 |
ŚFiNiA ŚFiNiA - Światopoglądowe, Filozoficzne, Naukowe i Artystyczne forum - bez cenzury, regulamin promuje racjonalną i rzeczową dyskusję i ułatwia ucinanie demagogii. Forum założone przez Wuja Zbója.
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 37352
Przeczytał: 18 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Pon 20:07, 17 Mar 2025 Temat postu: Algebra Kubusia - matematyczna wojna wszech czasów |
|
|
Algebra Kubusia
Matematyczna wojna wszech czasów
Algebra Kubusia vs Klasyczny Rachunek Zdań + Teoria Mnogości
2025-03-17 Wersja przedpremierowa
Autor:
Kubuś ze 100-milowego lasu
Ziemia Obiecana - biblijne miejsce, do którego Mojżesz prowadził Izraelitów po wyprowadzeniu ich z Egiptu i przeprowadzeniu przez Morze Czerwone
Algebra Kubusia – miejsce, do którego Kubuś ze 100-milowego lasu prowadził ziemskich matematyków po wyprowadzeniu ich z Klasycznego Rachunku Zdań
Rozszyfrowali:
Rafal3006 i przyjaciele
I.
Pełna wersja "Algebra Kubusia - matematyka języka potocznego" (Stron: 1197):
[link widoczny dla zalogowanych]
Kod: | https://www.dropbox.com/s/hy14p42kup25c32/Kompendium%20algebry%20Kubusia.pdf?dl=0 |
Link do pełnej wersji algebry Kubusia na forum śfinia:
http://www.sfinia.fora.pl/forum-kubusia,12/algebra-kubusia-matematyka-jezyka-potocznego,21937.html#680041
II.
Link do „Kompendium algebry Kubusia” w pdf (Stron: 278)
[link widoczny dla zalogowanych]
Kod: | https://www.dropbox.com/scl/fi/uivxh4c74kaaiabg3e5ui/Algebra-Kubusia-Kwintesencja.pdf?rlkey=2hj7bsiq1e4ubn53rqabdwc9j&dl=0 |
Link do „Kompendium algebry Kubusia” na forum śfinia:
http://www.sfinia.fora.pl/forum-kubusia,12/kwintesencja-algebry-kubusia,26413.html#812849
Kompendium algebry Kubusia to początkowa część z pełnej wersji algebry Kubusia (pkt. 1.0 do 4.0).
Kompendium zawiera fundamenty algebry Kubusia i kończy się na matematycznej obsłudze obietnic i gróźb w świecie żywym. Groźby i obietnice to fundament działania wszelkich istot żywych.
III
Link do „Przedszkola algebry Kubusia – teoria zbiorów” w pdf (Stron: 64)
[link widoczny dla zalogowanych]
Kod: | https://www.dropbox.com/scl/fi/8b6385kcbbae48xuxksvx/AK-Przedszkole-algebry-Kubusia.pdf?rlkey=c17v8b5otgo7w4d6ldhgdvjys&st=ocm133k6&dl=0 |
Link do „Przedszkola algebry Kubusia – teoria zbiorów” na śfinia
http://www.sfinia.fora.pl/forum-kubusia,12/przedszkole-algebry-kubusia,26819.html#821939
IV
Link do „Algebra Kubusia – matematyczna wojna wszech czasów” w pdf (Stron 330)
[link widoczny dla zalogowanych]
Kod: | https://www.dropbox.com/scl/fi/0urnjjd97sjqfasniawse/AK-Wojna-wszech-czas-w.pdf?rlkey=t3fwrxzgwnnk89yzuz6drt0nl&dl=0 |
Link do „Algebra Kubusia – matematyczna wojna wszech czasów” na forum śfinia
http://www.sfinia.fora.pl/forum-kubusia,12/algebra-kubusia-matematyczna-wojna-wszech-czasow,27431.html#836061
ŚFiNiA - Światopoglądowe, Filozoficzne, Naukowe i Artystyczne forum – bez cenzury.
Link do forum filozoficznego sfinia z jego niezwykłym regulaminem pozwalającym głosić dowolne herezje bez obawy o bana - tylko i wyłącznie dzięki temu algebra Kubusia została rozszyfrowana.
Na forum śfinia mamy dostęp do pełnej, 19 letniej historii rozszyfrowywania algebry Kubusia.
http://www.sfinia.fora.pl/forum-kubusia,60/
Dziękuję wszystkim, którzy dyskutując z Rafałem3006 przyczynili się do odkrycia algebry Kubusia:
Wuj Zbój, Miki (vel Lucek), Volrath, Macjan, Irbisol, Makaron czterojajeczny, Quebab, Windziarz, Fizyk, Idiota, Sogors (vel Dagger), Słupek, Fiklit, Yorgin, Exodim, FlauFly, Pan Barycki, Zbigniewmiller, Mar3x, Wookie, Prosiak, Andy72, Michał Dyszyński, Szaryobywatel, Jan Lewandowski, MaluśnaOwieczka, Zefciu i inni.
Kluczowi przyjaciele Kubusia, którzy wnieśli największy wkład w rozszyfrowanie algebry Kubusia to: Rafal3006, Wuj Zbój, Irbisol, Volrath, Macjan, Fiklit (kolejność chronologiczna).
Spis treści:
29.0 Dowód wewnętrznej sprzeczności KRZ w obsłudze zdań "Jeśli p to q"
30.0 Geneza twardych i miękkich zer i jedynek w algebrze Boole’a
31.0 Klasyczny Rachunek Zdań vs Algebra Kubusia
32.0 Dowód wewnętrznej sprzeczności w KRZ na poziomie 5-cio latka
33.0 Dowód wewnętrznej sprzeczności w KRZ na poziomie szkoły podstawowej
34.0 Armagedon ziemskich logik matematycznych
35.0 Dowód śmieciowości ziemskiej teorii mnogości
36.0 Problem milenijny, Królestwo obłąkańców
Punkty 37.0 do 39.0 to dowód schizofrenii we wszelkich ziemskich logikach:
37.0 Prawo matematycznego głąba i jełopa w operatorze implikacji prostej p||=>q
38.0 Prawo matematycznego głąba i jełopa w operatorze implikacji odwrotnej p||~>q
39.0 Prawo matematycznego głąba i jełopa w operatorze równoważności p|<=>q
40.0 Geneza rozszyfrowywania algebry Kubusia
Wstęp:
Z pełnej wersji algebry Kubusia wydzielono rozdziały bezpośrednio atakujące dwa fundamenty wszelkich ziemskich logik matematycznych zachowując ciągłość numeracji rozdziałów.
1. Klasyczny Rachunek Zdań
2. Teoria Mnogości
Obie te teorie poległy w matematycznej wojnie wszech czasów:
Algebra Kubusia vs KRZ plus TM
Zrozumieć o co chodzi w tej wojnie mogą eksperci KRZ i TM, których nawet wśród zawodowych matematyków jest znikoma ilość.
Dokładnie z tego powodu nie ma sensu nawet wspominać o KRZ i TM w algebrze Kubusia.
Oczywiście mogą czytać niniejszą publikację wszyscy chętni jako ciekawostkę bowiem myślę, że każdy kto pozna Algebrę Kubusia, logikę matematyczną której ekspertami są 5-cio latki i humaniści, bez problemu zrozumie bezsens KRZ i TM.
0.0 Skorowidz znaczków używanych w algebrze Kubusia
Definicje znaczków używanych w algebrze Kubusia poparto prostymi przykładami, zrozumiałymi dla każdego 5-cio latka.
I.
Nowa algebry Boole'a związana wyłącznie za spójnikami "lub"(+) i "i"(*)
1.
Znaczki elementarne (1.1):
1 = prawda
0 = fałsz
(~) - negacja (zaprzeczenie), słówko „NIE” w języku potocznym
Definicja logiki dodatniej (bo p) i logiki ujemnej (bo ~p) (1.1.1)
2.
Spójniki podstawowe "lub"(+) i "i"(*) zgodne z językiem potocznym:
(+) - spójnik „lub”(+) w języku potocznym (1.14)
(*) - spójnik „i”(*) w języku potocznym (1.15)
3.
Operatory logiczne "lub"(|+) i "i'(|*) definiowane spójnikami podstawowymi "lub"(+) i "i"(*):
(|+) - operator "lub"(|+) w języku potocznym (1.14.1)
(|*) - operator "i"(|*) w języku potocznym (1.15.1)
II.
Algebra Kubusia obsługująca zdania warunkowe "Jeśli p to q"
Definicja spójnika implikacyjnego:
Spójnik implikacyjny to spójnik związany w obsługą zdań warunkowych "Jeśli p to q" definiowanych warunkami wystarczającymi => i koniecznymi ~>
Definicje spójników implikacyjnych w algebrze Kubusia mają układ trzypoziomowy {1=>2=>3}:
1.
Elementarne spójniki implikacyjne: =>, ~>, ~~>
2.
Podstawowe spójniki implikacyjne: |=>, |~>, <=>, |~~> definiowane spójnikami elementarnymi
3.
Operatory implikacyjne: ||=>, ||~>, |<=>, ||~~> definiowane podstawowymi spójnikami implikacyjnymi.
1.
Spójniki elementarne zdań warunkowych "Jeśli p to q":
Zdarzenia:
~~> - zdarzenie możliwe w teorii zdarzeń (2.2.1)
=> - warunek wystarczający (2.2.2)
~> - warunek konieczny (2.2.3)
Zbiory:
~~> - element wspólny zbiorów w teorii zbiorów (2.3.1)
=> - warunek wystarczający (2.3.2)
~> - warunek konieczny (2.3.3)
2.
Podstawowe spójniki implikacyjne definiowane spójnikami elementarnymi:
|=> - implikacja prosta (2.12, 3.1)
|~> - implikacja odwrotna (2.13, 4.1)
<=> - równoważność (2.14, 6.1)
|~~> - chaos (2.15, 8.1)
$ - spójnik "albo" dostępny w rozszerzonej algebrze Kubusia (7.2)
3.
Operatory implikacyjne definiowane podstawowymi spójnikami implikacyjnymi:
||=> - operator implikacji prostej (2.12.1, 3.1.1)
||~> - operator implikacji odwrotnej (2.13.1, 4.1.1)
|<=> - operator równoważności (2.14.1, 6.1.1)
||~~> - operator chaosu (2.15.1, 8.1.1)
|$ - operator "albo" dostępny w rozszerzonej algebrze Kubusia (7.2.1)
III.
Pozostałe znaczki algebry Kubusia:
# - różne w znaczeniu iż dowolna strona znaczka # jest negacją drugiej strony (2.5.1)
## - różne na mocy definicji (2.5.1)
### - różne na mocy nietrywialnego błędu podstawienia (2.7.4)
Ostatnio zmieniony przez rafal3006 dnia Wto 7:05, 18 Mar 2025, w całości zmieniany 7 razy
|
|
Powrót do góry |
|
 |
|
 |
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 37352
Przeczytał: 18 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Pon 20:09, 17 Mar 2025 Temat postu: |
|
|
Algebra Kubusia – matematyczna wojna wszech czasów
29.0 Dowód wewnętrznej sprzeczności KRZ w obsłudze zdań "Jeśli p to q"
Spis treści
29.0 Dowód wewnętrznej sprzeczności KRZ w obsłudze zdań "Jeśli p to q" 1
29.1 Cytat wykładowcy logiki matematycznej Volratha 1
29.2 Prawo Krokodyla 4
29.2.1 Twarde i miękkie jedynki w operatorze implikacji prostej p||=>q 4
29.2.2 Twarde i miękkie jedynki w operatorze implikacji odwrotnej p||~>q 6
29.2.3 Twarde jedynki w operatorze równoważności p|<=>q 8
29.2.4 Twarde jedynki w operatorze "albo" p|$q 10
29.2.5 Brak twardych jedynek w operatorze chaosu p||~~>q 12
29.0 Dowód wewnętrznej sprzeczności KRZ w obsłudze zdań "Jeśli p to q"
Dowód wewnętrznej sprzeczności KRZ dedykowany jest matematykom znającym logikę matematyczną zwaną "Klasyczny Rachunek Zdań".
Algebra Boole’a jest fundamentem KRZ, zatem wszelkie prawa algebry Boole’a muszą być honorowane przez KRZ.
29.1 Cytat wykładowcy logiki matematycznej Volratha
2023-01-24
Największą dla mnie niespodzianką w rozszyfrowywaniu algebry Kubusia jest wykorzystanie cytatu wykładowcy logiki matematycznej Volratha z roku 2008 do udowodnienia wewnętrznej sprzeczności Klasycznego Rachunku Zdań w obsłudze zdań warunkowych "Jeśli p to q".
Algebra Kubusia która spełnia wymagania poprawnej logiki matematycznej z cytatu Volratha jest wewnętrznie niesprzeczna. Najśmieszniejszy w tym wszystkim jest fakt, że na mocy cytatu Volratha rachunek predykatów w algebrze Kubusia jest zbędny, nie ma prawa bytu!
http://www.sfinia.fora.pl/forum-kubusia,12/kubusiowa-szkola-logiki-na-zywo-dyskusja-z-volrathem,3591-100.html#72062
Wysłany: Śro 13:43, 10 Gru 2008
wykładowca logiki matematycznej volrath napisał: |
Niestety bazowa logika Boole'a domyślnie zakłada, że wszystkie jedynki są miękkie, a zera twarde. Tak już jest skonstruowana - jeśli z zdania wychodzi 0, to znaczy, że na pewno nie ma obiektu spełniającego to zdanie, a jeśli 1 - to może być, ale nie musi. Rozumienie, że "na pewno jest obiekt spełniający zdanie" nie mieści się w logice Boole'a.
…
Czyli trzeba zrobić tak:
0 - twarde zero
1 - twarda jedynka
2 - miękkie coś (jedynka lub zero - są równoważne)
Alternatywnie należałoby dodać do logiki rachunek predykatów pierwszego rzędu (i tak się robi obecnie, w ogóle logika nie rozpoznaje zdania "jeśli p to może q", chociaż jedno jego rozumienie jako warunku koniecznego da się zapisać logiką Boole'a, a drugie da się zapisać rachunkiem predykatów lub rozszerzając logikę Boole'a do trójwartościowej - w sumie to rachunek predykatów jest po to by zdania zawierające "dla każdego" i "istnieje" jakoś przetwarzać.)
W sumie to ciekawy problem - poprawne skonstruowanie logiki trójwartościowej tak, by nie potrzeba było rachunku predykatów do przetwarzania zdań "istnieje" i "dla każdego" oraz zawierał trzy wartości "prawda" = twarda prawda, "fałsz" = twardy fałsz i "może" = miękki fałsz/prawda.
Ludzie na co dzień przetwarzają zdania typu "istnieje X" i "dla każdego ze zbioru Y zachodzi Z". I część tych zdań nie mieści się w logice podstawowej (wymaga rachunku predykatów) - a może powinna.
|
Jak widzimy, wykładowca logiki matematycznej Volrath napisał czego brakuje w logice matematycznej ziemian i to czego brakuje jest w algebrze Kubusia!
W algebrze Kubusia zawsze gdy jest twarde zero jest też twarda jedynka, której logika zwana KRZ nie widzi z powodu prawa eliminacji warunku wystarczającego => (w KRZ prawo eliminacji implikacji =>)
Najważniejsza uwaga do cytatu Vorahta:
Algebra Kubusia jest logiką dwuwartościową bo w każdej chwili czasowej mamy do wyboru jedną z dwóch możliwości a mimo to AK obsługuje zdania warunkowe "Jeśli p to może q".
Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>~q=p*~q
Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1
(i odwrotnie)
Definicja kontrprzykładu w zbiorach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane elementem wspólnym zbiorów p~~>~q=p*~q
Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)
Wnioski z cytatu Voratha:
1.
Prawo Krokodyla:
W obsłudze zdań warunkowych "Jeśli p to q" przez wszystkie możliwe przeczenia p i q logika matematyczna musi widzieć tą samą ilość twardych zer i twardych jedynek, inaczej jest wewnętrzne sprzeczna.
Uwaga:
W algebrze Kubusia pod logikę matematyczną podlegają zdania warunkowe „Jeśli p to q” spełniające algorytm Puchacza (pkt. 2.11), wszelkie inne zdania są w AK fałszywe.
Definicja twardej jedynki:
W zdaniach warunkowych "Jeśli p to q" twarda jedynka to spełniony warunek wystarczający => w analizie matematycznej zdania "Jeśli p to q" przez wszystkie możliwe przeczenia p i q, przy pomocy znaczków =>, ~> i ~~>.
Na mocy definicji kontrprzykładu spełniony warunek wystarczający A1: p=>q=1 (twarda jedynka) wymusza fałszywość kontrprzykładu A1’: p~~>~q=0 (twarde zero) i odwrotnie
Przykład dla zbiorów:
A1.
Jeśli zajdzie p to na 100% => zajdzie q
A1: p=>q =1 - twarda jedynka
Zajście p jest (=1) warunkiem wystarczającym => dla zajścia q wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q
Twarda jedynka w A1: p=>q =1 wymusza twarde zero w kontrprzykładzie A1’: p~~>~q=0 (twarde zero) i odwrotnie
Definicja twardego zera:
W zdaniach warunkowych "Jeśli p to q" twarde zero to fałszywość zdania A1’: p~~>~q =0 kodowanego zdarzeniem możliwym ~~> (dla zdarzeń) lub elementem wspólnym zbiorów ~~> (dla zbiorów) w analizie matematycznej zdania "Jeśli p to q" przez wszystkie możliwe przeczenia p i q, przy pomocy znaczków =>, ~> i ~~>.
Na mocy definicji fałszywy kontrprzykład A1’: p~~>~q =0 (twarde zero) wymusza prawdziwy warunek wystarczający => A1: p=>q (twarda jedynka) i odwrotnie.
Przykład dla zbiorów:
A1’.
Jeśli zajdzie p to może ~~> zajść ~q
A1’: p~~>~q=p*~q =0 - twarde zero
Niemożliwy jest (=0) ~~> przypadek: zajdzie p i nie zajdzie q
Twarde zero w A1’: p~~>~q =0 wymusza twardą jedynkę w warunku wystarczającym => A1: p=>q =1 (i odwrotnie)
Notacja w algebrze Kubusia:
Kontrprzykład dla warunku wystarczającego A1 oznaczamy A1’
Szczegóły:
1.
W obsłudze implikacji prostej p|=>q i implikacji odwrotnej p|~>q poprawna logika matematyczna musi widzieć jedno twarde zero i jedną twardą jedynkę, oraz dwie jedynki miękkie
2.
W obsłudze równoważności p<=>q i spójnika "albo"$ poprawna logika matematyczna musi widzieć dwa twarde zera i dwie twarde jedynki (zero jedynek miękkich)
3.
W obsłudze chaosu p|~~>q gdzie mamy same jedynki w kolumnie wynikowej nie ma ani jednego twardego zera, a tym samym nie ma warunku wystarczającego =>, wszystkie cztery jedynki są tu miękkimi jedynkami.
2.
Prawo Aligatora:
W logice matematycznej niesprzecznej na mocy prawa Krokodyla (algebra Kubusia) rachunek predykatów jest zbędny, nie ma prawa bytu!
3.
Sprzeczność KRZ:
Ziemska logika matematyczna zwana Klasycznym Rachunkiem Zdań z powodu obligatoryjnego korzystania z prawa eliminacji warunku wystarczającego => (w KRZ implikacji =>) z definicji nie widzi jakiegokolwiek warunku wystarczającego => (twardej jedynki), co oznacza iż jest wewnętrznie sprzeczna.
4.
Prawo Mamuta (którego już nie ma):
Ziemski matematyk który zastosuje prawo eliminacji warunku wystarczającego => (w KRZ implikacji =>):
p=>q = ~p+q
w odniesieniu do zdania warunkowego "Jeśli p to q" popełnia błąd fatalny, bo zabija warunek wystarczający => (twardą jedynkę)
29.2 Prawo Krokodyla
Prawo Krokodyla:
W obsłudze zdań warunkowych "Jeśli p to q" przez wszystkie możliwe przeczenia p i q logika matematyczna musi widzieć tą samą ilość twardych zer i twardych jedynek, inaczej jest wewnętrzne sprzeczna.
29.2.1 Twarde i miękkie jedynki w operatorze implikacji prostej p||=>q
W algebrze Kubusia operator implikacji prostej p||=>q opisany jest jedna twardą jedynką, jedynym twardym zerem, oraz dwoma jedynkami miękkimi, czego dowód znajdziemy w punkcie 10.1.2
Cytuję:
Tabela prawdy operatora implikacji prostej p||=>q:
Tabela prawdy operatora implikacji prostej p||=>q to analiza tego operatora w warunkach wystarczających =>, warunkach koniecznych ~> i zdarzeniach możliwych ~~> przez wszystkie możliwe przeczenia p i q w kierunku od p do q
Kod: |
T1
Tabela prawdy operatora implikacji prostej p||=>q
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
Prawo Kubusia:
B1: p~>q = B2: ~p=>~q =0
A1: p=> q =1 - zajście p jest wystarczające => dla zajścia q
Twarda jedynka w A1 wymusza twarde zero w A1' (i odwrotnie)
A1': p~~>~q=0 - prawdziwość A1: p=>q wymusza fałszywość kontrprzykładu A1'
Twarde zero w A1' wymusza twardą jedynkę w A1 (i odwrotnie)
Prawo Kubusia:
A1: p=>q = A2:~p~>~q =1
A2: ~p~>~q =1 - bo prawo Kubusia: A1: p=>q = A2: ~p~>~q
Miękka jedynka w A2 na mocy definicji p||=>q
LUB
B2':~p~~>q =1 - fałszywy B2:~p=>~q=0 wymusza prawdziwość kontrprzykładu B2'
Miękka jedynka w B2' na mocy definicji p||=>q
|
Prawo Krokodyla (pkt 29.2):
W obsłudze zdań warunkowych "Jeśli p to q" przez wszystkie możliwe przeczenia p i q logika matematyczna musi widzieć tą samą ilość twardych zer i twardych jedynek, inaczej jest wewnętrzne sprzeczna.
Jak widzimy, w operatorze implikacji prostej p||=>q mamy jedną twardą jedynkę (A1), jedno twarde zero (A1') oraz dwie miękkie jedynki (A2 i B2') wymuszone definicją tego operatora, co oznacza spełnienie prawa Krokodyla i brak wewnętrznej sprzeczności algebry Kubusia.
Matematycznie za cytatem Volrtaha (pkt. 29.1) jest tu wszystko w porządku.
Definicja twardej jedynki:
Twarda jedynka zachodzi zawsze bez wyjątków.
A1.
Jeśli zajdzie p to na 100% => zajdzie q
p=>q =1
Zajście p jest (=1) wystarczające => dla zajścia q (twarda jedynka) wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q
Definicja twardego zera:
Twarde zero zachodzi zawsze bez wyjątków
A1’.
Jeśli zajdzie p to może ~~> zajść ~q
p~~>~q = p*~q=0
Na mocy definicji kontrprzykładu fałszywość kontrprzykładu A1’: p~~>~q =0 (twarde zero) wymusza prawdziwość warunku wystarczającego A1: p=>q =1 (twarda jedynka) i odwrotnie.
Definicja miękkiej jedynki:
Miękka jedynka może zajść, ale nie musi.
Definicja miękkiego zera:
Miękkie zero może zajść, ale nie musi.
Jak działają w praktyce miękkie jedynki i miękkie zera?
W operatorze implikacji prostej p||=>q dwie miękkie jedynki mamy na pozycjach A2 i B2’.
Przypadek 1.
Załóżmy, że zajdzie miękka jedynka w linii A2.
A2.
Jeśli zajdzie ~p to może ~> zajść ~q
A2: ~p~>~q =1
Zajście ~p jest (=1) warunkiem koniecznym ~> dla zajścia ~q wtedy i tylko wtedy gdy zbiór ~p jest nadzbiorem ~> zbioru ~q
Innymi słowy, może się zdarzyć pojedyncze iterowanie ~~>:
Y(A2) = ~p~~>~q = ~p*~q=1
Co w logice jedynek oznacza:
Y(A2)=1 <=> ~p=1 i ~q=1
Dla tego przypadku zdanie B2’ będzie miękkim fałszem:
B2’ = ~p~~>q = ~p*q =0
Dowód:
Z założenia Y(A2) mamy:
(~q=1)=(q=0) - to zaszło z założenia (prawo Prosiaczka)
Stąd mamy:
Y(B2’) =~p*q = 1*0 =0
cnd
Wniosek:
Miękka jedynka w linii A2 wymusza miękkie zero w linii B2’ (i odwrotnie), co wyżej zostało udowodnione.
Przypadek 2.
Załóżmy, że zajdzie miękka jedynka w linii B2’.
B2’
Jeśli zajdzie ~p to może ~~> zajść q
B2’: ~p~~>q = ~p*q =1
Innymi słowy może się zdarzyć pojedyncze iterowanie:
Y(B2’) = ~p*q =1
Co w logice jedynek oznacza:
Y(B2’)=1 <=> ~p=1 i q=1
Dla tego przypadku zdanie A2 będzie miękkim fałszem:
A2 = ~p~~>~q = ~p*~q =0
Dowód:
Z założenia Y(B2’) mamy:
(q=1)=(~q=0) - to zaszło z założenia (prawo Prosiaczka)
Stąd mamy:
Y(A2) = ~p*~q = 1*0 =0
cnd
Wniosek:
Miękka jedynka w linii B2’ wymusza miękkie zero w linii A2 (i odwrotnie), co wyżej zostało udowodnione.
29.2.2 Twarde i miękkie jedynki w operatorze implikacji odwrotnej p||~>q
W algebrze Kubusia operator implikacji odwrotnej p||~>q opisany jest jedną twardą jedynką, jedynym twardym zerem, oraz dwoma jedynkami miękkimi, czego dowód znajdziemy w punkcie 10.3.2
Cytuję:
Tabela prawdy operatora implikacji odwrotnej p||~>q:
Tabela prawdy operatora implikacji odwrotnej p||~>q to analiza tego operatora w warunkach wystarczających =>, warunkach koniecznych ~> i zdarzeniach możliwych ~~> przez wszystkie możliwe przeczenia p i q w kierunku od p do q
Tabela prawdy operatora implikacji odwrotnej p||~>q.
Kod: |
T1
Tabela prawdy operatora implikacji odwrotnej p||~>q.
A1B1: p|~>q = ~(A1: p=>q)*(B1: p~>q)=~(0)*1=1*1=1
B1: p~> q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
Miękka jedynka w B1 na mocy definicji p||~>q
LUB
A1': p~~>~q=1 - fałszywy A1: p=>q=0 wymusza prawdziwość kontrprzykładu A1'
Miękka jedynka w A1' na mocy definicji p||~>q
Prawo Kubusia:
B1: p~>q = B2: ~p=>~q =1
B2: ~p=>~q =1 - bo prawo Kubusia B1: p~>q = B2: ~p~>~q
Twarda jedynka w B2 wymusza twarde zero w B2' (i odwrotnie)
B2':~p~~>q =0 - prawdziwość B2:~p=>~q wymusza fałszywość kontrprzykładu B2'
Twarde zero w B2' wymusza twardą jedynkę w B2 (i odwrotnie)
|
Prawo Krokodyla (pkt. 29.2):
W obsłudze zdań warunkowych "Jeśli p to q" przez wszystkie możliwe przeczenia p i q logika matematyczna musi widzieć tą samą ilość twardych zer i twardych jedynek, inaczej jest wewnętrzne sprzeczna.
Jak widzimy, w operatorze implikacji odwrotnej p||~>q mamy jedną twardą jedynkę (B2), jedno twarde zero (B2') oraz dwie miękkie jedynki (B1 i A1') wymuszone definicją tego operatora, co oznacza spełnienie prawa Krokodyla i brak wewnętrznej sprzeczności algebry Kubusia.
Matematycznie za cytatem Volrtaha (pkt. 29.1) jest tu wszystko w porządku
Definicja miękkiej jedynki:
Miękka jedynka może zajść, ale nie musi.
Definicja miękkiego zera:
Miękkie zero może zajść, ale nie musi.
Jak działają w praktyce miękkie jedynki i miękkie zera?
W operatorze implikacji odwrotnej p||~>q dwie miękkie jedynki mamy na pozycjach B1 i A1’.
Przypadek 1.
Załóżmy, że zajdzie miękka jedynka w linii B1.
B1.
Jeśli zajdzie p to może ~> zajść q
p~>q =1
Zajście p jest warunkiem koniecznym ~> dla zajścia q wtedy i tylko wtedy gdy zbiór p jest nadzbiorem ~> zbioru q
Innymi słowy, może się zdarzyć iterowanie:
Y(B1) = p~~>q = p*q=1 - pojedyncze iterowanie
Co w logice jedynek oznacza:
Y(B1)=1 <=> p=1 i q=1
Dla tego iterowania zdanie A1’ będzie miękkim fałszem:
A1’.
Jeśli zajdzie p to może ~~> zajść ~q
Y(A1’) = p~~>~q = p*~q =0
Dowód:
Z założenia Y(B1) mamy:
(q=1)=(~q=0) - to zaszło z założenia (prawo Prosiaczka)
Stąd dla tego iterowania mamy:
Y(A1’) = p*~q = 1*0 =0
cnd
Wniosek:
Miękka jedynka w linii B1 wymusza miękkie zero w linii A1’ (i odwrotnie), co wyżej zostało udowodnione.
Przypadek 2.
Załóżmy, że zajdzie miękka jedynka w linii A1’.
A1’
Jeśli zajdzie p to może ~~> zajść ~q
A1’ = p~~>~q = p*~q =1
Innymi słowy, może się zdarzyć iterowanie:
Y(A1’) = p~~>~q = p*~q=1 - pojedyncze iterowanie
Co w logice jedynek oznacza:
Y(A1’)=1 <=> p=1 i ~q=1
Dla tego iterowania zdanie B1 będzie miękkim fałszem:
Y(B1) = p~~>q = p*q =0
Dowód:
Z założenia Y(A1’) mamy:
(~q=1)=(q=0) - to zaszło z założenia (prawo Prosiaczka)
Stąd mamy:
Y(B1) = p*q = 1*0 =0
cnd
Wniosek:
Miękka jedynka w linii A1’ wymusza miękkie zero w linii B1 (i odwrotnie), co wyżej zostało udowodnione.
Definicja twardej jedynki:
Twarda jedynka zachodzi zawsze bez wyjątków.
B2.
Innymi słowy, jeśli zajdzie ~p to na 100% => zajdzie ~q
B2: ~p=>~q =1
Zajście ~p jest (=1) wystarczające => dla zajścia ~q (twarda jedynka) wtedy i tylko wtedy gdy zbiór ~p jest (=1) podzbiorem => zbioru ~q
Definicja twardego zera:
Twarde zero zachodzi zawsze bez wyjątków
B2’.
Jeśli zajdzie ~p to może ~~> zajść q
B2’: ~p~~>q = ~p*q=0
Na mocy definicji kontrprzykładu fałszywość kontrprzykładu B2’: ~p~~>~q =0 (twarde zero) wymusza prawdziwość warunku wystarczającego B2: ~p=>~q =1 (twarda jedynka) i odwrotnie.
29.2.3 Twarde jedynki w operatorze równoważności p|<=>q
W algebrze Kubusia operator równoważności p|<=>q opisany jest dwoma twardymi jedynkami i dwoma twardymi zerami, czego dowód znajdziemy w punkcie 10.5.2
Definicja tabeli prawdy operatora równoważności p|<=>q:
Tabela prawdy operatora równoważności p|<=>q to analiza tego operatora w warunkach wystarczających =>, warunkach koniecznych ~> i zdarzeniach możliwych ~~> przez wszystkie możliwe przeczenia p i q w kierunku od p do q
Tabela prawdy operatora równoważności p|<=>q:
Kod: |
T1
Tabela prawdy operatora równoważności p|<=>q:
A1B1: p<=>q=(A1: p=>q)*(B1: p~>q)
A1: p=> q =1 - zajście p jest wystarczające => dla zajścia q
Twarda jedynka w A1 wymusza twarde zero w A1' (i odwrotnie)
A1': p~~>~q=0 - prawdziwość A1: p=>q wymusza fałszywość kontrprzykładu A1'
Twarde zero w A1' wymusza twardą jedynkę w A1 (i odwrotnie)
A2B2: ~p<=>~q=(A2:~p~>~q)*(B2:~p=>~q)
B2: ~p=>~q =1 - zajście ~p jest wystarczające => dla zajścia ~q
Twarda jedynka w B2 wymusza twarde zero w B2' (i odwrotnie)
B2':~p~~>q =0 - prawdziwość B2:~p=>~q wymusza fałszywość kontrprzykładu B2'
Twarde zero w B2' wymusza twardą jedynkę w B2 (i odwrotnie)
|
Prawo Krokodyla (pkt. 29.2):
W obsłudze zdań warunkowych "Jeśli p to q" przez wszystkie możliwe przeczenia p i q logika matematyczna musi widzieć tą samą ilość twardych zer i twardych jedynek, inaczej jest wewnętrzne sprzeczna.
Jak widzimy, w operatorze równoważności p|<=>q mamy dwie twarde jedynki (A1 i B2) oraz dwa twarde zera (A1', B2'), co oznacza spełnienie prawa Krokodyla i brak wewnętrznej sprzeczności algebry Kubusia.
Matematycznie za cytatem Volrtaha (pkt. 29.1) jest tu wszystko w porządku
I.
Twarda jedynka i twarde zero po stronie p
Definicja twardej jedynki po stronie p:
Twarda jedynka zachodzi zawsze bez wyjątków.
A1.
Jeśli zajdzie p to na 100% => zajdzie q
p=>q =1
Zajście p jest (=1) wystarczające => dla zajścia q (twarda jedynka) wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q
Definicja twardego zera po stronie p:
Twarde zero zachodzi zawsze bez wyjątków
A1’.
Jeśli zajdzie p to może ~~> zajść ~q
p~~>~q = p*~q=0
Na mocy definicji kontrprzykładu fałszywość kontrprzykładu A1’: p~~>~q =0 (twarde zero) wymusza prawdziwość warunku wystarczającego A1: p=>q =1 (twarda jedynka) i odwrotnie.
Podsumowując:
Twarda jedynka w linii A1 wymusza twarde zero w linii A1’ (i odwrotnie).
II.
Twarda jedynka i twarde zero po stronie ~p
Definicja twardej jedynki po stronie ~p:
Twarda jedynka zachodzi zawsze bez wyjątków.
B2.
Innymi słowy, jeśli zajdzie ~p to na 100% => zajdzie ~q
B2: ~p=>~q =1
Zajście ~p jest (=1) wystarczające => dla zajścia ~q (twarda jedynka) wtedy i tylko wtedy gdy zbiór ~p jest (=1) podzbiorem => zbioru ~q
Definicja twardego zera po stronie ~p:
Twarde zero zachodzi zawsze bez wyjątków
B2’.
Jeśli zajdzie ~p to może ~~> zajść q
B2’: ~p~~>q = ~p*q=0
Na mocy definicji kontrprzykładu fałszywość kontrprzykładu B2’: ~p~~>~q =0 (twarde zero) wymusza prawdziwość warunku wystarczającego B2: ~p=>~q =1 (twarda jedynka) i odwrotnie.
Podsumowując:
Twarda jedynka w linii B2 wymusza twarde zero w linii B2’ (i odwrotnie).
29.2.4 Twarde jedynki w operatorze "albo" p|$q
W algebrze Kubusia operator "albo" p|$q opisany jest dwoma twardymi jedynkami i dwoma twardymi zerami, czego dowód znajdziemy w punkcie 10.8.2
Cytuję:
Definicja tabeli prawdy operatora "albo" p|$q:
Tabela prawdy operatora "albo" p|$q to analiza tego operatora w warunkach wystarczających =>, warunkach koniecznych ~> i zdarzeniach możliwych ~~> przez wszystkie możliwe przeczenia p i q w kierunku od p do q
Tabela prawdy operatora "albo" p|$q na mocy analizy w poprzednim punkcie:
Kod: |
T1
Tabela prawdy operatora "albo" p|$q
A1B1:
p$q=(A1: p=>~q)*(B1: p~>~q)
A1: p=>~q =1 - zajście p jest wystarczające => dla zajścia ~q
Twarda jedynka w A1 wymusza twarde zero w A1' (i odwrotnie)
A1': p~~>q =0 - prawdziwość A1: p=>~q wymusza fałszywość kontrprzykładu A1'
Twarde zero w A1' wymusza twardą jedynkę w A1 (i odwrotnie)
A2B2:
~p$~q=(A2:~p~>q)*(B2:~p=>q)
B2: ~p=> q =1 - zajście ~p jest wystarczające => dla zajścia q
Twarda jedynka w B2 wymusza twarde zero w B2' (i odwrotnie)
B2':~p~~>~q=0 - prawdziwość B2:~p=>q wymusza fałszywość kontrprzykładu B2'
Twarde zero w B2' wymusza twardą jedynkę w B2 (i odwrotnie)
|
Prawo Krokodyla (pkt. 29.2):
W obsłudze zdań warunkowych "Jeśli p to q" przez wszystkie możliwe przeczenia p i q logika matematyczna musi widzieć tą samą ilość twardych zer i twardych jedynek, inaczej jest wewnętrzne sprzeczna.
Jak widzimy, w operatorze "albo" p|$q mamy dwie twarde jedynki (A1 i B2) oraz dwa twarde zera (A1', B2'), co oznacza spełnienie prawa Krokodyla i brak wewnętrznej sprzeczności algebry Kubusia.
Matematycznie za cytatem Volrtaha (pkt. 29.1) jest tu wszystko w porządku
I.
Twarda jedynka i twarde zero po stronie p
Definicja twardej jedynki po stronie p:
Twarda jedynka zachodzi zawsze bez wyjątków.
A1.
Jeśli zajdzie p to na 100% => zajdzie ~q
p=>~q =1
Zajście p jest (=1) wystarczające => dla zajścia q (twarda jedynka) wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q
Przykład:
A1.
Jeśli dowolny człowiek jest mężczyzną (M) to na 100% => nie jest kobietą (~K)
M=>~K =1
Bycie mężczyzną (M) jest warunkiem wystarczającym => do tego, aby nie być kobietą (~K)
To samo w zapisach formalnych:
p=>~q =1
Definicja twardego zera po stronie p:
Twarde zero zachodzi zawsze bez wyjątków
A1’.
Jeśli zajdzie p to może ~~> zajść q
p~~>q = p*q=0
Na mocy definicji kontrprzykładu fałszywość kontrprzykładu A1’: p~~>q =0 (twarde zero) wymusza prawdziwość warunku wystarczającego A1: p=>~q =1 (twarda jedynka) i odwrotnie.
Przykład:
A1’.
Jeśli dowolny człowiek jest mężczyzną (M) to może ~~> być kobietą (K)
M~~>K = M*K =0
Nie może się zdarzyć ~~> (=0), że dowolny człowiek jest jednocześnie mężczyzną (M) i kobietą (K)
To samo w zapisach formalnych:
p~~>q = p*q =0
Podsumowując:
Twarda jedynka w linii A1 wymusza twarde zero w linii A1’ (i odwrotnie).
II.
Twarda jedynka i twarde zero po stronie ~p
Przykład o mężczyźnie i kobiecie dla tego przypadku znajdziemy w punkcie 17.5.1
Definicja twardej jedynki po stronie ~p:
Twarda jedynka zachodzi zawsze bez wyjątków.
B2.
Innymi słowy, jeśli zajdzie ~p to na 100% => zajdzie q
B2: ~p=>q =1
Zajście ~p jest (=1) wystarczające => dla zajścia q (twarda jedynka) wtedy i tylko wtedy gdy zbiór ~p jest (=1) podzbiorem => zbioru q
Definicja twardego zera po stronie ~p:
Twarde zero zachodzi zawsze bez wyjątków
B2’.
Jeśli zajdzie ~p to może ~~> zajść ~q
B2’: ~p~~>~q = ~p*~q=0
Na mocy definicji kontrprzykładu fałszywość kontrprzykładu B2’: ~p~~>~q =0 (twarde zero) wymusza prawdziwość warunku wystarczającego B2: ~p=>q =1 (twarda jedynka) i odwrotnie.
Podsumowując:
Twarda jedynka w linii B2 wymusza twarde zero w linii B2’ (i odwrotnie).
29.2.5 Brak twardych jedynek w operatorze chaosu p||~~>q
Tu posłużę się dwoma, kluczowymi odnośnikami:
Punkt 10.10
Definicja chaosu p|~~>q w logice dodatniej (bo q):
Chaos p|~~>q w logice dodatniej (bo q) to nie zachodzenie ani warunku koniecznego ~> ani też warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
stąd:
A1B1:
p|~~>q = ~(A1: p=>q)*~(B1: p~>q) =~(0)*~(0) = 1*1 =1
Punkt 10.10.2
Definicja tabeli prawdy operatora chaosu p||~~>q:
Tabela prawdy operatora chaosu p||~~>q to analiza tego operatora w warunkach wystarczających =>, warunkach koniecznych ~> i zdarzeniach możliwych ~~> przez wszystkie możliwe przeczenia p i q w kierunku od p do q
Zauważmy, że w operatorze chaosu p||~~>q z definicji nie ma żadnego warunku wystarczającego ~> co wymusza brak warunku koniecznego ~>.
Stąd w tabeli operatora chaosu p||~~>q w analizie tego operatora przez wszystkie możliwe przeczenia p i q muszą być wszędzie wynikowe jedynki.
Zapiszmy tabele prawdy operatora chaosu p||~~>q wyprowadzoną w poprzednim punkcie dla ułatwienia upraszczając indeksowanie, co jest bez znaczenia
Kod: |
T2
Tabela prawdy operatora chaosu p||~~>q
A: p~~> q=1 - możliwe jest jednoczesne zajście zdarzeń p i q
B: p~~>~q=1 - możliwe jest jednoczesne zajście zdarzeń p i ~q
C:~p~~>~q=1 - możliwe jest jednoczesne zajście zdarzeń ~p i ~q
D:~p~~> q=1 - możliwe jest jednoczesne zajście zdarzeń ~p i q
|
Prawo Krokodyla (pkt. 29.2):
W obsłudze zdań warunkowych "Jeśli p to q" przez wszystkie możliwe przeczenia p i q logika matematyczna musi widzieć tą samą ilość twardych zer i twardych jedynek, inaczej jest wewnętrzne sprzeczna.
W operatorze chaosu p||~~>q wszystkie jedynki są miękkie, nie ma tu żadnego warunku wystarczającego =>, zatem nie ma tu ani jednej twardej jedynki, co pociąga za sobą brak twardego zera.
Prawo Krokodyla jest oczywiście spełnione, co oznacza brak wewnętrznej sprzeczności algebry Kubusia.
Matematycznie za cytatem Volrtaha (pkt. 29.1) jest tu wszystko w porządku
Ostatnio zmieniony przez rafal3006 dnia Pon 20:10, 17 Mar 2025, w całości zmieniany 1 raz
|
|
Powrót do góry |
|
 |
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 37352
Przeczytał: 18 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Pon 20:15, 17 Mar 2025 Temat postu: |
|
|
Algebra Kubusia – matematyczna wojna wszech czasów
30.0 Geneza twardych i miękkich zer i jedynek w algebrze Boole’a
Spis treści
30.0 Geneza twardych i miękkich zer i jedynek w algebrze Boole’a 1
30.1 Wstęp do twardych i miękkich zer i jedynek w warunku wystarczającym => 2
30.1.1 Geneza twardych i miękkich zer i jedynek w warunku wystarczającym => 5
30.2 Wstęp do twardych i miękkich zer i jedynek w równoważności <=> 11
30.2.1 Geneza twardych i miękkich zer i jedynek w równoważności <=> 16
30.0 Geneza twardych i miękkich zer i jedynek w algebrze Boole’a
Algebra Kubusia to matematyczny opis języka potocznego (w tym matematyki i fizyki).
Algebra Kubusia zawiera w sobie nową algebrę Boole’a mówiącą wyłącznie o spójnikach „i”(*) oraz „lub”(+) z języka potocznego człowieka.
Innymi słowy:
Aktualna algebra Boole’a w ogóle nie zajmuje się kluczową i najważniejszą częścią logiki matematycznej, czyli obsługą zdań warunkowych „Jeśli p to q” definiowanych warunkami wystarczającymi => i koniecznymi ~>.
Definicja nowej algebry Boole’a na poziomie znaczków:
Nowa algebra Boole’a to algebra dwuelementowa akceptująca zaledwie pięć znaczków:
1 = prawda
0 = fałsz
„nie”(~) - negacja (zaprzeczenie), słówko „NIE” w języku potocznym
Spójniki logiczne zgodne z językiem potocznym:
„i”(*) - spójnik „i”(*) w języku potocznym
„lub”(+) - spójnik „lub”(+) w języku potocznym
Dlaczego nowa algebra Boole’a?
1.
W algebrze Kubusia zachodzi tożsamość znaczków:
Spójnik „i”(*) z języka potocznego = bramka AND (*) w technice = koniunkcja (*) w matematyce
Spójnik „lub”(+) z języka potocznego = bramka OR(+) w technice = alternatywa (+) w matematyce
Dowód tego faktu na poziomie 5-cio latka znajdziemy w punkcie 1.9 (sterowanie windą).
2.
Stara algebra Boole’a nie zna kluczowych dla logiki matematycznej pojęć: logika dodatnia (bo p) i logika ujemna (bo ~p). Definicję znajdziemy w pkt. 1.1.1
3.
Stara algebra Boole'a jest wewnętrznie sprzeczna na poziomie funkcji logicznych w logice dodatniej (bo Y) i ujemnej (bo ~Y), co udowodnimy za chwilkę (pkt. 1.5.7 i 1.5.8)
Tragedią ziemskiej logiki matematycznej jest fakt, że nie zna ona pojęcia funkcji logicznej w logice ujemnej (bo ~Y), akceptując wyłącznie funkcje logiczne w logice dodatniej (bo Y).
Na początek przypomnijmy sobie kluczową definicję funkcji alternatywno-koniunkcyjne często używaną w poniższych rozważaniach.
Definicja funkcji alternatywno-koniunkcyjnej:
Funkcja logiczna Y ma postać alternatywno-koniunkcyjną wtedy i tylko wtedy gdy nie zawiera ani jednego członu w postaci koniunkcyjno-alternatywnej.
Inaczej funkcja Y ma postać koniunkcyjno-alternatywną lub mieszaną
Logiką zrozumiałą dla człowieka jest wyłącznie postać alternatywno-koniunkcyjna (dowód w pkt. 1.13) gdzie wszystkie zmienne na mocy prawa Prosiaczka sprowadzone są do logicznych jedynek.
Wniosek:
Jeśli w dowolnym równaniu algebry Boole'a napotkamy fragment koniunkcyjno-alternatywny to ten fragment wymnażamy logicznie przechodząc do funkcji alternatywno-koniunkcyjnej.
W tym miejscu czytelnik proszony jest o przypomnienie sobie wiadomości elementarnych w kwestii warunków wystarczających => i koniecznych ~> zawartych w punktach 2.4 do 2.5
30.1 Wstęp do twardych i miękkich zer i jedynek w warunku wystarczającym =>
Na mocy rachunku zero-jedynkowego mamy matematyczne związki warunku wystarczającego => i koniecznego ~> w zapisie skróconym (pkt. 2.5)
Kod: |
T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
## ## ## ## ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5: p+~q
Prawa Kubusia: | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q | A1: p=>q = A4:~q=>~p
B1: p~>q = B2:~p=>~q | B2:~p=>~q = B3: q=>p
Prawa Tygryska: | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p | B1: p~>q = B4:~q~>~p
Gdzie:
p=>q = ~p+q - definicja warunku wystarczającego =>
p~>q = p+~q - definicja warunku koniecznego ~>
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
I Prawo Sowy
Dla udowodnienia prawdziwości wszystkich zdań serii Ax potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Ax
Dla udowodnienia fałszywości wszystkich zdań serii Ax potrzeba i wystarcza udowodnić fałszywość dowolnego zdania serii Ax
##
II Prawo Sowy
Dla udowodnienia prawdziwości wszystkich zdań serii Bx potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Bx
Dla udowodnienia fałszywości wszystkich zdań serii Bx potrzeba i wystarcza udowodnić fałszywość dowolnego zdania serii Bx
Gdzie:
## - różne na mocy definicji
Prawa Sowy to:
Ogólna definicja tożsamości logicznej „=” dla wielu zdań:
Prawdziwość dowolnego zdania w tożsamości logicznej „=” wymusza prawdziwość pozostałych zdań
Fałszywość dowolnego zdania w tożsamości logicznej „=” wymusza fałszywość pozostałych zdań
Tożsame znaczki tożsamości logicznej to:
„=”, [=], <=> (wtedy i tylko wtedy)
A1B1:
Definicja implikacji prostej p|=>q:
Implikacja prosta p|=>q w logice dodatniej (bo q) to spełniony wyłącznie warunek wystarczający => między tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
Stąd mamy:
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) =1*~(0)=1*1=1
Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>~q=p*~q
Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1
(i odwrotnie)
Na mocy definicji implikacji prostej p|=>q oraz definicji kontrprzykładu w zdarzeniach nasza tabela T0 przyjmuje szczegółową postać implikacji prostej p|=>q
Kod: |
T1
Definicja implikacji prostej p|=>q z uwzględnieniem definicji kontrprzykładu działającej wyłącznie w warunkach wystarczających =>
A1B1: A2B2: | A3B3: A4B4: A5B5:
Y= Y= Y= Y= Y=
A: 1: p=> q= 1 = 2:~p~>~q=1 [=] 3: q~>p =1 = 4:~q=>~p=1 [=] 5: ~p+q
A’: 1: p~~>~q=0 = 4:~q~~>p=1
## ## ## ## ##
Y= Y= Y= Y= Y=
B: 1: p~> q =0 = 2:~p=>~q=0 [=] 3: q=> p =0 = 4:~q~>p =0 [=] 5: p+~q
B’: 2:~p~~>q=1 3: q~~>~p=1
Gdzie:
p=>q = ~p+q - definicja warunku wystarczającego =>
##
p~>q = p+~q - definicja warunku koniecznego ~>
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Definicja operatora implikacji prostej p||=>q:
Operator implikacji prostej p||=>q to układ równań logicznych na bazie kolumn A1B1 i A2B2 dający odpowiedź na pytanie o p i ~p
Kolumna A1B1:
A1B1: p|=>q = (A1: (p=>q)*~(B1: p~>q) - co może się wydarzyć jeśli zajdzie p?
Kolumna A2B2
A2B2: ~p|~>~q = (A2: ~p~>~q)*~(B2: ~p=>~q) - co może być jeśli zajdzie ~p?
Typowe zadanie z logiki matematycznej brzmi:
Zbadaj w skład jakiego operatora implikacyjnego wchodzi zdanie:
A1.
Jeśli jutro będzie padało to będzie pochmurno
P=>CH=1
Padanie (P) jest (=1) warunkiem wystarczającym => aby było pochmurno (CH) bo zawsze gdy pada, jest pochmurno.
Na mocy prawa Kłapouchego (pkt. 2.7) nasz punkt odniesienia to:
p=P (pada)
q=CH (chmury)
Szczegółowe rozwiązanie tego zadania mamy w punkcie 3.4.1.
Rozwiązanie skrótowe jest następujące:
Operator implikacji prostej P||=>CH w zapisie aktualnym (nasz przykład):
Operator implikacji prostej P||=>CH to układ równań A1B1 i A2B2 dający odpowiedź na pytanie o padanie (P) i nie padanie (~P)
Kolumna A1B1:
A1B1: P|=>CH = (A1: (P=>CH)*~(B1: P~>CH) - co może się wydarzyć jeśli jutro będzie padało (P)?
Kolumna A2B2
A2B2: ~P|~>~CH = (A2: ~P~>~CH)*~(B2: ~P=>~CH) - co może być jeśli jutro nie będzie padało (~P)?
Skrócona, symboliczna tabela prawdy operatora P||=>CH jest następująca:
Kod: |
T1.
Operator implikacji prostej P||=>CH w znaczkach warunku wystarczającego =>,
warunku koniecznego ~> i zdarzenia możliwego ~~>
A1B1:
Co może się wydarzyć jeśli jutro będzie padało (P=1)?
A1: P=> CH =1 – padanie jest (=1) wystarczające => dla istnienia chmur
A1’: P~~>~CH=0 – niemożliwe jest (=0) zdarzenie pada i nie jest pochmurno
A2B2:
Co może się wydarzyć jeśli jutro nie będzie padało (~P=1)?
