w pionach:
LZ: ~Y = (~p+~q)*(~p+q)*(p+~q)
Dowód tożsamości tych logik.
Przechodzimy z równaniem LZ do logiki przeciwnej poprzez negację zmiennych i wymianę spójników na przeciwne:
LZ: Y= (p*q) + (p*~q) + (~p*q)
Doskonale widać:
LC=LZ
cnd
Oczywiście logikę zero wywalamy w kosmos, bowiem naturalną logiką dla każdego człowieka jest logika człowieka.
5.10 Właściwości operatorów OR i AND
5.10.1
Świętość algebry Boole’a:
Wszelkie przekształcenia tabel zero-jedynkowych muszą mieć swój odpowiednik w równaniach algebry Boole’a.
Wyobraźmy sobie, że trzymamy w ręku fizyczną bramkę OR (np. 7432) o wejściach p i q i wyjściu Y. Dokładamy negatory na wszystkie sygnały i otrzymujemy bramkę AND, co łatwo sprawdzić w laboratorium techniki cyfrowej.
Wnioski:
1.
Operator OR (bramka OR) musi zawierać w sobie operator AND w logice ujemnej, inaczej powyższa sztuczka nie byłaby możliwa.
2.
Spotykane w katalogach równanie algebry Boole’a opisujące bramkę OR:
Y=p+q
nie jest pełne, bowiem w powyższym równaniu negujemy wszystkie zmienne:
~Y=~p+~q
i nie otrzymujemy definicji operatora AND w równaniu algebry Boole’a.
3.
Z powyższego wynika że znaczek „+” nie może być kompletnym operatorem OR!
... o co tu chodzi?
5.10.2
Aksjomatyczna definicja operatora OR
Kod: |
p q Y=p+q ~p ~q ~Y=~(p+q)=~p*~q Y=~(~p*~q) |Definicja symboliczna
A: 1 1 =1 0 0 =0 =1 | p* q= Y /Y=p+q
B: 1 0 =1 0 1 =0 =1 | p*~q= Y
C: 0 1 =1 1 0 =0 =1 |~p* q= Y
D: 0 0 =0 1 1 =1 =0 |~p*~q=~Y /~Y=~p*~q
1 2 3 4 5 6 7 | 8 9 10
|
5.10.3
Operator OR to tabela zero-jedynkowa ABCD123 opisana nagłówkiem:
Y=p+q
Kolumny ABCD3 i ABCD7 są dowodem prawa de’Morgana:
Y = p+q = ~(~p*~q)
Z prawa de’Morgana wynika, iż aby z bramki OR zrobić bramkę AND wystarczy zanegować sygnały wejściowe p i q oraz wyjście Y.
Dowód:
Y = p+q = ~(~p*~q) - prawo de’Morgana dla sumy logicznej
Negujemy wejścia p i q:
y = ~p+~q = ~(p*q)
Negujemy wyjście Y:
~y = ~(~p+~q) = p*q - prawo de’Morgana dla iloczynu logicznego
W tabeli zero-jedynkowej wyżej doskonale widać, że w obszarze ABCD456 mamy zero-jedynkową definicję operatora AND.
Wniosek:
Prawo de’Morgana jest poprawnym, pełnym opisem operatora OR (opisuje wszystkie cztery linie).
5.10.4
Zastanówmy się teraz czym jest znaczek „+” w równaniu:
Y=p+q
Znaczek „+” nie może być kompletnym operatorem OR o definicji w liniach ABCD123, bo negując wszystkie zmienne w powyższym równaniu nie otrzymujemy definicji operatora AND.
~Y=~p+~q
Oczywiście śladu operatora AND w tym równaniu nie widać.
Wniosek:
Znaczek „+” w równaniu:
Y=p+q
na pewno nie jest kompletnym operatorem OR - to jest błąd czysto matematyczny w dzisiejszej logice!
5.10.5
Znaczek „+” to tylko i wyłącznie spójnik logiczny „lub”(+) w logice dodatniej (bo Y) o definicji w liniach ABC123:
Y = p+q
Przejście do logiki ujemnej poprzez negację zmiennych i wymianę spójników:
~Y=~p*~q
To jest ostatnia linia (D123) definicji operatora OR w zapisie symbolicznym, definicja spójnika „i”(*) w logice ujemnej (bo ~Y):
~Y=~p*~q
5.10.6
Pełna i kompletna definicja operatora OR to układ równań logicznych:
A: Y=p+q - definicja spójnika „lub”(+) w logice dodatniej (bo Y), linie ABC123
B: ~Y=~p*~q - definicja spójnika „i”(*) w logice ujemnej (bo ~Y), linia D123
Dowód:
Negujemy wszystkie zmienne i musimy otrzymać definicję operatora AND:
A: ~Y=~p+~q - definicja spójnika „lub”(+) w logice ujemnej (bo ~Y)
B: Y=p*q - definicja spójnika „i”(*) w logice dodatniej (bo Y)
cnd
Oczywiście to jest piękna definicja operatora AND w równaniach algebry Boole’a.
5.10.7
Matematycznie opis operatora OR w postaci równania:
Y=p+q (linie ABC123)
jest wystarczający bo jednoznacznie opisuje tabelę zero-jedynkową.
Mając tylko i wyłącznie to równanie łatwo wygenerujemy wszystkie możliwe równania dla operatora OR w ilości sztuk 8.
Oczywiście, dowolne z ośmiu możliwych równań jest wystarczającym opisem kompletnego operatora OR.
Równanie minimalne to:
Y=p+q
Żadne z ośmiu równań nie opisuje kompletnego operatora AND (wszystkie cztery linie), co jest dowodem błędu czysto matematycznego w dzisiejszej logice, zarówno KRZ jak i KRZiP.
5.10.8
Aksjomatyczna definicja operatora AND
Kod: |
p q Y=p*q ~p ~q ~Y=~(p*q)=~p+~q Y=~(~p+~q) |Definicja symboliczna
A: 1 1 =1 0 0 =0 =1 | p* q= Y /Y=p*q
B: 0 0 =0 1 1 =1 =0 |~p*~q=~Y /~Y=~p+~q
C: 0 1 =0 1 0 =1 =0 |~p* q=~Y
D: 1 0 =0 0 1 =1 =0 | p*~q=~Y
1 2 3 4 5 6 7 | 8 9 10
|
5.10.9
Operator AND to tabela zero-jedynkowa ABCD123 opisana nagłówkiem:
Y=p*q
Kolumny ABCD3 i ABCD7 są dowodem prawa de’Morgana:
Y = p*q = ~(~p+~q)
Z prawa de’Morgana wynika, iż aby z bramki AND zrobić bramkę OR wystarczy zanegować sygnały wejściowe p i q oraz wyjście Y.
Dowód:
Y = p*q = ~(~p+~q) - prawo de’Morgana dla iloczynu logicznego
Negujemy wejścia p i q:
y = ~p*~q = ~(p+q)
Negujemy wyjście Y:
~y = ~(~p*~q) = p+q - prawo de’Morgana dla sumy logicznej
W tabeli zero-jedynkowej wyżej doskonale widać, że w obszarze ABCD456 mamy zero-jedynkową definicję operatora OR.
Wniosek:
Prawo de’Morgana jest poprawnym, pełnym opisem operatora OR (opisuje wszystkie cztery linie).
5.10.10
Zastanówmy się teraz czym jest znaczek „*” w równaniu:
Y=p*q
Znaczek „*” nie może być kompletnym operatorem AND o definicji w liniach ABCD123, bo negując wszystkie zmienne w powyższym równaniu nie otrzymujemy definicji operatora OR.
~Y=~p*~q
Oczywiście śladu operatora OR w tym równaniu nie widać.
Wniosek:
Znaczek „*” w równaniu:
Y=p*q
na pewno nie jest kompletnym operatorem AND - to jest błąd czysto matematyczny w dzisiejszej logice!
5.10.11
Znaczek „*” to tylko i wyłącznie spójnik logiczny „i”(*) w logice dodatniej (bo Y) o definicji w linii A123:
Y = p*q
Przejście do logiki ujemnej poprzez negację zmiennych i wymianę spójników:
~Y=~p+~q
Linie BCD123 to spójnik „lub”(*) w logice ujemnej (bo ~Y):
~Y=~p+~q - obszar BCD123, logika ujemna (bo ~Y)
5.10.12
Pełna i kompletna definicja operatora AND to układ równań logicznych:
A: Y=p*q - definicja spójnika „i”(*) w logice dodatniej (bo Y)
B: ~Y=~p+~q - definicja spójnika „lub”(*) w logice ujemnej (bo ~Y)
Dowód:
Negujemy wszystkie zmienne i musimy otrzymać definicję operatora OR:
A: ~Y=~p*~q - definicja spójnika „i”(*) w logice ujemnej (bo ~Y)
B: Y=p+q - definicja spójnika „lub”(+) w logice dodatniej (bo Y)
cnd
Oczywiście to jest piękna definicja operatora OR.
5.10.13
Matematycznie opis operatora AND w postaci równania:
Y=p*q (linia A123)
jest wystarczający bo jednoznacznie opisuje tabelę zero-jedynkową.
Mając tylko i wyłącznie to równanie łatwo wygenerujemy wszystkie możliwe równania operatora AND w ilości sztuk 8.
Oczywiście, dowolne z ośmiu możliwych równań jest wystarczającym opisem kompletnego operatora AND.
Równanie minimalne to:
Y=p*q
Żadne z ośmiu równań nie opisuje kompletnego operatora AND (wszystkie cztery linie), co jest dowodem błędu czysto matematycznego w dzisiejszej logice, zarówno KRZ jak i KRZiP.
5.10.14
Kompletna definicja operatora OR (opisująca wszystkie cztery linie) w równaniu algebry Boole’a:
Y = p+q = ~(~p*~q) - prawo de’Morgana
Negujemy zmienne wejściowe p i q:
y=~p+~q = ~(p*q)
Oczywiście Y ## y bo tylko zanegowaliśmy zmienne (bez wymiany spójników)
Negujemy wyjście y:
~y = ~(~p+~q) = p*q
Ostatnie równanie to definicja operatora AND
Oczywiście Y ## ~y
5.10.15
Równanie ogólne dla operatorów OR i AND:
OR: Y= p+q = ~(~p*~q) ## AND: ~y= p*q = ~(~p+~q)
Operator OR ## Operator AND
gdzie:
## - różne na mocy definicji
Po obu stronach znaku ## mamy do czynienia z dwoma niezależnymi układami logicznymi pomiędzy którymi nie zachodzą żadne tożsamości matematyczne.
5.10.16
Oczywiście:
Jeśli p+q=1 => p*q=0
Jeśli p*q=1 => p+q=0
Przykład:
Zdanie:
Jutro pójdę do kina lub do teatru
Y=K+T
Nie jest równoważne zdaniu:
Jutro pójdę do kina i do teatru
Y=K*T
Jeśli K+T=1 (to zdanie powiedzieliśmy) to K*T=0
Jeśli K*T=1 (to zdanie powiedzieliśmy) to K+T=0
Prawa de’Morgana:
p*q = ~(~p+~q) - definicja operatora AND
p+q = ~(~p*~q) - definicja operatora OR
W operatorach AND i OR zachodzi przemienność argumentów:
p*q = q*p
p+q = p*q
6.0 Matematyczna historia powstania naszego Wszechświata
... z przymrużeniem oka, czyli prosty sposób na zapamiętanie najważniejszych definicji operatorów logicznych.
6.1 Warunki wystarczający i konieczny
Zacznijmy całkiem serio, czyli od dwóch najważniejszych definicji w całej logice matematycznej.
6.1.1
Definicja warunku wystarczającego w logice dodatniej (bo q):
Kod: |
A: p=>q=1
B: p=>~q=0
|
p=>q
Jeśli zajdzie p to na pewno => zajdzie q
z czego wynika że zdanie B musi być fałszem
z czego wynika że p musi być wystarczające dla q
Przykład:
A.
Jeśli jutro będzie padało to na pewno => będzie pochmurno
P=>CH=1
B.
Jeśli jutro będzie padało to na pewno => nie będzie pochmurno
P=>CH=0
Padanie jest warunkiem wystarczającym dla istnienia chmur
cnd
6.1.2
Definicja warunku wystarczającego w logice ujemnej (bo ~q):
Kod: |
C: ~p=>~q=1
D: ~p=> q=0
|
p=>q
Jeśli zajdzie ~p to na pewno => zajdzie ~q
bo zdanie B jest fałszem i nie ma prawa wystąpić
z czego wynika że ~p musi być wystarczające dla ~q
Przykład:
C.
Jeśli jutro nie będzie pochmurno to na pewno => nie będzie padało
~CH=>~P=1
D.
Jeśli jutro nie będzie pochmurno to na pewno => będzie padało
~CH=>P=0
Brak chmur wystarcza aby nie padało
cnd
6.1.3
Definicja warunku koniecznego:
Warunek konieczny ~> miedzy p i q zachodzi wtedy i tylko wtedy gdy z zanegowanego poprzenika wynika => zanegowany następnik:
p~>q = ~p=>~q
~p~>~q = p=>q
Przykład 1:
A.
Jeśli liczba jest podzielna przez 2 to może ~> być podzielna przez 8
P2~>P8=1 bo 8 - wystarczy pokazać jeden przypadek prawdziwy
Na mocy definicji warunku koniecznego mamy:
A: P2~>P8 = B: ~P2=>~P8
B.
Jeśli liczba nie jest podzielna przez 2 to na pewno => nie jest podzielna przez 8
~P2=>~P8 =1
Zdanie B jest prawdziwe, zatem w zdaniu A zachodzi warunek konieczny ~>.
P2~>P8=1
Podzielność dowolnej liczby przez 2 jest konieczna ~> aby była ona podzielna przez 8
Przykład 2:
A.
Jeśli liczba jest podzielna przez 3 to może ~~> być podzielna przez 8
P3~~>P8=1 bo 24
Zdanie prawdziwe na mocy naturalnego spójnika „może” ~~>, wystarczy pokazać jeden przypadek prawdziwy.
Warunek konieczny tu nie zachodzi bo:
P3~>P8 = ~P3=>~P8 =0 bo 8
Prawa strona definicji jest fałszem, zatem w zdaniu P3~>P8 nie zachodzi warunek konieczny:
P3~>P8=0
6.2 Równoważność
... a teraz włączmy poczucie humoru.
Na początku było:
i stał się cud:
p+~p=1 - prawo algebry Boole’a
q+~q=1 - prawo algebry Boole’a
czyli:
Kod: |
A: p=>(q+~q)
C: ~p=>(~q+q)
|
stąd mamy …
6.2.1
Operatorowa definicja równoważności:
Kod: |
p q p<=>q
A: p=> q =1 /warunek wystarczający w logice dodatniej (bo q)
B: p=>~q =0 /o definicji w A i B
C:~p=>~q =1 /warunek wystarczający w logice ujemnej (bo ~q)
D:~p=> q =0 /o definicji w C i D
|
6.2.2
Definicja operatorowa równoważności:
p<=>q = (p=>q)*(~p=>~q) - na podstawie definicji operatorowej
6.2.3
W równoważności (i tylko tu) obowiązuje prawo kontrapozycji:
~p=>~q = q=>p
6.2.4
Stąd równoważna definicja równoważności:
p<=>q = (p=>q)*(q=>p)
gdzie:
=> - warunek wystarczający, spójnik „na pewno” między p i q
6.2.5
Przykład:
Trójkąt jest równoboczny wtedy i tylko wtedy gdy ma kąty równe
TR<=>KR
TR<=>KR = (TR=>KR)*(~TR=>~KR) = (TR=>KR)*(KR=>TR) = 1*1=1
6.2.7
Definicja zero jedynkowa równoważności dla kodowania zgodnego z nagłówkiem tabeli:
p=1, ~p=0
q=1, ~q=0
Kod: |
p q p<=>q
A: 1 1 =1
B: 1 0 =0
C: 0 0 =1
D: 0 1 =0
|
6.3 Implikacja prosta
W naszym Wszechświecie zdecydowanie przeważa implikacja powstała przez rozczepienie dwóch ostatnich linii w definicji równoważności.
Możliwe jest rozczepienie linii:
1. A i B - implikacja odwrotna
2. C i D - implikacja prosta
3. Wszystkich czterech linii (A i B oraz B i C) - operator chaosu
Implikacja prosta to rozczepienie linii C i D w definicji równoważności.
6.3.1
Operatorowa definicja implikacji prostej:
Kod: |
p q p=>q
A: p=> q =1 /warunek wystarczający w logice dodatniej (bo q)
B: p=>~q =0 /o definicji w A i B
… a jeśli zajdzie ~p ?
Prawo Kubusia:
p=>q = ~p~>~q
C:~p~>~q =1 /warunek konieczny w logice ujemnej (bo ~q)
D:~p~~>q =1
|
p=>q
Jeśli zajdzie p to na pewno => zajdzie q
gdzie:
=> - warunek wystarczający, spójnik „na pewno” między p i q o definicji wyłącznie w liniach A i B
~> - warunek konieczny, spójnik „może” między p i q o definicji:
Warunek konieczny ~> między p i q zachodzi wtedy i tylko wtedy gdy z zanegowanego poprzednika wynika => zanegowany następnik:
~p~>~q = p=>q
~~> - naturalny spójnik „może”, wystarczy pokazać jeden przypadek prawdziwy
6.3.2
Pełna definicja implikacji prostej (opisująca wszystkie cztery linie) w równaniu algebry Boole’a:
p=>q = ~p~>~q
Dowód:
Negujemy wszystkie zmienne i otrzymujemy definicję implikacji odwrotnej:
~p=>~q = p~>q
... o której za chwilę.
6.3.3
Zauważmy że znaczek „=>” nie jest operatorem logicznym, tzn nie opisuje wszystkich czterech linii tabeli zero-jedynkowej.
Dowód:
p=>q
Negujemy zmienne wejściowe p i q i nie otrzymujemy definicji operatora implikacji odwrotnej:
~p=>~q
To jest błąd czysto matematyczny współczesnej logiki matematycznej która błędnie myśli, iż znaczek „=>” opisuje wszystkie cztery linie tabeli zero-jedynkowej.
6.3.4
Jak widzimy zdanie A spełnia definicję implikacji prostej wtedy i tylko wtedy gdy udowodnimy warunek wystarczający (linie A i B) oraz dodatkowo udowodnimy prawdziwość zdań C i D, czyli znajdziemy jeden przypadek spełniający C i jeden przypadek spełniający D.
6.3.5
Przykład:
A.
Jeśli liczba jest podzielna przez 8 to na pewno => jest podzielna przez 2
A: P8=>P2=1
B: P8=>~P2=0
Podzielność liczby przez 8 jest warunkiem wystarczającym =>, aby była ona podzielna przez 2
Definicja implikacji prostej spełniona bo:
P8=>P2= ~P8~>~P2=1
C: ~P8~>~P2=1 bo 3
D: ~P8~~>P2=1 bo 2
6.3.6
Definicja zero-jedynkowa implikacji prostej dla kodowania zgodnego z nagłówkiem tabeli:
p=1, ~p=0
q=1, ~q=0
Kod: |
p q p=>q
A: 1 1 =1
B: 1 0 =0
C: 0 0 =1
D: 0 1 =1 |
6.4 Implikacja odwrotna
Implikacja odwrotna to rozczepienie linii A i B w definicji równoważności.
6.4.1
Operatorowa definicja implikacji odwrotnej:
Kod: |
p q p~>q
A: p~> q =1 /warunek konieczny w logice dodatniej (bo q)
B: p~~>~q =1
… a jeśli zajdzie ~p ?
Prawo Kubusia:
p~>q = ~p=>~q
C:~p=> ~q =1 /warunek wystarczający w logice ujemnej (bo ~q)
D:~p=> q =0 /o definicji w C i D
|
6.4.2
p~>q
Jeśli zajdzie p to może ~> zajść q
Wystarczy pokazać jeden przypadek prawdziwy, plus musi być spełniona definicja warunku koniecznego ~>.
gdzie:
=> - warunek wystarczający, spójnik „na pewno” między p i q o definicji wyłącznie w liniach A i B
~> - warunek konieczny, spójnik „może” między p i q o definicji:
Warunek konieczny ~> między p i q zachodzi wtedy i tylko wtedy gdy z zanegowanego poprzednika wynika => zanegowany następnik:
p~>q = ~p=>~q
~~> - naturalny spójnik „może”, wystarczy pokazać jeden przypadek prawdziwy
6.4.3
Pełna definicja implikacji odwrotnej (opisująca wszystkie cztery linie) w równaniu algebry Boole’a:
p~>q = ~p=>~q
Dowód:
Negujemy wszystkie zmienne i otrzymujemy definicję implikacji prostej:
~p~>~q = p=>q
... o której wyżej.
6.4.4
Jak widzimy zdanie A spełnia definicję implikacji odwrotnej wtedy i tylko wtedy gdy udowodnimy warunek wystarczający (linie C i D) oraz dodatkowo udowodnimy prawdziwość zdań A i B, czyli znajdziemy jeden przypadek spełniający A i jeden przypadek spełniający B.
6.4.5
Przykład:
A.
Jeśli liczba jest podzielna przez 2 to może ~> być podzielna przez 8
A: P2~>P8=1 bo 8
B: P2~~>~P8=1 bo 2
P2 jest konieczne dla P8 bo:
P2~>P8 = ~P2=>~P8 =1 - definicja warunku koniecznego ~> spełniona
C.
Jeśli liczba nie jest podzielna przez 2 to na pewno => nie jest podzielna przez 8
C: ~P2=>~P8=1
D: ~P2=>P8=0 bo 3
Niepodzielność liczby przez 2 jest warunkiem wystarczającym => aby była ona niepodzielna przez 8
Definicja implikacji odwrotnej spełniona:
P2~>P8 = ~P2=>~P8 =1
6.4.6
Definicja zero-jedynkowa implikacji odwrotnej dla kodowania zgodnego z nagłówkiem tabeli:
p=1, ~p=0
q=1, ~q=0
Kod: |
p q p~>q
A: 1 1 =1
B: 1 0 =1
C: 0 0 =1
D: 0 1 =0 |
6.5 Operator chaosu
Możliwe jest totalne rozczepienie definicji równoważności, zarówno po stronie p jak i ~p.
Nie ma wtedy żadnej gwarancji, mamy pełną przypadkowość.
6.5.1
Operator chaosu, czyli definicja naturalnego spójnika „może” ~~>
Kod: |
p q p~~>q
A: p~~> q =1 /Jeśli zajdzie p to może ~~> zajść q
B: p~~>~q =1 /Jeśli zajdzie p to może ~~> zajść ~q
C:~p~~>~q =1 /Jeśli zajdzie ~p to może ~~> zajść ~q
D:~p~~> q =1 /Jeśli zajdzie ~p to może ~~> zajść q
|
6.5.2
p~~>q=1
Jeśli zajdzie p to może ~~> zajść q
W każdym przypadku (A,B,C,D) wystarczy pokazać jeden przypadek prawdziwy.
6.5.3
Przykład:
Jeśli liczba jest podzielna przez 3 to może ~~> być podzielna przez 8
P3~~>P8=1 bo 24
P3~~>~P8=1 bo 3
~P3~~>~P8=1 bo 2
~P3~~>P8=1 bo 8
6.5.4
Definicja zero-jedynkowa operatora chaosu ~~> dla kodowania zgodnego z nagłówkiem tabeli:
p=1, ~p=0
q=1, ~q=0
Kod: |
p q p~~>q
A: 1 1 =1
B: 1 0 =1
C: 0 0 =1
D: 0 1 =1 |
6.6 Operator śmierci
Operator śmierci to stan naszego Wszechświata przed jego stworzeniem.
6.6.1
Wszystkie przeczenia p i q są zbiorami pustymi:
p=0
~p=0
q=0
~q=0
Nie istnieje totalnie NIC, nie ma zdefiniowanego ani jednego pojęcia.
6.6.2
Operator śmierci, wszystkie przeczenia p i q są zbiorami pustymi.
Kod: |
p q p~~>q
A: p~~> q =0 /zbiór pusty
B: p~~>~q =0 /zbiór pusty
C:~p~~>~q =0 /zbiór pusty
D:~p~~> q =0 /zbiór pusty
|
6.6.3
Definicja zero-jedynkowa operatora śmierci dla kodowania zgodnego z nagłówkiem tabeli:
p=1, ~p=0
q=1, ~q=0
Kod: |
p q p~~>q
A: 1 1 =0
B: 1 0 =0
C: 0 0 =0
D: 0 1 =0 |
7.0 Operatory implikacji i równoważności
7.0.1
Definicja implikacji prostej:
Kod: |
p q p=>q
A: 1 1 =1 | p=> q =1 /Warunek wystarczający => w logice dodatniej (bo q)
B: 1 0 =0 | p=>~q =0 /o definicji wyłącznie w liniach A i B
C: 0 0 =1 |~p~>~q =1 /Warunek konieczny ~> w logice ujemnej (bo ~q)
D: 0 1 =1 |~p~~>q =1 /Naturalny spójnik „może” ~~>
|
Operator implikacji prostej to złożenie warunku wystarczającego => w logice dodatniej (bo q) o definicji wyłącznie w liniach A i B z warunkiem koniecznym ~> (linie C i D) w logice ujemnej (bo ~q) o definicji:
C: ~p~>~q = A: p=>q
Definicja implikacji prostej w równaniu algebry Kubusia:
p=>q = ~p~>~q
gdzie:
=> - warunek wystarczający, spójnik „na pewno” między p i q w całym obszarze logiki, o definicji wyłącznie w liniach A i B
7.0.2
Definicja implikacji odwrotnej:
Kod: |
p q p~>q
A: 1 1 =1 | p~> q =1 /Warunek konieczny ~> w logice dodatniej (bo q)
B: 1 0 =1 | p~~>~q=1 /Naturalny spójnik „może” ~~>
C: 0 0 =1 |~p=>~q =1 /Warunek wystarczający => w logice ujemnej (bo ~q)
D: 0 1 =0 |~p=> q =0 /o definicji wyłącznie w liniach C i D
|
Operator implikacji odwrotnej to złożenie warunku koniecznego ~> (linie A i B) w logice dodatniej (bo q) o definicji:
A: p~>q = C: ~p=>~q
z warunkiem wystarczającym => w logice ujemnej (bo ~q) o definicji w liniach C i D.
Definicja implikacji odwrotnej w równaniu algebry Kubusia:
p~>q = ~p=>~q
gdzie:
=> - warunek wystarczający, spójnik „na pewno” między p i q w całym obszarze logiki, o definicji wyłącznie w liniach C i D
Legenda do operatorów implikacji:
=> - warunek wystarczający, spójnik „na pewno” między p i q w całym obszarze logiki
~> - warunek konieczny, spójnik „może” (nie w równoważności!) miedzy p i q
~~> - naturalny spójnik „może”, wystarczy znaleźć jeden przypadek prawdziwy
7.0.3
Definicja warunku koniecznego w całym obszarze logiki:
Warunek konieczny ~> miedzy p i q zachodzi wtedy i tylko wtedy gdy z zanegowanego poprzednika wynika => zanegowany następnik:
p~>q = ~p=>~q
~p~>~q = p=>q
7.0.4
Definicja równoważności:
Operator równoważności to złożenie warunku wystarczającego => w logice dodatniej (bo q) o definicji wyłącznie w liniach A i B z warunkiem wystarczającym => w logice ujemnej (bo ~q) o definicji wyłącznie w liniach C i D.
Kod: |
p q p<=>q
A: 1 1 =1 | p=> q =1 /Warunek wystarczający => w logice dodatniej (bo q)
B: 1 0 =0 | p=>~q =0 /o definicji wyłącznie w liniach A i B
C: 0 0 =1 |~p=>~q =1 /Warunek wystarczający => w logice ujemnej (bo ~q)
D: 0 1 =0 |~p=> q =0 /o definicji wyłącznie w liniach C i D
|
Definicja równoważności wynikająca bezpośrednio z powyższej tabeli:
p<=>q = (p=>q)*(~p=>~q)
7.1 Implikacja prosta w zbiorach
7.1.1
Definicja zero-jedynkowa implikacji prostej:
Kod: |
p q Y= p=>q
A: 1 1 =1
B: 1 0 =0
C: 0 0 =1
D: 0 1 =1
1 2 3
|
7.1.2
Zamieńmy definicję implikacji prostej po stronie wejścia p i q na postać symboliczną, korzystając z prawa algebry Kubusia:
Jeśli p=0 to q=1
Kod: |
Definicja |Definicja |Zbiory |Definicja
zero-jedynkowa |symboliczna |dla p i q |operatorowa
|w zbiorach |sprowadzonych do 1|implikacji prostej
----------------------------------------------------------
p q p=>q | p q p=>q | 1 1 =x | p q p=>q
----------------------------------------------------------
A: 1 1 =1 | p* q =1 | 1*1 =1 | p=> q =1
B: 1 0 =0 | p*~q =0 | 1*1 =0 | p=>~q =0
C: 0 0 =1 |~p*~q =1 | 1*1 =1 |~p~>~q =1
D: 0 1 =1 |~p* q =1 | 1*1 =1 |~p~~>~q=1
1 2 3 4 5 6 7 8 9
|
Z obszaru AB456 widać, że jeśli zajdzie p to na pewno => zajdzie q (linia A456),
bowiem przypadek zajdzie p i zajdzie ~q jest wykluczony (linia B456).
stąd:
7.1.3
Definicja warunku wystarczającego => w logice dodatniej (bo q):
Kod: |
A.
p=> q =1
Zbiory:
p*q =1*1=1
Zbiory p i q istnieją (p=1 i q=1) i mają cześć wspólną, stąd w wyniku 1
B.
p=>~q =0
Zbiory:
p*~q =1*1=0
Zbiory p i ~q istnieją (p=1 i ~q=1) ale są rozłączne, stąd w wyniku 0
|
p=>q
Jeśli zajdzie p to na pewno => zajdzie q
Z czego wynika, że p musi być wystarczające dla q
Z linii B wynika, że zbiory p i ~q istnieją (p=1 i ~q=1) lecz są rozłączne, co wymusza w wyniku zero. Ta i tylko ta relacja zbiorów wymusza zawieranie się zbioru p w zbiorze q.
7.1.4
... a jeśli zajdzie ~p?
Z symbolicznej definicji operatora implikacji prostej widać że:
Jeśli zajdzie ~p to może ~> zajść q (linia C789)
lub
Jeśli zajdzie ~p to może ~~> zajść q (linia D789)
Wniosek:
W definicji implikacji prostej po stronie ~p mamy najzwyklejsze „rzucanie monetą”.
Jeśli zajdzie ~p to nie mamy bladego pojęcia czy zajdzie ~q czy też q.
7.1.5
Operatorowa definicja implikacji prostej:
Kod: |
p q p=>q
A: p=> q =1 /warunek wystarczający => w logice dodatniej (bo q)
B: p=>~q =0 /o definicji wyłącznie w liniach A i B
… a jeśli zajdzie ~p ?
Prawo Kubusia:
p=>q = ~p~>~q
C:~p~>~q =1 /warunek konieczny ~> w logice ujemnej (bo ~q)
D:~p~~>q =1 /naturalny spójnik „może” ~~>
|
gdzie:
=> - warunek wystarczający, spójnik „na pewno” => między p i q w całym obszarze logiki, o definicji wyłącznie w liniach A i B.
~> - warunek konieczny, w implikacji spójnik „może” ~> między p i q o definicji:
Warunek konieczny ~> między p i q zachodzi wtedy i tylko wtedy gdy z zanegowanego poprzednika wynika => zanegowany następnik.
~p~>~q = p=>q
~~> - naturalny spójnik „może”~~>, wystarczy pokazać jeden przypadek prawdziwy.
7.1.6
Jak widzimy zdanie A spełnia definicję implikacji prostej wtedy i tylko wtedy gdy spełniony jest warunek wystarczający => o definicji w liniach A i B oraz dodatkowo udowodnimy zachodzenie C i D, czyli znajdziemy jeden przypadek spełniający C i jeden przypadek spełniający D.
7.1.7
Definicja operatora implikacji prostej:
Implikacja prosta to złożenie warunku wystarczającego => w logice dodatniej (bo q) z warunkiem koniecznym ~> w logice ujemnej (bo ~q)
p=>q = ~p~>~q
7.1.8
Definicja warunku wystarczającego w logice dodatniej (bo q):
Z wykresu odczytujemy:
A.
Jeśli zajdzie p to na pewno => zajdzie q
p=>q=1 - twarda prawda, gwarancja matematyczna
Zbiory:
p*q=1*1=1
Oba zbiory p i q istnieją (p=1 i q=1) i mają część wspólną co wymusza w wyniku jeden.
stąd:
B.
Jeśli zajdzie p to na pewno => nie zajdzie q
p=>~q=0 - twardy fałsz, wynikły tylko i wyłącznie ze zdania A
Zbiory:
p*~q=1*1=0
Zbiory p i ~q istnieją (p=1 i ~q=1) ale są rozłączne, co wymusza w wyniku zero (zbiór pusty).
Uwaga:
p*~q=0 - ta i tylko ta relacja zbiorów wymusza zawieranie się zbioru p w zbiorze q!
W implikacji zbiór p nie jest tożsamy ze zbiorem q, natomiast w równoważności zbiór p jest tożsamy ze zbiorem q.
Implikacja to fundamentalnie co innego niż równoważność, nic co jest implikacją nie ma prawa być równoważnością i odwrotnie, to fizycznie niemożliwe na mocy definicji zero-jedynkowych.
Definicja warunku wystarczającego w logice dodatniej (bo q):
Kod: |
A.
Jeśli zajdzie p to na pewno => zajdzie q
p=>q=1
p* q=1*1=1 - istnieje część wspólna zbiorów p i q
B.
Jeśli zajdzie p to na pewno => zajdzie ~q
p=>~q=0
p* ~q=1*1=0 - zbiory p i ~q istnieją (p=1 i ~q=1) ale są rozłączne,
stąd ich iloczyn logiczny jest równy zeru
|
p=>q
Jeśli zajdzie p to na pewno => zajdzie q
Z czego wynika że zbiór p musi zawierać się w całości w zbiorze q
Z czego wynika, że p jest wystarczające dla q
Jak zajdzie p to q też musi.
… a jeśli zajdzie ~p ?
Prawo Kubusia:
p=>q = ~p~>~q
7.1.9
Zobaczmy ten przypadek na diagramie.
Z wykresu odczytujemy definicję warunku koniecznego ~> w logice ujemnej (bo ~q)
C.
Jeśli zajdzie ~p to może ~> zajść ~q
~p~>~q=1 - miękka prawda, może zajść ale nie musi bo zdanie D
Zbiory:
~p*~q=1
Zbiory ~p i ~q istnieją (~p=1 i ~q=1) i maja część wspólną, co wymusza w wyniku jeden
lub
D.
Jeśli zajdzie ~p to może ~~> zajść q
~p~~>q=1 - miękka prawda, może zajść ale nie musi bo zdanie C
Zbiory:
~p*q=1
Zbiory ~p i q istnieją (~p=1 i q=1) i mają część wspólną co wymusza w wyniku jeden
W zdaniu D nie zachodzi warunek konieczny ~> bo prawo Kubusia nie może być zgwałcone:
D: ~p~>q = B: p=>~q =0
Zdanie B jest fałszywe zatem w zdaniu D nie może zachodzić warunek konieczny ~>.
Zdanie D jest prawdziwe na mocy naturalnego spójnika „może” ~~>, wystarczy pokazać jeden przypadek prawdziwy.
7.1.10
Symboliczna definicja implikacji prostej:
Kod: |
Warunek wystarczający w logice dodatniej (bo q)
A: p=>q=1 /Twarda prawda, gwarancja matematyczna
B: p=>~q=0 /Twardy fałsz, wynikły tylko i wyłącznie z A
… a jeśli zajdzie ~p ?
Prawo Kubusia:
p=>q = ~p~>~q
Warunek konieczny w logice ujemnej (bo ~q)
C: ~p~>~q=1 /miękka prawda, może zajść ale nie musi bo D
D: ~p~~>q=1 /miękka prawda, może zajść ale nie musi bo C
|
p=>q = ~p~>~q
Jeśli zajdzie p to na pewno => zajdzie q
Z czego wynika że druga linia musi być twardym fałszem
Z czego wynika że p musi być wystarczające dla q
Gdzie:
=> - warunek wystarczający, spójnik „na pewno” w całym obszarze logiki, o definicji wyłącznie w liniach A i B
~> - warunek konieczny, w implikacji spójnik „może” między p i q o definicji ogólnej:
Warunek konieczny ~> miedzy p i q zachodzi wtedy i tylko wtedy gdy z zanegowanego poprzednika wynika => zanegowany następnik
~p~>~q = p=>q
~~> - naturalny spójnik „może”, wystarczy pokazać jeden przypadek prawdziwy
7.1.11
Definicja zero-jedynkowa dla powyższej tabeli symbolicznej zależy od przyjętego punktu odniesienia.
Definicja implikacji prostej w równaniu algebry Kubusia:
p=>q = ~p~>~q
Jeśli za punkt odniesienia przyjmiemy zdanie:
p=>q
czyli:
p=1, ~p=0
q=1, ~q=0
to otrzymamy tabelę zero-jedynkową implikacji prostej.
Kod: |
Definicja |Definicja
symboliczna |zero-jedynkowa
----------------------------
p q p=>q | p q p=>q
----------------------------
p=> q =1 | 1 1 =1
p=>~q =0 | 1 0 =0
~p~>~q =1 | 0 0 =1
~p~~>q =1 | 0 1 =1
Punkt odniesienia w tabeli zero-jedynkowej to nagłówek tabeli
|p=1, ~p=0
|q=1, ~q=0
|
7.1.12
Jeśli za punkt odniesienia przyjmiemy zdanie:
~p~>~q
czyli:
~p=1, p=0
~q=1, q=0
To otrzymamy tabelę zero-jedynkową implikacji odwrotnej.
Kod: |
Definicja |Definicja
symboliczna |zero-jedynkowa
----------------------------
~p ~q ~p~>~q |~p ~q ~p~>~q
----------------------------
p=> q =1 | 0 0 =1
p=>~q =0 | 0 1 =0
~p~>~q =1 | 1 1 =1
~p~~>q =1 | 1 0 =1
Punkt odniesienia w tabeli zero-jedynkowej to nagłówek tabeli
|~p=1, p=0
|~q=1, q=0
|
Tożsamość kolumn wynikowych:
p=>q = ~p~>~q
jest dowodem formalnym zachodzenia prawa Kubusia.
7.1.13
Zobaczymy to samo w tabeli zbiorczej, z uwzględnieniem zbiorów.