A2: ~P~> ~CH=1 – brak padania jest warunkiem koniecznym ~> dla braku chmur
B2’: ~P~~> CH=1 – możliwe jest (=1) zdarzenie nie pada i jest pochmurno
|
Cechą charakterystyczną algebry Kubusia jest jej przełożenie na język potoczny w przełożeniu 1:1.
Przejdźmy z naszego przykładu na zapis ogólny przez podstawienie:
p=P(pada)
q=CH(chmury)
Stąd mamy tabelę T1 w zapisie ogólnym:
Kod: |
T1.
Operator implikacji prostej p||=>q w znaczkach warunku wystarczającego =>,
warunku koniecznego ~> i zdarzenia możliwego ~~>
A1B1:
Co może się wydarzyć jeśli zajdzie p (p=1)?
A1: p=> q =1 – zajście p jest (=1) wystarczające => dla zajścia q
A1’: p~~>~q=0 – niemożliwe jest (=0) jednoczesne zajście zdarzeń p i ~q
A2B2:
Co może się wydarzyć jeśli zajdzie ~p (~p=1)?
A2: ~p~> ~q=1 – zajście ~p jest warunkiem koniecznym ~> dla zajścia ~q
B2’: ~p~~> q=1 – możliwe jest (=1) jednoczesne zajście zdarzeń ~p i q
|
Z tabeli operatora implikacji prostej p||=>q łatwo wyprowadzamy zero-jedynkową definicję warunku wystarczającego p=>q w logice dodatniej (bo q).
Jak to się robi znajdziemy w punkcie 10.1.2.
Kod: |
TW
Zero-jedynkowa definicja warunku wystarczającego =>:
p q Y=(p=>q)=~p+q
A: 1 1 1
B: 1 0 0
C: 0 0 1
D: 0 1 1
|
Z powyższego wynika, że z zero-jedynkowej definicji warunku wystarczającego p=>q łatwo dojdziemy do symbolicznej definicji operatora implikacji prostej p||=>q podejmując działania odwrotne, co opisano w punkcie 10.2.
30.1.1 Geneza twardych i miękkich zer i jedynek w warunku wystarczającym =>
Na bazie wyprowadzonej wyżej zero-jedynkowej definicji warunku wystarczającego => TW możemy łatwo rozszyfrować o co chodzi w twierdzeniu Volratha.
Twierdzenie Volratha:
http://www.sfinia.fora.pl/forum-kubusia,12/kubusiowa-szkola-logiki-na-zywo-dyskusja-z-volrathem,3591-100.html#72062
Wysłany: Śro 13:43, 10 Gru 2008
wykładowca logiki matematycznej volrath napisał: |
Niestety bazowa logika Boole'a domyślnie zakłada, że wszystkie jedynki są miękkie, a zera twarde. Tak już jest skonstruowana. |
Kod: |
TW
Zero-jedynkowa definicja warunku wystarczającego =>
p q Y=(p=>q)=~p+q
A: 1 1 =1
B: 1 0 =0
C: 0 0 =1
D: 0 1 =1
1 2 3
|
Jak wygenerować z tej tabeli operator implikacji prostej p||=>q?
Szczegóły znajdziemy w punkcie 10.2
Największą tragedią wszelkich ziemskich logik matematycznych jest prawo eliminacji warunku wystarczającego => (u Ziemian prawo eliminacji implikacji =>):
Y = (p=>q) = ~p+q
Prawo eliminacji warunku wystarczającego => prowadzi do zagłady wszelkich sensownych ziemskich logik matematycznych, gdyż po jego zastosowaniu wywalamy w kosmos kluczowe pojęcia logiki matematycznej tzn. zarówno definicję warunku wystarczającego => jak i definicję warunku koniecznego ~>.
Dosadniej mówiąc, wywalamy w kosmos poniższy fundament wszelkich sensownych logik matematycznych, nieznany ziemskim matematykom.
Kod: |
T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
## ## ## ## ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5: p+~q
Prawa Kubusia: | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q | A1: p=>q = A4:~q=>~p
B1: p~>q = B2:~p=>~q | B2:~p=>~q = B3: q=>p
Prawa Tygryska: | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p | B1: p~>q = B4:~q~>~p
Gdzie:
p=>q = ~p+q - definicja warunku wystarczającego =>
p~>q = p+~q - definicja warunku koniecznego ~>
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Weźmy to nieszczęsne prawo eliminacji warunku wystarczającego => które sprowadza tabelę T0 wyżej do definicji operatora „lub”(|+) mającej zero wspólnego zarówno z warunkiem wystarczającym =>, jak i koniecznym ~>.
Definicja operatora „lub”(|+):
Operator „lub”(|+) układ równań logicznych 1 i 2 dający odpowiedź na pytanie o funkcję logiczną w logice dodatniej (bo Y) i ujemnej (bo ~Y)
1.
Kiedy zajdzie Y?
Y = ~p+q
co w logice jedynek (bo funkcja alternatywno-koniunkcyjna) oznacza:
Y=1 <=> ~p=1 lub q=1
Czytamy:
Prawdą jest (=1), że zajdzie Y (Y) wtedy i tylko wtedy gdy nie zajdzie p (~p=1) lub zajdzie q (q=1)
… a kiedy zajdzie ~Y
Negujemy równanie 1 stronami:
~Y = (~p+q) = p*~q – na mocy prawa De Morgana
stąd mamy:
2.
Kiedy zajdzie ~Y?
~Y=p*~q
co w logice jedynek (bo funkcja alternatywno-koniunkcyjna) oznacza:
~Y=1 <=> p=1 i ~q=1
Czytamy:
Prawdą jest (=1), że nie zajdzie Y (~Y) wtedy i tylko wtedy gdy zajdzie p (p=1) i nie zajdzie q (~q=1)
Uwaga:
W każdym innym przypadku zajdzie Y.
Zauważmy, że mamy tylko jedno zdarzenie rozłączne dające odpowiedź na pytanie o ~Y, dlatego łatwo generujemy funkcję logiczną Y w zdarzeniach rozłącznych tzn. wszystkie pozostałe zdarzenia z wykluczeniem zdarzenia ~Y.
1’: Y = A: p*q + C: ~p*~q + D: ~p*q
Co w logice jedynek (bo funkcja alternatywno-koniunkcyjna) oznacza:
1’: Y=1 <=> A: p=1 i q=1 lub C: ~p=1 i ~q=1 lub D: ~p=1 i q=1
Oczywistym jest, że matematycznie musi zachodzić tożsamość logiczna [=]:
1: Y=~p+q [=] 1’: Y = A: p*q + C: ~p*~q + D: ~p*q
Sprawdzenie poprzez minimalizację prawej strony:
1’.
Y = p*q + ~p*~q + ~p*q
Y = p*q + ~p*(~q+q) – wyciągnięcie zmiennej ~p przed nawias
Y = ~p + (p*q) – bo ~q+q=1 oraz x*1=x, prawa algebry Boole’a
Y = ~p+(p*q)
Przejście do logiki ujemnej (bo ~Y) poprzez negację zmiennych i wymianę spójników:
~Y = p*(~p+~q)
~Y = p*~p + p*~q
~Y = p*~q – bo p*~p=0 oraz 0+x=x, prawa algebry Boole’a
Powrót do logiki dodatniej (bo Y) poprzez negację zmiennych i wyminę spójników:
Y = ~p+q
Stąd mamy dowód interesującej nas tożsamości:
1: Y=~p+q [=] 1’: Y = A: p*q + C: ~p*~q + D: ~p*q
c.n.d
Zobaczmy jak beznadziejne jest prawo eliminacji warunku wystarczającego => na naszym przykładzie.
A1.
Jeśli jutro będzie padało to na 100% => będzie pochmurno
P=>CH =1
Padanie (P) jest warunkiem wystarczającym => do tego aby było pochmurno (CH), bo zawsze gdy pada, jest pochmurno.
Innymi słowy:
Padanie (P) daje nam gwarancję matematyczną => istnienie chmur (CH), o czym każdy 5-cio latek wie
Matematycznie zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>
Znaczenie zdania A1 jak wyżej rozumie każdy 5-cio latek.
Zastosujmy do zdania A1 prawo eliminacji warunku wystarczającego =>:
p=>q = ~p+q
Nasz przykład:
P=>CH = ~P+CH
Stąd zdanie „tożsame” do zdania A1 brzmi:
1.
Jutro nie będzie padało (~P) lub będzie pochmurno (CH)
1: Y = ~P+CH
co w logice jedynek (bo funkcja alternatywno-koniunkcyjna) oznacza:
Y=1 <=> ~P=1 lub CH=1
Czytamy:
Prawdą jest (=1), że jutro wystąpi zdarzenie Y (Y=1) wtedy i tylko wtedy gdy nie będzie padało (~P) lub będzie pochmurno (CH)
Oczywistym jest, że sensu tego zdania żaden 5-cio latek nie zrozumie, że nie wspomnę o tożsamości:
A1: P=>CH = 1: ~P+CH
która formalnie zachodzi, ale która zabija występujący w zdaniu A1 warunek wystarczający =>.
… a kiedy nie zajdzie zdarzenie Y (~Y=1)?
Negujemy równanie 1 stronami:
~Y = ~(~P+CH) = P*~CH
Stąd mamy:
2.
~Y = P*~CH
co w logice jedynek (bo funkcja alternatywno-koniunkcyjna) oznacza:
~Y=1 <=> P=1 i ~CH=1
Czytamy:
Prawdą jest (=1) że nie zajdzie zdarzenie (~Y): pada (P=1) i nie jest pochmurno (~CH)
Znaczenie symbolu Y:
Y=1 – prawdą jest (=1), że zajdzie zdarzenie Y (Y)
~Y=1 – prawdą jest (=1), że nie zajdzie zdarzenie Y (~Y)
Jak widzimy, sens zdania 2 rozumie każdy 5-cio latek, czego nie da się powiedzieć o zdaniu 1.
Aby zrozumieć sens zdania 1 musimy skorzystać z rozpiski tego zdania na zdarzenia rozłączne, co wyżej w zapisach formalnych wyprowadziliśmy:
1: Y=~p+q [=] 1’: Y = A: p*q + C: ~p*~q + D: ~p*q
Nasz przykład:
p=P (pada)
q=CH (chmury)
1: Y=~P+CH [=] 1’: Y = A: P*CH + C: ~P*~CH + D: ~P*CH
Stąd mamy:
1’.
Kiedy zajdzie zdarzenie (Y=1)?
Y = A: P*CH + C: ~P*~CH + D: ~P*CH
co w logice jedynek (bo funkcja alternatywno-koniunkcyjna) oznacza:
Y=1 <=> A: P=1 i CH=1 lub C: ~P=1 i ~CH=1 lub D: ~P=1 i CH=1
Czytamy:
Prawdą jest (=1), ze możliwe jest zdarzenie Y (Y) wtedy i tylko wtedy gdy:
A: Ya=P*CH=1*1=1 – możliwe jest (=1) zdarzenie: pada (P=1) i jest pochmurno (CH=1)
lub
C: Yc=~P*~CH=1*1=1 - możliwe jest (=1) zdarzenie: nie pada (~P=1) i nie jest pochmurno (~CH=1)
lub
D: Yd=~P*CH=1*1=1 – możliwe jest (=1) zdarzenie: nie pada (~P=1) i jest pochmurno (CH=1)
Jak widzimy, prawdziwość zdań składowych Ya, Yc i Yd jest oczywista dla każdego 5-cio latka, ale by do tych zdań dojść trzeba znać zawansowaną algebrę Boole’a w postaci zamiany sumy logicznej p+q na serię zdarzeń rozłącznych.
Prawo zamiany sumy logicznej p+q na serię zdarzeń rozłącznych:
p+q = p*q + p*~q + ~p*q
Dowód poprawności powyższego prawa.
Nasz przykład w zapisach formalnych:
Y = ~p+q = (~p)*q + (~p)*~q + ~(~p)*q
stąd po minimalizacji mamy:
Y = ~p+q = A: p*q + C: ~p*~q + D: ~p*q
Przejdźmy teraz do finału naszych rozważań:
Kod: |
T2
Pełna tabela prawdy opisująca operator „lub”(|+)
Y=ACD:~p+q = A: p*q + C: ~p*~q + D: ~p*q
|Komentarz
p q ~p ~q Y=ACD:~p+q # ~Y=B: ~p*~q |
A: 1 1 0 0 1 # 0 | Ya= p* q |Yacd=~p+q = Ya+Yc+Yd
B: 1 0 0 1 0 # 1 |~Yb= p*~q |~Yb=p*~q
C: 0 0 1 1 1 # 0 | Yc=~p*~q
D: 0 1 1 0 1 # 0 | Yd=~p* q
1 2 3 4 5 6 7 8 9
Gdzie:
# - dowolna strona znaczka # jest zaprzeczeniem drugiej strony
|
Nasz przykład (poziom 5-cio latka):
Kod: |
T3
Pełna tabela prawdy opisująca operator „lub”(|+)
Y=ACD:~P+CH = A: P*CH + C: ~P*~CH + D: ~P*CH
|Komentarz
P CH ~P ~CH Y=ACD:~P+CH # ~Y=B: ~P*~CH |
A: 1 1 0 0 1 # 0 | Ya= P* CH |Yacd=Ya+Yc+Yd
B: 1 0 0 1 0 # 1 |~Yb= P*~CH |~Yb=P*~CH
C: 0 0 1 1 1 # 0 | Yc=~P*~CH
D: 0 1 1 0 1 # 0 | Yd=~P* CH
1 2 3 4 5 6 7 8 9
Gdzie:
# - dowolna strona znaczka # jest zaprzeczeniem drugiej strony
|
W tabeli T3 doskonale widać, że w pełnej tabeli zero-jedynkowej operatora „lub”(|+) opisujemy wyłącznie jedynki prowadzące do równań alternatywno-koniunkcyjnych, gdyż tylko te równania są zrozumiałe dla człowieka.
Opis wynikowych zer prowadzi do równań koniunkcyjno-alternatywnych, których żaden człowiek nie rozumie od 5-cio latka poczynając, na najwybitniejszych matematykach kończąc, czego dowód mamy w punkcie 1.10 (prawo Pandy).
Definicja twardego zera w logice dodatniej (bo Y):
W dowolnej tabeli zero-jedynkowej twarde zero w logice dodatniej (bo Y) oznacza, iż nie istnieją iterowania (przypadki) w których na pozycji twardego zera może pojawić się jedynka.
Zauważmy, ze w tabeli T3 jedyne twarde zero w logice dodatniej (bo Y) które dla dowolnego iterowania nigdy nie przyjmie wartości logicznej 1 mamy na pozycji B5.
Dowód:
Dowód iż w tabeli T3 mamy do czynienia z jednym twardym zerem to matematyczny opis punktu B5:
B5: Yb=0 <=> P=1 i ~CH=1
Interpretacja:
Fałszem jest (=0), że zajdzie zdarzenie (Yb): pada (P=1) i nie jest pochmurno (~CH=1)
O czym każdy 5-cio latek wie.
Definicja miękkiej jedynki w logice dodatniej (bo Y):
W dowolnej tabeli zero-jedynkowej miękka jedynka w logice dodatniej (bo Y) oznacza, iż istnieją iterowania (przypadki) w których na pozycji jedynki pojawia się logiczne zero.
Zbadajmy jak to jest z logicznymi jedynkami w kolumnie wynikowej Y (ABCD5).
Wynikowe jedynki w kolumnie wynikowej Y (ABCD5) opisuje równanie logiczne:
Y = ~P+CH = A: P*CH + C: ~P*~CH + D: ~P*CH
W rozpisce spójnika „lub”(+) na zdarzenia rozłączne mamy:
1.
Kiedy zajdzie (Y=1)?
Y = A: P*CH + C: ~P*~CH + D: ~P*CH
Co w logice jedynek (bo równanie alternatywno-koniunkcyjne) oznacza:
Y=1 <=> A: P=1 i CH=1 lub C: ~P=1 i ~CH=1 lub D: ~P=1 i CH=1
I.
Założenie konkretnego iterowania Ya:
A: Ya = P*CH =1*1=1 – możliwe jest (=1) zdarzenie (Ya): pada (P=1) i jest pochmurno (CH=1)
Założenie:
P=1 i CH=1
Prawo Prosiaczka:
(P=1)=(~P=0)
(CH=1)=(~CH=0)
Podstawmy to iterowanie do równania 1:
Y = A: P*CH + C:~P*~CH + D: ~P*CH = A: (P=1)*(CH=1)=1 + C: (~P=0)*(~CH=0)=0 + D: (~P=0)*(CH=1)=0
Jak widzimy, dla iterowania P=1 i CH=1 wyłącznie w linii A mamy jedynkę, zaś w liniach C i D mamy 0.
Innymi słowy:
Jedynki w liniach C i D w tabeli T3 są miękkimi jedynkami, bo dla konkretnego iterowania (tu P=1 i CH=1) mogą przyjąć wartości logiczne 0.
Zauważmy, że dla tego iterowania zero w punkcie B5 (Yb) pozostanie zerem.
Dowód:
Yb=0 <=> B: P*~CH = (P=1)*(~CH=0)= 1*0=0
II.
Założenie konkretnego iterowania Yc:
C: Yc=~P*~CH=1*1=1 - możliwe jest (=1) zdarzenie (Yc): nie pada (~P=1) i nie jest pochmurno (~CH=1)
Założenie:
~P=1 i ~CH=1
Prawo Prosiaczka:
(~P=1)=(P=0)
(~CH=1)=(CH=0)
Podstawmy to iterowanie do równania 1:
Y = A: P*CH + C:~P*~CH + D: ~P*CH = A: (P=1)*(CH=0)=0 + C: (~P=1)*(~CH=1)=1 + D: (~P=1)*(CH=0)=0
Dla iterowania ~P=1 i ~CH=1 wyłącznie w linii C mamy jedynkę, zaś w liniach A i D mamy 0.
Innymi słowy:
Jedynki w liniach A i D w tabeli T3 są miękkimi jedynkami, bo dla konkretnego iterowania (tu ~P=1 i ~CH=1) mogą przyjąć wartości logiczne 0.
Zauważmy, że dla tego iterowania zero w punkcie B5 (Yb) pozostanie zerem.
Dowód:
Yb=0 <=> B: P*~CH = (P=0)*(~CH=1)= 0*1=0
III.
Ostatnie możliwe iterowanie to Yd:
D: Yd = ~P*CH =1*1=1 – możliwe jest (=1) zdarzenie (Yc): nie pada (~P=1) i jest pochmurno (CH=1)
Założenie:
~P=1 i CH=1
Prawo Prosiaczka:
(~P=1)=(P=0)
(CH=1)=(~CH=0)
Podstawmy to iterowanie do równania 1:
Y= A: P*CH + C: ~P*~CH + D: ~P*CH = A: (P=0)*(CH=1)=0 + C: (~P=1)*(~CH=0)=0 + D: (~P=1)*(CH=1)=1
Jak widzimy, dla iterowania ~P=1 i CH=1 wyłącznie w linii D mamy jedynkę, zaś w liniach A i C mamy 0.
Innymi słowy:
Jedynki w liniach A i C w tabeli T3 są miękkimi jedynkami, bo dla konkretnego iterowania (tu ~P=1 i CH=1) mogą przyjąć wartości logiczne 0.
Zauważmy, że dla tego iterowania zero w punkcie B5 (Yb) pozostanie zerem.
Dowód:
Yb=0 <=> B: P*~CH = (P=0)*(~CH=0) = 0*0=0
Jak widzimy wyżej dla dowolnego iterowania tabeli T3 zero w punkcie B5 zawsze pozostanie zerem (Yb=0), co oznacza iż jest to twarde zero.
Podsumowując:
W kolumnie ABCD5 wszystkie jedynki są miękkimi jedynkami, co jest dowodem wewnętrznej sprzeczności logiki matematycznej po zastosowaniu prawa eliminacji warunku wystarczającego =>:
A1: P=>CH = ~P+CH = A: P*CH + C: ~P*~CH + D: ~P*CH
bowiem w znaczkach =>, ~> i ~~> w punkcie A5 występuje ewidentna twarda jedynka wymuszająca twarde zero punkcie B5 (kontrprzykład).
Dowód:
Kod: |
T1.
Operator implikacji prostej P||=>CH w znaczkach warunku wystarczającego =>,
warunku koniecznego ~> i zdarzenia możliwego ~~>
A1B1:
Co może się wydarzyć jeśli jutro będzie padało (P=1)?
A: P=> CH =1 – padanie jest (=1) wystarczające => dla istnienia chmur
B: P~~>~CH=0 – niemożliwe jest (=0) zdarzenie pada i nie jest pochmurno
A2B2:
Co może się wydarzyć jeśli jutro nie będzie padało (~P=1)?
C: ~P~> ~CH=1 – brak padania jest warunkiem koniecznym ~> dla braku chmur
D: ~P~~> CH=1 – możliwe jest (=1) zdarzenie nie pada i jest pochmurno
|
30.2 Wstęp do twardych i miękkich zer i jedynek w równoważności <=>
Na mocy rachunku zero-jedynkowego mamy matematyczne związki warunku wystarczającego => i koniecznego ~> w zapisie skróconym (pkt. 2.5)
Kod: |
T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
## ## ## ## ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5: p+~q
Prawa Kubusia: | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q | A1: p=>q = A4:~q=>~p
B1: p~>q = B2:~p=>~q | B2:~p=>~q = B3: q=>p
Prawa Tygryska: | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p | B1: p~>q = B4:~q~>~p
Gdzie:
p=>q = ~p+q - definicja warunku wystarczającego =>
p~>q = p+~q - definicja warunku koniecznego ~>
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
I Prawo Sowy
Dla udowodnienia prawdziwości wszystkich zdań serii Ax potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Ax
Dla udowodnienia fałszywości wszystkich zdań serii Ax potrzeba i wystarcza udowodnić fałszywość dowolnego zdania serii Ax
##
II Prawo Sowy
Dla udowodnienia prawdziwości wszystkich zdań serii Bx potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Bx
Dla udowodnienia fałszywości wszystkich zdań serii Bx potrzeba i wystarcza udowodnić fałszywość dowolnego zdania serii Bx
Gdzie:
## - różne na mocy definicji
Prawa Sowy to:
Ogólna definicja tożsamości logicznej „=” dla wielu zdań:
Prawdziwość dowolnego zdania w tożsamości logicznej „=” wymusza prawdziwość pozostałych zdań
Fałszywość dowolnego zdania w tożsamości logicznej „=” wymusza fałszywość pozostałych zdań
Tożsame znaczki tożsamości logicznej to:
„=”, [=], <=> (wtedy i tylko wtedy)
A1B1:
Definicja równoważności p<=>q:
Równoważność p<=>q w logice dodatniej (bo q) to spełnienie zarówno warunku wystarczającego =>, jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
Stąd:
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) =1*1 =1
Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>~q=p*~q
Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1
(i odwrotnie)
Na mocy definicji równoważności p<=>q oraz definicji kontrprzykładu w zdarzeniach nasza tabela T0 przyjmuje szczegółową postać równoważności p<=>q
Kod: |
T1
Definicja implikacji równoważności p<=>q z uwzględnieniem definicji kontrprzykładu działającej wyłącznie w warunkach wystarczających =>
A1B1: A2B2: | A3B3: A4B4: A5B5:
Y= Y= Y= Y= Y=
A: 1: p=> q= 1 = 2:~p~>~q=1 [=] 3: q~>p =1 = 4:~q=>~p=1 [=] 5: ~p+q
A’: 1: p~~>~q=0 = 4:~q~~>p=1
## ## ## ## ##
Y= Y= Y= Y= Y=
B: 1: p~> q =1 = 2:~p=>~q=1 [=] 3: q=> p =1 = 4:~q~>p =1 [=] 5: p+~q
B’: 2:~p~~>q=0 3: q~~>~p=0
Gdzie:
p=>q = ~p+q - definicja warunku wystarczającego =>
##
p~>q = p+~q - definicja warunku koniecznego ~>
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Definicja operatora równoważności p|<=>q w zapisie formalnym:
Operator równoważności p|<=>q to układ równań A1B1 i A2B2 dający odpowiedź na pytanie o p (A1B1) i ~p (A2B2).
Kolumna A1B1:
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) - co może się wydarzyć jeśli zajdzie p?
Kolumna A2B2:
A2B2: ~p<=>~q = (A2:~p~>~q)*(B2: ~p=>~q) - co może się wydarzyć jeśli zajdzie ~p?
Typowe zadanie z logiki matematycznej brzmi:
Dany jest schemat elektryczny sterowania żarówką S przez przycisk A .
Kod: |
S1 Schemat 1
S A
------------- ______
-----| Żarówka |-------o o-----
| ------------- |
| |
______ |
___ U (źródło napięcia) |
| |
| |
------------------------------------
|
Zbadaj jaki operator implikacyjny realizuje powyższy układ?
Rozwiązanie:
A1.
Jeśli wciśnięty jest przycisk A (A=1) to na 100% => żarówka S świeci się (S=1)
A=>S =1
Wciśnięcie przycisku A (A=1) jest (=1) warunkiem wystarczającym => dla świecenia żarówki S (S=1), bo w układzie nie ma przycisku C (zmienna wolna) połączonego szeregowo z przyciskiem A
Na mocy prawa Kłapouchego mamy:
p=A (przycisk)
q=S ( żarówka)
Stąd mamy zdanie A1 w zapisie formalnym:
A1: p=>q =1
Badamy spełnienie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku.
B1.
Jeśli wciśnięty jest przycisk A (A=1) to na 100% ~> świeci się żarówka S (S=1)
A~>S =1
To samo w zapisie formalnym:
p~>q =1
Wciśnięcie przycisku A (A=1) jest (=1) warunkiem konicznym ~> dla świecenia się żarówki S (S=1), bo w układzie nie ma dodatkowego przycisku B (zmienna wolna) połączonego równolegle do A, który by zaświecił żarówkę S niezależnie od stanu przycisku A.
Stąd mamy rozwiązanie iż mamy tu to czynienia z równoważnością A<=>S:
Kod: |
S1 Schemat 1
Fizyczna realizacja równoważności A<=>S w zdarzeniach:
A1: A=>S =1 - wciśnięcie A jest (=1) wystarczające => dla świecenia S
B1: A~>S =1 - wciśnięcie A jest (=1) konieczne ~> dla świecenia S
A<=>S=(A1: A=>S)*(B1: A~>S)=1*1=1
S A
------------- ______
-----| Żarówka |-------o o-----
| ------------- |
| |
______ |
___ U (źródło napięcia) |
| |
| |
------------------------------------
Zmienne związane definicją: A, S
Zmienna wolna: brak, nie ma żadnych innych przycisków z wyjątkiem A
Istotą równoważności jest brak zmiennych wolnych
|
Definicja zmiennej związanej:
Zmienna związana to zmienna występujące w układzie uwzględniona w opisie matematycznym układu.
Zmienna związana z definicji jest ustawiana na 0 albo 1 przez człowieka.
Definicja zmiennej wolnej:
Zmienna wolna to zmienna występująca w układzie, ale nie uwzględniona w opisie matematycznym układu.
Zmienna wolna z definicji może być ustawiana na 0 albo 1 poza kontrolą człowieka.
W układzie S1 nie ma zmiennych wolnych.
Stąd mamy:
Definicja równoważności A<=>S:
Równoważność A<=>S w logice dodatniej (bo S) to spełnienie zarówno warunku wystarczającego =>, jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: A=>S =1 - wciśnięcie A jest (=1) wystarczające => dla świecenia żarówki S
B1: A~>S =1 - wciśnięcie A jest (=1) konieczne ~> dla świecenia żarówki S
Stąd mamy definicję równoważności A<=>S w równaniu logicznym:
A1B1: A<=>S = (A1: A=>S)*(B1: A~>S) =1*1 =1
Na mocy prawa Kłapouchego nasz punkt odniesienia:
p=A (przycisk A)
q=S (żarówka S)
Stąd mamy to samo w zapisie formalnym:
Definicja równoważności p<=>q:
Równoważność p<=>q w logice dodatniej (bo p) to spełnienie zarówno warunku wystarczającego =>, jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 – zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 – zajście p jest (=1) konieczne ~> dla zajścia q
Stąd mamy definicję równoważności p<=>q w równaniu logicznym:
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) =1*1=1
Definicja operatora równoważności p|<=>q w zapisie formalnym:
Operator równoważności p|<=>q to układ równań A1B1 i A2B2 dający odpowiedź na pytanie o p (A1B1) i ~p (A2B2).
Kolumna A1B1:
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) - co może się wydarzyć jeśli zajdzie p?
Kolumna A2B2:
A2B2: ~p<=>~q = (A2:~p~>~q)*(B2: ~p=>~q) - co może się wydarzyć jeśli zajdzie ~p?
Przejdźmy na zapis aktualny podstawiając:
p=A (przycisk A)
q=S (żarówka S)
Stąd mamy:
Definicja operatora równoważności A|<=>S w zapisie aktualnym:
Operator równoważności A|<=>S w logice dodatniej (bo S) to układ równań A1B1 i A2B2 dający odpowiedź na pytanie o wciśnięty przycisk A (A) oraz o nie wciśnięty przycisk A (~A)
Kolumna A1B1:
A1B1: A<=>S = (A1: A=>S)*(B1: A~>S) - co może się wydarzyć jeśli A jest wciśnięty (A=1)?
Kolumna A2B2:
A2B2: ~A<=>~S = (A2:~A~>~S)*(B2: ~A=>~S) - co może się wydarzyć jeśli A nie jest wciśnięty (~A=1)?
Szczegółową analizę operatora równoważności A|<=>S znajdziemy w punkcie 6.6.1.
Podsumowanie tej analizy mamy w poniższej tabeli prawdy.
Kod: |
T1
Operator równoważności A|<=>S w znaczkach warunku wystarczającego =>,
warunku koniecznego ~> i zdarzenia możliwego ~~>
A1B1:
A<=>S = (A1: A=>S)*(B2:~A=>~S)=1*1=1
A1: A=> S =1 – wciśnięcie A jest (=1) wystarczające => dla świecenia S
A1’: A~~>~S=0 – niemożliwe jest (=0) zdarzenie: wciśnięty A i nie świeci ~S
A2B2:
~A<=>~S = (A1: A=>S)*(B2:~A=>~S)=1*1=1
B2: ~A=>~S =1 –nie wciśnięcie ~A jest wystarczające => dla nie świecenia ~S
B2’:~A~~>S =0 - niemożliwe jest (=0) zdarzenie: nie wciśnięty ~A i świeci S
|
Cechą charakterystyczną algebry Kubusia jest jej przełożenie na język potoczny w przełożeniu 1:1.
Przejdźmy z naszego przykładu na zapis ogólny przez podstawienie:
p=A (przycisk)
q=S (żarówka)
Stąd mamy tabelę T1 w zapisie ogólnym:
Kod: |
T1
Operator równoważności p|<=>q w znaczkach warunku wystarczającego =>,
warunku koniecznego ~> i zdarzenia możliwego ~~>
A1B1:
p<=>q = (A1: p=>q)*(B2:~p=>~q)=1*1=1
A1: p=> q =1 – zajście p jest (=1) wystarczające => dla zajścia q
A1’: p~~>~q=0 – niemożliwe jest (=0) zdarzenie: zajdzie p i nie zajdzie ~q
A2B2:
~p<=>~q = (A1: p=>q)*(B2:~p=>~q)=1*1=1
B2: ~p=>~q =1 –nie zajście ~p jest wystarczające => dla nie zajścia ~q
B2’:~p~~>q =0 - niemożliwe jest (=0) zdarzenie: nie zajdzie ~p i zajdzie q
|
Z tabeli operatora równoważności p|<=>q łatwo wyprowadzamy zero-jedynkową definicję równoważności p<=>q w logice dodatniej (bo q).
Jak to się robi znajdziemy w punkcie 10.5.3
Kod: |
TR
Zero-jedynkowa definicja równoważności <=>:
p q Y=(p<=>q)=p*q+~p*~q
A: 1 1 1
B: 1 0 0
C: 0 0 1
D: 0 1 0
|
Z powyższego wynika, że z zero-jedynkowej definicji równoważności p<=>q łatwo dojdziemy do symbolicznej definicji operatora równoważności p|<=>q podejmując działania odwrotne, co opisano w punkcie 10.6.
30.2.1 Geneza twardych i miękkich zer i jedynek w równoważności <=>
Na bazie wyprowadzonej wyżej zero-jedynkowej definicji równoważności TR możemy łatwo rozszyfrować o co chodzi w twierdzeniu Volratha.
Twierdzenie Volratha:
http://www.sfinia.fora.pl/forum-kubusia,12/kubusiowa-szkola-logiki-na-zywo-dyskusja-z-volrathem,3591-100.html#72062
Wysłany: Śro 13:43, 10 Gru 2008
wykładowca logiki matematycznej volrath napisał: |
Niestety bazowa logika Boole'a domyślnie zakłada, że wszystkie jedynki są miękkie, a zera twarde. Tak już jest skonstruowana. |
Kod: |
TR
Zero-jedynkowa definicja równoważności <=>:
p q Y=(p<=>q)=p*q+~p*~q
A: 1 1 =1
B: 1 0 =0
C: 0 0 =1
D: 0 1 =0
1 2 3
|
Jak wygenerować z tej tabeli operator równoważności p|<=>q?
Szczegóły znajdziemy w punkcie 10.6
Największą tragedią wszelkich ziemskich logik matematycznych jest prawo eliminacji równoważności <=>, które każdy ziemski matematyk zna i obligatoryjnie stosuje:
Y = (p<=>q) = p*q+~p*~q
Prawo eliminacji równoważności <=> prowadzi do zagłady wszelkich sensownych ziemskich logik matematycznych, gdyż po jego zastosowaniu wywalamy w kosmos kluczowe pojęcia logiki matematycznej tzn. zarówno definicję warunku wystarczającego => jak i definicję warunku koniecznego ~>.
Dosadniej mówiąc, wywalamy w kosmos poniższy fundament wszelkich sensownych logik matematycznych, nieznany ziemskim matematykom.
Kod: |
T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
## ## ## ## ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5: p+~q
Prawa Kubusia: | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q | A1: p=>q = A4:~q=>~p
B1: p~>q = B2:~p=>~q | B2:~p=>~q = B3: q=>p
Prawa Tygryska: | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p | B1: p~>q = B4:~q~>~p
Gdzie:
p=>q = ~p+q - definicja warunku wystarczającego =>
p~>q = p+~q - definicja warunku koniecznego ~>
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Weźmy to nieszczęsne prawo eliminacji równoważności <=> które sprowadza tabelę T0 wyżej do definicji operatora równoważności p<=>q wyrażonego spójnikami „i”(*) i „lub”(+) który ma zero wspólnego zarówno z warunkiem wystarczającym =>, jak i koniecznym ~>.
Definicja operatora równoważności p<=>q wyrażonego spójnikami „i”(*) i „lub”(+):
Operator równoważności p<=>q układ równań logicznych 1 i 2 dający odpowiedź na pytanie o funkcję logiczną w logice dodatniej (bo Y) i ujemnej (bo ~Y)
1.
Kiedy zajdzie Y?
Y = (p<=>q)= p*q+~p*~q
co w logice jedynek (bo funkcja alternatywno-koniunkcyjna) oznacza:
Y=1 <=> p=1 i q=1 lub ~p=1 i ~q=1
Czytamy:
Prawdą jest (=1), że zajdzie Y wtedy i tylko wtedy gdy zajdzie p i zajdzie q lub nie zajdzie ~p i nie zajdzie ~q
… a kiedy zajdzie ~Y
Mamy równanie 1:
1: Y=(p*q)+(~p*~q)
Przejście do logiki ujemnej (bo ~Y) poprzez negację zmiennych i wymianę spójników:
2’: ~Y = (~p+~q)*(p+q)
Otrzymaliśmy funkcję koniunkcyjno-alternatywną której w języku potocznym nikt nie rozumie, co za chwilkę udowodnimy.
Przejście do tożsamej funkcji alternatywno-koniunkcyjnej zrozumiałej przez każdego 5-cio latka polega tu na wymnożeniu wielomianu logicznego po prawej stronie:
2: ~Y = ~p*p + ~p*q + ~q*p + ~q*q = p*~q + ~p*q
bo:
~p*p=0, 0+x=x – prawa algebry Boole’a
~q*q=0, 0+x=x – te same prawa algebry Boole’a
Przemienność spójników „i’(*) i „lub”(+)
Kolejność wykonywania działań w logice matematycznej jest identyczna jak w matematyce klasycznej dla znaczków mnożenia algebraicznego (*) i sumy algebraicznej (+):
nawiasy, „i”(*), „lub”(+)
Stąd mamy:
2.
Kiedy zajdzie ~Y?
~Y=p*~q + ~p*q
co w logice jedynek (bo funkcja alternatywno-koniunkcyjna) oznacza:
~Y=1 <=> p=1 i ~q=1 lub ~p=1 i q=1
Czytamy:
Prawdą jest (=1), że nie zajdzie ~Y wtedy i tylko wtedy gdy zajdzie p i nie zajdzie ~q lub nie zajdzie ~p i zajdzie q
Podstawmy pod powyższą matematykę formalną nasz przykład:
p=A (przycisk)
q=S (żarówka)
Wtedy mamy:
Definicja operatora równoważności A|<=>S wyrażona spójnikami „i”(*) i „lub”(+):
Definicja operatora równoważności A|<=>S układ równań logicznych 1 i 2 dający odpowiedź na pytanie o funkcję logiczną w logice dodatniej (bo Y) i ujemnej (bo ~Y)
1.
Które zdarzenia są możliwe (Y=1)?
Y = (A<=>S)= A: A*S+C: ~A*~S
co w logice jedynek (bo funkcja alternatywno-koniunkcyjna) oznacza:
Y=1 <=> A: A=1 i S=1 lub C: ~A=1 i ~S=1
Czytamy:
Prawdą jest (=1), że zdarzenia możliwe (Y=1) to:
A: Ya=A*S=1*1=1 – przycisk A wciśnięty (A=1) i żarówka świeci się (S=1)
lub
C: Yc=~A*~S=1*1=1 – przycisk A nie wciśnięty (~A=1) i żarówka nie świeci się (~S=1)
Gdzie:
Zdarzenia możliwe Y to suma logiczna zdarzeń cząstkowych:
Y = Ya+Yc
Y = A: A*S+C: ~A*~S
… a które zdarzenia są niemożliwe (~Y=1)?
2.
~Y=A*~S + ~A*S
co w logice jedynek (bo funkcja alternatywno-koniunkcyjna) oznacza:
~Y=1 <=> A=1 i ~S=1 lub ~A=1 i S=1
Czytamy:
Prawdą jest (=1), że zdarzenia niemożliwe (~Y=1) to:
B: Yb=A*~S=1*1=1 – przycisk A wciśnięty (A=1) i żarówka nie świeci się (~S=1)
lub
D: Yd=~A*S=1*1=1 – przycisk A nie wciśnięty (~A=1) i żarówka świeci się (S=1)
Gdzie:
Zdarzenia niemożliwe ~Y to suma logiczna zdarzeń cząstkowych:
~Y = ~Yb+~Yd
Stąd po rozwinięciu mamy:
~Y = B: A*~S + D: ~A*S
Jak widzimy, wszystkie zdania wyżej są zrozumiałe dla każdego ucznia I klasy LO.
Ale!
Weźmy funkcję Y w logice dodatniej (bo Y):
1.
Y = (A*S) + (~A*~S)
Przejście do logiki ujemnej (bo ~Y) poprzez negację zmiennych i wymianę spójników na przeciwne:
2’.
~Y = (~A+~S)*(A+S) – funkcja koniunkcyjno-alternatywna
Wypowiedzmy zdanie 2’ zapisane w postaci funkcji koniunkcyjno-alternatywnej
Zdarzenia niemożliwe (~Y=1) to:
(nie wciśnięty przycisk ~A lub żarówka nie świeci się ~S)
„i”(*)
(wciśnięty przycisk A lub żarówka świeci się S)
Jak widzimy, języku potocznym dostaliśmy bełkot którego nikt nie rozumie.
Stąd mamy prawo Pandy (pkt. 1.10).
Prawo Pandy:
Jedyną funkcją logiczną zrozumiałą dla każdego człowieka jest funkcja alternatywno-koniunkcyjna
Definicja funkcji alternatywno-koniunkcyjnej:
Funkcja logiczna Y jest w postaci alternatywno-koniunkcyjnej wtedy i tylko wtedy gdy nie zawiera ani jednego członu w postaci koniunkcyjno-alternatywnej.
Inaczej funkcja Y jest w postaci koniunkcyjno-alternatywnej lub mieszanej.
Wniosek:
Wszelkie człony koniunkcyjno-alternatywne w funkcji logicznej Y musimy logicznie wymnożyć przechodząc do postaci alternatywno-koniunkcyjnej, bo tylko taka postać jest zrozumiała dla człowieka.
Dokładnie dlatego w naszej analizie schematu S1 przeszliśmy z funkcją koniunkcyjno-alternatywną:
2’: ~Y = (~A+~S)*(A+S)
do tożsamej funkcji alternatywno- koniunkcyjnej:
~Y=A*~S + ~A*S
która jest rozumiana przez każdego człowieka od ucznia I klasy LO poczynając.
Przejdźmy teraz do finału naszych rozważań.
Zero-jedynkowa tabela prawdy operatora równoważności p|<=>q wyrażonego spójnikami „i”(*) i „lub”(+) to:
Kod: |
T2
Pełna tabela prawdy operatora równoważności p|<=>q w „i”(*) i „lub”(|+)
Yac = Ya + Yc = A: p* q + C: ~p*~q
~Ybd = ~Yb+~Yd = B: p*~q + D: ~p* q
|Komentarz
p q ~p ~q Yac=Ya+Yc # ~Ybd=~Yb+~Yd |
A: 1 1 0 0 1 # 0 | Ya= p* q | Yac=p* q + ~p*~q
B: 1 0 0 1 0 # 1 |~Yb= p*~q |~Ybd=p*~q + ~p* q
C: 0 0 1 1 1 # 0 | Yc=~p*~q
D: 0 1 1 0 0 # 1 |~Yd=~p* q
1 2 3 4 5 6 7 8 9
Gdzie:
# - dowolna strona znaczka # jest zaprzeczeniem drugiej strony
|
To samo dla naszego przykładu A|<=>S:
Kod: |
T3
Pełna tabela prawdy operatora równoważności A|<=>S w „i”(*) i „lub”(|+)
Yac = Ya + Yc = A: A* S + C: ~A*~S
~Ybd = ~Yb+~Yd = B: A*~S + D: ~A* S
|Komentarz
A S ~A ~S Yac=Ya+Yc # ~Ybd=~Yb+~Yd |
A: 1 1 0 0 1 # 0 | Ya= A* S | Yac=A* S + ~A*~S
B: 1 0 0 1 0 # 1 |~Yb= A*~S |~Ybd=A*~S + ~A* S
C: 0 0 1 1 1 # 0 | Yc=~A*~S
D: 0 1 1 0 0 # 1 |~Yd=~A* S
1 2 3 4 5 6 7 8 9
Gdzie:
# - dowolna strona znaczka # jest zaprzeczeniem drugiej strony
|
W tabeli T3 doskonale widać, że w pełnej tabeli zero-jedynkowej operatora równoważności A|<=>S wyrażonego spójnikami „i”(*) i „lub”(+) opisujemy wyłącznie jedynki prowadzące do równań alternatywno-koniunkcyjnych (algorytm w pkt. 1.13.1), gdyż tylko te równania są zrozumiałe dla człowieka.
Opis wynikowych zer (algorytm w pkt. 1.13.2) prowadzi do równań koniunkcyjno-alternatywnych, których żaden człowiek nie rozumie od 5-cio latka poczynając, na najwybitniejszych matematykach kończąc, czego dowód mamy wyżej oraz w punkcie 1.10 (prawo Pandy).
Definicja twardego zera w logice dodatniej (bo Y):
W dowolnej tabeli zero-jedynkowej twarde zero w logice dodatniej (bo Y) oznacza, iż nie istnieją iterowania (przypadki) w których na pozycji twardego zera może pojawić się jedynka.
Zauważmy, ze w tabeli T3 mamy dwa twarde zera (B5 i D5) w logice dodatniej (bo Y) które dla dowolnego iterowania nigdy nie przyjmie wartości logicznej 1.
Dowód:
Dowód iż w tabeli T3 mamy do czynienia z twardym zerem na B5 to matematyczny opis punktu B5:
B5: Yb=0 <=> A=1 i ~S=1
Interpretacja:
Fałszem jest (=0), że zajdzie zdarzenie (Yb): wciśnięty przycisk A (A=1) i nie świeci żarówka S (~S=1)
O czym każdy uczeń I klasy LO wie.
Prawo Prosiaczka które możemy stosować wybiórczo do dowolnej zmiennej binarnej:
(Yb=0)=(~Yb=1)
Podstawiając do tabeli T3 mamy zdanie tożsame:
B6: ~Yb=1 <=> A=1 i ~S=1
Czytamy:
Prawdą jest (=1), że nie zajdzie zdarzenie Yb (~Yb): wciśnięty przycisk A (A=1) i nie świeci żarówka S (~S=1)
O czym każdy uczeń I klasy LO wie.
Z ostatniego zapisu mamy poprawne równanie cząstkowe alternatywno-koniunkcyjne które z definicji opisuje wyłącznie jedynki w linii B w tabeli T3.
B6: ~Yb=A*~S
co w logice jedynek (bo funkcja alternatywno-koniunkcyjna) oznacza:
B6: ~Yb=1 <=> A=1 i ~S=1
Ten zapis jest w 100% zgodny z tabelą T3.
Zauważmy, że na mocy prawa Prosiaczka poprawna jest tożsamość zdań:
B5: Yb=0 <=> A=1 i ~S=1 [=] B6: ~Yb=1 <=> A=1 i ~S=1
bo operujemy tu na wartościowaniu linii B.
Jeśli opuścimy wartościowanie to dostaniemy błąd czysto matematyczny:
Kod: |
T4
B5: Yb=A*~S ## B6:~Yb=A*~S
Gdzie:
## - funkcje różne na mocy definicji ##
|
Definicja znaczka różne na mocy definicji ##:
Dwie funkcje logiczne są różna na mocy definicji wtedy i tylko wtedy gdy nie są tożsame i żadna z nich nie jest zaprzeczeniem drugiej.
W tabeli T4 definicja znaczka ## jest spełniona.
Podobnie:
Dowód iż w tabeli T3 mamy do czynienia z jednym twardym zerem to matematyczny opis punktu D5:
D5: Yd=0 <=> ~A=1 i S=1
Interpretacja:
Fałszem jest (=0), że zajdzie zdarzenie (Yd): nie wciśnięty przycisk A (~A=1) i świeci żarówka S (S=1)
O czym każdy uczeń I klasy LO wie.
Prawo Prosiaczka które możemy stosować wybiórczo do dowolnej zmiennej binarnej:
(Yd=0)=(~Yd=1)
Podstawiając do tabeli T3 mamy:
D6: ~Yd=1 <=> ~A=1 i S=1
Stąd zdanie tożsame:
D6: ~Yd=1 <=> ~A=1 i S=1
Czytamy:
Prawdą jest (=1), że nie zajdzie zdarzenie Yd (~Yd): nie wciśnięty przycisk A (~A=1) i świeci żarówka S (S=1)
O czym każdy uczeń I klasy LO wie.
Z ostatniego zapisu mamy poprawne równanie cząstkowe dla linii D:
D6: ~Yd=~A*S
co w logice jedynek (bo funkcja alternatywno-koniunkcyjna) oznacza:
D6: ~Yd=1 <=> ~A=1 i S=1
Ten zapis jest w 100% zgodny z tabelą T3.
Zauważmy, że na mocy prawa Prosiaczka poprawna jest tożsamość zdań:
D5: Yd=0 <=> ~A=1 i S=1 [=] D6: ~Yd=1 <=> ~A=1 i S=1
bo operujemy tu wartościowaniu linii D.
Jeśli opuścimy wartościowanie to dostaniemy błąd czysto matematyczny:
Kod: |
T5
D5: Yd=~A*S ## D6:~Yd=~A*S
Gdzie:
## - funkcje różne na mocy definicji ##
|
Definicja znaczka różne na mocy definicji ##:
Dwie funkcje logiczne są różna na mocy definicji wtedy i tylko wtedy gdy nie są tożsame i żadna z nich nie jest zaprzeczeniem drugiej.
W tabeli T5 definicja znaczka ## jest spełniona.
Definicja miękkiej jedynki w logice dodatniej (bo Y):
W dowolnej tabeli zero-jedynkowej miękka jedynka w logice dodatniej (bo Y) oznacza, iż istnieją iterowania (przypadki) w których na pozycji jedynki pojawia się logiczne zero.
Zbadajmy jak to jest z logicznymi jedynkami w kolumnie wynikowej Y (ABCD5).
Wynikowe jedynki w kolumnie wynikowej Y (ABCD5) opisuje równanie logiczne:
Y = A5: A*S + C5: ~A*~S
W rozpisce spójnika „lub”(+) na zdarzenia rozłączne mamy:
1.
Kiedy zajdzie (Y=1)?
Y = A5: A*S + C5: ~A*~S
Co w logice jedynek (bo równanie alternatywno-koniunkcyjne) oznacza:
Y=1 <=> A5: A=1 i S=1 lub C5: ~A=1 i ~S=1
I.
Założenie konkretnego iterowania Ya:
A: Ya = A*S =1*1=1 – możliwe jest (=1) zdarzenie (Ya): przycisk wciśnięty (A=1) i żarówka świeci (S=1)
Założenie:
A=1 i S=1
Prawo Prosiaczka:
(A=1) = (~A=0)
(S=1)=(~S=0)
Podstawmy to iterowanie do równania 1:
Y = A5: A*S + C5: ~A*~S = A5: (A=1)*(S=1)=1*1=1 + C5: (~A=0)*(~S=0)=0*0=0
Jak widzimy, dla iterowania A=1 i S=1 wyłącznie w punkcie A5 mamy jedynkę, zaś w punkcie C5 mamy zero.
Innymi słowy:
Jedynka w punkcie C5 w tabeli T3 są jest miękką jedynką, bo dla konkretnego iterowania (tu A=1 i S=1) przyjmuje wartość logiczną 0.
Zauważmy, że dla naszego iterowania (A=1 i S=1) w punktach B5 i D5 dostaniemy 0.
Dowód:
B5: Yb=0 <=> B5: A*~S = B5: (A=1)*(~S=0)=1*0 =0
D5: Yd=0 <=> D5: ~A*S = D5: (~A=0)*(S=1)=0*1=0
II.
Ostatnie możliwe założenie konkretnego iterowania Yc to:
C5: Yc=~A*~S=1*1=1 -możliwe jest (=1) zdarzenie (Yc): nie wciśnięty A (~A=1) i żarówka nie świeci ~S
Założenie:
~A=1 i ~S=1
Prawo Prosiaczka:
(~A=1)=(A=0)
(~S=1)=(S=0)
Podstawmy to iterowanie do równania 1:
Y = A5: A*S + C5: ~A*~S = A5: (A=0)*(S=0)=0*0=0 + C5: (~A=1)*(~S=1)=1*1=1
Jak widzimy, dla iterowania ~A=1 i ~S=1 wyłącznie w punkcie C5 mamy jedynkę, zaś w linii A mamy zero.
Innymi słowy:
Jedynka w punkcie A5 w tabeli T3 są jest miękką jedynką, bo dla konkretnego iterowania (tu ~A=1 i ~S=1) przyjmuje wartość logiczną 0.
Zauważmy, że dla naszego iterowania (~A=1 i ~S=1) w punktach B5 i D5 dostaniemy 0.
Dowód:
B5: Yb=0 <=> B: A*~S = B: (A=0)*(~S=1)=0*1 =0
D5: Yd=0 <=> D: ~A*S = D: (~A=1)*(S=0)=1*0 =0
Jak widzimy wyżej dla dowolnego iterowania tabeli T3 zera w punktach B5 i D5 zawsze pozostaną zerami, co oznacza iż są to twarde zera.
Natomiast jedynki w punktach A5 i C5 są miękkimi jedynkami bo istnieją iterowania (przypadki) dla których w tych miejscach pojawia się zero.
Podsumowując:
W kolumnie ABCD5 wszystkie jedynki są miękkimi jedynkami, co jest dowodem wewnętrznej sprzeczności logiki matematycznej po zastosowaniu prawa eliminacji równoważności A<=>S:
Y = (A<=>S) = A5: A*S + C5: ~A*~S
bowiem w znaczkach =>, ~> i ~~> w punkcie A5 istnieje twarda jedynka wymuszająca twarde zero w punkcie B5 (kontrprzykład)
Także w punkcie C5 występują ewidentna twarda jedynka wymuszająca twarde zero punkcie D5 (kontrprzykład).
Dowód:
Kod: |
T1.
Operator równoważności p|<=>q w znaczkach warunku wystarczającego =>,
warunku koniecznego ~> i zdarzenia możliwego ~~>
A1B1:
Co może się wydarzyć jeśli przycisk A będzie wciśnięty (A=1)?
A5: A=> S =1 – wciśnięcie A jest (=1) wystarczające => dla świecenia S
B5: A~~>~S=0 – niemożliwe jest (=0) zdarzenie: wciśnięty A i nie świeci S
A2B2:
Co może się wydarzyć jeśli przycisk A nie jest wciśnięty (~A=1)?
C5: ~A=>~S=1 –nie wciśnięcie A(~A=1) wystarcza => dla nie świecenia S(~S=1)
D5: ~A~~>S=1 –niemożliwe jest (=0) zdarzenie: nie wciśnięty A i świeci S
|
c.n.d.
|
|
Powrót do góry |
|
 |
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 37352
Przeczytał: 18 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Pon 20:16, 17 Mar 2025 Temat postu: |
|
|
Algebra Kubusia – matematyczna wojna wszech czasów
31.0 Klasyczny Rachunek Zdań vs Algebra Kubusia
Spis treści
31.0 Algebra Kubusia vs Klasyczny Rachunek Zdań 1
31.1 Zdania zawsze prawdziwe (=>) w KRZ i algebrze Kubusia (=>) 1
31.1.1 Zdanie zawsze prawdziwe w implikacji => rodem z KRZ 2
31.1.2 Zdanie zawsze prawdziwe w warunku wystarczającym => rodem z AK 4
31.2 Obsługa zdań warunkowych „Jeśli p to q” w algebrze Kubusia 7
31.3 Sztandarowy przykład implikacji prostej P|=>4L w zbiorach 7
31.3.1 Definicja operatora implikacji prostej P||=>4L w zbiorach 10
31.4 Paradoks i brak paradoksu w algebrze Kubusia 13
31.4.1 Paradoks w algebrze Kubusia 13
31.4.2 Brak paradoksu w algebrze Kubusia 13
31.5 Prawo eliminacji równoważności p<=>q w logice matematycznej 15
31.6 Funkcja tożsamościowa - tragedia ziemskiej logiki matematycznej 18
31.0 Algebra Kubusia vs Klasyczny Rachunek Zdań
Dyskutując od 18 lat w temacie algebry Kubusia na różnych forach, ja Rafał3006, od zawsze byłem wściekle zwalczany przez fanatyków KRZ.
Przykład wściekłego ataku fanatyka KRZ ze śfinii:
http://www.sfinia.fora.pl/filozofia,4/algebra-kubusia-rewolucja-w-logice-matematycznej,16435-6475.html#793575
@matematyk szaryobywatel w dyskusji ze mną napisał:
Upośledzenie to nic śmiesznego, niemniej za zasrywanie forum swoim spamem, kompletny brak szacunku dla użytkowników do których krytyki się w ogóle nie odnosisz, tylko zasrywasz dalej tymi samymi bredniami cały czas myśląc że jesteś na tropie czegoś genialnego, powinieneś być trwale wyłączony z dyskusji.
Co do wytłuszczonego:
100% definicji w algebrze Kubusia jest innych, niż w jakiejkolwiek logice matematycznej ziemskich matematyków, więc jak się mam odnosić do krytyki AK z punktu widzenia KRZ?
31.1 Zdania zawsze prawdziwe (=>) w KRZ i algebrze Kubusia (=>)
100% definicji w algebrze Kubusia jest innych, niż w jakiejkolwiek logice matematycznej ziemskich matematyków.
Z powyższego można wnioskować, że świat algebry Kubusia jest rozłączny ze światem Klasycznego Rachunku Zdań bez żadnego wspólnego punktu zaczepienia.
Na szczęście to nieprawda, istnieje nasz wspólny punkt zaczepienia, o czym będzie w niniejszym rozdziale.
31.1.1 Zdanie zawsze prawdziwe w implikacji => rodem z KRZ
Definicja ziemskiej implikacji podana przez Macjana w mojej dyskusji na śfinii:
http://www.sfinia.fora.pl/forum-kubusia,12/elementarz-algebry-boole-a-irbisol-macjan-str-10,2605-240.html#55877
@Macjan
Zrozum - treść zdania, czyli to, o czym ono mówi, nie może w żaden sposób wpływać na jego zapis symboliczny. Zdanie "... i ..." jest koniunkcją niezależnie od tego, co wstawimy w wykropkowane miejsca. Tak samo zdanie "Jeśli ... to ..." jest implikacją.
W obsłudze zdań warunkowych „Jeśli p to q” ziemska logika matematyczna obligatoryjnie korzysta z prawa eliminacji implikacji
Y = (p=>q) =~p+q
Spójrzmy na zero-jedynkową definicję ziemskiej implikacji p=>q.
Kod: |
Zapis |Zapis
zero-jedynkowy |symboliczny
p q Y=(p=>q)=~p+q | Y=(p=>q)=~p+q
A: 1 1 =1 | p* q =1
B: 1 0 =0 | p*~q =0
C: 0 0 =1 |~p*~q =1
D: 0 1 =1 |~p* q =1
1 2 3 4 5 6
Podstawa zapisu symbolicznego
Prawo Prosiaczka:
(p=0)=(~p=1)
|
Dla tabeli zero-jedynkowej ABCD123 odczytujemy:
Y=1 <=> A: p=1 i q=1 lub C: p=0 i q=0 lub D: p=0 i q=1
Prawo Prosiaczka które możemy stosować wybiórczo do dowolnej zmiennej binarnej:
(p=0)=(~p=1)
Na mocy prawa Prosiaczka wszystkie wejścia sprowadzamy do jedynek:
Y=1 <=> A: p=1 i q=1 lub C: ~p=1 i ~q=1 lub D: ~p=1 i q=1
Jedynki w naturalnej logice człowieka są domyślne i możemy je pominąć.
Stąd mamy symboliczny opis implikacji wyrażonej spójnikami „i’(*) i „lub”(+) w zbiorach/zdarzeniach rozłącznych:
1”: Y = A:p*q + C: ~p*~q + D: ~p*q
Co w logice jedynek (bo równanie alternatywno-koniunkcyjne) oznacza:
1”: Y=1 <=> A: p=1 i q=1 lub C: ~p=1 i ~q=1 lub D: ~p=1 i q=1
Minimalizujemy funkcję logiczną 1”:
Y = p*q + ~p*~q + ~p*q
Y = p*q + ~p*(~q+q)
Y = ~p+(p*q)
Przejście do logiki ujemnej (bo ~Y) poprzez negację zmiennych i wymianę spójników na przeciwne:
~Y = p*(~p+~q)
~Y = p*~p + p*~q
~Y = p*~q
Powrót do logiki dodatniej (bo Y) poprzez negację zmiennych i wymianę spójników:
1: Y = ~p+q
Jak widzimy, udowodniliśmy że:
1: Y=~p+q [=] 1”: Y = p*q + ~p*~q + ~p*q
cnd
Do zapamiętania.
Definicja spójnika “lub”(+) w zdarzeniach rozłącznych:
p+q = p*q + p*~q + ~p*q
Dowód wyżej oraz punkt 1.12.3
Weźmy teraz przykład idealnie pasujący do ziemskiej definicji implikacji na poziomie 5-cio latka.
A1.
Jeśli zwierzę jest psem to ma cztery łapy
P=>4L =1
Jak udowodnić prawdziwość tego zdania na gruncie definicji implikacji rodem ze współczesnej logiki matematycznej?
Współczesna logika matematyczna obligatoryjnie korzysta tu z prawa eliminacji implikacji przechodząc do funkcji logicznej algebry Boole’a - wyłącznie spójniki „lub”(+) i „i’(*)
Przypomnijmy sobie definicję funkcji logicznej algebry Boole’a.
Definicja wyrażenia algebry Boole'a:
Wyrażenie algebry Boole'a f(x) to zmienne binarne połączone spójnikami "i"(*) i "lub"(+)
Definicja funkcji logicznej algebry Boole'a:
Funkcja logiczna Y algebry Boole'a to zmienna binarna odzwierciedlająca binarne zmiany wyrażenia algebry Boole'a f(x) w osi czasu.
Prawo eliminacji implikacji p=>q rodem z KRZ to:
Definicja implikacji p=>q wyrażona spójnikami „i”(*) i „lub”(+)
Y = (p=>q)=~p+q = A:p*q + C: ~p*~q + D: ~p*q
Podstawmy:
p=P(pies)
q=4L(cztery łapy)
Stad nasza funkcja logiczna Y w zapisie aktualnym:
Y = (P=>4L) = A: P*4L + C:~P*~4L + D:~P*4L
na mocy definicji funkcji logicznej Y wystarczy, że dowolny składnik sumy logicznej przyjmie wartość logiczną 1 i już funkcja logiczna przybierze wartość logiczną Y=1.
Zapiszmy nasz przykład w symbolicznej tabeli prawdy wyżej wyprowadzonej:
Kod: |
Zapis
symboliczny
p q Y=(p=>q) | Y=(P=>4L)=A: P*4L+C:~P*~4L+ D:~P*4L
A: p* q =1 | P* 4L =1 - jest (=1) pies
B: p*~q =0 | P*~4L =0 - nie ma (=0) psa który nie ma czterech łap
C:~p*~q =1 |~P*~4L =1 - jest (=1) kura, mrówka ..
D:~p* q =1 |~P* 4L =1 - jest (=1) słoń, żyrafa ..
4 5 6 7 8 9
|
Na mocy definicji implikacji wymagane jest, aby wyłącznie pudełko B było puste, pozostałe muszą być niepuste.
Jak widzimy zdanie:
A1.
Jeśli zwierzę jest psem to ma cztery lapy
P=>4L =1
Spełnia definicję implikacji, stąd jego wartość logiczna to 1.
Funkcja logiczna Y skolerowana ze zdaniem A1 jest prawdziwa nie tylko dla psa (A), ale również dla kury (C) i słonia (D), czyli dla absolutnie wszystkich zwierząt chodzących po naszej planecie bo nie ma żadnego zwierzątka w pudełku B.
Wyobraźmy sobie teraz fanatyka KRZ który postanowił nauczyć dzieci aktualnie obowiązującej logiki matematycznej w przedszkolu.
Fanatyk KRZ:
A1.
Jeśli zwierzę jest psem to ma cztery łapy
P=>4L
1.
Fanatyk KRZ:
Powiedzcie mi dzieci, czy zdanie A1 jest prawdziwe dla psa?
Dzieci chórem:
Tak, jest prawdziwe
2.
Fanatyk KRZ:
Czy zdanie A1 jest prawdziwe dla kury?
Dzieci chórem:
Jest fałszywe, bo kura nie jest psem.
Fanatyk KRZ:
Mylicie się dzieci, zdanie A1 jest prawdziwe, tak nam mówi logika matematyczna zwana KRZ.
3.
Fanatyk KRZ:
Ostatnie pytanie:
Czy zdanie A1 jest prawdziwe dla słonia?
Dzieci chórem:
Zdanie A1 jest fałszywe dla słonia, bo słoń nie jest psem
Fanatyk KRZ:
Znowu pudło, zdanie A1 jest prawdziwe dla słonia wedle świętości wszystkich matematyków, logiki matematycznej zwanej KRZ.
Na to wkurzony Jaś (lat 5):
Jak rozumiem, wedle pana logiki pewnie Kopernik była kobietą, tak?
31.1.2 Zdanie zawsze prawdziwe w warunku wystarczającym => rodem z AK
Implikacja p=>q rodem z KRZ i warunek wystarczający p=>q rodem z algebry Kubusia mają identyczne definicje zero-jedynkowe, ale różnice w definicjach rodem z otaczającej nas rzeczywistości są fundamentalne.
1.
Definicja ziemskiej implikacji podana przez Macjana w mojej dyskusji na śfinii:
http://www.sfinia.fora.pl/forum-kubusia,12/elementarz-algebry-boole-a-irbisol-macjan-str-10,2605-240.html#55877
@Macjan
Zrozum - treść zdania, czyli to, o czym ono mówi, nie może w żaden sposób wpływać na jego zapis symboliczny. Zdanie "... i ..." jest koniunkcją niezależnie od tego, co wstawimy w wykropkowane miejsca. Tak samo zdanie "Jeśli ... to ..." jest implikacją.
2.
Definicja warunku wystarczającego => w zbiorach w algebrze Kubusia
Definicja podzbioru => w algebrze Kubusia:
Zbiór p jest podzbiorem => zbioru q wtedy i tylko wtedy gdy wszystkie elementy zbioru p należą do zbioru q
p=>q =1 - wtedy i tylko wtedy gdy relacja podzbioru => jest (=1) spełniona
Inaczej:
p=>q =0 - wtedy i tylko wtedy gdy relacja podzbioru => nie jest (=0) spełniona
Definicja warunku wystarczającego => w zbiorach:
Jeśli p to q
p=>q =1
Zajście p jest (=1) wystarczające => dla zajścia q wtedy i tylko wtedy gdy zbiór p jest (=1) podzbiorem => zbioru q
Inaczej:
p=>q =0
Zajście p nie jest (=0) wystarczające => dla zajścia q wtedy i tylko wtedy gdy zbiór p nie jest (=0) podzbiorem => zbioru q
Matematycznie zachodzi tożsamość logiczna:
Warunek wystarczający => = relacja podzbioru =>
Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
p=>q = ~p+q
Przykład:
A1.
Jeśli zwierzę jest psem to ma cztery łapy
A1: P=>4L =1
Bycie psem jest warunkiem wystarczającym => by mieć cztery łapy, wtedy i tylko wtedy gdy zbiór psów p=[pies] jest podzbiorem => zbioru zwierząt z czterema łapami 4L=[pies, słoń ..]
Każdy 5-cio latek widzi, że definicja podzbioru jest tu spełniona, co jest dowodem prawdziwości zdania A1.
Zauważmy, fundamentalną różnicę między pojęciem implikacji => z KRZ a warunkiem wystarczającym => w algebrze Kubusia mimo że definicje zero-jedynkowe są tu identyczne.
Definicja kontrprzykładu w zbiorach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane elementem wspólnym zbiorów p~~>~q=p*~q
Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)
Przykład:
A1.
Jeśli zwierzę jest psem to ma cztery łapy
A1: P=>4L =1
Bycie psem jest warunkiem wystarczającym => by mieć cztery łapy, wtedy i tylko wtedy gdy zbiór psów p=[pies] jest podzbiorem => zbioru zwierząt z czterema łapami 4L=[pies, słoń ..]
Każdy 5-cio latek widzi, że definicja podzbioru jest tu spełniona, co jest dowodem prawdziwości zdania A1.
Na mocy definicji kontrprzykładu prawdziwość warunku wystarczającego A1: P=>4L=1 wymusza fałszywość kontrprzykładu A1’
A1’
Jeśli zwierzę jest psem to może ~~> nie mieć czterech łap
P~~>~4P = P*~4L=0
Dowód nie wprost:
Na mocy definicji kontrprzykładu nie musimy udowadniać fałszywości zdania A1’, co nie oznacza, że nie możemy tego zrobić
Dowód wprost:
Nie istnieje zwierzę (=0) będące psem (P) i nie mające czterech łap (~4L)
Oczywistość dla każdego 5-cio latka, bo w logice matematycznej za psa przyjmujemy „wzorzec psa”, czyli zwierzę zdrowe z czterema łapami.
Uwaga na standard w algebrze Kubusia:
Kontrprzykład dla warunku wystarczającego => A1 oznaczamy A1’
Weźmy symboliczną tabelę zero-jedynkową warunku wystarczającego p=>q w algebrze Kubusia która będzie identyczna jak wyprowadzona wyżej symboliczna definicja implikacji p=>q rodem z KRZ.
Zapiszmy nasz przykład w symbolicznej tabeli prawdy wyżej wyprowadzonej:
Kod: |
Zapis
symboliczny
p q Y=(p=>q) | Y=(P=>4L)=A: P*4L+C:~P*~4L+ D:~P*4L
A: p* q =1 | P* 4L =1 - jest (=1) pies
B: p*~q =0 | P*~4L =0 - nie ma (=0) psa który nie ma czterech łap
C:~p*~q =1 |~P*~4L =1 - jest (=1) kura, mrówka ..
D:~p* q =1 |~P* 4L =1 - jest (=1) słoń, żyrafa ..
4 5 6 7 8 9
|
Oczywiście również w algebrze Kubusia mamy prawo eliminacji warunku wystarczającego => w postaci przejścia do tożsamej funkcji logicznej Y=(p=>q) wyrażonej spójnikami „i”(*) „lub”(+).
Prawo eliminacji warunku wystarczającego p=>q w algebrze Kubusia to:
Definicja warunku wystarczającego p=>q w algebrze Kubusia wyrażona spójnikami „i”(*) i „lub”(+)
Y = (p=>q)=~p+q = A: p*q + C: ~p*~q + D: ~p*q
Podstawmy:
p=P(pies)
q=4L(cztery łapy)
Stad nasza funkcja logiczna Y w zapisie aktualnym:
Y = (P=>4L) = A: P*4L + C:~P*~4L + D:~P*4L
na mocy definicji funkcji logicznej Y wystarczy, że dowolny składnik sumy logicznej przyjmie wartość logiczną 1 i już funkcja logiczna przybierze wartość logiczną Y=1.
Dalsza analiza i wnioski po zastosowaniu prawa eliminacji warunku wystarczającego p=>q w algebrze Kubusia będą identyczne jak w implikacji p=>q rodem z definicji implikacji rodem z KRZ (pkt. 31.1.1).
Na tym poletku zgodność algebry Kubusia z Klasycznym Rachunkiem Zdań jest 100% - nie ma absolutnie żadnych różnic.
Jaki jest zatem sens pisania, że 100% definicji w algebrze Kubusia jest innych niż w KRZ?
Ten powód to fundamentalnie inne definicje rzeczywiste (związane z otaczającą nas rzeczywistością) podane na początku niniejszego punktu.
Jak widzimy, definicja implikacji p=>q rodem z KRZ ma zero wspólnego z otaczającą nas rzeczywistością natomiast definicja warunku wystarczającego p=>q definiowana jako relacja podzbioru => ma 100% związku z rzeczywistością i jest łatwa do udowodnienia bez korzystania z jakichkolwiek tabel zero-jedynkowych.
31.2 Obsługa zdań warunkowych „Jeśli p to q” w algebrze Kubusia
Jak widzimy wyżej, skorzystanie z prawa eliminacji warunku wystarczającego p=>q w postaci:
Y = (p=>q) =~p+q
choć poprawne matematycznie prowadzi do paradoksu polegającego na tym że zdanie:
A1.
Jeśli zwierzę jest psem to ma cztery łapy
P=>4L =1
Jest prawdziwe dla absolutnie wszystkich zwierząt na naszej planecie, czyli nie tylko dla psa, ale również dla kury, mrówki, węża, wieloryba, słonia, kota etc.
Oczywistym jest, że z takiego rozstrzygnięcia, mimo że matematycznie poprawnego, pękać będą ze śmiechu wszystkie 5-cio latki, a pani przedszkolanka będzie się wymownie stukać palcem w czółko.
Jak uniknąć tego paradoksu tzn. czy istnieje poprawna logika matematyczna eliminująca ten paradoks?
Odpowiedź na to pytanie jest twierdząca - to algebra Kubusia.
W tym momencie czytelnik proszony jest o przeczytaniu potrzebnych dla dalszych wywodów następujących fragmentów algebry Kubusia:
2.3 Elementarne spójniki implikacyjne w zbiorach
2.4 Rachunek zero-jedynkowy warunków wystarczających => i koniecznych ~>
2.8.1 Prawo Słonia dla zbiorów
2.10 Podstawowe spójniki implikacyjne
31.3 Sztandarowy przykład implikacji prostej P|=>4L w zbiorach
Kod: |
T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
## ## ## ## ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5: p+~q
Prawa Kubusia: | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q | A1: p=>q = A4:~q=>~p
B1: p~>q = B2:~p=>~q | B2:~p=>~q = B3: q=>p
Prawa Tygryska: | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p | B1: p~>q = B4:~q~>~p
Gdzie:
p=>q = ~p+q - definicja warunku wystarczającego =>
p~>q = p+~q - definicja warunku koniecznego ~>
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
I Prawo Sowy
Dla udowodnienia prawdziwości wszystkich zdań serii Ax potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Ax
Dla udowodnienia fałszywości wszystkich zdań serii Ax potrzeba i wystarcza udowodnić fałszywość dowolnego zdania serii Ax
##
II Prawo Sowy
Dla udowodnienia prawdziwości wszystkich zdań serii Bx potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Bx
Dla udowodnienia fałszywości wszystkich zdań serii Bx potrzeba i wystarcza udowodnić fałszywość dowolnego zdania serii Bx
Gdzie:
## - różne na mocy definicji
Prawa Sowy to:
Ogólna definicja tożsamości logicznej „=” dla wielu zdań:
Prawdziwość dowolnego zdania w tożsamości logicznej „=” wymusza prawdziwość pozostałych zdań
Fałszywość dowolnego zdania w tożsamości logicznej „=” wymusza fałszywość pozostałych zdań
Tożsame znaczki tożsamości logicznej to:
„=”, [=], <=> (wtedy i tylko wtedy)
Rozważmy nasze zdanie A1.
A1.
Jeśli zwierzę jest psem to ma cztery łapy
A1: P=>4L=1
Nasz punkt odniesienia na mocy prawa Kłapouchego to:
p=P(pies)
q=4L(cztery łapy)
Stąd zdanie A1 w zapisie formalnym (ogólnym):
A1: p=>q =1
Zauważmy, że zdanie A1 to pozycja A1 w tabeli T0 wyżej.
Bycie psem jest (=1) warunkiem wystarczającym => by mieć cztery łapy bo zbiór p=[pies] jest (=1) podzbiorem zbioru zwierząt z czterema łapami 4L=[pies, słoń ..]
Bycie psem daje nam gwarancję matematyczną => że mamy cztery łapy
Matematycznie zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczne =>
Uwaga:
W logice matematycznej za psa przyjmujemy wzorzec psa, czyli zwierzę zdrowe ze wszystkimi czterema łapami.
Przyjmujemy dziedzinę:
ZWZ - zbiór wszystkich zwierząt
ZWZ=[pies, kura, słoń ..]
Wyznaczamy wszystkie możliwe zbiory {p, q, ~p, ~q} które będą nam potrzebne w analizie matematycznej.
Z definicji mamy:
p=[P]=[pies]
q=[4L]=[słoń ..]
ZWZ=[pies, kura, słoń ..]
Obliczamy przeczenia zbiorów definiowane jako ich uzupełnienia do wspólnej dziedziny ZWZ
~p=~P=[ZWZ-P]=[kura, słoń ..]
~q=~4L=[ZWZ-4L]=[pies, kura ..]
Aby rozstrzygnąć z jakim spójnikiem logicznym mamy do czynienia musimy rozstrzygnąć o prawdziwości/fałszywości dowolnego zdania z linii Bx (tabela T0).
Mamy nasze zdanie:
A1: P=>4L=1
To samo w zapisie formalnym:
A1: p=>q
Gdzie:
p=P(pies)
q=4L(cztery lapy)
##
Wybieramy twierdzenie odwrotne do twierdzenia A1, czyli zdanie B3,
B3.
Jeśli zwierzę ma cztery lapy to jest psem
B3: 4L=>P =0
To samo w zapisie formalnym:
B3: q=>p =0
Bo kontrprzykład: słoń ma cztery łapy ale nie jest psem
cnd
Gdzie:
## - różne na mocy definicji
W tym momencie prawdziwość/fałszywość wszelkich zdań w tabeli T0 mamy zdeterminowaną (znaną).
Kod: |
T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q =1 2:~p~>~q =1 [=] 3: q~>p =1 4:~q=>~p =1 [=] 5:~p+ q
A: 1: P=>4L=1 2:~P~>~4L=1 [=] 3: 4L~>P=1 4:~4L=>~P=1 [=] 5:~P+ 4L
## ## ## ## ##
B: 1: p~>q =0 2:~p=>~q =0 [=] 3: q=>p =0 4:~q~>~p =0 [=] 5: p+~q
B: 1: P~>4L=0 2:~P=>~4L=0 [=] 3: 4L=>P=0 4:~4L~>~P=0 [=] 5: P+~4L
Gdzie:
p=>q = ~p+q - definicja warunku wystarczającego =>
p~>q = p+~q - definicja warunku koniecznego ~>
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Stąd mamy rozstrzygnięcie, że nasze zdania w kolumnie bazowej A1B1 to definicja implikacji prostej p|=>q
Definicja implikacji prostej p|=>q:
Implikacja prosta p|=>q w logice dodatniej (bo q) to spełniony wyłącznie warunek wystarczający => między tymi samymi punktami i w tym samym kierunku.
A1: p=>q =1 - p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla zajścia q
Stąd:
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) = 1*~(0)=1*1=1
Czytamy:
Implikacja prosta p|=>q w logice dodatniej (bo q) jest spełniona (=1) wtedy i tylko wtedy gdy zajście p jest wystarczające => dla zajścia q (A1: p=>q=1), ale nie jest konieczne ~> dla zajścia q (B1: p~>q=0)
Nasz przykład:
Definicja implikacji prostej P|=>4L:
Implikacja prosta P|=>4L w logice dodatniej (bo 4L) to spełniony wyłącznie warunek wystarczający => między tymi samymi punktami i w tym samym kierunku.
A1: P=>4L =1 - bycie psem (P) jest (=1) wystarczające => by mieć cztery łapy (4L)
B1: P~>4L =0 - bycie psem (P) nie jest (=0) konieczne ~> by mieć cztery łapy (4L)
Stąd w zapisie aktualnym (przykład) mamy:
A1B1: P|=>4L = (A1: P=>4L)*~(B1: P~>4L) = 1*~(0)=1*1=1
Czytamy:
Implikacja prosta P|=>4L w logice dodatniej (bo 4L) jest spełniona (=1) wtedy i tylko wtedy gdy bycie psem jest (=1) wystarczające => by mieć cztery łapy (A1), ale nie jest (=0) konieczne ~> by mieć cztery łapy (B1)
31.3.1 Definicja operatora implikacji prostej P||=>4L w zbiorach
Definicja operatora implikacji prostej p||=>q:
Operator implikacji prostej p||=>q to układ równań A1B1 i A2B2 dający odpowiedź na pytanie o p (A1B1) i ~p (A2B2).
Kolumna A1B1:
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) - co może się wydarzyć jeśli zajdzie p?
Kolumna A2B2:
A2B2: ~p|~>~q = (A2:~p~>~q)*~(B2: ~p=>~q) - co może się wydarzyć jeśli zajdzie ~p?
Definicja operatora implikacji prostej P||=>4L w zapisie aktualnym:
Operator implikacji prostej P||=>4L to układ równań A1B1 i A2B2 dający odpowiedź na pytanie o P (A1B1) i ~P (A2B2).
Kolumna A1B1:
A1B1: P|=>4L = (A1: P=>4L)*~(B1: P~>4L) - co może się wydarzyć jeśli zwierzę jest psem (P)
Kolumna A2B2:
A2B2: ~P|~>~4L = (A2:~P~>~4L)*~(B2: ~P=>~4L) - co może się wydarzyć zwierzę nie jest psem (~P)
Wyznaczamy wszystkie możliwe zbiory {p, q, ~p, ~q} które będą nam potrzebne w analizie matematycznej.
Z definicji mamy:
p=[P]=[pies]
q=[4L]=[słoń ..]
ZWZ=[pies, kura, słoń ..]
Obliczamy przeczenia zbiorów definiowane jako ich uzupełnienia do wspólnej dziedziny ZWZ
~p=~P=[ZWZ-P]=[kura, słoń ..]
~q=~4L=[ZWZ-4L]=[pies, kura ..]
A1B1:
W kolumnie A1B1 mamy odpowiedź na pytanie o psa:
Co może się wydarzyć jeśli ze zbioru wszystkich zwierząt (ZWZ) wylosujemy psa?
A1: P=>4L =1 - bycie psem (P) jest (=1) wystarczające => by mieć cztery łapy (4L)
B1: P~>4L =0 - bycie psem (P) nie jest (=0) konieczne ~> by mieć cztery łapy (4L)
Stąd w zapisie aktualnym (przykład) mamy:
A1B1: P|=>4L = (A1: P=>4L)*~(B1: P~>4L) = 1*~(0)=1*1=1
A1B1:
Co może się wydarzyć, jeśli ze zbioru wszystkich zwierząt wylosujemy psa (P)?
Odpowiedź w zdaniach warunkowych „Jeśli p to q” mamy w kolumnie A1B1.
A1.
Jeśli dowolne zwierzę jest psem to na 100% => ma cztery łapy
P=>4L =1
To samo w zapisie formalnym:
p=>q =1
Bycie psem jest (=1) warunkiem wystarczającym => by mieć cztery łapy wtedy i tylko wtedy gdy zbiór P=[pies] jest (=1) podzbiorem => zbioru zwierząt z czterema łapami 4L=[pies, słoń ..]
cnd
Prawdziwość warunku wystarczającego => A1 wymusza fałszywość kontrprzykładu A1’ (i odwrotnie).
A1’
Jeśli dowolne zwierzę jest psem to może ~~> nie mieć czterech lap
P~~>~4L = P*~4L =0
To samo w zapisie formalnym:
p~~>~q = p*~q =0
Fałszywość kontrprzykładu A1’ wynika z definicji kontrprzykładu - to jest dowód „nie wprost”.
Nie musimy tu wykonywać dowodu wprost, czyli udowadniać iż zbiory P=[pies] i ~4L=[kura ..] są rozłączne.
… a jeśli zwierzę nie jest pasem?
A1: P=>4L = A2: ~P~>~4L
Prawo Kubusia w zapisie formalnym:
A1: p=>q = A2: ~p~>~q
Idziemy do kolumny A2B2
A2B2:
W kolumnie A2B2 mamy odpowiedź na pytanie o nie psa (~P):
Co może się wydarzyć jeśli ze zbioru wszystkich zwierząt (ZWZ) wylosujemy zwierzę nie będące psem?
A2: ~P~>~4L=1 - nie bycie psem (~P) jest (=1) konieczne ~> by nie mieć czterech łap (~4L)
B2: ~P=>~4L=0 - nie bycie psem (~P) nie jest (=0) wystarczające => by nie mieć czterech łap (~4L)
Stąd w zapisie aktualnym (przykład) mamy:
A2B2: ~P|~>~4L = (A1:~P~>~4L)*~(~P=>~4L) =1*~(0)=1*1=1
A2B2:
Co może się wydarzyć, jeśli ze zbioru wszystkich zwierząt wylosujemy zwierzę nie będące psem?
Odpowiedź w zdaniach warunkowych „Jeśli p to q” mamy w kolumnie A2B2.
A2.
Jeśli dowolne zwierzę nie jest psem to może ~> nie mieć czterech łap
~P~>~4L =1
To samo w zapisie formalnym
~p~>~q =1
Prawdziwość warunku koniecznego ~> A2 gwarantuje nam prawo Kubusia, to jest dowód „nie wprost”.
Z prawa Kubusia wynika, że zbiór ~P=[kura, słoń ..] jest nadzbiorem ~> ~4L=[kura..] - nie musimy tego faktu udowadniać.
Zauważmy, że prawo Kubusia samo nam tu wyskoczyło:
Nie bycie psem (~P) jest konieczne ~> by nie mieć czterech łap (~4L), bo jak się jest psem (P) to na 100% => ma się cztery łapy (4L)
A2: ~P~>~4L + A1: P=>4L
LUB
Fałszywy warunek wystarczający B2: ~P=>~4L=0 na mocy definicji kontrprzykładu daje nam gwarancję matematyczną prawdziwości kontrprzykładu B2’
B2’
Jeśli dowolne zwierzę nie jest psem to może ~~> mieć czterech łap
~P~~>4L = ~P*4L =1
To samo w zapisie formalnym:
~p~~>q = ~p*q =1
Dowód nie wprost:
Na mocy definicji kontrprzykładu nie musimy udowadniać prawdziwości zdania B2’
Dowód wprost:
Istnieje (=1) wspólny element zbiorów ~P=[kura, słoń ..] i 4L=[pies, słoń ..], to słoń
cnd
Podsumowanie:
Operator implikacji prostej P||=>4L to gwarancja matematyczna => po stronie psa (P) o czym mówi zdanie A1 i najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” po nie psa (~P) o czym mówią zdania A2 i B2’
Innymi słowy:
1.
Jeśli ze zbioru wszystkich zwierząt (ZWZ) wylosujemy psa (P) to mamy gwarancję matematyczną => iż będzie on miał cztery łapy (4L) - mówi o tym zdanie A1
2.
Natomiast:
Jeśli ze zbioru wszystkich zwierząt (ZWZ) wylosujemy zwierzę nie będące psem (~P) to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła”, o czym mówią zdania A2 i B2’
Czyli:
Jeśli ze zbioru wszystkich zwierząt ZWZ wylosujemy zwierzę nie będące psem (~P) to zwierzę to może ~> nie mieć czterech łap (~4L) o czym mówi zdanie A2 albo może ~~> mieć cztery łapy na mocy zdania B2’
Zauważmy że:
a)
Układ równań logicznych jest przemienny, stąd mamy:
Operator implikacji odwrotnej ~P||~>~4L to układ równań logicznych:
A2B2: ~P|~>~4L = (A2:~P~>~4L)*~(B2: ~P=>~4L) - co będzie się działo jeśli zwierzę nie jest psem (~P)?
A1B1: P|=>4L = (A1: P=>4L)*~(B1: P~>4L) - co będzie się działo jeśli zwierzę jest psem (P)?
Doskonale widać, że analiza matematyczna operatora implikacji odwrotnej ~P||~>~4L w logice ujemnej (bo ~4L) będzie identyczna jak operatora implikacji prostej P||=>4L w logice dodatniej (bo 4L) z tym, że zaczynamy od kolumny A2B2 kończąc na kolumnie A1B1.
b)
Także kolejność wypowiadanych zdań jest dowolna, tak więc zdania z powyższej analizy A1, A1’, A2, B2’ możemy wypowiadać w sposób losowy - matematycznie to bez znaczenia.
31.4 Paradoks i brak paradoksu w algebrze Kubusia
Kiedy w algebrze Kubusia nie ma paradoksu?
W algebrze Kubusia nie ma paradoksu jeśli zdanie warunkowe „Jeśli p to q” jest analizowane w warunkach wystarczających => i koniecznych ~>
Kiedy w algebrze Kubusia jest paradoks?
W algebrze Kubusia jest paradoks jeśli skorzystamy z prawa eliminacji warunku wystarczającego =>:
Y = (p=>q)=~p+q
31.4.1 Paradoks w algebrze Kubusia
Na czym polega paradoks w algebrze Kubusia?
Paradoks ten opisaliśmy w punkcje 31.1.2.
Zobaczmy na naszym przykładzie:
A1.
Jeśli zwierzę jest psem to na 100% => ma cztery łapy
P=>4L=1
Prawo eliminacji warunku wystarczającego => dla zdania A1.
A1: Y=(p=>q)=~p+q
Matematycznie wolno nam skorzystać z prawa eliminacji warunku wystarczającego =>, czyli od strony czysto matematycznej jest tu wszystko w porządku
ALE!
Jeśli dla zdania A1 skorzystamy z prawa eliminacji warunku wystarczającego => przechodząc do warunku wystarczającego wyrażonego spójnikami „i”(*) i „lub”(+) to dostaniemy paradoks z którego będą pękać ze śmiechu wszystkie 5-cio latki, a pani przedszkolanka będzie pukać się w czółko.
Dlaczego?
Weźmy nasze zdanie:
A1.
Jeśli zwierzę jest psem to na 100% => ma cztery łapy
P=>4L=1
Po skorzystaniu z prawa eliminacji warunku wystarczającego => jak sama nazwa wskazuje zabijamy warunek wystarczający =>, kwintesencję zdania A1.
Wtedy wyjdzie nam, że zdanie A1 jest prawdziwe dla absolutnie wszystkich zwierząt: psa, kury, wieloryba, muchy, słonia …
31.4.2 Brak paradoksu w algebrze Kubusia
W algebrze Kubusia nie ma paradoksu wtedy i tylko wtedy gdy zdanie warunkowe „Jeśli p to q” będziemy definiować warunkami wystarczającymi => i koniecznymi ~> co zrobiliśmy w punkcie 31.3.1
Przypomnijmy tą analizę w formie skróconej:
A1: P=>4L=1 - bycie psem wystarcza => (=1) by mieć cztery lapy
A1’: P~~>~4L=0 - nie istnieje (=0) pies, który nie ma czterech łap
A2: ~P~>~4L=1 - nie bycie psem jest (=1) konieczne ~> by nie mieć czterech łap (~4L)
B2’: ~P~~>4L=1 - istnieje (=1) zwierzę nie będące psem i mające cztery lapy (słoń)
Zauważmy że:
A1.
Jeśli ze zbioru wszystkich zwierząt ZWZ wylosujemy psa to dla tego przypadku prawdziwe będzie zdania A1, zaś wszystkie pozostałe będą fałszywe.
A1’.
Psa który niema czterech lap nigdy (=0) nie wylosujemy
A2.
Jeśli ze zbioru wszystkich zwierząt ZWZ wylosujemy zwierzę które nie jest psem i nie ma czterech łap to prawdziwe będzie wyłącznie zdanie A2, zaś wszystkie pozostałe zdania będą fałszywe
B2’
Jeśli ze zbioru wszystkich zwierząt ZWZ wylosujemy zwierzę które nie jest psem i ma cztery łapy to prawdziwe będzie wyłącznie zdanie B2’, zaś wszystkie pozostałe zdania będą fałszywe
Zauważmy, że zdania A1, A1’, A2 i B2’ możemy wypowiadać w oryginale i niezależnie od siebie.
Przypomnijmy te zdania:
A1.
Jeśli dowolne zwierzę jest psem to na 100% => ma cztery łapy
P=>4L =1
To samo w zapisie formalnym:
p=>q =1
Bycie psem jest (=1) warunkiem wystarczającym => by mieć cztery łapy wtedy i tylko wtedy gdy zbiór P=[pies] jest (=1) podzbiorem => zbioru zwierząt z czterema łapami 4L=[pies, słoń ..]
cnd
Prawdziwość warunku wystarczającego => A1 wymusza fałszywość kontrprzykładu A1’ (i odwrotnie).
A1’
Jeśli dowolne zwierzę jest psem to może ~~> nie mieć czterech lap
P~~>~4L = P*~4L =0
To samo w zapisie formalnym:
p~~>~q = p*~q =0
Fałszywość kontrprzykładu A1’ wynika z definicji kontrprzykładu - to jest dowód „nie wprost”.
Nie musimy tu wykonywać dowodu wprost, czyli udowadniać iż zbiory P=[pies] i ~4L=[kura ..] są rozłączne.
Dowód wprost:
Nie istnieje zwierzę będące psem (P) i nie mające czterech łap (4L)
P~~>~4L =0
… a jeśli zwierzę nie jest pasem?
A1: P=>4L = A2: ~P~>~4L
Prawo Kubusia w zapisie formalnym:
A1: p=>q = A2: ~p~>~q
Idziemy do kolumny A2B2
A2.
Jeśli dowolne zwierzę nie jest psem to może ~> nie mieć czterech łap
~P~>~4L =1
To samo w zapisie formalnym
~p~>~q =1
Prawdziwość warunku koniecznego ~> A2 gwarantuje nam prawo Kubusia, to jest dowód „nie wprost”.
Z prawa Kubusia wynika, że zbiór ~P=[kura, słoń ..] jest nadzbiorem ~> ~4L=[kura..] - nie musimy tego faktu udowadniać.
Zauważmy, że prawo Kubusia samo nam tu wyskoczyło:
Nie bycie psem (~P) jest konieczne ~> by nie mieć czterech łap (~4L), bo jak się jest psem (P) to na 100% => ma się cztery łapy (4L)
A2: ~P~>~4L + A1: P=>4L
LUB
Fałszywy warunek wystarczający B2: ~P=>~4L=0 na mocy definicji kontrprzykładu daje nam gwarancję matematyczną prawdziwości kontrprzykładu B2’
B2’
Jeśli dowolne zwierzę nie jest psem to może ~~> mieć czterech łap
~P~~>4L = ~P*4L =1
To samo w zapisie formalnym:
~p~~>q = ~p*q =1
Dowód nie wprost:
Na mocy definicji kontrprzykładu nie musimy udowadniać prawdziwości zdania B2’
Dowód wprost:
Istnieje (=1) wspólny element zbiorów ~P=[kura, słoń ..] i 4L=[pies, słoń ..], to słoń
cnd
Zauważmy, że matematyczną prawdziwość/fałszywość każdego ze zdań A1, A1’, A2 i B2’ możemy udowodnić niezależnie od prawdziwości/fałszywości pozostałych zdań.
Nie ma tu zatem mowy o jakimkolwiek paradoksie i mamy dostęp do zdań warunkowych A1’, A2, B2’ czego nie mieliśmy w przypadku skorzystania z prawa eliminacji warunku wystarczającego =>:
Y = (P=>4L) = ~P+4L
cnd
31.5 Prawo eliminacji równoważności p<=>q w logice matematycznej
Definicja równoważności p<=>q w logice matematycznej:
Równoważność p<=>q to jednoczesne spełnienie zarówno warunku wystarczającego => jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
To samo w równaniu logicznym:
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q)=1*1=1
Interpretacja matematycznie poprawna, znana każdemu matematykowi to:
Równoważność p<=>q to jednoczesne zajście zarówno warunku koniecznego ~> (B1) jak i wystarczającego => (A1) między tymi samymi punktami i w tym samym kierunku
Innymi słowy:
Zajście p jest warunkiem koniecznym ~> (B1) i wystarczającym => (A1) dla zajścia q
Innymi słowy:
Zajście p jest konieczne ~> (B1) i wystarczające => (A1) dla zajścia q
Innymi słowy:
Do tego by zaszło q potrzeba ~> (B1) i wystarcza => (A1) by zaszło p
Dowód iż ta definicja równoważności znana jest ludzkości (nie tylko matematykom).
Klikamy na goglach:
„koniecznym i wystarczającym”
Wyników: 9 750
„konieczne i wystarczające”
Wyników: 11 300
„potrzeba i wystarcza”
Wyników: 4 170
cnd
Zobaczmy to na przykładzie równoważności Pitagorasa TP<=>SK udowodnionej w ziemskiej matematyce poprawnie wieki temu.
Twierdzenie proste Pitagorasa p=>q:
A1.
Jeśli trójkąt jest prostokątny to na 100% => zachodzi w nim suma kwadratów
TP=>SK =1
To samo w zapisie formalnym:
p=>q =1
Bycie trójkątem prostokątnym TP jest (=1) warunkiem wystarczającym => do tego, aby spełniona była suma kwadratów (SK)
Twierdzenie proste Pitagorasa ludzkość udowodniła wieki temu
##
Twierdzenie odwrotne Pitagorasa q=>p:
B3.
Jeśli w trójkącie zachodzi suma kwadratów to na 100% => trójkąt ten jest prostokątny
SK=>TP =1
To samo w zapisie formalnym:
q=>p =1
Bycie trójkątem ze spełnioną sumą kwadratów (SK) jest (=1) warunkiem wystarczającym => do tego, aby ten trójkąt był prostokątny (TP)
Twierdzenie odwrotne Pitagorasa ludzkość udowodniła wieki temu
Dla B3 zastosujmy prawo Tygryska:
B3: q=>p = B1: p~>q
Stąd mamy:
B1: TP~>SK =1 - bycie TP jest (=1) warunkiem koniecznym ~> dla spełnienia SK
Dziedzina wspólna dla A1 i B1 to oczywiście:
ZWT - zbiór wszystkich trójkątów
Gdzie:
## - różne na mocy definicji
Stąd mamy:
Definicja równoważności Pitagorasa TP<=>SK:
Równoważność TP<=>SK to jednoczesne spełnienie zarówno warunku wystarczającego => jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: TP=>SK =1 - wylosowanie TP ze zbioru ZWT jest (=1) wystarczające => dla SK
B1: TP~>SK =1 - wylosowanie TP ze zbioru ZWT jest (=1) konieczne ~> dla SK
To samo w równaniu logicznym:
A1B1: TP<=>SK = (A1: TP=>SK)*(B1: TP~>SK)=1*1=1
Interpretacja matematycznie poprawna, znana każdemu matematykowi:
Równoważność TP<=>SK to jednoczesne zajście zarówno warunku koniecznego ~> (B1) jak i wystarczającego => (A1) między tymi samymi punktami i w tym samym kierunku
Innymi słowy:
Zajście TP jest warunkiem koniecznym ~> (B1) i wystarczającym => (A1) dla zajścia SK
Innymi słowy:
Zajście TP jest konieczne ~> (B1) i wystarczające => (A1) dla zajścia SK
Innymi słowy:
Do tego by zaszło SK potrzeba ~> (B1) i wystarcza (A1) by zaszło TP
Zastosujmy dla B1 prawo Kubusia:
B1: TP~>SK = B2: ~TP=>~SK
To samo w zapisie formalnym:
B1: p~>q = B3: ~p=>~q
Stąd mamy spełniony warunek wystarczający =>:
B2: ~TP=>~SK =1
Potrzebny nam do budowy symbolicznej definicji równoważności TP<=>SK w spójnikach „i”(*) i „lub”(+).
W algebrze Kubusia poprawne jest, znane matematykom prawo eliminacji równoważności p<=>q, czyli zapisanie równoważności w formie funkcji logicznej Y algebry Boole’a.
Spójrzmy na zero-jedynkową definicję równoważności p<=>q znaną każdemu matematykowi.
Kod: |
Zapis |Zapis
zero-jedynkowy |symboliczny
p q Y=(p<=>q)=p*q+~p*~q | Y=(p<=>q)=p*q+~p*~q
A: 1 1 =1 | p* q =1 - obiekt istnieje (=1)
B: 1 0 =0 | p*~q =0 - obiekt nie istnieje (=0)
C: 0 0 =1 |~p*~q =1 - obiekt istnieje (=1)
D: 0 1 =0 |~p* q =0 - obiekt nie istnieje (=0)
1 2 3 4 5 6
Podstawa zapisu symbolicznego
Prawo Prosiaczka:
(p=0)=(~p=1)
|
Z zapisu symbolicznego wynika, że po skorzystaniu z prawa eliminacji równoważności p<=>q, będziemy mieli do czynienia ze zdaniem zawsze prawdziwym we wspólnej dziedzinie dla p i q.
Zobaczmy to na przykładzie równoważności Pitagorasa TP<=>SK udowodnionej w ziemskiej matematyce poprawnie wieki temu.
Zapiszmy równoważność Pitagorasa w symbolicznej tabeli prawdy wyżej wyprowadzonej:
Kod: |
Zapis
symboliczny
p q Y=(p<=>q) | Y=(TP=>SK)=A: TP*SK+C:~TP*~SK
A: p* q =1 | TP* SK =1 - istnieje (=1) TP ze spełnioną SK
B: p*~q =0 | TP*~SK =0 - nie istnieje (=0) TP z niespełnioną SK
C:~p*~q =1 |~TP*~SK =1 - istnieje (=1) ~TP z niespełnioną SK (~SK)
D:~p* q =0 |~TP* SK =0 - nie istnieje (=0) ~TP ze spełniona SK
4 5 6 7 8 9
|
W algebrze Kubusia mamy prawo skorzystać z prawa eliminacji równoważności p<=>q:
Y =(p<=>q) = p*q + ~p*~q
To jest matematycznie poprawne, ale zabijamy tu istotę równoważności, czyli obowiązujące w niej warunki konieczne ~> (B1) i wystarczające => (A1)
Nasz przykład:
Y = (TP<=>SK) = TP*SK + ~TP*~SK
Co w logice jedynek (bo funkcja alternatywno-koniunkcyjna) oznacza:
Y=1 <=> TP=1 i SK=1 lub ~TP=1 i ~SK=1
Iterując zbiór wszystkich trójkątów ZWT element po elemencie możemy stwierdzić tylko i wyłącznie, że w wylosowanym trójkącie prostokątnym (TP) spełniona jest suma kwadratów TP*SK=1 lub w wylosowanym trójkącie nieprostokątnym (~TP) nie jest spełniona suma kwadratów ~TP*~SK=1
O żadnych warunkach koniecznych ~> (B1) i wystarczających => (A1) mowy tu być nie może.
Oczywistym jest że obiekty TP*~SK i ~TP*SK nie istnieją co oznacza, że tych obiektów nigdy nie wylosujemy
Poprawną analizę równoważności Pitagorasa TP<=>SK w warunkach koniecznych ~> (B1) i wystarczających => (A1) znajdziemy w punkcie 16.7
31.6 Funkcja tożsamościowa - tragedia ziemskiej logiki matematycznej
Warunkiem koniecznym postawienia ziemskiej logiki matematycznej na nogi jest jej akceptacja prawa Irbisa, jako jednego z najważniejszych praw logiki matematycznej.
Kwintesencja obsługi teorii zdań warunkowych „Jeśli p to q” w algebrze Kubusia:
Kod: |
T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
## ## ## ## ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5: p+~q
Prawa Kubusia: | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q | A1: p=>q = A4:~q=>~p
B1: p~>q = B2:~p=>~q | B2:~p=>~q = B3: q=>p
Prawa Tygryska: | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p | B1: p~>q = B4:~q~>~p
Gdzie:
p=>q = ~p+q - definicja warunku wystarczającego =>
p~>q = p+~q - definicja warunku koniecznego ~>
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Zobaczmy co na temat funkcji tożsamościowych pisze w Wikipedii:
http://www.sfinia.fora.pl/posting.php?mode=editpost&p=706875
@Wikipedia
Funkcja tożsamościowa (funkcja identycznościowa, tożsamość, identyczność) – funkcja danego zbioru w siebie, która każdemu argumentowi przypisuje jego samego. Intuicyjnie: funkcja, która „nic nie zmienia”.
To wytłuszczone w definicji tożsamościowej jest dowodem, iż chodzi tu o prawo Irbisa, na cześć mojego wroga Nr.1 Irbisola nazwane, który jako pierwszy ziemianin zgodził się na jego prawdziwość.
Weźmy przykład z Wikipedii równania tożsamościowego:
[link widoczny dla zalogowanych]
Równania tożsamościowe
Równania tożsamościowe - to takie równania, które mają nieskończenie wiele rozwiązań.
Jeżeli w równaniu tożsamościowym podstawimy pod x-a dowolną liczbę, to otrzymamy zawsze równanie prawdziwe.
2x=2x
5x−3=5x−3
Irbisolu,
Moje zapisy tożsamościowe, które podaję od zawsze typu:
2=2
2x=2x
TP=TP
Zbiór trójkątów prostokątnych TP = zbiór trójkątów prostokątnych TP
pies=pies
miłość=miłość
suche gacie na dnie morza = suche gacie na dnie morza
etc
To po prostu algebra Boole'a:
a=a
Prawo Irbisa:
Dwa pojęcia/zbiory/zdarzenia p i q są tożsame p=q wtedy i tylko wtedy gdy znajdują się w relacji równoważności p<=>q
p=q <=> A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) =1*1=1
Podstawmy:
p=a
q=a
Stąd mamy:
a=a <=> A1B1: a<=>a = (A1: a=>a)*(B1:a~>a) =1*1=1
Dowód:
A1: a=>a =1 - bo każde pojęcie/zbiór/zdarzenie jest podzbiorem => siebie samego
B1: a~>a =1 - bo każde pojęcie/zbiór/zdarzenie jest nadzbiorem ~> siebie samego
Sam widzisz irbisolu, że ma się to nijak do twojej definicji funkcji tożsamościowej:
f(x)=x
Gdzie:
x - zmienna binarna
Stąd twoja szczegółowa definicja funkcji tożsamościowej to:
f(1)=1
f(0)=0
Niespodziewany zwrot akcji:
W mojej kilkunastostronicowej (albo i więcej) dyskusji z Irbisolem prosiłem go n-razy o podanie zero-jedynkowej definicji funkcji tożsamościowej na gruncie algebry Boole’a.
Oczywiście Irbisol nie podał takiej definicji bo nie ma jej w Wikipedii, a dla Irbisola Wikipedia jest najwyższą świętością, alfą i omegą.
Kilka dni temu modyfikując wstęp do algebry Kubusia odkryłem, że zero-jedynkowa definicja funkcji tożsamościowej jest w Wikipedii, tyle że ukryta, której żaden matematyk na światło dzienne nie wyciąga, bo jej po prostu nie rozumie.