Kod: |
Definicja |Zbiory |Tabela || |Zbiory |Definicja
symboliczna| |zero ||Negacja | |symboliczna
p=>q=~p~>~q| |jedynkowa||p i q | |~p~>~q=p=>q
---------------------------------------------------------------------------
p q p=>q| p q p=>q| p q p=>q||~p ~q ~p~>~q|~p ~q ~p~>~q|~p ~q ~p~>~q
---------------------------------------------------------------------------
A: p=> q =1 | p* q =1 | 1 1 =1 || 0 0 =1 | p* q =1 | p=> q =1
B: p=>~q =0 | p*~q =0 | 1 0 =0 || 0 1 =0 | p*~q =0 | p=>~q =0
C:~p~>~q =1 |~p*~q =1 | 0 0 =1 || 1 1 =1 |~p*~q =1 |~p~>~q =1
D:~p~~>q =1 |~p* q =1 | 0 1 =1 || 1 0 =1 |~p* q =1 |~p~~>q =1
--------------------------------------------------------------------------
1 2 3 | 4 5 6 | 7 8 9 || a b c | d e f | g h i
Punktem odniesienia w tabeli zero-jedynkowej jest zawsze nagłówek tabeli
|p=1, ~p=0||~p=1, p=0 |
|q=1, ~q=0||~q=1, q=0 |
|
Sposób tworzenia tabeli zero-jedynkowej z definicji symbolicznej opisano wyżej.
Sposób tworzenia tabeli zbiorów z definicji zero-jedynkowej:
Wszelkie wejścia p i q sprowadzamy do jedynek względem nagłówka tabeli korzystając z prawa algebry Kubusia:
Jeśli p=0 to ~p=1
Jeśli ~p=0 to p=1
Przykładowa linia Dabc:
Kod: |
~p ~q ~p~>~q
1 0 =1 /~p*q=1
|
7.1.14
Spis z natury:
~p~>~q =1 <=> ~p=1 i ~q=0
Sprowadzamy wyłącznie wejścia p i q do jedynek:
~p~>~q=1 <=> ~p=1 i q=1
Stąd mamy równanie algebry Kubusia dla tej linii:
~p*q =1
Co matematycznie oznacza, że zbiory ~p i q istnieją (~p=1 i q=1) i mają część wspólną, co wymusza w wyniku 1 (zbiór niepusty).
7.1.15
Metoda uproszczona:
1.
Dla jedynki w tabeli zero-jedynkowej przepisujemy sygnał z nagłówka tabeli
2.
Dla zera w tabeli zero-jedynkowej przepisujemy zanegowany sygnał z nagłówka tabeli
Stąd natychmiast mamy zapis symboliczny, widoczny w powyższej tabeli po znaku „/”:
~p*q =1
7.1.16
Zauważmy, że po obu stronach znaku || mamy identyczne tabele symboliczne i tabele zbiorów.
Identyczna jest też definicja symboliczna w równaniu algebry Kubusia:
p=>q = ~p~>~q
Po obu stronach znaku || inny jest tylko nagłówek tabeli, punkt odniesienia.
7.1.17
Nagłówek tabeli decyduje o tym, które zdania mamy brać pod uwagę.
Po lewej stronie znaku || mamy w nagłówku tabeli p=>q, zatem interesuje nas wyłącznie obszar AB123 odpowiadający na pytanie:
Co się stanie jeśli zajdzie p?
p=>q
Jeśli zajdzie p to na pewno => zajdzie q
Co się stanie jeśli zajdzie ~p?
Na to pytanie odpowiada obszar CDghi bo tu w nagłówku tabeli mamy ~p:
~p~>~q
Odczytujemy:
~p~>~q=1
Jeśli zajdzie ~p to może ~> zajść ~q (linia Cghi)
lub
~p~~>q=1
Jeśli zajdzie ~p to może ~~> zajść q (linia Dghi)
7.1.18
Zauważmy, że możemy korzystać wyłącznie z definicji symbolicznej, identycznej dla obu stron znaku ||, ignorując kodowanie zero-jedynkowe.
Wtedy wszelkie odpowiedzi mamy jak na dłoni.
Pełna definicja symboliczna implikacji prostej, opisująca wszystkie cztery linie tabeli zero-jedynkowej:
p=>q = ~p~>~q
stąd:
Warunek wystarczający w logice dodatniej (bo q):
A: p=> q =1
B: p=>~q =0
Jeśli zajdzie p to na pewno => zajdzie q
Zajście p wystarcza dla zajścia q
... a jeśli zajdzie ~p?
Prawo Kubusia:
p=>q = ~p~>~q
stąd:
C: ~p~>~q=1
Jeśli zajdzie ~p to może ~> zajść ~q
~p jest konieczne ~> dla ~q
lub
D: ~p~~>p=1
Jeśli zajdzie ~p to może ~~> zajść q
7.1.19
Przykład:
A.
Jeśli liczba jest podzielna przez 8 to na pewno => jest podzielna przez 2
P8=>P2=1 bo 8,16… - twarda prawda, gwarancja matematyczna, zachodzi zawsze bez wyjątków
Zbiory:
P8=[8,16…]
P2=[2,4,8,16..]
P8*P2=1*1=1 bo 8,16…
Zbiory P8 i P2 istnieją (P8=1 i P2=1) i mają część wspólną, co wymusza w wyniku jeden
B.
Jeśli liczba jest podzielna przez 8 to na pewno => nie jest podzielna przez 2
P8=>~P2=0 – twardy fałsz wynikły tylko i wyłącznie ze zdania A
Zbiory:
P8=[8,16..]
~P2=[1,3,5…]
P8*~P2=1*1=0
Zbiory P8 i ~P2 istnieją, ale są rozłączne, co wymusza w wyniku zero (zbiór pusty)
… a jeśli liczba nie jest podzielna przez 8 ?
Prawo Kubusia:
P8=>P2 = ~P8~>~P2
C.
Jeśli liczba nie jest podzielna przez 8 to może ~> nie być podzielna przez 2
~P8~>~P2=1 bo 3,5.. – miękka prawda, może zajść ale nie musi bo D
Zbiory:
~P8=[2,3,5…]
~P2=[3,5,7…]
~P8*~P2=1 bo 3,5…
Zbiory ~P8 i ~P2 istnieją (~P8=1 i ~P2=1) i mają część wspólną, co wymusza w wyniku jeden
LUB
D.
Jeśli liczba nie jest podzielna przez 8 to może ~~> być podzielna przez 2
~P8~~>P2=1 bo 2,4… - miękka prawda, może zajść ale nie musi bo C
Zbiory:
~P8=[2,4,5…]
P2=[2,4,6…]
~P8*P2=1 bo 2,4…
Zbiory ~P8 i P2 istnieją (~P8=1 i P2=1) i mają część wspólną, co wymusza w wyniku jeden
W zdaniu D nie zachodzi warunek konieczny bo prawo Kubusia:
D: ~P8~>P2 = B: P8=>~P2=0 bo 8
Prawa strona jest fałszem zatem w zdaniu D nie ma prawa zachodzić warunek konieczny. Zdanie D jest prawdziwe na mocy naturalnego spójnika „może” ~~>, wystarczy pokazać jeden przypadek prawdziwy.
Doskonale widać tabelę zero-jedynkową implikacji prostej dla kodowania zgodnego ze zdaniem wypowiedzianym A:
P8=1, ~P8=0
P2=1, ~P2=0
Kod: |
|P8 P2 P8=>P2
A: P8=>P2=1 bo 8 | 1 1 =1
B: P8=>~P2=0 | 1 0 =0
C: ~P8~>~P2=1 bo 3 | 0 0 =1
D: ~P8~~>P2=1 bo 2 | 0 1 =1
Punktem odniesienia jest zawsze nagłówek tabeli zero-jedynkowej
|P8=1, ~P8=0
|P2=1, ~P2=0
|
7.1.20
Dla nieskończonej ilości losowań puste będzie wyłącznie pudełko B, pozostałe będą niepuste, stąd taki a nie inny rozkład wynikowych zer i jedynek.
7.1.21
Prawo Sowy:
W świecie zdeterminowanym (gdy znamy rozwiązanie) dowolny operator logiczny ulega redukcji do operatora AND.
7.1.22
Definicja implikacji w zbiorach:
Kod: |
A: P8=>P2 | P8* P2
B: P8=>~P2 | P8*~P2
C: ~P8~>~P2 |~P8*~P2
D: ~P8~~>P2 |~P8* P2
|
7.1.23
Przykład:
Wylosowana liczba: 8
Dla tego losowania zdanie A będzie prawdziwe, pozostałe zdania będą fałszywe
Jeśli wylosowano liczbę 8 (L8=1) to jest ona podzielna przez 8 (P8=1) i jest podzielna przez 2 (P2=1)
L3=>P8*P2
Co matematycznie oznacza:
L8=1 => P8=1 i P2=1
stąd dla liczby 8 mamy:
~P8=0, ~P2=0
stąd definicja zero-jedynkowa w zbiorach:
Kod: |
A: P8=>P2 | P8* P2 =1*1=1
B: P8=>~P2 | P8*~P2 =1*0=0
C: ~P8~>~P2 |~P8*~P2 =0*0=0
D: ~P8~~>P2 |~P8* P2 =0*1=0
|
Doskonale widać zero-jedynkową definicję operatora AND
7.1.24
Wylosowana liczba: 3
Dla tego losowania zdanie C będzie prawdziwe, pozostałe zdania będą fałszywe
Jeśli wylosowano liczbę 3 (L3=1) to nie jest ona podzielna przez 8 (~P8=1) i nie jest podzielna przez 2 (~P2=1)
L3=>~P8*~P2
Co matematycznie oznacza:
L3=1 => ~P8=1 i ~P2=1
stąd dla liczby 3 mamy:
P8=0, P2=0
stąd definicja zero-jedynkowa w zbiorach:
Kod: |
A: P8=>P2 | P8* P2 =0*0=0
B: P8=>~P2 | P8*~P2 =0*1=0
C: ~P8~>~P2 |~P8*~P2 =1*1=1
D: ~P8~~>P2 |~P8* P2 =1*0=0
|
Doskonale widać zero-jedynkową definicję operatora AND
7.1.25
Wylosowana liczba: 2
Dla tego losowania zdanie D będzie prawdziwe, pozostałe zdania będą fałszywe
Jeśli wylosowano liczbę 2 (L2=1) to nie jest ona podzielna przez 8 (~P8=1) i jest podzielna przez 2 (P2=1)
L2=>~P8*P2
co matematycznie oznacza:
L2=1 => ~P8=1 i P2=1
Stąd dla liczby 2 mamy:
P8=0, ~P2=0
stąd definicja zero-jedynkowa w zbiorach:
Kod: |
A: P8=>P2 | P8* P2 =0*1=0
B: P8=>~P2 | P8*~P2 =0*0=0
C: ~P8~>~P2 |~P8*~P2 =1*0=0
D: ~P8~~>P2 |~P8* P2 =1*1=1
|
Doskonale widać zero-jedynkową definicję operatora AND
Dla nieskończonej ilości losowań puste będzie wyłącznie pudełko B, pozostałe będą niepuste, stąd taki a nie inny rozkład wynikowych zer i jedynek.
7.1.1 Implikacja prosta w bramkach logicznych
Definicja operatora implikacji prostej:
Kod: |
p q p=>q |Definicja symboliczna
A: 1 1 =1 | p=> q =1
B: 1 0 =0 | p=>~q =0
C: 0 0 =1 |~p~>~q =1
D: 0 1 =1 |~p~~>q =1
|
Najprostsze równanie w spójnikach „i”(*) i „lub”(+) otrzymamy z linii B, bowiem mamy tu samotne zero.
Spis z natury:
p=>q=0 <=> p=1 i q=0
Korzystając z prawa algebry Kubusia:
Jeśli p=0 to ~p=1
Sprowadzamy wszystkie zmienne do jedynek:
~(p=>q)=1 <=> p=1 i ~q=1
Korzystając z definicji spójnika „i”(*):
Y=p*q
Y=1 <=> p=1 i q=1
mamy minimalne równanie logiczne opisujące powyższa tabelę:
~(p=>q) = p*~q
Przechodzimy do logiki przeciwnej poprzez negację zmiennych i wymianę spójników na przeciwne:
p=>q = ~p+q
stąd:
Definicja bramki „musi” =>:
p=>q = ~p+q
Bramka „musi” to bramka OR z zanegowaną w środku linią p
Definicja operatora implikacji odwrotnej:
Kod: |
p q p~>q |Definicja symboliczna
A: 1 1 =1 | p~> q =1
B: 1 0 =1 | p~~>~q=1
C: 0 0 =1 |~p=>~q =1
D: 0 1 =0 |~p=> q =1
|
Postępujemy identycznie jak wyżej.
Najprostsze równanie w spójnikach „i”(*) i „lub”(+) uzyskamy z linii D, bo mamy tu samotne zero.
Sprowadzamy zmienne do jedynek:
~(p~>q)=1 <=> ~p=1 i q=1
Stąd równanie algebry Kubusia:
~(p~>q) = ~p*q
Przechodzimy do logiki przeciwnej negując zmienne i wymieniając spójniki na przeciwne:
p~>q = p+~q
stąd:
Definicja bramki „może”~>:
p~>q = p+~q
Bramka „może” to bramka OR z zanegowaną w środku linią q
Z punktu widzenia świata zewnętrznego nie jesteśmy w stanie odróżnić który układ logiczny jest fizycznie zrealizowany, bowiem oba układy dają identyczną tabelę zero-jedynkową operatora implikacji prostej.
Oczywiście dla wejścia p i q oraz wyjścia:
p=>q = ~p~>~q
Odpowiedź na pytanie:
Co będzie jeśli zajdzie p?
Otrzymujemy patrząc na wejścia p i q poprzez bramkę „musi” => bowiem tylko tu widzimy niezanegowane wejście p (p).
Natomiast odpowiedź na pytanie:
Co będzie jeśli zajdzie ~p?
Otrzymujemy patrząc na wejścia p i q poprzez bramkę „może” ~> bowiem tylko tu mamy zanegowane wejście p (~p).
Definicja implikacji prostej:
Kod: |
Definicja |Definicja |Definicja
symboliczna |zero-jedynkowa |zero-jedynkowa
|w logice dodatniej (bo q)|w logice ujemnej (bo ~q)
| p q p=>q | ~p ~q ~p~>~q
A: p=> q =1 | 1 1 =1 | 0 0 =1
B: p=>~q =0 | 1 0 =0 | 0 1 =0
C:~p~>~q =1 | 0 0 =1 | 1 1 =1
D:~p~~>q =1 | 0 1 =1 | 1 0 =1
1 2 3 | 4 5 6
Punktem odniesienia w tabeli zero-jedynkowej jest nagłówek tabeli
| p=1, ~p=0 | ~p=1, p=0
| q=1, ~q=0 | ~q=1, q=0
|
Doświadczenie
Zbudować powyższy układ logiczny i sprawdzić zgodność świata fizycznego z tabelami zero-jedynkowymi operatora implikacji prostej wyżej.
Jak widzimy odpowiedź na pytanie:
Co będzie jeśli zajdzie p?
Mamy w liniach AB123:
Kod: |
A: p=> q=1 /1 1 =1
B: p=>~q=0 /1 0 =0
|
Bramki „musi” =>
Natomiast odpowiedź na pytanie:
Co będzie jak zajdzie ~p?
Mamy w liniach CD456:
Kod: |
C: ~p~>~q=1 /1 1 =1
D: ~p~~>q=1 /1 0 =1
|
Bramki „może” ~>
Ostatnio zmieniony przez rafal3006 dnia Sob 6:58, 02 Cze 2012, w całości zmieniany 16 razy
|
|
Powrót do góry |
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 35368
Przeczytał: 20 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Śro 5:57, 09 Maj 2012 Temat postu: |
|
|
7.2 Implikacja odwrotna w zbiorach
7.2.1
Definicja zero-jedynkowa implikacji odwrotnej:
Kod: |
p q Y= p~>q
A: 1 1 =1
B: 1 0 =1
C: 0 0 =1
D: 0 1 =0
1 2 3
|
7.2.2
Zamieńmy definicję implikacji odwrotnej po stronie wejścia p i q na postać symboliczną, korzystając z prawa algebry Kubusia:
Jeśli p=0 to q=1
Kod: |
Definicja |Definicja |Zbiory |Definicja
zero-jedynkowa |symboliczna |dla p i q |operatorowa
|w zbiorach |sprowadzonych do 1|implikacji odwrotnej
--------------------------------------------------------------------
p q p~>q | p q p~>q | 1 1 =x | p q p~>q
-----------------------------------------------------------
A: 1 1 =1 | p* q =1 | 1*1 =1 | p~> q =1
B: 1 0 =1 | p*~q =1 | 1*1 =1 | p~~>~q=1
C: 0 0 =1 |~p*~q =1 | 1*1 =1 |~p=>~q =1
D: 0 1 =0 |~p* q =0 | 1*1 =0 |~p=> q =0
1 2 3 4 5 6 7 8 9
|
7.2.3
Z definicji implikacji odwrotnej w zbiorach (obszar ABCD456) widzimy, że jeśli zajdzie p to może zajść q (linia A456) bowiem przypadek zajdzie p i zajdzie ~q też może wystąpić (linia B456).
W linii C456 widzimy, że jeśli zajdzie ~p to na pewno => zajdzie ~q, bowiem przypadek zajdzie ~p i zajdzie q nie ma prawa wystąpić (linia D456)
7.2.4
Z symbolicznej definicji operatora implikacji odwrotnej ABCD789 widać że:
Jeśli zajdzie p to może ~> zajść q (linia A789)
lub
Jeśli zajdzie p to może ~~> zajść ~q (linia B789)
Wniosek:
W definicji implikacji prostej po stronie p mamy najzwyklejsze „rzucanie monetą”.
Jeśli zajdzie p to nie mamy bladego pojęcia czy zajdzie q czy też ~q.
... a jeśli zajdzie ~p?
Prawo Kubusia:
p~>q = ~p=>~q
Z obszaru CD789 widać, że jeśli zajdzie ~p to na pewno => zajdzie ~q (linia C789),
bowiem przypadek zajdzie ~p i zajdzie q jest wykluczony (linia D789).
stąd:
Definicja warunku wystarczającego => w logice ujemnej (bo ~q):
Kod: |
C.
~p=>~q =1
Zbiory:
~p*~q =1*1=1
Zbiory ~p i ~q istnieją (~p=1 i ~q=1) i mają cześć wspólną, stąd w wyniku 1
D.
~p=> q =0
Zbiory:
~p* q =1*1=0
Zbiory ~p i q istnieją (~p=1 i q=1) ale są rozłączne, stąd w wyniku 0
|
~p=>~q
Jeśli zajdzie ~p to na pewno => zajdzie ~q
Z czego wynika, że ~p musi być wystarczające dla ~q
Z linii D wynika, że zbiory ~p i q istnieją (~p=1 i q=1) lecz są rozłączne, co wymusza w wyniku zero. Ta i tylko ta relacja zbiorów wymusza zawieranie się zbioru ~p w zbiorze ~q.
7.2.5
Operatorowa definicja implikacji odwrotnej:
Kod: |
p q p~>q
A: p~> q =1 /Warunek konieczny ~> w logice dodatniej (bo q)
B: p~~>~q=0 /Naturalny spójnik „może” ~~>
… a jeśli zajdzie ~p ?
Prawo Kubusia:
p~>q = ~p=>~q
C:~p=>~q =1 /Warunek wystarczający => w logice ujemnej (bo ~q)
D:~p=> q =1 /o definicji wyłącznie w liniach C i D
|
gdzie:
=> - warunek wystarczający w logice ujemnej (bo ~q), spójnik „na pewno” => między p i q w całym obszarze logiki, o definicji wyłącznie w liniach C i D.
~> - warunek konieczny, w implikacji spójnik „może” ~> między p i q o definicji:
Warunek konieczny ~> między p i q zachodzi wtedy i tylko wtedy gdy z zanegowanego poprzednika wynika => zanegowany następnik.
p~>q = ~p=>~q
~~> - naturalny spójnik „może”~~>, wystarczy pokazać jeden przypadek prawdziwy.
7.2.6
Jak widzimy zdanie A spełnia definicję implikacji odwrotnej wtedy i tylko wtedy gdy udowodnimy zachodzenie A i B, czyli znajdziemy jeden przypadek spełniający A i jeden przypadek spełniający B oraz dodatkowo udowodnimy spełniony jest warunek wystarczający => o definicji w liniach C i D.
7.2.7
Definicja operatora implikacji odwrotnej:
Implikacja odwrotna to złożenie warunku koniecznego ~> w logice dodatniej (bo q) z warunkiem wystarczającym w logice ujemnej (bo ~q)
p~>q = ~p=>~q
7.2.8
Warunek konieczny w zbiorach wygląda następująco:
p~>q
Z wykresu odczytujemy definicje symboliczną warunku koniecznego w logice dodatniej (bo q):
A.
Jeśli zajdzie p to może ~> zajść q
p~>q=1 - miękka prawda, może zajść ale nie musi, bo zdanie B
Zbiory:
p*q=1*1=1
Zbiory p i q istnieją (p=1 i q=1) i mają część wspólną, co wymusza w wyniku jeden.
Zbiór p musi zawierać w całości zbiór q, wtedy i tylko wtedy p jest konieczne dla q, czyli zachodzi prawo Kubusia:
p~>q = ~p=>~q
LUB
B.
Jeśli zajdzie p to może ~~> zajść ~q
p~~>~q=1 - miękka prawda, może zajść ale nie musi, bo zdanie A
Zbiory:
p*~q=1
Zbiory p i ~q istnieją (p=1 i ~q=1) i mają część wspólną, co wymusza w wyniku jeden.
… a jeśli zajdzie ~p ?
Prawo Kubusia:
p~>q = ~p=>~q
7.2.9
Zobaczmy to na diagramie logicznym:
~p=>~q
Z diagramu odczytujemy:
C.
Jeśli zajdzie ~p to na pewno => zajdzie ~q
~p=>~q=1 - twarda prawda, gwarancja matematyczna, zachodzi zawsze, bez wyjątków
Zbiory:
~p*~q=1*1=1
Zbiory ~p i ~q istnieją (~p=1 i ~q=1) i mają część wspólną, co wymusza w wyniku jeden.
stąd:
D.
Jeśli zajdzie ~p to na pewno => zajdzie q
~p=>q=0 - twardy fałsz, wynikły tylko i wyłącznie ze zdania C
Zbiory:
~p*q=1*1=0
Zbiory ~p i q istnieją (~p=1 i q=1), ale są rozłączne, co wymusza w wyniku zero (zbiór pusty).
Uwaga:
~p*q=0 - ta i tylko ta relacja zbiorów wymusza zwieranie się zbioru ~p w zbiorze ~q
W implikacji zbiór ~p nie jest tożsamy ze zbiorem ~q, natomiast w równoważności zbiór ~p jest tożsamy ze zbiorem ~q.
Implikacja to fundamentalnie co innego niż równoważność, nic co jest implikacją nie ma prawa być równoważnością i odwrotnie, to fizycznie niemożliwe na mocy definicji zero-jedynkowych.
Zauważmy, że w zdaniu B nie może zachodzić warunek konieczny ~> bo prawo Kubusia:
B: p~>~q = D: ~p=>q=0
Zdanie D jest fałszywe, zatem w zdaniu B nie może zachodzić warunek konieczny ~>.
Zdanie B jest prawdziwe na mocy naturalnego spójnika „może” ~~>, wystarczy pokazać jeden przypadek prawdziwy.
Definicja symboliczna warunku wystarczającego w logice ujemnej (bo q):
Kod: |
C.
Jeśli zajdzie ~p to na pewno => zajdzie ~q
~p=>~q=1
~p* ~q=1*1=1 - istnieje część wspólna zbiorów ~p i ~q
D.
Jeśli zajdzie ~p to na pewno => zajdzie q
~p=>q=0
~p* q=1*1=0 - zbiory ~p i q istnieją (~p=1 i q=1) ale są rozłączne,
stąd ich iloczyn logiczny jest równy zeru
|
~p=>~q
Jeśli zajdzie ~p to na pewno => zajdzie ~q
Z czego wynika że zajście ~p wystarcza dla zajścia ~q
Z czego wynika że zbiór ~p musi zawierać się w całości w zbiorze ~q
Jeśli zajdzie ~p to ~q też musi.
7.2.10
Symboliczna definicja implikacji odwrotnej:
Kod: |
Warunek konieczny w logice dodatniej (bo q)
A: p~>q =1 - miękka prawda, może zajść ale nie musi
B: p~~>~q=1 - miękka prawda, może zajść ale nie musi
… a jeśli zajdzie ~p ?
Prawo Kubusia:
p~>q = ~p=>~q
Warunek wystarczający w logice ujemnej (bo ~q)
C: ~p=>~q=1 - twarda prawda, gwarancja matematyczna
D: ~p=>q =0 - twardy fałsz, wynikły tylko i wyłącznie z C
|
p~>q
Jeśli zajdzie p to „może” ~> zajść q
bo druga linia p~~>~q też ma prawo wystąpić
Gdzie:
~> - warunek konieczny o definicji ogólnej:
Warunek konieczny ~> między p i q zachodzi wtedy i tylko wtedy gdy z zanegowanego poprzednika wynika => zanegowany następnik
p~>q = ~p=>~q
~~> - naturalny spójnik „może”, wystarczy pokazać jeden przypadek prawdziwy
=> - warunek wystarczający w logice ujemnej (bo ~q) o definicji wyłącznie w liniach C i D
7.2.11
Definicja zero-jedynkowa dla powyższej tabeli symbolicznej zależy od przyjętego punktu odniesienia.
Definicja implikacji odwrotnej w równaniu algebry Kubusia:
p~>q = ~p=>~q
Jeśli za punkt odniesienia przyjmiemy zdanie:
p~>q
czyli:
p=1, ~p=0
q=1, ~q=0
to otrzymamy tabelę zero-jedynkową implikacji odwrotnej.
Kod: |
Definicja |Definicja
symboliczna |zero-jedynkowa
----------------------------
p q p~>q | p q p~>q
----------------------------
p~> q =1 | 1 1 =1
p~~>~q =1 | 1 0 =1
~p=>~q =1 | 0 0 =1
~p=> q =0 | 0 1 =0
Punkt odniesienia w tabeli zero-jedynkowej to nagłówek tabeli
|p=1, ~p=0
|q=1, ~q=0
|
7.2.12
Jeśli za punkt odniesienia przyjmiemy zdanie:
~p=>~q
czyli:
~p=1, p=0
~q=1, q=0
To otrzymamy tabelę zero-jedynkową implikacji prostej.
Kod: |
Definicja |Definicja
symboliczna |zero-jedynkowa
----------------------------
~p ~q ~p=>~q |~p ~q ~p=>~q
----------------------------
p~> q =1 | 0 0 =1
p~~>~q =1 | 0 1 =1
~p=>~q =1 | 1 1 =1
~p=> q =0 | 1 0 =0
Punkt odniesienia w tabeli zero-jedynkowej to nagłówek tabeli
|~p=1, p=0
|~q=1, q=0
|
Tożsamość kolumn wynikowych:
p~>q = ~p=>~q
jest dowodem formalnym zachodzenia prawa Kubusia.
7.2.13
Zobaczymy to samo w tabeli zbiorczej, z uwzględnieniem zbiorów.
Kod: |
Definicja |Zbiory |Tabela || |Zbiory |Definicja
symboliczna| |zero ||Negacja | |symboliczna
p~>q=~p=>~q| |jedynkowa||p i q | |~p=>~q=p~>q
---------------------------------------------------------------------------
p q p~>q| p q p~>q| p q p~>q||~p ~q ~p=>~q|~p ~q ~p=>~q|~p ~q ~p=>~q
---------------------------------------------------------------------------
A: p~> q =1 | p* q =1 | 1 1 =1 || 0 0 =1 | p* q =1 | p~> q =1
B: p~~>~q =1 | p*~q =1 | 1 0 =1 || 0 1 =1 | p*~q =1 | p~~>~q =1
C:~p=>~q =1 |~p*~q =1 | 0 0 =1 || 1 1 =1 |~p*~q =1 |~p=>~q =1
D:~p=> q =0 |~p* q =0 | 0 1 =0 || 1 0 =0 |~p* q =0 |~p=> q =0
--------------------------------------------------------------------------
1 2 3 | 4 5 6 | 7 8 9 || a b c | d e f | g h i
Punktem odniesienia w tabeli zero-jedynkowej jest zawsze nagłówek tabeli
|p=1, ~p=0||~p=1, p=0 |
|q=1, ~q=0||~q=1, q=0 |
|
Sposób tworzenia tabeli zero-jedynkowej z definicji symbolicznej opisano wyżej.
Sposób tworzenia tabeli zbiorów z definicji zero-jedynkowej:
Zmienne wejściowe p i q sprowadzamy do jedynek względem nagłówka tabeli korzystając z prawa algebry Kubusia:
Jeśli p=0 to ~p=1
Jeśli ~p=0 to p=1
Przykładowa linia Dabc:
Kod: |
~p ~q ~p=>~q
1 0 =0 /~p*q=0
|
7.2.14
Spis z natury:
~p=>~q =0 <=> ~p=1 i ~q=0
Sprowadzamy wyłącznie wejścia p i q do jedynek:
~p=>~q=0 <=> ~p=1 i q=1
Stąd mamy równanie algebry Kubusia dla tej linii:
~p*q =0
Co matematycznie oznacza, że zbiory ~p i q istnieją (~p=1 i q=1) ale są rozłączne, co wymusza w wyniku 0 (zbiór pusty).
7.2.15
Metoda uproszczona:
1.
Dla jedynki w tabeli zero-jedynkowej przepisujemy sygnał z nagłówka tabeli
2.
Dla zera w tabeli zero-jedynkowej przepisujemy zanegowany sygnał z nagłówka tabeli
Stąd natychmiast mamy zapis symboliczny, widoczny w powyższej tabeli po znaku „/”:
~p*q =0
7.2.16
Zauważmy, że po obu stronach znaku || mamy identyczne tabele symboliczne i tabele zbiorów.
Identyczna jest też definicja symboliczna w równaniu algebry Kubusia:
p~>q = ~p=>~q
Po obu stronach znaku || inny jest tylko nagłówek tabeli, punkt odniesienia.
7.2.17
Nagłówek tabeli decyduje o tym, które zdania mamy brać pod uwagę.
Po lewej stronie znaku || mamy w nagłówku tabeli p~>q, zatem interesuje nas wyłącznie obszar AB123 odpowiadający na pytanie:
Co się stanie jeśli zajdzie p?
Odczytujemy:
p~>q =1
Jeśli zajdzie p to może ~> zajść q (linia A123)
lub
p~~>~q =1
Jeśli zajdzie p to może ~~> zajść ~q (linia B123)
Co się stanie jeśli zajdzie ~p?
Na to pytanie odpowiada obszar CDghi bo tu w nagłówku tabeli mamy ~p:
~p=>~q =1
Jeśli zajdzie ~p to na pewno => zajdzie ~q (linia Cghi)
7.2.18
Zauważmy, że możemy korzystać wyłącznie z definicji symbolicznej, identycznej dla obu stron znaku ||, ignorując kodowanie zero-jedynkowe.
Wtedy wszelkie odpowiedzi mamy jak na dłoni.
Pełna definicja symboliczna implikacji odwrotnej, opisująca wszystkie cztery linie tabeli zero-jedynkowej:
p~>q = ~p=>~q
stąd:
Warunek konieczny ~> w logice dodatniej (bo q)
A: p~>q=1
Jeśli zajdzie p to może ~> zajść q
p jest konieczne ~> dla q
lub
B: p~~>~p=1
Jeśli zajdzie p to może ~~> zajść ~q
... a jeśli zajdzie ~p?
Prawo Kubusia:
p~>q = ~p=>~q
stąd:
Warunek wystarczający w logice ujemnej (bo ~q):
C: ~p=>~q =1
D: ~p=> q =0
Jeśli zajdzie ~p to na pewno => zajdzie ~q
Zajście ~p wystarcza dla zajścia ~q
7.2.19
Przykład:
Jeśli liczba jest podzielna przez 2 to może ~> być podzielna przez 8
P2~>P8
Analiza matematyczna:
A.
Jeśli liczba jest podzielna przez 2 to może ~> być podzielna przez 8
P2~>P8=1 bo 8,16… - miękka prawda, może zajść ale nie musi bo zdanie B
Zbiory:
P2=[2,4,8,16..]
P8=[8,16…]
P2*P8=1*1=1 bo 8,16…
Zbiory P2 i P8 istnieją (P2=1 i P8=1) i maja cześć wspólną co wymusza w wyniku jeden
LUB
B.
Jeśli liczba jest podzielna przez 2 to może ~~> nie być podzielna przez 8
P2~~>~P8=1 bo 2,4… - miękka prawda, może zajść ale nie musi bo zdanie A
Zbiory:
P2=[2,4,6…]
~P8=[2,4,5…]
P2*~P8=1*1=1 bo 2,4…
Zbiory P2 i ~P8 istnieją (P2=1 i ~P8=1) i maja część wspólną, co wymusza w wyniku jeden
… a jeśli liczba nie jest podzielna przez 2 ?
Prawo Kubusia:
P2~>P8 = ~P2=>~P8
C.
Jeśli liczba nie jest podzielna przez 2 to na pewno => nie jest podzielna przez 8
~P2=>~P8=1 bo 3,5… - twarda prawda, gwarancja matematyczna
Zbiory:
~P2=[3,5,7…]
~P8=[2,3,5…]
~P2*~P8=1*1=1 bo 3,5…
Zbiory ~P2 i ~P8 istnieją (~P2=1 i ~P8=1) i mają część wspólną co wymusza w wyniku jeden
stad:
D.
Jeśli liczba nie jest podzielna przez 2 to na pewno => jest podzielna przez 8
~P2=>P8=0 - twardy fałsz wynikły tylko i wyłącznie ze zdania C
Zbiory:
~P2=[1,3,5…]
P8=[8,16..]
~P2*P8=1*1=0
Zbiory ~P2 i P8 istnieją (~P2=1 i P8=1) ale są rozłączne, co wymusza w wyniku zero (zbiór pusty)
W zdaniu B nie zachodzi warunek konieczny bo prawo Kubusia:
B: ~P2~>P8 = D: P2=>~P8=0 bo 8
Prawa strona jest fałszem zatem w zdaniu B nie ma prawa zachodzić warunek konieczny. Zdanie B jest prawdziwe na mocy naturalnego spójnika „może” ~~>, wystarczy pokazać jeden przypadek prawdziwy.
7.2.20
Doskonale widać tabelę zero-jedynkową implikacji odwrotnej dla kodowania zgodnego ze zdaniem wypowiedzianym A:
P2=1, ~P2=0
P8=1, ~P8=0
Kod: |
A: P2~>P8=1 bo 8 |1 1 =1
B: P2~~>~P8=1 bo 2 |1 0 =1
C: ~P2=>~P8=1 bo 3 |0 0 =1
D: ~P2=>P8=0 |0 1 =0
|
7.2.21
Po nieskończonej ilości losowań puste będzie wyłącznie pudełko D, stąd taki a nie inny rozkład wynikowych zer i jedynek.
7.2.22
Twierdzenie Sowy:
W świecie zdeterminowanym (gdy znamy rozwiązanie) dowolny operator logiczny ulega redukcji do operatora AND.
7.2.23
Definicja implikacji w zbiorach:
Kod: |
A: P2~>P8 | P2* P8
B: P2~~>~P8 | P2*~P8
C: ~P2=>~P8 |~P2*~P8
D: ~P2=>P8 |~P2* P8
|
7.2.24
Przykład:
Wylosowana liczba: 8
Dla tego losowania zdanie A będzie prawdziwe, pozostałe zdania będą fałszywe
Jeśli wylosowano liczbę 8 (L8=1) to jest ona podzielna przez 2 (P2=1) i jest podzielna przez 8 (P8=1)
L8=>P2*P8
Co matematycznie oznacza:
L8=1 => P2=1 i P8=1
Kodowanie zero-jedynkowe tabeli zbiorów dla:
P2=1, ~P2=0
P8=1. ~P8=0
Kod: |
A: P2~>P8 | P2* P8 =1*1=1
B: P2~~>~P8 | P2*~P8 =1*0=0
C: ~P2=>~P8 |~P2*~P8 =0*0=0
D: ~P2=>P8 |~P2* P8 =0*1=0
|
Doskonale widać zero-jedynkową definicję operatora AND
7.2.25
Wylosowana liczba: 2
Dla tego losowania zdanie B będzie prawdziwe, pozostałe zdania będą fałszywe
Jeśli wylosowano liczbę 2 (L2=1) to jest ona podzielna przez 2 (P2=1) i nie jest podzielna przez 8 (~P8=1)
L2=>P2*~P8
Co matematycznie oznacza:
L2=1 => P2=1 i ~P8=1
Kodowanie zero-jedynkowe tabeli zbiorów dla:
P2=1, ~P2=0
~P8=1. P8=0
Kod: |
A: P2~>P8 | P2* P8 =1*0=0
B: P2~~>~P8 | P2*~P8 =1*1=1
C: ~P2=>~P8 |~P2*~P8 =0*1=0
D: ~P2=>P8 |~P2* P8 =0*0=0
|
Doskonale widać zero-jedynkową definicję operatora AND
7.2.26
Wylosowana liczba: 3
Dla tego losowania zdanie C będzie prawdziwe, pozostałe będą fałszywe
Jeśli wylosowano liczbę 3 (L3=1) to nie jest ona podzielna przez 2 (~P2=1) i nie jest podzielna przez 8 (~P8=1)
L3=>~P2*~P8
co matematycznie oznacza:
L3=1 => ~P2=1 i ~P8=1
Kodowanie zero-jedynkowe tabeli zbiorów dla:
~P2=1, P2=0
~P8=1. P8=0
Kod: |
A: P2~>P8 | P2* P8 =0*0=0
B: P2~~>~P8 | P2*~P8 =0*1=0
C: ~P2=>~P8 |~P2*~P8 =1*1=1
D: ~P2=>P8 |~P2* P8 =1*0=0
|
Doskonale widać zero-jedynkową definicję operatora AND
7.2.27
Dla nieskończonej ilości losowań puste będzie wyłącznie pudełko D, pozostałe będą niepuste, stąd taki a nie inny rozkład wynikowych zer i jedynek.
7.2.1 Implikacja odwrotna w bramkach logicznych
Definicja operatora implikacji odwrotnej:
Kod: |
p q p~>q |Definicja symboliczna
A: 1 1 =1 | p~> q =1
B: 1 0 =1 | p~~>~q=1
C: 0 0 =1 |~p=>~q =1
D: 0 1 =0 |~p=> q =0
|
Najprostsze równanie w spójnikach „i”(*) i „lub”(+) otrzymamy z linii D, bowiem mamy tu samotne zero.
Spis z natury:
p~>q=0 <=> p=0 i q=1
Korzystając z prawa algebry Kubusia:
Jeśli p=0 to ~p=1
Sprowadzamy wszystkie zmienne do jedynek:
~(p~>q)=1 <=> ~p=1 i q=1
Korzystając z definicji spójnika „i”(*):
Y=p*q
Y=1 <=> p=1 i q=1
mamy minimalne równanie logiczne opisujące powyższa tabelę:
~(p~>q) = ~p*q
Przechodzimy do logiki przeciwnej poprzez negację zmiennych i wymianę spójników na przeciwne:
p~>q = p+~q
stąd:
Definicja bramki „może” ~>:
p~>q = p+~q
Bramka „może” to bramka OR z zanegowaną w środku linią q.