Oto ta skrzętnie zakopana i ukryta prawda o rzeczywistej definicji funkcji tożsamościowej na gruncie algebry Boole’a
Matematycy znają zero-jedynkową tabelę wszystkich czterech jednoargumentowych spójników logicznych jak w linku niżej:
[link widoczny dla zalogowanych]
ale nie znają jej poprawnej interpretacji matematycznej
Poprawną interpretację matematyczną tej tabeli znajdziemy wyłącznie w algebrze Kubusia (pkt. 1.4)
Dokładnie w tym linku mamy zero-jedynkową definicję funkcji tożsamościowej.
Kod: |
Definicja funkcji tożsamościowej wedle Wikipedii
to jest dokładnie to samo co funkcja transmitera w algebrze Kubusia
Wejście | Wyjście
p ~p | Y=p
A: 1 # 0 | 1
B: 0 # 1 | 0
|
Definicja transmitera w technicznej algebrze Boole’a:
Transmiter to jednowejściowa bramka logiczna opisana funkcją logiczną Y=p, gdzie na wyjście Y transmitowany jest zawsze sygnał wejściowy p bez zniekształceń.
Oczywiście nie ma sensu bym robił tu kopiuj wklejkę punktu 1.4 z niniejszego podręcznika.
Skupmy się na istocie operatora transmisji z algebry Kubusia, totalnie nieznanej ziemskim matematykom.
Dlaczego totalnie nieznanej?
Bo nie ma we współczesnej logice matematycznej kluczowego tu prawa, prawa Irbisa.
Prawo Irbisa:
Dwa pojęcia/zbiory/zdarzenia p i q są tożsame p=q wtedy i tylko wtedy gdy znajdują się w relacji równoważności p<=>q
p=q <=> A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) =1*1=1
Jak do tej pory zaledwie jeden ziemianin rozumie i akceptuje prawo Irbisa - to Irbisol.
Weźmy fragment z algebry Kubusia dotyczący:
Funkcji tożsamościowej wedle logiki ziemian = funkcji transmisji wedle algebry Kubusia
Kod: |
OT
Definicja operatora transmisji: Y|=p
Wejście |Wyjście
| A1: B1:
p # ~p | Y=p # ~Y=~p
Przykład który za chwilkę zrobimy p=K:
K # ~K | Y=K # ~Y=~K
1 # 0 | 1 # 0
0 # 1 | 0 # 1
Gdzie:
# - dowolna strona znaczka # jest negacją drugiej strony
|
Pani w przedszkolu A1:
A1.
Jutro pójdziemy do kina
Y=K
co w logice jedynek oznacza:
Y=1 <=> K=1 - doskonale to widać w tabeli OT
Czytamy:
Prawdą jest (=1), że pani dotrzyma słowa (Y) wtedy i tylko wtedy gdy jutro pójdziemy do kina (K=1)
#
Kiedy pani nie dotrzyma słowa (~Y=1)?
Negujemy równanie A1 stronami:
B1.
~Y=~K
co w logice jedynek oznacza:
~Y=1 <=> ~K=1 - doskonale to widać w tabeli OT
Czytamy:
Prawdą jest (=1), że pani nie dotrzyma słowa (~Y) wtedy i tylko wtedy gdy jutro nie pójdziemy do kina (~K=1)
Gdzie:
# - dowolna strona znaczka # jest negacją drugiej sytrony
Prawo Irbisa:
Dwa pojęcia/zbiory/zdarzenia p i q są tożsame p=q wtedy i tylko wtedy gdy znajdują się w relacji równoważności p<=>q
p=q <=> A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) =1*1=1
Podstawmy nasz przykład:
p=Y
q=K
Stąd dla naszego przykładu prawo Irbisa w logice dodatniej (bo K) przybiera postać:
Dwa pojęcia Y i K są tożsame Y=K wtedy i tylko wtedy gdy znajdują się w relacji równoważności Y<=>K
Y=K <=> A1B1: Y<=>K = (A1: Y=>K)*(B1: Y~>K)=1*1=1
Lewą stronę prawa Irbisa czytamy:
Na mocy prawa Irbisa zachodzi tożsamość pojęć Y=K:
Pojęcie „pani dotrzyma słowa” (Y) jest tożsame „=” z pojęciem „jutro pójdziemy do kina” (K)
Środek prawa Irbisa czytamy:
Pani dotrzyma słowa (Y) wtedy i tylko wtedy gdy jutro pójdziemy do kina (K)
A1B1: Y<=>K =1
Prawą stronę prawa Irbisa czytamy:
Dotrzymanie słowa przez panią (Y) jest warunkiem koniecznym ~> (B1) i wystarczającym => (A1) do tego, byśmy poszli do kina (K)
Innymi słowy:
Do tego byśmy poszli do kina (K) potrzeba ~> (B1) i wystarcza => (A1) by pani dotrzymała słowa (Y)
W logice matematycznej dowolne pojęcie p jest rozpoznawalne wtedy i tylko wtedy gdy rozpoznawalne jest pojęcie ~p
W logice matematycznej dowolną tożsamość „=” czy też równoważność <=> mamy prawo dwustronnie zanegować przechodząc do logiki przeciwnej z tym samym znaczkiem.
Dwustronna negacja warunku wystarczającego => czy też koniecznego ~> także jest możliwa na mocy praw Kubusia
A1: p=>q = A2: ~p~>~q
B1: p~>q = B2: ~p=>~q
Nasz przykład:
A1: Y=>K = A2: ~Y~>~K
B1: Y~>K = B2: ~Y=>~K
Stąd mamy prawo Irbisa w logice ujemnej (bo ~q):
Dwa pojęcia/zbiory/zdarzenia ~p i ~q są tożsame ~p=~q wtedy i tylko wtedy gdy znajdują się w relacji równoważności ~p<=>~q
~p=~q <=> A2B2: ~p<=>~q = (A2: ~p~>~q)*(B2: ~p=>~q) =1*1=1
Nasz przykład:
Prawo Irbisa w logice ujemnej (bo ~K):
Dwa pojęcia ~Y i ~K są tożsame ~Y=~K wtedy i tylko wtedy gdy znajdują się w relacji równoważności ~Y<=>~K
~Y=~K <=> A2B2: ~Y<=>~K = (A2: ~Y~>~K)*(B2: ~Y=>~K) =1*1=1
Lewą stronę prawa Irbisa czytamy:
Na mocy prawa Irbisa zachodzi tożsamość pojęć ~Y=~K:
Pojęcie „pani nie dotrzyma słowa” (~Y) jest tożsame „=” z pojęciem „jutro nie pójdziemy do kina” (~K)
Środek prawa Irbisa czytamy:
Pani nie dotrzyma słowa (~Y) wtedy i tylko wtedy gdy jutro nie pójdziemy do kina (~K)
A2B2: ~Y<=>~K =1
Prawą stronę prawa Irbisa czytamy:
Nie dotrzymanie słowa przez panią (~Y) jest warunkiem koniecznym ~> (A2) i wystarczającym => (B2) do tego, byśmy nie poszli do kina (~K)
Innymi słowy:
Do tego byśmy nie poszli do kina (~K) potrzeba ~> (A2) i wystarcza => (B2) by pani nie dotrzymała słowa (~Y)
Matematyczne związki między prawem Irbisa w logice dodatniej (bo q) i ujemnej (bo ~q) są następujące:
1.
Zachodzi matematyczna tożsamość równoważności:
A1B1: p<=>q = A2B2: ~p<=>~q
Dowód:
A1B1: p<=>q = p*q + ~p*~q - definicja równoważności w spójnikach „i”(*) i „lub”(+)
Rozwijamy A2B2 definicją A1B1:
(~p)<=>(~q) = (~p)*(~q) + ~(~p)*~(~q)
~p<=>~q = ~p*~q + p*q
Stąd mamy:
A2B2: ~p<=>~q = A1B1: p<=>q = p*q + ~p*~q
cnd
2.
Zapiszmy w tabeli prawdy istotę operatora równoważności:
Kod: |
Równoważność | Równoważność
A1B1: p<=>q [=] A2B2: ~p<=>~q
Definiuje tożsamość pojęć: | definiuje tożsamość pojęć:
p=q # ~p=~q
Gdzie:
Dowolna strona znaczka # jest negacją drugiej strony
|
3.
Nasz przykład:
Kod: |
Równoważność | Równoważność
A1B1: Y<=>K [=] A2B2: ~Y<=>~K
Definiuje tożsamość pojęć: | definiuje tożsamość pojęć:
Y=K # ~Y=~K
Gdzie:
Dowolna strona znaczka # jest negacją drugiej strony
|
Z ostatniej linii widzimy że pojęcie Y (czy też K) związane jest z pojęciem ~Y (czy też ~K) spójnikiem „albo”($)
Dowód:
Jutro pani może dotrzymać słowa (Y) „albo”($) nie dotrzymać słowa (~Y)
Y$~Y =1
Trzeciej możliwości brak.
Sprawdzenie formalne.
Definicja spójnika „albo”($) w spójnikach „i”(*) i „lub”(+):
p$q = p*~q + ~p*q
Dla q=~p mamy:
p$~p = p*~(~p) + ~p*~(~p) = p*p + ~p*~p = p+~p =1
cnd
Oczywistym jest że równoważność (tożsamość) między p i ~p jest wykluczona.
Sprawdzenie formalne:
Definicja równoważności p<=>q w spójnikach „i”(*) i „lub”(+):
p<=>q = p*q + ~p*~q
dla q=~p mamy:
p<=>(~p) = p*(~p) + ~p*~(~p) = p*~p + ~p*p = 0+0 =0
cnd
Zajrzyjmy jeszcze raz do zero-jedynkowej definicji wszystkich czterech jednoargumentowych spójników logicznych podanych w Wikipedii:
[link widoczny dla zalogowanych]
Pisze tu jak wół że:
Spójnik funkcji tożsamościowej (w algebrze Kubusia funkcji transmisji) to rzadko używany spójnik asercji (funkcja tożsamościowa)
Jak widzimy wyżej, w teorii zdarzeń spójnik transmisji (funkcja tożsamościowa w logice ziemian) jest w języku potocznym każdego człowieka zdecydowanie najczęściej używanym spójnikiem logicznym.
Dowód:
Spójnik transmisji w języku potocznym (funkcja tożsamościowa w logice ziemian) jest nierozerwalnie związany z najprostszą obietnicą bezwarunkową typu:
W przyszłości (np. jutro) coś tam zrobimy
Przykłady:
Jutro pójdziemy do kina
Jutro pójdziemy do lasu
Jutro idę na egzamin
etc.
Kliknijmy w Wikipedii co się kryje pod pojęciem „funkcji tożsamościowej”?
Mamy definicję jak na początku niniejszego wpisu:
http://www.sfinia.fora.pl/posting.php?mode=editpost&p=706875
@Wikipedia
Funkcja tożsamościowa (funkcja identycznościowa, tożsamość, identyczność) – funkcja danego zbioru w siebie, która każdemu argumentowi przypisuje jego samego. Intuicyjnie: funkcja, która „nic nie zmienia”.
O co chodzi w tej definicji wyjaśniliśmy sobie zarówno na gruncie teorii zdarzeń (wyżej), jak i na gruncie teorii zbiorów (początek rozdziału)
|
|
Powrót do góry |
|
 |
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 37352
Przeczytał: 18 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Pon 20:24, 17 Mar 2025 Temat postu: |
|
|
Algebra Kubusia – matematyczna wojna wszech czasów
32.0 Dowód wewnętrznej sprzeczności w KRZ na poziomie 5-cio latka
Spis treści
32.0 Dowód wewnętrznej sprzeczności w KRZ na poziomie 5-cio latka 1
32.1 Analiza zdania warunkowego A1: P=>CH na gruncie KRZ 2
32.1.1 Zdanie zawsze prawdziwe w teorii zdarzeń dla zdania A1: P=>CH 4
32.1.2 Analiza zdania warunkowego A1: A=>S na gruncie KRZ 5
32.1.3 Zdanie zawsze prawdziwe w teorii zdarzeń dla zdania A1: A=>S 7
32.1.4 Dowód wewnętrznej sprzeczności ziemskiej implikacji A1: A=>S 8
32.2 Obsługa zdań warunkowych spójnikami „i”(*) i „lub”(+) w algebrze Kubusia 9
32.2.1 Analiza zdania A1: P=>CH metodą zdjęciową w algebrze Kubusia 10
32.2.2 Zdanie zawsze prawdziwe w teorii zdarzeń dla zdania A1: P=>CH 12
32.2.3 Analiza zdania A1: A=>S metodą zdjęciową w algebrze Kubusia 13
32.2.4 Zdanie zawsze prawdziwe w metodzie zdjęciowej dla zdania A1: A=>S 15
32.2.5 Dowód braku wewnętrznej sprzeczności w A1: A=>S na gruncie AK 16
32.0 Dowód wewnętrznej sprzeczności w KRZ na poziomie 5-cio latka
Dowód wewnętrznej sprzeczności KRZ na poziomie 5-cio latka oznacza tu, że przykłady ilustrujące tą sprzeczność na 100% zrozumie każdy 5-cio latek.
Zrozumienie dowodu wymaga oczywiście znajomości Klasycznego Rachunku Zdań na poziomie podstawowym, w tym algebry Boole’a na poziomie podstawowym.
Z faktu że mamy dowodzić wewnętrzną sprzeczność KRZ nie będzie tu ani jednego zdania odnoszącego się do algebry Kubusia, gdzie 100% definicji jest innych niż w KRZ.
Definicja kontrprzykładu:
Kontrprzykład w dowolnej teorii matematycznej to znalezienie zdania x wewnątrz tej teorii sprzecznego ze zdaniem różnym od x wewnątrz tej samej teorii.
Skutek istnienia kontrprzykładu:
Znalezienie jednego, jedynego kontrprzykładu wewnątrz dowolnej teorii posyła tą teorię do piekła, na wieczne piekielne męki.
Czy możliwe jest znalezienie kontrprzykładu w algebrze Kubusia?:
Znalezienie kontrprzykładu w algebrze Kubusia jest fizycznie niemożliwe bowiem jej fundamentem jest teoria bramek logicznych, co szczegółowo opisano w punkcie 11.0.
11.0 Algebra Kubusia w bramkach logicznych
Oznacza to, że 100% definicji i praw logiki matematycznej w algebrze Kubusia ma swoje odzwierciedlenie w teorii bramek logicznych w przełożeniu 1:1, co łatwo sprawdzić w laboratorium techniki cyfrowej.
Innymi słowy:
Algebra Kubusia jest w 100% weryfikowalna w laboratorium bramek logicznych.
32.1 Analiza zdania warunkowego A1: P=>CH na gruncie KRZ
Definicja ziemskiej implikacji podana przez Macjana w mojej dyskusji na śfinii:
http://www.sfinia.fora.pl/forum-kubusia,12/elementarz-algebry-boole-a-irbisol-macjan-str-10,2605-240.html#55877
@Macjan
Zrozum - treść zdania, czyli to, o czym ono mówi, nie może w żaden sposób wpływać na jego zapis symboliczny. Zdanie "... i ..." jest koniunkcją niezależnie od tego, co wstawimy w wykropkowane miejsca. Tak samo zdanie "Jeśli ... to ..." jest implikacją.
W obsłudze zdań warunkowych „Jeśli p to q” ziemska logika matematyczna obligatoryjnie korzysta z prawa eliminacji implikacji
Y = (p=>q) =~p+q
Spójrzmy na zero-jedynkową definicję ziemskiej implikacji p=>q.
Kod: |
ZI
Zapis |Zapis
zero-jedynkowy |symboliczny
p q Y=(p=>q)=~p+q | Y=(p=>q)=~p+q
A: 1 1 =1 | p* q =1
B: 1 0 =0 | p*~q =0
C: 0 0 =1 |~p*~q =1
D: 0 1 =1 |~p* q =1
1 2 3 4 5 6
Podstawa zapisu symbolicznego
Prawo Prosiaczka:
(p=0)=(~p=1)
|
Zauważmy, że w aktualnej logice matematycznej wystarczy cokolwiek zapisać w formie zdania warunkowego „Jeśli p to q” i już na mocy definicji mamy do czynienia z implikacją p=>q o zero-jedynkowej definicji zawartej w tabeli ziemskiej implikacji ZI.
Weźmy najprostszy przykład pasujący w 100% do ziemskiej implikacji:.
A1.
Jeśli jutro będzie padało to będzie pochmurno
P=>CH=?
Polecenie:
Zbadaj czy powyższe zdanie spełnia definicję ziemskiej implikacji.
Na mocy definicji ziemskiej implikacji ZI sam fakt wystąpienia spójnika „Jeśli p to q” determinuje, iż jest to implikacja.
Dla zdania A1 mamy:
p=P(pada)
q=CH(chmury)
Podstawmy nasz przykład do zero-jedynkowej definicji ziemskiej implikacji:
Kod: |
ZI1
Zapis |Zapis
zero-jedynkowy |symboliczny
P CH Y=~P+CH | Y=(P=>CH)=~P+CH
A: 1 1 =1 | P* CH =1 -zdarzenie możliwe (1): pada i są chmury
B: 1 0 =0 | P*~CH =0 -zdarzenie niemożliwe (0): pada i nie ma chmur
C: 0 0 =1 |~P*~CH =1 -zdarzenie możliwe (1): nie pada i nie ma chmur
D: 0 1 =1 |~P* CH =1 -zdarzenie możliwe (1): nie pada i są chmury
1 2 3 4 5 6
|
Zauważmy, że rozpiska zdania warunkowego A1 w tabeli ZI1 to w istocie skorzystanie ze znanego każdemu matematykowi prawa eliminacji implikacji p=>q:
Y = (p=>q) = ~p+q
Nasz przykład:
Y = (P=>CH) = ~P+CH
Jak widzimy z prawej strony tożsamości nie mamy tu do czynienia ze zdaniem warunkowym „Jeśli p to q” lecz z operatorem „lub”(p|+q).
Definicja operatora „lub”(p|+q):
Operator „lub”(p|+q) to odpowiedź na pytania o Y=1 i Y=0.
1.
Z tabeli ZI1 łatwo odczytujemy wszystkie rozłączne zdarzenia możliwe (Y=1):
Y = A: P*CH + C: ~P*~CH + D: ~P*CH
co w logice jedynek (bo funkcja alternatywno-koniunkcyjna) oznacza:
Y=1 <=> A: P=1 i CH=1 lub C: ~P=1 i ~CH=1 lub D: ~P=1 i CH=1
Dowód:
Tabela to zero-jedynkowa ziemskiej implikacji ZI wyżej.
Czytamy:
Zdarzenia możliwe (Y=1) jakie jutro mogą wystąpić to:
A: Ya = P*CH =1*1=1 - jutro może padać (P=1) i być pochmurno (CH=1)
lub
C: Yc=~P*~CH=1*1=1 - jutro może nie padać (~P=1) i nie być pochmurno (~CH=1)
lub
D: Yd=~P*CH=1*1=1 - jutro może nie padać (~P=1) i być pochmurno (CH=1)
Funkcja logiczna Y opisująca wszystkie zdarzenia możliwe to oczywiście suma logiczna funkcji cząstkowych:
Y=Ya+Yc+Yd
Wypiszmy teraz z tabeli ZI1 wszystkie zdarzenia które jutro nie mają prawa zajść (Y=0):
Y=0 <=> B: P*~CH
Dla lewej strony korzystamy z prawa Prosiaczka, które możemy stosować wybiórczo do dowolnej zmiennej binarnej:
(Y=0) = (~Y=1)
Stąd nasz zapis 2 przyjmuje formę zgodną z naturalną logiką człowieka:
2.
~Y = B: P*~CH
Co w logice jedynek oznacza:
~Y=1 <=> B: P=1 i ~CH=1
Czytamy:
Zdarzenie niemożliwe (~Y) to: pada (P=1) i nie jest pochmurno (~CH)
~Y = B: P*~CH =1*1=1
Znaczenie symbolu Y:
Y - zdarzenie możliwe (Y=1)
~Y - zdarzenie niemożliwe (~Y=1)
Podsumowanie:
Jak widzimy po skorzystaniu z prawa eliminacji implikacji:
p=>q = ~p+q
operujemy wyłącznie na prawej stronie tego prawa, gdzie nie ma już najmniejszego śladu zdania warunkowego „Jeśli p to q”
Nazwa „Prawo eliminacji implikacji”, czyli prawo eliminacji zdania warunkowego „Jeśli p to q” jest tu ze wszech miar słuszna.
Zapiszmy jeszcze raz wszystkie zdarzenia możliwe w naszym przykładzie:
1: Y = A: P*CH + C: ~P*~CH + D: ~P*CH
Oczywiście suma logiczna (+) i iloczyn logiczny (*) są tu przemienne,
Stąd możemy zapisać:
Jeśli zajdzie ~P (nie pada) to może być pochurno (D: CH) lub może nie być pochmurno (~CH)
Na mocy równania 1 zapisujemy:
1: Y = A: P*CH + ~P*(~CH+CH)
1: Y = A: P*CH + ~P
Można łatwo udowodnić, iż zdarzenie P (pada) jest podzbiorem => zdarzenia CH (chmury).
Stąd mamy:
1: Y = A: P+~P =1 - zdanie zawsze prawdziwe, co jest zgodne z tabelą ziemskiej implikacji ZI1.
Dowód:
P=>CH
P*1=>CH*1
P*(CH+~CH) => CH*(P+~P)
P*CH + P*~CH => P*CH + ~P*CH
P*~CH=0
Stąd:
P*CH => P*CH+~P*CH
cnd
32.1.1 Zdanie zawsze prawdziwe w teorii zdarzeń dla zdania A1: P=>CH
Zdanie warunkowe które analizowaliśmy to:
A1.
Jeśli jutro będzie padało to będzie pochmurno
P=>CH=1
Dziedzina matematyczna Dm w teorii zdarzeń:
Dziedzina matematyczna w teorii zdarzeń to wszystkie możliwe zdarzenia rozłączne bez analizy czy którekolwiek z nich może zajść czy nie może zajść, dlatego będziemy tu używali znaczka wartości bezwzględnej, znanej w matematyce:
Dm = A1: |P*CH| + B: |P*~CH| = C: |~P*~CH| + D: |~P*CH|
Dziedzina fizyczna D w teorii zdarzeń
Dziedzina fizyczna D w teorii zdarzeń to dziedzina matematyczna Dm po usunięciu z niej zdarzeń niemożliwych do wystąpienia
D = A: P*CH + C: ~P*~CH + D: ~P*CH
W naszym przypadku, jedyne niemożliwe zdarzenie pada (P) i nie ma chmur (~CH) i dokładnie to zdarzenie zniknęło z dziedziny fizycznej D.
Definicja zdania zawsze prawdziwego dla zdania „Jeśli p to q” w teorii zdarzeń:
Zdanie zawsze prawdziwe w teorii zdarzeń to iterowanie po kompletnej dziedzinie matematycznej Dm w poszukiwaniu zdarzenia które nie jest zgodne z bazową zero-jedynkową definicją badanego zdarzenia.
Zdanie jest zawsze prawdziwe wtedy tylko wtedy gdy nie istnieje iterowanie zmieniającej stan zdarzenia niemożliwego na zdarzenie możliwe lub odwrotnie.
Oczywistym jest, że jeśli definicja zdarzenia x jest poprawna to taka zmiana stanu nigdy nie wystąpi.
Wnioskowanie o fałszywości definicji:
Zdanie które nie spełnia definicji zdana zawsze prawdziwego jest dowodem fałszywości użytej definicji.
Zauważmy, że w analizowaniu naszego zdania A1 ziemska definicja zdania zawsze prawdziwego jest spełniona.
Definicja ziemskiej implikacji podana przez Macjana w mojej dyskusji na śfinii:
http://www.sfinia.fora.pl/forum-kubusia,12/elementarz-algebry-boole-a-irbisol-macjan-str-10,2605-240.html#55877
@Macjan
Zrozum - treść zdania, czyli to, o czym ono mówi, nie może w żaden sposób wpływać na jego zapis symboliczny. Zdanie "... i ..." jest koniunkcją niezależnie od tego, co wstawimy w wykropkowane miejsca. Tak samo zdanie "Jeśli ... to ..." jest implikacją.
Problem w tym, że przykład jest tendencyjnie dobrany w taki sposób, by powyższa definicja była spełniona.
W ogólnym przypadku podana wyżej definicja implikacji jest wewnętrznie sprzeczna, co udowodnimy w następnym punkcie.
32.1.2 Analiza zdania warunkowego A1: A=>S na gruncie KRZ
Piętą Achillesową Klasycznego Rachunku Zdań w obsłudze zdań warunkowych „Jeśli p to q” jest definicja implikacji w niej występująca.
Definicja ziemskiej implikacji podana przez Macjana w mojej dyskusji na śfinii:
http://www.sfinia.fora.pl/forum-kubusia,12/elementarz-algebry-boole-a-irbisol-macjan-str-10,2605-240.html#55877
@Macjan
Zrozum - treść zdania, czyli to, o czym ono mówi, nie może w żaden sposób wpływać na jego zapis symboliczny. Zdanie "... i ..." jest koniunkcją niezależnie od tego, co wstawimy w wykropkowane miejsca. Tak samo zdanie "Jeśli ... to ..." jest implikacją.
W obsłudze zdań warunkowych „Jeśli p to q” ziemska logika matematyczna obligatoryjnie korzysta z prawa eliminacji implikacji
Y = (p=>q) =~p+q
Spójrzmy na zero-jedynkową definicję ziemskiej implikacji p=>q.
Kod: |
ZI
Zapis |Zapis
zero-jedynkowy |symboliczny
p q Y=(p=>q)=~p+q | Y=(p=>q)=~p+q
A: 1 1 =1 | p* q =1
B: 1 0 =0 | p*~q =0
C: 0 0 =1 |~p*~q =1
D: 0 1 =1 |~p* q =1
1 2 3 4 5 6
Podstawa zapisu symbolicznego
Prawo Prosiaczka:
(p=0)=(~p=1)
|
Zauważmy, że w aktualnej logice matematycznej wystarczy cokolwiek zapisać w formie zdania warunkowego „Jeśli p to q” i już na mocy definicji mamy do czynienia z implikacją p=>q o zero-jedynkowej definicji zawartej w tabeli ziemskiej implikacji ZI.
Niech będzie dany schemat elektryczny:
Kod: |
S1 Schemat 1
S A
------------- ______
-----| Żarówka |-------o o-----
| ------------- |
| |
______ |
___ U (źródło napięcia) |
| |
| |
------------------------------------
|
Niech będzie dane zdanie warunkowe:
A1.
Jeśli przycisk A jest wciśnięty to żarówka S świeci się
A=>S =?
Polecenie:
Zbadaj, czy zdanie warunkowe A1 spełnia definicję ziemskiej implikacji p=>q.
Podstawmy do tabeli ziemskiej implikacji ZI:
p=A (przycisk A)
q=S (żarówka S)
Kod: |
ZI
Zapis |Zapis
zero-jedynkowy |symboliczny
A S Y=~A+S | Y=(A=>S)=~A+S
A: 1 1 =1 | A* S =1 -możliwe jest(1): wciśnięty A i świeci S
B: 1 0 =0 | A*~S =0 -niemożliwe jest(0): wciśnięty A i nie świeci S
C: 0 0 =1 |~A*~S =1 -możliwe jest(1): nie wciśnięty A i nie świeci S
D: 0 1 =1 |~A* S =1 -możliwe jest(1): nie wciśnięty A i świeci S
1 2 3 4 5 6
|
Jak widzimy, wszystko jest zrozumiałe dla każdego 5-cio latka z wyjątkiem linii D.
Jaś (lat 5) pyta Prosiaczka:
Dlaczego w linii D jest jedynka (prawda) skoro każdy 5-cio latek wie, że powinno być zero (fałsz)
Prosiaczek:
Widzisz Jasiu, tą jedynkę w linii D wymusza ziemska definicja implikacji, matematycznie ona musi tu być inaczej cały Klasyczny Rachunek Zdań leży w gruzach.
Jaś:
Jak tą jedynkę tłumaczą ziemscy matematycy?
Prosiaczek:
Przykładowe tłumaczenie jest takie:
Pewien matematyk na matematyce.pl tłumaczy, że ta jedynka niczemu tu nie przeszkadza, zatem może sobie być.
Jaś:
Jakie jest najśmieszniejsze tłumaczenie jedynki w linii D?
Prosiaczek:
Windziarz, zrozumiały matematyk z ateisty.pl tłumaczy jedynkę w linii D tak:
Udowodnij, że tej jedynki w linii D nie ma w innym Wszechświecie?
… a widzisz, nie potrafisz, dlatego jest jedynka w linii D.
Jaś (lat 5):
Wszelkie te tłumaczenia ziemskich matematyków tłumaczące jedynkę w linii D są bez znaczenia.
Moim zdaniem, zdaniem Jasia (lat 5), ziemska logika matematyczna zwana Klasycznym Rachunkiem Zdań jest wewnętrznie sprzeczna, zatem jej miejsce jest w piekle na wiecznych piekielnych mękach.
Prosiaczek:
Zgadzam się z tobą w 100% Jasiu.
W naszym 100-milowym lesie od 1000 lat znana jest logika matematyczna stworzona przez mojego przyjaciela Kubusia, w której udowodniona wyżej wewnętrzna sprzeczność KRZ nie występuje.
Co więcej, naszą logikę sprezentowaliśmy ziemianom przy pomocy naszego wysłannika Rafała3006.
Rafał ów wspólnie z ziemskimi przyjaciółmi i przy naszej ukrytej pomocy, rozszyfrował logikę matematyczną wymyśloną przez Kubusia.
Końcowa wersja algebry Kubusia została opublikowana w dniu 2024-05-30 na forum śfinia i w wersji pdf, myślę, że z tej okazji Ziemianie powinni ogłosić święto państwowe na całej ziemi.
32.1.3 Zdanie zawsze prawdziwe w teorii zdarzeń dla zdania A1: A=>S
Definicja ziemskiej implikacji podana przez Macjana w mojej dyskusji na śfinii:
http://www.sfinia.fora.pl/forum-kubusia,12/elementarz-algebry-boole-a-irbisol-macjan-str-10,2605-240.html#55877
@Macjan
Zrozum - treść zdania, czyli to, o czym ono mówi, nie może w żaden sposób wpływać na jego zapis symboliczny. Zdanie "... i ..." jest koniunkcją niezależnie od tego, co wstawimy w wykropkowane miejsca. Tak samo zdanie "Jeśli ... to ..." jest implikacją.
Zdanie warunkowe które analizowaliśmy wyżej to:
A1.
Jeśli przycisk A jest wciśnięty to żarówka S świeci się
A=>S =?
Polecenie:
Zbadaj, czy zdanie warunkowe A1 spełnia definicję ziemskiej implikacji p=>q.
Analiza tego zdania przy pomocy aktualnej, ziemskiej definicji implikacji doprowadziła nas do poniższej tabeli prawdy:
Kod: |
ZI
Zapis |Zapis
zero-jedynkowy |symboliczny
A S Y=~A+S | Y=(A=>S)=~A+S
A: 1 1 =1 | A* S =1 -możliwe jest(1): wciśnięty A i świeci S
B: 1 0 =0 | A*~S =0 -niemożliwe jest(0): wciśnięty A i nie świeci S
C: 0 0 =1 |~A*~S =1 -możliwe jest(1): nie wciśnięty A i nie świeci S
D: 0 1 =1 |~A* S =1 -możliwe jest(1): nie wciśnięty A i świeci S
1 2 3 4 5 6
|
Jak widzimy, wszystko jest zrozumiałe dla każdego 5-cio latka z wyjątkiem linii D.
32.1.4 Dowód wewnętrznej sprzeczności ziemskiej implikacji A1: A=>S
Dziedzina matematyczna Dm w teorii zdarzeń:
Dziedzina matematyczna w teorii zdarzeń to wszystkie możliwe zdarzenia rozłączne bez analizy czy którekolwiek z nich może zajść czy nie może zajść, dlatego będziemy tu używali znaczka wartości bezwzględnej, znanej w matematyce:
Dm = A1: |A*S| + B: |A*~S| = C: |~A*~S| + D: |~A*S|
Dziedzina fizyczna D w teorii zdarzeń
Dziedzina fizyczna D w teorii zdarzeń to dziedzina matematyczna Dm po usunięciu z niej zdarzeń niemożliwych do wystąpienia
D = A: A*S + C: ~A*~S
W naszym przypadku, mamy dwa zdarzenia niemożliwe:
B: ~Yb=A*~S=1*1=1 - niemożliwe jest (~Yb=1) zdarzenie: przycisk A wciśnięty i żarówka S nie świeci
lub
D: ~Yd=~A*S=1*1=1 - niemożliwe jest (~Yd=1) zdarzenie: nie wciśnięty A i żarówka S świeci
Oba te przypadki B i D są doskonale rozumiane przez każdego 5-cio latka.
Definicja zdania zawsze prawdziwego dla zdania „Jeśli p to q” w teorii zdarzeń:
Zdanie zawsze prawdziwe w teorii zdarzeń to iterowanie po kompletnej dziedzinie matematycznej DM w poszukiwaniu zdarzenia które nie jest zgodne z zero-jedynkową definicją badanego zdarzenia.
Zdanie jest zawsze prawdziwe wtedy tylko wtedy gdy nie istnieje iterowanie zmieniające stan zdarzenia niemożliwego na zdarzenie możliwe lub odwrotnie.
Oczywistym jest, że jeśli definicja zdarzenia x jest poprawna to taka zmiana stanu nigdy nie wystąpi.
Wnioskowanie o fałszywości definicji:
Zdanie które nie spełnia definicji zdana zawsze prawdziwego jest dowodem fałszywości użytej definicji.
Zauważmy, że w analizowaniu naszego zdania A1: A=>S ziemska definicja zdania zawsze prawdziwego nie jest spełniona.
Dowód:
Po przeiterowaniu wszystkich możliwych zdarzeń dla zdania A1: A=>S stwierdzamy, że nie istnieje iterowanie, które by ustawiło jedynkę w linii D
Wniosek:
Definicja implikacji w aktualnej logice matematycznej ziemian jest matematycznie fałszywa, jej miejsce jest w piekle na wiecznych piekielnych mękach
Definicja ziemskiej implikacji podana przez Macjana w mojej dyskusji na śfinii:
http://www.sfinia.fora.pl/forum-kubusia,12/elementarz-algebry-boole-a-irbisol-macjan-str-10,2605-240.html#55877
@Macjan
Zrozum - treść zdania, czyli to, o czym ono mówi, nie może w żaden sposób wpływać na jego zapis symboliczny. Zdanie "... i ..." jest koniunkcją niezależnie od tego, co wstawimy w wykropkowane miejsca. Tak samo zdanie "Jeśli ... to ..." jest implikacją.
Powyższa definicja implikacji, aktualnie funkcjonująca w logice matematycznej ziemian, to potwornie śmierdzące gówno, czyli fałszywa definicja implikacji co udowodniono ciut wyżej.
Podsumowując:
Miejsce całej teorii zwanej Klasycznym Rachunkiem Zdań jest w piekle na wiecznych piekielnych mękach. Wystarczający powód ku temu to udowodniona tu wewnętrzna sprzeczność ziemskiej definicji implikacji.
32.2 Obsługa zdań warunkowych spójnikami „i”(*) i „lub”(+) w algebrze Kubusia
W poprzednim rozdziale omówiliśmy zdania warunkowe „Jeśli p to q” wyrażone spójnikami „i”(*) i „lub”(+) ziemskiej logice matematycznej zwanej Klasycznym Rachunkiem Zdań, gdzie udowodniliśmy wewnętrzną sprzeczność ziemskiej definicji implikacji.
Dlaczego w algebrze Kubusia nie ma w analogicznych przykładach wewnętrznej sprzeczności?
Odpowiedź:
W algebrze Kubusia dowolne zdanie warunkowe „Jeśli p to q” łatwo opisujemy spójnikami „i”(*) i „lub”(+) korzystając ze zdjęcia układu, które to pojęcie jest na poziomie podstawowej algebry Boole’a.
Definicja zdjęcia układu:
Zdjęcie układu dla dowolnego zdania warunkowego „Jeśli p to q” to analiza tego układu przez wszystkie możliwe przeczenia p i q przy pomocy znaczka ~~>, czyli de facto przy pomocy spójników „i”(*) i „lub”(+).
Definicja zdarzenia możliwego ~~>:
Jeśli zajdzie p to może ~~> zajść q
p~~>q =p*q =1
Definicja zdarzenia możliwego ~~> jest spełniona (=1) wtedy i tylko wtedy gdy możliwe jest jednoczesne zajście zdarzeń p i q.
Inaczej:
p~~>q=p*q =[] =0
Decydujący w powyższej definicji jest znaczek zdarzenia możliwego ~~>, dlatego dopuszczalny jest zapis skrócony p~~>q.
Uwaga:
Na mocy definicji zdarzenia możliwego ~~> badamy możliwość zajścia jednego zdarzenia, nie analizujemy tu czy między p i q zachodzi warunek wystarczający => czy też konieczny ~>.
Przykład:
Jeśli jutro będzie pochmurno (CH) to może ~~> nie padać (~P)
CH~~>~P=CH*~P =1
Możliwe jest (=1) zdarzenie: są chmury (CH) i nie pada (~P)
Kod: |
ZM
Tabela prawdy zdjęcia układu to odpowiedź TAK=1/NIE=0 pytania {A,B,C,D}
A: p~~> q = p* q=? - Czy możliwe jest jednoczesna zajście zdarzeń p i q?
B: p~~>~q = p*~q=? - Czy możliwe jest jednoczesne zajście zdarzeń p i ~q?
C:~p~~>~q =~p*~q=? - Czy możliwe jest jednoczesne zajście zdarzeń ~p i ~q?
D:~p~~> q =~p* q=? - Czy możliwe jest jednoczesne zajście zdarzeń ~p i q?
|
W języku potocznym, w teorii zdarzeń, praktycznie zawsze dowody prawdziwości/fałszywości zdań ze zdjęcia układu są trywialne a to wystarczy, aby błyskawicznie rozstrzygnąć w skład jakiego operatora implikacyjnego wchodzi zdanie wypowiedziane.
W tabeli zdarzeń możliwych ZM widzimy, że dla wyrażenia dowolnego zdania warunkowego przy pomocy spójników „i”(*) i „lub”(+) znane w algebrze Kubusia znaczki warunku wystarczającego => i warunku koniecznego ~> są zbędne, tzn. totalnie nie używane.
32.2.1 Analiza zdania A1: P=>CH metodą zdjęciową w algebrze Kubusia
Definicja zdjęcia układu:
Zdjęcie układu dla dowolnego zdania warunkowego „Jeśli p to q” to analiza tego układu przez wszystkie możliwe przeczenia p i q przy pomocy znaczka ~~>, czyli de facto przy pomocy spójników „i”(*) i „lub”(+).
Rozważmy zdanie przeanalizowane na gruncie KRZ w punkcie 32.1
A1.
Jeśli jutro będzie padało to będzie pochmurno
P=>CH=?
Polecenie:
Korzystając z metody zdjęciowej wyznacz wszystkie zdarzenia możliwe (Y) i niemożliwe (~Y) dla zdania A1.
Definicja zdarzenia możliwego ~~>:
Jeśli zajdzie p to może ~~> zajść q
p~~>q =p*q =1
Definicja zdarzenia możliwego ~~> jest spełniona (=1) wtedy i tylko wtedy gdy możliwe jest jednoczesne zajście zdarzeń p i q.
Inaczej:
p~~>q=p*q =[] =0
Decydujący w powyższej definicji jest znaczek zdarzenia możliwego ~~>, dlatego dopuszczalny jest zapis skrócony p~~>q.
Uwaga:
Na mocy definicji zdarzenia możliwego ~~> badamy możliwość zajścia jednego zdarzenia, nie analizujemy tu czy między p i q zachodzi warunek wystarczający => czy też konieczny ~>.
Robimy zdjęcie układu dla zdania A1:
Kod: |
ZA1
Zdjęcie układu dla zdania A1:
A: P~~> CH=1 -możliwe jest (=1) zdarzenie: pada(P) i są chmury(CH)
B: P~~>~CH=0 -niemożliwe jest (=0) zdarzenie: pada(P) i nie ma chmur(~CH)
C:~P~~>~CH=1 -możliwe jest (=1) zdarzenie: nie pada(~P) i nie ma chmur(~CH)
D:~P~~> CH=1 -możliwe jest (=1) zdarzenie: nie pada(~P) i są chmury(CH)
|
Doskonale widać, że rozstrzygnięcie o prawdziwości/fałszywości zdań ABCD to matematyczny poziom 5-cio latka.
Zauważmy, że rozpiska zdania warunkowego A1 w tabeli ZI1 to w istocie skorzystanie ze znanego każdemu matematykowi prawa eliminacji implikacji p=>q:
Y = (p=>q) = ~p+q
Nasz przykład:
Y = (P=>CH) = ~P+CH
Jak widzimy z prawej strony tożsamości nie mamy tu do czynienia ze zdaniem warunkowym „Jeśli p to q” lecz z operatorem „lub”(p|+q).
Definicja operatora „lub”(p|+q):
Operator „lub”(p|+q) to odpowiedź na pytania o Y=1 i Y=0.
1.
Z tabeli ZI1 łatwo odczytujemy wszystkie rozłączne zdarzenia możliwe (Y=1):
Y = A: P*CH + C: ~P*~CH + D: ~P*CH
co w logice jedynek (bo funkcja alternatywno-koniunkcyjna) oznacza:
Y=1 <=> A: P=1 i CH=1 lub C: ~P=1 i ~CH=1 lub D: ~P=1 i CH=1
Dowód:
Tabela to zero-jedynkowa ziemskiej implikacji ZI wyżej.
Czytamy:
Zdarzenia możliwe (Y=1) jakie jutro mogą wystąpić to:
A: Ya = P*CH =1*1=1 - jutro może padać (P=1) i być pochmurno (CH=1)
lub
C: Yc=~P*~CH=1*1=1 - jutro może nie padać (~P=1) i nie być pochmurno (~CH=1)
lub
D: Yd=~P*CH=1*1=1 - jutro może nie padać (~P=1) i być pochmurno (CH=1)
Funkcja logiczna Y opisująca wszystkie zdarzenia możliwe to oczywiście suma logiczna funkcji cząstkowych:
Y=Ya+Yc+Yd
Wypiszmy teraz z tabeli ZI1 wszystkie zdarzenia które jutro nie mają prawa zajść (Y=0):
Y=0 <=> B: P*~CH
Dla lewej strony korzystamy z prawa Prosiaczka, które możemy stosować wybiórczo do dowolnej zmiennej binarnej:
(Y=0) = (~Y=1)
Stąd nasz zapis 2 przyjmuje formę zgodną z naturalną logiką człowieka:
2.
~Y = B: P*~CH
Co w logice jedynek oznacza:
~Y=1 <=> B: P=1 i ~CH=1
Czytamy:
Zdarzenie niemożliwe (~Y) to: pada (P=1) i nie jest pochmurno (~CH)
~Y = B: P*~CH =1*1=1
Znaczenie symbolu Y:
Y - zdarzenie możliwe (Y=1)
~Y - zdarzenie niemożliwe (~Y=1)
Podsumowanie:
Jak widzimy po skorzystaniu z prawa eliminacji implikacji:
p=>q = ~p+q
operujemy wyłącznie na prawej stronie tego prawa, gdzie nie ma już najmniejszego śladu zdania warunkowego „Jeśli p to q”
Nazwa „Prawo eliminacji implikacji”, czyli prawo eliminacji zdania warunkowego „Jeśli p to q” jest tu ze wszech miar słuszna.
Zapiszmy jeszcze raz wszystkie zdarzenia możliwe w naszym przykładzie:
1: Y = A: P*CH + C: ~P*~CH + D: ~P*CH
Oczywiście suma logiczna (+) i iloczyn logiczny (*) są tu przemienne,
Stąd możemy zapisać:
Jeśli zajdzie ~P (nie pada) to może być pochurno (D: CH) lub może nie być pochmurno (~CH)
Na mocy równania 1 zapisujemy:
1: Y = A: P*CH + ~P*(~CH+CH)
1: Y = A: P*CH + ~P
Można łatwo udowodnić, iż zdarzenie P (pada) jest podzbiorem => zdarzenia CH (chmury).
Stąd mamy:
1: Y = A: P+~P =1 - zdanie zawsze prawdziwe, co jest zgodne z tabelą ziemskiej implikacji ZI1.
Dowód:
P=>CH
P*1=>CH*1
P*(CH+~CH) => CH*(P+~P)
P*CH + P*~CH => P*CH + ~P*CH
P*~CH=0
Stąd:
P*CH => P*CH+~P*CH
cnd
32.2.2 Zdanie zawsze prawdziwe w teorii zdarzeń dla zdania A1: P=>CH
Zdanie warunkowe które analizowaliśmy to:
A1.
Jeśli jutro będzie padało to będzie pochmurno
P=>CH=1
Dziedzina matematyczna Dm w teorii zdarzeń:
Dziedzina matematyczna w teorii zdarzeń to wszystkie możliwe zdarzenia rozłączne bez analizy czy którekolwiek z nich może zajść czy nie może zajść, dlatego będziemy tu używali znaczka wartości bezwzględnej, znanej w matematyce:
Dm = A1: |P*CH| + B: |P*~CH| = C: |~P*~CH| + D: |~P*CH|
Dziedzina fizyczna D w teorii zdarzeń
Dziedzina fizyczna D w teorii zdarzeń to dziedzina matematyczna Dm po usunięciu z niej zdarzeń niemożliwych do wystąpienia
D = A: P*CH + C: ~P*~CH + D: ~P*CH
W naszym przypadku, jedyne niemożliwe zdarzenie pada (P) i nie ma chmur (~CH) i dokładnie to zdarzenie zniknęło z dziedziny fizycznej D.
Definicja zdania zawsze prawdziwego dla zdania „Jeśli p to q” w teorii zdarzeń:
Zdanie zawsze prawdziwe w teorii zdarzeń to iterowanie po kompletnej dziedzinie matematycznej Dm w poszukiwaniu zdarzenia które nie jest zgodne z bazową zero-jedynkową definicją badanego zdarzenia.
Zdanie jest zawsze prawdziwe wtedy tylko wtedy gdy nie istnieje iterowanie zmieniającej stan zdarzenia niemożliwego na zdarzenie możliwe lub odwrotnie.
Oczywistym jest, że jeśli definicja zdarzenia x jest poprawna to taka zmiana stanu nigdy nie wystąpi.
Wnioskowanie o fałszywości definicji:
Zdanie które nie spełnia definicji zdana zawsze prawdziwego jest dowodem fałszywości użytej definicji.
Zauważmy, że w analizowaniu naszego zdania A1 definicja zdania zawsze prawdziwego jest spełniona.
Nie ma tu możliwości by w czasie iterowania po dziedzinie matematycznej mogło się zdarzyć by zaszło zdarzenie niemożliwe.
2.
~Y = B: P*~CH
Co w logice jedynek oznacza:
~Y=1 <=> B: P=1 i ~CH=1
Czytamy:
Zdarzenie niemożliwe (~Y) to: pada (P=1) i nie jest pochmurno (~CH)
~Y = B: P*~CH =1*1=1
Jak widzimy, opis zdania A1: P=>CH spójnikami „i”(*) i „lub”(+) jest trywialny, zrozumiały dla każdego 5-cio latka
Uwaga:
Badane zdanie A1 to implikacji prostej P|=>CH której opis w znaczkach warunku wystarczającego =>, warunku koniecznego ~> i zdarzenia możliwego ~~> znajdziemy w punkcie 3.4
32.2.3 Analiza zdania A1: A=>S metodą zdjęciową w algebrze Kubusia
Definicja zdjęcia układu:
Zdjęcie układu dla dowolnego zdania warunkowego „Jeśli p to q” to analiza tego układu przez wszystkie możliwe przeczenia p i q przy pomocy znaczka ~~>, czyli de facto przy pomocy spójników „i”(*) i „lub”(+).
Niech będzie dany schemat elektryczny:
Kod: |
S1 Schemat 1
S A
------------- ______
-----| Żarówka |-------o o-----
| ------------- |
| |
______ |
___ U (źródło napięcia) |
| |
| |
------------------------------------
|
Dane jest zdanie:
A1.
Jeśli przycisk A jest wciśnięty to żarówka S świeci się
A=>S =?
Polecenie:
Korzystając z metody zdjęciowej wyznacz wszystkie zdarzenia możliwe (Y) i niemożliwe (~Y) dla schematu S1.
Definicja zdarzenia możliwego ~~>:
Jeśli zajdzie p to może ~~> zajść q
p~~>q =p*q =1
Definicja zdarzenia możliwego ~~> jest spełniona (=1) wtedy i tylko wtedy gdy możliwe jest jednoczesne zajście zdarzeń p i q.
Inaczej:
p~~>q=p*q =[] =0
Decydujący w powyższej definicji jest znaczek zdarzenia możliwego ~~>, dlatego dopuszczalny jest zapis skrócony p~~>q.
Uwaga:
Na mocy definicji zdarzenia możliwego ~~> badamy możliwość zajścia jednego zdarzenia, nie analizujemy tu czy między p i q zachodzi warunek wystarczający => czy też konieczny ~>.
Robimy zdjęcie układu S1
Kod: |
ZM
Y=A*S+~A*~S
A: A~~> S=1 - możliwe jest (=1) zdarzenie: wciśnięty A (A) i świeci S (S)
B: A~~>~S=0 - niemożliwe jest (=0): wciśnięty A (A) i nie świeci S (~S)
C:~A~~>~S=1 - możliwe jest (=1): nie wciśnięty A (~A) i nie świeci S (~S)
D:~A~~> S=0 - niemożliwe jest (=0): nie wciśnięty A (~A) i świeci S (S)
|
Jak widzimy zrobienie zdjęcia układu S1 w zdarzeniach jest trywialne.
Stąd łatwo uzyskujemy układ równań logicznych Y i ~Y dających odpowiedź na pytania o Y i ~Y w spójnikach „i”(*) i „lub”(+)
Dowód:
Opiszmy schemat S1 układem równań Y=1 (zdarzenia możliwe) i Y=0 (zdarzenia niemożliwe):
1.
Y = A: A*S + C: ~A*~S
Co w logice jedynek (bo równanie alternatywno-koniunkcyjne) oznacza:
Y=1 <=> A: A=1 i S=1 lub C: ~A=1 i ~S=1
Czytamy:
Zdarzenia możliwe (Y) w układzie S1 to:
A: Ya = A*S=1*1=1 - możliwe jest (Ya) zdarzenie: przycisk A wciśnięty i żarówka S świeci się
lub
C: Yc =~A*~S=1*1=1 - możliwe jest (Yc) zdarzenie: przycisk A nie jest wciśnięty i żarówka nie świeci się
Gdzie:
Y=Ya+Yc - zdarzenia możliwe (Y) to suma logiczna zdarzeń cząstkowych Ya i Yc
Z tabeli ZM równie łatwo możemy odczytać zdarzenia niemożliwe (Y=0).
Bezpośrednio z tabeli ZM czytamy:
Y=0 <=> B: A*~S + D: ~A*S
Prawo Prosiaczka, które możemy zastosować wybiórczo do dowolnej zmiennej binarnej:
(Y=0)=(~Y=1)
Stąd mamy zapis tożsamy:
(~Y=1) <=> B: A*~S + D: ~A*S
Stąd mamy równanie logiczne opisujące wszystkie zdarzenia niemożliwe (~Y):
2.
~Y = B: A*~S + D: ~A*S
Co w logice jedynek, bo równanie alternatywno-koniunkcyjne oznacza:
~Y=1 <=> B: A=1 i ~S=1 lub ~A=1 i S=1
Czytamy:
Zdarzenia niemożliwe (~Y) w układzie S1 to:
B: ~Yb=A*~S=1*1=1 - niemożliwe jest (~Yb) zdarzenie: przycisk A wciśnięty i nie świeci żarówka S
lub
D: ~Yd=~A*S=1*1=1 - niemożliwe jest (~Ya) zdarzenie: przycisk A nie wciśnięty i świeci żarówka S
Gdzie:
~Y=~Yb+~Yd - zdarzenie niemożliwe (~Y) to suma logiczna zdarzeń cząstkowych ~Yb i ~Yd
Znaczenie symbolu Y:
Y - zdarzenia możliwe (Y=1)
~Y - zdarzenia niemożliwe (~Y=1)
Jak widzimy, opis układu S1 spójnikami „i”(*) i „lub”(+) jest trywialny, zrozumiały dla każdego 5-cio latka
Uwaga:
Badany układ S1 to fizyczna realizacja równoważności p<=>q której opis w znaczkach warunku wystarczającego =>, warunku koniecznego ~> i zdarzenia możliwego ~~> znajdziemy w punkcie 6.6
32.2.4 Zdanie zawsze prawdziwe w metodzie zdjęciowej dla zdania A1: A=>S
Zdanie warunkowe które analizowaliśmy wyżej to:
A1.