Definicja operatora implikacji prostej:
Kod: |
p q p=>q |Definicja symboliczna
A: 1 1 =1 | p=> q =1
B: 1 0 =0 | p=>~q =0
C: 0 0 =1 |~p~>~q =1
D: 0 1 =1 |~p~~>q =1
|
Postępujemy identycznie jak wyżej.
Najprostsze równanie w spójnikach „i”(*) i „lub”(+) uzyskamy z linii B, bo mamy tu samotne zero.
Sprowadzamy zmienne do jedynek:
~(p=>q)=1 <=> p=1 i ~q=1
Stąd równanie algebry Kubusia:
~(p=>q) = p*~q
Przechodzimy do logiki przeciwnej negując zmienne i wymieniając spójniki na przeciwne:
p=>q = ~p+q
stąd:
Definicja bramki „musi” =>:
p=>q = ~p+q
Bramka „musi” to bramka OR z zanegowaną w środku linią p.
Z punktu widzenia świata zewnętrznego nie jesteśmy w stanie odróżnić który układ logiczny jest fizycznie zrealizowany, bowiem oba układy dają identyczną tabelę zero-jedynkową operatora implikacji odwrotnej.
Oczywiście dla wejścia p i q oraz wyjścia:
p~>q = ~p=>~q
Odpowiedź na pytanie:
Co będzie jeśli zajdzie p?
Otrzymujemy patrząc na wejścia p i q poprzez bramkę „może” ~> bowiem tylko tu widzimy niezanegowane wejście p (p).
Natomiast odpowiedź na pytanie:
Co będzie jeśli zajdzie ~p?
Otrzymujemy patrząc na wejścia p i q poprzez bramkę „musi” => bowiem tylko tu mamy zanegowane wejście p (~p).
Definicja implikacji odwrotnej:
Kod: |
Definicja |Definicja |Definicja
symboliczna |zero-jedynkowa |zero-jedynkowa
|w logice dodatniej (bo q)|w logice ujemnej (bo ~q)
| p q p~>q | ~p ~q ~p=>~q
A: p~> q =1 | 1 1 =1 | 0 0 =1
B: p~~>~q=1 | 1 0 =1 | 0 1 =1
C:~p=>~q =1 | 0 0 =1 | 1 1 =1
D:~p=> q =0 | 0 1 =0 | 1 0 =0
| 1 2 3 | 4 5 6
Punktem odniesienia w tabeli zero-jedynkowej jest nagłówek tabeli
| p=1, ~p=0 | ~p=1, p=0
| q=1, ~q=0 | ~q=1, q=0
|
Doświadczenie
Zbudować powyższy układ logiczny i sprawdzić zgodność świata fizycznego z tabelami zero-jedynkowymi operatora implikacji odwrotnej wyżej.
Jak widzimy odpowiedź na pytanie:
Co będzie jeśli zajdzie p?
Mamy w liniach AB123:
Kod: |
A: p~> q =1 /1 1 =1
B: p~~>~q=1 /1 0 =1
|
Bramki „może” ~>
Natomiast odpowiedź na pytanie:
Co będzie jak zajdzie ~p?
Mamy w liniach CD456:
Kod: |
C: ~p=>~q=1 /1 1 =1
D: ~p=> q=0 /1 0 =0
|
Bramki „musi” =>
7.3 Właściwości operatorów implikacji
7.3.1
Implikacja prosta:
Formalny dowód prawa Kubusia z komentarzem symbolicznym:
p=>q = ~p~>~q
Kod: |
p q p=>q ~p ~q ~p~>~q |Definicja symboliczna
A: 1 1 =1 0 0 =1 | p=> q=1
B: 1 0 =0 0 1 =0 | p=>~q=0
C: 0 0 =1 1 1 =1 |~p~>~q=1
D: 0 1 =1 1 0 =1 |~p~~>q=1
|
Doskonale widać poprawność prawa Kubusia:
p=>q = ~p~>~q
7.3.2
Implikacja odwrotna:
Formalny dowód prawa Kubusia z komentarzem symbolicznym:
p~>q = ~p=>~q
Kod: |
p q p~>q ~p ~q ~p=>~q |Definicja symboliczna
A: 1 1 =1 0 0 =1 | p~> q=1
B: 1 0 =1 0 1 =1 | p~>~q=1
C: 0 0 =1 1 1 =1 |~p=>~q=1
D: 0 1 =0 1 0 =0 |~p=> q=0
|
Doskonale widać poprawność prawa Kubusia:
p~>q = ~p=>~q
7.3.3
Świętość algebry Boole’a:
Wszelkie przekształcenia tabel zero-jedynkowych muszą mieć swój odpowiednik w równaniach algebry Boole’a.
7.3.4
Zauważmy, że prawa Kubusia są totalnie symetryczne do praw de’Morgana z operatorów OR i AND.
W przypadku implikacji jeśli chcemy z bramki implikacji prostej zrobić bramkę implikacji odwrotnej, wystarczy zanegować sygnały wejściowe p i q. Nie trzeba dodatkowo negować wyjścia Y jak to było w operatorach OR i AND.
Dowód:
Implikacja prosta:
Y = p=>q = ~p~>~q - kompletna definicja implikacji prostej
Negujemy wyłącznie wejścia p i q:
y = ~p=>~q = p~>q - kompletna definicja implikacji odwrotnej
implikacja odwrotna:
Y = p~>q = ~p=>~q - kompletna definicja implikacji odwrotnej
Negujemy wyłącznie wejścia p i q:
y = ~p~>~q = p=>q - kompletna definicja implikacji prostej
Oczywiście wyłącznie zanegowaliśmy sygnały wejściowe p i q, zatem matematycznie zachodzi:
Y = p=>q = ~p~>~q ## y = p~>q = ~p=>~q
gdzie:
## - różne na mocy definicji
Po obu stronach znaku ## mamy do czynienia z dwoma niezależnymi układami logicznymi pomiędzy którymi nie zachodzą żadne tożsamości matematyczne.
7.3.5
Wyobraźmy sobie teraz, że dostajemy od producenta układ implikacji prostej o wejściach p i q i wyjściu Y oznaczony:
Y = p=>q
Uwaga!
Jeśli znaczek „=>” jest kompletnym operatorem implikacji prostej (jak to jest w dzisiejszej logice), to negując p i q musimy otrzymać bramkę implikacji odwrotnej:
Y = ~p=>~q
oczywiście to jest figa z makiem a nie definicja implikacji odwrotnej, to wyłącznie połówka definicji implikacji odwrotnej.
7.3.6
Kompletna definicja implikacji odwrotnej opisująca wszystkie cztery linie to po prostu prawo Kubusia!
p=>q = ~p~>~q - to jest kompletna definicja implikacji prostej!
Tylko i wyłącznie w tym przypadku negujemy wejścia p i q i otrzymujemy definicje implikacji odwrotnej:
~p=>~q = p~>q - to jest kompletna definicja implikacji odwrotnej!
7.3.7
Sensacyjne wnioski:
1.
Budowa operatorów implikacji prostej i odwrotnej nie jest jednorodna.
Implikacja prosta:
p=>q = ~p~>~q
Implikacja prosta to złożenie warunku wystarczającego => w logice dodatniej (bo q) z warunkiem koniecznym ~> w logice ujemnej (bo ~q).
Implikacja odwrotna:
p~>q = ~p=>~q
Implikacja odwrotna to złożenie warunku koniecznego ~> w logice dodatniej (bo q) z warunkiem wystarczającym => w logice ujemnej (bo ~q)
2.
Znaczek „=>” nie jest kompletnym operatorem implikacji prostej (nie opisuje wszystkich czterech linii tabeli zero-jedynkowej), jak to jest w dzisiejszej logice - to jest błąd czysto matematyczny!
3.
Miejsce całej dzisiejszej logiki matematycznej człowieka jest w koszu na śmieci z powodu błędu czysto matematycznego w dosłownie każdym operatorze logicznym!
Co dowiedziono wyżej.
Operatory logiczne zbudowane są totalnie inaczej, niż się to największym Ziemskim matematykom zdaje!
7.3.8
Prawa Kubusia:
p=>q = ~p~>~q - definicja implikacji prostej
p~>q = ~p=>~q - definicja implikacji odwrotnej
7.3.9
Na mocy definicji zachodzi:
Y = p=>q = ~p~>~q ## y = p~>q = ~p=>~q
gdzie:
## - różne na mocy definicji
Po obu stronach znaku ## mamy do czynienia z dwoma niezależnymi układami logicznymi pomiędzy którymi nie zachodzą żadne tożsamości matematyczne.
7.3.10
W implikacji nie zachodzi przemienność argumentów:
p=>q # q=>p
p~>q # q~>p
gdzie:
# - różne
Jeśli p=>q=1 to q=>p=0
Jeśli P8=>P2=1 to P2=>P8=0
Jeśli p~>q=1 to q~>p=0
Jeśli P2~>P8=1 to P8~>P2=0
Dowód:
P2~>P8 = ~P2=>~P8 =1
P8~>P2 = ~P8=>~P2 =0 bo 2
Odwrotnie nie zachodzi, czyli:
Jeśli p=>q=0 to q=>p=1
Jeśli P2=>P8=0 to P8=>P2=1
lub
Jeśli p=>q=0 to q=>p=0
Jeśli P3=>P8=0 to P8=>P3=0
7.3.11
Dowód formalny braku przemienności argumentów w implikacji:
Kod: |
Implikacja prosta: |Implikacja odwrotna:
Y=p=>q=~p~>~q |y=p~>q=~p=>~q
p q ~p ~q Y=p=>q Y=q=>p Y=~p~>~q | y=p~>q y=q~>p y=~p=>~q
A: 1 1 0 0 =1 =1 =1 | =1 =1 =1
B: 1 0 0 1 =0 =1 =0 | =1 =0 =1
C: 0 0 1 1 =1 =1 =1 | =1 =1 =1
D: 0 1 1 0 =1 =0 =1 | =0 =1 =0
1 2 3 4 5 6 7 | 8 9 10
|
7.3.12
Prawa Kubusia
Tożsamość kolumn wynikowych ABCD5 i ABCD7 jest dowodem zachodzenia prawa Kubusia:
Y=p=>q=~p~>~q
Zauważmy, że prawo Kubusia zachodzi tu w tej samej logice operatorowej Y
Tożsamość kolumn wynikowych ABCD8 i ABCD10 jest dowodem zachodzenia prawa Kubusia:
y=p~>q=~p=>~q
Zauważmy, że prawo Kubusia zachodzi tu w tej samej logice operatorowej y
7.3.13
Brak przemienności argumentów:
Brak tożsamości kolumn wynikowych ABCD5 i ABCD6 jest dowodem braku przemienności argumentów w implikacji prostej.
Y=p=>q # Y=q=>p
Jeśli p=>q=1 to q=>p=0
Odwrotnie nie zachodzi.
Zauważmy, że brak przemienności argumentów zachodzi w tej samej logice operatorowej Y
Brak tożsamości kolumn wynikowych ABCD8 i ABCD9 jest dowodem braku przemienności argumentów w implikacji odwrotnej.
y=p~>q # y=q~>p
Jeśli p~>q=1 to q~>p=0
Odwrotnie nie zachodzi.
Zauważmy, że brak przemienności argumentów zachodzi w tej samej logice operatorowej y
7.3.14
Zauważmy, że mimo tożsamości kolumn wynikowych ABCD5 i ABCD9 zachodzi:
Y=p=>q ## y=q~>p
gdzie:
## - różne na mocy definicji
Podobnie, mimo tożsamości kolumn wynikowych ABCD8 i ABCD6 zachodzi:
y=p~>q ## Y=q=>p
gdzie:
## - różne na mocy definicji
bowiem implikacje Y i y to dwie niezależne logiki pomiędzy którymi nie zachodzą żadne prawa tożsamościowe.
7.3.15
W obrębie dowolnej z logik zachodzi prawo podwójnego przeczenia:
Y = ~(Y)
y=~(~y)
Między niezależnymi logikami Y i y nie zachodzi prawo podwójnego przeczenia:
Y ## ~(~y)
7.3.16
Na mocy prawa Kubusia zachodzi:
Y = p=>q = ~p~>~q ## y = q~>p = ~q=>~p
gdzie:
## - różne na mocy definicji
Oznacza to że znane matematykom prawo kontrapozycji w implikacji jest błędne matematycznie:
p=>q ## ~q=>p
Prawo kontrapozycji w tej postaci:
p=>q = ~q=>~p
Jest poprawne wyłącznie w równoważności, o czym będzie za chwilę.
7.4 Równoważność w zbiorach
Zero-jedynkowa definicja równoważności wraz z dowodem formalnym przemienności argumentów:
Kod: |
p q p<=>q | q p q<=>p
A: 1 1 =1 | 1 1 =1
B: 1 0 =0 | 0 1 =0
C: 0 0 =1 | 0 0 =1
D: 0 1 =0 | 1 0 =0
1 2 3 4 5 6
|
Gdzie:
<=> - operator równoważności, spójnik „wtedy i tylko wtedy” w naturalnej logice człowieka
Tożsamość kolumn ABCD3 i ABCD6 jest dowodem formalnym przemienności argumentów w równoważności. Oznacza to, że w równoważności jest obojętne co nazwiemy p a co nazwiemy q.
Definicja równoważności:
p<=>q = q<=>p = (p=>q)*(q=>p) = 1*1=1
W implikacji nie jest obojętne co nazwiemy p a co q z powodu braku przemienności argumentów!
p=>q # q=>p
Jeśli p=>q=1 to q=>p=0
Przykład:
Jeśli liczba jest podzielna przez 8 to na pewno => jest podzielna przez 2
P8=>P2=1
P2=>P8=0 bo 8
Odwrotnie nie zachodzi, czyli z faktu iż zachodzi:
p=>q=0
nie możemy wyciągać żadnych wniosków, bo wszystko może się zdarzyć.
Przykład:
Jeśli liczba jest podzielna przez 2 to na pewno => jest podzielna przez 8
P2=>P8=0 bo 2
P8=>P2=1
ale!
Jeśli liczba jest podzielna przez 3 to na pewno => jest podzielna przez 8
P3=>P8=0 bo 3
P8=>P3=0 bo 8
Powyższy fakt, można wykorzystywać do poprawnego rozpoznawania fałszywości implikacji.
Przykład:
Jeśli trójkąt jest równoboczny to na pewno => ma kąty równe
A: TR=>KR=1
B: KR=>TR=1
Zdania A i B to implikacje proste fałszywe, bo zachodzi przemienność argumentów!
Zdania A i B to tylko warunki wystarczające => o definicji:
p=>q
Jeśli zajdzie p to na pewno => zajdzie q
Przemienność argumentów jest dowodem, iż mamy do czynienia z równoważnością:
Trójkąt jest równoboczny wtedy i tylko wtedy gdy ma kąty równe.
TR<=>KR = KR<=>TR = (TR=>KR)*(KR=>TR) = 1*1=1
gdzie:
=> - warunek wystarczający, spójnik „na pewno” miedzy p i q w całym obszarze logiki, o definicji jak wyżej.
Po tej małej dygresji wracamy do tematu. Dla definicji zero-jedynkowej równoważności utworzymy definicje symboliczną w zbiorach i na jej podstawie definicję symboliczną wyrażoną warunkami wystarczającymi =>.
Korzystając z prawa algebry Kubusia:
Jeśli p=0 to q=1
sprowadzamy zmienne wejściowe p i q do jedynek, czyli do teorii zbiorów.
Kod: |
Definicja |Zbiory |Zbiory |Definicja
zero |definicja |sprowadzone |symboliczna
jedynkowa |symboliczna|do jedynek |w warunkach wystarczających =>
p q p<=>q | | 1 1 =x | p q p<=>q=(p=>q)*(~p=>~q)
A: 1 1 =1 | p* q =1 | 1*1 =1 | p=> q =1
B: 1 0 =0 | p*~q =0 | 1*1 =0 | p=>~q =0
C: 0 0 =1 |~p*~q =1 | 1*1 =1 |~p=>~q =1
D: 0 1 =0 |~p* q =0 | 1*1 =0 |~p=> q =0
1 2 3 4 5 6 7 8 9
|
W symbolicznej definicji w zbiorach łatwo wyłapać dwa warunki wystarczające.
1.
Obszar AB456:
Jeśli zajdzie p to na pewno=> zajdzie q (linia A456)
A: p=>q =1
bo zajście p i zajście ~q jest niemożliwe (linia B456)
B: p=> ~q=0
Zbiory:
A: p* q =1
Zbiory p i q istnieją (p=1 i q=1) i mają cześć wspólną, co wymusza w wyniku 1.
B: p*~q =0
Zbiory p i ~q istnieją (p=1 i ~q=1), ale są rozłączne, co wymusza w wyniku 0
Ta i tylko ta relacja zbiorów wymusza zawieranie się zbioru p w zbiorze q
2.
Obszar CD456:
Jeśli zajdzie ~p to na pewno => zajdzie ~q (linia C456)
C: ~p=>~q=1
bo zajście ~p i zajście q jest niemożliwe (linia D456)
D: ~p=> q =0
Zbiory:
C: ~p*~q=1
Zbiory ~p i ~q istnieją (~p=1 i ~q=1) i mają część wspólną, co wymusza w wyniku 1
D: ~p*q =0
Zbiory ~p i q istnieją (~p=1 i q=1), ale są rozłączne, co wymusza w wyniku 0
Ta i tylko ta relacja zbiorów wymusza zawieranie się zbioru ~p zbiorze ~q
Spełnienie warunku B i D wymusza tożsamość zbiorów:
p = q
~p = ~q
Stąd definicja symboliczna równoważności:
Kod: |
p<=>q=(p=>q)*(~p=>~q)
Warunek wystarczający w logice dodatniej (bo q)
A: p=> q =1
B: p=>~q =0
~p<=>~q=(~p=>~q)*(p=>q)
Warunek wystarczający w logice ujemnej (bo ~q)
C: ~p=>~q =1
D: ~p=> q =0
|
W równoważności kodowanie zero-jedynkowe nie zależy od przyjętego punktu odniesienia.
Obojętne jest, czy za punkt odniesienia przyjmiemy zdanie:
p<=>q czy też ~p<=>~q
ponieważ zawsze otrzymamy tabelę zero-jedynkową równoważności.
Dowód:
1.
Kodowanie zero-jedynkowe symbolicznej definicji równoważności dla punktu odniesienia:
p<=>q
czyli:
p=1, ~p=0
q=1, ~q=0
Kod: |
Tabela 1
Definicja |Zbiory |Definicja
symboliczna | |zero-jedynkowa
--------------------------------------------
p q p<=>q | p q p<=>q | p q p<=>q
--------------------------------------------
A: p=> q =1 | p* q =1 | 1 1 =1
B: p=>~q =0 | p*~q =0 | 1 0 =0
C:~p=>~q =1 |~p*~q =1 | 0 0 =1
D:~p=> q =0 |~p* q =0 | 0 1 =0
1 2 3 4 5 6 7 8 9
Punktem odniesienia w tabeli zero-jedynkowej jest nagłówek tabeli
|p=1, ~p=0
|q=1, ~q=0
|
2.
Kodowanie zero-jedynkowe symbolicznej definicji równoważności dla punktu odniesienia:
~p<=>~q
czyli:
~p=1, p=0
~q=1, q=0
Kod: |
Tabela 2
Definicja |Zbiory |Definicja
symboliczna | |zero-jedynkowa
----------------------------------------------
~p ~q ~p<=>~q |~p ~q ~p<=>~q|~p ~q ~p<=>~q
----------------------------------------------
A: p=> q =1 | p* q =1 | 0 0 =1
B: p=>~q =0 | p*~q =0 | 0 1 =0
C:~p=>~q =1 |~p*~q =1 | 1 1 =1
D:~p=> q =0 |~p* q =0 | 1 0 =0
1 2 3 4 5 6 7 8 9
Punktem odniesienia w tabeli zero-jedynkowej jest nagłówek tabeli
|~p=1, p=0
|~q=1, q=0
|
Zauważmy, że definicje symboliczne i tabele zbiorów w tabelach 1 i 2 są identyczne i nie zależą od przyjętego punktu odniesienia.
Tożsamość kolumn wynikowych ABCD9 jest dowodem formalnym zachodzenie prawa algebry Kubusia:
p<=>q = ~p<=>~q
Definicja równoważności:
Równoważność to jednoczesne zachodzenie warunku wystarczającego w logice dodatniej (bo q) i warunku wystarczającego w logice ujemnej (bo ~q)
p<=>q = (p=>q)*(~p=>~q)
Zobaczmy to wszystko na diagramie:
W równoważności zbiór p zawiera się w całości w zbiorze q i jest tożsamy ze zbiorem q, co wymusza tożsamość zbiorów ~p i ~q
.. albo odwrotnie.
W równoważności zbiór ~p zawiera się w całości w zbiorze ~q i jest tożsamy ze zbiorem ~q, co wymusza tożsamość zbiorów p i q.
Analiza ogólna równoważności:
W: p<=>q = (p=>q)*(~p=>~q)
Warunek wystarczający w logice dodatniej (bo q)
p=>q - pierwszy człon po prawej stronie <=>
A.
Jeśli zajdzie p to na pewno => zajdzie q
p=>q=1 - twarda prawda, gwarancja matematyczna
Zbiory:
p*q=1*1=1
Zbiory p i q istnieją (p=1 i q=1) i są tożsame, co wymusza w wyniku jeden
B.
Jeśli zajdzie p to na pewno => nie zajdzie q
p=>~q=0 - twardy fałsz, wynikły tylko i wyłącznie z A
Zbiory:
p*~q=1*1=0
Zbiory p i ~q istnieją (p=1 i ~q=1) ale są rozłączne, co wymusza w wyniku zero (zbiór pusty)
p*~q=0
Ta i tylko ta relacja zbiorów wymusza zawieranie się zbioru p w zbiorze q.
… a jeśli zajdzie ~p?
~p<=>~q = (~p=>~q)*(p=>q)
Warunek wystarczający w logice ujemnej bo ~q
~p=>~q - pierwszy człon po prawej stronie <=>
C.
Jeśli nie zajdzie p to na pewno => nie zajdzie q
~p=>~q=1 - twarda prawda, gwarancja matematyczna
Zbiory:
~p*~q=1*1=1
Zbiory ~p i ~q istnieją (~p=1 i ~q=1) i są tożsame, co wymusza w wyniku jeden
D.
Jeśli nie zajdzie p to na pewno => zajdzie q
~p=>q=0 - twardy fałsz, wynikły tylko i wyłącznie z C
Zbiory:
~p*q=1*1=0
Zbiory ~p i q istnieją (~p=1 i q=1) ale są rozłączne, co wymusza w wyniku zero (zbiór pusty)
~p*q=0
Ta i tylko ta relacja zbiorów wymusza zawieranie się zbioru ~p w zbiorze ~q.
Spełnienie warunku B i D wymusza tożsamość zbiorów:
p = q
~p = ~q
Tożsamość zbiorów:
A.
Zbiory p i q są tożsame wtedy i tylko wtedy gdy każdy element zbioru p należy do zbioru q (p=>q) i każdy element zbioru q należy do zbioru p (q=>p).
p<=>q = (p=>q)*(q=>p) =1*1 =1
B.
Tożsamość zbiorów po stronie p i q wymusza tożsamość zbiorów po stronie ~p i ~q (i odwrotnie):
~p<=>~q = (~p=>~q)*(~q=>~p) =1*1=1
Zbiory ~p i ~q są tożsame wtedy i tylko wtedy gdy każdy element zbioru ~p należy do zbioru ~q (~p=>~q) i każdy element zbioru ~q należy do zbioru ~p (~q=>~p).
Zauważmy że matematycznie zachodzi:
p<=>q = ~p<=>~q
W poziomach A i B zachodzi:
Kod: |
Tabela 1
A: p<=>q = (p=>q)*(q=>p) =1*1 =1
B: ~p<=>~q = (~p=>~q)*(~q=>~p) =1*1 =1
A: p=> q ## q=> p
B: ~p=>~q ## ~q=>~p
|
gdzie:
## - różne na mocy definicji
Dowód nie wprost:
p<=>q = (p=>q)*(q=>p) =1*1 =1
Załóżmy że zachodzi:
p=>q = q=>p
Wówczas definicję równoważności możemy zredukować do postaci:
p<=>q = p=>q
co jest oczywistym nonsensem.
cnd
W równoważności (i tylko tu) w definicjach A i B zachodzą prawa kontrapozycji:
p=>q = ~q=>~p
q=>p = ~p=>~q
Porządkujemy tabelę 1, aby w pionach były tożsamości:
Kod: |
Tabela 2
A: p=> q ## q=> p
B: ~q=>~p ## ~p=>~q
|
Ponieważ w pionach mamy tożsamości, to wszystkie możliwe definicje równoważności w warunkach wystarczających są takie:
p<=>q = (p=>q)*(q=>p) = (p=>q)*(~p=>~q) = (~q=>~p)*(q=>p) = (~q=>~p)*(~p=>~q)
Wszystkie możliwe iloczyny logiczne między lewą i prawa stroną znaku ##.
Możliwych definicji jest zatem:
2^2=4
co widać wyżej.
Dalej mamy tak!
Definicja warunku koniecznego ~> obowiązująca w całym obszarze logiki matematycznej:
Warunek konieczny ~> miedzy p i q zachodzi wtedy i tylko wtedy gdy z zanegowanego poprzednika wynika => zanegowany następnik.
Implikacja
Prawa Kubusia w implikacji:
p~>q = ~p=>~q
~p~>~q = p=>q
gdzie:
=> - warunek wystarczający, spójnik „na pewno” w całym obszarze logiki
~> - warunek konieczny, w implikacji (i tylko tu!) spójnik „może” miedzy p i q
Równoważność
Prawa Kubusia w równoważności:
[p~>q] = ~p=>~q
[~p~>~q] = p=>q
gdzie:
=> - warunek wystarczający, spójnik „na pewno” w całym obszarze logiki
[~>] - wirtualny warunek konieczny, wycięty przez definicję równoważności i niedostępny w świecie rzeczywistym.
Dowód za chwilę.
Oczywiście w równoważności mamy 100% determinizm i nie ma tu miejsca na spójnik „może” ~> znany z implikacji, ale na poziomie wirtualnym warunek konieczny [~>] w równoważności zachodzi.
Zauważmy, że koniec końców w równoważności (także w implikacji) dowodzimy banalnych warunków wystarczających.
Definicja równoważności:
p<=>q = (p=>q)*(~p=>~q)
Z tej definicji, oraz definicji warunku koniecznego [~>] wynika, że w równoważności między dowolnymi dwoma punktami zachodzą jednocześnie:
=> - warunek wystarczający rzeczywisty
[~>] - warunek konieczny wirtualny (niedostępny w świecie rzeczywistym).
Zastosujmy w tabeli 2 prawa Kubusia po obu stronach znaku ##:
Kod: |
Tabela 3
A: p=> q ## q=> p
A1: [~p~>~q] ## [~q~>~p]
B: ~q=>~p ## ~p=>~q
B1: [ q~> p] ## [ p~> q]
|
Po obu stronach znaku ## mamy matematyczne tożsamości, zatem wszystkich możliwych definicji równoważności mamy:
4^2 = 16
Mnożymy logicznie każdy składnik przez każdy po obu stronach znaku ##.
Oczywiście najważniejsze definicje równoważności to definicje w warunkach wystarczających =>:
p<=>q = (p=>q)*(q=>p) = (p=>q)*(~p=>~q) = (~q=>~p)*(q=>p) = (~q=>~p)*(~p=>~q)
Najciekawszą definicją spoza tego grona jest ta definicja równoważności:
p<=>q = (p=>q)*[p~>q]
Równoważność, to jednoczesne zachodzenie warunku wystarczającego => i koniecznego [~>] między p i q.
Przykład:
Trójkąt ma kąty równe wtedy i tylko wtedy gdy jest równoboczny
KR<=>TR = (KR=>TR)*[KR~>TR]
Dla zbudowania trójkąta równobocznego potrzeba [~>] i wystarcza => aby miał kąty równe.
KR<=>TR = [KR~>TR]*(KR=>TR)
Definicja ogólna:
p<=>q = [p~>q]*(p=>q)
Oczywiście w praktyce korzystamy z zależności:
[p~>q] = ~p=>~q = q=>p
i dowodzimy jedną z definicji:
p<=>q = (p=>q)*(~p=>~q) =1*1=1
lub
p<=>q = (p=>q)*(q=>p) =1*1=1
Równoważność zachodzi wtedy i tylko wtedy, gdy udowodnimy oba warunki wystarczające po prawej stronie znaku <=>.
7.4.1 Wirtualny warunek konieczny [~>]
Definicja równoważności:
p<=>q = (p=>q)*[p~>q] = (p=>q)*(~p=>~q)
Równoważność to iloczyn logiczny wirtualnych definicji implikacji prostej i odwrotnej.
gdzie:
[p~>q] - wirtualny warunek konieczny, niedostępny w świecie rzeczywistym
Kod: |
Wirtualna Wirtualna
implikacja implikacja
prosta odwrotna
p=>q=[~p~>~q] [p~>q]=~p=>~q p<=>q=(p=>q)*[p~>q]=(p=>q)*(~p=>~q)
A: p=> q=1 [p~> q=1] =1
B: p=>~q=0 [p~~>~q=1] =0
C:[~p~>~q=1] ~p=> ~q=1 =1
D:[~p~~>q=1] ~p=> q=0 =0
1 2 3 4 5 6 7
|
gdzie:
[…] - część wirtualna, niedostępna w świecie rzeczywistym
Uwaga:
W iloczynie logicznym:
p<=>q = (p=>q)*[p~>q]
mnożone są wynikowe zera i jedynki w odpowiednich liniach.
A: 1*1=1
B: 0*1=0
C: 1*1=1
D: 1*0=0
Wirtualny warunek konieczny w implikacji odwrotnej (linie AB456):
[p~>q]
jest wycinany przez warunek wystarczający implikacji prostej (AB123) i nie jest dostępny w świecie rzeczywistym.
Stąd:
[p~>q] - wirtualny warunek konieczny, niedostępny w świecie rzeczywistym
W świecie rzeczywistym w liniach A i B widzimy wyłącznie warunek wystarczający AB123:
p=>q = 1 - gwarancja matematyczna w wirtualnej implikacji prostej
Analogicznie:
Warunek konieczny w implikacji prostej (linie CD123):
[~p~>~q]
jest wycinany przez warunek wystarczający implikacji odwrotnej (CD456) i nie jest dostępny w świecie rzeczywistym.
Stąd:
[~p~>~q] - wirtualny warunek konieczny, niedostępny w świecie rzeczywistym
W świecie rzeczywistym w liniach C i D widzimy wyłącznie warunek wystarczający CD456.
~p=>~q = 1 - gwarancja matematyczna w wirtualnej implikacji odwrotnej
Stąd mamy:
Równoważność to jednoczesne zachodzenie warunku wystarczającego => i koniecznego ~> w kierunku p=>q:
p<=>q = (p=>q)*[p~>q] = (p=>q)*(~p=>~q)
p=>q=1
[p~>q] = ~p=>~q =1
Definicja równoważności w postaci gwarancji matematycznych:
Równoważność to dwie i tylko dwie gwarancje matematyczne:
p<=>q = (p=>q)*(~p=>~q)
A123: p=>q=1
C456: ~p=>~q=1
Na podstawie powyższego mamy.
Symboliczna definicja równoważności:
Kod: |
p<=>q = (p=>q)*(~p=>~q)
Warunek wystarczający w logice dodatniej (bo q):
p=>q
A: p=> q =1 - twarda prawda, [b]gwarancja matematyczna[/b]
B: p=>~q =0 - twardy fałsz wynikły z A
… a jeśli zajdzie ~p ?
~p<=>~q = (~p=>~q)*(p=>q)
Warunek wystarczający w logice ujemnej (bo ~q):
~p=>~q
C: ~p=>~q=1 - twarda prawda, [b]gwarancja matematyczna[/b]
D: ~p=> q=0 - twardy fałsz wynikły z C
1 2 3
|
Definicja równoważności:
p<=>p = (p=>q)*(~p=>~q)
gdzie:
Możliwe są dwie równoważne interpretacje słowne prawej strony równania:
A.
p=>q - warunek wystarczający o definicji w liniach A i B
~p=>~q - warunek wystarczający o definicji w liniach C i D
B.
p=>q - wirtualna implikacja prosta w logice dodatniej (bo q), gdzie „rzucanie monetą” jest przykryte przez linie C i D powyższej definicji i niedostępne w świecie rzeczywistym.
~p=>~q - wirtualna implikacja prosta w logice ujemnej (bo ~q), gdzie „rzucanie monetą” jest przykryte przez linie A i B powyższej definicji i niedostępne w świecie rzeczywistym.
Przykład:
Trójkąt jest równoboczny wtedy i tylko wtedy gdy ma kąty równe
TR<=>KR = (TR=>KR)*(~TR=>~KR)
Dowód poprzez analizę wszystkich możliwych przeczeń TR i KR.
TR<=>KR = (TR=>KR)*(~TR=>~KR)
TR=>KR - warunek wystarczający w logice dodatniej (bo KR)
A.
Jeśli trójkąt jest równoboczny to na pewno => ma kąty równe
TR=>KR=1 - twarda prawda, gwarancja matematyczna
B.
Jeśli trójkąt jest równoboczny to na pewno => nie ma kątów równych
TR=>~KR=0 - twardy fałsz wynikły wyłącznie z A
… a jeśli trójkąt nie jest równoboczny ?
TR=>KR = ~TR=>~KR
~TR<=>~KR = (~TR=>~KR)*(TR=>KR)
~TR=>~KR - warunek wystarczający w logice ujemnej (bo ~KR)
C.
Jeśli trójkąt nie jest równoboczny to na pewno => nie ma kątów równych
~TR=>~KR=1 - twarda prawda, gwarancja matematyczna
D.
Jeśli trójkąt nie jest równoboczny to na pewno =>ma kąty równe
~TR=>KR=0 - twardy fałsz wynikły wyłącznie z C
Kodowanie zero-jedynkowe dla naszego przykładu:
Kod: |
TR<=>KR=(TR=>KR)*(~TR=>~KR)
Warunek wystarczający
TR=>KR |TR KR TR<=>KR |~TR ~KR ~TR<=>~KR
A: TR=>KR =1 |1 1 =1 /TR=> KR=1| 0 0 =1
B: TR=>~KR =0 |1 0 =0 /TR=>~KR=0| 0 1 =0
~TR<=>~KR=(~TR=>~KR)*(TR=>KR)
Warunek wystarczający
~TR=>~KR
C: ~TR=>~KR=1 |0 0 =1 | 1 1 =1 /~TR=>~KR=1
D: ~TR=>KR =0 |0 1 =0 | 1 0 =0 /~TR=> KR=0
Kodowanie zero-jedynkowe zgodne z nagłówkiem tabeli
|TR=1, ~TR=0 |~TR=1, TR=0
|KR=1, ~KR=0 |~TR=1, KR=0
|
W komentarzu (po znaku „/”) uwidoczniono linie biorące udział w obsłudze naturalnej logiki człowieka.
Jak widzimy, zarówno w logice dodatniej:
p<=>q - logika dodatnia bo q
jak i ujemnej:
~p<=>~q - logika ujemna bo ~q
mamy identyczną tabelę zero jedynkową operatora równoważności.
Zauważmy, że kodowanie zero-jedynkowe nie wpływa na treść zdań A,B,C,D.
7.4.2 Równoważność w bramkach logicznych
Schemat ideowy operatora równoważności w bramkach logicznych jest następujący.
Kod: |
p q p<=>q| p q p<=>q |~p ~q ~p<=>~q
Warunek wystarczający w logice dodatniej (bo q)
p=>q=1
p=> q =1 | 1 1 =1 /p=> q=1| 0 0 =1
p=>~q =0 | 1 0 =0 /p=>~q=1| 0 1 =0
Warunek wystarczający w logice ujemnej (bo ~q)
~p=>~q=1
~p=>~q =1 | 0 0 =1 | 1 1 =1 /~p=>~q =1
~p=> q =0 | 0 1 =0 | 1 0 =0 /~p=> q =0
|
Po znaku „/” uwidoczniono linie biorące udział w obsłudze naturalnej logiki człowieka
Zbudować powyższy układ i sprawdzić poprawność tabel zero-jedynkowych w punktach:
p=>q
p<=>q
~p=>~q
~p<=>~q
w zależności od wszystkich możliwych sygnałów wejściowych p i q
Jak widzimy, zarówno w logice dodatniej:
p<=>q - logika dodatnia bo q
jak i ujemnej:
~p<=>~q - logika ujemna bo ~q
mamy identyczną tabelę zero jedynkową operatora równoważności.
Zauważmy, że kodowanie zero-jedynkowe nie wpływa na treść zdań A,B,C,D.
W tym momencie proszę o przeczytanie pkt. 2.8 i 2.9, gdzie jest spojrzenie na równoważność trochę z innego punktu odniesienia.
Ostatnio zmieniony przez rafal3006 dnia Śro 5:12, 30 Maj 2012, w całości zmieniany 20 razy
|
|
Powrót do góry |
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 35368
Przeczytał: 20 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Śro 6:01, 09 Maj 2012 Temat postu: |
|
|
7.5 Najważniejsze definicje równoważności i implikacji
Całą logikę matematyczną w zakresie implikacji i równoważności można sprowadzić do badania dwóch banalnych warunków wystarczających.
Definicja warunku wystarczającego w logice dodatniej (bo q):
Kod: |
A: p=> q =1
B: p=>~q =0
|
p=>q
Jeśli zajdzie p to na pewno => zajdzie q
Z czego wynika że p musi być wystarczające dla q
Z czego wynika że zdanie B musi być fałszem
Definicja warunku wystarczającego w logice ujemnej (bo ~q):
Kod: |
A: ~p=>~q =1
B: ~p=> q =0
|
~p=>~q
Jeśli zajdzie ~p to na pewno => zajdzie ~q
Z czego wynika że ~p musi być wystarczające dla ~q
Z czego wynika że zdanie B musi być fałszem
gdzie:
=> - warunek wystarczający, spójnik „na pewno” między p i q w całym obszarze logiki
Definicja warunku koniecznego w całym obszarze logiki:
Warunek konieczny ~> miedzy p i q zachodzi wtedy i tylko wtedy gdy z zanegowanego poprzednika wynika => zanegowany następnik:
p~>q = ~p=>~q
~p~>~q = p=>q
7.5.1 Definicje w warunkach wystarczających i koniecznych
1.
Równoważność to jednoczesne zachodzenie warunku wystarczającego => i koniecznego [~>] w kierunku p=>q:
Definicja równoważności:
p<=>q = (p=>q)*[p~>q]
czyli:
p=>q =1
[p~>q] = ~p=>~q =1
gdzie:
[~>] - wirtualny warunek konieczny niedostępny w świecie rzeczywistym
Przykład:
Trójkąt jest równoboczny wtedy i tylko wtedy gdy ma kąty równe
TR<=>KR = (TR=>KR)*(~TR=>~KR) =1*1 =1
2.
Implikacja prosta to zachodzenie wyłącznie warunku wystarczającego => w kierunku p=>q:
p=>q=1
p~>q = ~p=>~q =0
Przykład:
Jeśli liczba jest podzielna przez 8 to na pewno => jest podzielna przez 2
P8=>P2=1
~P8=>~P2 =0 bo 2
3.