Jeśli przycisk A jest wciśnięty to żarówka S świeci się
A=>S =?
Polecenie:
Zbadaj, czy zdanie warunkowe A1 spełnia definicję ziemskiej implikacji p=>q.
Analiza tego zdania w metodzie zdjęciowej doprowadziła nas do tabeli prawdy:
Kod: |
ZM
Y=A*S+~A*~S
A: A~~> S=1 - możliwe jest (=1) zdarzenie: wciśnięty A (A) i świeci S (S)
B: A~~>~S=0 - niemożliwe jest (=0): wciśnięty A (A) i nie świeci S (~S)
C:~A~~>~S=1 - możliwe jest (=1): nie wciśnięty A (~A) i nie świeci S (~S)
D:~A~~> S=0 - niemożliwe jest (=0): nie wciśnięty A (~A) i świeci S (S)
|
Jak widzimy, wszystko jest zrozumiałe dla każdego 5-cio latka.
32.2.5 Dowód braku wewnętrznej sprzeczności w A1: A=>S na gruncie AK
Dziedzina matematyczna Dm w teorii zdarzeń:
Dziedzina matematyczna Dm w teorii zdarzeń to wszystkie możliwe zdarzenia rozłączne bez analizy czy którekolwiek z nich może zajść czy nie może zajść, dlatego będziemy tu używali znaczka wartości bezwzględnej, znanej w matematyce:
Dm = A1: |A*S| + B: |A*~S| = C: |~A*~S| + D: |~A*S|
Dziedzina fizyczna D w teorii zdarzeń
Dziedzina fizyczna D w teorii zdarzeń to dziedzina matematyczna Dm po usunięciu z niej zdarzeń niemożliwych do wystąpienia
D = A: A*S + C: ~A*~S
W naszym przypadku, mamy dwa zdarzenia niemożliwe:
B: ~Yb=A*~S=1*1=1 - niemożliwe jest (~Yb=1) zdarzenie: przycisk A wciśnięty i żarówka S nie świeci
lub
D: ~Yd=~A*S=1*1=1 - niemożliwe jest (~Yd=1) zdarzenie: nie wciśnięty A i żarówka S świeci
Oba te przypadki B i D są doskonale rozumiane przez każdego 5-cio latka.
Definicja zdania zawsze prawdziwego dla zdania „Jeśli p to q” w teorii zdarzeń:
Zdanie zawsze prawdziwe w teorii zdarzeń to iterowanie po kompletnej dziedzinie matematycznej DM w poszukiwaniu zdarzenia które nie jest zgodne z zero-jedynkową definicją badanego zdarzenia.
Zdanie jest zawsze prawdziwe wtedy tylko wtedy gdy nie istnieje iterowanie zmieniające stan zdarzenia niemożliwego na zdarzenie możliwe lub odwrotnie.
Oczywistym jest, że jeśli definicja zdarzenia x jest poprawna to taka zmiana stanu nigdy nie wystąpi.
Wnioskowanie o fałszywości definicji:
Zdanie które nie spełnia definicji zdana zawsze prawdziwego jest dowodem fałszywości użytej definicji.
Zauważmy, że w analizowaniu naszego zdania A1: A=>S definicja zdania zawsze prawdziwego jest spełniona.
Wniosek:
Analiza zdania warunkowego A1 metodą zdjęciową:
A1.
Jeśli przycisk A jest wciśnięty to żarówka S świeci się
A=>S =1
Nie generuje wewnętrznej sprzeczności w tej analizie, zatem wszystkie użyte tu definicje są matematycznie poprawne.
Zauważmy, że analiza tego samego zdania w Klasycznym Rachunku Zdań prowadzi do wewnętrznej sprzeczności w KRZ, co posyła tą gówno-logikę do piekła na wieczne piekielne męki (pkt. 32.1.4)
|
|
Powrót do góry |
|
 |
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 37352
Przeczytał: 18 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Pon 20:27, 17 Mar 2025 Temat postu: |
|
|
Algebra Kubusia – matematyczna wojna wszech czasów
33.0 Dowód wewnętrznej sprzeczności w KRZ na poziomie szkoły podstawowej
Spis treści
33.0 Dowód wewnętrznej sprzeczności w KRZ na poziomie szkoły podstawowej 1
33.1 Definicja i obsługa zdań warunkowych „Jeśli p to q” w KRZ 1
33.2 Fundamentalna różnica między algebrą Kubusia a KRZ 3
33.2.1 Prawo Anakondy 3
33.2.2 Algorytm Puchacza 3
33.2.3 Przykłady zdań niespełniających algorytmu Puchacza 5
33.3 Dowód prawa Anakondy 7
33.4 Dowód wewnętrznej sprzeczności w definicjach kwadratu i prostokąta 10
33.4.1 Kubusiowa propozycja skorygowania definicji kwadratu i prostokąta 13
33.5 Kompromitacja ziemskiej matematyki w 5 klasie szkoły podstawowej 16
33.5.1 Definicje czworokątów w 100-milowym lesie 22
33.5.2 Przykładowy błąd definicyjny w podręczniku matematyki do 5 klasy SP 24
33.0 Dowód wewnętrznej sprzeczności w KRZ na poziomie szkoły podstawowej
Opracowano na bazie dyskusji z Irbisolem od tego momentu:
http://www.sfinia.fora.pl/filozofia,4/algebra-kubusia-rewolucja-w-logice-matematycznej,16435-6900.html#797497
33.1 Definicja i obsługa zdań warunkowych „Jeśli p to q” w KRZ
Zacznijmy od definicji zdania warunkowego „Jeśli p to q” w rozumieniu KRZ:
[link widoczny dla zalogowanych]
Rafal3006 napisał: |
@Wynurzenia z Szamba
Jeśli 2+2=5, to jestem papieżem
Z książki Johna D. Barrowa Kres możliwości?
Cytat (s. 226)
Bertrand Russell:
Warunkiem niesprzeczności systemu w logice klasycznej (KRZ) jest ścisły podział zdań na prawdziwe bądź fałszywe, bowiem ze zdania fałszywego można wywnioskować dowolne inne, fałszywe bądź prawdziwe.
Kiedy Bertrand Russell wypowiedział ten warunek na jednym z publicznych wykładów jakiś sceptyczny złośliwiec poprosił go, by udowodnił, że jeśli 2 razy 2 jest 5, to osoba pytająca jest Papieżem. Russell odparł: "Jeśli 2 razy 2 jest 5, to 4 jest 5; odejmujemy stronami 3 i wówczas 1=2. A że pan i Papież to 2, więc pan i Papież jesteście jednym."!
W ramach zadania domowego zadałem sobie wykazanie, że jeśli Napoleon Bonaparte był kobietą, to ja jestem jego ciotką. Na razie zgłaszam "bz |
Na mocy warunku niesprzeczności KRZ podanego przez Bertranda Russella działanie Klasycznego Rachunku Zdań w obsłudze wszelkich zdań warunkowych „Jeśli p to q” jest następujące.
Kod: |
Zero-jedynkowa definicja implikacji p=>q w KRZ:
p q p=>q
1 1 =1
1 0 =0
0 1 =1
0 0 =1
|
Matematycznego potwora którego nie sposób zrozumieć, zwanego dla niepoznaki Klasycznym Rachunkiem Zdań znajdziemy w każdym podręczniku matematyki do I klasy LO
Dowód iż KRZ to gwałt na rozumku każdego 5-cio latka to przykładowe zdania tu prawdziwe:
1: Jeśli 2+2=5 to jestem papieżem
2: Jeśli pies ma 8 łap to Księżyc krąży wokół Ziemi
3: Dwa plus dwa równa się cztery wtedy i tylko wtedy, gdy Płock leży nad Wisłą.
Dowód na serio prawdziwości zdania 1 znajdziemy tu:
[link widoczny dla zalogowanych]
Dowód na serio prawdziwości zdania 2 znajdziemy w podręczniku matematyki do I klasy LO:
[link widoczny dla zalogowanych]
Komentarz do zdania 3 znajdziemy w Delcie'2013:
[link widoczny dla zalogowanych]
Zobaczmy w praktyce jak działa Klasyczny Rachunek Zdań w obsłudze zdań warunkowych „Jeśli p to q”
Ad.1
Jeśli 2+2=5 to jestem papieżem
p=2+5=5 =[] =0 - zbiór pusty, twarde zero
q=[jestem papieżem] =[] =0 - zbiór pusty twarde zero
Stąd mamy na gruncie KRZ rozstrzygnięcie:
p=>q = 0=>0 =1 - na mocy tabeli zero-jedynkowej ziemskiej implikacji
Ad.2
Jeśli pies ma 8 łap to Księżyc krąży wokół Ziemi
p=[pies ma 8 łap]= []=0 - zbiór pusty, twarde zero
q=[Księżyc krąży wokół Ziemi] =1 - twarda jedynka
Stąd mamy na gruncie KRZ rozstrzygnięcie:
p=>q = 0=>1 =1 - na mocy tabeli zero-jedynkowej ziemskiej implikacji
Ad. 3
3a.
Jeśli dwa plus dwa równa się cztery to Płock leży nad Wisłą
p=[Dwa plus dwa równa się cztery] =1 - twarda jedynka
q=[Płock leży nad Wisłą] =1 - twarda jedynka
Stąd mamy na gruncie KRZ rozstrzygnięcie:
p=>q = 1=>1 =1 - na mocy tabeli zero-jedynkowej ziemskiej implikacji
Twierdzenie odwrotne do 3a
3b
Jeśli Płock leży nad Wisłą to dwa plus dwa równa się cztery
q= [Płock leży nad Wisłą] =1 - twarda jedynka
p=[Dwa plus dwa równa się cztery] =1 - twarda jedynka
q=>p = 1=>1 =1 - na mocy tabeli zero-jedynkowej ziemskiej implikacji
Definicja równoważności p<=>q:
Równoważność to jednoczesna prawdziwość twierdzenia prostego p=>q i odwrotnego q=>p
Stąd mamy dowód poprawności równoważności p<=>q z podręcznika matematyki do I klasy LO:
3: Dwa plus dwa równa się cztery wtedy i tylko wtedy, gdy Płock leży nad Wisłą.
p<=>q = (3a: p=>q)*(3b: q=>p) =1*1=1
W ten oto sposób udowodniliśmy na gruncie KRZ poprawność równoważności 3 z podręcznika matematyki do I klasy LO
Z punktu widzenia poprawnej logiki matematycznej, algebry Kubusia, wszystkie powyższe przykłady to gwałt na rozumku każdego człowieka, żadna matematyka - dowód za chwilkę.
33.2 Fundamentalna różnica między algebrą Kubusia a KRZ
KRZ:
Wedle gówna zwanego KRZ zdanie warunkowe "Jeśli p to q" to zlepek dwóch
zdań twierdzących o znanej z góry wartości logicznej p i q w postaci twardej jedynki lub twardego zera, bowiem wtedy i tylko wtedy na gruncie KRZ możemy określić prawdziwość/fałszywość zdania warunkowego "Jeśli p to q"
Algebra Kubusia:
W algebrze Kubusia, zdanie warunkowe "Jeśli p to q" spełnia algorytm Puchacza wtedy i tylko wtedy gdy p i q we wszystkich możliwych przeczeniach {p, q, ~p, ~q} są zdarzeniami/zbiorami niepustymi.
Dowolne zdanie które nie spełnia algorytmu Puchacza, jest w algebrze Kubusia fałszywe, z powodu nie spełnienia algorytmu Puchacza.
33.2.1 Prawo Anakondy
Prawo Anakondy:
Każde zdanie warunkowe „Jeśli p to q” prawdziwe na gruncie KRZ, będzie fałszywe na gruncie algebry Kubusia.
33.2.2 Algorytm Puchacza
Jak działa Klasyczny Rachunek Zdań w obsłudze zdań warunkowych „Jeśli p to q” mamy wyżej w punkcie 33.0
Dla udowodnienia prawa Anakondy musimy zrozumieć ja działa algebra Kubusia w obsłudze zdań warunkowych „Jeśli p to q”, gdzie kluczowe jest zrozumienie algorytmu Puchacza.
W tym momencie czytelnik proszony jest o zapoznanie się z punktami 2.10 do 2.15 z niniejszego podręcznika.
Zacytujmy tu najważniejszy dla nas w tym momencie algorytm Puchacza.
Algorytm Puchacza
Kod: |
T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p
## ## ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Uwaga:
Na mocy praw Sowy prawdziwość podstawowego spójnika implikacyjnego p?q definiowanego kolumną A1B1 (pytanie o p) wymusza prawdziwość odpowiedniego operatora implikacyjnego p|?q definiowanego dwoma kolumnami A1B1 (pytanie o p) i A2B2 (pytanie o ~p).
Prawo Kłapouchego:
Domyślny punkt odniesienia dla zdań warunkowych „Jeśli p to q”:
W zapisie aktualnym zdań warunkowych (w przykładach) po „Jeśli…” mamy zdefiniowaną przyczynę p zaś po „to..” mamy zdefiniowany skutek q z pominięciem przeczeń.
Prawo Kłapouchego determinuje wspólny dla wszystkich ludzi punktu odniesienia zawarty wyłącznie w kolumnach A1B1 oraz A2B2, dający odpowiedź na pytanie o p (A1B1) oraz o ~p (A2B2).
Algorytm Puchacza to przyporządkowania dowolnego zdania warunkowego "Jeśli p to q" (także fałszywego = fałszywy kontrprzykład) do określonego operatora implikacyjnego.
Algorytm Puchacza:
1.
W zdaniu warunkowym "Jeśli p to q" przeznaczonym do analizy lokalizujemy p i q z pominięciem przeczeń, zgodnie z prawem Kłapouchego bez analizy czy zdanie w oryginale jest prawdziwe/fałszywe.
Prawo Kłapouchego lokalizuje nas w kolumnie A1B1, gdzie mamy brak zaprzeczonego poprzednika p.
Prawo Kłapouchego jest tożsame z otwarciem drzwiczek pudełka z kotem Schrödingera (pkt. 5.4.1)
2.
Poprzednik p i następnik q muszą spełniać definicję wspólnej dziedziny D zarówno dla p jak i dla q
Definicja dziedziny D dla p:
p+~p =D =1
p*~p=[] =0
Definicja tej samej dziedziny D dla q:
q+~q =D =1
q*~q =[] =0
3.
Zbiory/zdarzenia p, q, ~p, ~q muszą być niepuste, bowiem z definicji nie możemy operować na zbiorach/zdarzeniach pustych (pkt 12.2)
4.
Zdania warunkowe "Jeśli p to q" które nie spełniają punktów 1,2,3 są matematycznie fałszywe.
5.
Prawo Puchacza:
Dowolne zdanie warunkowe "Jeśli p to q" należy do jednego z 5 rozłącznych operatorów implikacyjnych p|?q wtedy i tylko wtedy gdy spełnione są warunki 1, 2 i 3 algorytmu Puchacza.
Rozłączne operatory implikacyjne to:
a) p||=>q - operator implikacji prostej (2.12.1)
b) p||~>q - operator implikacji odwrotnej (2.13.1)
c) p|<=>q - operator równoważności (2.14.1)
d) p||~~>q - operator chaosu (2.15.1)
e) p|$q - operator "albo"(|$) (7.2.1)
6.
Korzystając z praw algebry Kubusia wyznaczamy prawdziwość/fałszywość warunku wystarczającego A1: p=>q dla niezanegowanego p:
A1: p=>q =?
7.
Dla tych samych parametrów p i q wyznaczamy prawdziwość/fałszywość warunku koniecznego B1: p~>q dla niezanegowanego p:
B1: p~>q =?
W punktach 6 i 7 p i q muszą być wszędzie tymi samymi p i q inaczej błąd postawienia
Rozstrzygnięcia 6 i 7 możemy badać w odwrotnej kolejności, matematycznie to bez znaczenia.
Rozwiązanie kluczowych punktów 6 i 7 jednoznacznie definiuje nam spójnik implikacyjny p?q definiowany kolumną A1B1, a tym samym (na mocy praw Sowy) operator implikacyjny p|?q do którego należy badane zdanie.
33.2.3 Przykłady zdań niespełniających algorytmu Puchacza
Zdania warunkowe "Jeśli p to q" które nie spełniają punktów 1,2,3 algorytmu Puchacza są matematycznie fałszywe.
Ad. 1
W punkcie 1 chodzi o to, że jeśli przystępujemy do analizy matematycznej zdania "Jeśli p to q" to musimy zastosować prawo Kłapouchego, inaczej dostaniemy nietrywialny błąd podstawienia ### (pkt. 2.7.4)
Ad. 2
A1.
Jeśli liczba jest podzielna przez 2 to trójkąt może być prostokątny
P2~~>TP =0
Brak wspólnej dziedziny.
Stąd mamy:
Zdanie A1 jest fałszywe na mocy punktu 2 algorytmu Puchacza.
Ad. 3
Definicja zbioru pustego [] (pkt.12.2):
Zbiór pusty [] to zbiór zawierający zero pojęć zrozumiałych dla człowieka.
B1
Jeśli 2+2=5 to 2+2=4
Zdanie tożsame (wyjaśnienie w pkt.12.2.1):
B1
Jeśli zbiór pusty [] to liczba 4
[]~~>[4] = []*[4] =[] =0 - twardy fałsz, bo zbiór pusty [] i jednoelementowy zbiór [4] są rozłączne
Stąd mamy:
Zdanie B1 jest fałszywe na mocy punktu 3 algorytmu Puchacza.
Wyjątek:
C1.
Jeśli zbiór pusty [] to zbiór pusty []
[]=>[] =1
Bo każdy zbiór jest podzbiorem => siebie samego, także zbiór pusty []
Wyjaśnienie w punkcie 12.2.1
Rozważmy zdanie:
D1.
Jeśli 2+2=5 to jestem papieżem
p=[2+2=5] =[] =0 - twarde zero
q=[jestem papieżem] =[] =0 - twarde zero
Stąd zapis formalny:
p=>q = []=>[] =0
Z punktu widzenia algorytmu Puchacza zdanie D1 jest fałszem bo nie jest tu spełniony punkt 3 algorytmu Puchacza.
Oczywiście z innego punktu odniesienia, z punktu odniesienia ogólnej teorii zbiorów (pkt. 12.2.1) zdanie D1 będzie prawdą, czego dowód mamy w zapisie C1
W matematyce nie ma w tym nic dziwnego.
Dowód:
A1.
Jeśli jutro będzie padało to na 100% => będzie pochmurno
P=>CH =1
Padanie (P) jest (=1) warunkiem wystarczającym => dla istnienia chmur (CH), bo zawsze gdy pada (P), są chmury (CH)
##
Zbadajmy warunek konieczny ~> między tymi samymi punktami
B1.
Jeśli jutro będzie padało to na 100% ~> będzie pochmurno
P~>CH =0
Padanie (P=1) nie jest (=0) warunkiem koniecznym ~> dla istnienia chmur (CH=1), bo może nie padać (~P=1) a chmury mogą istnieć (CH=1)
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
Kod: |
T1
Definicja warunku wystarczającego =>: ## Definicja warunku koniecznego ~>:
Y = (p=>q) = ~p+q ## Y = (p~>q) =p+~q
|
Definicja znaczka różne ##:
Dwie funkcje logiczne w tej samej logice (tu dodatniej bo Y) są różne na mocy definicji ## wtedy i tylko wtedy gdy prawe strony tych funkcji nie są tożsame
Jak widzimy, w tabeli T1 definicja znaczka różne na mocy definicji ## jest perfekcyjnie spełniona.
Stąd mamy wyprowadzone prawo Kameleona.
Prawo Kameleona:
Dwa zdania brzmiące identycznie z dokładnością do każdej literki nie muszą być matematycznie tożsame.
Dowodem są tu nasze zdania A1 i B1.
Różność na mocy definicji ## zdań A1 i B1 rozpoznajmy wyłącznie po znaczkach warunku wystarczającego => i koniecznego ~> wbudowanych w treść zdań.
Analogia w języku polskim to:
może i morze
Tu różność pojęć wynika z kontekstu lub z pisowni jak wyżej.
33.3 Dowód prawa Anakondy
Prawo Anakondy:
Dowolne zdanie prawdziwe na gruncie KRZ będzie fałszywe na gruncie algebry Kubusia z powodu niespełnienia punktu 3 w algorytmie Puchacza.
Dowód prawa Anakondy to dowód wewnętrznej sprzeczności w Klasycznym Rachunku Zdań.
Kim jest Bertrand Russell:
http://www.sfinia.fora.pl/posting.php?mode=editpost&p=706875
Bertrand Arthur William Russell, 3. hrabia Russell (ur. 18 maja 1872 w Ravenscroft, Walia, zm. 2 lutego 1970 w Penrhyndeudraeth, Walia – brytyjski filozof, logik, matematyk.
Jest uważany za twórcę filozofii analitycznej razem ze swoim poprzednikiem Gottlobem Frege, współpracownikiem G.E. Moore’em oraz uczniem Ludwigiem Wittgensteinem.
Uznaje się go za jednego z najlepszych logików dwudziestego wieku.
Jego prace miały znaczący wpływ w matematyce, logice, teorii mnogości, lingwistyce, sztucznej inteligencji, kognitywistyce, informatyce oraz filozofii, w szczególności filozofii języka, epistemologii oraz metafizyce
Zacznijmy od zdefiniowania czym jest zdanie warunkowe „Jeśli p to q” na gruncie KRZ:
[link widoczny dla zalogowanych]
@Wynurzenia z Szamba
Jeśli 2+2=5, to jestem papieżem
Z książki Johna D. Barrowa Kres możliwości?
Cytat (s. 226)
Bertrand Russell:
Warunkiem niesprzeczności systemu w logice klasycznej (KRZ) jest ścisły podział zdań na prawdziwe bądź fałszywe, bowiem ze zdania fałszywego można wywnioskować dowolne inne, fałszywe bądź prawdziwe.
Kiedy Bertrand Russell wypowiedział ten warunek na jednym z publicznych wykładów jakiś sceptyczny złośliwiec poprosił go, by udowodnił, że jeśli 2 razy 2 jest 5, to osoba pytająca jest Papieżem. Russell odparł: "Jeśli 2 razy 2 jest 5, to 4 jest 5; odejmujemy stronami 3 i wówczas 1=2. A że pan i Papież to 2, więc pan i Papież jesteście jednym."!
W ramach zadania domowego zadałem sobie wykazanie, że jeśli Napoleon Bonaparte był kobietą, to ja jestem jego ciotką. Na razie zgłaszam "bz
Zacznijmy od definicji kwadratu na gruncie KRZ:
DKW.
Jeśli czworokąt jest kwadratem to ma wszystkie kąty proste i boki równe
KW=>KP*BR
Zauważmy, że to jest oficjalna, ziemska definicja kwadratu na gruncie KRZ.
Zauważmy, że początek zdania warunkowego „Jeśli p to q” definiującego kwadrat zaczyna się od słów:
A1.
Jeśli czworokąt jest kwadratem, to…
Sam ten fakt wystarczy, by na gruncie KRZ zdanie warunkowe A1 było fałszem, bo zgwałcony jest tu wymóg twardej jedynki w poprzedniku p
Poprzednik p:
p=[czworokąt jest kwadratem] =1 - miękka jedynka, zbiór niepusty
Miękka jedynka dlatego że:
~p=~[czworokąt jest kwadratem] = [czworokąt nie jest kwadratem] = [np. trapez] =1 - miękka jedynka, zbiór niepusty
Absolutnie nie jest to zdanie z twardą jedynką w poprzedniku wymaganą przez definicję zdanie warunkowego „Jeśli p to q” na gruncie KRZ.
Przykład zdania spełniającego definicję zdanie warunkowego „Jeśli p to q” na gruncie KRZ jest jak niżej.
B1.
Jeśli pies ma cztery lapy, to ..
To zdanie ma szansę być prawdziwym na gruncie KRZ o ile następnik q również będzie twardą jedynką .
Przykład takiego zdania prawdziwego na gruncie KRZ:
B1”.
Jeśli pies ma cztery łapy, to 2+2=4
p=>q = 1=>1 =1
W zdaniu B1 po stronie poprzednika p spełniony jest wymóg twardej jedynki wymagany definicją zdania warunkowego „Jeśli p to q” na gruncie KRZ
Dowód:
p=[pies ma cztery łapy] =1 - twarda jedynka
Twarda jedynka dlatego że:
~p=~[pies ma cztery łapy] = [pies nie ma czterech łap] =[] =0 - twarde zero
Podsumowując:
Wyłącznie w zdaniu B1 (w przeciwieństwie do A1) mamy spełniony warunek twardej prawdy wymagany definicją zdania warunkowego „Jeśli p to q” na gruncie KRZ.
Powtórzmy to, czego zapewne wielu matematyków nie jest w stanie pojąć ... a to są banały co najwyżej na poziomie ucznia I klasy LO.
[link widoczny dla zalogowanych]
@Wynurzenia z Szamba
Jeśli 2+2=5, to jestem papieżem
Z książki Johna D. Barrowa Kres możliwości?
Cytat (s. 226)
Bertrand Russell:
Warunkiem niesprzeczności systemu w logice klasycznej (KRZ) jest ścisły podział zdań na prawdziwe bądź fałszywe, bowiem ze zdania fałszywego można wywnioskować dowolne inne, fałszywe bądź prawdziwe.
Prawo Anakondy:
Dowolne zdanie prawdziwe na gruncie KRZ będzie fałszywe na gruncie algebry Kubusia z powodu niespełnienia punktu 3 w algorytmie Puchacza.
Przykład wewnętrznej sprzeczności w KRZ:
DKW.
Jeśli czworokąt jest kwadratem to ma wszystkie kąty proste i boki równe
KW=>KP*BR
Zauważmy, że to jest oficjalna, ziemska definicja kwadratu na gruncie KRZ.
Dowód wewnętrznej sprzeczności KRZ jest tu oczywistością bo w poprzedniku p mamy tu miękką jedynkę (dowód wyżej) a nie twardą jedynkę wymaganą definicją zdania warunkowego „Jeśli p to q” w KRZ o czym mówi ziemskie guru logiki matematycznej Bertrand Russell w cytacie wyżej.
Oczywistym jest, że definicja kwadratu DKW jest spełniona tylko i wyłącznie na gruncie algebry Kubusia, bo spełniony jest tu algorytm Puchacza:
Dowód:
DKW.
Jeśli czworokąt jest kwadratem to ma wszystkie kąty proste i boki równe
KW=>KP*BR
Przyjmujemy dziedzinę:
ZWC - zbiór wszystkich figur czworokątów
Po stronie poprzednika p mamy:
p=[czworokąt jest kwadratem] =[kwadrat] =1 - miękka jedynka, zbiór niepusty
~p=~[czworokąt jest kwadratem] =[czworokąt nie jest kwadratem] =[np. trapez] =1 - miękka jedynka, zbiór niepusty
Po stronie następnika q mamy:
q =[czworokąt który ma wszystkie kąty proste i boki równe] =[kwadrat] =1 - miękka jedynka, zbiór niepusty
~q=~[czworokąt który ma wszystkie kąty proste i boki równe]=[czworokąt która nie ma wszystkich kątów prostych i boków równych] = [np. trapez] =1 - miękka jedynka, zbiór niepusty
Jak widzimy, wszystkie możliwe przeczenia p i q {p, q, ~p, ~q} są tu zbiorami niepustymi, co oznacza, iż spełniony jest punkt 3 w algorytmie Puchacza, zatem zdanie DKW jest analizowalne przez wszystkie możliwe przeczenia p i q
cnd
Algorytm Puchacza (pkt. 2.11):
1.
W zdaniu warunkowym "Jeśli p to q" przeznaczonym do analizy lokalizujemy p i q z pominięciem przeczeń, zgodnie z prawem Kłapouchego bez analizy czy zdanie w oryginale jest prawdziwe/fałszywe.
Prawo Kłapouchego lokalizuje nas w kolumnie A1B1, gdzie mamy brak zaprzeczonego poprzednika p.
Prawo Kłapouchego jest tożsame z otwarciem drzwiczek pudełka z kotem Schrödingera (pkt. 5.4.1)
2.
Poprzednik p i następnik q muszą spełniać definicję wspólnej dziedziny D zarówno dla p jak i dla q
Definicja dziedziny D dla p:
p+~p =D =1
p*~p=[] =0
Definicja tej samej dziedziny D dla q:
q+~q =D =1
q*~q =[] =0
3.
Zbiory/zdarzenia p, q, ~p, ~q muszą być niepuste, bowiem z definicji nie możemy operować na zbiorach/zdarzeniach pustych (pkt 12.2)
4.
Zdania warunkowe "Jeśli p to q" które nie spełniają punktów 1,2,3 są matematycznie fałszywe.
33.4 Dowód wewnętrznej sprzeczności w definicjach kwadratu i prostokąta
Zacznijmy od podręcznikowych definicji kwadratu i prostokąta.
[link widoczny dla zalogowanych]
1.
Definicja kwadratu:
Kwadratem nazywamy czworokąt, który ma wszystkie kąty proste i boki równa
KW=PK*BR
[link widoczny dla zalogowanych]
2.
Definicja prostokąta:
Prostokątem nazywamy czworokąt, który ma wszystkie kąty proste.
PR=KP
Zobaczmy na diagramie jak wygląda tu pole bitwy:
Kod: |
D1
--------------------------------------------------------------------
| Definicja kwadratu |Definicja prostokąta nie będącego kwadratem |
| KW=KP*BR | PNK=KP*~BR |
| |Zauważmy że: |
| | PR=Dziedzina (zbiór wszystkich prostokątów) |
| | Stąd:
| | ~KW=[PR-KW]=[KW+PNK-KW]=PNK |
| | |
--------------------------------------------------------------------
| Prostokąt to zbiór wszystkich prostokątów ZWP (dziedzina) |
| ZWP = PR = KW+PNK = KP*BR + KP*~BR = KP*(BR+~BR)=KP |
| ZWP = PR = KP |
| Gdzie: |
| KP (kąty proste) to wspólna cecha KW i ~KW=PNK |
--------------------------------------------------------------------
|
Na mocy diagramu D1 zapisujemy brakującą tu, precyzyjną definicję prostokąta nie będącego kwadratem.
3.
Definicja prostokąta nie będącego kwadratem (PNK):
Prostokąt nie będący kwadratem (PNK) to czworokąt mający wszystkie kąty proste i nie wszystkie boki równe
PNK=KP*~BR
Uwaga:
W całej planimetrii są zaledwie dwa czworokąty należące dziedziny prostokątów PR jak na diagramie D1:
1: KW=PK*BR - kwadrat
2: PNK=KP*~BR - prostokąt nie będący kwadratem
Gdzie:
KW ## PNK ## PR=ZWP
## - różne na mocy definicji
Przyjmijmy znaczenie zapisów ogólnych:
p=KP (katy proste)
q=BR (boki równe)
Dowód:
1.
Definicja kwadratu (KW)
Y = (KW)=KP*BR
To samo w zapisach ogólnych:
Y = (KW) = p*q
##
2.
Definicja prostokąta nie będącego kwadratem (PNK)
Y=(PNK)=KP*~BR
To samo w zapisach ogólnych:
Y = (PNK) =p*~q
##
3.
Definicja prostokąta (PR)
Y =(PR)=KP
To samo w zapisach ogólnych:
Y = (PR) =p
Gdzie:
## - różne na mocy definicji
Definicja znaczka różne na mocy definicji ##:
Dwie funkcje logiczne w tej samej logice (tu dodatniej bo Y) są różna na mocy definicji wtedy i tylko wtedy gdy prawe strony tych funkcji nie są tożsame.
Doskonale widać, że między definicjami 1, 2 i 3 definicja znaczka różne na mocy definicji ## jest perfekcyjnie spełniona.
Z diagramu D1 wynika, że dziedzina minimalna obowiązująca w D1 to:
ZWP - zbiór wszystkich prostokątów.
ZWP= PR = [KW, PNK]
Z diagramu D1 wynika też, że:
1.
Zaprzeczeniem zbioru KW w dziedzinie PR jest zbiór PNK
~KW = [ZWP-KW] = [KW,PNK - KW] =PNK
2.
Zaprzeczeniem zbioru PNK w dziedzinie PR jest zbiór KW
~PNK=[ZWP-PNK]=[KW,PNK-PNK] = KW
Fakty te doskonale widać na diagramie D1 wyżej.
Zadajmy sobie teraz trywialne pytanie:
Do jakiego zbioru należy czworokąt nie będący kwadratem?
Na mocy diagramu D1 mamy odpowiedź:
Czworokąt nie należący do zbioru kwadratów (~KW) należy do zbioru prostokątów nie będących kwadratami (PNK)
~KW = PNK
Dowód w punkcie 1 wyżej.
Finał, czyli dowód wewnętrznej sprzeczności ziemskich definicji w temacie kwadratu i prostokąta.
Pani w I klasie LO:
Jasiu, do jakiego zbioru należy czworokąt nie będący kwadratem
Jaś na gruncie znanych mu definicji (KW i PR) odpowiada:
Prostokąt nie będący kwadratem należy do zbioru wszystkich prostokątów PR o definicji:
PR = KP
Zauważmy, że w tym momencie mamy tu sprzeczność czysto matematyczną.
Dowód:
Pani pytała o czworokąt nie będący kwadratem
Odpowiedź Jasia iż jest to prostokąt PR jest matematycznie błędna bo:
PR= KW+PNK
Jak widzimy zbiór wszystkich możliwych prostokątów ZWP zwany w matematyce ziemian prostokątem (PR) zawiera w sobie zbiór kwadratów (KW) - a pytanie było o czworokąt który nie należy do zbioru kwadratów.
Wniosek:
Wewnętrzna sprzeczność ziemskiej matematyki na poziomie 5 klasy SP została udowodniona.
Analogiczne pytania z zakresu matematyki na poziomie szkoły podstawowej (7 klasa).
1.
Pani:
Jasiu, do jakiego zbioru należy trójkąt nie będący trójkątem prostokątnym?
Odpowiedź Jasia (błędna):
Trójkąt nie będący trójkątem prostokątnym ~(TP) należy do zbioru wszystkich trójkątów (ZWT)
Odpowiedź poprawna:
Trójkąt nie będący trójkątem prostokątnym ~(TP) należy do zbioru trójkątów nieprostokątnych ~TP
ZWT = TP+~TP
~TP = [ZWT-TP]=[TP+~TP -TP] = ~TP
Gdzie:
ZWT - zbiór wszystkich trójkątów (dziedzina)
cnd
2.
Pani:
Jasiu, do jakiego zbioru należy człowiek nie będący mężczyzną?
Odpowiedź Jasia (błędna):
Człowiek nie będący mężczyzną ~(M) należy do zbioru wszystkich ludzi (C)
Odpowiedź poprawna:
Człowiek nie będący mężczyzną ~(M) należy do zbioru kobiet (K)
C = M+K
~M=[C-M]=[M+K - M] =[K]
Gdzie:
C (człowiek) - zbiór wszystkich ludzi (dziedzina)
cnd
etc.
33.4.1 Kubusiowa propozycja skorygowania definicji kwadratu i prostokąta
Kubusiowa propozycja definicji w temacie kwadratu (KW) i prostokąta (PR) jest następująca.
Kod: |
DK Kubusiowe definicje wszystkich możliwych prostokątów ZWP
--------------------------------------------------------------------
| Definicja kwadratu |Definicja prostokąta |
| KW=KP*BR |PR=KP*~BR |
| |Innymi słowy: |
| |Definicja prostokąta nie będącego kwadratem |
| |PNK=PR=KP*~BR |
| |Zauważmy że: |
| |~KW=PR - w dziedzinie ZWP |
--------------------------------------------------------------------
| ZWP - Zbiór wszystkich możliwych prostokątów (dziedzina) |
| ZWP=KW+PR = KP*BR + KP*~BR = KP*(BR+~BR)=KP |
| ZWP=KP |
| Gdzie: |
| KP (kąty proste) to wspólna cecha kwadratu KW i prostokąta PR |
| Zauważmy że: |
| ~KW=[ZWP-KW]=[KW+PR-KW]=PR - w dziedzinie ZWP |
--------------------------------------------------------------------
|
Zauważmy, że na podstawie Kubusiowych definicji kwadratu (KW) i prostokąta (PR) znane każdemu matematykowi zdanie:
Każdy kwadrat (KW) jest prostokątem (PR)
jest zdaniem fałszywym
Zdanie matematycznie poprawne to:
Każdy kwadrat jest podzbiorem => wszystkich możliwych prostokątów
KW=>ZWP=[KW,PR]
Matematycznie zachodzi tożsamość [=] pojęć:
Definicja prostokąta: PR=KP*~BR [=] Definicja prostokąta nie będącego kwadratem: PR=KP*~BR
Zauważmy, że zbiór wszystkich możliwych prostokątów ZWP jest w matematyce nieprzydatny, bo wszelkie obliczenia matematyczne wykonujemy na elementach zbiorów a nie na zbiorach.
Stąd pojęcie długie i precyzyjne „definicja prostokąta nie będącego kwadratem” możemy skrócić do pojęcia „definicja prostokąta” i dokładnie tak jest to w całej matematyce [b]w praktyce rozumiane.
Innymi słowy:
Ludzkość tzn. uczniowie i nauczyciele mówiąc „prostokąt” mają na myśli (podświadomie) „prostokąt nie będący kwadratem” … i bez znaczenie jest tu jak sobie ten prostokąt zdefiniowali średniowieczni matematycy, nie znający algebry Kubusia.
Dowód:
Klikamy na googlach:
„rysunek prostokąta”
Widzimy całą masę prostokątów o definicji PR=KP*~BR i ani praktycznie ani jednego kwadratu o definicji KW=KP*BR
Po Kubusiowej korekcie stan faktyczny w obrębie definicji kwadratu (KW) i prostokąta (PR) będzie następujący.
1.
Definicja kwadratu:
Kwadrat (KW) to czworokąt mający wszystkie kąty proste (KP) i boki równe (BR)
KW=KP*BR
##
2.
Definicja prostokąta:
Prostokąt (PR) to czworokąt mający wszystkie kąty proste (KP) i nie równe boki (~BR)
PR=KP*~BR
##
3.
Definicja zbioru wszystkich prostokątów:
Zbiór wszystkich prostokątów (ZWP) to cecha wspólna kwadratu (KW) i prostokąta (PR)
ZWP=KW+PR=KP*BR+KP*~BR = KP*(BR+~BR)=KP
ZWP=KP
Komentarz:
ZWP jest tu dziedziną:
ZWP=KW+PR
ZWP=KP*BR + KP*~BR = KP*(BR+~BR) = KP
ZWP=KP
bo matematyce istnieją wyłącznie dwa czworokąty KW i PR mające wszystkie kąty proste
Uwaga:
Kąty proste (KP) to wspólna cecha zbioru wszystkich prostokątów (ZWP)
Gdzie:
## - różne na mocy definicji
Uwaga:
W całej planimetrii są zaledwie dwa czworokąty należące dziedziny prostokątów ZWP jak na diagramie DK:
1: KW=PK*BR - kwadrat
2: PR=KP*~BR - prostokąt
Gdzie:
KW (kwadrat) ## PR (prostokąt) ## ZWP (zbiór wszystkich prostokątów)
## - różne na mocy definicji
Dowód poprawności powyższego zapisu.
Przyjmijmy znaczenie zapisów ogólnych p i q:
p=KP (katy proste)
q=BR (boki równe)
1.
Definicja kwadratu (KW)
Y = (KW)=KP*BR
To samo w zapisach ogólnych:
Y = (KW) = p*q
##
2.
Definicja prostokąta (PR)
Y=(PR)=KP*~BR
To samo w zapisach ogólnych:
Y = (PR) =p*~q
##
3.
Definicja zbioru wszystkich prostokątów (ZWP):
Y =(ZWP) =KP
To samo w zapisach ogólnych:
Y = (ZWP) =p
Gdzie:
## - różne na mocy definicji
Definicja znaczka różne na mocy definicji ##:
Dwie funkcje logiczne w tej samej logice (tu dodatniej bo Y) są różna na mocy definicji wtedy i tylko wtedy gdy prawe strony tych funkcji nie są tożsame.
Doskonale widać, że między definicjami 1, 2 i 3 definicja znaczka różne na mocy definicji ## jest perfekcyjnie spełniona.
Komentarz:
Definicja kwadratu:
Kwadrat (KW) to czworokąt (CZ) mający wszystkie kąty proste (KP) i boki równe (BR)
KW*CZ=KP*BR
W zbiorze czworokątów interesują nas tu wyłącznie kwadraty, stąd zapis tożsamy:
KW=KP*BR - bo kwadraty (KW) są podzbiorem wszystkich możliwych czworokątów (CZ)
Zauważmy, że przy skorygowanych definicjach jak na diagramie DK nikogo nie zdziwi zdanie:
Dowolny kwadrat nie jest prostokątem
bo:
Definicja kwadratu: KW=KP*BR ## Definicja prostokąta: PR=KP*~BR
Gdzie:
## - różne na mocy definicji
Doskonale tu widać, że średniowieczni matematycy potwornie tu namotali, bo nie znali algebry Kubusia.
Czy warto to odkręcać wg Kubusiowej propozycji?
Zdecydowanie tak, bo inaczej pozostawimy w matematyce definicje kwadratu (KW) i prostokąta (PR) wewnętrznie sprzeczne co udowodniono w poprzednim punkcie.
Poza tym po skorygowaniu definicji czworokątów w obecnej matematyce, bo wiele z nich jest do bani (np. kwadrat i prostokąt), będziemy mieli koniec matematycznego wariatkowa (matematycznej niejednoznaczności) opisanego w punkcie 33.5.2
Fundament matematyki:
Matematyka musi być matematycznie jednoznaczna
Każdy człowiek poproszony o zdefiniowanie np. trapezu wyświetla sobie w swoim mózgu ten czworokąt i opisuje go jednoznacznie matematycznie.
Jednoznacznych opisów można przedstawić wiele z czego wynika, że poprawnych definicji trapezu również jest wiele. Najbardziej poprawną definicją jest definicja najkrótsza, minimalna.
Przykład minimalnej i jednoznacznej definicji trapezu:
Definicja trapezu:
Trapez to czworokąt który ma dokładnie jedną parę boków równoległych ale nie równych
TRAP = 1PBRNR
33.5 Kompromitacja ziemskiej matematyki w 5 klasie szkoły podstawowej
W ziemskich podręcznikach matematyki do 5 klasy szkoły podstawowej definicje kwadratu KW i prostokąta PR są następujące.
Lekcja matematyki w ziemskiej 5 klasie ziemskiej szkoły podstawowej.
Pani:
Jasiu, podaj matematyczne definicje kwadratu i prostokąta.
Jaś:
Definicja kwadratu:
Kwadrat to czworokąt, który ma wszystkie kąty proste i wszystkie boki równe
KW=KP*BR
Kod: |
KW - kwadrat
a
-----------
| |
| | a
| | a=a
-----------
a=a - boki są tożsame na mocy definicji kwadratu
|
Definicja prostokąta:
Prostokąt to czworokąt, który ma wszystkie kąty proste
PR=KP
Zauważmy, że definicja prostokąta u ziemian definiuje zbiór wszystkich możliwych prostokątów ZWP nie definiując prostokąta nie będącego kwadratem PNK!
U ziemian mamy tak:
Kod: |
Zbiór wszystkich możliwych prostokątów to:
ZWP = KW + PNK
Gdzie:
KW - kwadrat
a
-----------
| |
| | a
| | a=a
-----------
a=a - boki są tożsame na mocy definicji kwadratu
PNK - prostokąt nie będący kwadratem
a
----------------
| |
| | b
| | b##a
----------------
## - boki są różne ## na mocy definicji prostokąta nie będącego kwadratem
U ziemian dziedzina, czyli zbiór wszystkich możliwych prostokątów ZWP opisany jest równaniem logicznym:
ZWP = KW+PNK
|
Na czym polega fatalny błąd definicyjny w ziemskim podręczniku do 5 klasy szkoły podstawowej?
Ziemianie w zakresie zbioru wszystkich możliwych prostokątów (ZWP) dysponują dwoma definicjami:
Definicja kwadratu:
Kwadrat to czworokąt, który ma wszystkie kąty proste i wszystkie boki równe
KW=KP*BR
Definicja prostokąta:
Prostokąt to czworokąt mający wszystkie kąty proste
PR=KP
Teraz uwaga ziemianie:
Wasza definicja prostokąta nie definiuje kluczowego tu pojęcia - prostokąta nie będącego kwadratem PNK.
Wasza definicja prostokąta PR definiuje wspólną cechę kwadratu KW i prostokąta nie będącego kwadratem PNK.
Na czym polega katastrofalny błąd definicyjny ziemskich matematyków?
Zbiór kwadratów KW i zbiór prostokątów nie będących kwadratem PNK to zbiory rozłączne w dziedzinie zbioru wszystkich możliwych prostokątów ZWP:
ZWP = KW+PNK
Poprawne definicje matematyczne kwadratu KW i prostokąta nie będącego kwadratem PNK są następujące:
Definicja kwadratu:
Kwadrat to czworokąt, który ma wszystkie kąty proste i wszystkie boki równe
KW=KP*BR
Definicja prostokąta nie będącego kwadratem PNK:
Prostokąt nie będący kwadratem to czworokąt mający wszystkie kąty proste i nie wszystkie boki równe
PNK=KP*~BR
Zbiór wszystkich możliwych prostokątów ZWP to zbiór dwuelementowy gdzie elementami tego zbioru jest kwadrat KW i prostokąt nie będący kwadratem PNK.
Proszę o uwagę ziemskich matematyków po raz pierwszy:
Dopiero po zdefiniowaniu elementów zbioru wszystkich możliwych prostokątów ZWP w postaci kwadratu KW i prostokąta nie będącego kwadratem PNK wolno wam obliczyć w sposób czysto matematyczny cechę wspólną KW i PNK którą są wszystkie kąty proste KP
Dowód:
ZWP = KW + PNK = KP*BR + KP*~BR = KP*(BR+~BR) = KP
cnd
Proszę o uwagę ziemskich matematyków po raz drugi:
Jeśli chodzi o definiowanie pojęć to humaniści i 5-cio latki są o lata świetlne przed ziemskimi matematykami, którzy nie mają o tym najmniejszego pojęcia.
Dowód na przykładzie identycznym jak problem zbioru wszystkich możliwych prostokątów ZWP.
Definicja kobiety:
Kobieta to istota żywa, mówiąca ludzkim językiem, zdolna do rodzenia dzieci
K= IŻ*JL*RD
Definicja mężczyzny:
Mężczyzna to istota żywa, mówiąca ludzkim językiem, niezdolna do rodzenia dzieci
M = IŻ*JL*~RD
Zauważmy, że kluczową cechą pozwalającą humaniście i 5-cio latkowi odróżniać kobietę od mężczyzny jest pokazanie jednej, jedynej cechy, po której można odróżnić mężczyznę od kobiety - ta cecha to np. zdolność do rodzenia dzieci RD (kobieta) i niezdolność do rodzenia dzieci ~RD (mężczyzna)
Zauważmy, że dopiero po precyzyjnym zdefiniowaniu wszystkich możliwych elementów zbioru C (człowiek) możemy wyprowadzić cechę wspólną dla wszystkich ludzi.
C = K+M = IŻ*JL*RD + IŻ*JL*~RD = IŻ*JL*(RD+~RD) = IŻ*JL
Stąd mamy precyzyjną definicję człowieka C.
Definicja człowieka:
Człowiek to istota żywa, mówiąca ludzkim językiem
C = IŻ*JL
Proszę o uwagę ziemskich matematyków po raz trzeci:
Wasz czysto matematyczny błąd jaki popełniacie przy definiowaniu zbioru wszystkich możliwych prostokątów ZWP jest w przełożeniu na definicję zbioru wszystkich ludzi C (człowiek) następujący.
Definiujecie sobie precyzyjnie kobietę, co jest odpowiednikiem definicji kwadratu KW i to jest dobre.
Definicja kobiety:
Kobieta to istota żywa, mówiąca ludzkim językiem, zdolna do rodzenia dzieci
K= IŻ*JL*RD
Po czym definiujecie pojęcie człowiek (C) co jest odpowiednikiem zdefiniowania waszego zbioru wszystkich możliwych prostokątów (ZWP)
Definicja człowieka:
Człowiek to istota żywa, mówiąca ludzkim językiem
C = IŻ*JL
… i to jest niestety koniec wszystkich waszych definicji matematycznych w dziedzinie C (człowiek).
Pytanie do ziemskich matematyków jest tu następujące:
Gdzie jest definicja kobiety?
Oczywistym jest, że nie jest definicją kobiety pokazywanie wspólnej cechy kobiety (K) i mężczyzny (M) którym jest np. używanie ludzkiego języka.
Humanista i 5-cio latek kobietę od mężczyzny odróżniają jedną, jedyną cechą odróżniającą kobietę (K) od mężczyzny (M) np. zdolność do rodzenia dzieci.
Mam nadzieję, że wszyscy już zrozumieli dlaczego w definiowaniu czegokolwiek ziemscy matematycy są lata świetlne za humanistami i 5-cio latkami, ekspertami algebry Kubusia.
Ziemscy matematycy po prostu nie rozumieją algebry Kubusia, której naturalnymi ekspertami są humaniści i 5-cio latki.
Wszystkiemu winne jest najbardziej śmierdzące gówno jakie człowiek w swej historii wymyślił „implikacja materialna” - ciekawe czy i kiedy ziemscy matematycy to zrozumieją?
Definicja normalnego matematyka:
Normalny matematyk jeśli ma do czynienia ze zbiorem małym którego elementy łatwo jednoznacznie zdefiniować najpierw definiuje te elementy, i dopiero po tym fakcie wyprowadza w sposób czysto matematyczny cechy wspólne tych elementów.
Fragment oficjalnego programu nauczania matematyki w 5 klasie szkoły podstawowej:
[link widoczny dla zalogowanych]
Klasa 5
IX.
Wielokąty, koła i okręgi. Uczeń:
4) rozpoznaje i nazywa: kwadrat, prostokąt, romb, równoległobok i trapez;
XI.
Obliczenia w geometrii. Uczeń:
2) oblicza pola: trójkąta, kwadratu, prostokąta, rombu, równoległoboku, trapezu, przedstawionych na rysunku
Pytanie do ziemskich matematyków:
W jaki sposób uczeń ma obliczyć pole prostokąta skoro w ziemskim podręczniku matematyki oficjalna definicja prostokąta to zbiór wszystkich możliwych prostokątów ZWP w postaci kwadratu KW i prostokąta nie będącego kwadratem PNK.
ZWP = KW+PNK
W jaki sposób można policzyć pole zbioru wszystkich możliwych prostokątów?
Dlaczego mimo tak katastrofalnego błędu definicyjnego w obszarze zbioru wszystkich możliwych prostokątów ZWP matematyka działa?
Odpowiedź:
Mózg człowieka ma w głębokim poważaniu ziemską, oficjalną definicję prostokąta PR rozumianą jako zbiór wszystkich możliwych prostokątów:
PR = KW+PNK = KP
Wszystkie zadania matematyczne mówiące o prostokącie de facto mówią o prostokącie nie będącym kwadratem PNK, czyli prostokącie o różnych bokach a i b.
Dowód:
Pewne jest, że nikt nie znajdzie zadania matematycznego dotyczącego prostokąta gdzie na obrazku narysowany jest kwadrat KW zamiast prostokąta nie będącego kwadratem PNK.
Co więcej:
Jeśli jakiś matematyczny głąb narysuje kwadrat i podpisze prostokąt, to będzie to błąd czysto matematyczny!
Dlaczego?
Bo ziemska definicja prostokąta PR jest tożsama ze zbiorem wszystkich możliwych prostokątów ZWP o definicji:
PR = ZWP = KW + PNK = KP
Gdzie:
Definicja kwadratu:
Kwadrat (KW) to czworokąt mający wszystkie kąty proste (KP) i boki równe (BR)
KW=KP*BR
Definicja prostokąta nie będącego kwadratem PNK:
Prostokąt nie będący kwadratem PNK to czworokąt mający wszystkie kąty proste (KP) i nie wszystkie boki równe (~BR)
PNK=KP*~BR
Stąd:
ZWP=KW+PNK = KP*BR + KP*~BR = KP*(BR+~BR) = KP
ZWP =KP
Stąd mamy:
Definicja zbioru wszystkich możliwych prostokątów ZWP:
Zbiór wszystkich możliwych prostokątów ZWP to zbiór czworokątów mających wszystkie kąty proste (KP)
ZWP = KW + PNK = KP
Podsumowując:
Jeśli uczeń dostanie od ziemskiej pani matematyczki polecenie.