Implikacja odwrotna to zachodzenie wyłącznie warunku koniecznego w kierunku p~>q
p~>q = ~p=>~q =1
p=>q =0
Przykład:
Jeśli liczba jest podzielna przez 2 to może ~> być podzielna przez 8
P2~>P8 = ~P2=>~P8 =1
P2=>P8 =0 bo 8
7.5.2 Definicje w gwarancjach matematycznych
1.
Równoważność to dwie gwarancje matematyczne:
Definicja równoważności:
p<=>q = (p=>q)*(~p=>~q)
p=>q=1
~p=>~q=1
Przykład:
Trójkąt jest równoboczny wtedy i tylko wtedy gdy ma kąty równe
TR<=>KR = (TR=>KR)*(~TR=>~KR) =1*1 =1
TR=>KR =1
~TR=>~KR =1
2.
Implikacja prosta to wyłącznie jedna gwarancja matematyczna w kierunku p=>q:
Definicja implikacji prostej:
p=>q = ~p~>~q
p=>q=1
~p=>~q=0
Przykład:
Jeśli liczba jest podzielna przez 8 to na pewno => jest podzielna przez 2
P8=>P2=1
~P8=>~P2 =0 bo 2
3.
Implikacja odwrotna to wyłącznie jedna gwarancja matematyczna w kierunku ~p=>~q:
Definicja implikacji odwrotnej:
p~>q = ~p=>~q
p~>q = ~p=>~q =1
p=>q =0
Przykład:
Jeśli liczba jest podzielna przez 2 to może ~> być podzielna przez 8
P2~>P8 = ~P2=>~P8 =1
~P2=>~P8 =1
Jeśli liczba jest podzielna przez 2 to na pewno => jest podzielna przez 8
P2=>P8 =0 bo 8
7.5.3 Definicje wykorzystujące przemienność argumentów
1.
Definicja równoważności:
p<=>q = (p=>q)*(q=>p)
Równoważność to wynikanie => w dwie strony (przemienność argumentów):
p=>q =1
q=>p =1
Przykład:
Trójkąt jest równoboczny wtedy i tylko wtedy gdy ma kąty równe
TR<=>KR = (TR=>KR)*(KR=>TR) =1*1 =1
TR=>KR =1
KR=>TR =1
W równoważności (i tylko tu) zachodzi prawo kontrapozycji:
q=>p = ~p=>~q
stąd:
p<=>q = (p=>q)*(q=>p) = (p=>q)*(~p=>~q)
stąd:
2.
Definicja implikacji prostej:
p=>q = ~p~>~q
Implikacja prosta to wynikanie wyłącznie w kierunku p=>q:
p=>q =1
q=>p = ~p=>~q =0
Przykład:
Jeśli liczba jest podzielna przez 8 to na pewno => jest podzielna przez 2
P8=>P2=1
P2=>P8=0 bo 2
3.
Definicja implikacji odwrotnej:
p~>q = ~p=>~q
Implikacja odwrotna to wynikanie => wyłącznie w kierunku q=>p:
p=>q =0
q=>p = ~p=>~q =1
Przykład:
Jeśli liczba jest podzielna przez 2 to na pewno => jest podzielna przez 8
P2=>P8=0 bo 2
p=>q=0
Zdanie odwrotne:
Jeśli liczba jest podzielna przez 8 to na pewno => jest podzielna przez 2
P8=>P2 =1
q=>p =1
Wniosek:
p~>q =1
Jeśli liczba jest podzielna przez 2 to może być podzielna przez 8
P2~>P8 = ~P2=>~P2 =1
Implikacja odwrotna prawdziwa.
7.5.4 Definicje wykorzystujące ilość zbiorów
Definicja równoważności:
Kod: |
Definicja |Zbiory |Definicja
zero | |operatorowa
jedynkowa | |
p q p<=>q | p q p<=>q | p q p<=>q=(p=>q)*(~p=>~q)
A: 1 1 =1 | p* q =1 | p=> q =1 /warunek wystarczający dla q
B: 1 0 =0 | p*~q =0 | p=>~q =0 /o definicji w A i B
C: 0 0 =1 |~p*~q =1 |~p=>~q =1 /warunek wystarczający dla ~q
D: 0 1 =0 |~p* q =0 |~p=> q =0 /o definicji w C i D
|
gdzie:
=> - warunek wystarczający, spójnik „na pewno” w całym obszarze logiki
Definicja równoważności w zbiorach:
Równoważność to dwa i tylko dwa zbiory rozłączne:
A: p*q=1
C: ~p*~q=1
Pozostałe zbiory musza być puste, czyli wynik ich iloczynu logicznego musi być równy zeru:
B: p*~q=0 - zbiory p i ~q muszą być rozłączne, co wymusza w wyniku zero (zbiór pusty)
D: ~p*q=0 - zbiory ~p i q muszą być rozłączne, co wymusza w wyniku zero (zbiór pusty)
Linie B i D wymuszają tożsamość zbiorów:
p = q
~p = ~q
W równoważności zbiór ~p=~q jest dopełnieniem do dziedziny zbioru p=q
W równoważności argumenty są przemienne i zachodzi tu prawo kontrapozycji:
p=>q = ~q=>~p
Definicja implikacji prostej:
Kod: |
Definicja |Zbiory |Definicja operatorowa
zero | |
jedynkowa | |
p q p=>q | p q p=>q | p q p=>q
A: 1 1 =1 | p* q =1 | p=> q =1 /warunek wystarczający dla q
B: 1 0 =0 | p*~q =0 | p=>~q =0 /o definicji w A i B
C: 0 0 =1 |~p*~q =1 |~p~>~q =1 /warunek konieczny dla ~q
D: 0 1 =1 |~p* q =1 |~p~~>q =1
|
gdzie:
=> - warunek wystarczający, spójnik „na pewno” w całym obszarze logiki
~> - warunek konieczny o definicji:
Warunek konieczny ~> miedzy p i q zachodzi wtedy i tylko wtedy gdy z zanegowanego poprzednika wynika => zanegowany następnik
C: ~p~>~q = A: p=>q
W linii D warunek konieczny nie zachodzi bo:
D: ~p~>q = B: p=>~q =0
Linia D jest prawdziwa na mocy naturalnego spójnika „może” ~~>, wystarczy pokazać jeden przypadek prawdziwy.
Definicja implikacji prostej w zbiorach:
Implikacja prosta to trzy zbiory rozłączne:
A: p*q=1
C: ~p*~q=1
D: ~p*q=1
Pozostałe zbiory musza być puste, czyli wynik ich iloczynu logicznego musi być równy zeru:
B: p*~q=0 - zbiory p i ~q musza być rozłączne, co wymusza w wyniku zero (zbiór pusty)
Żadne z powyższych zbiorów A, C, D nie są tożsame (zbiór B nie istnieje).
Zbiór:
C: ~p*~q =1
nie jest dopełnieniem do dziedziny zbioru:
A: p*q =1
bowiem poza tymi zbiorami występuje trzeci zbiór:
D: ~p*q=1
Definicja implikacji odwrotnej:
Kod: |
Definicja |Zbiory |Definicja operatorowa
zero | |
jedynkowa | |
p q p~>q | p q p~>q | p q p~>q
A: 1 1 =1 | p* q =1 | p~> q =1 /warunek konieczny dla q
B: 1 0 =1 | p*~q =1 | p~~>~q =1
C: 0 0 =1 |~p*~q =1 |~p=>~q =1 /warunek wystarczający dla ~q
D: 0 1 =0 |~p* q =0 |~p=> q =0 /o definicji w C i D
|
gdzie:
=> - warunek wystarczający, spójnik „na pewno” w całym obszarze logiki
~> - warunek konieczny o definicji:
Warunek konieczny ~> miedzy p i q zachodzi wtedy i tylko wtedy gdy z zanegowanego poprzednika wynika => zanegowany następnik
A: p~>q = C: ~p=>~q
W linii B warunek konieczny nie zachodzi bo:
B: p~>~q = D: ~p=>q =0
Linia B jest prawdziwa na mocy naturalnego spójnika „może” ~~>, wystarczy pokazać jeden przypadek prawdziwy.
Definicja implikacji odwrotnej w zbiorach:
Implikacja odwrotna to trzy zbiory rozłączne:
A: p*q=1
B: p*~q=1
C: ~p*~q=1
Pozostałe zbiory musza być puste, czyli wynik ich iloczynu logicznego musi być równy zeru:
D: ~p*q=0 - zbiory ~p i q muszą być rozłączne, co wymusza w wyniku zero (zbiór pusty)
Żadne z powyższych zbiorów A, B, C nie są tożsame (zbiór D nie istnieje).
Zbiór:
C: ~p*~q =1
nie jest dopełnieniem do dziedziny zbioru:
A: p*q =1
bowiem poza tymi zbiorami występuje trzeci zbiór:
D: ~p*q=1
8.0 Dowodzenie twierdzeń matematycznych
8.0.1
Operatorowa definicja równoważności:
Kod: |
p q p<=>q
A: p=> q =1 /warunek wystarczający w logice dodatniej (bo q)
B: p=>~q =0 /o definicji w A i B
C:~p=>~q =1 /warunek wystarczający w logice ujemnej (bo ~q)
D:~p=> q =0 /o definicji w C i D
|
Definicja operatorowe równoważności:
I.
p<=>q = (p=>q)*(~p=>~q) - na podstawie definicji operatorowej
Stąd definicja zero jedynkowa równoważności dla kodowania zgodnego z nagłówkiem tabeli:
p=1, ~p=0
q=1, ~q=0
Kod: |
p q p<=>q
A: 1 1 =1
B: 1 0 =0
C: 0 0 =1
D: 0 1 =0
|
8.0.2
II.
W równoważności (i tylko tu) obowiązuje prawo kontrapozycji:
~p=>~q = q=>p
Stąd równoważna definicja równoważności:
p<=>q = (p=>q)*(q=>p)
8.0.3
Inna równoważna definicja równoważności:
III.
Równoważność to jednoczesne zachodzenie warunku wystarczającego => i koniecznego ~> w kierunku p=>q
A: p=>q =1
B: p~>q = ~p=>~q =1
Dla zajścia q potrzeba ~> i wystarcza => aby zaszło p
p<=>q = (p=>q)*[p~>q] = (p=>q)*(~p=>~q)
gdzie:
[p~>q] - wirtualny warunek konieczny, (niedostępny w świecie rzeczywistym) o definicji:
[p~>q] = ~p=>~q
Jak widzimy koniec końców i tak wszystko sprowadza się do badania warunku wystarczającego =>.
Przykład:
Trójkąt jest równoboczny wtedy i tylko wtedy gdy ma kąty równe
TR<=>KR = (TR=>KR)*(TR~>KR) = (TR=>KR)*(~TR=>~KR)
Do tego aby trójkąt był równoboczny potrzeba ~> i wystarcza => aby miał kąty równe.
8.0.4
Przykład:
Trójkąt jest równoboczny wtedy i tylko wtedy gdy ma kąty równe
TR<=>KR = (TR=>KR)*(~TR=>~KR)
Analiza matematyczna:
A.
Jeśli trójkąt jest równoboczny to na pewno => ma kąty równe
TR=>KR=1
B.
Jeśli trójkąt jest równoboczny to na pewno => nie ma katów równych
TR=>~KR=0
stąd w zdaniu A zachodzi warunek wystarczający:
Bycie trójkątem równobocznym wystarcza, aby miał kąty równe
Warunek wystarczający w logice dodatniej (bo KR) spełniony.
Z definicji równoważności:
TR<=>KR = (TR=>KR)*(~TR=>~KR) =1*? =?
Badamy warunek wystarczający w logice ujemnej (bo ~KR)
C.
Jeśli trójkąt nie jest równoboczny to na pewno => nie ma kątów równych
~TR=>~KR=1
D.
Jeśli trójkąt nie jest równoboczny to na pewno => ma kąty równe
~TR=>KR=0
stąd w zdaniu C zachodzi warunek wystarczający:
Bycie trójkątem nierównobocznym wystarcza, aby nie miał on katów równych.
Warunek wystarczający w logice ujemnej (bo ~KR) spełniony.
Na mocy powyższego spełniona jest definicja równoważności:
TR<=>KR = (TR=>KR)*(~TR=>~KR) = 1*1 =1
Nasza analiza w tabeli zero-jedynkowej:
Kod: |
TR KR TR<=>KR=(TR=>KR)*(~TR=>~KR)
A: 1 1 =1 | TR=> KR =1
B: 1 0 =0 | TR=>~KR =0
C: 0 0 =1 |~TR=>~KR =1
D: 0 1 =0 |~TR=> KR =0
|
Punktem odniesienia dla dowolnej tabeli zero-jedynkowej jest zawsze nagłówek tabeli.
TR<=>KR
Stąd:
TR=1, ~TR=0
KR=1, ~KR=0
Doskonale widać tabelę zero-jedynkową równoważności dla kodowania zgodnego ze zdaniem wypowiedzianym:
TR<=>KR = (TR=>KR)*(~TR=>~KR)=1*1=1
Oczywiście zdania po prawej stronie to tylko i wyłącznie warunki wystarczające:
TR=>KR=1 - warunek wystarczający o definicji wyłącznie w liniach A i B
~TR=>~KR=1 - warunek wystarczający o definicji wyłącznie w liniach C i D
To nie są implikacje proste!
8.0.5
Twierdzenie:
Jeśli cokolwiek jest równoważnością prawdziwą to nie ma prawa być implikacją prawdziwą i odwrotnie.
Dowód:
Wynika to bezpośrednio z aksjomatycznych, zero-jedynkowych definicji równoważności i implikacji.
8.0.6
Alternatywnie w punktach C i D możemy skorzystać z równoważnej definicji równoważności i badać prawdziwość twierdzenia odwrotnego q=>p:
p<=>q = (p=>q)*(q=>p)
TR<=>KR = (TR=>KR)*(KR=>TR)=1*1=1
W naszym Wszechświecie zdecydowanie przeważa implikacja powstała przez rozczepienie dwóch ostatnich linii w definicji równoważności.
8.0.7
Operatorowa definicja implikacji prostej:
Kod: |
p q p=>q
A: p=> q =1 /warunek wystarczający w logice dodatniej (bo q)
B: p=>~q =0 /o definicji w A i B
… a jeśli zajdzie ~p ?
Prawo Kubusia:
p=>q = ~p~>~q
C:~p~>~q =1 /warunek konieczny w logice ujemnej (bo ~q)
D:~p~~>q =1
|
Warunek wystarczający o definicji wyłącznie w liniach A i B:
p=>q
Jeśli zajdzie p to na pewno => zajdzie q
Jak widzimy zdanie A spełnia definicję implikacji prostej wtedy i tylko wtedy gdy udowodnimy warunek wystarczający p=>q (linie A i B) oraz dodatkowo udowodnimy zachodzenie C i D, czyli znajdziemy jeden przypadek spełniający C i jeden przypadek spełniający D.
8.1 Schemat dowodzenia twierdzeń matematycznych
Schemat dowodzenia twierdzeń matematycznych:
I.
Dowodzimy warunku wystarczającego w logice dodatniej (bo q)
p=>q
II.
Dowodzimy warunku wystarczającego w logice ujemnej (bo ~q)
~p=>~q
Jeśli oba warunki są spełnione to mamy do czynienia z równoważnością:
p<=>q = (p=>q)*(~p=>~q) =1*1=1
Jeśli jeden warunek (dowolny) jest spełniony a drugi nie jest spełniony to mamy do czynienia z implikacją.
p=>q = ~p~>~q - definicja implikacji prostej
~p=>~q = p~>q - definicja implikacji odwrotnej
Jeśli oba warunki wystarczające => są niespełnione to mamy do czynienia z operatorem chaosu ~~>, gdzie wszystkie zdania z dowolnymi przeczeniami p i q są prawdziwe.
Przykład:
Jeśli liczba jest podzielna przez 8 to może ~~> być podzielna przez 3
P8~~>P3=1 bo 24
P8~~>~P3=1 bo 8
~P8~~>~P3=1 bo 1
~P8~~>P3=1 bo 3
gdzie:
~~> - naturalny spójnik może, wystarczy pokazać jeden przypadek prawdziwy
8.2 Dowodzenie warunku wystarczającego
8.2.1
Twierdzenie:
Dowolne twierdzenie matematyczne wyrażone w spójniku „Jeśli p to q” to tylko i wyłącznie warunek wystarczający.
Dla rozstrzygnięcia czy dane twierdzenie jest równoważnością czy też czymś fundamentalnie innym, implikacją, konieczny jest dodatkowy dowód, o czym za chwilę.
8.2.2
W całym obszarze logiki zdanie:
Jeśli p to q
Jest równoważne zdaniu:
Jeśli zajdzie p to na pewno => zajdzie q
p=>q
Wynika z tego, że w logice spójnik „na pewno” => jest domyślny i nie musi być wypowiadany
Przykład zdań tożsamych:
Jeśli liczba jest podzielna przez 8 to na pewno => jest podzielna przez 2
P8=>P2=1
Jeśli liczba jest podzielna przez 8 to jest podzielna przez 2
P8=>P2=1
8.2.3
Sposób I
Definicja warunku wystarczającego w logice dodatniej (bo q)
Kod: |
p q p=>q
A: p=> q =1 /warunek wystarczający w logice dodatniej (bo q)
B: p=>~q =0 /o definicji w A i B
|
p=>q
Jeśli zajdzie p to na pewno => zajdzie q
z czego wynika że linia B musi być twardym fałszem
czyli:
Bierzemy kolejno wszystkie obiekty spełniające warunek p i badamy czy dla każdego z nich zachodzi q
Obiektów spełniających warunek ~p nie rozpatrujemy, bowiem w poprzedniku warunku wystarczającego mamy filtr „Jeśli zajdzie p”
8.2.4
Twierdzenie:
Prawdziwość dowolnego zdania:
Jeśli zajdzie p to zajdzie q
dowodzimy rozpatrując wyłącznie obiekty precyzyjnie zdefiniowane w poprzedniku p.
Dowód wyżej.
Przykład:
Jeśli trójkąt jest równoboczny to na pewno => ma kąty równe
TR=>KR
Rozpatrujemy wyłącznie trójkąty równoboczne badając czy każdy z nich ma kąty równe.
Trójkątów nierównobocznych nie rozpatrujemy, bowiem w poprzedniku warunku wystarczającego mamy filtr „Jeśli trójkąt jest równoboczny”
8.2.5
Sposób II
Drugi, bardzo ważny sposób dowodzenia warunku wystarczającego => to szukanie kontrprzykładu.
Definicja kontrprzykładu:
Kod: |
A: p~~> q=1
B: p~~>~q=1
|
p~~>q
Jeśli zajdzie p to może ~~> zajść q
gdzie:
~~> - naturalny spójnik może, wystarczy znaleźć jeden przypadek prawdziwy
Jeśli zdania A i B są prawdziwe, to warunek wystarczający nie zachodzi:
p=>q =0
Jeśli zdanie A jest prawdziwe i wykluczymy B to warunek wystarczający zachodzi:
p=>q =1
Nasz przykład:
Jeśli trójkąt jest równoboczny to na pewno => ma kąty równe
A: TR~~>KR=1 - wystarczy pokazać jeden taki trójkąt
B: TR~~>~KR=0
Oczywiście tu kontrprzykładu B nie znajdziemy, co jest dowodem iż zdanie A spełnia definicję warunku wystarczającego =>.
TR=>KR=1
8.2.6
... ale weźmy takie zdanie.
A.
Jeśli liczba jest podzielna przez 8 to na pewno => jest podzielna przez 3
P8=>P3=0 bo kontrprzykład: 8
Na mocy definicji kontrprzykładu:
Jeśli liczba jest podzielna przez 8 to może ~~> nie być podzielna przez 3
P8~~>~P3=1 bo 8
~~> - naturalny spójnik może, wystarczy znaleźć jeden przypadek prawdziwy
Wniosek:
Zdanie A nie spełnia definicji warunku wystarczającego =>.
P8=>P3=0 bo 8
8.2.7
Warunek wystarczający w algebrze Kubusia:
p=>q
Jeśli zajdzie p to na pewno zajdzie q
Zajście p wystarcza dla zajścia q
Z czego wynika że zbiór p musi się zawierać w całości w zbiorze q
Dokładnie to samo co wyżej w zapisie kwantyfikatorowym
Warunek wystarczający w zapisie kwantyfikatorowym:
/\x p(x) => q(x)
Dla każdego x jeśli zajdzie p(x) to na pewno => zajdzie q(x)
W definicji kwantyfikatora wyrażenie „Jeśli zajdzie p(x)” jest filtrem na mocy którego rozpatrujemy wyłącznie obiekty zgodne z p(x)
Przykład:
A.
Jeśli trójkąt jest równoboczny to na pewno ma kąty równe
TR=>KR
Zdanie A w zapisie kwantyfikatorowym:
/\TR TR(x)=>KR(x)
czyli:
Dla każdego wylosowanego trójkąta x, jeśli trójkąt x jest równoboczny, to na pewno => trójkąt x ma kąty równe.
Wytłuszczono filtr na mocy którego mamy zakaz rozpatrywania trójkątów nierównobocznych.
8.3 Dowodzenie warunku koniecznego
8.3.1
Definicja warunku koniecznego:
Warunek konieczny ~> między p i q zachodzi wtedy i tylko wtedy gdy z zanegowanego poprzednika wynika => zanegowany następnik:
p~>q = ~p=>~q
~p~>~q = p=>q
gdzie:
=> - warunek wystarczający, spójnik „na pewno” między p i q w całym obszarze logiki
~> - warunek konieczny, spójnik „może” (nie w równoważności!) między p i q o definicji wyżej
8.3.2
Zdanie:
Jeśli zajdzie p to może zajść q
może być:
1.
Zdaniem prawdziwym, jeśli istnieje część wspólna zbiorów p i q
2.
Zdaniem fałszywym, gdy zbiory p i q są rozłączne
8.3.3
Przykład 1.
A.
Jeśli zwierzę ma cztery łapy to może ~> być psem
4L~>P=1 bo pies
Prawo Kubusia:
4L~>P = ~4L=>~P=1
Prawa strona jest prawdą zatem w zdaniu A zachodzi warunek konieczny ~>
B.
Jeśli zwierzę nie ma czterech łap to na pewno => nie jest psem
~4L=>~P=1 bo kura, mrówka, wąż
8.3.4
Przykład 2.
A.
Jeśli zwierzę nie jest psem to może ~> nie mieć czterech łap
~P~>~4l=1 bo kura, mrówka, wąż
Prawo Kubusia:
~P~>~4L = P=>4L=1
Prawa strona jest prawdą zatem w zdaniu A zachodzi warunek konieczny ~>
B.
Jeśli zwierze jest psem to na pewno => ma cztery łapy
P=>4L=1 bo pies
8.3.5
Przykład 3.
Jeśli liczba jest podzielna przez 8 to może ~~> być podzielna przez 3
P8~~>P3=1 bo 24
Prawo Kubusia:
P8~>P3 = ~P8=>~P3=0 bo 2
Prawa strona jest fałszem, zatem w zdaniu A nie zachodzi warunek konieczny ~>
Zdanie A jest prawdziwe na mocy naturalnego spójnika „może” ~~>.
~~> - naturalny spójnik „może”, wystarczy pokazać jeden przypadek prawdziwy
Odpowiednikiem naturalnego spójnika „może” ~~> w świecie kwantyfikatorów jest kwantyfikator mały.
Algebra Kubusia:
p~~>q=1
Jeśli zajdzie p to może ~~> zajść q
Wystarczy pokazać jeden przypadek prawdziwy
Kwantyfikatorowo:
\/x p(x)~~>q(x)
Istnieje takie x, że jeśli zajdzie p(x) to zajdzie q(x)
Kwantyfikatory używane są wyłącznie w matematyce, w naturalnym języku mówionym obowiązuje algebra Kubusia.
8.3.6
Przykład 4.
A.
Jeśli liczba jest podzielna przez 8 to może być podzielna przez 2
P8~~>P2=1 bo 8
Zbiory P8 i P2 mają cześć wspólną, zatem to zdanie jest prawdziwe
Na mocy definicji naturalnego spójnika „może” ~~> wystarczy znaleźć jeden przypadek.
To zdanie jest zaczynem szukania czegoś większego, czyli implikacji lub równoważności.
Zauważamy bowiem, że powyższe zdanie jest prawdziwe także dla liczb: 16, 24 ...
W tym momencie zadajemy sobie pytanie czy powyższe zdanie jest prawdziwe dla dowolnej liczby podzielnej przez 8.
8.3.7
Formułujemy twierdzenie matematyczne:
Jeśli liczba jest podzielna przez 8 to na pewno => jest podzielna przez 2
P8=>P2
Pozostaje „drobiazg”, udowodnić to twierdzenie.
8.3.8
Przykład 5.
Jeśli pies ma cztery łapy to kura ma dwie nogi
P4L=>K2N =0
Zbiór psów jest rozłączny ze zbiorem kur, zatem to zdanie jest fałszywe
9.0 Pozostałe operatory algebry Kubusia
Aksjomatyka algebry Kubusia to po prostu wszystkie możliwe zero-jedynkowe definicje operatorów logicznych, znane ludziom od ponad 100 lat.
Aksjomatyczne definicje operatorów logicznych w algebrze Boole’a i algebrze Kubusia:
Kod: |
p q OR NOR AND NAND <=> XOR => N(=>) ~> N(~>) ~~> N(~~>) P NP Q NQ
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1
0 1 1 0 0 1 0 1 1 0 0 1 1 0 0 1 1 0
0 0 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1
|
Kod: |
Logika dodatnia Logika ujemna
OR NOR
AND NAND
<=> XOR
=> N(=>)
~> N(~>)
~~> N(~~>)
P NP
Q NQ
|
Wszystkich możliwych operatorów logicznych dwuargumentowych jest 16. Za operatory dodatnie przyjęto te, które człowiek używa w naturalnym języku mówionym.
Operator ujemny to zanegowany operator dodatni, co doskonale widać w powyższej tabeli.
Operator dodatni to zanegowany operator ujemny, co również widać wyżej.
Kod: |
Definicje operatorów ujemnych:
pNORq = ~(p+q)
pNANDq = ~(p*q)
pXORq = ~(p<=>q)
pN(=>)q = ~(p=>q)
pN(~>)q = ~(p~>q)
p~~>q = ~(p~~>q)
pNPq = ~(pPq)
pNQq = ~(pQq)
|
W języku mówionym operatory ujemne nie są używane, ponieważ łatwo je zastąpić operatorami dodatnimi plus negacją co widać w powyższej tabeli.
Dowolny operator logiczny jest jednoznacznie zdefiniowany tabelą zero-jedynkową i nie ma tu miejsca na jego niejednoznaczną interpretację. Argumenty w dowolnym operatorze logicznym mogą być albo przemienne (AND, OR, <=>), albo nieprzemienne (implikacja prosta i implikacja odwrotna).
9.1 Abstrakcyjny model operatora logicznego
Zajmijmy się operatorami dotychczas nie omówionymi.
Wyobraźmy sobie czarną skrzynkę z dwoma przełącznikami p i q na których można ustawiać logiczne 0 albo 1. Wyjściem w tej skrzynce jest lampka Y sterowana przez najprawdziwszego krasnoludka imieniem OPERATOR w następujący sposób.
Y=1 - lampka zaświecona
Y=0 - lampka zgaszona
Panel sterowania naszej czarnej skrzynki umożliwia wybór jednego z 16 możliwych operatorów logicznych.
Fizyczna realizacja takiej czarnej skrzynki w technice TTL jest banalna. W laboratorium techniki cyfrowej można sprawdzić doświadczalnie działanie wszystkich 16 operatorów logicznych. Pewne jest że teoria matematyczna musi być w 100% zgodna z rzeczywistością co jest dowodem że … krasnoludki są na świecie.
9.2 Operatory logiczne ~~> i N(~~>)
Definicje ~~> i N(~~>)
Kod: |
p q Y=p~~>q Y=~(p~~>q)
1 1 =1 =0
1 0 =1 =0
0 1 =1 =0
0 0 =1 =0
|
Jak widzimy po wybraniu operatora ~~> krasnoludek OPERATOR zapala lampkę na wyjściu Y=1, siada na stołeczku i odpoczywa kompletnie nie interesując się co też ten człowieczek na wejściach p i q sobie ustawia. Analogicznie jeśli wybierzemy operator N(~~>) to lampka na wyjściu Y będzie cały czas zgaszona (Y=0).
Zdanie zawsze prawdziwe
Kod: |
p q p~~>q
1 1 =1
1 0 =1
0 0 =1
0 1 =1
|
Definicja operatora logicznego
Operator logiczny to odpowiedź układu na wszystkie możliwe przeczenia p i q.
W operatorze ~~> możemy sobie długo i namiętnie zaprzeczać p i q, wartość funkcji będzie niewzruszona Y=1.
Kod: |
p q Y=p~~>q
1 1 =1
1 0 =1
0 0 =1
0 1 =1
|
Dokładnie to samo w równaniu algebry Boole’a opisującym powyższą tabelę
Y = p~~>q = p*q+p*~q+~p*~q+~p*q = p*(q+~q) + ~p*(~q+q) = p*1 + ~p*1 = p+~p =1
Wykorzystane prawa algebry Kubusia:
p+~p=1
p*1=1
Oczywiście operator:
Y=1 ma zero argumentów
cnd
Operator ~~> to naturalny spójnik „może” ~~>, wystarczy pokazać jeden przypadek prawdziwy, to ścisły odpowiednik kwantyfikatora małego „istnieje takie x że:”
Znaczek ~~> jest jednocześnie spójnikiem i operatorem, bo równanie algebry Boole’a opisuje wszystkie cztery linie tabeli zero-jedynkowej.
Przykład:
Jeśli liczba jest podzielna przez 8 to może ~~> być podzielna przez 3
P8~~>P3
Analiza przez wszystkie możliwe przeczenia:
Kod: |
P8~~> P3=1 bo 24
P8~~>~P3=1 bo 8
~P8~~>~P3=1 bo 5
~P8~~> P3=1 bo 3
|
Weźmy na zakończenie operator N(~~>q) w równaniach algebry Boole’a:
Kod: |
p q Y=N(p~~>q)
1 1 =0
1 0 =0
0 0 =0
0 1 =0
|
Sprowadzamy wszystkie pozycje do jedynek generując równanie algebry Boole’a w naturalnej logice człowieka:
~Y = p*q+p*~q+~p*~q+~p*q = p*(q+~q) + ~p*(~q+q) = p*1 + ~p*1 = p+~p =1
mamy:
~Y=1
Negujemy stronami:
Y=0
Cokolwiek byśmy nie ustawili na wejściach p i q to wyjście będzie niewzruszone Y=0
cnd
9.3 Operatory transmisji P i Q
Definicje operatorów transmisji P i Q:
Kod: |
p q Y=pPq Y=pQq
1 1 =1 =1
1 0 =1 =0
0 1 =0 =1
0 0 =0 =0
|
Definicja operatora transmisji Y=pPq:
Kod: |
Tabela A
p q Y=pPq
1 1 =1
1 0 =1
0 1 =0
0 0 =0
|
Operator P generuje na wyjściu Y sygnał identyczny z tym jaki widnieje po lewej stronie operatora P:
pPq =p
Fizycznie operator pPq to po prostu połączenie kabelkiem wejścia p z wyjściem Y, wejście q jest tu zupełnie nieistotne i można je usunąć.
Z powyższego wynika że operator P można i należy zredukować do sygnału widniejącego po lewej stronie operatora P, czyli całość redukujemy do operatora jednoargumentowego o definicji.
Definicja operatora transmisji:
Redukcja operatora w równaniu algebry Kubusia
Tabelę A opisuje równanie logiczne (dwie pierwsze linie):
Y = p*q + p*~q = p*(q+~q) = p*1 = p
bo prawa algebry Kubusia:
q+~q=1
p*1=p
Jak widzimy, czystą matematyką osiągnęliśmy dokładnie to samo co rozumowaniem logicznym.
Analogicznie operator Q można i należy zredukować do sygnału widniejącego z prawej strony operatora Q.
pQq=q
Operator transmisji w zbiorach:
Y=p
Przykład:
A.
Jutro pójdę do kina
Y=K
Matematycznie oznacza to:
Dotrzymam słowa (Y=1) wtedy i tylko wtedy gdy jutro pójdę do kina (K=1)
Y=K
Y=1 <=> K=1
… a kiedy skłamię ?
Negujemy tożsamość A dwustronnie:
~Y=~K
B.
Skłamię (~Y=1) wtedy i tylko wtedy gdy jutro nie pójdę do kina (~K=1)
~Y=~K
~Y=1 <=> ~K=1
9.4 operatory negacji NP i NQ
Definicje operatorów negacji NP i NQ
Kod: |
p q Y=pNPq Y=pNQq
1 1 =0 =0
1 0 =0 =1
0 1 =1 =0
0 0 =1 =1
|
Definicja operatora negacji Y=pNPq:
Kod: |
Tabela A
p q Y=pNPq
1 1 =0
1 0 =0
0 1 =1
0 0 =1
|
Doskonale widać, że na wyjściu operatora pNPq mamy:
Y=pNPq = pNP = ~p
Na wyjściu Y mamy zanegowany sygnał z wejścia p, sygnał q jest tu totalnie nieistotny i można go do kosza wyrzucić. Fizycznie ten operator to połączenie wejścia p z wyjściem Y poprzez układ negatora, czyli całość to w rzeczywistości jednoargumentowy układ negatora o definicji jak niżej.
Definicja negatora:
Kod: |
p Y=pNP=~p
1 =0
0 =1
|
Gdzie:
~ - symbol negacji, w mowie potocznej przeczenie NIE
Redukcja operatora w równaniu algebry Kubusia
Tabelę A opisuje równanie (dwie ostatnie linie):
Y = ~p*q + ~p*~q = ~p*(q+~q) = ~p*1 = ~p
bo prawa algebry Kubusia:
q+~q=1
p*1=p
Jak widzimy, czystą matematyką osiągnęliśmy dokładnie to samo co rozumowaniem logicznym.
Analogiczną funkcję negatora realizuje operator pNQq:
Y=pNQq = NQq=~q
Jedno z kluczowych praw algebry Kubusia (Boole’a)
A=~(~A) – prawo podwójnego przeczenia
Przykład:
Jestem uczciwy
U
Zaprzeczenie:
Nie jestem uczciwy
~U
Podwójne zaprzeczenie:
Nieprawdą jest, że jestem nieuczciwy = jestem uczciwy
~(~U) = U
Dowód formalny:
Kod: |
~Y=p Y=~p ~Y=~(~p)
1 =0 =1
0 =1 =0
|
Tożsamość kolumn pierwszej i ostatniej jest dowodem poprawności prawa podwójnego przeczenia.
Operator negacji w zbiorach:
Y=~p
Przykład:
A.
Jutro nie pójdę do kina
Y=~K
Matematycznie oznacza to:
Dotrzymam słowa (Y=1) wtedy i tylko wtedy gdy jutro nie pójdę do kina (~K=1)
Y=~K
Y=1 <=> ~K=1
… a kiedy skłamię ?
Negujemy tożsamość A dwustronnie:
~Y=K
B.
Skłamię (~Y=1) wtedy i tylko wtedy gdy jutro pójdę do kina (K=1)
~Y=K
~Y=1 <=> K=1
10.0 Algebra zbiorów rozłącznych
W tym rozdziale omówimy mało ważne i rzadkie zastosowanie algebry Kubusia.
Są to zdania prawdziwe typu:
Pies to nie kot
Pies to nie samochód
itd.
Poza tym zajmiemy się „matematyką” życzeniową.
Nad tą częścią matematyki nie będziemy się rozczulać, podamy po prostu po jednym przykładzie z naturalnego języka mówionego.
10.1 Operator XOR
Operator XOR opisuje zbiory rozłączne.
Definicja:
Kod: |
p q pXORq
1 0 =1
0 1 =1
0 0 =0
1 1 =0
|
p XOR q = p*~q + ~p*q
Podstawowe właściwości
A.
p+~q=~q
~p+q=~p
B.
p*q=1*1=0
Oba zbiory istnieją (p=1 i q=1), ale są rozłączne co wymusza w wyniku zero (zbiór pusty)
C.
p*~q=p
Zbiór p zawiera się w całości w zbiorze ~q, stąd iloczyn logiczny to zbiór p.
D.
~p*q=q
Zbiór q zawiera się w całości w zbiorze ~p, stąd iloczyn logiczny to zbiór q.
stąd:
pXORq = p*~q + ~p*q := p+q
gdzie:
:= - symbol redukcji funkcji na mocy teorii zbiorów
Tabela XOR dla dwóch zbiorów:
Kod: |
|Definicja symboliczna |Definicja symboliczna
p q pXORq |Teoria zbiorów |Warunki wystarczające
1 0 =1 | p*~q =1 | p=>~q=1
1 1 =0 | p* q =0 | p=> q=0
0 1 =1 |~p* q =1 |~p=> q=1
0 0 =0 |~p*~q =0 |~p=>~q=0
|
Definicję symboliczną utworzono z tabeli zero-jedynkowej korzystając z prawa Kubusia:
Jeśli p=0 to ~p=1
Warunki wystarczające opisane są prawidłowo wyłącznie dla przypadku gdy iloczyn logiczny zbiorów ~p i ~q jest zbiorem pustym.
~p*~q=0
Zachodzi wówczas równoważność jak niżej.
Nietypowa równoważność dla zbiorów rozłącznych:
p<=>~q = (p=>~q)*(~p=>q)=1*1=1
Przykład:
Człowiek jest mężczyzną wtedy i tylko wtedy gdy nie jest kobietą
M<=>~K = (M=>~K)*(~M=>K)=1*1=1
Definicja równoważności w zbiorach:
Równoważność to dwa zbiory, ani jednego mniej, ani jednego więcej
Dziedzina: człowiek
Możliwe zbiory: mężczyzna, kobieta
Stąd poprawność powyższej równoważności
Nietypowa implikacja prosta dla zbiorów rozłącznych:
Definicja warunku wystarczającego dla zbiorów rozłącznych:
Kod: |
p=>~q=1
Zbiory:
p*~q=1*1=1
Zbiór p zawiera się w całości w zbiorze ~q, co wymusza w wyniku jeden
p=> q=0
Zbiory:
p*q=1*1=0
Oba zbiory istnieją (p=1 i q=1), ale są rozłączne,
co wymusza w wyniku zero (zbiór pusty)
|
p=>~q
Jeśli zajdzie p to na pewno zajdzie ~q
Zajście p wystarcza dla zajścia ~q
Definicja warunku koniecznego dla zbiorów rozłącznych:
Kod: |
~p~> q=1
Zbiory:
~p*q=1
Oba zbiory istnieją (~p=1 i q=1) i mają część wspólną,
co wymusza w wyniku jeden
~p~~>~q=1
Zbiory:
~p*~q=1
Oba zbiory istnieją (~p=1 i ~q=1) i mają cześć wspólną,
co wymusza w wyniku jeden
|
~p~>q
Jeśli zajdzie ~p to może ~> zajść q
~p jest warunkiem koniecznym dla q
gdzie:
~> - warunek koniczny o definicji ogólnej:
Warunek konieczny ~> między p i q zachodzi wtedy i tylko wtedy gdy z zanegowanego poprzednika wynika => zanegowany następnik:
~p~>q = p=>~q - prawo Kubusia
~~> - zdanie prawdziwe na mocy naturalnego spójnika „może”, wystarczy pokazać jeden przypadek prawdziwy.