Jasiu narysuj prostokąt wedle ziemskiej definicji:
PR=KP - prostokąt to czworokąt mający wszystkie kąty proste (KP)
To Jaś musi narysować na tablicy zbiór wszystkich możliwych prostokątów ZWP, czyli kwadrat KW oraz prostokąt nie będący kwadratem PNK.
ZWP = KW + PNK = KP
Jeśli Jaś nie wykona na tablicy dwóch rysunków KW (kwadratu) i PNK (prostokąta nie będącego kwadratem) to powinien od pani matematyczki dostać pałę.
Pokazuję i objaśniam dlaczego Jaś na polecenie pani matematyczki „narysuj prostokąt” musi narysować dwa czworokąty KW (kwadrat) i PNK (prostokąt nie będący kwadratem).
1.
Załóżmy że, że jako pierwszy czworokąt Jaś rysuje kwadrat:
Kod: |
Definicja kwadratu KW:
Kwadrat to czworokąt mający wszystkie kąty proste (KP)
i wszystkie boki równe (BR)
KW=KP*BR
a
-----------
| |
| | a
| | a=a
-----------
a=a - boki są tożsame na mocy definicji kwadratu
|
Matematycznie ewidentnie tu zachodzi:
KW = KP*BR ## ZWP=KP
Gdzie:
## - różne na mocy definicji
Wniosek:
Jaś rysując kwadrat nie narysował jeszcze zbioru wszystkich możliwych prostokątów ZWP:
ZWP = KP
2.
Aby usunąć znaczek różne na mocy definicji ## Jaś musi do kompletu dorysować prostokąt nie będący kwadratem PNK:
Kod: |
Definicja prostokąta nie będącego kwadratem PNK:
Prostokąt nie będący kwadratem PNK to czworokąt
mający wszystkie kąty proste (KP) i nie wszystkie boki równe (~BR)
PNK=KP*~BR
a
----------------
| |
| | b
| | b##a
----------------
## - boki są różne ## na mocy definicji prostokąta nie będącego kwadratem
|
3.
Dopiero jak na tablicy będą widniały oba czworokąty KW oraz PNK Jaś może zapisać.
Definicja zbioru wszystkich możliwych prostokątów ZWP:
Zbiór wszystkich możliwych prostokątów ZWP to zbiór czworokątów mających wszystkie kąty proste (KP)
ZWP = KW + PNK = KP*BR + KP*~BR = KP*(BR+~BR) = KP
Podsumowując:
Tylko i wyłączne za dwa kompletne czworokąty narysowane na tablicy KW plus PNK Jaś ma prawo dostać ocenę: 5.
W każdym innym przypadku Jaś musi dostać pałę: 2
cnd
Pytanie do ziemskich matematyków:
Która pani matematyczka o tym wie?
W którym ziemskim podręczniku matematyki o tym pisze?
33.5.1 Definicje czworokątów w 100-milowym lesie
Definicja definicji:
Dowolna definicja musi być jednoznaczna w całym Uniwersum
Gdzie:
Uniwersum to zbiór wszelkich pojęć zrozumiałych dla człowieka
Innymi słowy:
Definicje podstawowe wszystkich czworokątów muszą być jednoznaczne w całym Uniwersum.
Dopiero na bazie poprawnych definicji wszystkich czworokątów możemy sobie tworzyć zbiory w oparciu o dowolne kryterium, ani grama wcześniej.
Zobaczmy jak wyglądają definicje najważniejszych czworokątów w podręczniku matematyki do 5 klasy szkoły podstawowej w 100-milowym lesie.
1. Definicja kwadratu:
Kwadrat to czworokąt mający wszystkie kąty proste (KP) i wszystkie boki równe (BR)
KW = KP*BR
Kod: |
a
-----------
| |
| | a
| | a=a
-----------
a=a - boki są tożsame na mocy definicji kwadratu
|
2. Definicja prostokąta:
Prostokąt to czworokąt mający wszystkie kąty proste (KP) i nie wszystkie boki równe (~BR)
PR=KP*~BR
3. Definicja rombu:
Romb to czworokąt, którego wszystkie boki są równe ale nie wszystkie kąty są proste
RB=~KP*BR
4. Definicja równoległoboku:
Równoległobok to czworokąt w którym przeciwległe boki są parami równoległe ale nie równe, i nie ma wszystkich kątów są prostych
ROWN=2BPRNR*~KP
5. Definicja trapezu:
Trapez to czworokąt który ma dokładnie jedną parę boków równoległych ale nie równych
TRAP = 1PBRNR
Rodzaje trapezów:
5a Trapez równoramienny:
Trapez równoramienny to trapez który ma dwa ramiona równe (c=d)
5b Trapez prostokątny
Trapez prostokątny to trapez, którego jedno ramię tworzy kąt prosty z podstawami.
33.5.2 Przykładowy błąd definicyjny w podręczniku matematyki do 5 klasy SP
[link widoczny dla zalogowanych]
Definicja trapezu:
Trapez to czworokąt który ma przynajmniej jedną parę boków równoległych.
Powyższa definicja pasuje do przedstawionego rysunku jak pies do jeża - jest niejednoznaczna w obszarze Uniwersum, zatem matematycznie błędna.
Zauważmy bowiem, że przynajmniej jedną parę boków równoległych mają:
1. Kwadrat
##
2. Prostokąt
##
3. Romb
##
4. Równoległobok
##
5. Trapez
Gdzie:
## - czworokąty różne na mocy definicji
Poprawna definicja powyższego zbioru powinna brzmieć.
Definicja zbioru wszystkich możliwych trapezów ZWT:
Zbiór wszystkich możliwych trapezów (ZWT) to zbiór czworokątów mających przynajmniej jedną parę boków równoległych.
Sensowne pytanie pani matematyczki to:
Jasiu, wymień czworokąty należące do zbioru wszystkich możliwych trapezów ZWT.
Poprawna odpowiedź to wymienienie wszystkich pięciu czworokątów.
W dzisiejszej matematyce uczeń 5 klasy szkoły podstawowej może się bawić z panią matematyczną w ciuciubabkę.
Dowód:
Pani matematyczna w 5 klasie szkoły podstawowej.
Jasiu, narysuj na tablicy trapez.
Jaś rysuje kwadrat o definicji z algebry Kubusia:
Kwadrat to czworokąt mający wszystkie kąty proste i wszystkie boki równe
KW=KP*BR
Pani:
Nie o ten trapez mi chodziło, narysu inny trapez.
Jaś rysuje prostokąt o definicji z algebry Kubusia:
Prostokąt to czworokąt mający wszystkie kąty proste i nie wszystkie boki równe
PR=KP*~BR
Pani:
Nie o ten trapez mi chodziło, narysu inny trapez.
Jaś rysuje romb o definicji z algebry Kubusia:
Romb to czworokąt, którego wszystkie boki są równe ale nie wszystkie kąty są proste
RB=~KP*BR
Pani:
Nie o ten trapez mi chodziło, narysu inny trapez.
Jaś rysuje równoległobok o definicji z algebry Kubusia:
Równoległobok to czworokąt w którym przeciwległe boki są parami równoległe ale nie równe, i nie ma wszystkich kątów są prostych
ROWN=2BPRNR*~KP
Pani:
Nie o ten trapez mi chodziło, narysu inny trapez.
W tym momencie Jaś się wkurzył:
Skąd do jasnej cholery mam wiedzieć jaki trapez miała pani na myśli, skoro definicja trapezu w moim podręczniku do matematyki definiująca trapez jako:
Trapez to czworokąt który ma przynajmniej jedną parę boków równoległych.
jest totalnie spieprzona tzn. nie definiuje wszystkich możliwych czworokątów różnych na mocy definicji ## w sposób precyzyjny.
W zakresie definiowania dowolnych pojęć ziemscy matematycy są lata świetlne za humanistami którzy doskonale wiedzą że poprawna definicja czegokolwiek musi być jednoznaczna w całym Uniwersum
Uniwersum - zbiór wszelkich pojęć zrozumiałych przez człowieka.
W praktyce są tu wyjątki.
Przykłady:
1.
W języku polskim
może ## morze
Gdzie
## - różne na mocy definicji
Tu różność tych pojęć wynika z pisowni lub z kontekstu
2.
Bramka piłkarska ## bramka wejściowa na lotnisku ## bramka logiczna
Gdzie:
## - różne na mocy definicji
Tu różność pojęcia „bramka” wynika z kontekstu
Ostatnie pojęcie „bramka logiczna” to typowe zapożyczenie pojęcia „bramka” dla potrzeb określonej teorii w naukach ścisłych.
Oczywistym jest, że pojęcie „bramka logiczna” będzie znane wyłącznie wąskiej grupie ludzi, elektronikom, którzy zajmują się bramkami logicznymi.
|
|
Powrót do góry |
|
 |
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 37352
Przeczytał: 18 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Pon 20:34, 17 Mar 2025 Temat postu: |
|
|
Algebra Kubusia – matematyczna wojna wszech czasów
34.0 Armagedon ziemskich logik matematycznych
Spis treści
34.0 Armagedon ziemskich logik matematycznych 1
34.1 Definicja i obsługa zdań warunkowych „Jeśli p to q” w KRZ 2
34.1.1 Fundamentalna różnica między algebrą Kubusia a KRZ 4
34.2 Analiza zdania warunkowego A1: P=>CH na gruncie KRZ 4
34.2.1 Irbisol, fanatyk KRZ uczy 5-cio latków logiki matematycznej po raz pierwszy 6
34.3 Prawo Irbisa 7
34.3.1 Obalenie dogmatu Irbisola 9
34.3.2 Irbisol, fanatyk KRZ uczy 5-cio latków logiki matematycznej po raz drugi 10
34.4 Niezbędna teoria dla zrozumienia algebry Kubusia 12
34.4.1 Definicja zdarzenia możliwego ~~> 12
34.4.2 Definicja warunku wystarczającego => w zdarzeniach 13
34.4.3 Definicja warunku koniecznego ~> w zdarzeniach 13
34.5.4 Definicja kontrprzykładu w zdarzeniach 14
34.4.5 Wyprowadzenie praw Kubusia 14
34.5 Finałowa dyskusja z Irbisolem 16
34.5.1 Miękkie i twarde jedynki i zera w logice matematycznej 17
34.6 Ziemska definicja implikacji 19
34.6.1 Ziemska definicja implikacji w zdarzeniach możliwych i niemożliwych 21
34.6.2 Analiza zdania Irbisola w warunkach wystarczających => i koniecznych ~> 21
34.6.3 Prosiaczek sprawdza znajomość algebry Kubusia w przedszkolu 23
34.7 Tragedia ziemskiej logiki matematycznej 24
34.0 Armagedon ziemskich logik matematycznych
Dyskutując od 18 lat w temacie algebry Kubusia na różnych forach, ja Rafał3006, od zawsze byłem wściekle zwalczany przez fanatyków KRZ.
Za propagowanie algebry Kubusia wszędzie dostawałem bana: racjonalista.pl, ateista.pl, yrizona, a nawet na matematyce.pl - na szczęście na matematyce.pl był to ban na 6 miesięcy dawno temu, dzięki czemu aktualnie istnieję na matematyce,pl.
[link widoczny dla zalogowanych]
Przykład wściekłego ataku zawodowego matematyka, autora dwóch nowych teorii matematycznych, czym sam się pochwalił.
http://www.sfinia.fora.pl/filozofia,4/algebra-kubusia-rewolucja-w-logice-matematycznej,16435-6475.html#793575
@matematyk szaryobywatel w dyskusji ze mną napisał:
Upośledzenie to nic śmiesznego, niemniej za zasrywanie forum swoim spamem, kompletny brak szacunku dla użytkowników do których krytyki się w ogóle nie odnosisz, tylko zasrywasz dalej tymi samymi bredniami cały czas myśląc że jesteś na tropie czegoś genialnego, powinieneś być trwale wyłączony z dyskusji.
Co do wytłuszczonego:
100% definicji w algebrze Kubusia jest innych, niż w jakiejkolwiek logice matematycznej ziemskich matematyków, więc jak się mam odnosić do krytyki AK z punktu widzenia KRZ?
Odezwa do fanatyków ziemskich logik matematycznych podobnych do szarego obywatela:
Panowie, wasze pojęcie algebry Boole’a rozdmuchane do granic możliwości np. algebra Boole’a zupełna, funkcje kardynalne, kwantyfikatory i inne głupoty nie mają zastosowania w matematycznej obsłudze języka potocznego człowieka, dlatego one mnie totalnie nie interesują.
Dajcie żyć, nie zwalczajcie czegoś (algebry Kubusia), czego totalnie nie rozumiecie w stylu szarego obywatela jak wyżej.
Jeśli chcecie obalać algebrę Kubusia to zapraszam do jej czytania od A do Z.
Algebra Kubusia zostanie obalona wtedy i tylko wtedy gdy znajdziecie jedną, jedyną, wewnętrzną sprzeczność w trakcie jej czytania.
Oczywiście wszelkie niejasności póki żyję, będę wam wyjaśniał.
Rafal3006
34.1 Definicja i obsługa zdań warunkowych „Jeśli p to q” w KRZ
Opracowano na bazie dyskusji z Irbisolem od tego momentu:
http://www.sfinia.fora.pl/filozofia,4/algebra-kubusia-rewolucja-w-logice-matematycznej,16435-6900.html#797497
Definicja ziemskiej implikacji podana przez Macjana w mojej dyskusji na śfinii:
http://www.sfinia.fora.pl/forum-kubusia,12/elementarz-algebry-boole-a-irbisol-macjan-str-10,2605-240.html#55877
@Macjan
Zrozum - treść zdania, czyli to, o czym ono mówi, nie może w żaden sposób wpływać na jego zapis symboliczny. Zdanie "... i ..." jest koniunkcją niezależnie od tego, co wstawimy w wykropkowane miejsca. Tak samo zdanie "Jeśli ... to ..." jest implikacją.
Zacznijmy od warunku niesprzeczności w logice matematycznej zwanej Klasycznym Rachunkiem Zdań podanego przez Bertranda Russella.
[link widoczny dla zalogowanych]
@Wynurzenia z Szamba
Jeśli 2+2=5, to jestem papieżem
Z książki Johna D. Barrowa Kres możliwości?
Cytat (s. 226)
Bertrand Russell:
Warunkiem niesprzeczności systemu w logice klasycznej (KRZ) jest ścisły podział zdań na prawdziwe bądź fałszywe, bowiem ze zdania fałszywego można wywnioskować dowolne inne, fałszywe bądź prawdziwe.
Kiedy Bertrand Russell wypowiedział ten warunek na jednym z publicznych wykładów jakiś sceptyczny złośliwiec poprosił go, by udowodnił, że jeśli 2 razy 2 jest 5, to osoba pytająca jest Papieżem. Russell odparł: "Jeśli 2 razy 2 jest 5, to 4 jest 5; odejmujemy stronami 3 i wówczas 1=2. A że pan i Papież to 2, więc pan i Papież jesteście jednym."!
W ramach zadania domowego zadałem sobie wykazanie, że jeśli Napoleon Bonaparte był kobietą, to ja jestem jego ciotką. Na razie zgłaszam "bz
Na mocy warunku niesprzeczności KRZ podanego przez Bertranda Russella działanie Klasycznego Rachunku Zdań w obsłudze wszelkich zdań warunkowych „Jeśli p to q” jest następujące.
Kod: |
Zero-jedynkowa definicja implikacji p=>q w KRZ:
p q p=>q
1 1 =1
1 0 =0
0 1 =1
0 0 =1
|
Matematycznego potwora którego nie sposób zrozumieć, zwanego dla niepoznaki Klasycznym Rachunkiem Zdań znajdziemy w każdym podręczniku matematyki do I klasy LO
Dowód iż KRZ to gwałt na rozumku każdego 5-cio latka to przykładowe zdania tu prawdziwe:
1: Jeśli 2+2=5 to jestem papieżem
2: Jeśli pies ma 8 łap to Księżyc krąży wokół Ziemi
3: Dwa plus dwa równa się cztery wtedy i tylko wtedy, gdy Płock leży nad Wisłą.
Dowód na serio prawdziwości zdania 1 znajdziemy tu:
[link widoczny dla zalogowanych]
Dowód na serio prawdziwości zdania 2 znajdziemy w podręczniku matematyki do I klasy LO:
[link widoczny dla zalogowanych]
Komentarz do zdania 3 znajdziemy w Delcie'2013:
[link widoczny dla zalogowanych]
Zobaczmy w praktyce jak działa Klasyczny Rachunek Zdań w obsłudze zdań warunkowych „Jeśli p to q”
Ad.1
1.
Jeśli 2+2=5 to jestem papieżem
p=2+5=5 =[] =0 - zbiór pusty, twarde zero
q=[jestem papieżem] =[] =0 - zbiór pusty twarde zero
Stąd na gruncie KRZ mamy rozstrzygnięcie iż implikacja 1 jest prawdziwa:
p=>q = 0=>0 =1 - na mocy tabeli zero-jedynkowej ziemskiej implikacji
Ad.2
2.
Jeśli pies ma 8 łap to Księżyc krąży wokół Ziemi
p=[pies ma 8 łap]= []=0 - zbiór pusty, twarde zero
q=[Księżyc krąży wokół Ziemi] =1 - twarda jedynka
Stąd na gruncie KRZ mamy rozstrzygnięcie iż implikacja 2 jest prawdziwa:
p=>q = 0=>1 =1 - na mocy tabeli zero-jedynkowej ziemskiej implikacji
Ad. 3
3a.
Jeśli dwa plus dwa równa się cztery to Płock leży nad Wisłą
p=[Dwa plus dwa równa się cztery] =1 - twarda jedynka
q=[Płock leży nad Wisłą] =1 - twarda jedynka
Stąd na gruncie KRZ mamy rozstrzygnięcie iż implikacja 3a jest prawdziwa:
p=>q = 1=>1 =1 - na mocy tabeli zero-jedynkowej ziemskiej implikacji
Twierdzenie odwrotne do 3a
3b
Jeśli Płock leży nad Wisłą to dwa plus dwa równa się cztery
q= [Płock leży nad Wisłą] =1 - twarda jedynka
p=[Dwa plus dwa równa się cztery] =1 - twarda jedynka
Stąd na gruncie KRZ mamy rozstrzygnięcie iż implikacja 3b jest prawdziwa:
q=>p = 1=>1 =1 - na mocy tabeli zero-jedynkowej ziemskiej implikacji
Definicja równoważności p<=>q:
Równoważność to jednoczesna prawdziwość twierdzenia prostego p=>q i odwrotnego q=>p
Stąd mamy dowód poprawności równoważności p<=>q z podręcznika matematyki do I klasy LO:
3
Dwa plus dwa równa się cztery wtedy i tylko wtedy, gdy Płock leży nad Wisłą.
p<=>q = (3a: p=>q)*(3b: q=>p) =1*1=1
W ten oto sposób udowodniliśmy na gruncie KRZ prawdziwość równoważności 3 z podręcznika matematyki do I klasy LO
Z punktu widzenia poprawnej logiki matematycznej, algebry Kubusia, wszystkie powyższe przykłady to gwałt na rozumku każdego człowieka, żadna matematyka - dowód za chwilkę.
34.1.1 Fundamentalna różnica między algebrą Kubusia a KRZ
KRZ:
Wedle gówna zwanego KRZ zdanie warunkowe "Jeśli p to q" to zlepek dwóch zdań twierdzących o znanej z góry wartości logicznej p i q w postaci twardej jedynki lub twardego zera, bowiem wtedy i tylko wtedy na gruncie KRZ możemy określić prawdziwość/fałszywość zdania warunkowego "Jeśli p to q"
Algebra Kubusia:
W algebrze Kubusia, zdanie warunkowe "Jeśli p to q" spełnia algorytm Puchacza wtedy i tylko wtedy gdy p i q we wszystkich możliwych przeczeniach {p, q, ~p, ~q} są zdarzeniami/zbiorami niepustymi.
Dowolne zdanie które nie spełnia algorytmu Puchacza, jest w algebrze Kubusia fałszywe, z powodu nie spełnienia algorytmu Puchacza.
34.2 Analiza zdania warunkowego A1: P=>CH na gruncie KRZ
Definicja ziemskiej implikacji podana przez Macjana w mojej dyskusji na śfinii:
http://www.sfinia.fora.pl/forum-kubusia,12/elementarz-algebry-boole-a-irbisol-macjan-str-10,2605-240.html#55877
@Macjan
Zrozum - treść zdania, czyli to, o czym ono mówi, nie może w żaden sposób wpływać na jego zapis symboliczny. Zdanie "... i ..." jest koniunkcją niezależnie od tego, co wstawimy w wykropkowane miejsca. Tak samo zdanie "Jeśli ... to ..." jest implikacją.
W obsłudze zdań warunkowych „Jeśli p to q” ziemska logika matematyczna obligatoryjnie korzysta z prawa eliminacji implikacji
Y = (p=>q) =~p+q
Spójrzmy na zero-jedynkową definicję ziemskiej implikacji p=>q.
Kod: |
ZI
Zapis |Zapis
zero-jedynkowy |symboliczny
p q Y=(p=>q)=~p+q | Y=(p=>q)=~p+q
A: 1 1 =1 | p* q =1
B: 1 0 =0 | p*~q =0
C: 0 0 =1 |~p*~q =1
D: 0 1 =1 |~p* q =1
1 2 3 4 5 6
Podstawa zapisu symbolicznego
Prawo Prosiaczka:
(p=0)=(~p=1)
|
Zauważmy, że w aktualnej logice matematycznej wystarczy cokolwiek zapisać w formie zdania warunkowego „Jeśli p to q” i już na mocy definicji mamy do czynienia z implikacją p=>q o zero-jedynkowej definicji zawartej w tabeli ziemskiej implikacji ZI.
Weźmy najprostszy przykład pasujący w 100% do ziemskiej implikacji:.
A1.
Jeśli jutro będzie padało to będzie pochmurno
P=>CH=?
Polecenie:
Zbadaj czy powyższe zdanie spełnia definicję ziemskiej implikacji.
Na mocy definicji ziemskiej implikacji ZI sam fakt wystąpienia spójnika „Jeśli p to q” determinuje, iż jest to implikacja.
Dla zdania A mamy:
p=P(pada)
q=CH(chmury)
Podstawmy nasz przykład do zero-jedynkowej definicji ziemskiej implikacji:
Kod: |
ZIP - ziemska definicja implikacji, przykład
Zapis |Zapis
zero-jedynkowy |symboliczny
P CH Y=~P+CH | Y=(P=>CH)=~P+CH
A: 1 1 =1 | P* CH =1 -zdarzenie możliwe (1): pada i są chmury
B: 1 0 =0 | P*~CH =0 -zdarzenie niemożliwe (0): pada i nie ma chmur
C: 0 0 =1 |~P*~CH =1 -zdarzenie możliwe (1): nie pada i nie ma chmur
D: 0 1 =1 |~P* CH =1 -zdarzenie możliwe (1): nie pada i są chmury
1 2 3 4 5 6
|
Zauważmy, że rozpiska zdania warunkowego A1 w tabeli ZIP to w istocie skorzystanie ze znanego każdemu matematykowi prawa eliminacji implikacji p=>q:
Y = (p=>q) = ~p+q
Nasz przykład:
Y = (P=>CH) = ~P+CH
Jak widzimy z prawej strony tożsamości nie mamy tu do czynienia ze zdaniem warunkowym „Jeśli p to q” lecz z operatorem „lub”(p|+q).
Pdsumowując:
Na mocy tabeli prawdy ZIP mamy następujący opis zdania warunkowego:
A1.
Jeśli jutro będzie padało to będzie pochmurno
P=>CH=1
w spójnikach „i”(*) i „lub”(+) w równaniu logicznym w zdarzeniach niepustych i rozłącznych A, C i D:
A1: P=>CH = A: P*CH + C: ~P*~CH + D: ~P*CH
34.2.1 Irbisol, fanatyk KRZ uczy 5-cio latków logiki matematycznej po raz pierwszy
W tym momencie Irbisol mówi do rafała3006:
Chodźmy do przedszkola, tam udowodnię ci piękno Klasycznego Rachunku Zdań.
Pani w przedszkolu:
Drogie dzieci, wybitny znawca logiki matematycznej Irbisol, będzie was teraz uczył logiki matematycznej znanej każdemu ziemskiemu matematykowi, zwanej Klasycznym Rachunkiem Zdań.
Irbisol:
Weźmy na początek zdanie które doskonale rozumie każde z was:
A1.
Jeśli jutro będzie padało to będzie pochmurno
P=>CH =1
Może ktoś wie co oznacza to zdanie?
Jaś (lat 5):
Pewnie że wiemy, to zdanie zna każdy 5-cio latek, a oznacza ono że:
Padanie (P) daje nam gwarancję => istnienia chmur (CH) bo zawsze gdy pada, są chmury.
Irbisol:
Drogie dziecko, tak jest w twoim ptasim móżdżku.
Logika matematyczna zwana Klasycznym Rachunkiem Zdań mówi tu co innego.
Zaciekawiony Jaś (lat 5):
Proszę nam opowiedzieć, co ma do powiedzenia pana logika matematyczna w tym temacie.
Irbisol:
Dobrze opowiadam na przykładach.
Pytanie A
Czy zdanie warunkowe A1: P=>CH jest prawdziwe dla przypadku: pada (P) i jest pochmurno (CH)
Jaś:
Oczywiście że jest, każdy głupi to wie
Irbisol:
Bardzo bobrze Jasiu
Pytanie C
Czy zdanie warunkowe A1: P=>CH jest prawdziwe dla przypadku: nie pada (~P) i nie ma chmur (~CH)?
Jaś:
Dla tego przypadku zdanie A1: P=>CH jest fałszywe (=0), bo w zdaniu A1 w poprzedniku mamy zastrzeżenie:
„Jeśli juro będzie padało …”
Zatem zdanie A1 jest fałszywe (=0) dla przypadku: nie pada (~P) i nie ma chmur (~CH)?
Irbisol:
Niestety Jasiu, widzę, że niejaki Kubuś potwornie wyprał twój biedny mózg.
Matematyczna prawda w jedynej poprawnej logice matematycznej zwanej KRZ jest taka:
Zdanie A1: P=>CH jest prawdziwe (=1) dla przypadku: nie pada (~P) i nie jest pochmurno (~CH)
Pytanie D
Czy zdanie warunkowe A1: P=>CH jest prawdziwe dla przypadku: nie pada (~P) i są chmury (CH)?
Zuzia (lat 5)
Dla tego przypadku zdanie A1: P=>CH jest fałszywe (=0), bo w zdaniu A1 w poprzedniku mamy zastrzeżenie:
„Jeśli juro będzie padało …”
Zatem zdanie A1 jest fałszywe dla przypadku: nie pada (~P) i i są chmury (CH)
Irbisol:
Oj biedne, nieszczęśliwe dzieci - teraz już jestem pewien, przede mną był w waszym przedszkolu niejaki Kubuś, totalny debil logiki matematycznej.
Irbisol do pani przedszkolanki:
Dlaczego przede mną wpuściła pani do swojego przedszkola tego debila Kubusia, przecież potwornie wyprał mózgi pani dzieci z jedynej poprawnej logiki matematycznej zwanej Klasycznym Rachunkiem Zdań obowiązującej w naszym Wszechświecie.
Pani przedszkolanka:
Po pierwsze:
Nie było tu przed panem żadnego Kubusia.
Po drugie:
Podzielam zdanie moich dzieci w temacie obsługi zdania warunkowego A1: P=>CH
Po trzecie:
Won z mojego przedszkola, nie pozwolę by jakieś swoje prywatne gówna wciskał pan do mózgów moich dzieci.
Po czwarte:
…. pani z wciekłością kopie Irbisola w cztery litery a ten wylatuje przez otwarte na jego szczęście okno.
34.3 Prawo Irbisa
Prawo Irbisa to jedno z najważniejszych praw logiki matematycznej nazwane na cześć Irbisola, który bez mrugnięcia okiem zaakceptował je wieki temu.
Prawo Irbisa:
Dwa pojęcia/zdarzenia/zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy znajdują się w relacji równoważności p<=>q
A1B3: p=q <=> A1B3: p<=>q = (A1: p=>q)*(B1: q=>p) =1*1=1
Zauważmy, że prawo Irbisa obowiązuje w równoważności Pitagorasa:
Dwa zbiory TP i SK są tożsame TP=SK wtedy i tyko wtedy gdy znajdują się w relacji równoważności TP<=>SK.
Równoważność Pitagorasa:
Trójkąt jest prostokątny (TP) wtedy i tylko wtedy gdy zachodzi w nim suma kwadratów (SK)
A1B3: TP<=>SK = (A1: TP=>SK)*(B3: SK=>TP) =1*1 =1
Nasz punkt odniesienia na mocy prawa Kłapouchego to:
p=TP
q=SK
Stąd mamy równoważność Pitagorasa w zapisie formalnym (ogólnym):
A1B3: p<=>q = (A1: p=>q)*(B3: q=>p)=1*1=1
Dowód:
1.
Twierdzenie proste Pitagorasa:
A1.
Jeśli trójkąt jest prostokątny (TP) to na 100% => zachodzi w nim suma kwadratów (SK)
TP=>SK =1
To samo w zapisie formalnym:
p=>q =1
Twierdzenie proste Pitagorasa ludzkość udowodniła wieki temu.
Matematyczne znaczenie twierdzenia prostego Pitagorasa:
Bycie trójkątem prostokątnym (TP) jest warunkiem wystarczającym => do tego, aby w trójkącie tym zachodziła suma kwadratów wtedy i tylko wtedy gdy zbiór TP jest podzbiorem => zbioru SK
##
2.
Twierdzenie odwrotne Pitagorasa:
B3.
Jeśli w trójkącie zachodzi suma kwadratów (SK) to na 100% => trójkąt ten jest prostokątny (TP)
SK=>TP =1
To samo w zapisie formalnym:
q=>p =1
Twierdzenie odwrotne Pitagorasa ludzkość udowodniła wieki temu.
Matematyczne znaczenie twierdzenia odwrotnego Pitagorasa:
Bycie trójkątem ze spełnioną sumą kwadratów (SK) jest warunkiem wystarczającym => do tego, by trójkąt ten był prostokątny (TP) wtedy i tylko wtedy gdy zbiór SK jest podzbiorem => zbioru TP.
Gdzie:
## - twierdzenia różne na mocy definicji
Na mocy powyższego zapisujemy tożsamość pojęć:
Warunek wystarczający => = spełniona relacja podzbioru =>
Podsumowanie:
Zauważmy, że równoważność Pitagorasa w zapisie formalnym (ogólnym) p<=>q to znana każdemu matematykowi definicja tożsamości zbiorów p=q
Prawo Irbisa w wersji tożsamej:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q i równocześnie zbiór q jest podzbiorem => zbioru p
A1B3: p=q <=> (A1: p=>q)*(B3: q=>p) = A1B3: p<=>q
cnd
34.3.1 Obalenie dogmatu Irbisola
Dogmat Irbisola
Warunek wystarczający => = implikacja => rodem z KRZ
Zauważmy, że lewa strona tożsamości lokuje Irbisola w algebrze Kubusia bo definicję warunku wystarczającego => rozumiemy identycznie, o czym było w punkcie wyżej.
Rafał3006:
Irbisolu, podaję ci twardy dowód na piśmie, iż ziemscy matematycy nie znają analizy dowolnego zdania warunkowego „Jeśli p to q” z użyciem innych zdań warunkowych „Jeśli p to q”
Post z początków rozszyfrowywania algebry Kubusia, gdy ta jeszcze niemowlęciem była:
http://www.sfinia.fora.pl/forum-kubusia,12/kubusiowa-szkola-logiki-na-zywo-dyskusja-z-volrathem,3591-25.html#69416
Wysłany: Nie 0:09, 02 Lis 2008
@Volrath
Rozważmy zdanie:
A1.
Jeśli zwierzę jest psem to ma cztery łapy
P=>4L=?
Kod: |
Wiemy, że:
A: P i 4L = 1 (pies)
B: P i ~4L = 0 (brak psów bez 4 łap)
C: ~P i ~4L = 1 (mrówka)
D: ~P i 4L = 1 (słoń)
|
Należy zdanie sprawdzić względem każdej opcji, by stwierdzić, że zdanie P=>4L jest prawdziwe.
Na przykład:
Linia A:
Zdanie P => 4L.
Jest prawdziwe, ale nie dlatego "bo pies", ale także dlatego, bo reszta (mrówka, słoń i nie pies bez 4 łap).
Linia C:
Czy zdanie P => 4L jest prawdziwe dla mrówek?
Mrówka = ~P i ~4L.
P => 4L dla 0 0 (bo ~P i ~4L) jest prawdziwe. Więc jest spełnione dla mrówek.
Linia D:
Dla słoni?
Analogicznie dla 0 1 (~P i 4L) jest prawdziwe.
O psach? 1 1 jest prawdziwe (linia A)
Linia B
O psach bez 4 łap? 1 0 jest fałszywe.
Czyli zgodne z informacjami bazowymi (P i ~4L = 0).
Czyli w sumie zdanie P => 4L jest prawdziwe (bo wszystko się zgadza z bazową tabelą "wiedzy").
Irbisol do Rafała3006:
Volrath, wykładowca logiki matematycznej otworzył mi oczy!
Już nie twierdzę, że zachodzi mój dogmat:
Warunek wystarczający => = implikacja => rodem z KRZ
Rzeczywiście to jest proste jak cep, o prawdziwości/fałszywości dowolnego zdania „Jeśli p to q” rozstrzyga się dokładnie tak, jak opisał wykładowca logiki matematycznej Volrath.
34.3.2 Irbisol, fanatyk KRZ uczy 5-cio latków logiki matematycznej po raz drugi
Chodźmy do innego przedszkola, to niemożliwe by ten idiota Kubuś był w każdym przedszkolu tak potwornie piorąc mózgi naszym biednym dzieciom.
Pani w przedszkolu:
Drogie dzieci, wybitny znawca logiki matematycznej Irbisol, będzie was teraz uczył logiki matematycznej znanej każdemu ziemskiemu matematykowi, zwanej Klasycznym Rachunkiem Zdań.
http://www.sfinia.fora.pl/forum-kubusia,12/kubusiowa-szkola-logiki-na-zywo-dyskusja-z-volrathem,3591-25.html#69416
Wysłany: Nie 0:09, 02 Lis 2008
@Volrath
Rozważmy zdanie:
A1.
Jeśli zwierzę jest psem to ma cztery łapy
P=>4L=?
Kod: |
Wiemy, że:
A: P i 4L = 1 (pies)
B: P i ~4L = 0 (brak psów bez 4 łap)
C: ~P i ~4L = 1 (mrówka)
D: ~P i 4L = 1 (słoń)
|
Należy zdanie sprawdzić względem każdej opcji, by stwierdzić, że zdanie P=>4L jest prawdziwe.
Irbisol:
Weźmy na początek zdanie które doskonale rozumie każde z was:
A1.
Jeśli zwierzę jest psem to ma cztery łapy
P=>4L =?
Może ktoś wie co oznacza to zdanie?
Jaś (lat 5):
Pewnie że wiemy, to zdanie zna każdy 5-cio latek, a oznacza ono że:
Każdy pies ma cztery łapy
Innymi słowy:
Bycie psem (P) daje nam gwarancję =>, że mamy cztery lapy (4L)
Irbisol:
Drogie dziecko, tak jest w twoim ptasim móżdżku.
Logika matematyczna zwana Klasycznym Rachunkiem Zdań mówi tu co innego.
Zaciekawiony Jaś (lat 5):
Proszę nam opowiedzieć, co ma do powiedzenia pana logika matematyczna w tym temacie.
Irbisol:
Dobrze opowiadam na przykładach.
Pytanie A
Czy zdanie warunkowe A1: P=>4L jest prawdziwe dla psa?
Jaś:
Oczywiście że jest, każdy głupi to wie
Irbisol:
Bardzo bobrze Jasiu
Pytanie C
Czy zdanie warunkowe A1: P=>4L jest prawdziwe dla zwierzątka nie będącego psem (~P) i nie mającego czterech łap (~4L)?
Jaś:
Dla tego przypadku zdanie A1: P=>4L jest fałszywe (=0), bo w zdaniu A1 w poprzedniku mamy zastrzeżenie:
„Jeśli zwierzę jest psem …”
Zatem zdanie A1 P=>4L jest fałszywe (=0) dla zwierzątka które nie jest psem (~P) i nie ma czterech łap (~4L)
Irbisol:
Niestety Jasiu, widzę, że niejaki Kubuś potwornie wyprał twój biedny mózg.
Matematyczna prawda w jedynej poprawnej logice matematycznej zwanej KRZ jest taka:
Zdanie A1: P=>4L jest prawdziwe (=1) dla wszelkich zwierzątek nie będących psami (~P) i nie mających czterech łap (~4L)
Innymi słowy:
Przykładowo zdanie warunkowe A1: P=>4L jest tu prawdziwe dla: mrówki, kury, węża, wieloryba itd.
Pytanie D
Czy zdanie warunkowe A1: P=>4L jest prawdziwe dla zwierzątka nie będącego psem (~P) i mającego cztery łapy (4L)?
Zuzia (lat 5)
Dla tego przypadku zdanie A1: P=>4L jest fałszywe (=0), bo w zdaniu A1 w poprzedniku mamy zastrzeżenie:
„Jeśli zwierzę jest psem …”
Zatem zdanie A1: P=>4L jest fałszywe (=0) dla dowolnego zwierzątka nie będącego psem (~P) i mającego cztery łapy (4L).
Irbisol:
Źle, źle, po trzykroć źle!
Nasza fenomenalna logika matematyczna KRZ mówi nam, że zdanie warunkowe A1: P=>4L jest prawdziwe (=1) dla dowolnego zwierzątka które nie jest psem (~P) i ma cztery łapy (4L), czyli jest prawdziwe dla słonia, kota, krokodyla, żyrafy itd.
Oj biedne, nieszczęśliwe dzieci - teraz już jestem pewien, również w tym przedszkolu był przede mną niejaki Kubuś, totalny debil logiki matematycznej.
Irbisol do pani przedszkolanki:
Dlaczego przede mną wpuściła pani do swojego przedszkola tego debila Kubusia, przecież potwornie wyprał mózgi pani dzieci z jedynej poprawnej logiki matematycznej zwanej Klasycznym Rachunkiem Zdań obowiązującej w naszym Wszechświecie.
Pani przedszkolanka:
Po pierwsze:
Nie było tu przed panem żadnego Kubusia.
Po drugie:
Podzielam zdanie moich dzieci w temacie obsługi zdania warunkowego A1: P=>4L
Po trzecie:
Won z mojego przedszkola, nie pozwolę by jakieś swoje prywatne gówna wciskał pan do mózgów moich dzieci.
Po czwarte:
…. pani z wciekłością kopie Irbisola w cztery litery a ten wylatuje przez otwarte na jego szczęście okno (niestety tym razem wylądował w pokrzywach).
Pytanie na serio do Irbisola:
Czemu tak ochoczo zgodziłeś się na wykopanie w kosmos swojego dogmatu?
Warunek wystarczający => = implikacja => rodem z KRZ
Nie musisz odpowiadać, cieszę się, że wykładowca logiki matematycznej Volrath otworzył ci oczy
34.4 Niezbędna teoria dla zrozumienia algebry Kubusia
Skrócona wersja punktu 2.2
Cała logika matematyczna w obsłudze zdań warunkowych „Jeśli p to q” stoi na zaledwie trzech znaczkach (~~>, =>, ~>) definiujących wzajemne relacje zdarzeń/zbiorów p i q
34.4.1 Definicja zdarzenia możliwego ~~>
Definicja zdarzenia możliwego ~~>:
Jeśli zajdzie p to może ~~> zajść q
p~~>q =p*q =1
Definicja zdarzenia możliwego ~~> jest spełniona (=1) wtedy i tylko wtedy gdy możliwe jest jednoczesne zajście zdarzeń p i q.
Inaczej:
p~~>q=p*q =[] =0
Decydujący w powyższej definicji jest znaczek zdarzenia możliwego ~~>, dlatego dopuszczalny jest zapis skrócony p~~>q.
Uwaga:
Na mocy definicji zdarzenia możliwego ~~> badamy możliwość zajścia jednego zdarzenia, nie analizujemy tu czy między p i q zachodzi warunek wystarczający => czy też konieczny ~>.
Przykład:
A1”.
Jeśli jutro będzie padać to może ~~> być pochmurno
P~~>CH = P*CH =1
Wystarczy zaobserwować jeden przypadek gdy pada i jest pochmurno i już wartość logiczna zdania A1 jest równa 1 (zdanie prawdziwe). Nie wnikamy tu czy padanie (P) jest wystarczające => dla istnienia chmur (CH)
34.4.2 Definicja warunku wystarczającego => w zdarzeniach
Definicja warunku wystarczającego => w zdarzeniach:
Jeśli zajdzie p to zajdzie q
p=>q =1
Definicja warunku wystarczającego => jest spełniona (=1) wtedy i tylko wtedy gdy zajście zdarzenia p jest wystarczające => dla zajścia zdarzenia q
Inaczej:
p=>q =0
Przykład:
A1.
Jeśli jutro będzie padało (P) to będzie pochmurno (CH)
P=>CH =1
To samo w zapisie ogólnym:
p=P (pada)
q=CH (chmury)
p~>q =1
Czytamy:
Padanie (P) jest (=1) warunkiem wystarczającym => dla istnienia chmur (CH) bo zawsze gdy pada, są chmury
Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
p=>q = ~p+q
34.4.3 Definicja warunku koniecznego ~> w zdarzeniach
Definicja warunku koniecznego ~> w zdarzeniach:
Jeśli zajdzie p to zajdzie q
p~>q =1
Definicja warunku koniecznego ~> jest spełniona (=1) wtedy i tylko wtedy gdy zajście zdarzenia p jest konieczne ~> dla zajścia zdarzenia q
Inaczej:
p~>q =0
Przykład:
B1.
Jeśli jutro będzie pochmurno to może ~> padać
CH~>P =1
To samo w zapisie ogólnym:
p=CH (chmury)
q=P (pada)
p~>q =1
Czytamy:
Chmury (CH) są (=1) konieczne ~> by padało (P), bo padać może wyłącznie z chmury
Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
p~>q = p+~q
34.5.4 Definicja kontrprzykładu w zdarzeniach
Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>~q=p*~q
Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wymusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wymusza prawdziwość kontrprzykładu p~~>~q=p*~q=1
(i odwrotnie)
Przykład:
A1.
Jeśli jutro będzie padało (P) to na 100% => będzie pochmurno (CH)
P=>CH=1
Padanie jest warunkiem wystarczającym => dla istnienia chmur bo zawsze gdy pada, są chmury
Na mocy definicji kontrprzykładu prawdziwy warunek wystarczający A1: P=>CH=1 wymusza fałszywość kontrprzykładu A1' (i odwrotnie)
A1'
Jeśli jutro będzie padało (P) to może ~~> nie być pochmurno (~CH)
P~~>~CH = P*~CH=0
Dowód wprost:
Niemożliwe jest (=0) zdarzenie ~~>: pada (P) i nie jest pochmurno (~CH)
Dowód "nie wprost":
Na mocy definicji kontrprzykładu tego faktu nie musimy udowadniać, ale możemy, co wyżej uczyniliśmy.
Uwaga na standard w algebrze Kubusia:
Kontrprzykład dla warunku wystarczającego => A1 oznaczamy A1’
34.4.5 Wyprowadzenie praw Kubusia
Widać doskonale, że żadna pani przedszkolanka nie będzie miała problemów z wytłumaczeniem 5-cio latkom o co chodzi w definicjach znaczków {~~>, =>, ~>} gdyż zdań na poziomie odpowiednim dla przedszkolaków ilustrujących działanie tych znaczków jest nieskończenie wiele.
Minimalna znajomość teorii algebry Kubusia to powyższe definicje ze szczególnym zwróceniem uwagi na definicję kontrprzykładu oraz prawa Kubusia które łatwo wyprowadzić na mocy powyższych definicji.
I prawo Kubusia:
Związek warunku wystarczającego => z warunkiem koniecznym ~> bez zamiany p i q
p=>q = ~p~>~q
Definicja warunku wystarczającego =>:
Y = (p=>q)=~p+q
##
II prawo Kubusia:
Związek warunku koniecznego ~> z warunkiem wystarczającym => bez zamiany p i q
p~>q = ~p=>~q
Definicja warunku koniecznego ~>:
Y = (p~>q) = p+~q
Gdzie:
## - różne na mocy definicji
Definicja znaczka różne na mocy definicji ##:
Dwie funkcje logiczne w tej samej logice (u nas w logice dodatniej bo Y) są różne na mocy definicji ## wtedy i tylko wtedy gdy dla identycznych wymuszeń na wejściach p i q mają różne kolumny wynikowe Y
W laboratorium techniki cyfrowej łatwo potwierdzić poprawność powyższej definicji znaczka ##.
Definicje znaczków => i ~>:
Definicja znaczka =>:
p=>q = ~p+q
Definicja znaczka ~>:
p~>q = p+~q
Dowód I prawa Kubusia:
p=>q = ~p~>~q
Rozwijamy prawą stronę definicją znaczka ~>:
(~p)~>(~q) = (~p) + ~(~q) = ~p+q = p=>q
cnd
Dowód II prawa Kubusia:
p~>q = ~p=>~q
Rozwijamy prawą stronę definicją znaczka =>:
(~p)=>(~q) = ~(~p) + (~q) = p+~q = p~>q
cnd
W rachunku zero-jedynkowym łatwo odkryć wszelkie zależności między warunkami wystarczającymi => i koniecznymi ~> (pkt. 2.4)
Kod: |
T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
## ## ## ## ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5: p+~q
Prawa Kubusia: | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q | A1: p=>q = A4:~q=>~p
B1: p~>q = B2:~p=>~q | B2:~p=>~q = B3: q=>p
Prawa Tygryska: | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p | B1: p~>q = B4:~q~>~p
Gdzie:
p=>q = ~p+q - definicja warunku wystarczającego =>
p~>q = p+~q - definicja warunku koniecznego ~>
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
34.5 Finałowa dyskusja z Irbisolem
Finałowa dyskusja z Irbisolem zaczyna się od tego postu:
http://www.sfinia.fora.pl/filozofia,4/algebra-kubusia-rewolucja-w-logice-matematycznej,16435-7125.html#801075
http://www.sfinia.fora.pl/filozofia,4/algebra-kubusia-rewolucja-w-logice-matematycznej,16435-7150.html#801221
@Irbisol
Przecież ci pisałem. Jeżeli pada, to jest pochmurno.
Irbisolu, napisałeś to, co wie każdy 5-cio latek.
Twoim zadaniem było ulokowanie powyższego zdania w zero-jedynkowej definicji implikacji znanej każdemu matematykowi - na tym poletku poległeś totalnie tzn. nie wiesz w którym kościele dzwony biją, mimo że byłeś o milimetry od rozszyfrowania w 100% algebry Kubusia.
Zupełnie cię nie rozumiem, czemu odrzuciłeś pomoc Prosiaczka w tym zakresie.
Irbisolu, mam dla ciebie radosną nowinę:
Prosiaczek widząc, że żyjesz w szambie zwanym KRZ postanowił mimo wszystko ci pomóc, choć skuteczność tej pomocy będzie zależała od ciebie tzn. czy twój mózg zdolny jest jeszcze do logicznego myślenia na poziomie 5-cio latka (dosłownie!)
Prosiaczek:
Irbisolu drogi, minimalna teoria byś zrozumiał w 100% algebrę Kubusia jest następująca.
Zapnij pasy Irbisolu, jedziemy!
tzn. wspólnie rozszyfrowujemy w 100% algebrę Kubusia na przykładzie twojego zdania:
A.
Jeśli jutro będzie padało to będzie pochmurno
Definicja ziemskiej implikacji podana przez Macjana w mojej dyskusji na śfinii:
http://www.sfinia.fora.pl/forum-kubusia,12/elementarz-algebry-boole-a-irbisol-macjan-str-10,2605-240.html#55877
@Macjan
Zrozum - treść zdania, czyli to, o czym ono mówi, nie może w żaden sposób wpływać na jego zapis symboliczny. Zdanie "... i ..." jest koniunkcją niezależnie od tego, co wstawimy w wykropkowane miejsca. Tak samo zdanie "Jeśli ... to ..." jest implikacją.
Irbisolu, zdanie bazowe o którym rozmawiamy to implikacja rodem z KRZ:
A.
Jeśli jutro będzie pochmurno to będzie padało
CH=>P =~CH+P
Zgodnie z ziemską definicją implikacji zdanie to musisz podstawić do poniższej, zero-jedynkowej definicji implikacji.
Kod: |
ZIP - zero-jedynkowa definicja ziemskiej implikacji, przykład
Zapis |Zapis
zero-jedynkowy |symboliczny
P CH Y=~P+CH | Y=(P=>CH)=~P+CH
A: 1 1 =1 | P* CH =1 -zdarzenie możliwe (1): pada i są chmury
B: 1 0 =0 | P*~CH =0 -zdarzenie niemożliwe (0): pada i nie ma chmur
C: 0 0 =1 |~P*~CH =1 -zdarzenie możliwe (1): nie pada i nie ma chmur
D: 0 1 =1 |~P* CH =1 -zdarzenie możliwe (1): nie pada i są chmury
1 2 3 4 5 6
|
Na mocy powyższej tabeli mamy równanie algebry Boole’a opisujące ziemską implikację P=>CH w zdarzeniach rozłącznych:
Y = (P=>CH) = A: P*CH + C: ~P*~CH + D: ~P*CH
co w logice jedynek (bo równanie alternatywno-koniunkcyjne) oznacza:
Y=1 <=> A: P=1 i CH=1 lub C: ~P=1 i ~CH=1 lub ~P=1 i CH=1
To co wyżej to najzwyklejsza algebra Boole’a - żadna tam KRZ!
Znaczenie tego zapisu na 100% zna każdy ziemski matematyk (niestety nim nie jesteś):
Implikacja będzie prawdziwa (Y=1) wtedy i tylko wtedy gdy zajdzie dowolne ze zdarzeń niepustych i rozłącznych {A, C, D}:
A: Ya=P*CH=1*1=1 - jutro będzie padało (P=1) i będzie pochmurno (CH=1)
LUB
C: Yc=~P*~CH=1*1=1 - jutro nie będzie padało (~P=1) i nie będzie pochmurno (~CH=1)
LUB
D: Yd=~P*CH=1*1=1 - jutro nie będzie padało (~P=1) i będzie pochmurno (CH=1)
Funkcja logiczna Y (nasza implikacja) to oczywiście suma logiczna funkcji cząstkowych Ya, Yc i Yd:
Y=Ya+Yc+Yd
Jak do tej pory zgadzamy się w 100% bo ty podlegasz pod algebrę Kubusia i nie masz żadnych szans by się od niej uwolnić.
Znaczenie wynikowych zer i jedynek w kolumnie Y zna każdy ziemski matematyk.
34.5.1 Miękkie i twarde jedynki i zera w logice matematycznej
Co więcej, matematycy znają dokładnie znaczenie wynikowych zer i jedynek w tabeli ziemskiej implikacji
http://www.sfinia.fora.pl/forum-kubusia,12/kubusiowa-szkola-logiki-na-zywo-dyskusja-z-volrathem,3591-100.html#72062
Wysłany: Śro 13:43, 10 Gru 2008
@wykładowca logiki matematycznej volrath
Niestety bazowa logika Boole'a domyślnie zakłada, że wszystkie jedynki są miękkie, a zera twarde. Tak już jest skonstruowana - jeśli z zdania wychodzi 0, to znaczy, że na pewno nie ma obiektu spełniającego to zdanie, a jeśli 1 - to może być, ale nie musi. Rozumienie, że "na pewno jest obiekt spełniający zdanie" nie mieści się w logice Boole'a.
Zauważ, że wykładowca logiki matematycznej Volrath powiedział tu 100% prawdy o ziemskiej algebrze Boole’a.
Zauważ, że jedynym twardym zerem w tabeli implikacji P=>CH jest tu twarde zero w linii B, gdzie nawet sam Pan Bóg nie wymusi jedynki.
Linie A, C i D opisane są miękkimi jedynkami tzn. dowolna z nich przyjmie wartość miękkiego zera w zależności od aktualnie zaistniałego przypadku.
Dowód:
Zapiszmy równanie algebry Boole’a opisujące ziemską implikację P=>CH:
A.