Przykład:
A.
Jeśli zwierzę jest psem to na pewno => nie jest kotem
Pies to nie kot
P=>~K=1 bo pies
Bycie psem wystarcza aby nie być kotem
Dziedzina: zbiór wszystkich zwierząt
B.
Jeśli zwierzę jest psem to na pewno => jest kotem
P=>K=0 - zbiory rozłączne
... a jak zwierzę nie jest psem?
Prawo Kubusia:
P=>~K = ~P~>K
C.
Jeśli zwierzę nie jest psem to może ~> być kotem
~P~>K=1 bo kot
Nie bycie psem jest warunkiem koniecznym ~> aby być kotem
lub
D.
Jeśli zwierzę nie jest psem to może ~~> nie być kotem
~P~~>~K=1 bo koń, mrówka, wąż..
Dla kodowania zgodnego ze zdaniem wypowiedzianym A otrzymujemy tabelę zero-jedynkową operatora implikacji prostej.
Kod: |
|P ~K P=>~K
A: P=>~K=1 |1 1 =1
B: P=> K=0 |1 0 =0
C:~P~> K=1 |0 0 =1
D:~P~~>~K=1 |0 1 =1
Punktem odniesienia w dowolnej tabeli zero-jedynkowej
jest zawsze nagłówek tabeli
|P=1, ~P=0
|~K=1, K=0
|
Zdanie A spełnia zero-jedynkową definicję operatora implikacji prostej, w skrócie „jest implikacją prostą”
Ciekawy jest wyjątek gdzie q jest zbiorem pustym:
A.
Jeśli zwierze jest psem to na pewno => nie ma miliona łap
Pies nie ma miliona łap
P=>~ML=1
Bycie psem wystarcza aby nie mieć miliona łap
stąd:
B.
Jeśli zwierzę jest psem to na pewno => ma milion łap
P=>ML=0
Zbiory:
P*ML=1*0=0
Zdanie B jest fałszywe bo zbiór zwierząt mających milion łap jest zbiorem pustym (ML=0).
Poza tym zbiory te są z założenia rozłączne, co również wymusza w wyniku zero.
... a jeśli zwierzę nie jest psem?
Prawo Kubusia:
P=>~ML= ~P~>ML
C.
Jeśli zwierzę nie jest psem to może ~> mieć milion łap
~P~>ML=0
bo zbiory:
~P*ML=1*0=0
Zbiór ~P istnieje (~P=1), natomiast zbiór zwierząt mających milion łap jest zbiorem pustym (ML=0), co wymusza w wyniku zero (zbiór pusty).
Dla kodowania zgodnego ze zdaniem A mamy taką sekwencje zer i jedynek:
Kod: |
|P ~ML p=>~ML
A: P=>~ML=1 |1 1 =1
B: P=> ML=0 |1 0 =0
C:~P~> ML=0 |0 0 =0
D: bez znaczenia
Punktem odniesienia w dowolnej tabeli zero-jedynkowej
jest zawsze nagłówek tabeli
|P=1, ~P=0
|~ML=1, ML=0
|
Zdanie A nie może być ani implikacją, ani równoważnością, bo nie ma sekwencji C: (0 0 =0) ani w implikacji, ani w równoważności.
Czym jest zatem zdanie A?
Zdanie A jest wyłącznie warunkiem wystarczającym prawdziwym o definicji w liniach A i B.
Warunek wystarczający, w przeciwieństwie do warunku koniecznego, może istnieć samodzielnie.
Identyczną analizę otrzymamy gdy zbiór q należy do innej dziedziny niż zbiór p
A.
Jeśli zwierzę jest psem to na pewno => nie jest samochodem
Pies to nie samochód
P=>~S=1
Bycie psem wystarcza aby nie być samochodem
Dziedzina po stronie p: zbiór wszystkich zwierząt
Dziedzina po stronie q: zbiór wszystkich maszyn jeżdżących
B.
Jeśli zwierzę jest psem to na pewno => jest samochodem
P=>S=0
Zbiory:
P*S=1*0=0
Zdanie B jest fałszywe bo zbiór zwierząt będących samochodami jest zbiorem pustym (S=0).
Poza tym zbiory te są z założenia rozłączne, co również wymusza w wyniku zero.
.. a jeśli zwierzę nie jest psem?
Prawo Kubusia:
P=>~S = ~P~>S
C.
Jeśli zwierzę nie jest psem to może być samochodem
~P~>S=0
Zbiory:
~P*S = 1*0=0
Zbiór zwierząt będących samochodami jest zbiorem pustym, stąd w wyniku zero.
W linii C będziemy mieli sekwencję (0 0 =0) co wyklucza zarówno implikację, jak i równoważność.
Zdanie A jest wyłącznie warunkiem wystarczającym o definicji w liniach A i B.
10.2 Zbiory minimalne w implikacji i równoważności
Implikacja
Rozważmy dwa zbiory p i q...
Wspólna dziedzina: zbiór liczb naturalnych
Zbiór p:
p=[2]
~p = zbiór liczb naturalnych z wykluczeniem 2
Dla poprzednika p musi być spełniony fundament algebry Boole’a
p+~p=1 - ~p jest uzupełnieniem p do dziedziny
p*~p=0 - zbiory rozłączne
ok.
Zbiór q:
q=[2,3]
~q = zbiór liczb naturalnych z wykluczeniem 2,3
Także dla następnika q musi być spełniony fundament algebry Boole’a:
q+~q=1 - ~q jest uzupełnieniem q do dziedziny
q*~q=0 - zbiory rozłączne
ok.
Twierdzenie:
W implikacji i równoważności po stronie p i q musi być spełniony fundament algebry Boole’a!
p+~p=1 - ~p jest uzupełnieniem p do dziedziny
p*~p=0 - zbiory rozłączne
Wnioski:
1.
Dla wyżej wymienionych zbiorów spełniony jest warunek wystarczający:
p=>q
Zbiór p zawiera się w całości w zbiorze q
Jeśli zajdzie p to na pewno => zajdzie q
2.
Zbiory p i q nie są tożsame, zatem na pewno to jest implikacja prosta (równoważność wykluczona).
A.
Jeśli zajdzie p to na pewno => zajdzie q
p=>q=1 bo 2
Zbiory:
p*q=1*1=1
Zbiory p i q istnieją (p=1 i q=1) i mają cześć wspólną (2), co wymusza w wyniku jeden.
B.
Jeśli zajdzie p to na pewno zajdzie ~q
p=>~q=0
Zbiory:
p*~q=1*1=0
Zbiory p i ~q istnieją (p=1 i ~q=1) lecz są rozłączne, co wymusza w wyniku zero (zbiór pusty).
.. a jeśli zajdzie ~p?
Prawo Kubusia:
p=>q = ~p~>~q
C.
Jeśli zajdzie ~p to może ~> zajść ~q
~p~>~q=1 bo 4,5,6....
Zajście ~p jest warunkiem koniecznym ~> aby zaszło ~q (bo 3)
Zbiory:
~p*~q=1*1=1
Zbiory ~p i ~q istnieją (~p=1 i ~q=1) i maja część wspólną (4,5,6...), co wymusza w wyniku jeden.
lub
D.
Jeśli zajdzie ~p to może ~~> zajść q
~p~~>q=1 bo 3
Zbiory:
~p*q=3
Zbiory ~p i q istnieją (~p=1 i q=1) i mają część wspólną (3), co wymusza w wyniku jeden.
Dla kodowania zgodnego ze zdaniem wypowiedzianym A:
p=1, ~p=0
q=1, ~q=0
otrzymujemy tabele zero-jedynkową implikacji prostej.
Kod: |
|p q p=>q
A: p=> q=1 |1 1 =1
B: p=>~q=0 |1 0 =0
C:~p~>~q=1 |0 0 =1
D:~p~~>q=1 |0 1 =1
|
Zauważmy że spełniona jest wyżej definicja implikacji w zbiorach:
Implikacja to trzy rozłączne zbiory, ani jednego mniej, ani jednego więcej!
A=[2]
C=[3]
D=[4,5,6..]
Równoważność
Rozważmy dwa zbiory p i q...
Wspólna dziedzina: zbiór liczb naturalnych
Zbiór p:
p=[2]
~p = zbiór liczb naturalnych z wykluczeniem 2
Dla poprzednika p musi być spełniony fundament algebry Boole’a
p+~p=1 - ~p jest uzupełnieniem p do dziedziny
p*~p=0 - zbiory rozłączne
ok.
Zbiór q:
q=[2]
~q = zbiór liczb naturalnych z wykluczeniem 2
Dla poprzednika p musi być spełniony fundament algebry Boole’a
q+~q=1 - ~p jest uzupełnieniem p do dziedziny
q*~q=0 - zbiory rozłączne
ok.
Wnioski:
1.
Dla wyżej wymienionych zbiorów spełniony jest warunek wystarczający:
p=>q
Zbiór p zawiera się w całości w zbiorze q i jest tożsamy ze zbiorem q
Jeśli zajdzie p to na pewno => zajdzie q
2.
Zbiory p i q są tożsame, zatem na pewno jest to równoważność.
A.
Jeśli zajdzie p to na pewno => zajdzie q
p=>q=1 bo 2
Zbiory:
p*q=1*1=1
Zbiory p i q istnieją (p=1 i q=1) i mają cześć wspólną (2), co wymusza w wyniku jeden.
B.
Jeśli zajdzie p to na pewno zajdzie ~q
p=>~q=0
Zbiory:
p*~q=1*1=0
Zbiory p i ~q istnieją (p=1 i ~q=1) lecz są rozłączne, co wymusza w wyniku zero (zbiór pusty).
.. a jeśli zajdzie ~p?
W równoważności zachodzi:
p=>q = ~p=>~q
C.
Jeśli zajdzie ~p to na pewno => zajdzie ~q
~p=>~q=1 bo 1, 3,4,5...
Zajście ~p jest warunkiem wystarczającym => aby zaszło ~q
Zbiory:
~p*~q=1*1=1
Zbiory ~p i ~q istnieją (~p=1 i ~q=1) i mają część wspólną (1, 3,4,5,6...), co wymusza w wyniku jeden.
lub
D.
Jeśli zajdzie ~p to na pewno => zajdzie q
~p=>q=0
Zbiory:
~p*q=0
Zbiory ~p i q istnieją (~p=1 i q=1) ) lecz są rozłączne, co wymusza w wyniku zero (zbiór pusty).
Dla kodowania zgodnego ze zdaniem wypowiedzianym A:
p=1, ~p=0
q=1, ~q=0
otrzymujemy tabele zero-jedynkową równoważności.
Kod: |
|p q p=>q
A: p=> q=1 |1 1 =1
B: p=>~q=0 |1 0 =0
C:~p=>~q=1 |0 0 =1
D:~p=> q=0 |0 1 =0
|
Zauważmy że spełniona jest wyżej definicja równoważności w zbiorach:
Równoważność to dwa rozłączne zbiory, ani jednego mniej, ani jednego więcej.
A=[2]
C=[1, 3,4,5,6...]
p<=>q = ~p<=>~q
Zajdzie p wtedy i tylko wtedy gdy zajdzie q
p<=>q
p=[2], q=[2]
Zajdzie ~p wtedy i tylko wtedy gdy zajdzie ~q
~p<=>~q
~p=[1,3,4,5...]
~p=[1,3,4,5...]
Podsumowanie:
Sztuczne, a przede wszystkim losowe ograniczanie dziedziny w zbiorze liczb naturalnych jak wyżej pozbawione jest sensu, bowiem będziemy wówczas mieli „matematykę” życzeniową.
Odpowiednikiem takich działań w świecie rzeczywistym są:
1.
Wybijam wszystkie zwierzątka mające cztery łapy z wyłączeniem psów.
Wtedy mam taką równoważność:
Zwierzę jest psem wtedy i tylko wtedy gdy ma cztery łapy
P<=>4L = (P=>4L)*(~P=>~4L)=1*1=1
2.
Wybijam wszystkie zwierzątka zostawiając psa, kurę, i kota.
Dziedzina: pies, kura, kot
Na tym 3-elementowym zbiorze zachodzi oczywiście implikacja prosta:
A.
Jeśli zwierzę jest psem to na pewno ma cztery łapy
P=>4L=1 bo pies
B.
P=>~4L=0
... a nie pies?
Prawo Kubusia:
P=>4L=~P~>~4L
C.
Jeśli zwierzę nie jest psem to może ~> nie mieć czterech łap
~P~>~4L=1 bo kura
lub
D.
Jeśli zwierzę nie jest psem to może ~~> mieć cztery łapy
P~~>4L=1 bo kot
Jest oczywistym, że tego typu poczynania to „matematyka” życzeniowa, mająca zero wspólnego z otaczającą nas rzeczywistością.
Ostatnio zmieniony przez rafal3006 dnia Czw 1:36, 31 Maj 2012, w całości zmieniany 25 razy
|
|
Powrót do góry |
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 35368
Przeczytał: 20 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Śro 6:15, 09 Maj 2012 Temat postu: |
|
|
11.0 Katastrofalne błędy w KRZiP
I tak jak obłęd, w wyższym tego słowa znaczeniu, jest początkiem wszelkiej mądrości, tak schizofrenia jest początkiem wszelkiej sztuki, wszelkiej fantazji.
Herman Hesse.
Logika to fundament wszystkiego, także matematyki.
Bez logiki nie byłoby matematyki, nie byłoby naszego Wszechświata.
Czym jest algebra Kubusia?
To śmiertelny cios dla całej aktualnej logiki matematycznej.
Leży i kwiczy dosłownie wszystko:
1. Twierdzenie Godla - obalone, oczywiście Godel ma rację na gruncie gówna zwanego KRZiP
2. Aksjomaty Zermelo-Fraenkela - fałszywy jest aksjomat równoważności (równoważność to dwa rozłączne zbiory a nie jeden) i brak aksjomatu implikacji
3. Teoria mnogości - jest ewidentnie fałszywa ze względu na powyższe
4. KRZiP - największe gówno jakie w swej historii stworzył człowiek
5. KRZ - bo nie rozpoznaje poprawnej budowy ani jednego operatora logicznego
Algebra Kubusia to największa matematyczna rewolucja w historii ludzkości, podobna wyłącznie do rewolucji Lavoisiera, tylko nieporównywalnie większa i ważniejsza ... ze względów „ideologicznych” - skąd przyszliśmy, i dokąd zmierzamy.
Algebra Kubusia, to fizyka a nie matematyka. Człowiek podlega pod prawa fizyki, czy mu się to podoba czy nie ...
Cytat pochodzi z książki Luc'a Burgin - "Błędy Nauki"
Ludzie mają widocznie skłonność do przedwczesnego i negatywnego oceniania perspektyw rozwojowych pewnych dziedzin nauki. Niektóre rewolucyjne odkrycia lub idee przez lata bojkotowano i zwalczano tylko dlatego, że dogmatycznie nastawieni luminarze nauki nie umieli odrzucić swych ulubionych, choć przestarzałych i skostniałych idei i przekonań. Jednym słowem: „Niemożliwe!" hamowali postęp nauki, a przykładami można dosłownie sypać jak z rękawa:
• Gdy w XVIII wieku Antoine-Laurem de Lavoisier zaprzeczył istnieniu „flogistonu" – nieważkiej substancji, która wydziela się w trakcie procesu spalania i w którą wierzyli wszyscy ówcześni chemicy – i po raz pierwszy sformułował teorię utleniania, świat nauki zatrząsł się z oburzenia. „Observations sur la Physique", czołowy francuski magazyn naukowy, wytoczył przeciwko Lavoisierowi najcięższe działa, a poglądy uczonego upowszechniły się dopiero po zażartych walkach.
11.1 Punkt odniesienia, kluczowe pojęcie w logice matematycznej
Świętość algebry Kubusia:
Dowolną tabelę zero-jedynkową można jednoznacznie opisać równaniami algebry Boole’a i odwrotnie.
Aksjomatyczne definicje operatorów logicznych w algebrze Boole’a i algebrze Kubusia:
Kod: |
p q OR NOR AND NAND <=> XOR => N(=>) ~> N(~>) ~~> N(~~>) P NP Q NQ
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1
0 1 1 0 0 1 0 1 1 0 0 1 1 0 0 1 1 0
0 0 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1
|
Dowolną tabelę zero-jedynkową można opisać równaniami algebry Boole’a i odwrotnie.
Definicja zero-jedynkowa implikacji prostej:
Kod: |
p q Y= p=>q
A: 1 1 =1
B: 1 0 =0
C: 0 0 =1
D: 0 1 =1
1 2 3
|
Zauważmy, że w definicji wyżej nie jest spełniona definicja spójnika „lub”(+):
Y=p+q
Y =1 <=> p=1 lub q=1
Jest to zatem operator różny od operatorów OR i AND.
Na podstawie drugiej linii można zapisać powyższą definicję w spójnikach „i”(*) i „lub”(+).
Najprostsze równanie algebry Kubusia otrzymamy z linii B123, bo mamy tu samotne zero w wyniku.
Spis z natury:
Y=0 <=> p=1 i q=0
Korzystając z prawa algebry Kubusia:
Jeśli p=0 to ~p=1
sprowadzamy wszystkie zmienne do jedynek
~Y=1 <=> p=1 i ~q=1
Korzystając z definicji spójnika ‘i”(*):
Y=p*q
Y=1 <=> p=1 i q=1
mamy równanie opisujące powyższą tabelę:
~Y = p*~q - to równanie opisuje wyłącznie linię B123
co matematycznie oznacza:
~Y=1 <=> p=1 i ~q=1
Przechodzimy do logiki przeciwnej negując zmienne i wymieniając spójniki na przeciwne:
Y = ~p+q - to równanie opisuje obszar wynikowych jedynek A123 i CD123
co matematycznie oznacza:
Y=1 <=> ~p=1 lub q=1
Układ równań logicznych opisujących kompletną tabelę (wszystkie cztery linie) jest zatem taki:
Y = ~p+q
~Y = p*~q
Związek logiki dodatniej i ujemnej:
Y = ~(~Y)
Stąd mamy prawo de’Morgana:
Y = ~p+q = ~(p*~q)
Świętość algebry Kubusia:
Dowolną tabelę zero-jedynkową można jednoznacznie zapisać w równaniach algebry Boole’a i odwrotnie.
Jednoznacznie oznacza, iż musimy otrzymać jednoznaczną tabelę zero jedynkową z dowolnego równania algebry Boole’a.
Załóżmy, że widzimy wyłącznie to równanie:
Y = ~p+q
Świętość algebry Kubusia:
W dowolnym równaniu algebry Kubusia sygnałami odniesienia są zmienne użyte w tym równaniu.
Sygnały odniesienie w równaniu wyżej to zmienne binarne:
Y, ~p, q
Definicja operatora logicznego:
Operator logiczny to odpowiedź układu na wszystkie możliwe przeczenia p i q
Definicja spójnika „lub”(+)
Suma logiczna (spójnik „lub”(+)) n-zmiennych binarnych jest równa 1 wtedy i tylko wtedy gdy którakolwiek zmienna są równe 1
Y=p+q
Y=1 <=> p=1 lub q=1
Ta definicja jest wystarczająca aby zbudować tabelę zero-jedynkową dla równania:
Y=~p+q
Kod: |
Tabela 1
~p q Y=~p+q
A: 1 1 =1
B: 1 0 =1
C: 0 0 =0
D: 0 1 =1
1 2 3
|
Jak widzimy, nie ma tu śladu operatora implikacji.
To jest definicja operatora OR opisana równaniem:
Y=~p+q
Zauważmy, że jeśli zlikwidujemy przeczenie w kolumnie ABCD1 korzystając z prawa algebry Kubusia:
Jeśli ~p=1 to p=0
To otrzymamy tabelę zero-jedynkową implikacji prostej:
Kod: |
Tabela 2
p q Y=~p+q
A: 0 1 =1
B: 0 0 =1
C: 1 0 =0
D: 1 1 =1
1 2 3
|
W tabeli 2 zanegowaliśmy sygnał w nagłówku kolumny ABCD1 i wymieniliśmy na przeciwne wszystkie zera i jedynki w tej kolumnie, co jest odpowiednikiem wprowadzenia dwóch negatorów w linię wejściową p.
p=~(~p) - prawo podwójnego przeczenia
W dowolną linię sygnałową wolno nam wprowadzić dwa negatory, przykład wyżej.
Zauważmy jednak, że funkcja opisująca tą tabelę:
Y=~p+q
nie jest funkcją zmiennych wejściowych p i q, bo nie mamy zgodności logicznej tych zmiennych w równaniu algebry Kubusia.
Zero-jedynkowo to jest operator implikacji prostej:
p=>q = ~p~>~q
Skoro zrobiliśmy sztuczkę jak wyżej, to dlaczego nie możemy zrobić kolejnej sztuczki i zanegować kolumny ABCD2?
Oczywiście, formalnie matematycznie możemy.
Kod: |
Tabela 3
p ~q Y=~p+q
A: 0 0 =1
B: 0 1 =1
C: 1 1 =0
D: 1 0 =1
1 2 3
|
Zero-jedynkowo to jest operator NAND:
Y = p NAND ~q
Ostatnia możliwa tabela to negacja kolumny ABCD1 w tabeli 3:
Kod: |
Tabela 4
~p ~q Y=~p+q
A: 1 0 =1
B: 1 1 =1
C: 0 1 =0
D: 0 0 =1
1 2 3
|
Zero-jedynkowo to jest operator implikacji odwrotnej:
~p~>~q = p=>q
Zadajmy sobie tera kluczowe pytanie.
Jaki operator logiczny opisuje poniższe równanie algebry Kubusia?
Y=~p+q
Oczywiście jedyna poprawna odpowiedź musi być taka:
Y=~p+q
Znaczek „+” w powyższym równaniu to spójnik logiczny „lub”(+) o definicji:
Y=p+q
Y=1 <=> ~p=1 lub q=1
Mamy zatem do czynienia z operatorem OR opisanym układem równań:
Y=~p+q
~Y=p*~q
Wniosek:
To jest matematyczny opis wyłącznie tabeli 1.
cnd
To jest JEDYNA poprawna matematycznie odpowiedź na zadane pytanie!
Zauważmy, że matematycznie dla dwóch zmiennych p i q możliwe jest spojrzenie na równanie:
Y=~p+q
z czterech różnych punktów odniesienia (Tabele 1,2,3,4).
Ogólnie, dla równania o n-zmiennych binarnych możliwych jest:
2^n
różnych punktów odniesienia.
Świat wygląda rożnie z rożnych punktów odniesienia, z czarnego zawsze można zrobić białe i odwrotnie, wystarczy zmienić punkt odniesienia.
Wprowadzenie świętości, iż w dowolnej tabeli zero-jedynkowej funkcja logiczna Y musi być funkcją zmiennych wejściowych determinuje jeden, wspólny dla wszystkich punkt odniesienia.
Najważniejsze w całej tej zabawie jest poniższe twierdzenie.
Twierdzenie:
Logika matematyczna jest zgodna z naturalną logiką człowieka wtedy i tylko wtedy gdy funkcja logiczna Y opisująca tabelę zero-jedynkową jest zgodna ze zmiennymi wejściowymi w nagłówku tej tabeli.
Dowolne równanie algebry Kubusia:
Y = ~p+[q*(r+~s)]
matematycznie oznacza:
Y=1 <=> ~p=1 lub [q=1 i (r=1 lub ~s=1)]
Punkt odniesienia, nagłówek tabeli zero-jedynkowej to zmienne:
~p, q, r, ~s
11.2 Najważniejszy błąd w KRZiP
Wypowiedzmy takie zdanie:
W.
Jutro nie pójdę do kina lub pójdę do teatru
Y = ~K + T
co matematycznie oznacza:
Dotrzymam słowa (Y=1) wtedy i tylko wtedy gdy jutro nie pójdę do kina (~K=1) lub pójdę do teatru (T=1)
Y=1 <=> ~K=1 lub T=1
Tabela prawdy dla spójnika „lub”(+):
Kod: |
Definicja |Definicja
zero-jedynkowa |symboliczna
~K T Y | ~K T Y
1 1 =1 | ~K* T =Y
1 0 =1 | ~K*~T =Y
0 1 =1 | K* T =Y
|
W definicji symbolicznej sprowadzamy wszystkie zmienne do jedynek (do teorii zbiorów) względem nagłówka tabeli zero-jedynkowej korzystając z prawa algebry Kubusia:
Jeśli ~K=0 to K=1
Jeśli T=0 to ~T=1
To samo w wersji uproszczonej:
1.
Jeśli w tabeli zero-jedynkowej mamy 1 to przepisujemy sygnał z nagłówka tabeli
2.
Jeśli w tabeli zero-jedynkowej mamy 0 to przepisujemy zanegowany sygnał z nagłówka tabeli
Z definicji symbolicznej mamy równoważną definicję spójnika „lub”(+):
Y = ~K*T + ~K*~T + K*~T
stąd wszystkie możliwe przypadki kiedy dotrzymam słowa ...
Dotrzymam słowa (Y=1) wtedy i tylko wtedy gdy jutro:
A: ~K*T = 1*1=1 - nie pójdę do kina (~K=1) i pójdę do teatru (T=1)
lub
B: ~K*~T = 1*1=1 - nie pójdę do kina (~K=1) i nie pójdę do teatru (~T=1)
lub
C: K*T = 1*1=1 - pójdę do kina (K=1) i pójdę do teatru (T=1)
Zauważmy, że wszystkie jedynki wynikowe są jedynkami miękkimi tzn. jest totalnie wszystko jedno który z tych przypadków jutro zajdzie. Jeśli zajdzie którykolwiek to dotrzymałem słowa (Y=1)
... a kiedy skłamię?
Przejście ze zdaniem W do logiki ujemnej poprzez negację zmiennych i wymianę spójników na przeciwne:
~Y = K*~T
D.
Skłamię (~Y=1) wtedy i tylko wtedy gdy jutro pójdę do kina (K=1) i nie pójdę do teatru (~T=1)
~Y = K*~T
co matematycznie oznacza:
~Y=1 <=> K=1 i ~T=1
Zauważmy, że w tym przypadku jedynka wynikowa jest jedynką twardą, jest wyłącznie jeden przypadek kiedy skłamię (~Y=1).
Dla kodowania zgodnego ze zdaniem wypowiedzianym W otrzymujemy tabele zero-jedynkową operatora OR.
W: Y =~K+T
stąd:
Y=1, ~Y=0
~K=1, K=0
T=1, ~T=0
Kod: |
Tabela |Tabela
Symboliczna |Zero-jedynkowa
Dotrzymam słowa (Y=1)|
W: Y=~K+T |
W: Y=~K*T+~K*~T+K*T | ~K T Y=~K+T | K ~T ~Y=~(~K+T)=K*~T
A:~K* T = Y | 1 1 =1 | 0 0 =0 /~K* T= Y
B:~K*~T = Y | 1 0 =1 | 0 1 =0 /~K*~T= Y
C: K* T = Y | 0 1 =1 | 1 0 =0 / K* T= Y
Skłamię (~Y=1)
D: K*~T =~Y | 0 0 =0 | 1 1 =1 / K*~T=~Y
Punkt odniesienia to zawsze nagłówek tabeli zero-jedynkowej
|~K=1, K=0 | K=1,~K=0
| T=1,~T=0 |~T=1, T=0
| Y=1,~Y=0 |~Y=1, Y=0
|
Doskonale widać, że dla punktu odniesienia ustawionym na zdaniu W otrzymujemy tabelę zero-jedynkową operatora OR:
W: Y=~K+T
co matematycznie oznacza:
Y=1 <=> ~K=1 lub T=1
Natomiast dla punktu odniesienia ustawionego na zdaniu D otrzymujemy tabelę zero-jedynkową operatora AND:
D: ~Y=K*~T
co matematycznie oznacza:
~Y=1 <=> K=1 i ~T=1
Związek logiki dodatniej i ujemnej:
Y = ~(~Y)
Podstawiając W i D mamy prawo de’Morgana:
Y = ~K+T = ~(K*~T)
Przejdźmy z powyższą tabelą do zapisu ogólnego, na zmienne formalne p i q.
Kod: |
Tabela |Tabela
Symboliczna |Zero-jedynkowa
Dotrzymam słowa (Y=1)|
W: Y=~p+q |
W: Y=~p*q+~p*~q+p*q | ~p q Y=~p+q | p ~q ~Y=~(~p+q)=p*~q
A:~p* q = Y | 1 1 =1 | 0 0 =0 /~p* q= Y
B:~p*~q = Y | 1 0 =1 | 0 1 =0 /~p*~q= Y
C: p* q = Y | 0 1 =1 | 1 0 =0 / p* q= Y
Skłamię (~Y=1)
D: p*~q =~Y | 0 0 =0 | 1 1 =1 / p*~q=~Y
1 2 3 4 5 6
Punkt odniesienia to zawsze nagłówek tabeli zero-jedynkowej
|~p=1, p=0 | p=1,~p=0
| q=1,~q=0 |~q=1, q=0
| Y=1,~Y=0 |~Y=1, Y=0
|
STOP!
To co robią ziemscy matematycy z równaniem algebry Boole’a:
Y=~p+q
woła o pomstę do nieba a scyzoryk w kieszeni sam się otwiera.
W dzisiejszej matematyce mamy!
[link widoczny dla zalogowanych]
Prawo eliminacji implikacji:
p=>q = ~p+q
Aby spełnić tożsamość ziemskich matematyków (uzyskać p=>q) musimy w tabeli zero-jedynkowej zmienić punkt odniesienia dla kolumn „p” korzystając z prawa algebry Kubusia:
p = ~(~p) - prawo podwójnego przeczenia
Z prawa tego wynika, że w kolumnach ABCD1 i ABCD4 musimy zmienić nazwę sygnału „p” na przeciwną oraz zanegować wszystkie zera i jedynki w tych kolumnach.
Zróbmy to!
Kod: |
Tabela |Tabela
Symboliczna |Zero-jedynkowa
Dotrzymam słowa (Y=1)|
W: Y=~p+q |
W: Y=~p*q+~p*~q+p*q | p q Y=~p+q |~p ~q ~Y=~(~p+q)=p*~q
A:~p* q = Y | 0 1 =1 | 1 0 =0 /~p* q= Y
B:~p*~q = Y | 0 0 =1 | 1 1 =0 /~p*~p= Y
C: p* q = Y | 1 1 =1 | 0 0 =0 / p* q= Y
Skłamię (~Y=1)
D: p*~q =~Y | 1 0 =0 | 0 1 =1 / p*~q=~Y
1 2 3 4 5 6
Punkt odniesienia to zawsze nagłówek tabeli zero-jedynkowej
| p=1,~p=0 |~p=1, p=0
| q=1,~q=0 |~q=1, q=0
| Y=1,~Y=0 |~Y=1, Y=0
|
Zauważmy, że po naszym manewrze definicje symboliczne nie zmieniły się co jest dowodem poprawności prawa podwójnego przeczenia.
Obszar ABCD123 to zero-jedynkowa definicja operatora implikacji prostej:
p=>q = ~p~>~q
Problem w tym że w nagłówku tabeli ABCD123 nie ma prawa dla kolumny ABCD3 widnieć nagłówek:
Y=~p+q
... bo algebra Boole’a leży w gruzach!
Jeśli wedle Ziemskich matematyków obszar ABCD123 opisuje równanie algebry Boole’a:
Y=~p+q
to!
Przechodzimy do logiki ujemnej poprzez negację zmiennych i wymianę spójników na przeciwne:
~Y=p*~q
Zatem pełna definicja operatora OR w równaniach algebry Boole’a jest następująca:
Y = ~p+q
~Y = p*~q
W obszarze ABCD123 mamy ewidentny gwałt na algebrze Boole’a w liniach B123 i D123:
Kod: |
p q Y=~p+q
B: 0 0 =1
D: 1 0 =0
|
Nie ma takich sekwencji w definicji operatora OR!
Identycznie mamy w obszarze ABCD456 !
Ewidentny gwałt na algebrze Boole’a mamy tu w liniach B456 i D456:
Kod: |
~p ~q ~Y=(~p+q)=p*~q
B: 1 1 =0
D: 0 1 =1
|
Nie ma takich sekwencji w definicji operatora AND!
Wniosek końcowy:
Nie da się zastąpić definicji operatora implikacji operatorem OR czy też AND!
Miejsce gówna zwanego KRZiP jest na śmietniku historii.
Algebra Kubusia jest w 100% zgodna techniką cyfrową i naturalną logiką człowieka!
Czyż nie jest to piękne?
Z radością zawiadamiam szanownych Ziemskich matematyków, że era wariatkowa w logice matematycznej dobiegła końca!
Kubuś-kosmita
Kubuś to ekspert algebry Boole’a, autor podręczników technicznej algebry Boole’a.
W czasach kiedy Kubuś kończył elektronikę na Politechnice Warszawskiej (1980r) technika bramek logicznych stała na najwyższym poziomie, projektowało się wtedy złożone automaty cyfrowe w bramkach logicznych.
Oczywistym jest, że projekty były robione w naturalnej logice człowieka, czyli algebrze Kubusia.
Inżynierowie totalnie nie znają KRZiP (nawet nie słyszeli tej nazwy), nie mają pojęcia iż w tym badziewiu jest:
1 = prawda
0 = fałsz
Tylko i wyłącznie dzięki temu mamy dzisiaj komputery i Internet.
Oczywistym jest, że w logice zwanej KRZiP, totalnie sprzecznej z naturalną logiką człowieka, nie dałoby się zaprojektować nawet prostego układu na bramkach logicznych, że o mikroprocesorach nie wspomnę.
Bramki logiczne to w dniu dzisiejszym epoka kamienna, zabiły je mikroprocesory. Dziś już nikt nie uczy projektowania złożonych automatów cyfrowych w bramkach logicznych, bo w dobie mikroprocesorów to idiotyzm. Wynika z tego, że najprawdopodobniej Kubuś to ostatni Mohikanin, który miał szansę rozpracować matematykę naszego Wszechświata, całe szczęście, że się udało.
Jest oczywistym, że matematycy z kagańcem jedynie słusznej logiki zwanej KRZiP i zerowym doświadczeniem w technice bramek logicznych nie mieli tu żadnych szans.
O co chodzi w operatorach implikacji?
Oczywiście o coś fundamentalnie innego niż w operatorach OR i AND.
W operatorach OR i AND interesowało nas kiedy dotrzymam słowa (Y=1) a kiedy skłamię (~Y=1).
Definicja implikacji prostej:
p=>q = ~p~>~q
Definicja implikacji odwrotnej:
p~>q = ~p=>~q
Operatory implikacji dają odpowiedź na pytanie co się stanie jeśli zajdzie p i co się stanie jeśli zajdzie ~p zgodnie z ich definicjami wyżej. Są to więc totalnie inne operatory niż operatory OR i AND.
Definicja implikacji prostej:
Kod: |
p q p=>q
A: 1 1 =1 | p=> q =1 /Warunek wystarczający => w logice dodatniej (bo q)
B: 1 0 =0 | p=>~q =0 /o definicji wyłącznie w liniach A i B
... a jeśli zajdzie ~p?
Prawo Kubusia:
p=>q=~p~>~q
C: 0 0 =1 |~p~>~q =1 /Warunek konieczny ~> w logice ujemnej (bo ~q)
D: 0 1 =1 |~p~~>q =1 /Naturalny spójnik „może” ~~>
|
Operator implikacji prostej to złożenie warunku wystarczającego => w logice dodatniej (bo q) o definicji wyłącznie w liniach A i B z warunkiem koniecznym ~> (linie C i D) w logice ujemnej (bo ~q).
Definicja implikacji prostej w równaniu algebry Kubusia:
p=>q = ~p~>~q
gdzie:
p=>q
Jeśli zajdzie p to na pewno => zajdzie q
Z czego wynika że p musi być wystarczające dla q
gdzie:
=> - warunek wystarczający, spójnik „na pewno” między p i q w całym obszarze logiki, o definicji wyłącznie w liniach A i B
~> - warunek konieczny, w implikacji spójnik „może” między p i q o definicji:
C: ~p~>~q = A: p=>q
~~> - naturalny spójnik „może” wystarczy pokazać jeden przypadek prawdziwy
Zobaczmy to na przykładzie:
A.
Jeśli jutro będzie padało to na pewno => będzie pochmurno
P=>CH=1
Deszcz jest warunkiem wystarczającym => aby było pochmurno
B.
Jeśli jutro będzie padało to na pewno => nie będzie pochmurno
P=>~CH=0
... a jeśli jutro nie będzie padało?
Prawo Kubusia:
P=>CH = ~P~>~CH
C.
Jeśli jutro nie będzie padało to może ~> nie być pochmurno
~P~>~CH=1
Brak opadów jest warunkiem koniecznym ~> aby nie było pochmurno
lub
D.
Jeśli jutro nie będzie padało to może ~~> być pochmurno
~P~~>CH=1
W zdaniu D nie zachodzi warunek konieczny ~> bo nie jest spełnione prawo Kubusia:
D: ~P~>CH = B: P=>~CH =0
Prawa strona jest fałszem, zatem w zdaniu D nie zachodzi warunek konieczny.
Zdanie D jest prawdziwe na mocy definicji naturalnego spójnika „może”~~>, wystarczy sama możliwość zajścia.
Kodowanie zero-jedynkowe naszego przykładu:
Kod: |
Definicja |Definicja
symboliczna |zero-jedynkowa
| P CH P=>CH |~P ~CH ~P~>~CH
A: P=> CH=1 | 1 1 =1 | 0 0 =1 / p=> CH=1
B: P=>~CH=0 | 1 0 =0 | 0 1 =0 / p=>~CH=0
... a jeśli zajdzie ~P?
Prawo Kubusia:
P=>CH=~P~>~CH
C:~P~>~CH=1 | 0 0 =1 | 1 1 =1 /~P~>~CH=1
D:~P~~>CH=1 | 0 1 =1 | 1 0 =1 /~P~~>CH=1
1 2 3 | 4 5 6 | a b c d e f
Punktem odniesienia w tabeli zero-jedynkowej jest nagłówek tabeli
|P=1, ~P=0 |~P=1, P=0
|CH=1,~CH=0 |~CH=1,CH=0
|
Przechodzimy z powyższą tabela na parametry formalne p i q.
Kod: |
Definicja |Definicja
symboliczna |zero-jedynkowa
| p q p=>q |~p ~q ~p~>~q
A: p=> q =1 | 1 1 =1 | 0 0 =1 / p=> q =1
B: p=>~q =0 | 1 0 =0 | 0 1 =0 / p=>~q =0
... a jeśli zajdzie ~p?
prawo Kubusia:
p=>q=~p~>~q
C:~p~>~q =1 | 0 0 =1 | 1 1 =1 /~p~>~q =1
D:~p~~>q =1 | 0 1 =1 | 1 0 =1 /~p~~>q =1
1 2 3 | 4 5 6 | a b c d e f
Punktem odniesienia w tabeli zero-jedynkowej jest nagłówek tabeli
|p=1,~p=0 |~p=1, p=0
|q=1,~q=0 |~q=1, q=0
|
Tożsamość kolumn wynikowych:
ABCD6 i ABCDc jest dowodem formalnym zachodzenia prawa Kubusia:
p=>q = ~p~>~q
1.
Jeśli za punkt odniesienia przyjmiemy zdanie A:
A: p=>q - logika dodatnia (bo q)
p=1, ~p=0
q=1, ~q=0
to otrzymamy tabelę zero-jedynkową implikacji prostej (obszar ABCD456)
2.
Jeśli za punkt odniesienia przyjmiemy zdanie C:
C: ~p~>~q - logika ujemna (bo ~q)
~p=1, p=1
~q=1, q=0
to otrzymamy tabelę zero-jedynkową implikacji odwrotnej (obszar ABCDabc)
Odpowiedź na pytanie:
Co się stanie jak zajdzie p?
zakodowana jest w obszarze AB123=ABdef (symbolicznie) i AB456 (zero-jedynkowo).
Natomiast odpowiedź na pytanie:
Co się stanie jeśli zajdzie ~p?
zakodowana jest w obszarze CD123=CDdef (symbolicznie) i CDabc (zero-jedynkowo).
Zauważmy, że tu również leżą i kwiczą tożsamości ziemskich matematyków.
1.
W dzisiejszej matematyce mamy!
[link widoczny dla zalogowanych]
Prawo eliminacji implikacji:
p=>q = ~p+q
W tabeli zero-jedynkowej ABCD456 nie możemy zastąpić nagłówka:
p=>q
nagłówkiem wynikającym z powyższej „tożsamości”:
Y=~p+q
bowiem gwałt na operatorze OR będziemy mieć w liniach B456 i C456:
Kod: |
p q Y=~p+q
B: 1 0 =0
C: 0 0 =1
|
Nie ma takich sekwencji zer i jedynek w obszarze operatora OR!
2.
W dzisiejszej matematyce mamy!
[link widoczny dla zalogowanych]
Prawo eliminacji implikacji:
p=>q = ~p+q
Prawo Kubusia:
~p~>~q = p=>q
stąd:
~p~>~q = ~p+q
W tabeli zero-jedynkowej ABCDabc nie możemy zastąpić nagłówka:
~p~>~q
nagłówkiem wynikającym z powyższej „tożsamości”:
Y=~p+q
bowiem gwałt na operatorze OR będziemy mieć w liniach Aabc i Babc:
Kod: |
~p ~q Y=~p+q
A: 0 0 =1
B: 0 1 =0
|
Nie ma takich sekwencji zer i jedynek w obszarze operatora OR!
11.3 Tragiczna logika Ziemian
[link widoczny dla zalogowanych]
Z fałszu wynika wszystko!!!
Z każdego zdania fałszywego wynika dowolne inne zdanie.... (niektórzy twierdzą, że tak powstała teologia). Poniższa anegdota pochodzi od znakomitego XX-wiecznego logika- Bertranda Russella
Bertrand Russell napisał: |
Udowodnijmy zatem, że ze zdania: "2+2=5" wynika zdanie: "Ja (tzn. Windziarz) jestem papieżem"
Argumentacja przebiega następująco:
-Jeśli 2+2=5, to w takim razie: 4=5
po odjęciu od obu stron "3" otrzymujemy: 1=2
Zatem:
-skoro ja i papież to razem dwie osoby, a 2=1
to
-ja i papież jesteśmy jedną osobą
Zatem:
-ja jestem papieżem
|
[link widoczny dla zalogowanych]
Windziarz napisał: |
Kubuś napisał: |
Algebra Kubusia to koniec robienia z człowieka DEBILA dowodami „matematycznymi” w stylu dziadka Russella wyżej!
|
Gdzie niby w tym dowodzie jest błąd?
Poza tym ten dowód to przykład, że z fałszu wynika fałsz. Coś w tym jest złego?
Kubusiu! Jeśli nie wskażesz, gdzie w dowodzie Russella (że jeśli 2+2=5 to jestem papieżem) jest błąd, a będziesz nadal upierał się, że jest błędny, to znaczy, że kompletnie nic nie rozumiesz.
|
Windziarzu, tego żaden normalny człowiek NIGDY nie zrozumie!
Czy ewidentne idiotyzmy mogą być dowodem matematycznym?
Przecież to jest chore dla każdego, nawet pacjenta szpitala psychiatrycznego.
Spróbuj powiedzieć komukolwiek normalnemu (nie matematykowi) takie zdanie prawdziwe w KRZiP:
Jeśli 2+2=4 to jesteś wielbłądem.
... szpital psychiatryczny masz pewny.
Na razie IDIOTYZMY jak wyżej nie dotarły jeszcze w pełnej krasie do podręczników matematyki I klasy LO, ale wszystko jest na dobrej drodze, bowiem już są tego zwiastuny.
Dzieciaków w I klasie LO naucza się iż prawdziwe jest takie zdanie:
[link widoczny dla zalogowanych]
Jeśli pies ma osiem łap, to Księżyc krąży wokół Ziemi
Każdemu normalnemu człowiekowi wyjdzie tu iż:
Ponieważ pies nie ma ośmiu łap to Księżyc nie może krążyć wokół Ziemi.
Trzeba być idiotą, aby twierdzić że miedzy dwoma TOTALNIE niezależnymi zdaniami może cokolwiek wynikać (przykłady wyżej).
Błąd Russella nazywa się:
Gówno zwane KRZiP, a dowód tego jest niżej.
11.4 Gówno zwane KRZiP
Trzeba być idiotą aby twierdzić iż zdania:
1.
Jeśli jutro będzie padało to na pewno => będzie pochmurno
P=>CH=1
Deszcz jest warunkiem wystarczającym => dla istnienia chmur
i
2.
Jeśli trójkąt jest równoboczny to na pewno => ma kąty równe
TR=>KR=1
Bycie trójkątem równobocznym jest warunkiem wystarczającym => aby kąty były równe
To są identyczne implikacje proste prawdziwe!
W pierwszym jest matematycznie zakodowane rzucanie monetą po stronie ~P.
Prawo Kubusia:
P=>CH =~P~>~CH
~> - ten znaczek to warunek konieczny, „rzucanie monetą”, spójnik "może" w implikacji
1A.
Jeśli jutro nie będzie padało to może ~> nie być pochmurno
~P~>~CH=1
Brak opadów jest warunkiem koniecznym ~> aby nie było pochmurno
Wniosek:
Zdanie 1 to implikacja prosta prawdziwa
Natomiast w zdaniu 2 po stronie ~TR mamy 100% determinizm, kolejny warunek wystarczający!
2A.
Jeśli trójkąt nie jest równoboczny to na pewno => nie ma kątów równych!
~TR=>~KR=1
Bycie trójkątem nierównobocznym jest warunkiem wystarczającym => aby kąty nie były równe
To jest oczywiście implikacja prosta fałszywa bo nie ma tu "rzucania monetą", fundamentu każdej implikacji!
... a to gówno zwane KRZiP nie widzi miedzy tymi zdaniami żadnej różnicy.
W KRZiP oba te zdania to implikacje proste prawdziwe!
Wniosek:
KRZiP to IDIOTYZM, to totalnie błędna matematyka!
cnd
Zadanie dla Ziemian:
Jak kto obali dowód wyżej iż KRZiP jest idiotyzmem to natychmiast kasuję algebrę Kubusia.
Pozdrawiam,
Kubuś - kosmita, przyjaciel Ziemskich dzieci, którego zadaniem na Ziemi jest zniszczenie KRZiP, co by nikt nigdy nie prał tym gównem mózgów naszych dzieci ... już w I klasie LO.
Wara z tym na studia matematyczne, nie mam nic przeciwko aby dorośli prali sobie mózgi matematycznym debilizmem zwanym KRZiP totalnie sprzecznym z naturalną logiką człowieka ... ale od dzieci WON!
Przyjaciel wszystkich dzieci,
Kubuś - kosmita
KONIEC
2012-06-01 Dom wczasowy: Lot nad kukułczym gniazdem
Ostatnio zmieniony przez rafal3006 dnia Czw 19:11, 31 Maj 2012, w całości zmieniany 13 razy
|
|
Powrót do góry |
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 35368
Przeczytał: 20 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Śro 9:13, 09 Maj 2012 Temat postu: |
|
|
12.0 Złożone zdania naturalnego języka mówionego
Człowiek w swoim naturalnym języku mówionym z reguły używa zdań prostych, łatwych w analizie matematycznej.
Co więcej, już 5-cio latki operują wyłącznie funkcjami minimalnymi.
Żaden 5-cio latek nie wypowiada zdań jak niżej:
A.
Pies ma cztery łapy lub szczeka
P=>4L+S =0 - zdanie fałszywe na mocy prawa Sowy.
B.
Pies ma cztery łapy lub nie szczeka
P=>4L+~S=0 - zdanie fałszywe na mocy prawa Sowy.
Dlaczego?
Oba powyższe zdania to błąd czysto matematyczny na mocy prawa Sowy.
Definicja operatora logicznego:
Operator logiczny to odpowiedź układu na wszystkie możliwe przeczenia p i q
Prawo Sowy:
W świecie totalnie zdeterminowanym, gdzie znamy z góry wartości logiczne p i q, dowolny operator logiczny ulega redukcji do operatora AND.
Prawo Sowy wynika bezpośrednio z definicji operatora logicznego.
W naturalnym języku mówionym odpowiada to redukcji spójnika „lub”(+) do spójnika „i”(*).
Zdania A i B to świat totalnie zdeterminowany bo znamy z góry wartości logiczne p i q.
Dla psa mamy:
4L=1, ~4L=0
S=1, ~S=0
Pełna definicja spójnika „lub”(+):
p+q = p*q +p*~q + ~p*q
Podstawiamy nasz przykład:
4L+S = (4L*S=1*1=1) + (4L*~S=1*0=0) + (~4L*S=0*1=0) := 4L*S
gdzie:
:= - symbol redukcji funkcji logicznej na mocy definicji spójnika „lub”(+)
Jedynym zdaniem prawdziwym będzie tu zdanie:
C.
Pies ma cztery łapy i szczeka
P=>4L*S=1*1=1
Wszelkie inne formy tego zdania będą matematycznie fałszywe.
Twierdzenie:
Dowolne zdanie z naturalnego języka mówionego musimy sprowadzić do zdania logicznie prawdziwego jak to zrobiono ze zdaniami A i B wyżej. Wtedy i tylko wtedy wolno nam stosować jakiekolwiek prawa logiczne.
Prawo Sowy jest tu brzytwą Ockhama, bezlitośnie obcinającą wszelkie zdaniowe śmiecie z naturalnego języka mówionego. Oczywiście wszyscy ludzie znają banalna algebrę Kubusia, dlatego możliwe są językowe niedomówienia, dowcip, porównania, przenośnie itd.
Prawo Sowy jest oczywistością, bo jak znamy w 100% rozwiązanie to składniki tego rozwiązania muszą być prawdziwe i połączone spójnikiem „i”.
Zdanie:
Jeśli Jan był w Warszawie to mógł zamordować
W~>Z
… a jeśli Jan nie był w Warszawie ?
Prawo Kubusia:
W~>Z = ~W=>~Z
Jeśli Jan nie był w Warszawie to na pewno nie zabił
~W=>~Z
Tego typu zdania są sensowne wyłącznie jeśli nie wiemy czy Jan jest mordercą.
Wtedy implikacjami w stylu jak wyżej dochodzimy prawdy.
Jeśli znamy prawdę „Jan nie był w Warszawie” to poprawne lingwistycznie zdanie jest wówczas takie:
Jan nie był w Warszawie i nie zamordował
J=>~W*~Z
Oczywiście sednem jest tu morderstwo, zatem po końcowym uproszczeniu:
Jan nie jest mordercą
J=>~M
12.1 Zdanie złożone ze spójnikiem „lub”(+)
Rozważmy zdanie:
A.
Dowolny kraj leży w Europie, Azji lub Afryce
Y=E+Az+Af
Dla uproszczenia celowo pominięto pozostałe kontynenty
Ogólna definicja spójnika „lub”(+) dla trzech zmiennych:
A.
Y=p+q+r
Y - wystąpi prawda, logika dodatnia bo Y
Y=1 <=> p=1 lub q=1 lub r=1
To samo w rozpisce szczegółowiej na podstawie szczegółowej definicji spójnika „lub”(+)
B.
Y=p+q+r = p*q*r+p*q*~r+p*~q*r+p*~q*~r+~p*q*r+~p*q*~r+~p*~q*r
… a kiedy wystąpi fałsz?
Przejście ze zdaniem A do logiki ujemnej poprzez negacje zmiennych i wymianę operatorów
C.
~Y=~p*~q*~r
~Y - wystąpi fałsz, logika ujemna bo ~Y
Wyłącznie ta sekwencja iloczynu nie ma prawa pojawić się w równaniu B, pozostałe przypadki muszą być w równaniu B uwzględnione!
Wróćmy do naszego przykładu.
A.
Dowolny kraj leży w Europie, Azji lub Afryce
Y=E+Az+Af
Na mocy definicji spójnika „lub”(+) dla trzech zmiennych zdanie A będzie prawdziwe jeśli:
1: E*Az*Af =Y
lub
2: E*Az*~AF=Y
lub
3: E*~Az*Af=Y
lub
4: E*~Az*~Af=Y
lub
5: ~E*Az*Af=Y
lub
6: ~E*Az*~Af=Y
lub
7. ~E*~Az*Af=Y
… a kiedy zdanie A będzie fałszywe ?
Przechodzimy do logiki ujemnej poprzez negacje zmiennych i wymianę argumentów
8. ~E*~Az*~Af= ~Y
Zauważmy, że dowolny kraj musi gdzieś leżeć, zatem linia 8 będzie zawsze fałszem dla dowolnego, wylosowanego kraju
Losujemy kraj: Polska
Oczywiście w tym przypadku wyłącznie linia 4 będzie prawdziwa:
4.
Polska leży w Europie i nie leży w Azji i nie leży w Afryce
Y = E*~Az*~Af
Y=1 <=> E=1 i ~Az=1 i ~Af=1 = 1*1*1 =1
Ten punkt odniesienia determinuje:
E=1, ~E=0
~Az=1, Az=0
~Af=1, Af=0
Tabela zero-jedynkowa dla tego przypadku przybierze postać:
Y = E+Az+Af
czyli:
1: E*Az*Af =Y
1*0* 0 =0
lub
2: E*Az*~AF=Y
0*0*1=0
lub
3: E*~Az*Af=Y
0*1*0 =0
lub
Jedyne zdanie prawdziwe:
4: E*~Az*~Af=Y
1 1 1 =1
lub
5: ~E*Az*Af=Y
0*0*0 =0
lub
6: ~E*Az*~AF=Y
0*0*1 =0
lub
7. ~E*~Az*Af=Y
0*1*0 =0
… a kiedy zdanie A będzie fałszywe ?
Przechodzimy do logiki ujemnej poprzez negacje zmiennych i wymianę argumentów
8. ~E*~Az*~Af= ~Y
0*1*1 =0
Polska leży wyłącznie na jednym kontynencie, zatem otrzymaliśmy wyżej tabelę zero-jedynkową operatora AND dla zdania wypowiedzianego 4.
Prawo Sowy:
W świecie zdeterminowanym, gdzie wartości logiczne zmiennych są znane, dowolny operator logiczny ulega redukcji do operatora AND.
Dowód:
W przypadku spójnika „lub”(+) tylko i wyłącznie jedno zdanie może być prawdziwe spośród:
2^n-1
różnych zdań.
gdzie:
2^n - dwa do potęgi n
n - ilość zmiennych
Dla trzech zmiennych mamy:
2^n-1 = 2^3-1 = 8-1 = 7
Co jest zgodne z przykładem wyżej.
Z powyższego wynika, że jedynki w spójniku „lub” (zdania 1-7) wyrażają samą możliwość zajścia, że nie są to prawdy twarde, zachodzące zawsze, bez wyjątków.
Losujemy kraj: Rosja
Oczywiście w tym przypadku będzie prawdziwe wyłącznie zdanie 2.
Rosja leży w Europie i leży w Azji i nie leży w Afryce
Y=E*Az*~Af
Wszystkie pozostałe zdania będą tu fałszywe.
Mózg człowieka genialnie minimalizuje wszelkie funkcje logiczne.
Każde dziecko wypowie zdanie:
Dowolny kraj leży w Europie lub w Azji lub w Afryce
Y=E+Az+Af
(w celu uproszczenia ograniczamy liczbę kontynentów)
… ale już dla konkretnego kraju absolutnie nikt nie powie:
Polska leży w Europie lub w Azji lub w Afryce
P=E+Az+Af
bo doskonale wszyscy wiemy gdzie leży Polska.
W zagadkach takie zdanie jest jak najbardziej sensowne, ale przy znajomości rozwiązania jest bez sensu. Informacja precyzyjna po minimalizacji tej funkcji w sposób wyżej pokazany generuje jedynie słuszne zdanie:
Polska leży w Europie i nie leży w Azji i nie leży w Afryce
P = E*~Az*~Af
P=1 <=> E=1 i ~Az=1 i ~Af=1
Zauważmy, że takiego zdania również nikt nie wypowie z powodu znajomości rozwiązania.
W powyższym równaniu prawdy powstałe z negacji fałszu (~Az=1, ~AF=1) są bezwartościowe i każdy normalny człowiek je zignoruje wypowiadając zdanie precyzyjnie.
Polska leży w Europie
P=E
Zauważmy, że przy znajomości rozwiązania uwzględnianie w równaniu prawd powstałych z negacji fałszu jest bez sensu bo takich „prawd” jest nieskończenie wiele.
Przykład:
Polska leży w Europie i Polska to nie rzeka i Polska to nie wąsy dziadka ….
P = E * ~R * ~WD …
Formalnie to zdanie jest prawdziwe, tyle że sensu w tym nie ma.
12.2 Złożona implikacja prosta
A.
Jeśli zwierzę jest psem lub kotem to na pewno ma cztery łapy i nie ćwierka
P+K=>4L*~C
To jest oczywiście zdanie intuicyjnie sensowne.
Zastanówmy się dlaczego!
Zajmijmy się na początek poprzednikiem.
Definicja spójnika „lub”(+):
p+q = p*q + p*~q + ~p*q
stąd:
P+K = P*K + P*~K + ~P*K
A: P*K = 1*1= 0
Zbiory P i K istnieją (P=1 i K=1), ale są rozłączne co wymusza w wyniku zero (zbiór pusty).
B: P*~K = P
Wspólną częścią zbiorów P i ~K jest zbiór psów
C: ~P*K = K
Wspólną częścią zbiorów ~P i K jest zbiór kotów
stąd:
P+K = P*K + P*~K + ~P*K = P+K
Poprzednika nie da się zminimalizować, ta funkcja jest minimalna.
A.
Jeśli zwierzę jest psem lub kotem to na pewno ma cztery łapy i nie ćwierka
P+K=>4L*~C
Następnik jest oczywiście prawdziwy, ale w iloczynie logicznym zawiera bezwartościową dla psa i kota prawdę powstałą z negacji fałszu. Ćwierkanie nie jest cechą ani psa, ani kota. Taką prawdę możemy usunąć, ale nie musimy tego robić.
Przeanalizujmy to zdanie w oryginale, bez minimalizacji następnika.
p=(P+K), q=(4L*~C), ~p=(~P*~K), ~q=(~4L+C)
A.
Jeśli zwierzę jest psem lub kotem to na pewno ma cztery łapy i nie ćwierka
P+K=>4L*~C=1 bo pies, kot
p=>q=1
Bycie psem lub kotem wystarcza aby mieć cztery łapy i nie ćwierkać
Zbiory:
(P+K)*(4L*~C)=1*1=1
Oba zbiory istnieją [(P+K)=1 i (4L*~C)=1) i mają cześć wspólną, co wymusza w wyniku jeden.
Obliczenie ~q:
q=4L*~C
Przejście do logiki ujemnej poprzez negację sygnałów i wymianę spójników na przeciwne
~q = ~4L+C
stąd:
B.
Jeśli zwierzę jest psem lub kotem to na pewno nie ma czterech łap lub ćwierka
P+K => ~4L+C =0
p=>~q=0
Dla psa lub kota mamy tu determinizm:
~4L=0 i C=0
co wymusza w wyniku zero (zbiór pusty).
Zbiory:
(P+K)*(~4L+C)=1*1=0
Oba zbiory istnieją [(P+K)=1 i (~4L+C)=1] ale są rozłączne, co wymusza w wyniku zero (zbiór pusty).
... a jeśli zwierzę nie jest psem i nie jest kotem?
Przejście ze zdaniem A do logiki ujemnej poprzez negację zmiennych i wymianę spójników na przeciwne.
Mamy A:
P+K => 4L*~C
stąd:
~P*~K~>~4L+C
To jest oczywiście prawo Kubusia:
p=>q = ~p~>~q
uzyskane metodą na skróty.
stąd:
p=(P+K), q=(4L*~C), ~p=(~P*~K), ~q=(~4L+C)
C.
Jeśli zwierzę nie jest psem i nie jest kotem to może ~> nie mieć czterech łap lub ćwierkać
~P*~K~>~4L+C =1 bo kura, wąż (~4L=1), wróbelek (C=1)
~p~>~q=1
Nie bycie psem i nie bycie kotem jest warunkiem koniecznym aby nie mieć czterech łap lub ćwierkać
Zauważmy że jak wylosujemy zwierzaka i stwierdzimy iż nie ma czterech łap:
~4L=1
to już mamy pewność że to ani pies, ani kot, sprawdzać czy ćwierka nie musimy
Podobnie, jeśli wylosowany zwierzak ćwierka:
C=1
to już mamy pewność że to ani pies, ani kot, sprawdzać czy nie ma czterech łap nie musimy.
Dokładnie tak musi działać suma logiczna, spójnik „lub”(+)!
Zbiory:
(~P*~K)*(~4L+C)=1*1=1
Oba zbiory istnieją [(~P*~K)=1 i (~4L+C)=1] i mają część wspólną, co wymusza w wyniku jeden.
lub
D.
Jeśli zwierzę nie jest psem i nie jest kotem to może ~~> mieć cztery łapy i nie ćwierkać
~P*~K~~>4L*~C=1 bo słoń, koń, hipopotam...
~p~~>q=1
Zbiory:
(~P*~K)*(4L*~C)=1*1=1
Oba zbiory istnieją [(~P*~K)=1 i (4L*~C)=1] i mają część wspólną, co wymusza w wyniku jeden.
W zdaniu D nie zachodzi warunek konieczny bo prawo Kubusia nie może być zgwałcone:
D: (~P*~K)~>(4L*~C) = B: (P+K) => (~4L+C) =0
Zdanie B jest fałszem zatem w zdaniu D nie zachodzi warunek konieczny ~>.
Zdanie D jest prawdziwe na mocy naturalnego spójnika „może”~~>, wystarczy pokazać jeden przypadek prawdziwy.
Dla kodowania zgodnego ze zdaniem wypowiedzianym A:
p=1, ~p=0
q=1, ~q=0
mamy zero-jedynkową definicję operatora implikacji prostej.
Kod: |
Definicja
Symboliczna |p q p=>q
A: p=> q=1 |1 1 =1
B: p=>~q=0 |1 0 =0
C:~p~>~q=1 |0 0 =1
D:~p~~>q=1 |0 1 =1
Punktem odniesienia dla dowolnej tabeli zero-jedynkowej
jest zawsze nagłówek tabeli.
|
Nasze zdanie A spełnia zero-jedynkową definicję implikacji prostej, w skrócie jest implikacją prostą
Zastanówmy się na koniec czy możliwa jest inna wersja następnika.
A.
Jeśli zwierzę jest psem lub kotem to na pewno ma cztery łapy i nie ćwierka
P+K=>4L*~C
Dla psa lub kota mamy pełny determinizm:
4L=1, ~4L=0
~C=1, C=0
Definicja operatora logicznego:
Operator logiczny to odpowiedź układu na wszystkie możliwe przeczenia p i q
Prawo Sowy:
W świecie totalnie zdeterminowanym, gdzie znamy z góry wartości logiczne p i q dowolny operator logiczny ulega redukcji do operatora AND.
Dla psa lub kota mamy w następniku świat totalnie zdeterminowany:
Kod: |
P+K=> 4L*~C=1*1=1
P+K=> 4L* C=1*0=0
P+K=>~4L*~C=0*1=0
P+K=>~4L* C=0*0=0
|
Na mocy prawa Sowy jakiekolwiek inne formy następnika będą tu matematycznie fałszywe.
cnd
12.3 Złożona implikacja odwrotna
Odwróćmy zdanie z poprzedniego przykładu, możemy to robić wyłącznie w implikacjach bezczasowych. Oba zdania będą prawdziwe, ale nie równoważne matematycznie (pkt. 6.1).
Y = p=>q = ~p~>~q ## ~y = q~>p = ~q=>~p
gdzie:
## - różne na mocy definicji
A.
Jeśli zwierzę ma cztery łapy i nie ćwierka to może ~> być psem lub kotem
4L*~C ~> P+K
Po stronie poprzednika mamy tu prawdę powstałą z negacji fałszu (~C=1) którą możemy sunąć ale nie musimy tego robić.
Definicja operatora logicznego:
Operator logiczny to odpowiedź układu na wszystkie możliwe przeczenia p i q
Analiza matematyczna:
p=(4L*~C), q=(P+K), ~p=(~4L+C), ~q=(~P*~K)
A.
Jeśli zwierzę ma cztery łapy i nie ćwierka to może ~> być psem lub kotem
4L*~C ~> P+K =1 bo pies, kot
p~>q=1
Posiadanie czterech łap i brak umiejętności ćwierkania jest warunkiem koniecznym aby być psem lub kotem.
Zbiory:
(4L*~C)*(P+K) = 1*1=1
Oba zbiory istnieją [(4L*~C)=1 i (P+K)=1] i mają część wspólną, co wymusza w wyniku jeden.
lub
Obliczanie ~q:
q=P+K
Przejście do logiki ujemnej poprzez negacje zmiennych i wymianę spójników
~q = ~P*~K
B.
Jeśli zwierzę ma cztery łapy i nie ćwierka to może ~~> nie być psem i nie być kotem
4L*~C ~~> ~P*~K =1 bo słoń, koń, hipopotam ...
p~~>~q=1
Zbiór zwierząt mających cztery łapy i nie ćwierkających ma część wspólną ze zbiorem zwierząt nie będących psami i nie będących kotami (słoń, koń, hipopotam...).
Zbiory:
(4L*~C)*(~P*~K) = 1*1=1
Oba zbiory istnieją [(4L*~C)=1 i (~P*~K)=1] i mają część wspólną, co wymusza w wyniku jeden.
... a jeśli zwierzę nie ma czterech łap lub ćwierka?
Przechodzimy ze zdaniem A do logiki ujemnej poprzez negację zmiennych i wymianę spójników na przeciwne.
Mamy A:
4L*~C ~> P+K
stąd:
~4L+C => ~P*~K
p=(4L*~C), q=(P+K), ~p=(~4L+C), ~q=(~P*~K)
C.
Jeśli zwierzę nie ma czterech łap lub ćwierka to na pewno => nie jest psem i nie jest kotem
~4L+C => ~P*~K =1 bo wąż, mrówka, wróbelek ...
~p=>~q=1
Brak czterech łap lub ćwierkanie jest warunkiem wystarczającym => aby nie być psem i nie być kotem.
Zbiory:
(~4L+C)*(~P*~K)=1*1=1
Oba zbiory istnieją [(~4L+C)=1 i (~P*~K)=1)]i mają część wspólną, co wymusza w wyniku jeden.
stąd:
D.
Jeśli zwierzę nie ma czterech łap lub ćwierka to na pewno => jest psem lub kotem
~4L+C => P+K =0
~p=>q=0
Zbiór zwierząt nie mających czterech łap lub ćwierkających jest rozłączny ze zbiorem psów lub kotów, co wymusza w wyniku zero (zbiór pusty).
Zbiory:
(~4L+C)*(P+K)=1*1=0
Oba zbiory istnieją [(~4L+C)=1 i (P+K)=1)] ale są rozłączne, co wymusza w wyniku zero (zbiór pusty).
W zdaniu B nie zachodzi warunek konieczny ~> bo prawo Kubusia nie może być zgwałcone:
B: (4L*~C) ~> (~P*~K) = D: (~4L+C) => (P+K) =0
Zdanie D jest fałszem zatem w zdaniu B nie zachodzi warunek konieczny ~>.
Zdanie B jest prawdziwe na mocy naturalnego spójnika „może”~~>, wystarczy pokazać jeden przypadek prawdziwy.
Dla kodowania zgodnego ze zdaniem wypowiedzianym A:
p=1, ~p=0
q=1, ~q=0
mamy zero-jedynkową definicję operatora implikacji odwrotnej.
Kod: |
Definicja |Definicja zero-jedynkowa
Symboliczna |p q p~>q
A: p~> q =1 |1 1 =1
B: p~~>~q=1 |1 0 =1
C:~p=>~q =1 |0 0 =1
D:~p=> q =0 |0 1 =0
Punktem odniesienia dla dowolnej tabeli zero-jedynkowej
jest zawsze nagłówek tabeli.
|
Nasze zdanie A spełnia zero-jedynkową definicję implikacji odwrotnej, w skrócie jest implikacją odwrotną
Zastanówmy się na koniec czy możliwa jest inna wersja poprzednika.
A.
Jeśli zwierzę ma cztery łapy i nie ćwierka to może ~> być psem lub kotem
4L*~C ~> P+K =1 bo pies, kot
Dla psa lub kota mamy pełny determinizm:
4L=1, ~4L=0
~C=1, C=0
Definicja operatora logicznego:
Operator logiczny to odpowiedź układu na wszystkie możliwe przeczenia p i q
Prawo Sowy:
W świecie totalnie zdeterminowanym, gdzie znamy z góry wartości logiczne p i q dowolny operator logiczny ulega redukcji do operatora AND.
Dla psa lub kota mamy w poprzedniku świat totalnie zdeterminowany:
Kod: |
4L*~C=1*1=1 ~>P+K
4L* C=1*0=0 ~>P+K
~4L*~C=0*1=0 ~>P+K
~4L* C=0*0=0 ~>P+K
|
Na mocy prawa Sowy jakiekolwiek inne formy poprzednika będą tu matematycznie fałszywe.
cnd
12.4 Zdania złożone typu p+(q*r)
Przykład zdania złożonego typu p+(q*r):
A.
Jutro pójdę do kina lub na basen i do parku
Y=K+(B*P)
... a kiedy skłamię?
Przejście do logiki ujemnej poprzez negację zmiennych i wymianę spójników:
B.
~Y = ~K*(~B+~P)
Skłamię (~Y) wtedy i tylko wtedy gdy jutro nie pójdę do kina (~K) oraz nie pójdę na basen (~B) lub nie pójdę do parku (~P)
~Y = ~K*(~B+~P)
Związek logiki dodatniej i ujemnej:
Y=~(~Y)
Podstawiając A i B mamy prawo de’Morgana:
Y = K+(B*P) = ~[~K*(~B+~P)]
Gdzie:
Y - dotrzymam słowa
~Y - skłamię
Zauważmy, że w naturalnej logice człowieka mamy domyślną kolejność wykonywania działań.
„i”(*), „lub”(+).
Jak zobaczymy w niedalekiej przyszłości w zdaniu typu p*(q+r) człowiek zastępuje spójnik „i”(*) spójnikiem „oraz” (lub podobnym).
1.
Jutro pójdę do kina oraz na basen lub do parku
Y=K*(B+P)
Jak widzimy nasz mózg to cwana bestia, doskonale wie że tu nie wolno wstawić spójnika „i”(*), trzeba poszukać jakiegoś zamiennika.
Możliwości mamy tu duże:
Jutro pójdę do kina „jak również” na basen lub do parku
Jutro pójdę do kina „a także” na basen lub do parku
Jutro pójdę do kina „po czym” na basen lub do parku
itp.
Zauważmy, że wstawienie spójnika „i”(*) zmienia totalnie sens zdania:
2.
Jutro pójdę do kina i na basen lub do parku
Y=(K*B)+P
Oczywiście zdania 1 i 2 są totalnie różne!
Wracamy do tematu ...
Zobaczmy nasze równania:
Y = K+(B*P)
~Y = ~K*(~B+~P)
Y = ~[~K*(~B+~P)]
w tabeli zero-jedynkowej.
Kod: |
K B P B*P Y=K+(B*P) ~K ~B ~P ~B+~P ~Y=~K*(~B+~P) Y=~[~K*(~B+~P)]
1 1 1 1 1 0 0 0 0 0 1
1 1 0 0 1 0 0 1 1 0 1
1 0 1 0 1 0 1 0 1 0 1
1 0 0 0 1 0 1 1 1 0 1
0 1 1 1 1 1 0 0 0 0 1
0 1 0 0 0 1 0 1 1 1 0
0 0 1 0 0 1 1 0 1 1 0
0 0 0 0 0 1 1 1 1 1 0
1 2 3 4 5 6 7 8 9 10 11
|
W kolumnach 5 i 11 doskonale widać spełnione prawo de’Morgana:
Y = K+(B*P) = ~[~K*(~B+~P)]
Nasze zdanie:
A.
Jutro pójdę do kina lub na basen i do parku
Y=K+(B*P)
Co matematycznie oznacza:
Dotrzymam słowa (Y=1) wtedy i tylko wtedy gdy jutro pójdę do kina (K=1) lub na basen (B=1) i do parku (P=1)
Y=K+(B*P)
Y=1 <=> K=1 lub (B=1 i P=1)
.. a kiedy skłamię?
Przejście ze zdaniem A do logiki ujemnej poprzez negacje zmiennych i wymianę spójników na przeciwne
B.
~Y = ~K * (~B+~P)
Skłamię (~Y=1) wtedy i tylko wtedy gdy jutro nie pójdę do kina (~K=1) oraz nie pójdę na basen (~B=1) lub nie pójdę do parku (~P=1)
~Y = ~K * (~B+~P)
co matematycznie oznacza:
~Y=1 <=> ~K=1 i (~B=1 lub ~P=1)
Związek logiki dodatniej i ujemnej:
C.
Y=~(~Y) = ~[~K*(~B+~P)]
Oczywiście:
Y = Y
stąd:
Zdania A i C są równoważne(prawo de’Morgana).
C.
Dotrzymam słowa Y=1 wtedy i tylko wtedy gdy nie zdarzy się ~[...] że jutro nie pójdę do kina (~K=1) oraz nie pójdę na basen (~B=1) lub nie pójdę do parku (~P=1)
Y=~[~K*(~B+~P)]
co matematycznie oznacza:
Y=1 <=> ~[~K=1 i (~B=1 lub ~P=1)
D.
Najprostsze równanie dla kolumny wynikowej 5 rozumiane przez 5-cio latka otrzymamy opisując wynikowe jedynki w tej kolumnie.
Y=K+(B*P)
Oczywiście wszystkie zmienne sprowadzamy do jedynek (logika dodatnia):
Y = K*B*P + K*B*~P + K*~B*P + K* ~B*~P + ~K*B*P
co matematycznie oznacza:
Dotrzymam słowa (Y=1) wtedy i tylko wtedy gdy jutro pójdę:
K*B*P=1*1*1=1 - do kina(K=1) i na basen (B=1) i do parku (P=1)
lub
K*B*~P=1*1*1=1 - do kina (K=1) i na basen (B=1) i nie pójdę do parku (~P=1)
lub
K*~B*P=1*1*1=1 - do kina (K=1) i nie na basen (~B=1) i do parku (P=1)
lub
K*~B*~P=1*1*1=1 - do kina (K=1) i nie na basen (~B=1) i nie do parku (~P=1)
lub
~K*B*P=1*1*1=1 - nie do kina (~K=1) i na basen (B=1) i do parku (P=1)
Jak widzimy, zgodność z naturalną logiką człowieka jest tu 100%!
Zauważmy, że równanie algebry Kubusia dla wynikowych zer plus przejście do logiki dodatniej (Y) byłoby prostsze bo mamy tylko trzy zera w kolumnie 5. Cena za taki skrót byłaby jednak bardzo wysoka. Mielibyśmy horror w szukaniu związku tego równania z naturalną logiką człowieka (logika zero).
Równanie logiczne opisujące zera w powyższej tabeli daje poprawną odpowiedź na pytanie kiedy skłamię.
Interesujący nas fragment tabeli:
Kod: |
K B P B*P Y=K+(B*P) ~K ~B ~P ~B+~P ~Y=~K*(~B+~P) Y=~[~K*(~B+~P)]
A: 0 1 0 0 0 1 0 1 1 1 0
B: 0 0 1 0 0 1 1 0 1 1 0
C: 0 0 0 0 0 1 1 1 1 1 0
1 2 3 4 5 6 7 8 9 10 11
|
Równanie odpowiadające na pytanie kiedy skłamię (~Y=1) generujemy z obszaru ABC678 i kolumny wynikowej ABC10
~Y = ~K*B*~P + ~K*~B*P + ~K*~B*~P
12.5 Zdania złożone typu p*(q+r)
Przykład zdania złożonego typu p*(q+r):
A.
Jutro pójdę do kina oraz na basen lub do parku
Y=K*(B+P)
... a kiedy skłamię?
Przejście do logiki ujemnej poprzez negację zmiennych i wymianę spójników:
B.
~Y = ~K+(~B*~P)
Skłamię (~Y) wtedy i tylko wtedy gdy jutro nie pójdę do kina (~K) lub nie pójdę na basen (~B) i nie pójdę do parku (~P)
~Y = ~K+(~B*~P)
Związek logiki dodatniej i ujemnej:
Y=~(~Y)
Podstawiając A i B mamy prawo de’Morgana:
Y = K*(B+P) = ~[~K+(~B*~P)]
Gdzie:
Y - dotrzymam słowa
~Y - skłamię
Zauważmy, że w naturalnej logice człowieka mamy domyślną kolejność wykonywania działań.
„i”(*), „lub”(+).
Zobaczmy nasze równania:
Y = K*(B+P)
~Y = ~K+(~B*~P)
Y = ~[~K+(~B*~P)]
w tabeli zero-jedynkowej.
Kod: |
K B P B+P Y=K*(B+P) ~K ~B ~P ~B*~P ~Y=~K+(~B*~P) Y=~[~K+(~B*~P)]
1 1 1 1 1 0 0 0 0 0 1
1 1 0 1 1 0 0 1 0 0 1
1 0 1 1 1 0 1 0 0 0 1
1 0 0 0 0 0 1 1 1 1 0
0 1 1 1 0 1 0 0 0 1 0
0 1 0 1 0 1 0 1 0 1 0
0 0 1 1 0 1 1 0 0 1 0
0 0 0 0 0 1 1 1 1 1 0
1 2 3 4 5 6 7 8 9 10 11
|
W kolumnach 5 i 11 doskonale widać spełnione prawo de’Morgana:
Y = K*(B+P) = ~[~K+(~B*~P)]
Nasze zdanie:
A.