Jeśli jutro będzie pochmurno to będzie padało
CH=>P =~CH+P
Ziemska implikacja w rozpisce na zdarzenia niepuste i rozłączne to równanie algebry Boole’a:
Y = (P=>CH) = A: P*CH + C: ~P*~CH + D: ~P*CH
Przyjmijmy za chwilę czasową cały jutrzejszy dzień.
Wtedy mamy:
Y = x*( A: P*CH + C: ~P*~CH + D: ~P*CH)
Gdzie:
x - dowolne ze zdarzeń niepustych i rozłącznych które jutro ma szansę zajść {A, C albo D}
Przypadek I.
Załóżmy, że jutro zajdzie zdarzenie A:
A: Ya=P*CH=1*1=1 - będzie padać (P) i będą chmury (CH), miękka jedynka
Stąd mamy:
x=P*CH
Y = x*( A: P*CH + C: ~P*~CH + D: ~P*CH)
Doskonale widać, że po wymnożeniu wielomianów rozkład miękkich jedynek i miękkich zer będzie tu następujący.
Zdarzenie które jutro zajdzie z założenia:
x=P*CH=1*1=1 - będzie padać (P) i będą chmury (CH), miękka jedynka
Stąd:
A: Ya = x*(P*CH) = (P*CH)*(P*CH) = P*CH =1 - miękka jedynka
C: Yc = x*(~P*~CH) = (P*CH)*(~P*~CH) =0 - miękkie zero
D: Yd = x*(~P*CH) = (P*CH)*(~P*CH) =0 - miękkie zero
Przypadek II.
Załóżmy, że jutro zajdzie zdarzenie C:
Yc=~P*~CH=1*1=1 - nie będzie padać (~P) i nie będzie pochmurno (~CH), miękka jedynka
Stąd mamy:
x=~P*~CH
Y = x*( A: P*CH + C: ~P*~CH + D: ~P*CH)
Doskonale widać, że po wymnożeniu wielomianów rozkład miękkich jedynek i miękkich zer będzie tu następujący.
Zdarzenie które jutro zajdzie z założenia:
x=~P*~CH - nie będzie padać (~P) i nie będzie pochmurno (~CH)
Stąd:
A: Ya = x*(P*CH) = (~P*~CH)*(P*CH) =0 - miękkie zero
C: Yc= x*(~P*~CH) = (~P*~CH)*(~P*~CH = ~P*~CH =1 - miękka jedynka
D: Yd= x*(~P*CH) = (~P*~CH)*(~P*CH) =0 - miękkie zero
Przypadek III.
Załóżmy, że jutro zajdzie zdarzenie D:
Yd=~P*CH=1*1=1 - nie będzie padać (~P) i będzie pochmurno (CH), miękka jedynka
Stąd mamy:
x=~P*CH
Y = x*( A: P*CH + C: ~P*~CH + D: ~P*CH)
Doskonale widać, że po wymnożeniu wielomianów rozkład miękkich jedynek i miękkich zer będzie tu następujący.
Zdarzenie które jutro zajdzie z założenia:
x=~P*CH - nie będzie padać (~P) i będzie pochmurno (CH), miękka jedynka
Stąd:
A: Ya = x*(P*CH) = (~P*CH)*(P*CH) =0 - miękkie zero
C: Yc= x*(~P*CH) = (~P*CH)*(~P*~CH) =0 - miękki zero
D: Yd= x*(~P*CH) = (~P*CH)*(~P*CH) = ~P*CH =1 - miękka jedynka
Co więcej!
Na poletku wyżej przedstawionym zachodzi tożsamość czysto matematyczna:
Warunek wystarczający => rodem z AK = implikacja => rodem z KRZ
Dowód:
Definicja warunku wystarczającego => w algebrze Kubusia:
p=>q = ~p+q
Definicja implikacji => rodem z KRZ:
p=>q = ~p+q
cnd
W czym tu jest problem?
Korzystanie z ziemskiego prawa eliminacji implikacji =>:
p=>q = ~p+q
Jak również z prawa eliminacji warunku wystarczającego => w AK:
p=>q = ~p+q
Prowadzi do potwornego prania mózgów naszych dzieci, 5-cio latków, czego twardy dowód mamy w punkcie 34.2.1 oraz 34.3.2
Kluczowa prawda:
Dlaczego nikt w 100-milowym lesie nie idzie do przedszkola z prawem eliminacji warunku wystarczającego =>:
p=>q = ~p+q
… mimo iż mógłby to zrobić identycznie jak to robią ziemianie w chwili obecnej?
Odpowiedź:
W 100-milowym lesie wszyscy wiemy, że opowiadanie 5-cio latkom o spełnionym warunku wystarczającym => w spójnikach „i”(*) i „lub”(+) to robienie z ich mózgów szamba co udowodnił Irbisol w swoich dwóch wizytach w przedszkolu (34.2.1 oraz 34.3.2)
Zauważmy, że biedny Irbisol korzystając z prawa eliminacji ziemskiej implikacji p=>q=~p+q doprowadził do wściekłości panią przedszkolankę która wykopała go przez okno - na szczęście dla niego otwarte (w jednym przypadku wylądował w pokrzywach).
34.6 Ziemska definicja implikacji
Definicja ziemskiej implikacji podana przez Macjana w mojej dyskusji na śfinii:
http://www.sfinia.fora.pl/forum-kubusia,12/elementarz-algebry-boole-a-irbisol-macjan-str-10,2605-240.html#55877
@Macjan
Zrozum - treść zdania, czyli to, o czym ono mówi, nie może w żaden sposób wpływać na jego zapis symboliczny. Zdanie "... i ..." jest koniunkcją niezależnie od tego, co wstawimy w wykropkowane miejsca. Tak samo zdanie "Jeśli ... to ..." jest implikacją.
Irbisolu, zdanie bazowe o którym rozmawiamy to implikacja rodem z KRZ:
A.
Jeśli jutro będzie pochmurno to będzie padało
CH=>P =~CH+P
Zgodnie z ziemską definicją implikacji zdanie to musisz podstawić do poniższej, zero-jedynkowej definicji implikacji.
Kod: |
ZIP - zero-jedynkowa definicja ziemskiej implikacji, przykład
i jej znaczenie dla konkretnego przykładu o deszczu i chmurce.
Zapis |Zapis
zero-jedynkowy |symboliczny
P CH Y=~P+CH | Y=(P=>CH)=~P+CH
A: 1 1 =1 | P* CH =1 -zdarzenie możliwe (1): pada i są chmury
B: 1 0 =0 | P*~CH =0 -zdarzenie niemożliwe (0): pada i nie ma chmur
C: 0 0 =1 |~P*~CH =1 -zdarzenie możliwe (1): nie pada i nie ma chmur
D: 0 1 =1 |~P* CH =1 -zdarzenie możliwe (1): nie pada i są chmury
1 2 3 4 5 6
|
Na mocy powyższej tabeli mamy równanie algebry Boole’a opisujące ziemską implikację P=>CH w zdarzeniach rozłącznych:
Y = (P=>CH) = A: P*CH + C: ~P*~CH + D: ~P*CH
co w logice jedynek (bo równanie alternatywno-koniunkcyjne) oznacza:
Y=1 <=> A: P=1 i CH=1 lub C: ~P=1 i ~CH=1 lub ~P=1 i CH=1
To co wyżej to najzwyklejsza algebra Boole’a - żadna tam KRZ!
Opiszmy dwie ostatnie linie C i D w naturalnej logice człowieka:
C.
Jeśli jutro nie będzie padało (~P) to może ~~> nie być pochmurno (~CH)
Yc = ~P~~>~CH = ~P*~CH =1 - zdarzenie możliwe, miękka jedynka
LUB
D.
Jeśli jutro nie będzie padało (~P) to może ~~> być pochmurno (CH)
Yd = ~P~~>CH = ~P*~CH =1 - zdarzenie możliwe, miękka jedynka
Zdania C i D możemy zapisać łącznie, wtedy łatwo zauważyć, że po stronie ~P (nie pada) mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła”:
CD
Jeśli jutro nie będzie padło (~P) to na 100% => może nie być pochmurno (~CH) lub może być pochmurno (CH)
Ycd = ~P=>(~CH+CH) =1
W następniku zdania warunkowego CD: ~P=>(~CH+CH) mamy tu twardą jedynkę (dziedzina = stała binarna) zatem zdanie CD jest prawdziwe, ale mówi wyłącznie o zdarzeniu:
~P = nie pada
Dzielny Irbisol prawidłowo rozszyfrował znaczenie linii CD w tabeli zero-jedynkowej ziemskiej implikacji w postaci zdania CD, za co dostał gromkie brawa od całego 100-milowego lasu.
Zauważmy, że zdarzenie ~P (nie pada) jest tu zmienną binarną, bowiem może zajść zdarzenie:
~P=1 - prawdą jest (=1) że jutro może nie padać (~P), miękka jedynka
albo zdarzenie:
P=1 - prawdą jest (=1) że jutro może padać (P), miękka jedynka
W logice matematycznej nie wystarczy rozpatrzenie przypadku co może się wydarzyć jeśli jutro nie będzie padać (~P=1) - obowiązkowo musimy opisać też przypadek co może się wydarzyć jeśli jutro będzie padać (P=1).
Definicja miękkiej jedynki:
Zdarzenie x może zajść (x=1), ale nie musi zajść (x=0)
34.6.1 Ziemska definicja implikacji w zdarzeniach możliwych i niemożliwych
Zdanie bazowe Irbisola to:
A.
Jeśli jutro będzie padało to będzie pochmurno
Zapiszmy ziemską tabelę implikacji w postaci serii zdarzeń możliwych ~~> (=1) i niemożliwych ~~> (=0)
Kod: |
ZIP - zero-jedynkowa definicja ziemskiej implikacji, przykład
i jej znaczenie dla konkretnego przykładu o deszczu i chmurce.
Zapis |Zapis
zero-jedynkowy |symboliczny
P CH Y=~P+CH | Y=(P=>CH)=~P+CH
A: 1 1 =1 | P~~> CH =1 - zdarzenie możliwe (1): pada i są chmury
B: 1 0 =0 | P~~>~CH =0 - niemożliwe jest (0): pada i nie ma chmur
C: 0 0 =1 |~P~~>~CH =1 - możliwe jest (1): nie pada i nie ma chmur
D: 0 1 =1 |~P~~> CH =1 - możliwe jest (1): nie pada i są chmury
1 2 3 4 5 6
|
Oczywistym jest, że zdanie Irbisola możemy umieścić wyłącznie w linii A, bowiem linie CD mamy już zajęte, prawidłowo zinterpretowane przez Irbisola.
34.6.2 Analiza zdania Irbisola w warunkach wystarczających => i koniecznych ~>
Zdanie Irbisola:
A.
Jeśli jutro będzie padało (P) to na 100% => będzie pochmurno (CH)
P=>CH =1
Padanie (P) jest (=1) warunkiem wystarczającym => dla istnienia chmur (CH), bo zawsze gdy pada, są chmury
Innymi słowy:
Padanie (P) daje nam (=1) gwarancję matematyczną => istnienia chmur (CH), bo zawsze gdy pada, są chmury
Matematycznie zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna => = na 100% => etc
Na mocy definicji kontrprzykładu (pkt. 34.5.4) prawdziwy warunek wystarczający => w linii A.
A.
Jeśli jutro będzie padało (P) to na 100% => będzie pochmurno (CH)
A: P=>CH=1
wymusza fałszywy kontrprzykład B:
B.
Jeśli jutro będzie padało (P) to może ~~> nie być pochmurno (~CH)
B: P~~>~CH = P*~CH =0
Dowód fałszywości zdania B na mocy definicji kontrprzykładu jest dowodem „nie wprost”.
Dowód wprost to:
Niemożliwe jest (=0) zdarzenie ~~>: pada (P) i nie jest pochmurno (~CH)
cnd
W tym monecie mamy rozpracowaną w 100% zawartość linii A i B w ziemskiej definicji implikacji z czym Irbisol totalnie sobie nie poradził - bo (póki co) ma tak sprany mózg gównem zwanym KRZ, że nie wie biedak w którym kościele dzwony biją.
Kod: |
ZIP - zero-jedynkowa definicja ziemskiej implikacji, przykład
i jej znaczenie w warunku wystarczającym => w linii A
Zapis |Zapis
zero-jedynkowy |symboliczny
P CH Y=~P+CH | Y
A: 1 1 =1 | P=> CH =1 -padanie jest (=1) wystarczające => dla chmur
B: 1 0 =0 | P~~>~CH =0 -kontrprzykład dla A: P=>CH musi być fałszem
C: 0 0 =1 |~P~~>~CH =1 - możliwe jest (1): nie pada i nie ma chmur
D: 0 1 =1 |~P~~> CH =1 - możliwe jest (1): nie pada i są chmury
1 2 3 4 5 6
|
Dalsze rozpracowywanie ziemskiej, zero-jedynkowej definicji implikacji p=>q w warunkach wystarczających => i koniecznych ~> to zaledwie do zakochania jeden krok!
Na mocy prawa Kubusia (pkt. 34.4.5):
A: P=>CH = C: ~P~>~CH =1
prawdziwy warunek wystarczający => w linii A.
A.
Jeśli jutro będzie padało (P) to będzie pochmurno (CH)
A: P=>CH=1
wymusza prawdziwy warunek konieczny ~> w linii C.
C.
Jeśli jutro nie będzie padało (~P) to może ~> nie być pochmurno (~CH)
C: ~P~>~CH =1
Brak padania (~P) jest warunkiem koniecznym ~> aby nie było pochmurno (~CH), bo jak pada (P) to na 100% => są chmury (CH)
Jak widzimy prawo Kubusia samo nam tu wyskoczyło:
C: ~P~>~CH = A: P=>CH
Stąd mamy końcową wersję ziemskiej, zero-jedynkowej definicji implikacji wyrażoną warunkami wystarczającymi => i koniecznymi ~>:
Kod: |
ZIP - zero-jedynkowa definicja ziemskiej implikacji, przykład
i jej znaczenie w warunku wystarczającym => (A) i koniecznym ~> (C)
Zapis |Zapis
zero-jedynkowy |symboliczny
P CH Y=~P+CH| Y
A: 1 1 =1 | P=> CH=1 -padanie jest (=1) wystarczające => dla chmur
B: 1 0 =0 | P~~>~CH=0 -kontrprzykład dla A: P=>CH musi być fałszem(0)
C: 0 0 =1 |~P~> ~CH=1 -brak padania jest konieczny ~> dla braku chmur
D: 0 1 =1 |~P~~> CH=1 -możliwe jest zdarzenie: nie pada i są chmury
1 2 3 4 5 6
|
34.6.3 Prosiaczek sprawdza znajomość algebry Kubusia w przedszkolu
Wszelkie istoty żywe (nie tylko człowiek) wyssały biegłą znajomość algebry Kubusia z mlekiem matki i nie muszą się jej uczyć.
Dowód:
Udajmy się do przedszkola, póki co w 100-milowym lesie.
Prosiaczek, ekspert algebry Kubusia w rozmowie z 5-cio latkami.
Prosiaczek:
Zacznijmy od zdania:
A.
Jeśli jutro będzie padało (P) to będzie pochmurno (CH)
P=>CH =1
Powiedzcie mi dzieci:
Czy padanie (P) jest warunkiem wystarczającym => dla istnienia chmur (CH)?
Jaś (lat 5):
Padanie (P) jest (=1) warunkiem wystarczającym => dla istnienie chmur (CH), bo zawsze gdy pada, są chmury
Prosiaczek:
Powiedz mi Jasiu czy prawdziwe będzie takie zdanie:
B.
Jeśli jutro będzie padało (P) to może nie być pochmurno (~CH)
P~~>~CH = P*(~CH) =0
Jaś:
Nie może się zdarzyć (=0), że jutro będzie padało (P) i nie będzie pochmurno (~CH), zatem zdanie B jest fałszywe.
Prosiaczek:
Jasiu, czy możesz nam opowiedzieć co może się zdarzyć jeśli jutro nie będzie padało?
Jaś:
Prawo Kubusia:
A: P=>CH = C: ~P~>~CH
Stąd mamy zdanie C, prawdziwe na mocy prawa Kubusia:
C.
Jeśli jutro nie będzie padało (~P) to może ~> nie być pochmurno (~CH)
~P~>~CH =1
Brak padania (~P) jest (=1) warunkiem koniecznym ~> by nie było pochmurno (~CH), bo jak pada (P) to na 100% => jest pochmurno (CH)
Jak widzimy prawo Kubusia samo tu Jasiowi wyskoczyło:
C: ~P~>~CH = A: P=>CH =1
Prosiaczek:
Co powiesz Jasiu na temat prawdziwości/fałszywości takiego zdania:
D.
Jeśli jutro nie będzie padało (~P) to może być pochmurno (CH)
~P~~>CH = ~P*CH =1
Jaś:
To zdanie jest prawdziwe, bo możliwe jest ~~> zdarzenie: nie pada (~P) i są chmury (CH)
Prosiaczek:
Dziękuję wam drogie dzieci za miłą rozmowę o logice matematycznej zwanej algebrą Kubusia.
Pani przedszkolanka:
Dziękujemy ci Prosiaczku za twoją wizytę, zapraszamy ponownie, jak znajdziesz chwilkę wolnego czasu.
Podsumowując:
Proszę wszystkich czytelników by porównali wizytę Prosiaczka w przedszkolu w 100-milowym lesie, z wizytą ziemskiego fanatyka KRZ, Irbisola, w ziemskim przedszkolu (punkt 34.2.1) opowiadającą o tym samym zdaniu A: P=>CH co Prosiaczek wyżej.
34.7 Tragedia ziemskiej logiki matematycznej
Tragedią ziemskiej logiki matematycznej jest fakt, iż każde zdanie warunkowe „Jeśli p to q” sprowadzane jest spójników „i”(*) oraz „lub”(+) na mocy prawa eliminacji implikacji:
p=>q = ~p+q
… czyli prawa eliminacji zdania warunkowego „Jeśli p to q”!
Dlaczego ziemianie to robią?
Odpowiedź:
Bo nie znają matematycznych definicji znaczków implikacyjnych pozwalających analizować dowolne zdanie warunkowe „Jeśli p to q” innymi zdaniami warunkowymi „Jeśli p to q”
Znaczki których zero-jedynkowych definicji (dla potrzeb rachunku zero-jedynkowego) nie zna nawet najwybitniejszy ziemski matematyk to:
1.
Warunek wystarczający =>:
p=>q = ~p+q
##
2.
Warunek konieczny ~>:
p~>q = p+~q
##
3.
Zdarzenie możliwe ~~>:
p~~>q = p*q
Gdzie:
## - różne na mocy definicji
|
|
Powrót do góry |
|
 |
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 37352
Przeczytał: 18 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Pon 20:36, 17 Mar 2025 Temat postu: |
|
|
Algebra Kubusia – matematyczna wojna wszech czasów
35.0 Dowód śmieciowości ziemskiej teorii mnogości
Spis treści
35.0 Dowód śmieciowości ziemskiej teorii mnogości 1
35.1 Przypomnienie fundamentów algebry Kubusia 1
35.2 Podstawowa definicja równoważności p<=>q w zbiorach 2
35.2.1 Prawa Słonia dla zbiorów 3
35.2.2 Matematyczna definicja równoważności p<=>q w zbiorach 3
35.2.3 Prawo Irbisa w zbiorach 4
35.2.4 Tabela prawdy równoważności p<=>q w zbiorach 4
35.2.5 Diagram równoważności p<=>q w zbiorach 5
35.3 Definicja zbiorów tożsamych p=q w algebrze Kubusia 6
35.3.1 Prawo Irbisa w równoważności Pitagorasa TP<=>SK 7
35.3.2 Prawo Irbisa w równoważności Pitagorasa ~TP<=>~SK 8
35.3.3 Prawo Irbisa w akcji na przykładzie zbiorów skończonych 9
35.4 Kwintesencja teorii mnogości 10
35.5 Definicja tożsamości zbiorów p=q w teorii mnogości 11
35.6 Definicja równoważności zbiorów p<=>q w teorii mnogości 14
35.6.1 Równoważność zbiorów p<=>q w TM to matematyczna schizofrenia 14
35.6.2 Szczegóły wewnętrznej sprzeczności teorii mnogości 17
35.7 Jak można było tak prostą rzecz tak potwornie spieprzyć! 18
35.8 Teoria zbiorów równolicznych i nierównolicznych w algebrze Kubusia 24
35.8.1 Przykład zbiorów nierównolicznych w algebrze Kubusia 25
35.8.2 Przykład zbiorów równolicznych w algebrze Kubusia 26
35.0 Dowód śmieciowości ziemskiej teorii mnogości
Film powinien zaczynać się od trzęsienia ziemi, potem zaś napięcie ma nieprzerwanie rosnąć
Alfred Hitchcock.
35.1 Przypomnienie fundamentów algebry Kubusia
W tym momencie czytelnik proszony jest o przypomnienie sobie elementarnych pojęć z algebry Kubusia zawartych w punkcie 2.0
W szczególności:
Definicje znaczków elementarnych ~~>, =>, ~> plus definicja kontrprzykładu
Prawa Sowy pkt. 2.6.1
Prawa Słonia pkt. 2.8
Prawo Irbisa pkt. 2.9
Poniżej przypominam teorię równoważności w zbiorach która poznaliśmy w punkcie 16.0
35.2 Podstawowa definicja równoważności p<=>q w zbiorach
Bezdyskusyjnie najcenniejszą definicją w całym obszarze matematyki dla potrzeb matematyki klasycznej i programowania komputerów jest definicja równoważności p<=>q której istoty póki co ziemscy matematycy nie rozumieją, mimo że poprawnie matematycznie ją udowadniają.
Nie rozumieją dlatego, że nie znają kluczowych tu zero-jedynkowych definicji warunku wystarczającego => i koniecznego ~>, praw Słonia, prawa Irbisa, oraz definicji kontrprzykładu dla zbiorów w interpretacji z algebry Kubusia.
Mówiąc dosadnie: 100% definicji rodem z Klasycznego Rachunku Zdań jest do bani.
Przykładowo:
Równoważność Pitagorasa TP<=>SK definiuje tożsamość zbiorów TP=SK (i odwrotnie) o czym matematycy nie wiedzą.
Kod: |
T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
## ## ## ## ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5: p+~q
Prawa Kubusia: | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q | A1: p=>q = A4:~q=>~p
B1: p~>q = B2:~p=>~q | B2:~p=>~q = B3: q=>p
Prawa Tygryska: | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p | B1: p~>q = B4:~q~>~p
Gdzie:
p=>q = ~p+q - definicja warunku wystarczającego =>
p~>q = p+~q - definicja warunku koniecznego ~>
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Definicja równoważności p<=>q:
Równoważność p<=>q w logice dodatniej (bo q) to spełnienie zarówno warunku wystarczającego =>, jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
Stąd mamy definicję równoważności p<=>q w równaniu logicznym:
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) =1*1 =1
Czytamy:
Równoważność p<=>q w logice dodatniej (bo q) jest spełniona (=1) wtedy i tylko wtedy gdy
zajście p jest (=1) konieczne ~> (B1) i wystarczające => (A1) dla zajścia q
Innymi słowy:
Do tego by zaszło q potrzeba ~> (B1) i wystarcza => (A1) by zaszło p
Powyższa definicja równoważności znana jest wszystkim ludziom (nie tylko matematykom):
Dowód:
Klikamy na googlach:
„konieczne i wystarczające”
Wyników: kilkanaście tysięcy
"koniecznym i wystarczającym"
Wyników: kilkanaście tysięcy
„potrzeba i wystarcza”
Wyników: kilkanaście tysięcy
35.2.1 Prawa Słonia dla zbiorów
I Prawo Słonia dla zbiorów:
W algebrze Kubusia w zbiorach zachodzi tożsamość [=] pojęć:
A1: p=>q - warunek wystarczający => [=] A1: p=>q - relacja podzbioru => [=] A1: p=>q - matematyczne twierdzenie proste
Y = A1: p=>q = ~p+q
##
II Prawo Słonia dla zbiorów:
B1: p~>q - warunek konieczny ~> [=] B1: p~>q - relacja nadzbioru ~> [=] B3: q=>p - matematyczne twierdzenie odwrotne (w odniesieniu do A1)
bo prawo Tygryska:
Y = B1: p~>q = B3: q=>p = p+~q
Gdzie:
## - różne na mocy definicji
p i q musi być wszędzie tymi samymi p i q, inaczej błąd podstawienia
[=], „=”, <=> - tożsame znaczki tożsamości logicznej
<=> - wtedy o tylko wtedy
Stąd korzystając z prawa Słonia dla zbiorów możemy wygenerować dużą ilość tożsamych definicji równoważności p<=>q.
35.2.2 Matematyczna definicja równoważności p<=>q w zbiorach
1.
Matematyczna definicja równoważności p<=>q (znana każdemu matematykowi):
Równoważność p<=>q to jednoczesna prawdziwość matematycznego twierdzenia prostego A1: p=>q i matematycznego twierdzenia odwrotnego B3: q=>p
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q, twierdzenie proste A1.
B3: q=>p =1 - zajście q jest (=1) wystarczające => dla zajścia p, twierdzenie odwrotne (względem A1)
Stąd mamy:
A1B3: p<=>q = (A1: p=>q)*(B3: q=>p) =1*1 =1
2.
Definicja równoważności wyrażona relacjami podzbioru =>
Równoważność p<=>q to relacja podzbioru => zachodząca w dwie strony
A1: p=>q =1 - wtedy i tylko wtedy gdy zbiór p jest (=1) podzbiorem => zbioru q
B3: q=>p =1 - wtedy i tylko wtedy gdy zbiór q jest (=1) podzbiorem => zbioru p
Stąd mamy:
A1B3: p<=>q = (A1: p=>q)*(B3: q=>p) =1*1 =1
Stąd mamy wprowadzone kluczowe w równoważności prawo Irbisa.
35.2.3 Prawo Irbisa w zbiorach
Prawo Irbisa:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q (A1: p=>q) i jednocześnie zbiór q jest podzbiorem => zbioru p (B3: q=>p)
A1B3: p=q <=> (A1: p=>q)*(B3: q=>p)= A1B3: p<=>q
Tą definicję tożsamości zbiorów zna każdy matematyk.
Innymi słowy:
Każda równoważność prawdziwa p<=>q definiuje tożsamość zbiorów p=q (i odwrotnie)
A1B3: p=q <=> A1B3: p<=>q = (A1: p=>q)*(B3: q=>p)
Na mocy prawa Słonia prawo Irbisa możemy też zapisać w relacjach podzbioru => i nadzbioru ~>.
Prawo Irbisa:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy zbiór p jest (=1) podzbiorem => zbioru q (A1) i jednocześnie zbiór p jest (=1) nadzbiorem ~> zbioru q (B1)
A1: p=>q =1 - wtedy i tylko wtedy gdy zbiór p jest (=1) podzbiorem => zbioru q
B1: p~>q =1 - wtedy i tylko wtedy gdy zbiór p jest (=1) nadzbiorem ~> zbioru q
Stąd mamy:
A1B1: p=q <=> (A1: p=>q)*(B1: p~>q) = A1B1: p<=>q
Tożsamy dowód bezpośredni:
Na mocy definicji podzbioru => i nadzbioru ~> każdy zbiór jest jednocześnie podzbiorem => (A1) i nadzbiorem ~> (B1) siebie samego (pkt. 16.1.2 i 16.1.3)
Korzystając z prawa Słonia prawo Irbisa możemy też zapisać w warunkach koniecznym ~> (B1) i wystarczającym => (A1).
Na mocy prawa Słonia zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>
Prawo Irbisa:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy zajście p jest konieczne ~> (B1) i wystarczające => (A1) dla zajścia q
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
Stąd mamy:
A1B1: p=q <=> (A1: p=>q)*(B1: p~>q) = A1B1: p<=>q
Stąd mamy tabelę prawdy równoważności p<=>q z uwzględnieniem prawa Irbisa.
35.2.4 Tabela prawdy równoważności p<=>q w zbiorach
Kod: |
TR
Tabela prawdy równoważności p<=>q z uwzględnieniem prawa Irbisa
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w równoważności p<=>q
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
Stąd mamy definicję równoważności A1B1: p<=>q w równaniu logicznym:
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) =1*1 =1
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q=1 = 2:~p~>~q=1 [=] 3: q~>p=1 = 4:~q=>~p=1 [=] 5: ~p+q =1
## ## ## ## ##
B: 1: p~>q=1 = 2:~p=>~q=1 [=] 3: q=>p=1 = 4:~q~>~p=1 [=] 5: p+~q=1
-----------------------------------------------------------------------
Równoważność <=>: | Równoważność <=>:
AB: 1: p<=>q=1 = 2:~p<=>~q=1 [=] 3: q<=>p=1 = 4:~q<=>~p=1 [=] 5: p*q+~p*~q
definiuje tożsamość zbiorów: | definiuje tożsamość zbiorów:
AB: 1: p=q # 2:~p=~q | 3: q=p # 4:~q=~p
Gdzie:
# - różne w znaczeniu iż jedna strona znaczka # jest negacją drugiej strony
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
"=",[=],<=> - tożsame znaczki tożsamości logicznej
|
I Prawo Sowy dla równoważności p<=>q:
Prawdziwość dowolnego zdania serii Ax wymusza prawdziwość wszystkich zdań serii Ax
##
II Prawo Sowy dla równoważności p<=>q:
Prawdziwość dowolnego zdania serii Bx wymusza prawdziwość wszystkich zdań serii Bx
Gdzie:
## - różne na mocy definicji
35.2.5 Diagram równoważności p<=>q w zbiorach
Definicja równoważności p<=>q w zbiorach:
Zbiór p jest podzbiorem => zbioru q i jest tożsamy ze zbiorem q
Dziedzina musi być szersza do sumy logicznej zbiorów p+q bowiem wtedy i tylko wtedy wszystkie zbiory p, ~p, q i ~q będą niepuste (rozpoznawalne), co doskonale widać na diagramie DR niżej.
A1: p=>q =1 - zbiór p jest (=1) podzbiorem => zbioru q (z definicji)
B1: p~>q =1 - zbiór p jest (=1) nadzbiorem ~> zbioru q (z definicji)
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) = 1*1 =1
Czytamy:
Równoważność p<=>q w logice dodatniej (bo q) jest prawdziwa (=1) wtedy i tylko wtedy gdy zbiór p jest jednocześnie podzbiorem => (A1) i nadzbiorem ~> (B1) dla zbioru q
Wniosek:
Musi zachodzić tożsamość zbiorów p=q bowiem wtedy i tylko wtedy zbiór p jest podzbiorem => zbioru q (A1: p=>q) i jednocześnie zbiór p jest nadzbiorem ~> zbioru q (B1: p~>q).
Dowód
Każdy zbiór jest jednocześnie podzbiorem => i nadzbiorem ~> siebie samego
Stąd mamy diagram równoważności p<=>q w zbiorach:
Kod: |
DR
Diagram równoważności p<=>q w zbiorach
definiujący tożsamość zbiorów p=q.
---------------------------------------------------------------------------
| p | ~p |
|---------------------------------|---------------------------------------|
| q | ~q |
|---------------------------------|---------------------------------------|
|Definicja równoważności: | Definicja równoważności: |
|A1B1: p<=>q=(A1:p=>q)*(B1:p~>q) [=] A2B2: ~p<=>~q=(A2:~p~>~q)*(B2:~p=>~q)|
|Definiuje tożsamość zbiorów | Definiuje tożsamość zbiorów: |
| p=q # ~p=~q |
---------------------------------------------------------------------------
| A1: p=>q=1 (p*q=1) | B2:~p=>~q=1 (~p*~q=1) |
| Dziedzina: |
| D=A1: p*q+ B2:~p*~q - suma logiczna zbiorów niepustych A1 i B2 |
| A1’: p~~>~q=p*~q=[]=0 - zbiór pusty |
| B2’: ~p~~>q =~p*q=[]=0 - zbiór pusty |
|-------------------------------------------------------------------------|
Gdzie:
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
[=] - tożsamość logiczna
# - dowolna strona znaku # jest negacją drugiej strony
p#~p
p=~(~p) - prawo podwójnego przeczenia
Wnioski:
1.
Definicja równoważności p<=>q definiuje tożsamość zbiorów p=q
która to tożsamość wymusza tożsamość zbiorów ~p=~q (i odwrotnie)
2.
Równoważność p<=>q to dwa i tylko dwa zbiory niepuste i rozłączne
p=q i ~p=~q uzupełniające się wzajemnie do dziedziny D.
p+~p=D=1
p*~p=[]=0
Dowód: diagram DR
|
35.3 Definicja zbiorów tożsamych p=q w algebrze Kubusia
Poprawna definicja zbiorów tożsamych p=q wraz z przykładem dla zbiorów nieskończonych, jest tylko i wyłącznie jedna, definiowana prawem Irbisa
Prawo Irbisa:
Każda równoważność prawdziwa p<=>q definiuje tożsamość zbiorów p=q (i odwrotnie)
A1B3: p<=>q = (A1: p=>q)*(B3: q=>p) <=> A1B3: p=q
Kod: |
T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
## ## ## ## ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5: p+~q
Gdzie:
p=>q = ~p+q - definicja warunku wystarczającego =>
p~>q = p+~q - definicja warunku koniecznego ~>
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
1.
Prawo Irbisa dla zbiorów:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q (A1) i jednocześnie zbiór q jest podzbiorem => zbioru p (B3)
A1B3: p=q <=> (A1: p=>q)*(B3: q=>p) = A1B3: p<=>q
35.3.1 Prawo Irbisa w równoważności Pitagorasa TP<=>SK
Przykład dla zbiorów nieskończonych to równoważność Pitagorasa.
1P.
Prawo Irbisa dla równoważności Pitagorasa:
Dwa zbiory TP i SK są tożsame TP=SK wtedy i tylko wtedy gdy zbiór TP jest podzbiorem => zbioru SK (A1) i jednocześnie zbiór SK jest podzbiorem => zbioru TP (B3)
A1B3: TP=SK <=> (A1: TP=>SK)*(B3: SK=>TP)= A1B3: TP<=>SK
Szczegółowy dowód prawa Irbisa dla równoważności Pitagorasa.
Twierdzenia składowe to:
A1.
Twierdzenie proste Pitagorasa (udowodnione wieki temu) :
Jeśli trójkąt jest prostokątny TP to na 100% => zachodzi w nim suma kwadratów SK
A1: TP=>SK =1
To samo w zapisie formalnym:
A1: p=>q
Czytamy:
Bycie trójkątem prostokątnym TP jest (=1) warunkiem wystarczającym => do tego, by zachodziła w nim suma kwadratów SK wtedy i tylko wtedy gdy zbiór TP jest podzbiorem => zbioru SK (A1)
##
B3.
Twierdzenie odwrotne Pitagorasa względem A1 (udowodnione wieki temu) :
B3.
Jeśli w trójkącie zachodzi suma kwadratów SK to ten trójkąt na 100% => jest trójkątem prostokątnym TP
B3: SK=>TP =1
To samo w zapisie formalnym:
B3: q=>p =1
Czytamy:
Bycie trójkątem ze spełnioną suma kwadratów SK jest warunkiem wystarczającym => do tego, aby ten trójkąt był prostokątny TP wtedy i tylko wtedy gdy zbiór SK jest podzbiorem => zbioru TP (B3)
Gdzie:
## - twierdzenia różne na mocy definicji
2.
Innymi słowy:
Każda równoważność prawdziwa p<=>q definiuje tożsamość zbiorów p=q (i odwrotnie)
A1B3: p<=>q = (A1: p=>q)*(B3: q=>p) <=> A1B3: p=q
Nasz przykład dla zbiorów nieskończonych.
2P.
Dla równoważności Pitagorasa TP<=>SK zapisujemy:
Równoważność Pitagorasa TP<=>SK definiuje tożsamość zbiorów TP=SK (i odwrotnie)
A1B3: TP<=>SK = (A1: TP=>SK)*(B3: SK=>TP) <=> A1B3: TP=SK
3P.
Co oznacza tożsamość zbiorów TP=SK?
TP=SK
Jeśli ze zbioru trójkątów prostokątnych TP wylosujemy dowolny trójkąt to mamy pewność absolutną (Boską przez duże B) iż ten trójkąt będzie miał jeden i tylko jeden odpowiednik w zbiorze trójkątów ze spełnioną sumą kwadratów SK (i odwrotnie)
Wniosek:
Nieskończony zbiór trójkątów prostokątnych TP jest równoliczny z nieskończonym zbiorem trójkątów ze spełnioną sumą kwadratów SK (i odwrotnie)
TP~SK =1
Innymi słowy, krócej:
Zbiór TP jest (=1) równoliczny ze zbiorem SK (i odwrotnie)
Gdzie:
„~” – używany w logice ziemskich matematyków znaczek równoliczności zbiorów
Definicja zbiorów równolicznych p~q:
Dwa zbiory p i q są równoliczne p~q wtedy i tylko wtedy gdy mają identyczną liczbę elementów
p~q =1 – wtedy i tylko wtedy gdy zbiory p i q mają identyczną liczbę elementów
Inaczej:
p~q =0 – wtedy i tylko wtedy gdy zbiory p i q nie mają identycznej liczby elementów
Podsumowując:
Zapiszmy raz jeszcze prawo Irbisa w zapisach formalnych tzn. bez związku z jakimkolwiek przykładem.
1.
Prawo Irbisa dla zbiorów:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q (A1) i jednocześnie zbiór q jest podzbiorem => zbioru p (B3)
A1B3: p=q <=> (A1: p=>q)*(B3: q=>p) = A1B3: p<=>q
Na mocy prawa Irbisa możemy powiedzieć że:
1.
Warunkiem koniecznym ~> i wystarczającym => prawdziwości tożsamości zbiorów p=q jest prawdziwość matematycznego twierdzenia prostego A1: p=>q oraz prawdziwość matematycznego twierdzenia odwrotnego B3: q=>p.
2.
Warunkiem koniecznym ~> prawdziwości tożsamości zbiorów p=q jest prawdziwość matematycznego twierdzenia prostego A1: p=>q albo prawdziwość matematycznego twierdzenia odwrotnego B3: q=>p
2A.
Innymi słowy:
Jeśli udowodnimy prawdziwość jednego, dowolnego twierdzenia matematycznego (prostego A1: p=>q albo odwrotnego B3: q=>p) to tożsamość zbiorów może zajść (p=q)=1, albo może nie zajść (p=q)=0 w zależności od dowodu prawdziwości/fałszywości twierdzenia przeciwnego
3.
Warunkiem wystarczającym => fałszywości tożsamości zbiorów p=q jest fałszywość matematycznego twierdzenia prostego A1: p=>q albo fałszywość matematycznego twierdzenia odwrotnego B3: q=>p
35.3.2 Prawo Irbisa w równoważności Pitagorasa ~TP<=>~SK
Kod: |
TR
Tabela prawdy równoważności p<=>q z uwzględnieniem prawa Irbisa
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w równoważności p<=>q
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
Stąd mamy definicję równoważności A1B1: p<=>q w równaniu logicznym:
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) =1*1 =1
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q=1 = 2:~p~>~q=1 [=] 3: q~>p=1 = 4:~q=>~p=1 [=] 5: ~p+q =1
## ## ## ## ##
B: 1: p~>q=1 = 2:~p=>~q=1 [=] 3: q=>p=1 = 4:~q~>~p=1 [=] 5: p+~q=1
-----------------------------------------------------------------------
Równoważność <=>: | Równoważność <=>:
AB: 1: p<=>q=1 = 2:~p<=>~q=1 [=] 3: q<=>p=1 = 4:~q<=>~p=1 [=] 5: p*q+~p*~q
definiuje tożsamość zbiorów: | definiuje tożsamość zbiorów:
AB: 1: p=q # 2:~p=~q | 3: q=p # 4:~q=~p
Gdzie:
# - różne w znaczeniu iż jedna strona znaczka # jest negacją drugiej strony
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
"=",[=],<=> - tożsame znaczki tożsamości logicznej
|
Prawo irbisa w logice ujemnej (bo ~q) mamy zdefiniowane w kolumnie A2B2.
A2B2:
Prawo Irbisa:
Dwa zbiory ~p i ~q są tożsame A2B2: ~p=~q wtedy i tylko wtedy gdy znajdują się w relacji równoważności A2B2: ~p<=>~q (i odwrotnie)
A2B2: ~p=~q <=> (A2: ~p~>~q)*(B2: ~p=>~q) = A2B2: ~p<=>~q
Innymi słowy:
Każda równoważność prawdziwa A2B2: ~p<=>~q wymusza tożsamość zbiorów A2B2: ~p=~q (i odwrotnie)
A2B2: ~p<=>~q = (A2: ~p~>~q)*(B2: ~p=>~q) <=> A2B2: ~p=~q
Podstawmy naszą równoważność Pitagorasa dla trójkątów nieprostokątnych ~TP.
~p=~TP
~q=~SK
Stąd mamy prawo irbisa w zapisie aktualnym (dla naszego przykładu):
A2B2: ~TP<=>~SK = (A2: ~TP~>~SK)*(B2: ~TP=>~SK) <=> A2B2: ~TP=~SK
Co oznacza tożsamość zbiorów A2B2: ~TP=~SK?
Znaczenie:
Jeśli ze zbioru trójkątów nieprostokątnych ~TP wylosujemy dowodny element, bo będzie on miał jeden, unikalny element w zbiorze trójkątów z niespełnioną sumą kwadratów (i odwrotnie).
35.3.3 Prawo Irbisa w akcji na przykładzie zbiorów skończonych
Przykład działania prawa Irbisa na zbiorach skończonych.
Zdefiniujmy zbiory:
p=[Kubuś, Tygrysek]
q=[Tygrysek, Kubuś]
Prawo Irbisa:
Dowolna równoważność prawdziwa p<=>q definiuje tożsamość zbiorów p=q (i odwrotnie)
A1B3: p=q <=> A1B3: p<=>q = (A1: p=>q)*(B3: q=>p)
Badamy twierdzenie proste A1:
A1.
Jeśli zajdzie p to na 100% => zajdzie q
p=>q =1
Zajście p jest (=1) warunkiem wystarczającym => dla zajścia q wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q.
Sprawdzenie:
p=>q = [Kubuś, Tygrysek] => [Tygrysek, Kubuś] =1
Czytamy:
Każdy element zbioru p należy => do zbioru q, stąd definicja relacji podzbioru => jest spełniona
Badamy twierdzenie odwrotne B3:
B3.
Jeśli zajdzie q to na 100% => zajdzie p
q=>p =1
Zajście q jest (=1) warunkiem wystarczającym => dla zajścia p wtedy i tylko wtedy gdy zbiór q jest podzbiorem => zbioru p.
Sprawdzenie:
q=>p = [Tygrysek, Kubuś] => [Kubuś, Tygrysek] =1
Czytamy:
Każdy element zbioru q należy => do zbioru p, stąd definicja relacji podzbioru => jest spełniona
Wniosek:
Zbiory p i q są tożsame:
p=q
p=[Kubuś, Tygrysek]
q=[Tygrysek, Kubuś]
35.4 Kwintesencja teorii mnogości
Dla omówienia szczegółów teorii mnogości posłużymy się cytatem z anglojęzycznej Wikipedii w tłumaczeniu Googla:
[link widoczny dla zalogowanych]
@Anglojęzyczna Wikipedia
W matematyce zbiór jest definiowany jako kolekcja dobrze zdefiniowanych odrębnych obiektów. Różne obiekty tworzące zbiór nazywane są elementami zbioru. Zasadniczo elementy zbiorów można zapisać w dowolnej kolejności, ale nie powinny się powtarzać. Zbiór jest zwykle reprezentowany przez wielką literę. W podstawowej teorii zbiorów dwa zbiory mogą być równoważne, równe lub nierówne sobie. W tym artykule omówimy, co oznaczają równy i równoważny zbiór z przykładami, a także różnicę między nimi.
Definicja 1
Czym są zbiory równe?
Dwa zbiory p i q mogą być równe tylko wtedy, gdy każdy element zbioru p jest również elementem zbioru q. Ponadto, jeśli dwa zbiory są podzbiorami siebie nawzajem, to mówi się, że są równe. Jest to reprezentowane przez:
p=q <=> (p=>q)*(q=>p)
Jeśli warunek omówiony powyżej nie jest spełniony, wówczas zbiory są nazywane nierównymi. Jest to reprezentowane przez:
p##q
Gdzie:
## - zbiory różne na mocy definicji
Przykład zestawu równego
Jeśli P = { 1 , 3 , 9} i Q = { 3 , 1 , 9}, to P=Q .
Należy również zauważyć, że bez względu na to, ile razy element powtarza się w zestawie, jest on liczony tylko raz. Ponadto kolejność elementów w zestawie nie ma znaczenia.
Tak więc, aby sformułować to inaczej w kategoriach liczby kardynalnej, możemy powiedzieć, że:
Jeżeli A = B , to n ( A ) = n ( B ) i dla dowolnego x ∈ A , x ∈ B również.
Definicja 2
Czym są zbiory równoważne?
Aby były równoważne, zbiory powinny mieć tę samą kardynalność.
Oznacza to, że powinna istnieć jednoznaczna korespondencja między elementami obu zbiorów. Tutaj jednoznaczna korespondencja oznacza, że dla każdego elementu w zbiorze A istnieje element w zbiorze B, dopóki zbiory nie zostaną wyczerpane.
Definicja A: Jeżeli dwa zbiory A i B mają tę samą moc , to istnieje funkcja celu ze zbioru A do B.
Definicja B: Dwa zbiory A i B są równoważne, jeżeli mają tę samą moc, tj. n ( A ) = n ( B ) .
Ogólnie rzecz biorąc, możemy powiedzieć, że
dwa zbiory są sobie równoważne, jeśli liczba elementów w obu zbiorach jest równa.
I nie jest konieczne, aby miały te same elementy lub były podzbiorem siebie nawzajem.
Przykład zestawu równoważnego
P = { 1 , 3 , 9} i Q = { 3 , 4 , 5}, to P<=>Q
Jeżeli P = { 1 , 3 , 9} i Q = { 3 , 4 , 5}, to P jest równoważne Q.
35.5 Definicja tożsamości zbiorów p=q w teorii mnogości
Zajmijmy się definicją 1 z powyższego cytatu:
[link widoczny dla zalogowanych]
@Anglojęzyczna Wikipedia
Definicja 1
Czym są zbiory równe?
Dwa zbiory p i q mogą być równe tylko wtedy, gdy każdy element zbioru p jest również elementem zbioru q. Ponadto,
Jeśli dwa zbiory są podzbiorami siebie nawzajem, to mówi się, że są równe.
Jest to reprezentowane przez:
p=q <=> (p=>q)*(q=>p)
Jeśli warunek omówiony powyżej nie jest spełniony, wówczas zbiory są nazywane nierównymi. Jest to reprezentowane przez:
p##q
Gdzie:
## - zbiory różne na mocy definicji
Przykład zestawu równego
Jeśli P = { 1 , 3 , 9} i Q = { 3 , 1 , 9}, to P=Q .
Należy również zauważyć, że bez względu na to, ile razy element powtarza się w zestawie, jest on liczony tylko raz. Ponadto kolejność elementów w zestawie nie ma znaczenia.
Tak więc, aby sformułować to inaczej w kategoriach liczby kardynalnej, możemy powiedzieć, że:
Jeżeli A = B , to n ( A ) = n ( B ) i dla dowolnego x ∈ A , x ∈ B również.
Zauważmy, że definicja zbiorów tożsamych p=q jest tu identyczna jak w algebrze Kubusia, gdzie zbiory tożsame definiowane są prawem Irbisa.
Oczywistym jest, że w cytacie wyżej „zbiory równe” oznacza po prostu „zbiory tożsame” rodem z algebry Kubusia definiowane prawem Irbisa – dowodem tego faktu jest zapis:
p=q <=> (p=>q)*(q=>p) =1*1=1
Czytamy:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy są podzbiorami siebie nawzajem
p=q <=> (p=>q)*(q=>p) =1*1=1
Innymi słowy:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy zbiór p jest (=1) podzbiorem => zbioru q i równocześnie zbiór q jest (=1) podzbiorem => zbioru p
W algebrze Kubusia stosujemy indeksowanie wg poniższej tabeli T0:
Kod: |
T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
## ## ## ## ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5: p+~q
Gdzie:
p=>q = ~p+q - definicja warunku wystarczającego =>
p~>q = p+~q - definicja warunku koniecznego ~>
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
1.
Prawo Irbisa dla zbiorów:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q (A1) i jednocześnie zbiór q jest podzbiorem => zbioru p (B3)
A1B3: p=q <=> (A1: p=>q)*(B3: q=>p) = A1B3: p<=>q
Przykład dla zbiorów skończonych spełniających prawo Irbisa:
Przykład A1B3:
p=[Kubuś, Tygrysek]
q=[Tygrysek, Kubuś]
1P.
Prawo Irbisa dla naszego przykładu A1B3:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q (A1) i jednocześnie zbiór q jest podzbiorem => zbioru p (B3)
A1B3: p=q <=> (A1: p=>q)*(B3: q=>p)= A1B3: p<=>q
Szczegółowy dowód prawa Irbisa dla naszych zbiorów p i q
Nasz punkt odniesienia to:
p=[Kubuś, Tygrysek]
q=[Tygrysek, Kubuś]
Twierdzenia składowe to:
A1.
Twierdzenie proste:
Jeśli dowolny element należy do zbioru p to na 100% => należy do zbioru q
p=>q =1
Dowód:
p=>q = [Kubuś, Tygrysek] => [Tygrysek, Kubuś] =1
Doskonale widać, że każdy element zbioru p=[Kubuś, Tygrysek] należy do zbioru q=[Tygrysek, Kubuś]
c.n.d.
##
B3.
Twierdzenie odwrotne względem A1 to:
B3.
Jeśli dowolny element należy do zbioru q to na 100% => należy do zbioru p
q=>p =1
Dowód:
q=>p = [Tygrysek, Kubuś] =>[Kubuś, Tygrysek] =1
Doskonale widać, że każdy element zbioru q=[Tygrysek, Kubuś] należy do zbioru p=[Kubuś, Tygrysek]
c.n.d.
Gdzie:
## - twierdzenia różne na mocy definicji
2.
Innymi słowy:
Każda równoważność prawdziwa p<=>q definiuje tożsamość zbiorów p=q (i odwrotnie)
A1B3: p<=>q = (A1: p=>q)*(B3: q=>p) <=> A1B3: p=q
Nasz przykład dla zbiorów skończonych.
Przykład A1B3:
p=[Kubuś, Tygrysek]
q=[Tygrysek, Kubuś]
2P.
Dla równoważności p<=>q zapisujemy:
Równoważność p<=>q definiuje tożsamość zbiorów p=q (i odwrotnie)
A1B3: p<=>q = (A1: p=>q)*(B3: q=>p) <=> A1B3: p=q
3P.
Co oznacza tożsamość zbiorów A1B3: p=q?
p=q
[Kubuś, Tygrysek] = [Tygrysek, Kubuś]
Każdy element ze zbioru p ma swój jeden, unikalny odpowiednik w zbiorze q (i odwrotnie)
Wnioski
1.
Udowodniona prawem Irbisa (pkt. 1P) tożsamość zbiorów skończonych p=q jest warunkiem wystarczającym => dla zachodzenia równoliczności zbiorów skończonych p~q, co udowodniono ciut wyżej w punkcie 3P.
Gdzie:
„~” – znaczek równoliczności zbiorów
2.
W tej sytuacji pisanie w definicji tożsamości zbiorów skończonych p=q rodem z teorii mnogości o równoliczności zbiorów skończonych p~q jest pisaniną matematycznego idioty, bowiem udowodnienie prawem Irbisa tożsamości zbiorów p=q gwarantuje => nam równoliczność zbiorów p~q.
Nie ma więc potrzeby w definicji tożsamości zbiorów p=q wspominać o równoliczności zbiorów p~q.
35.6 Definicja równoważności zbiorów p<=>q w teorii mnogości
Weźmy drugą część cytatu z anglojęzycznej Wikipedii w tłumaczeniu Googla:
[link widoczny dla zalogowanych]
@Anglojęzyczna Wikipedia
Definicja 2
Czym są zbiory równoważne?
Aby były równoważne, zbiory powinny mieć tę samą kardynalność. Oznacza to, że powinna istnieć jednoznaczna korespondencja między elementami obu zbiorów. Tutaj jednoznaczna korespondencja oznacza, że dla każdego elementu w zbiorze A istnieje element w zbiorze B, dopóki zbiory nie zostaną wyczerpane.
Definicja A: Jeżeli dwa zbiory A i B mają tę samą moc , to istnieje funkcja celu ze zbioru A do B.
Definicja B: Dwa zbiory A i B są równoważne, jeżeli mają tę samą moc, tj. n ( A ) = n ( B ) .