Jutro pójdę do kina oraz na basen lub do parku
Y=K*(B+P)
Co matematycznie oznacza:
Dotrzymam słowa (Y=1) wtedy i tylko wtedy gdy jutro pójdę do kina (K=1) oraz na basen (B=1) lub do parku (P=1)
Y=K*(B+P)
Y=1 <=> K=1 i (B=1 lub P=1)
.. a kiedy skłamię?
Przejście ze zdaniem A do logiki ujemnej poprzez negacje zmiennych i wymianę spójników na przeciwne
B.
~Y = ~K + (~B*~P)
Skłamię (~Y=1) wtedy i tylko wtedy gdy jutro nie pójdę do kina (~K=1) lub nie pójdę na basen (~B=1) i nie pójdę do parku (~P=1)
~Y = ~K + (~B*~P)
co matematycznie oznacza:
~Y=1 <=> ~K=1 lub (~B=1 i ~P=1)
Związek logiki dodatniej i ujemnej:
C.
Y=~(~Y) = ~[~K+(~B*~P)]
Oczywiście:
Y = Y
stąd:
Zdania A i C są równoważne(prawo de’Morgana).
C.
Dotrzymam słowa Y=1 wtedy i tylko wtedy gdy nie zdarzy się ~[...] że jutro nie pójdę do kina (~K=1) lub nie pójdę na basen (~B=1) i nie pójdę do parku (~P=1)
Y=~[~K+(~B*~P)]
co matematycznie oznacza:
Y=1 <=> ~[~K=1 lub (~B=1 i ~P=1)]
D.
Najprostsze równanie dla kolumny wynikowej 5 rozumiane przez 5-cio latka otrzymamy opisując wynikowe jedynki w tej kolumnie.
Y=K*(B+P)
Oczywiście wszystkie zmienne sprowadzamy do jedynek (logika dodatnia):
Y = K*B*P + K*B*~P + K*~B*P
co matematycznie oznacza:
Dotrzymam słowa (Y=1) wtedy i tylko wtedy gdy jutro pójdę:
K*B*P=1*1*1=1 - do kina(K=1) i na basen (B=1) i do parku (P=1)
lub
K*B*~P=1*1*1=1 - do kina (K=1) i na basen (B=1) i nie pójdę do parku (~P=1)
lub
K*~B*P=1*1*1=1 - do kina (K=1) i nie na basen (~B=1) i do parku (P=1)
Jak widzimy, zgodność z naturalną logiką człowieka jest tu 100%!
Zauważmy, że równanie algebry Kubusia dla wynikowych zer plus przejście do logiki dodatniej (Y) byłoby prostsze bo mamy tylko trzy zera w kolumnie 5. Cena za taki skrót byłaby jednak bardzo wysoka. Mielibyśmy horror w szukaniu związku tego równania z naturalną logiką człowieka (logika zero).
Równanie logiczne opisujące zera w powyższej tabeli daje poprawną odpowiedź na pytanie kiedy skłamię.
Interesujący nas fragment tabeli:
Kod: |
K B P B+P Y=K*(B+P) ~K ~B ~P ~B*~P ~Y=~K+(~B*~P) Y=~[~K+(~B*~P)]
A: 1 0 0 0 0 0 1 1 1 1 0
B: 0 1 1 1 0 1 0 0 0 1 0
C: 0 1 0 1 0 1 0 1 0 1 0
D: 0 0 1 1 0 1 1 0 0 1 0
E: 0 0 0 0 0 1 1 1 1 1 0
1 2 3 4 5 6 7 8 9 10 11
|
Równanie odpowiadające na pytanie kiedy skłamię (~Y=1) generujemy z obszaru ABCDE678 i kolumny wynikowej ABCDE10
~Y = K*~B*~P + ~K*B*P + ~K*B*~P + ~K*~B*P + ~K*~B*~P
13.0 Obietnice i groźby
Żaden matematyk nie zakwestionuje poniższej definicji obietnicy:
Obietnica = implikacja prosta (p=>q = ~p~>~q)
To jest w każdym podręczniku matematyki do I klasy LO
To wystarczy, dalej w banalny sposób można udowodnić że:
Groźba = implikacji odwrotna (p~>q = ~p=>~q)
Dowód na przykładzie …
13.1 Obietnica
Typowa obietnica:
A.
Jeśli będziesz grzeczny dostaniesz czekoladę
G=>C =1 - gwarancja matematyczna
Bycie grzecznym jest warunkiem wystarczającym dla otrzymania czekolady.
Obietnica, zatem implikacja prosta (p=>q = ~p~>~q), tu wszyscy się zgadzamy
gdzie:
=> - warunek wystarczający, spójnik „na pewno” miedzy p i q w całym obszarze logiki
Skoro to warunek wystarczający => to na mocy definicji:
B.
Jeśli będziesz grzeczny to na pewno => nie dostaniesz czekolady
G=>~C =0
… a jak będę niegrzeczny ?
Prawo Kubusia:
G=>C = ~G~>~C
Mama:
C.
Jeśli będziesz niegrzeczny to nie dostaniesz czekolady
~G~>~C
W groźbach (zdanie C) spójnik „może” ~> jest z reguły pomijany. Nie ma to znaczenia gdyż spójnik ten jest gwarantowany przez absolutna świętość algebry Boole’a, prawo Kubusia.
Z prawa Kubusia wynika tu coś fundamentalnego:
Wszelkie groźby (zdanie C) musimy kodować operatorem implikacji odwrotnej, inaczej algebra Kubusia (i Boole’a!) leży w gruzach.
Matematyczne znaczenie zdania C jest oczywiście takie:
C.
Jeśli będziesz niegrzeczny to możesz ~> nie dostać czekolady
~G~>~C =1
Bycie niegrzecznym jest warunkiem koniecznym, aby nie dostać czekolady.
LUB
D.
Jeśli będziesz niegrzeczny to możesz ~~> dostać czekoladę
~G~~>C =1 - akt miłości!
To jest święte prawo nadawcy do darowania dowolnej kary, oczywiście może ~~> darować, ale nie musi => darować!
gdzie:
~> - warunek konieczny
~~> - naturalny spójnik "może", jest taka możliwość.
Z powyższej analizy matematycznej wynika, że wszelkie groźby muszą być kodowane implikacją odwrotną!
Jedyne możliwe definicje obietnicy i groźby są zatem takie.
Definicja obietnicy:
Jeśli dowolny warunek to nagroda
W=>N = ~W~>~N
Implikacja prosta bo dobrowolnych obietnic musimy dotrzymywać
Spełnienie warunku nagrody jest warunkiem wystarczającym dla otrzymania nagrody
Prawo Kubusia:
W=>N = ~W~>~N
Gwarancją w implikacji jest zawsze warunek wystarczający =>.
W=>N
Jeśli spełnię warunek nagrody to na pewno => dostanę nagrodę z powodu że spełniłem warunek nagrody … poza tym wszystko może się zdarzyć.
W obietnicy nadawca ma nadzieję (marzenie), że odbiorca spełni warunek nagrody i będzie mógł wręczyć nagrodę. Jeśli odbiorca nie spełni warunku nagrody to nadawca może dać nagrodę lub nie dać, zgodnie ze swoim „widzi mi się”, czyli wolną wolą.
Po stronie odbiorcy występuje nadzieja (marzenie), że nawet jeśli nie spełni warunku nagrody to może otrzymać nagrodę (akt miłości). Odbiorca może zwolnić nadawcę z obietnicy np. w przypadkach losowych.
13.2 Groźba
Definicja groźby:
Jeśli dowolny warunek to kara
W~>K = ~W=>~K
Implikacja odwrotna na mocy definicji!
Nadawca może ukarać, ale nie musi.
Spełnienie warunku kary jest warunkiem koniecznym ukarania z powodu spełnienia warunku kary. O tym czy będzie to warunek konieczny i wystarczający decyduje nadawca.
Gwarancja w groźbie wynika z prawa Kubusia:
W~>K = ~W => ~K
Stąd gwarancja:
~W => ~K
Jeśli nie spełnię warunku kary to na pewno => nie zostanę ukarany z powodu nie spełnienia warunku kary. Poza tym wszystko może sie zdarzyć.
W groźbie nadawca ma nadzieję (marzenie), że odbiorca nie spełni warunku kary i nie będzie musiał karać. Jeśli odbiorca spełni warunek kary to nadawca może wykonać karę lub ją darować zgodnie ze swoim „widzi mi się”, czyli wolną wolą.
Po stronie odbiorcy również występuje nadzieja (marzenie), że nawet jeśli spełni warunek kary to nadawca nie wykona kary (akt łaski). W groźbie decyzję o darowaniu kary podejmuje wyłącznie nadawca, odbiorca nie ma tu nic do powiedzenia.
Przykład:
Jeśli ubrudzisz spodnie dostaniesz lanie
B~>L = ~B=>~L - implikacja odwrotna bo groźba
Brudne spodnie są warunkiem koniecznym lania z powodu brudnych spodni. O tym czy będzie to warunek konieczny i wystarczający decyduje nadawca.
W groźbach naturalny spójnik implikacji odwrotnej „może” ~> jest z reguły pomijany bo osłabiałby groźbę. Nie prowadzi to do niejednoznaczności, gdyż definicje groźby i obietnicy są bardzo proste i precyzyjne.
Analiza:
A:
Jeśli ubrudzisz spodnie to dostaniesz lanie
B~>L =1
Brudne spodnie są warunkiem koniecznym dla dostania lania z powodu brudnych spodni!
LUB
B:
Jeśli ubrudzisz spodnie to nie dostaniesz lania
B ~~> ~L =1 - prawo do darowania kary (akt łaski)
Zdanie prawdziwe na mocy naturalnego spójnika „może” ~~>.
Nadawca ma prawo do darowania dowolnej kary (akt łaski) zależnej od niego!
Przykład:
JPII i Ali Agca
… a jeśli nie ubrudzę spodni ?
B~>L = ~B => ~L - prawo Kubusia
czyli:
C:
Jeśli nie ubrudzisz spodni to na pewno => nie dostaniesz lania (z powodu że nie ubrudziłeś spodni!)
~B => ~L =1 - twarda prawda, gwarancja matematyczna
Z punktu odniesienia zdania C mamy do czynienia z implikacją prostą.
Jeśli nie ubrudzisz spodni to na pewno => nie dostaniesz lania z powodu czystych spodni. Poza tym wszystko może się zdarzyć. Tylko tyle i aż tyle gwarantuje operator implikacji prostej.
stąd:
D:
Jeśli nie ubrudzisz spodni to na pewno => dostaniesz lanie
~B => L =0 - twardy fałsz, zakaz karania niewinnego z powodu czystych spodni
Jedyne sensowne przejście z operatora implikacji odwrotnej do AND i OR to odpowiedź na pytanie dziecka „kiedy wystąpi kłamstwo”:
Jeśli ubrudzisz spodnie dostaniesz lanie
Y=B~>L
Jaś:
… tata, a kiedy skłamiesz ?
Y=B~>L = B+~L = ~(~B*L) - dotrzymam słowa
Negujemy dwustronnie:
~Y=~(B~>L) = ~B*L - skłamię
Skłamię (~Y=1), jeśli przyjdziesz w czystych spodniach (~B) i dostaniesz lanie (z powodu czystych spodni !)
~Y=~B*L
Jaś:
… a czy może się zdarzyć że przyjdę w czystych spodniach i dostanę lanie ?
Y=~(~Y) - prawo podwójnego przeczenia, stąd:
Y=~(~B*L)
Nie może się zdarzyć że przyjdziesz w czystych spodniach (~B) i dostaniesz lanie (z powodu czystych spodni)
Y=~(~B*L)
Zauważmy, że ostatnie pytanie Jasia jest mało prawdopodobne bo odpowiedź dostał wcześniej.
W obietnicach i groźbach bardzo dobrze widać sens logiki dodatniej i ujemnej w operatorach implikacji prostej i odwrotnej.
Definicja logiki dodatniej i ujemnej w operatorach implikacji prostej i odwrotnej:
Implikacja wypowiedziana jest w logice dodatniej jeśli po stronie q nie występuje negacja, inaczej mamy do czynienia z logiką ujemną.
Obietnica:
W=>N = ~W~>~N - prawo zamiany obietnicy => na równoważną groźbę ~>
Obietnica => w logice dodatniej (N) jest równoważna groźbie ~> w logice ujemnej (~N)
Groźba:
W~>K = ~W=>~K - prawo zamiany groźby ~> na równoważną obietnicę =>
Groźba ~> w logice dodatniej (K) jest równoważna obietnicy => w logice ujemnej (~K)
Piękna jest też następująca interpretacja obietnicy i groźby.
Kod: |
p q p~>q p<=q
1 1 =1 =1
1 0 =1 =1
0 0 =1 =1
0 1 =0 =0
|
gdzie:
~> - operator implikacji odwrotnej, spójnik „może” ze spełnionym warunkiem koniecznym
Z tabeli widzimy że:
~> = <= - pod warunkiem że symbol <= będziemy czytać przeciwnie do strzałki jako spójnik „może” z warunkiem koniecznym (operator implikacji odwrotnej)
Obietnica:
W=>N - ja tego chcę, biegnę do nagrody
=> czytane zgodnie ze strzałką jako spójnik „musi” z warunkiem wystarczającym
Groźba:
W~>K = W<=K - ja tego nie chcę, uciekam od kary
gdzie:
<= - czytane przeciwnie do strzałki jako spójnik „może” z warunkiem koniecznym
Odróżnianie nagrody od kary to fundament wszelkiego życia. Zwierzątka które tego nie odróżniają, czyli wszystko co się rusza traktują jako nagrodę (ja tego chcę) skazane są na zagładę.
W Australii żyje sobie żółw błotny który na języku ma wyrostek imitujący żywego robaka, ryba która nabierze się na ten podstęp musi zginąć.
13.3 Obietnica w równaniach logicznych
Równoważną do analizy zero-jedynkowej gróźb i obietnic jak wyżej, jest ich analiza przy pomocy równań matematycznych.
Zastosujmy świętą zasadę algebry Boole’a „Jak się mówi tak się pisze” doskonale znaną wszystkim dobrym logikom praktykom, ci od cyfrowych układów logicznych..
Definicja obietnicy:
Jeśli dowolny warunek to nagroda
Zasada „Jak się mówi tak się pisze”:
Dostanę nagrodę (N) gdy spełnię warunek nagrody (W) lub gdy nadawca zdecyduje o daniu nagrody.
Wprowadźmy zmienną uznaniową nadawcy:
U=1 - dam nagrodę
U=0 - nie dam nagrody
Równanie obietnicy:
N=W+U
Gdzie:
N=1 - mam nagrodę
N=0 - nie mam nagrody
W=1 - warunek nagrody spełniony
W=0 - warunek nagrody nie spełniony
Zmienna uznaniowa nadawcy:
U=1 - dam nagrodę
U=0 - nie dam nagrody
Analiza równania obietnicy.
A.
W=1 - odbiorca spełnił warunek nagrody.
Równanie obietnicy przybierze wówczas postać:
N = 1+U = 1 - muszę dostać nagrodę.
W przypadku gdy odbiorca spełni warunek nagrody nadawca nie ma wyjścia i musi dać nagrodę, inaczej jest kłamcą. Zauważmy, że nikt nie zmuszał nadawcy do obiecania czegokolwiek, że nadawca obiecał nagrodę z własnej woli, że chce dać nagrodę. Nie ma tu zatem mowy o jakimkolwiek ograniczeniu wolnej woli nadawcy.
B.
W=0 - warunek nagrody nie spełniony
Równanie obietnicy przybiera postać:
N=W+U=0+U=U
Wszystko w rękach nadawcy który podejmuje decyzję o daniu nagrody zgodnie ze swoją wolną wolą, niczym nie ograniczoną.
U=1 - dam nagrodę
U=0 - nie dam nagrody
Przy niespełnionym warunku nagrody (W=0) nadawca może zrobić co mu się podoba i nie zostaje kłamcą. Większość nadawców tak czy siak da nagrodę pod byle pretekstem niezależnym (U=1 - akt miłości), ale nie musi tego robić !
W tym przypadku nadawca może wszystko z maleńkim wyjątkiem:
Nie spełniłeś warunku nagrody (W=0) dostajesz nagrodę, bo nie spełniłeś warunku nagrody (U=W=0)
Równanie obietnicy przybierze tu postać:
N = W+U = 0+0 =0
Zakaz wręczenia nagrody z uzasadnieniem zależnym, czyli z powodu nie spełnienia warunku nagrody (W=0).
Nikt nie może robić z człowieka idioty, przede wszystkim matematyka.
Przykład:
Jeśli zdasz egzamin dostaniesz komputer
E=>K
Równanie obietnicy:
K = W+U
Jeśli egzamin zdany (W=1) to:
K=1+U =1 - gwarancja otrzymania komputera.
Zmienna uznaniowa nadawcy jest tu bez znaczenia.
Jeśli egzamin nie zdany (W=0) to:
K=W+U = 0+U =U
Wszystko w rękach nadawcy:
U=1 - dam komputer
U=0 - nie dam komputera
Akt miłości nie zaszedł:
U=0
Nie zdałeś egzaminu (W=0), nie dostajesz komputera ... bo kompletnie się nie uczyłeś (U=0)
Równanie obietnicy:
K=W+U = 0+0 =0 - nie mam komputera
Akt miłości zaszedł:
U=1
Nie zdałeś egzaminu (W=0), dostajesz komputer ... bo widziałem że się starałeś ale miałeś pecha, bo cię kocham, bo tak czy siak zamierzałem kupić ci komputer itp. (U=1 dowolne uzasadnienie niezależne)
Równanie obietnicy:
N=W+U=0+1=1 - mam komputer dzięki dobremu sercu nadawcy (akt miłości)
Nadawca może wręczyć nagrodę pod byle pretekstem, ale nie może wręczyć nagrody z uzasadnieniem zależnym identycznym jak warunek nagrody.
Nie zdałeś egzaminu (W=0), dostajesz komputer ... bo nie zdałeś egzaminu (U=W=0).
Równanie obietnicy:
N=W+U=0+0=0 - zakaz wręczania nagrody z uzasadnieniem zależnym, czyli z powodu „nie zdania egzaminu” (W=U=0)
Nikt nie może robić z człowieka idioty, przede wszystkim matematyka.
13.4 Groźba w równaniach logicznych
Definicja groźby:
Jeśli dowolny warunek to kara
Zasada „Jak się mówi tak się pisze”:
Zostanę ukarany (K) gdy spełnię warunek kary (W) i nadawca zdecyduje o ukaraniu (U).
W groźbie nadawca może skorzystać z aktu łaski ale nie musi tego robić. Przyjmijmy zmienna uznaniową U, którą nadawca może ustawić na dowolną wartość.
Matematyczne równanie groźby:
K=W*U
Gdzie:
K=1 - zostanę ukarany
K=0 - nie zostanę ukarany
W=1 - warunek kary spełniony
W=0 - warunek kary nie spełniony
Nadawca może ustawić zmienną uznaniową na dowolną wartość:
U=1 - ukarać
U=0 - nie karać (akt łaski)
Akt łaski w groźbie zajdzie wtedy, gdy odbiorca spełni warunek kary zaś nadawca odstąpi od wykonania kary (U=0 - akt łaski).
Analiza równania groźby.
K=W*U
A.
W=0 - warunek kary nie spełniony
Równanie groźby przybierze wówczas postać:
K=W*U=0*U=0 - zakaz karanie jeśli warunek kary nie zostanie spełniony.
Zauważmy, że nadawca nie ma tu nic do gadania. Może sobie ustawiać swoją zmienną długo i namiętnie na U=1 (karać) ... a i tak ma zakaz karania z powodu nie spełnienia warunku kary.
B.
W=1 - warunek kary spełniony
Równanie groźby przybiera postać:
K=W*U=1*U=U
Wszystko w rękach nadawcy który może zrobić co mu się podoba wedle wolnej woli:
U=1 - karać
U=0 - nie karać
Przykład:
Jeśli ubrudzisz spodnie dostaniesz lanie
B~>L
Ubrudziłeś spodnie (W=1), nie dostaniesz lania ... bo samochód cię ochlapał, bo dziś mam dobry humor, bo cię kocham itp. (U=0 - dowolne uzasadnienie niezależne)
K=W*U=1*0=0 - nie zostałem ukarany, bo nadawca zastosował akt łaski
Zauważmy, że nadawca może robić co mu się podoba z małym wyjątkiem, nie może darować kary z uzasadnieniem zależnym identycznym jak warunek kary.
Jeśli ubrudzisz spodnie dostaniesz lanie
B~>L
Ubrudziłeś spodnie (W=1), nie dostajesz lania, bo ubrudziłeś spodnie (U=W=1).
Równanie groźby:
K=W*U=1*1=1 - kara musi być wykonana, zakaz darowania kary z uzasadnieniem zależnym
Nikt nie może robić z człowieka idioty, przede wszystkim matematyka.
13.5 Analiza złożonej obietnicy
Definicja obietnicy:
Jeśli dowolny warunek to nagroda
W=>N = ~W~>~N
Definicja groźby:
Jeśli dowolny warunek to kara
W~>K = ~W=>~K
A.
Jeśli posprzątasz pokój i nie będziesz bił siostry to dostaniesz czekoladę i obejrzysz dobranockę
p=>q
P*~B=>C*D=1
B.
p=>~q
~q=~(C*B)=~C+~D
Jeśli posprzątasz pokój i nie będziesz bił siostry to nie dostaniesz czekolady lub nie obejrzysz dobranocki
P*~B=>~C+~D =0
Rozpisujemy następnik przez definicje spójnika „lub”(+):
p+q = p*q+p*~q+~p*q
~C+~D
Możliwe kary
A: ~C*~D=0 - to jest 100% kary
B: ~C*D =0 - tu też jest element kary
C: C*~D=0 - tu również jest kara
Zatem suma logiczna:
A+B+C = 0+0+0=0 - zakaz wykonywania jakiejkolwiek kary w przypadku spełnienia warunku nagrody
… a jeśli nie spełnię warunku nagrody ?
Prawo Kubusia:
p=>q = ~p~>~q
Czyli negujemy zmienne w równaniu A i odwracamy operatory - prawo Kubusia na skróty.
mamy zdanie A:
P*~B=>C*D
stąd:
~P+B~>~C+~D
Oczywiście w tym przypadku mamy do czynienia z groźbą i definicją groźby.
czyli:
C.
Jeśli nie posprzątasz pokoju lub będziesz bił siostrę to możesz nie dostać czekolady lub nie obejrzeć dobranocki
~p~>~q
~P+B~>~C+~D=1
Warunki ukarania, analiza poprzednika:
Definicja spójnika „lub”(+):
p+q = p*q + p*~q + ~p*q
stąd:
~P+B = ~P*B+~P*~B+P*B
D: ~P*B=1 - warunek kary spełniony
E: ~P*~B=1 - warunek ukarania spełniony
F: P*B=1 - warunek ukarania spełniony
Równanie kary:
D+E+F = x+x+x=x
Jeśli dowolny warunek spełniony to mama ma 100% wolnej woli.
Zdanie C pozwala na częściowe darowanie kary, natomiast łącznie ze zdaniem D (niżej) kara może być darowana w 100% !
LUB
D.
Jeśli nie posprzątasz pokoju lub będziesz bił siostrę to dostaniesz czekoladę i obejrzysz dobranocki
~p~~>q=1
~P+B~~>C*D=1
W tej linii jest prawo do darowania kary w 100%
13.6 Analiza złożonej groźby
Definicja groźby:
Jeśli dowolny warunek to kara
W~>K = ~W~>~K
Implikacja odwrotna na mocy definicji
Definicja obietnicy:
Jeśli dowolny warunek to nagroda
W=>N = ~W~>~N
Implikacja prosta na mocy definicji
A.
Jeśli nie posprzątasz pokoju lub będziesz bił siostrę to nie dostaniesz czekolady i nie obejrzysz dobranocki
p~>q
~P+B~>~C*~D
Warunek kary mamy określony w poprzedniku.
Analiza poprzednika na mocy definicji spójnika „lub”(+):
p+q = p*q + p*~q + ~p*q
stąd:
~P+B = ~P*B + ~P*~B + P*B
stąd:
1: ~P*B=1*1=1 - nie posprzątałem pokoju i biłem siostrę, warunek kary spełniony
lub
2: ~P*~B=1*1=1 - nie posprzątałem pokoju i nie bilem siostry, warunek kary spełniony
lub
3: P*B=1*1=1 - posprzątałem pokój i biłem siostrę, warunek kary spełniony
Wystarczy, że którykolwiek warunek kary jest spełniony i już mama może wykonać kare w 100%, czyli brak czekolady i zakaz obejrzenia dobranocki.
Oczywiście na mocy definicji implikacji odwrotnej mama może wykonać karę w 100% (zdanie A), wykonać karę częściową (zdanie B), lub nawet całkowicie zrezygnować z wykonania jakiejkolwiek kary (zdanie B).
Przekształcenie pomocnicze w celu uzyskania ~q dla:
p~~>~q
~q:
~(~C*~B)= C+D
stąd:
B.
Jeśli nie posprzątasz pokoju lub będziesz bił siostrę to dostaniesz czekoladę lub obejrzysz dobranockę
p~~>~q
~P+B~~>C+D
Rozwijamy następnik na mocy definicji spójnika „lub”(+):
p+q = p*q+~p*q+p*~q
stąd:
C+D = C*D+C*~D+~C*D
1: C*D=1 - dostaniesz czekoladę i obejrzysz dobranockę, 100% darowanie kary
2: C*~D=1 - dostaniesz czekoladę i nie obejrzysz dobranocki, częściowe darowanie kary
3: ~C*D=1 - nie dostaniesz czekolady i obejrzysz dobranockę, częściowe darowanie kary
Mamy tu akt łaski, mama może darować karę całkowicie lub częściowo, cokolwiek nie zrobi to nie ma szans na zostanie kłamcą, czyli ma 100% wolnej woli.
… a jeśli posprzątam pokój i nie będę bił siostry ?
Mamy równanie A:
~P+B~>~C*~D
Przechodzimy do logiki ujemnej poprzez negacje zmiennych i wymianę operatorów, czyli prawo Kubusia uzyskane metoda na skróty:
P*~B=>C+D
stąd:
C.
Jeśli posprzątasz pokój i nie będziesz bił siostry to na pewno => dostaniesz czekoladę lub obejrzysz dobranockę
~P=>~q
P*~B=>C+D
Rozwinięcie sumy logicznej C+D mamy wyżej.
Oczywiście tu nie może być mowy o najmniejszej nawet karze bowiem warunek groźby nie został spełniony.
Mamy zatem:
C+D = C*D+C*~D+~C*D
C*D=1 - dostaniesz czekoladę i obejrzysz dobranockę, 100% darowanie kary
C*~D=0 - dostaniesz czekoladę i nie obejrzysz dobranocki, bo zakaz karania
~C*D=0 - nie dostaniesz czekolady i obejrzysz dobranockę, bo zakaz karania
W tym przypadku mama nie ma prawa na wykonanie choćby najmniejszej kary, zatem musi dać czekoladę i pozwolić na obejrzenie bajki.
stąd:
D.
Jeśli posprzątasz pokój i nie będziesz bił siostry to na pewno => nie dostaniesz czekolady i nie obejrzysz dobranocki
~p=>q=0
P*~B=>~C*~D=0
Całkowity zakaz karania, bowiem warunek kary nie został spełniony
13.7 Obietnice i groźby w ujęciu filozoficznym
Definicja obietnicy:
Jeśli dowolny warunek to nagroda
W=>N = ~W~>~N
Implikacja prosta na mocy definicji
Definicja groźby
Jeśli dowolny warunek to kara
W~>K = ~W=>~K
Implikacja odwrotna na mocy definicji
Zdanie wypowiedziane:
Jeśli zdasz egzamin dostaniesz komputer
E=>K
Implikacja prosta bo dobrowolnych obietnic musimy dotrzymywać
Gwarancja w implikacji prostej:
E=>K
Jeśli zdasz egzamin to na pewno => dostaniesz komputer z powodu że zdałeś egzamin, poza tym wszystko może się zdarzyć - tylko tyle i aż tyle gwarantuje operator implikacji prostej w obietnicy.
Analiza matematyczna:
A.
Jeśli zdasz egzamin to na pewno => dostaniesz komputer
E=>K =1
Zdanie egzaminu jest warunkiem wystarczającym dla otrzymania komputera.
stąd:
B.
Jeśli zdasz egzamin to na pewno => nie dostaniesz komputera
E=>~K =0 - dobrowolnych obietnic musimy dotrzymywać
… a jeśli nie zdam egzaminu ?
Prawo Kubusia:
E=>K = ~E~>~K
czyli:
C.
Jeśli nie zdasz egzaminu to możesz ~> nie dostać komputera
~E~>~K =1
Nie zdanie egzaminu jest warunkiem koniecznym dla nie dostania komputera. O tym czy będzie to warunek konieczny i wystarczający decyduje nadawca.
LUB
D.
Jeśli nie zdasz egzaminu to możesz ~~> dostać komputer
~E~~>K =1 - akt miłości
Prawo nadawcy do wręczenia nagrody, mimo że odbiorca nie spełnił warunku nagrody (tu nie zdał egzaminu).
Matematyczna wolna wola
Matematyczna wolna wola to warunek konieczny ~>.
W przypadku nie zdania egzaminu, nadawca może nie dać komputera (C) lub dać komputer (D) co zależy tylko i wyłącznie od jego „widzi mi się” czyli wolnej woli.
W skrajnym przypadku może wyjąć monetę i rzucać:
orzełek - dam komputer
reszka - nie dam komputera
… i nie ma szans na zostanie kłamcą.
„Rzucanie monetą” jest matematyczną wolną wolą, ale nie jest wolną wolą człowieka !
Człowiek rzucający monetą staje się maszyną, wobec której nie można mówić o „wolnej woli”.
Wolna wola człowieka:
Wolna wola człowieka to świadoma decyzja negatywna lub pozytywna, nadawca powinien umieć uzasadnić decyzję.
Decyzja negatywna:
Nie zdałeś egzaminu, nie dostaniesz komputera
oczywiście domyślne jest tu „z powodu że nie zdałeś egzaminu”, nadawca może to rozwinąć np. bo kompletnie się nie uczyłeś itp.
Decyzja pozytywna (akt miłości):
Nie zdałeś egzaminu, dostajesz komputer, bo cie kocham, bo widziałem że się uczyłeś ale miałeś pecha itp.
Oczywiście matematycznie zabronione jest tu uzasadnienie zależne, identyczne jak warunek czyli:
Nie zdałeś egzaminu, dostajesz komputer bo nie zdałeś egzaminu
Matematyczny dowód pkt. 13.3
Prawdopodobieństwo zajścia „aktu miłości” w obietnicy:
1.
Zauważmy, że nadawca dobrowolnie obiecuje nagrodę, czyli chce tą nagrodę dać. Jeśli zobaczy że odbiorca starał się ale mu nie wyszło to z reguły i tak wręczy nagrodę (akt miłości).
2.
Obietnice „szyte są na miarę” odbiorcy, czyli nadawca nie daje obietnic gdzie spełnienie warunku nagrody jest niemożliwe lub bardzo mało prawdopodobne. Stąd najczęściej odbiorca spełnia warunek nagrody, nadawca wręcza nagrodę … i wszyscy są szczęśliwi.
Oczywiście obietnice to przyszłość której nie znamy, jednak jeśli obietnica wypowiedziana jest między przyjaciółmi, znajomymi czy nawet miedzy osobami obcymi to z reguły jest dotrzymywana. Czyli prawdopodobieństwo iż nagroda znajdzie się u nadawcy jest tu bardzo wysokie, myślę że na poziomie 90% lub wyższym.
Odrębnym zagadnieniem jest składanie fałszywych obietnic wobec wrogów których chcemy zniszczyć, tu podstęp i fałsz jest na porządku dziennym w myśl zasady, wszystkie chwyty dozwolone byleby zniszczyć wroga. Zauważmy jednak, że nasz wróg dał się złapać w pułapkę dzięki temu że spodziewa się nagrody, czyli również doskonale zna symboliczna algebrę Kubusia.
Każde żywe stworzenie, chce mieć jak najmniej wrogów i jak najwięcej przyjaciół, zatem w powodzi wypowiedzianych obietnic te fałszywe stanowią margines. Zauważmy, że stworzenia żywe żyją w grupach w ramach swojego gatunku. Tu również działa algebra Kubusia, człowiek nie jest tu żadnym wyjątkiem.
Zauważmy, że jeśli przyjmiemy „akt miłości” i „akt łaski” za dobro i wykluczymy linie fałszywe w groźbach i obietnicach to otrzymamy taki wynik:
Dobro-Zło = 4:2
Zatem matematycznie nasz Wszechświat ustawiony jest na dobro.
Weźmy na koniec typowa groźbę.
Jeśli ubrudzisz spodnie dostaniesz lanie
B~>L
Gwarancja w implikacji odwrotnej wynika z prawa Kubusia:
B~>L = ~B=>~L
czyli:
Jeśli przyjdziesz w czystych spodniach to na pewno => nie dostaniesz lania
~B=>~L
... z powodu czystych spodni - tylko tyle i aż tyle gwarantuje operator implikacji odwrotnej.
Równanie jest absolutnie genialne:
B~>L = ~B=>~L
Po prawej stronie mamy 100% determinizm, dlatego to jest matematyka ścisła.
Po lewej stronie mamy matematyczna wolną wolę człowieka, czyli jeśli syn przyjdzie w brudnych spodniach to nadawca może go nawet zabić albo darować lanie (gwarancja wolnej woli) ... i nie ma szans na zostanie kłamcą. Tożsamość to tożsamość, z matematyką się nie dyskutuje.
Determinizm filozoficzny i fizyczny
Determinizm w ujęciu filozoficznym można sprowadzić do jednego zdania:
Jeśli ktokolwiek zna moje myśli z wyprzedzeniem to moja wolna wola leży w gruzach, mój Wszechświat jest zdeterminowany.
Determinizm w ujęciu fizycznym opisuje genialna implikacja. W jednej połówce implikacji zarówno prostej jak i odwrotnej mamy 100% determinizm (=>), zaś w drugiej "rzucania monetą” ( ~>)
Oczywiście determinizm fizyczny to również równoważność p<=>q, ale ta występuje głównie w matematyce, w świecie rzeczywistym króluje implikacja.
13.8 Rodzaje obietnic
1.
Obietnica z natychmiastową wykonalnością:
Jeśli zdasz egzamin dostaniesz komputer
E=>K
… a jak nie zdam egzaminu.
Prawo Kubusia:
E=>K = ~E~>~K
czyli jeśli syn nie zda egzaminu to mogę mu tego komputera nie kupić lub kupić i nie mam szans na zostanie kłamcą.
Po egzaminie następuje rozstrzygnięcie
2.
Obietnica z odroczoną wykonalnością:
Kto przyjdzie jutro dostanie gotowca
J=>G
… a jak przyjdę pojutrze ?
J=>G = ~J~>~G
Oczywiście jak ktoś przyjdzie później, byle przed egzaminem to też może dostać gotowca ale nie musi. Po egzaminie ta obietnica traci sens.
3.
Obietnica w której spełnienie warunku obietnicy jest bardzo mało prawdopodobne:
Jeśli wygram milion w TOTKA to kupię ci samochód
W=>S
… a jak nie wygram w TOTKA ?
Prawo Kubusia:
W=>S = ~W~>~S
Jeśli nie wygram w TOTKA to mogę ci nie kupić samochodu lub kupić i nie mam szans na zostanie kłamcą.
Raj, 2012-06-01
Ostatnio zmieniony przez rafal3006 dnia Czw 1:56, 31 Maj 2012, w całości zmieniany 1 raz
|
|
Powrót do góry |
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 35368
Przeczytał: 20 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Wto 18:21, 29 Maj 2012 Temat postu: |
|
|
Dodatek A
Z dedykacją dla Quebaba, który przez dwa lata dzielnie wspomagał Kubusia w walce z Szatanem, KRZiP.
[link widoczny dla zalogowanych]
Quebab napisał: |
... ale póki mam siły i ochotę, to mogę próbować przyjąć głupotę naszego kosmity na własną klatę. |
Quebabie, poruszamy się po dziewiczych obszarach matematyki, po których ludzkość jeszcze nie stąpała.
Bądź dzielny,
Kubuś
I tak jak obłęd, w wyższym tego słowa znaczeniu, jest początkiem wszelkiej mądrości, tak schizofrenia jest początkiem wszelkiej sztuki, wszelkiej fantazji.
Herman Hesse.
15.0 Wszechświat się śmieje
Niemożliwa jest rewolucja po dobroci, trzeba walić … nie chcę, ale muszę.
Logika matematyczna Ziemian to jedna wielka brednia, przez przypadek działająca poprawnie wyłącznie w rozpoznawaniu równoważności (dowód w pkt. 15.1).
Pewność dzisiejszej „matematyki” Ziemian iż warunku wystarczającego => i koniecznego ~> nie da się opisać ściśle matematycznie odpowiednimi wzorami matematycznymi, oraz pewność iż między warunkiem wystarczającym => i koniecznym ~> nie zachodzą żadne związki matematyczne to największa matematyczna głupota ludzkości z której śmieje się cały nasz Wszechświat i nie tylko. Te banalne związki matematyczne doskonale znają w praktyce wszelkie istoty żywe na naszej planecie (od bakterii po człowieka - matematyczna obsługa obietnic => i gróźb ~>) … z wyjątkiem ziemskich matematyków!
Zobaczmy co na temat warunku wystarczającego => i koniecznego ~> ma do powiedzenia „matematyka” Ziemian.
Warunek wystarczający:
[link widoczny dla zalogowanych]
Warunek wystarczający (inaczej warunek dostateczny) - każdy warunek, z którego dany fakt wynika. Jeżeli warunek wystarczający zachodzi (wystarczy, by zachodził), wówczas zachodzi dany fakt.
Na przykład, jeżeli liczba jest podzielna przez 10, to jest podzielna przez 5. Fakt podzielności przez 10 jest warunkiem wystarczającym dla podzielności przez 5, natomiast fakt podzielności przez 5 jest warunkiem koniecznym dla podzielności przez 10.
Warunek wystarczający nie musi być warunkiem koniecznym - liczba nie musi wcale być podzielna przez 10, by była podzielna przez 5
Warunek konieczny:
[link widoczny dla zalogowanych]
Warunek konieczny - wniosek wypływający z danego faktu. Jeżeli fakt ma zaistnieć, to zaistnieć (koniecznie) musi również fakt będący wnioskiem.
Na przykład: jeżeli liczba jest podzielna przez 15, to jej ostatnią cyfrą jest 0 lub 5.
Jest to oczywiste, bo liczba podzielna przez 15 jest podzielna przez 5, a ostatnią cyfrą takiej liczby może być jedynie 0 lub 5. Zatem - to, że ostatnią cyfrą liczby jest 0 lub 5 jest warunkiem koniecznym dla podzielności przez 15 - liczba KONIECZNIE musi mieć ostatnią cyfrę 0 lub 5, by była podzielna przez 15. Nie ma zatem sensu badanie podzielności przez 15 liczb, które nie kończą się na 0 lub 5.
Nie jest to jednak warunek wystarczający - liczba może kończyć się na 0 lub 5, a jednak nie być podzielna przez 15.
Definicje z Wikipedii to bełkot, bełkot, bełkot …
Matematyczne fakty są banalne.
Definicje implikacji i równoważności w warunkach wystarczających => i koniecznych ~>
Definicja równoważności:
Równoważność to jednoczesne zachodzenie warunku wystarczającego => i koniecznego ~> między p i q:
p<=>q = (p=>q)*[p~>q]
gdzie:
[~>] – wirtualny warunek konieczny, występujący wyłącznie w równoważności.
Nie jest to spójnik „może” ~> między p i q („rzucanie monetą”), istota implikacji, o którym będzie za chwilę.
Dlaczego istota?
Nie ma rzucania monetą – nie ma implikacji!
… jest równoważność!
Definicja warunku koniecznego [~>]:
[p~>q] = ~p=>~q
Stąd aksjomatyczna definicja równoważności gdzie nie ma śladu „rzucania monetą”:
p<=>q = (p=>q)*(~p=>~q) = 1*1 =1
Przykład:
A.
Trójkąt jest równoboczny wtedy i tylko wtedy gdy ma kąty równe
TR<=>KR = (TR=>KR)*[TR~>KR] =1*1 =1
Definicja warunku koniecznego [~>]:
[TR~>KR] = ~TR=>~KR =1
Stąd definicja równoważności:
TR<=>KR = (TR=>KR)*(~TR=>~KR) =1*1 =1
Wniosek:
Zdanie A to równoważność prawdziwa
Definicja implikacji prostej:
Implikacja prosta to wyłącznie zachodzenie warunku wystarczającego => między p i q:
p=>q =1
p~>q = ~p=>~q =0
Przykład:
A.
Jeśli liczba jest podzielna przez 8 to na pewno => jest podzielna przez 2
P8=>P2 =1
P8~>P2 = ~P8=>~P2=0 bo 2
Wniosek:
Zdanie A to implikacja prosta prawdziwa.
cnd
Definicja implikacji odwrotnej:
Implikacja odwrotna to wyłącznie zachodzenie warunku koniecznego ~> między p i q:
p~>q = ~p=>~q =1
p=>q =0
Przykład:
A.
Jeśli liczba jest podzielna przez 2 to może ~> być podzielna przez 8
P2~>P8 = ~P2=>~P8 =1
P2=>P8 =0 bo 2
Wniosek:
Zdanie A to implikacja odwrotna prawdziwa.
cnd
Szczegółowe definicje warunku wystarczającego => i koniecznego ~> za chwilę.
Definicje z Wikipedii są bez sensu bo mamy tu zero matematyki, czyli ZERO wzorów matematycznych opisujących warunek wystarczający => i konieczny ~>.
Poprawne, matematyczne definicje warunków wystarczającego => i koniecznego ~> to po prostu prawa Kubusia, czyli zero-jedynkowe definicje implikacji prostej i odwrotnej zapisane w równaniach algebry Kubusia.
Kompletna i jedyna poprawna matematyka w temacie implikacji to zaledwie kilka podstawowych definicji matematycznych, a nie bajdurzenia słowne jak w Wikipedii, czyli w ziemskiej „matematyce”.
Zera i jedynki w dowolnym operatorze logicznym oznaczają:
1 - zbiór niepusty (zbiór istnieje, sytuacja możliwa), zdanie prawdziwe
0 - zbiór pusty (zbiór nie istnieje, sytuacja niemożliwa), zdanie fałszywe
Zdanie w sensie matematycznym, to zdanie któremu da się przypisać prawdę lub fałsz.
Spójniki logiczne w algebrze Kubusia
W całej matematyce mamy zaledwie sześć spójników logicznych.
Operatory OR i AND:
* - spójnik „i” w mowie potocznej
+ - spójnik „lub” w mowie potocznej
Operatory implikacji i równoważności:
=> - warunek wystarczający, spójnik „musi” w całym obszarze matematyki
~> - warunek konieczny, spójnik „może” w implikacji
[~>] - wirtualny warunek konieczny w równoważności, nie jest to spójnik „może”
~~> - naturalny spójnik „może” wystarczy pokazać jeden przypadek prawdziwy
<=> - wtedy i tylko wtedy
Definicja implikacji prostej w równaniu algebry Kubusia:
p=>q = ~p~>~q
Definicja implikacji odwrotnej w równaniu algebry Kubusia:
p~>q = ~p=>~q
Definicja warunku wystarczającego w logice dodatniej (bo q):
Kod: |
Definicja |Zbiory |Definicja
symboliczna |logika |zero-jedynkowa
Logika czlowieka |czlowieka |Technika – bramki logiczne
| p q p=>q
A: p=> q=1 | p* q=1 | 1 1 =1 / p=> q=1
B: p=>~q=0 | p*~q=0 | 1 0 =0 / p=>~q=0
Punktem odniesienia w tabeli zero-jedynkowej jest nagłówek tabeli
| p=1, ~p=0
| q=1, ~q=0
|
p=>q
Jeśli zajdzie p to na pewno => zajdzie q
Z czego wynika że zdanie B musi być twardym fałszem
Z czego wynika że p musi być wystarczające dla q
Jak zajdzie p to q też musi zajść
Relacja w zbiorach:
p*~q=0
Wymusza zawieranie się zbioru p w zbiorze q!
Przykład:
A.
Jeśli liczba jest podzielna przez 10 to na pewno => jest podzielna przez 5
P10=>P5=1 bo 10,20,30…
Zbiory:
P10*P5=1
Zbiory P10 i P5 istnieją (P10=1 i P5=1) i mają część wspólną co wymusza w wyniku 1
B.
Jeśli liczba jest podzielna przez 10 to na pewno => nie jest podzielna przez 5
P10=>~P5=0
Zbiory:
P10*~P5=0
Zbiory P10 i ~P5 istnieją (P10=1 i ~P5=1), ale są rozłączne, co wymusza w wyniku 0
Z A i B wynika, że podzielność liczby przez 10 jest warunkiem wystarczającym, aby była ona podzielna przez 5
P10=>P5=1
Zbiór P10 zawiera się w całości w zbiorze P5.
Definicja warunku wystarczającego w logice ujemnej (bo ~q):
Kod: |
Definicja |Zbiory |Definicja
symboliczna |logika |zero-jedynkowa
Logika czlowieka |czlowieka |Technika – bramki logiczne
|~p ~q ~p=>~q
A:~p=>~q=1 |~p*~q=1 | 1 1 =1 /~p=>~q=1
B:~p=> q=0 |~p* q=0 | 1 0 =0 /~p=> q=0
Punktem odniesienia w tabeli zero-jedynkowej jest nagłówek tabeli
|~p=1, p=0
|~q=1, q=0
|
~p=>~q
Jeśli zajdzie ~p to na pewno => zajdzie ~q
Z czego wynika że zdanie B musi być twardym fałszem
Z czego wynika że ~p musi być wystarczające dla ~q
Jak zajdzie ~p to ~q też musi zajść
Relacja w zbiorach:
~p*q=0
Wymusza zawieranie się zbioru ~p w zbiorze ~q!
Przykład:
A.
Jeśli liczba nie jest podzielna przez 5 to na pewno => nie jest podzielna przez 10
~P5=>~P10=1 bo 4,6,9,11 …
Zbiory:
~P5*~P10 =1
Zbiory ~P5 i ~P10 istnieją (~P5=1 i ~P10=1) i mają część wspólną, co wymusza w wyniku 1
B.
Jeśli liczba nie jest podzielna przez 5 to na pewno => jest podzielna przez 10
~P5=>P10 =0
Zbiory:
~P5*P10 =0
Zbiory ~P5 i P10 istnieją (~P5=1 i P10=1), ale są rozłączne co wymusza w wyniku 0
Z A i B wynika że niepodzielność liczby przez 5 jest warunkiem wystarczającym aby była ona niepodzielna przez 10
~P5=>~P10=1
Zbiór ~P5 zawiera się w całości w zbiorze ~P10.
Matematyczna definicja warunku koniecznego ~>:
Warunek konieczny ~> między p i q zachodzi wtedy i tylko wtedy gdy z zanegowanego poprzednika wynika => zanegowany następnik:
p~>q = ~p=>~q
~p~>~q = p=>q
KONIEC!
To wszystko jest aż tak nieprawdopodobnie proste!
Cała ta banalna teoria wyżej to matematyka w zapisach formalnych a nie wygłupy Wikipedii na temat warunku wystarczającego => i koniecznego ~>.
Dlaczego nie uczą tych banałów w ziemskich szkołach!
W 100-milowym lesie nauka logiki matematycznej zaczyna się w przedszkolu, bowiem 5-cio latki to naturalni eksperci algebry Kubusia.
Rozpiszmy przykład warunku wystarczającego => z Wikipedii:
A.
Jeśli liczba jest podzielna przez 10 to na pewno => jest podzielna przez 5
P10=>P5=1 bo 10,20,30…
Zbiory:
P10*P5 =1 bo 10
Zbiory P10 i P5 istnieją (P10=1 i P5=1) i mają część wspólną co wymusza w wyniku 1
B.
Jeśli liczba jest podzielna przez 10 to na pewno => nie jest podzielna przez 5
P10=>~P5=0
Zbiory:
P10*~P5 =0
Zbiory P10 i ~P5 istnieją (P10=1 i ~P5=1), ale są rozłączne, co wymusza w wyniku 0
Z A i B wynika, że podzielność liczby przez 10 jest warunkiem wystarczającym =>, aby była ona podzielna przez 5
P10=>P5=1
Zbiór P10 zawiera się w całości w zbiorze P5.
… a jeśli liczba nie jest podzielna przez 10?
Prawo Kubusia:
P10=>P5 = ~P10~>~P5
stąd:
C.
Jeśli liczba nie jest podzielna przez 10 to może ~> nie być podzielna przez 5
~P10~>~P5=1 bo 4,6…9,11…
Zbiory:
~P10*~P5=1 bo 1
Zbiory ~P10 i ~P5 istnieją (~P10=1 i ~P5=1) i mają część wspólną co wymusza w wyniku 1.
Na mocy definicji warunku koniecznego:
C: ~P10~>~P5 = A: P10=>P5=1
Niepodzielność liczby przez 10 jest warunkiem koniecznym ~> aby była ona niepodzielna przez 5
LUB
D.
Jeśli liczba nie jest podzielna przez 10 to może ~~> być podzielna przez 5
~P10~~>P5=1 bo 5
Zbiory:
~P10*P5=1 bo 5
Zbiory ~P10 i P5 istnieją (~P10=1 i P5=1) i mają część wspólną, co wymusza w wyniku 1
~P10 nie jest konieczne dla P5 bo nie jest spełniona definicja warunku koniecznego ~>:
D: ~P10~>P5 = B: P10=>~P5 =0
Prawa strona jest fałszem zatem z lewej strony nie zachodzi warunek konieczny ~>:
~P10~>P5=0
Zdanie D jest prawdziwe na mocy naturalnego spójnika „może” ~~>, wystarczy pokazać jeden przypadek prawdziwy.
Dla kodowania zgodnego ze zdaniem wypowiedzianym A:
P10=1, ~P10=0
P5=1, ~P5=0
otrzymujemy zero-jedynkową definicję operatora implikacji prostej:
Kod: |
P10 P5 P10=>P5
A: 1 1 =1 / P10=> P5=1
B: 1 0 =0 / P10=>~P5=0
C: 0 0 =1 /~P10~>~P5=1
D: 0 1 =1 /~P10~~>P5=1
|
stąd o zdaniu A możemy powiedzieć iż spełnia pełną, zero-jedynkową definicję implikacji prostej, w skrócie, zdanie A jest implikacją prostą prawdziwą.
… ale dopiero po udowodnieniu tego faktu analizą matematyczną jak wyżej!
15.1 Dlaczego stara matematyka działa?
… bo poprawnie (choć nadmiarowo) rozpoznaje warunek wystarczający => i korzysta z poprawnej definicji równoważności.
Równoważność to wynikanie => w dwie strony:
p<=>q = (p=>q)*(q=>p)
Jedynym ziemianinem w historii 6-cio letniej wojny algebra Kubusia vs KRZiP który podał poprawną definicję warunku wystarczającego => był wykładowca logiki Macjan.
Co ciekawe, ekspert KRZiP na ateiście.pl, Windziarz, wyśmiał Macjana twierdząc iż warunek wystarczający w zdaniu:
p=>q
to samo p bez związku z q!
Oczywiście to jest sprzeczne z naturalną logiką człowieka, czy choćby z Wikiepedią wyżej.
Weźmy zdania równoważne matematycznie:
Jeśli liczba jest podzielna przez 8 to jest podzielna przez 2
Jeśli liczba jest podzielna przez 8 to na pewno => jest podzielna przez 2
Jeśli dowolna liczba jest podzielna przez 8 to na pewno => jest podzielna przez 2
P8=>P2
Między tymi zdaniami nie ma żadnej różnicy, znaczą dokładnie to samo, to jest warunek wystarczający =>, który można poprawnie zdefiniować także kwantyfikatorem dużym w algebrze Kubusia i KRZiP, matematycznie o definicji identycznej w KRZiP (Macjana) i algebrze Kubusia !
W algebrze Kubusia kwantyfikator duży to warunek wystarczający => o takiej definicji:
p=>q
Jeśli zajdzie p to na pewno => zajdzie q
Z czego wynika że druga linia musi być twardym fałszem
Z czego wynika że p musi być wystarczające dla q
gdzie:
=> - warunek wystarczający, spójnik "na pewno" między p i q w całym obszarze matematyki, to nie jest operator logiczny!
Dokładnie to samo w zapisie kwantyfikatorowym:
/\x Jeśli p(x) => q(x)
Dla dowolnego przypadku x, jeśli zajdzie p(x) to na pewno => zajdzie q(x)
Fragment w powyższej definicji:
„Jeśli zajdzie p(x)”
jest filtrem na mocy którego mamy zakaz rozpatrywania przypadków ~p(x).
Artykuł Macjana w oryginale:
http://www.sfinia.fora.pl/forum-kubusia,12/paradoks-warunku-wystarczajacego,3164.html#56053
Kluczowy fragment:
Macjan napisał: |
A(x) (p(x)=>q(x))
gdzie A oznacza kwantyfikator ogólny (z braku lepszego symbolu).
I teraz uwaga: DOPIERO TAKIE ZDANIE OKREŚLA "WARUNEK WYSTARCZAJĄCY". Bierzemy tu bowiem wszystkie możliwe liczby i rzeczywiście okazuje się, że gdy p jest prawdziwe, to zawsze q też. Mamy więc gwarancję.
Należy zatem zapamiętać, że warunek wystarczający = implikacja pod kwantyfikatorem ogólnym.
W przypadku twierdzeń matematycznych używa się często sformułowania "warunek wystarczający". Musimy pamiętać, że nie dotyczy ono "zwykłej" implikacji, lecz dopiero tej właściwej postaci twierdzenia. Przedstawianie twierdzenia w postaci prostej implikacji dwóch zdań jest skrótem myślowym. Nieświadomość tego faktu prowadzi do paradoksów, gdy usiłujemy podpiąć pojęcie "warunek wystarczający" pod zwykłą implikację.
|
Fakt że Macjan iteruje po całej dziedzinie p i ~p, natomiast w algebrze Kubusia wystarczy iterować wyłącznie po zbiorze aktualnym zdefiniowanym w poprzedniku (czyli wyłącznie po p), jest z punktu widzenia matematyki totalnie nieistotny, bowiem obie te definicje, Macjana i AK wypluwają identyczne wyniki.
Jak ktokolwiek znajdzie choćby najmniejszą różnicę w wyniku dla dowolnego przykładu, natychmiast kasuję algebrę Kubusia!
Zdanie wytłuszczone wyżej jest dowodem równoważności definicji warunku wystarczającego w AK i KRZiP !
Tylko i wyłącznie dlatego KRZiP działa poprawnie w udowadnianiu dowolnej równoważności na mocy jedynie słusznej, uwielbianej przez matematyków definicji równoważności:
p<=>q = (p=>q)*(q=>p)=1*1=1
gdzie:
=> - warunek wystarczający zgodny z definicją AK, to nie jest operator logiczny!
Cena jaką płacą Ziemscy matematycy za posługiwanie się badziewiem zwanym KRZiP jest jednak straszliwa.
KRZiP jest TOTALNIE sprzeczna z naturalną logiką człowieka, aby posługiwać się tym gównem trzeba wyprać sobie mózg z naturalnej logiki człowieka. Pal licho gdy to robią matematycy na studiach matematycznych, są dorośli i nich sobie robią co chcą … ale wkraczać z tym gównem w świat dzieci, do I klasy LO? … to już nie przystoi, a to się niestety zaczyna dziać. W matematycznych czasach Kubusia (40 lat temu) można było skończyć szkołę średnią i studia techniczne nie mając pojęcia o takich badziewiach jak: definicja implikacji materialnej, kwantyfikator, zdanie prawdziwe/fałszywe, KRZiP.
Pytanie dlaczego matematyka mogła być wtedy normalna, czyli w 100% zgodna z naturalną logiką człowieka, a teraz już nie może?
KRZiP to także TOTALNIE fałszywa, matematyczna wizja naszego Wszechświata z jej naczelnym IDIOTYZMEM jakoby „z fałszu mogła powstać prawda”.
Ciekawostka:
Kubuś pierwszy raz usłyszał słowo „kwantyfikator” od Wuja Zbója na forum sfinia zaledwie 6 lat temu, nie mając zielonego pojęcia co to jest - musiał szukać w Wikipedii (daję słowo honoru!).
16.0 Katastrofalna logika Ziemian
Logika to fundament wszystkiego, także matematyki.
Bez logiki nie byłoby matematyki, nie byłoby naszego Wszechświata.
Czym jest algebra Kubusia?
To śmiertelny cios dla całej aktualnej logiki matematycznej.
Leży i kwiczy dosłownie wszystko:
1. Twierdzenie Godla - obalone, oczywiście Godel ma rację na gruncie badziewia zwanego KRZiP
2. Aksjomaty Zermelo-Fraenkela - fałszywy jest aksjomat równoważności (równoważność to dwa rozłączne zbiory a nie jeden) i brak aksjomatów implikacji
3. Teoria mnogości - jest ewidentnie fałszywa ze względu na powyższe
4. KRZiP - największe badziewie jakie w swej historii stworzył człowiek
5. KRZ - bo nie rozpoznaje poprawnej budowy ani jednego operatora logicznego
Algebra Kubusia to największa matematyczna rewolucja w historii ludzkości, podobna wyłącznie do rewolucji Lavoisiera, tylko nieporównywalnie większa i ważniejsza ... ze względów „ideologicznych” - skąd przyszliśmy, i dokąd zmierzamy.
Algebra Kubusia, to fizyka a nie matematyka. Człowiek podlega pod prawa fizyki, czy mu się to podoba czy nie ...
Cytat pochodzi z książki Luc'a Burgin - "Błędy Nauki"
Ludzie mają widocznie skłonność do przedwczesnego i negatywnego oceniania perspektyw rozwojowych pewnych dziedzin nauki. Niektóre rewolucyjne odkrycia lub idee przez lata bojkotowano i zwalczano tylko dlatego, że dogmatycznie nastawieni luminarze nauki nie umieli odrzucić swych ulubionych, choć przestarzałych i skostniałych idei i przekonań. Jednym słowem: „Niemożliwe!" hamowali postęp nauki, a przykładami można dosłownie sypać jak z rękawa:
• Gdy w XVIII wieku Antoine-Laurem de Lavoisier zaprzeczył istnieniu „flogistonu" – nieważkiej substancji, która wydziela się w trakcie procesu spalania i w którą wierzyli wszyscy ówcześni chemicy – i po raz pierwszy sformułował teorię utleniania, świat nauki zatrząsł się z oburzenia. „Observations sur la Physique", czołowy francuski magazyn naukowy, wytoczył przeciwko Lavoisierowi najcięższe działa, a poglądy uczonego upowszechniły się dopiero po zażartych walkach.
16.1 Formalne obalenie prawa eliminacji implikacji
Więcej szczegółów w pkt. 12.0
W dzisiejszej matematyce mamy.
[link widoczny dla zalogowanych]
Prawo eliminacji implikacji:
p=>q = ~p+q
Mamy funkcję logiczną:
Y = ~p+q
co matematycznie na mocy definicji spójnika „lub”(+) oznacza:
Y=1 <=> ~p=1 lub q=1
Stąd tabela zero- jedynkowa spójnika „lub”(+):
Kod: |
~p q Y=~p+q
A: 1 1 =1
B: 1 0 =1
C: 0 1 =1
1 2 3
|
Definicja operatora logicznego:
Operator logiczny to odpowiedź układu na wszystkie możliwe przeczenia na wejściach p i q
To jest dwuelementowa algebra Kubusia, zatem pozostały przypadek w powyższej tabeli musimy uzupełnić zerem w wyniku.
Stąd:
Definicja zero-jedynkowa operatora OR:
Kod: |
~p q Y=~p+q
A: 1 1 =1
B: 1 0 =1
C: 0 1 =1
D: 0 0 =0
1 2 3
|
Oczywiście znaczek „+” definiowany jest wyłącznie obszarem ABC123.
Pełna definicja symboliczna operatora OR z podkładem zero-jedynkowym:
Kod: |
Tabela 1
Definicja symboliczna |Bramki logiczne |Bramki logiczne
Zbiory! |Technika |Technika
Y=1 - dotrzymam słowa
W: Y=~p+q=~p*q+~p*~q+p*q |~p q Y=~p+q | p ~q ~Y=p*~q
A:~p* q= Y | 1 1 =1 /Y=~p* q | 0 0 =0
B:~p*~q= Y | 1 0 =1 /Y=~p*~q | 0 1 =0
C: p* q= Y | 0 1 =1 /Y= p* q | 1 0 =0
~Y=1 - skłamię
~Y=p*~q |
D: p*~q=~Y | 0 0 =0 | 1 1 =1 /~Y=p*~q
1 2 3 | 4 5 6 | 7 8 9
Punktem odniesienia w dowolnej tabeli zero-jedynkowej
jest zawsze nagłówek tabeli:
|~p=1, p=0 | p=1, ~p=0
| q=1, ~q=0 |~q=1, q=0
| Y=1, ~Y=0 |~Y=1, Y=0
|
W tabeli ABCD456 widzimy zero-jedynkową definicję operatora OR, dla sygnałów odniesienia:
Y = ~p+q
~p i q.
Przykład:
Jutro nie pójdę do kina lub pójdę do teatru
Y=~K+T
co matematycznie oznacza:
Y=1 <=> ~K=1 lub T=1
… a kiedy skłamię?
Przejście do logiki ujemnej poprzez negację zmiennych i wymianę operatorów na przeciwne:
~Y = K*~T
Skłamię (~Y=1) wtedy i tylko wtedy gdy jutro pójdę do kina (K=1) i nie pójdę do teatru (~T=1)
~Y=K*~T
~Y=1 <=> K=1 i ~T=1
Mamy ziemskie „prawo” eliminacji implikacji:
p=>q = ~p+q
Oznaczmy:
Y = p=>q = ~p+q
stąd mamy:
Y = p=>q
Y=~p+q
Z tabeli wyżej widzimy, że równanie:
Y=~p+q
opisuje zero-jedynkową definicję operatora OR, mającą zero wspólnego z implikacją.
Co oznacza ta tożsamość?
p=>q = ~p+q
Ta tożsamość obowiązuje dla punktu odniesienia ustalonego po lewej stronie:
p=>q
czyli dla sygnałów odniesienia:
p i q!
Zobaczmy to w tabeli zero-jedynkowej:
Kod: |
~p p q p=>q Y=~p+q |q=>p |Y=q+~p
A: 0 1 1 =1 =1 | =1 | =1
B: 0 1 0 =0 =0 | =1 | =0
C: 1 0 0 =1 =1 | =1 | =1
D: 1 0 1 =1 =1 | =0 | =1
1 2 3 4 5 6 7
|
Doskonale widać, że jeśli za punkt odniesienia przyjmiemy sygnały:
~p, q
to otrzymamy definicję operatora OR gdzie zachodzi przemienność argumentów:
Y=~p+q = q+~p
czego dowodem formalnym jest tożsamość kolumn ABCD5 i ABCD7.
Jeśli natomiast za punkt odniesienia przyjmiemy sygnały:
p, q
To otrzymamy definicję zero-jedynkową implikacji prostej gdzie przemienność argumentów nie zachodzi:
p=>q # q=>p
czego dowodem formalnym jest brak tożsamości kolumn ABCD4 i ABCD6.
Zauważmy, że definicja implikacji prostej gwałci definicję spójnika „lub”(+) a liniach B234 i C234.
Nie da się więc wyeliminować operatora implikacji prostej operatorem OR z powodu podwójnego gwałtu na algebrze Boole’a!
1.
W operatorze OR zachodzi przemienność argumentów
W operatorze implikacji prostej nie zachodzi przemienność argumentów
2.
Gwałt definicji spójnika „lub”(+) w liniach B234 i C234
Poprawne rozumienie tożsamości:
p=>q = ~p+q
Operator implikacji prostej to operator OR z zanegowaną w środku linią p. Nie da się wyeliminować z logiki operatora implikacji prostej, bowiem ma on fundamentalnie inne właściwości niż operator OR!
Weźmy na warsztat symetryczną tożsamość:
p~>q = p+~q
Poprawne rozumienie tej tożsamości:
Operator implikacji odwrotnej to operator OR z zanegowaną w środku linią q.
Tabela zero-jedynkowa:
Kod: |
~q p q p~>q Y=p+~q |q~>p |Y=~q+p
A: 0 1 1 =1 =1 | =1 | =1
B: 1 1 0 =1 =1 | =0 | =1
C: 1 0 0 =1 =1 | =1 | =1
D: 0 0 1 =0 =0 | =1 | =0
1 2 3 4 5 6 7
|
Doskonale widać, że jeśli za punkt odniesienia przyjmiemy sygnały:
p, ~q
to otrzymamy definicję operatora OR gdzie zachodzi przemienność argumentów:
Y=p+~q = ~q+p
czego dowodem formalnym jest tożsamość kolumn ABCD5 i ABCD7.
Jeśli natomiast za punkt odniesienia przyjmiemy sygnały:
p, q
To otrzymamy definicję zero-jedynkową implikacji odwrotnej gdzie przemienność argumentów nie zachodzi:
p~>q # q~>p
czego dowodem formalnym jest brak tożsamości kolumn ABCD4 i ABCD6.
Zauważmy, że definicja implikacji odwrotnej gwałci definicję spójnika „lub”(+) a liniach C234 i D234.
Nie da się więc wyeliminować operatora implikacji odwrotnej operatorem OR z powodu podwójnego gwałtu na algebrze Boole’a!
1.
W operatorze OR zachodzi przemienność argumentów
W operatorze implikacji odwrotnej nie zachodzi przemienność argumentów
2.
Gwałt definicji spójnika „lub”(+) w liniach C234 i D234
Poprawne rozumienie tożsamości:
p~>q = p+~q
Operator implikacji odwrotnej to operator OR z zanegowaną w środku linią q. Nie da się wyeliminować z logiki operatora implikacji odwrotnej, bowiem ma on fundamentalnie inne właściwości niż operator OR!
Wniosek:
Świat wygląda różnie z różnych punktów odniesienia, z czarnego zawsze można zrobić białe i odwrotnie wystarczy zmienić punkt odniesienia.
Znane ziemskim matematykom prawo eliminacji implikacji.
[link widoczny dla zalogowanych]
Prawo eliminacji implikacji:
p=>q = ~p+q
… można więc między bajki włożyć.
Zupełnie czym innym jest fizyczna budowa dowolnego operatora, tu wszystkie operatory da się zredukować do dowolnego z poniższych operatorów:
NAND, NOR, =>, ~>
Przykładowo, dysponując wyłącznie bramką implikacji prostej p=>q można fizycznie zbudować wszystkie pozostałe operatory.
Dowód:
p=>q = ~p+q
Negujemy wejście p w bramce p=>q i mamy definicję bramki OR:
Y = ~(~p)+q = p+q
Wymuszamy logiczne zero na wejściu q w bramce p=>q i mamy definicję negatora:
Y = ~p+0 = ~p
Mając bramkę OR plus negator możemy bez najmniejszych problemów zbudować wszystkie pozostałe operatory, możemy także zbudować dowolny komputer (hardware).
Zupełnie czym innym jest jednak logika człowieka operująca na tych operatorach, algebra Kubusia.
Analogia do świata komputerów:
Logika człowieka ma się tak do bramek logicznych (operatorów), jak software do hardware w świecie komputerów.
Oczywistym jest że hardware (sprzęt) bez software (oprogramowanie) to tylko nikomu niepotrzebna, kupa złomu.
16.2 Zakpijmy sobie z „matematyki” Ziemian!
W dzisiejszej „matematyce” mamy:
[link widoczny dla zalogowanych]
Prawo eliminacji implikacji:
p=>q = ~p+q
Zakpijmy sobie z „matematyki” Ziemian!
Negujemy dwustronnie p i otrzymujemy …
Prawo eliminacji operatora OR:
p+q = ~p=>q
Dla lewej strony korzystamy z prawa de’Morgana:
~(~p*~q) = ~p=>q
Negujemy tożsamość dwustronnie:
~p*~q = ~(~p=>q)
Negujemy dwustronnie wejścia p i q i mamy …
Prawo eliminacji operatora AND:
p*q = ~(p=>~q)
Oczywiście wyłącznie IDIOTA będzie tu dochodził do wniosku że wobec tego operatory OR i AND są w logice zbędne.
Poprawna interpretacja powyższych tożsamości to:
1.
p+q = ~p=>q
Bramka OR (operator OR) to bramka „musi”=> z zanegowanym wejściem p
2.
p*q = ~(p=>~q)
Bramka AND (operator AND) to bramka „musi”=> z zanegowanym wejściem q i zanegowanym wyjściem ~(p=>~q)
To co wyżej to tylko jedna z nieskończonych (sic!) możliwości fizycznej budowy bramek logicznych OR i AND (operatorów logicznych OR i AND). To jest tylko hardware (sprzęt), natomiast logika człowieka to software (program) operujący na tym sprzęcie.
Analogia do świata komputerów:
Logika człowieka ma się tak do bramek logicznych (operatorów), jak software do hardware w świecie komputerów.
Oczywistym jest że hardware (sprzęt) bez software (oprogramowanie) to tylko nikomu niepotrzebna, kupa złomu.
Dowód formalny 1.
„Prawo” eliminacji operatora OR
p+q = ~p=>q
Kod: |
p q Y=p+q ~p ~p=>q
A: 1 1 =1 0 =1
B: 1 0 =1 0 =1
C: 0 1 =1 1 =1
D: 0 0 =0 1 =0
1 2 3 4 5
|
Tożsamość kolumn ABCD3 i ABCD5 jest dowodem poprawności „prawa” eliminacji operatora OR z logiki matematycznej … w mózgach matematycznych IDIOTÓW oczywiście.
Dowód formalny 2.
„Prawo” eliminacji operatora AND:
p*q = ~(p=>~q)
Kod: |
p q Y=p*q ~q p=>~q ~(p=>~q)
A: 1 1 =1 0 =0 =1
B: 1 0 =0 1 =1 =0
C: 0 1 =0 0 =1 =0
D: 0 0 =0 1 =1 =0
1 2 3 4 5 6
|
Tożsamość kolumn ABCD3 i ABCD6 jest dowodem poprawności „prawa” eliminacji operatora OR z logiki matematycznej … w mózgach matematycznych IDIOTÓW oczywiście.
Przykład:
„Prawo” eliminacji operatora OR:
Y = p+q = ~p=>q
Zdania równoważne w debilizmie zwanym KRZiP to:
A.
Jutro pójdę do kina lub do teatru
Y=K+T
B.
Jeśli jutro nie pójdę do kina to na pewno => pójdę do teatru
~K=>T
W KRZiP zachodzi:
A: K+T = B: ~K=>T
Drodzy Ziemianie:
Czy widzicie już nieskończony debilizm swojej „matematyki” zwanej KRZiP?
Jak kto udowodni, iż na gruncie gówna zwanego KRZiP te zdania nie są równoważne to natychmiast kasuję AK.
16.3 Tragiczna logika Ziemian w blasku księżyca
[link widoczny dla zalogowanych]
Z fałszu wynika wszystko!!!
Z każdego zdania fałszywego wynika dowolne inne zdanie.... (niektórzy twierdzą, że tak powstała teologia). Poniższa anegdota pochodzi od znakomitego XX-wiecznego logika- Bertranda Russella
Bertrand Russell napisał: |
Udowodnijmy zatem, że ze zdania: "2+2=5" wynika zdanie: "Ja (tzn. Windziarz) jestem papieżem"
Argumentacja przebiega następująco:
-Jeśli 2+2=5, to w takim razie: 4=5
po odjęciu od obu stron "3" otrzymujemy: 1=2
Zatem:
-skoro ja i papież to razem dwie osoby, a 2=1
to
-ja i papież jesteśmy jedną osobą
Zatem:
-ja jestem papieżem
|
[link widoczny dla zalogowanych]
Windziarz napisał: |
Kubuś napisał: |
Algebra Kubusia to koniec robienia z człowieka DEBILA dowodami „matematycznymi” w stylu dziadka Russella wyżej!
|
Gdzie niby w tym dowodzie jest błąd?
Poza tym ten dowód to przykład, że z fałszu wynika fałsz. Coś w tym jest złego?
Kubusiu! Jeśli nie wskażesz, gdzie w dowodzie Russella (że jeśli 2+2=5 to jestem papieżem) jest błąd, a będziesz nadal upierał się, że jest błędny, to znaczy, że kompletnie nic nie rozumiesz.
|
Windziarzu, tego żaden normalny człowiek NIGDY nie zrozumie!
Czy ewidentne idiotyzmy mogą być dowodem matematycznym?
Przecież to jest chore dla każdego, nawet pacjenta szpitala psychiatrycznego.
Spróbuj powiedzieć komukolwiek normalnemu (nie matematykowi) takie zdanie prawdziwe w KRZiP:
Jeśli 2+2=4 to jesteś wielbłądem.
... szpital psychiatryczny masz pewny.
Na razie IDIOTYZMY jak wyżej nie dotarły jeszcze w pełnej krasie do podręczników matematyki I klasy LO, ale wszystko jest na dobrej drodze, bowiem już są tego zwiastuny.
Dzieciaków w I klasie LO naucza się iż prawdziwe jest takie zdanie:
[link widoczny dla zalogowanych]
Jeśli pies ma osiem łap, to Księżyc krąży wokół Ziemi
Każdemu normalnemu człowiekowi wyjdzie tu iż:
Ponieważ pies nie ma ośmiu łap to Księżyc nie może krążyć wokół Ziemi.
Trzeba być idiotą, aby twierdzić że miedzy dwoma TOTALNIE niezależnymi zdaniami może cokolwiek wynikać (przykłady wyżej).
Błąd Russella nazywa się:
Gówno zwane KRZiP, a dowód tego jest niżej.
16.4 O co chodzi w operatorach implikacji?
Oczywiście o coś fundamentalnie innego niż w operatorach OR i AND.
W operatorach OR i AND interesowało nas kiedy dotrzymam słowa (Y=1) a kiedy skłamię (~Y=1).
Definicja operatora OR:
Y=p+q
~Y=~p*~q
Definicja operatora AND:
Y=p*q
~Y=~p+~q
Operatory implikacji dają odpowiedź na pytanie co się stanie jeśli zajdzie p oraz co się stanie jeśli zajdzie ~p.
Definicja implikacji prostej:
p=>q = ~p~>~q
Definicja implikacji odwrotnej:
p~>q = ~p=>~q
Wniosek:
Operatory OR i AND to fundamentalnie inne operatory niż operatory implikacji!
cnd
Trzeba być idiotą aby twierdzić iż zdania:
1.
Jeśli jutro będzie padało to na pewno => będzie pochmurno
P=>CH=1
Deszcz jest warunkiem wystarczającym => dla istnienia chmur
i
2.
Jeśli trójkąt jest równoboczny to na pewno => ma kąty równe
TR=>KR=1
Bycie trójkątem równobocznym jest warunkiem wystarczającym => aby kąty były równe
To są identyczne implikacje proste prawdziwe!
W pierwszym jest matematycznie zakodowane rzucanie monetą po stronie ~P.
Prawo Kubusia:
P=>CH =~P~>~CH
~> - ten znaczek to warunek konieczny, „rzucanie monetą”, spójnik "może" w implikacji
1A.
Jeśli jutro nie będzie padało to może ~> nie być pochmurno
~P~>~CH=1
Brak opadów jest warunkiem koniecznym ~> aby nie było pochmurno
Wniosek:
Zdanie 1 to implikacja prosta prawdziwa
Natomiast w zdaniu 2 po stronie ~TR mamy 100% determinizm, kolejny warunek wystarczający!
2A.
Jeśli trójkąt nie jest równoboczny to na pewno => nie ma kątów równych!
~TR=>~KR=1
Bycie trójkątem nierównobocznym jest warunkiem wystarczającym => aby kąty nie były równe
To jest oczywiście implikacja prosta fałszywa bo nie ma tu "rzucania monetą", fundamentu każdej implikacji!
... a to gówno zwane KRZiP nie widzi miedzy tymi zdaniami żadnej różnicy.
W KRZiP oba te zdania to implikacje proste prawdziwe!
Wniosek:
KRZiP to IDIOTYZM, to totalnie błędna matematyka!
cnd
Fundamentem wariatkowa zwanego KRZiP jest ...
Idiotyczna definicja operatora logicznego rodem z KRZiP:
O tym czym jest wypowiedziane zdanie decyduje użyty spójnik, treść jest bez znaczenia.
Zdanie ujęte w spójnik „ ... wtedy i tylko wtedy ...” jest równoważnością niezależnie od tego co wstawimy w wykropkowane miejsca.
Zdanie „Jeśli ... to ...” jest implikacją niezależnie co wstawimy w miejsca wykropkowane.
Dowód wyżej pokazuje, iż nie jest to prawdą. Z tej idiotycznej definicji wynika, że jeśli twierdzenie Pitagorasa jest równoważnością prawdziwą, a bezdyskusyjnie jest, to równocześnie twierdzenie Pitagorasa musi być implikacją prawdziwą.
Większego debilizmu to nasz Wszechświat nie widział!
Kubuś i wszyscy normalni matematycy.
Pozdrawiam,
Kubuś - kosmita, przyjaciel Ziemskich dzieci, którego zadaniem na Ziemi jest zniszczenie KRZiP, co by nikt nigdy nie prał tym gównem mózgów naszych dzieci ... już w I klasie LO.
Wara z tym na studia matematyczne, nie mam nic przeciwko aby dorośli prali sobie mózgi matematycznym debilizmem zwanym KRZiP totalnie sprzecznym z naturalną logiką człowieka ... ale od dzieci WON!
Przyjaciel wszystkich dzieci,
Kubuś – kosmita
KONIEC
2012-06-07 Dom wczasowy: Lot nad kukułczym gniazdem
Ostatnio zmieniony przez rafal3006 dnia Sob 7:23, 23 Cze 2012, w całości zmieniany 30 razy
|
|
Powrót do góry |
|
|
|