Ogólnie rzecz biorąc, możemy powiedzieć, że dwa zbiory są sobie równoważne, jeśli liczba elementów w obu zbiorach jest równa. I nie jest konieczne, aby miały te same elementy lub były podzbiorem siebie nawzajem.
Przykład zestawu równoważnego
P = { 1 , 3 , 9} i Q = { 3 , 4 , 5}, to P<=>Q
Jeżeli P = { 1 , 3 , 9} i Q = { 3 , 4 , 5}, to P jest równoważne Q.
35.6.1 Równoważność zbiorów p<=>q w TM to matematyczna schizofrenia
Matematyczną schizofrenię w definicji równoważności zbiorów p<=>q każdy widzi.
Zauważmy że:
@Anglojęzyczna Wikipedia
Ogólnie rzecz biorąc, możemy powiedzieć, że
dwa zbiory są sobie równoważne, jeśli liczba elementów w obu zbiorach jest równa.
I nie jest konieczne, aby miały te same elementy lub były podzbiorem siebie nawzajem.
Z powyższej definicji wynika, że przykładowe dwa zbiory p i q spełniające definicję równoważności zbiorów p<=>q w teorii mnogości TM mogą być na przykład takie.
Przykład TMA1B3:
p=[Kubuś, Tygrysek]
q=[Tygrysek, sraczka]
Na mocy definicji równoważności zbiorów p<=>q z Wikipedii prawdziwa jest tu równoważność:
p<=>q =1
Po podstawieniu przykładu mamy:
p=[Kubuś, Tygrysek] <=> q=[Tygrysek, sraczka] =1 (równoważność prawdziwa na mocy definicji z TM)
Gwałt na świętym prawie Irbisa widać tu jak na dłoni!
W algebrze Kubusia stosujemy indeksowanie wg poniższej tabeli T0:
Kod: |
T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
## ## ## ## ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5: p+~q
Prawa Kubusia: | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q | A1: p=>q = A4:~q=>~p
B1: p~>q = B2:~p=>~q | B2:~p=>~q = B3: q=>p
Prawa Tygryska: | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p | B1: p~>q = B4:~q~>~p
Gdzie:
p=>q = ~p+q - definicja warunku wystarczającego =>
p~>q = p+~q - definicja warunku koniecznego ~>
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
1.
Prawo Irbisa dla zbiorów:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q (A1) i jednocześnie zbiór q jest podzbiorem => zbioru p (B3)
A1B3: p=q <=> (A1: p=>q)*(B3: q=>p) = A1B3: p<=>q
Przykład TMA1B3:
p=[Kubuś, Tygrysek]
q=[Tygrysek, sraczka]
1P.
Prawo Irbisa dla naszego przykładu TMA1B3:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q (A1) i jednocześnie zbiór q jest podzbiorem => zbioru p (B3)
TMA1B3: p=q <=> (A1: p=>q)*(B3: q=>p)= TMA1B3: p<=>q
Szczegółowy dowód prawa Irbisa dla zbiorów p i q z przykładu TMA1B3.
Nasz punkt odniesienia to:
TMA1B3:
p=[Kubuś, Tygrysek]
q=[Tygrysek, sraczka]
Twierdzenia składowe to:
A1.
Twierdzenie proste:
Jeśli dowolny element należy do zbioru p to na 100% => należy do zbioru q
p=>q =0
Dowód:
p=>q = [Kubuś, Tygrysek] => [Tygrysek, sraczka] =0
Doskonale widać, że nie każdy (=0) element zbioru p=[Kubuś, Tygrysek] należy do zbioru q=[Tygrysek, sraczka]
c.n.d.
##
B3.
Twierdzenie odwrotne względem A1 to:
B3.
Jeśli dowolny element należy do zbioru q to na 100% => należy do zbioru p
q=>p =0
Dowód:
q=>p = [Tygrysek, sraczka] =>[Kubuś, Tygrysek] =0
Doskonale widać, że nie każdy (=0) element zbioru q=[Tygrysek, sraczka] należy do zbioru p=[Kubuś, Tygrysek]
c.n.d.
Gdzie:
## - twierdzenia różne na mocy definicji
Stąd mamy dowód, iż równoważność prawdziwa TMA1B3: p<=>q wedle teorii mnogości jest w rzeczywistości fałszywa bo:
1P.
Prawo Irbisa dla naszego przykładu TMA1B3:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q (A1) i jednocześnie zbiór q jest podzbiorem => zbioru p (B3)
TMA1B3: p=q <=> (A1: p=>q)*(B3: q=>p) = 0*0 =0
2.
Innymi słowy:
Każda równoważność prawdziwa p<=>q definiuje tożsamość zbiorów p=q (i odwrotnie)
TMA1B3: p<=>q = (A1: p=>q)*(B3: q=>p) =0*0 =0
Oczywiście dla naszego przykładu TMA1B3 fałszywa jest zarówno tożsamość zbiorów:
TMA1B3: (p=q) =0
Jak i równoważność zbiorów:
TMA1B3: (p<=>q) =0
35.6.2 Szczegóły wewnętrznej sprzeczności teorii mnogości
Zapiszmy jeszcze raz prawo Irbisa.
1.
Prawo Irbisa dla zbiorów:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q (A1) i jednocześnie zbiór q jest podzbiorem => zbioru p (B3)
A1B3: p=q <=> (A1: p=>q)*(B3: q=>p)= A1B3: p<=>q
Prawo Irbisa w tej wersji zna każdy matematyk przy zdrowych zmysłach.
Zauważmy, że nie jesteśmy w stanie udowodnić w sposób bezpośredni zarówno lewej strony powyższej wieloczłonowej tożsamości (A1B3: p=q), ani też jej prawej strony (A1B3: p<=>q).
Oba skrajne składniki powyższej tożsamości dowodzimy równocześnie w dwóch krokach.
I.
Matematyczne twierdzenie proste A1: p=>q
A1.
Jeśli zajdzie p to na 100% => zajdzie q
p=>q =1
Zajście p jest (=1) wystarczające => dla zajścia q wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q
##
II.
Matematyczne twierdzenie odwrotne B3: q=>p (względem A1)
B3.
Jeśli zajdzie q to na 100% => zajdzie p
q=>p =1
Zajście q jest (=1) wystarczające => dla zajścia p wtedy i tylko wtedy gdy zbiór q jest podzbiorem => zbioru p
Gdzie:
## - różne na mocy definicji
Zauważmy, że dopiero po udowodnieniu I i II mamy równoczesny dowód prawdziwości zarówno tożsamości zbiorów (A1B3: p=q) jak również dowód prawdziwości zachodzącej tu równoważności (A1B3: p<=>q)
Wewnętrzną sprzeczność teorii mnogości widać tu jak na dłoni.
Na gruncie potwornie śmierdzącego gówna dla niepoznaki zwanego teorią mnogości może zajść przypadek że:
1.
Równoważność jest prawdziwa:
A1B3: p<=>q =1
2.
Natomiast tożsamość zbiorów jest fałszem:
A1B3: p=q =0
Ten przypadek to następujące zbiory p i q
TMA1B3:
p=[Kubuś, Tygrysek]
q=[Tygrysek, sraczka]
35.7 Jak można było tak prostą rzecz tak potwornie spieprzyć!
[link widoczny dla zalogowanych]
@Wikipedia
W 1874 roku Georg Cantor opublikował pracę, która jest uznawana za narodziny współczesnej teorii mnogości. Idee te, pomimo dużej opozycji ze strony innych matematyków (np. Leopolda Kroneckera), zostały dalej rozwinięte w kolejnej pracy Cantora, z roku 1878. Podstawowe odkrycie Cantora dotyczyło pojęcia mocy (czyli „liczby elementów”) zbiorów nieskończonych. Przyjął on, że dwa zbiory A i B są równoliczne (mają tę samą moc), jeżeli można przyporządkować wszystkie elementy A wszystkim elementom B w sposób wzajemnie jednoznaczny. Mogłoby się wydawać, że po prostu wszystkie zbiory nieskończone są równoliczne.
Teoria mnogości to matematyczna schizofrenia autorstwa Cantora (rok 1878).
Szkoda, ze nie było wystarczającej liczby matematyków podobnych do Leopolda Kroneckera.
Cóż, w XIX wieku Szatan (teoria mnogości) robiący z mózgu człowieka gówno był górą
Na szczęście w XXI wieku na ziemię zstąpił Kubuś ze swoją algebrą Kubusia.
Algebra Kubusia to osikowy kołek wbity w samo serce Szatana.
Definicja matematycznego schizofrenika:
Matematyczny schizofrenik to człowiek opisujący otaczającą nas matematyczną rzeczywistość w sposób totalnie niezgodny ze stanem faktycznym
Na chwilę obecną do matematycznych schizofreników zaliczamy: fanatyków KRZ, fanatyków teorii mnogości, logik modalnych, logik relewantnych, logik intuicjonistycznych etc
Cechą charakterystyczną schizofrenii jest fakt, że dla chorego jego schizofreniczne rojenia są 100% rzeczywistością, o czym każdy psychiatra wie.
Doskonale to widać w filmie „Piękny umysł”, pokazującym na żywo urojony świat schizofrenika niedostępny dla ludzi zdrowych (urojone biuro szyfrów, postaci które widzi wyłącznie chory z którymi obcuje i rozmawia na żywo …)
Nieskończone zbiory równoliczne i nierównoliczne to nieprawdopodobny banał na poziomie ucznia I klasy LO, oczywiście pod warunkiem zrozumienia i akceptacji algebry Kubusia.
Zacznijmy od sformułowania oczywistego prawa Pantery.
A1: Prawo Pantery:
A1.
Jeśli dwa zbiory A i B są tożsame A=B to na 100% => są równoliczne A~B
A1: (A=B) => (A~B) =1
To samo w zapisach formalnych:
p=(A=B)
q=(A~B)
p=>q =1
Przykład:
A=[Kubuś, Tygrysek]
B=[Tygrysek, Kubuś]
Przy spełnionej tożsamości zbiorów (A=B) zbiory te na 100% => są równoliczne (A~B)
Zbadajmy w skład jakiego operatora implikacyjnego wchodzi prawo Pantery.
Kod: |
T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
## ## ## ## ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5: p+~q
Prawa Kubusia: | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q | A1: p=>q = A4:~q=>~p
B1: p~>q = B2:~p=>~q | B2:~p=>~q = B3: q=>p
Prawa Tygryska: | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p | B1: p~>q = B4:~q~>~p
Gdzie:
p=>q = ~p+q - definicja warunku wystarczającego =>
p~>q = p+~q - definicja warunku koniecznego ~>
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
I Prawo Sowy
Dla udowodnienia prawdziwości wszystkich zdań serii Ax potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Ax
Dla udowodnienia fałszywości wszystkich zdań serii Ax potrzeba i wystarcza udowodnić fałszywość dowolnego zdania serii Ax
##
II Prawo Sowy
Dla udowodnienia prawdziwości wszystkich zdań serii Bx potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Bx
Dla udowodnienia fałszywości wszystkich zdań serii Bx potrzeba i wystarcza udowodnić fałszywość dowolnego zdania serii Bx
Gdzie:
## - różne na mocy definicji
Jak widzimy prawo Pantery to warunek wystarczający => A1.
A1: Prawo Pantery
A1.
Jeśli dwa zbiory A i B są tożsame (A=B) to na 100% => są równoliczne (A~B)
A1: (A=B) => (A~B) =1
To samo w zapisach formalnych:
p=(A=B)
q=(A~B)
p=>q =1
Przykład:
A=[Kubuś, Tygrysek]
B=[Tygrysek, Kubuś]
Doskonale widać, że tożsamość zbiorów (A=B) wymusza => równoliczność zbiorów (A~B)
Innymi słowy:
Przy spełnionej tożsamości zbiorów (A=B) zbiory te na 100% => są równoliczne (A~B)
Innymi słowy:
Każda tożsamość zbiorów (A=B) to z automatu równoliczność zbiorów (A~B)
Innymi słowy:
Jeśli zbiory A i B są tożsame (A=B) to mamy gwarancję matematyczną => iż są równoliczne (A~B)
Matematycznie zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>
Z prawdziwości warunku wystarczającego => A1 wynika fałszywość kontrprzykładu A1’.
A1’.
Jeśli dwa zbiory A i B są tożsame (A=B) to mogą ~~> nie być równoliczne ~(A~B)
(A=B)~~>~(A~B) = (A=B)*~(A~B) =0
To samo w zapisie formalnym:
p~~>~q = p*~q =0
Na mocy definicji kontrprzykładu tego faktu nie musimy udowadniać, ale możemy udowodnić.
Dowód wprost:
Nie istnieje (=0) możliwość, by zbiory były tożsame (A=B) i jednocześnie nie były równoliczne ~(A~B)
Dla rozstrzygnięcia w skład jakiego operatora implikacyjnego wchodzi prawo Pantery musimy udowodnić prawdziwość/fałszywość dowolnego zdania z linii Bx.
Wybieramy twierdzenie odwrotne B3 (w stosunku do A1) bo warunek wystarczający => bez przeczeń zawsze dowodzi się najprościej.
B3.
Jeśli dwa zbiory A i B są równoliczne (A~B) to na 100% => są to zbiory tożsame (A=B)
B3: (A~B)=>(A=B) =0
To samo w zapisie formalnym:
B3: q=>p =0
Warunek wystarczający => jest tu fałszem bo istnieje kontrprzykład.
Kontrprzykład B3’ dla warunku wystarczającego => B3 to:
B3’.
Jeśli dwa zbiory A i B są równoliczne (A~B) to mogą ~~> nie być tożsame ~(A=B)
(A~B)~~>~(A=B) = (A~B)*~(A=B) =1
Dla udowodnienia prawdziwości kontrprzykładu B3’ wystarczy pokazać jeden taki przypadek:
A=[Kubuś, Tygrysek]
B=[Tygrysek, sraczka]
Zbiory A i B są równoliczna (A~B), ale nie są to zbiory tożsame ~(A=B)
cnd
Dla B3 skorzystajmy z prawa Tygryska:
B3: q=>p = B1: p~>q
Fałszywość warunku wystarczającego => w punkcie:
B3: q=>p =0
Wymusza fałszywość warunku koniecznego ~> w punkcie:
B1: p~>q =0
Stąd mamy dowód, że badany układ to implikacja prosta p|=>q
Definicja implikacji prostej p|=>q:
Implikacja prosta p|=>q w logice dodatniej (bo q) to spełniony wyłącznie warunek wystarczający => między tymi samymi punktami i w tym samym kierunku.
A1: p=>q =1 - p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla zajścia q
Stąd:
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) = 1*~(0)=1*1=1
Czytamy:
Implikacja prosta p|=>q w logice dodatniej (bo q) jest spełniona (=1) wtedy i tylko wtedy gdy zajście p jest wystarczające => dla zajścia q (A1: p=>q=1), ale nie jest konieczne ~> dla zajścia q (B1: p~>q=0)
W tym momencie mamy zdeterminowaną implikacji prostej p|=>q z uwzględnieniem kontrprzykładów obowiązujących wyłącznie w warunkach wystarczających,
Kod: |
IP:
Implikacja prosta p|=>q:
A1: p=>q =1 - p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla zajścia q
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) = 1*~(0)=1*1=1
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji prostej p|=>q
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q =1 = 2:~p~>~q =1 [=] 3: q~>p =1 = 4:~q=>~p =1
A': 1: p~~>~q=0 [=] 4:~q~~>p =0
## ## ## ##
B: 1: p~>q =0 = 2:~p=>~q =0 [=] 3: q=>p =0 = 4:~q~>~p =0
B': 2:~p~~>q =1 [=] 3: q~~>~p=1
Prawa Kubusia: | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q | A1: p=>q = A4:~q=>~p
B1: p~>q = B2:~p=>~q | B2:~p=>~q = B3: q=>p
Prawa Tygryska: | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p | B1: p~>q = B4:~q~>~p
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
I Prawo Sowy dla implikacji prostej p|=>q
Dla udowodnienia prawdziwości wszystkich zdań serii Ax potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Ax
##
II Prawo Sowy dla implikacji prostej p|=>q
Dla udowodnienia fałszywości wszystkich zdań serii Bx potrzeba i wystarcza udowodnić fałszywość dowolnego zdania serii Bx
Gdzie:
## - różne na mocy definicji
Pamiętając o naszym punkcie odniesienia:
p=(A=B)
q=(A~B)
Z tabeli TP odczytujemy
A1: Prawo Pantery:
A1.
Jeśli dwa zbiory A i B są tożsame (A=B) to na 100% => są równoliczne (A~B)
A1: (A=B) => (A~B) =1
To samo w zapisach formalnych:
p=(A=B)
q=(A~B)
p=>q =1
Przykład:
A=[Kubuś, Tygrysek]
B=[Tygrysek, Kubuś]
Doskonale widać, że tożsamość zbiorów (A=B) wymusza => równoliczność zbiorów (A~B)
Innymi słowy:
Przy spełnionej tożsamości zbiorów (A=B) zbiory te na 100% => są równoliczne (A~B)
Innymi słowy:
Każda tożsamość zbiorów (A=B) to z automatu równoliczność zbiorów (A~B)
Innymi słowy:
Jeśli zbiory A i B są tożsame (A=B) to mamy gwarancję matematyczną => iż są równoliczne (A~B)
Matematycznie zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>
##
B1.
Jeśli dwa zbiory A i B są tożsama (A=B) to na 100% ~> są równoliczne (A~B)
(A=B)~>(A~B) =0
To samo w zapisie formalnym:
p~>q =0
Czytamy:
Tożsamość zbiorów (A=B) nie jest (=0) konieczna ~> dla równoliczności tych zbiorów (A~B)
Przykład:
A=[Kubuś, Tygrysek]
B=[Tygrysek, sraczka]
Nie ma tożsamości zbiorów:
(A=B)=0
ale relacja równoliczności A~B jest spełniona:
(A~B) =1
Gdzie:
## - zdania różne na mocy definicji
Po raz n-ty mamy tu prawo Kameleona.
Prawo Kameleona:
Dwa zdania brzmiące identycznie z dokładnością do każdej literki i każdego przecinka nie muszą być tożsame
Dowód to zdania A1 i B1 wyżej.
Różność zdań A1 i B1 rozpoznajemy wyłącznie po znaczkach warunku wystarczającego => i koniecznego ~> wbudowanych w treść zdań.
Z tabeli TP widzimy, że mamy tu do czynienia tylko i wyłącznie z dwoma warunkami wystarczającymi => (gwarancjami matematycznymi =>):
A1: Prawo Pantery:
A1: p=>q =1
Gdzie:
p=(A=B)
q=(A~B)
oraz:
A4: Prawo Lamparta:
A4: ~q=>~p =1
Gdzie:
q=(A~B)
p=(A=B)
Oczywiście, na mocy prawa Sowy zachodzi tożsamość pojęć:
Prawo Pantery: A1: p=>q [=] Prawo Lamparta: A4: ~q=>~p
Rozszyfrujmy te dwie gwarancje matematyczne =>:
A1: Prawo Pantery
A1: p=>q =1
Gdzie:
p=(A=B)
q=(A~B)
Stąd mamy:
A1.
Jeśli dwa zbiory A i B są tożsame (A=B) to na 100% => są równoliczne (A~B)
A1: (A=B) => (A~B) =1
To samo w zapisach formalnych:
p=(A=B)
q=(A~B)
p=>q =1
Przykład:
A=[Kubuś, Tygrysek]
B=[Tygrysek, Kubuś]
Doskonale widać, że tożsamość zbiorów (A=B) wymusza => równoliczność zbiorów (A~B)
Innymi słowy:
Przy spełnionej tożsamości zbiorów (A=B) zbiory te na 100% => są równoliczne (A~B)
Innymi słowy:
Każda tożsamość zbiorów (A=B) to z automatu równoliczność zbiorów (A~B)
Innymi słowy:
Jeśli zbiory A i B są tożsame (A=B) to mamy gwarancję matematyczną => iż są równoliczne (A~B)
Matematycznie zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>
A4: Prawo Lamparta
A4: ~q=>~p =1
Gdzie:
q=(A~B)
p=(A=B)
Stąd mamy:
A4.
Jeśli dwa zbiory A i B nie są równoliczne ~(A~B) to na 100% => nie są tożsame ~(A=B)
A4: ~(A~B) => ~(A=B) =1
To samo w zapisach formalnych:
~q=>~p =1
Oczywista oczywistość.
Przykładowe zbiory tożsame i równoliczne to:
A=[Kubuś, Tygrysek]
B=[Tygrysek, Kubuś]
Jeśli do A albo B dodamy dodatkowy element to zbiory te będą nierównoliczna ~(A~B) i na 100% => nie będą to zbiory tożsame ~(A=B).
Przykład:
Dodajmy do zbioru A Prosiaczka
A=[Kubuś, Tygrysek, Prosiaczek]
B=[Tygrysek, Kubuś]
Spełnienie prawdziwości gwarancji matematycznej => A4 widać tu jak na dłoni
35.8 Teoria zbiorów równolicznych i nierównolicznych w algebrze Kubusia
Prawo Pytona:
Dowolny ziemski matematyk który nie akceptuje poniższej tabeli T0 mówiącej o matematycznych związkach warunku wystarczającego => i koniecznego ~> jest matematycznym schizofrenikiem
Kod: |
T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
## ## ## ## ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5: p+~q
Prawa Kubusia: | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q | A1: p=>q = A4:~q=>~p
B1: p~>q = B2:~p=>~q | B2:~p=>~q = B3: q=>p
Prawa Tygryska: | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p | B1: p~>q = B4:~q~>~p
Gdzie:
p=>q = ~p+q - definicja warunku wystarczającego =>
p~>q = p+~q - definicja warunku koniecznego ~>
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Definicja matematycznego schizofrenika:
Matematyczny schizofrenik to człowiek opisujący otaczającą nas matematyczną rzeczywistość w sposób totalnie niezgodny ze stanem faktycznym
Na chwilę obecną do matematycznych schizofreników zaliczamy: fanatyków KRZ, fanatyków teorii mnogości, logik modalnych, logik relewantnych, logik intuicjonistycznych etc
Cechą charakterystyczną schizofrenii jest fakt, że dla chorego jego schizofreniczne rojenia są 100% rzeczywistością, o czym każdy psychiatra wie.
Doskonale to widać w filmie „Piękny umysł”, pokazującym na żywo urojony świat schizofrenika niedostępny dla ludzi zdrowych (urojone biuro szyfrów, postaci które widzi wyłącznie chory z którymi obcuje i rozmawia na żywo …)
Definicja zbiorów równolicznych:
Dwa zbiory p i q są równoliczne p~q wtedy i tylko wtedy gdy mają identyczną liczbę elementów
p~q =1 – wtedy i tylko wtedy gdy zbiory p i q mają (=1) identyczną liczbę elementów
Inaczej:
p~q =0 – wtedy i tylko wtedy gdy zbiory p i q nie mają (=0) identycznej liczby elementów
Gdzie:
„~” – znaczek równoliczności zbiorów
35.8.1 Przykład zbiorów nierównolicznych w algebrze Kubusia
Rozważmy przykład zbiorów nierównolicznych.
Wypowiedzmy następujące twierdzenie proste A1: p=>q:
A1.
Jeśli dowolna liczba jest podzielna przez 8 to na 100% jest podzielna przez 2
P8=>P2 =1
To samo w zapisach formalnych:
p=>q =1
Podzielność dowolnej liczby przez 8 jest warunkiem wystarczającym => dla jej podzielności przez 2 wtedy i tylko wtedy gdy zbiór P8=[8,16,24..] jest podzbiorem => zbioru P2=[2,4,6,8..], co każdy matematyk udowodni.
##
Zauważmy, że twierdzenie odwrotne B3: q=>p jest tu fałszem.
B3.
Jeśli dowolna liczba jest podzielna przez 2 to na 100% => jest podzielna przez 8
P2=>P8 =0
To samo w zapisach formalnych:
q=>p =0
Bo zbiór P2=[2,4,6,8..] nie jest (=0) podzbiorem zbioru P8=[8,16 24..]
Kontrprzykład: 2
Liczba 2 należy do zbioru P2=[2,4,6,8..] i nie należy do zbioru P8=[8,16,24.]
cnd
Gdzie:
## - twierdzenia matematyczne różne na mocy definicji ##
Definicja formalna równoważności p<=>q:
Dwa zbiory p i q są równoważne p<=>q wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q i równocześnie zbiór q jest podzbiorem => zbioru p
A1B3: p<=>q = (A1: p=>q)*(B3: q=>p) =1*1 =1
Dla naszego przykładu mamy:
A1: P8=>P2 =1 - twierdzenie proste A1: p=>q jest prawdziwe
B3: P2=>P8 =0 - twierdzenie odwrotne B3: q=>p jest fałszywe
Stąd mamy dowód fałszywości równoważności P8<=>P2:
A1B3: P8<=>P2 = (A1: P8=>P2)*(B3: P2=>P8) =1*0 =0
cnd
Prawo Irbisa:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy znajdują się w relacji równoważności p<=>q
A1B3: p=q <=> (A1: p=>q)*(B3: q=>p) = A1B3: p<=>q
Na mocy prawa Irbisa dla naszego przykładu zapisujemy:
Zbiór P8=[8,16,24..] ## Zbiór P2=[2,4,6,8..]
Gdzie:
## - zbiory różne na mocy definicji
Innymi słowy:
Zbiór P8=8,16,24..] nie jest (=0) tożsamy [=] ze zbiorem P2=[2,4,6,8..]
P8 [=] P2 =0 - fałsz
Sensacyjny wniosek na mocy prawa Irbisa:
Zbiory P8=[8,16,24..] i P2=[2,4,6,8..] nie są tożsame [=], co jest dowodem czysto matematycznym, iż zbiory te nie są (=0) zbiorami równolicznymi.
cnd
35.8.2 Przykład zbiorów równolicznych w algebrze Kubusia
Prawo Irbisa:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy znajdują się w relacji równoważności p<=>q
A1B3: p=q <=> (A1: p=>q)*(B3: q=>p) = A1B3: p<=>q
Każdy zbiór tożsamy p=q jest równoliczny p~q na mocy prawa Irbisa
Odwrotnie nie zachodzi
Przykładowe zbiory tożsame [=] z użyciem zbiorów P8 i P2 o których było wyżej to:
A1B3:
Dowolna liczba jest podzielna przez 8 i przez 2 wtedy i tylko wtedy gdy jest podzielna przez 16
A1B3: P8*P2<=>P16 = (A1: P8*P2=>P16)*(B3: P16=>P8*P2) = 1*1=1
Podstawmy:
p=P8*P2 = [8,16,24..]*[2,4,6,8..]
q=P16 = [16,32,48..]
Stąd mamy to samo, czyli definicję równoważności p<=>q w zapisach formalnych:
A1B3: p<=>q = (A1: p=>q)*(B3: q=>p) =1*1 =1
Badanie prawdziwości/fałszywości zdań składowych:
A1.
Jeśli dowolna liczba jest podzielna przez 8 i przez 2 to na 100% => jest podzielna przez 16
A1: P8*P2=>P16 =1 – prawdziwe twierdzenie proste (A1: p=>q)
Dowód tej błahostki pozostawiam matematykom.
##
B3.
Jeśli dowolna liczba jest podzielna przez 16 to na 100% => jest podzielna przez 8 i przez 2
B3: P16=>P8*P2 =1 – prawdziwe twierdzenie odwrotne (B3: q=>p)
Dowód tej błahostki również pozostawiam matematykom
Gdzie:
## - twierdzenia różne na mocy definicji
Prawo Irbisa:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy znajdują się w relacji równoważności p<=>q
A1B3: p=q <=> (A1: p=>q)*(B3: q=>p) = A1B3: p<=>q
Na mocy prawa Irbisa dla naszego przykładu zapisujemy:
(P8*P2 [=] P16) =1 – zbiory P8*P2 i P16 są (=1) tożsame [=]
Gdzie:
[=] – zbiory tożsame
Sensacyjny wniosek na mocy prawa Irbisa:
Zbiór P8*P2 jest (=1) tożsamy [=] ze zbiorem P16, co jest dowodem czysto matematycznym, iż zbiory te są (=1) równoliczne.
(P8*P2 ~ P16) =1 – zbiory P8*P2 i P16 są (=1) równoliczne
Gdzie:
„~” – znaczek równoliczności zbiorów
Uzasadnienie:
Na mocy praw Irbisa każda tożsamość zbiorów (p=q) wymusza równoliczność zbiorów (p~q)
Odwrotnie nie zachodzi.
|
|
Powrót do góry |
|
 |
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 37352
Przeczytał: 18 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Pon 20:38, 17 Mar 2025 Temat postu: |
|
|
Algebra Kubusia – matematyczna wojna wszech czasów
36.0 Problem milenijny, Królestwo obłąkańców
Spis treści
36.0 Problem milenijny 1
36.1 Parodia logiki matematycznej (zwanej KRZ) wykładanej studentom AGH 3
36.2 Wykład na temat równoważności p<=>q w 100-milowym lesie 6
36.2.1 Kolejne małe-wielkie odkrycie 8
36.3 Zadania milenijne 9
36.3.1 Zadania milenijne dotyczące równoważności p<=>q 11
36.3.2 Zadania milenijne dotyczące implikacji prostej p|=>q 13
36.3.3 Zadania milenijne dotyczące implikacji odwrotnej p|~>q 14
36.3.4 Zadania milenijne dotyczące chaosu p|~~>q 15
36.3.5 Zadania milenijne złożone 17
36.4 Królestwo obłąkańców 18
36.4.1 Uczniowie króla Obłąkańca II 19
36.4.2 Świadomość życia w szpitalu psychiatrycznym dla obłąkańców 20
36.4.3 Absolutna głupota potwornie śmierdzącego gówna zwanego KRZ 21
36.0 Problem milenijny
Fundamentalne definicje logiki matematycznej znane każdemu matematykowi.
Definicja warunku wystarczającego =>:
p=>q =1 <=> zajście p jest wystarczające => dla zajścia q
inaczej:
p=>q =0
##
Definicja warunku koniecznego ~>:
p~>q =1 <=> zajście p jest (=1) konieczne ~> dla zajścia q
Inaczej:
p~>q =0
Gdzie:
## - definicje różne na mocy definicji
Problem milenijny:
Udowodnij, że w poniższym zapisie jest poprawne tylko i wyłącznie wynikowe zero
2: p<=>q = (p=>q)*(q~>p) =1*1=0
Skąd wziął się zapis:
2: p<=>q = (p=>q)*(q~>p)
Zawdzięczamy go Irbisolowi wynajdującemu podobne „kwiatki” w Internecie od 15 lat, czyli z wykładu logiki matematycznej dla studentów AGH.
Sam fakt „skąd się wziął ten zapis” jest tu bez znaczenia, bo sensowne jest zadanie milenijne na poziomie I klasy LO.
Zadanie milenijne:
Udowodnij prawdziwość/fałszywość poniższego zapisu poprzez analizę indywidualnej prawdziwości/fałszywości składników iloczynu logicznego p=>q oraz q~>p.
p<=>q = (p=>q)*(q~>p) =?
Rozwiązanie:
Prawo Tygryska:
Jeśli w jedną stronę zachodzi warunek wystarczający => to w drugą stronę zachodzi warunek konieczny ~> (i odwrotnie)
p=>q = q~>p
Prawo Tygryska jest powszechnie znane w naszym Wszechświecie.
I.
Jeśli p=>q=0 to na mocy prawa Tygryska q~>p =0
Stąd mamy:
2: p<=>q = (p=>q)*(q~>p) = 0*0 =0 - równoważność fałszywa (=0)
cnd
II.
Jeśli p=>q =1 to na mocy prawa Tygryska mamy q~>p=1
Stąd mamy:
2: p<=>q = (p=>q)*(q~>p)=1*1=0 - równoważność fałszywa (=0)
bo poprawna matematycznie definicja równoważności p<=>q jest fundamentalnie inna.
Powszechna definicja równoważności p<=>q:
Równoważność to jednocześnie zachodzący warunek wystarczający => i konieczny ~> między tymi samymi punktami i w tym samym kierunku
3: p<=>q = (p=>q)*(p~>q) =1*1=1 - równoważność prawdziwa (=1)
Oczywiście matematycznie zachodzi:
3: p~>q ## 2: q~>p
Gdzie:
## - różne na mocy definicji
Stąd mamy rozwiązanie problemu milenijnego:
2: p<=>q = (p=>q)*(q~>p)=1*1=0 - równoważność fałszywa (=0)
To co wyżej to święta prawda czysto matematyczna, która roznosi w puch totalnie całe gówno zwane KRZ (o zapis 1*1=0 tu chodzi).
Innymi słowy:
Ziemski matematyk który wstawi tu w wyniku jeden, zamiast poprawnego zera, skacze na główkę do pustego basenu.
O ten skok na główkę do pustego basenu tu chodzi - to jest istota problemu milenijnego.
Komentarz:
2: p<=>q = (p=>q)*(q~>p)=1*1=0 - równoważność fałszywa (=0)
Zauważmy, że to jest wewnętrzna sprzeczność na gruncie KRZ (1*1=0) który nie widzi logiki dodatniej (bo Y) i ujemnej (bo ~Y)
W algebrze Kubusia która widzi logikę dodatnią (bo Y) i ujemną (bo ~Y) jest tu wszystko w porządku.
Dowód:
2: p<=>q =0
Czytamy:
Fałszem jest (=0) że spełniona jest definicja równoważności p<=>q
Prawo Prosiaczka:
(Y=0) = (~Y=1)
Prawo Prosiaczka możemy zastosować wybiórczo w stosunku do dowolnej zmiennej binarnej
Negujemy dwustronnie 1.
2’: ~(p<=>q) =1
Czytamy:
Prawdą jest (=1), że nie jest spełniona (~) definicja równoważności p<=>q
Stąd zapis tożsamy do 2 to:
2”: ~(p<=>q) = (p=>q)*(q~>p)=1*1=1
Jak widzimy w algebrze Kubusia, w bramkach logicznych, jest tu wszystko w porządku (1*1=1)
cnd
36.1 Parodia logiki matematycznej (zwanej KRZ) wykładanej studentom AGH
Co powinien zrobić wykładowca parodii logiki matematycznej (zwanej KRZ) na AGH?
1.
Przeczytać ze zrozumieniem jedyną poprawną logikę matematyczną obowiązującą w naszym Wszechświecie, algebrę Kubusia. Nie ma możliwości by jej nie zrozumiał bo naturalnymi ekspertami tej algebry są wszystkie 5-cio latki i humaniści.
2.
Przeprosić studentów I roku AGH za pranie ich mózgów potwornie śmierdzącym gównem zwanym Klasycznym Rachunkiem Zdań
3.
Rozpocząć wykłady algebry Kubusia.
Najważniejszymi rozdziałami w algebrze Kubusia są punkty 1.0 i 2.0 (pierwsze 149 stron z AK)
Myślę, że sprzedanie tej wiedzy studentom I roku AGH to raptem kilka-kilkanaście wykładów, które na 100% zrozumieją.
Weźmy na tapetę parodię logiki matematycznej (zwanej KRZ) dla studentów AGH:
[link widoczny dla zalogowanych]
@AGH
Warunek konieczny (WK) i wystarczający (WW):
1: p=>q - p jest warunkiem wystarczającym dla q, a q jest warunkiem koniecznym dla p.
2: p<=>q - p jest warunkiem koniecznym i wystarczającym dla q.
Dlaczego wykład logiki matematycznej dla studentów wyższych uczelnie technicznych (AGH) nazwałem parodią logiki matematycznej?
Odpowiedź:
Za czasów moich studiów na elektronice (politechnika W-wa) w latach 1975-1980 nikt nawet jednym słowem nie wspomniał o potwornie śmierdzącym gównie zwanym KRZ, dlatego pojęcie KRZ poznałem przypadkowo na forum ŚFINIA dopiero w roku 2006.
W laboratorium techniki cyfrowej na I roku, budowaliśmy skomplikowane układy sterowań w absolutnie naturalnej logice matematycznej człowieka.
Przełożenie takiego projektowania na teorię bramek logicznych jest banalne:
Myśląc naturalną logiką matematyczną człowieka (teraz wiem, że to algebra Kubusia) wszelkie spójniki „lub”(+) zastępujemy bramką OR, zaś wszelkie spójniki „i”(*) zastępujemy bramką AND i po bólu.
Proste sterowania w bramkach logicznych projektują nawet 5-cio latki
Dowód:
http://www.sfinia.fora.pl/forum-kubusia,12/algebra-kubusia-matematyka-jezyka-potocznego,21937.html#680043
1.9 Sterowanie windą autorstwa 5-cio latków
Wracając do wykładu „logiki matematycznej” dla studentów AGH:
Przyjmijmy symbole:
=> - warunek wystarczający
~> - warunek konieczny
Przeanalizujmy cytat linia po linii:
Ad.1
@AGH
Warunek konieczny (WK) i wystarczający (WW):
1: p=>q - p jest warunkiem wystarczającym dla q, a q jest warunkiem koniecznym dla p.
Na bazie powyższego zdania zapisujemy:
p=>q =1 - zajście p jest wystarczające => dla zajścia q
Z komentarza w zdaniu 1 wynika że q jest konieczne ~> dla p
q~>p =1 - zajście q jest konieczne ~> dla zajścia p
Innymi słowy:
Zdanie 1 to prawo Tygryska, powszechnie znane w naszym Wszechświecie:
(p=>q)*(q~>p)
Ad.2
@AGH
Warunek konieczny (WK) i wystarczający (WW):
2: p<=>q - p jest warunkiem koniecznym i wystarczającym dla q.
Na bazie powyższego zdania w powiązaniu z Ad.1 definicja równoważności p<=>q brzmi:
2: p<=>q = (p=>q)*(q~>p)=1*1=1
Dokładnie jak wyżej myśli wykładowca gówno-logiki matematycznej zwanej KRZ.
Dowód:
Gdyby fanatyk KRZ wykładający logikę matematyczną na AGH znał elementarz logiki matematycznej, to nigdy by nie kojarzył definicji równoważności p<=>q z prawem Tygryska.
Prawa Tygryska:
Mówiące o związku warunku wystarczającego => i koniecznego ~> z zamianą p i q
p=>q = q~>p
p~>q = q=>p
Prawa Tygryska, choć powszechnie znane i bezdyskusyjnie prawdziwe zarówno w algebrze Kubusia jak i w logice matematycznej ziemskich matematyków mają zero wspólnego z definicją równoważności p<=>q.
Stąd dochodzimy do problemu milenijnego, roznoszącego w puch logikę matematyczną ziemskich matematyków zwaną KRZ.
Problem milenijny:
Udowodnij poprawność matematyczną poniższego zapisu:
2: p<=>q = (p=>q)*(q~>p) =1*1=0
To co wyżej to święta prawda czysto matematyczna, która roznosi w puch totalnie całe gówno zwane KRZ (o zapis 1*1=0 tu chodzi).
Dowód:
Prawo Tygryska, dla założonej prawdziwości warunku wystarczającego p=>q=1 wymusza prawdziwość warunku koniecznego q~>p =1
Stąd mamy sekwencję (1*1) w powyższym zapisie.
W wyniku mamy twarde zero, bo poprawna definicja równoważności jest fundamentalnie inna, zatem zapis 2 to fałszywa (=0) definicja równoważności.
cnd
Innymi słowy:
Każdy ziemski matematyk który wstawi tu w wyniku jeden, zamiast poprawnego zera, skacze na główkę do pustego basenu.
O ten skok na główkę do pustego basenu tu chodzi - to jest istota problemu milenijnego.
Powszechna definicja równoważności p<=>q
Równoważność to jednocześnie zachodzący warunek wystarczający => i konieczny ~> między tymi samymi punktami i w tym samym kierunku
3: p<=>q = (p=>q)*(p~>q) =1*1=1
Lewą stronę czytamy:
Zajdzie p wtedy i tylko wtedy gdy zajdzie q
Prawą stronę czytamy:
Zajście p jest (=1) warunkiem koniecznym ~> i wystarczającym => dla zajścia q
Innymi słowy:
Do tego by zaszło q potrzeba ~> i wystarcza =>, by zaszło p
Dowód iż definicja 1 jest powszechnie znana każdemu człowiekowi (nie tylko matematykom).
Klikamy na googlach:
„koniecznym i wystarczającym”
Wyników: dziesiątki tysięcy
„potrzeba i wystarcza”
Wyników: dziesiątki tysięcy
cnd
Oczywiście matematycznie zachodzi:
3: p~>q = p+~q ## 2: q~>p = q+~p
Gdzie:
## - różne na mocy definicji
Komentarz:
2: p<=>q = (p=>q)*(q~>p)=1*1=0 - równoważność fałszywa (=0)
Zauważmy, że to jest wewnętrzna sprzeczność na gruncie KRZ (1*1=0) która nie widzi logiki dodatniej (bo Y) i ujemnej (bo ~Y)
W algebrze Kubusia która widzi logikę dodatnią (bo Y) i ujemną (bo ~Y) jest tu wszystko w porządku.
Dowód:
2: p<=>q =0
Czytamy:
Fałszem jest (=0) że spełniona jest definicja równoważności p<=>q
Prawo Prosiaczka:
(Y=0) = (~Y=1)
Prawo Prosiaczka możemy zastosować wybiórczo w stosunku do dowolnej zmiennej binarnej
Negujemy dwustronnie 1.
2’: ~(p<=>q) =1
Czytamy:
Prawdą jest (=1), że nie jest spełniona (~) definicja równoważności p<=>q
Stąd zapis tożsamy do 2 to:
2”: ~(p<=>q) = (p=>q)*(q~>p)=1*1=1
Jak widzimy w algebrze Kubusia, w bramkach logicznych, jest tu wszystko w porządku (1*1=1)
cnd
36.2 Wykład na temat równoważności p<=>q w 100-milowym lesie
Wykładowca: Prosiaczek
Kod: |
T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
## ## ## ## ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5: p+~q
Prawa Kubusia: | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q | A1: p=>q = A4:~q=>~p
B1: p~>q = B2:~p=>~q | B2:~p=>~q = B3: q=>p
Prawa Tygryska: | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p | B1: p~>q = B4:~q~>~p
Gdzie:
p=>q = ~p+q - definicja warunku wystarczającego =>
p~>q = p+~q - definicja warunku koniecznego ~>
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Prawo Słonia dla zbiorów (pkt 2.3):
W algebrze Kubusia w zbiorach zachodzi tożsamość [=] pojęć:
A1: p=>q - warunek wystarczający => [=] A1: p=>q - relacja podzbioru => [=] A1: p=>q - matematyczne twierdzenie proste
A1: p=>q = ~p+q
##
B1: p~>q - warunek konieczny ~> [=] B1: p~>q - relacja nadzbioru ~> [=] B3: q=>p - matematyczne twierdzenie odwrotne (w odniesieniu do A1)
Prawo Tygryska:
B1: p~>q = B3: q=>p = p+~q
Gdzie:
[=], „=”, <=> - tożsame znaczki tożsamości logicznej
<=> - wtedy o tylko wtedy
## - różne na mocy definicji
p i q musi być wszędzie tymi samymi p i q, inaczej błąd podstawienia
Definicja tożsamości logicznej [=]:
Prawdziwość dowolnego członu z tożsamości logicznej [=] wymusza prawdziwość pozostałych członów.
Fałszywość dowolnego członu z tożsamości logicznej [=] wymusza fałszywość pozostałych członów.
Z definicji tożsamości logicznej [=] wynika, że:
a)
Udowodnienie prawdziwości dowolnego członu powyższej tożsamości logicznej gwarantuje prawdziwość dwóch pozostałych członów
b)
Udowodnienie fałszywości dowolnego członu powyższej tożsamości logicznej gwarantuje fałszywość dwóch pozostałych członów
Na mocy prawa Słonia i jego powyższej interpretacji, możemy dowodzić prawdziwości/fałszywości dowolnych zdań warunkowych "Jeśli p to q" mówiących o zbiorach metodą ”nie wprost"
Definicja podzbioru =>:
Zbiór p jest (=1) podzbiorem => zbioru q wtedy i tylko wtedy gdy wszystkie jego elementy należą do zbioru q
Definicja nadzbioru ~>
Zbiór p jest (=1) nadzbiorem ~> zbioru q wtedy i tylko wtedy gdy zawiera co najmniej wszystkie elementy zbioru q
W logice matematycznej zachodzi tożsamość pojęć:
Podzbiór => = relacja podzbioru =>
Nadzbiór ~> = relacja nadzbioru ~>
W logice matematycznej rozstrzygamy o zachodzącej lub nie zachodzącej relacji podzbioru => czy też nadzbioru ~>.
Przyjmijmy definicje.
Definicja warunku wystarczającego => w zbiorach:
A1: p=>q =1
Zajście p jest (=1) wystarczające => dla zajścia q wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q
inaczej:
p=>q =0 <=> zajście p nie jest (=0) wystarczające => dla zajścia q
##
Definicja warunku koniecznego ~> w zbiorach:
B1: p~>q =1
Zajście p jest (=1) konieczne ~> dla zajścia q wtedy i tylko wtedy gdy zbiór p jest nadzbiorem ~> zbioru q
Inaczej:
p~>q =0 <=> zajście p nie jest (=0) konieczne ~>dla zajścia q
Gdzie:
## - definicje różne na mocy definicji
1.
Powszechna definicja równoważności p<=>q
Równoważność to jednocześnie zachodzący warunek wystarczający => i konieczny ~> między tymi samymi punktami i w tym samym kierunku
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) =1*1=1
Lewą stronę czytamy:
Zajdzie p wtedy i tylko wtedy gdy zajdzie q
Prawą stronę czytamy:
Zajście p jest (=1) warunkiem koniecznym ~> i wystarczającym => dla zajścia q
Innymi słowy:
Do tego by zaszło q potrzeba ~> i wystarcza =>, by zaszło p
Dowód iż definicja 1 jest powszechnie znana każdemu człowiekowi (nie tylko matematykom).
Klikamy na goglach:
„koniecznym i wystarczającym”
Wyników: dziesiątki tysięcy
„potrzeba i wystarcza”
Wyników: dziesiątki tysięcy
cnd
Powszechnie znane:
Prawo Tygryska:
Wiążące warunek wystarczający => z warunkiem koniecznym ~> z zamianą miejscami p i q
B1: p~>q = B3: q=>p
Podstawiając do 1 i mamy znaną każdemu matematykowi tożsamą definicję równoważności używaną w matematyce!
2.
Matematyczna definicja równoważności p<=>q:
Równoważność p<=>q to warunek wystarczający => zachodzący w dwie strony
A1B3: p<=>q = (A1: p=>q)*(B3: q=>p) =1*1 =1
Gdzie:
A1: p=>q - matematyczne twierdzenie proste
B3: q=>p - matematyczne twierdzenie odwrotne
36.2.1 Kolejne małe-wielkie odkrycie
W dniu 2024-07-15 dokonane
Na czym polega?
Dotychczas byłem zdania, że tożsamość to tożsamość i wszystkie możliwe tożsame mutacje równoważności p<=>q których jest 16 sztuk są tak samo ważne, bo są tożsame.
… i tu małe zaskoczenie:
Klikamy na googlach:
„Warunek wystarczający zachodzący w dwie strony”
Wyników: 3 - oczywiście wszystkie przekierowania do algebry Kubusia
„warunek wystarczający w dwie strony”
Wyników: 3 - oczywiście wszystkie przekierowania do algebry Kubusia
Wniosek:
Wynika z tego że mózg ludzkości jest mądrzejszy niż ustawa (matematyka) przewiduje.
Dla mózgu ludzkości poprawną definicją jest definicja 1 z dziesiątkami tysięcy jej potwierdzeń w Wikipedii. Nie oznacza to oczywiście, że tożsame odpryski definicji 1 są złe.
Wszystkie możliwe mutacje równoważności p<=>q których jest 16 sztuk są matematycznie dobre, ale rzadko lub prawie wcale nie używane w praktyce.
Uwaga:
Matematycznie potrzeba i wystarcza udowodnić dowolną z 16 mutacji równoważności p<=>q co na mocy prawa Sowy wymusza automatyczny dowód pozostałych 15 mutacji równoważności p<=>q.
36.3 Zadania milenijne
Pokłosiem odkrycia problemu milenijnego, jest zestaw prostych zadań milenijnych rozstrzygających, czy uczeń zna logikę matematyczną, algebrę Kubusia.
Przypomnijmy sobie cztery podstawowe spójniki implikacyjne omówione w punkcie 2.10.
Kod: |
T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
## ## ## ## ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5: p+~q
Gdzie:
p=>q = ~p+q - definicja warunku wystarczającego =>
p~>q = p+~q - definicja warunku koniecznego ~>
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
I Prawo Sowy
Dla udowodnienia prawdziwości wszystkich zdań serii Ax potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Ax
Dla udowodnienia fałszywości wszystkich zdań serii Ax potrzeba i wystarcza udowodnić fałszywość dowolnego zdania serii Ax
##
II Prawo Sowy
Dla udowodnienia prawdziwości wszystkich zdań serii Bx potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Bx
Dla udowodnienia fałszywości wszystkich zdań serii Bx potrzeba i wystarcza udowodnić fałszywość dowolnego zdania serii Bx
Gdzie:
## - różne na mocy definicji
Definicja podstawowego spójnika implikacyjnego:
Podstawowy spójnik implikacyjny to spójnik definiowany kolumną A1B1 w matematycznych związkach warunku wystarczającego => i koniecznego ~> dający odpowiedź na pytanie o p:
Co się stanie jeśli zajdzie p?
A1: p=>q =? - czy zajście p jest wystarczające => dla zajścia q? TAK=1/NIE=0
B1: p~>q =? - czy zajście p jest konieczne ~> dla zajścia q? TAK=1/NIE=0
A1B1: p?q = (~)(A1: p=>q)*(~)(B1: p~>q)
Gdzie:
? - symbol spójnika implikacyjnego
(~) - symbol negacji który może wystąpić, ale nie musi, w zależności od wartości logicznej A1 i B1
Z definicji spójnika implikacyjnego wynika, że możliwe są cztery podstawowe spójniki implikacyjne:
1.
Implikacja prosta p|=>q:
Implikacja prosta p|=>q to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
p|=>q = (A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
Kod: |
IP
Tabela prawdy implikacji prostej p|=>q
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q=1 = 2:~p~>~q=1 [=] 3: q~>p=1 = 4:~q=>~p=1
## ## ## ##
B: 1: p~>q=0 = 2:~p=>~q=0 [=] 3: q=>p=0 = 4:~q~>~p=0
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
##
2.
Implikacja odwrotna p|~>q:
Implikacja odwrotna p|~>q to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
p|~>q = ~(A1: p=>q)*(B1: p~>q)=1*1=1
Kod: |
IO
Tabela prawdy implikacji odwrotnej p|~>q
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q=0 = 2:~p~>~q=0 [=] 3: q~>p=0 = 4:~q=>~p=0
## ## ## ##
B: 1: p~>q=1 = 2:~p=>~q=1 [=] 3: q=>p=1 = 4:~q~>~p=1
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
##
3.
Równoważność p<=>q:
Równoważność p<=>q to zachodzenie zarówno warunku wystarczającego => jak i koniecznego ~> miedzy tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
p<=>q = (A1: p=>q)*(B1: p~>q)=1*1=1
Stąd mamy tabelę prawdy równoważności p<=>q:
Kod: |
TR
Tabela prawdy równoważności p<=>q
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q=1 = 2:~p~>~q=1 [=] 3: q~>p=1 = 4:~q=>~p=1
## ## ## ##
B: 1: p~>q=1 = 2:~p=>~q=1 [=] 3: q=>p=1 = 4:~q~>~p=1
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
##
4.
Chaos p|~~>q:
Chaos p|~~>q to nie zachodzenie ani warunku wystarczającego =>, ani też koniecznego ~> miedzy tymi samymi punktami i w tym samym kierunku
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
p|~~>q = ~(A1: p=>q)*~(B1: p~>q)=~(0)*~(0)=1*1=1
Kod: |
CH
Tabela prawdy chaosu p|~~>q
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q=0 = 2:~p~>~q=0 [=] 3: q~>p=0 = 4:~q=>~p=0
## ## ## ##
B: 1: p~>q=0 = 2:~p=>~q=0 [=] 3: q=>p=0 = 4:~q~>~p=0
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Gdzie:
## - różne na mocy definicji
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
Ogólna treść wszelkich zadań milenijnych:
Rozstrzygnij o prawdziwości/fałszywości zapisów metodą badania prawdziwości/fałszywości składników iloczynu logicznego wykorzystując podane wyżej definicje podstawowych spójników implikacyjnych
36.3.1 Zadania milenijne dotyczące równoważności p<=>q
Na pierwszy ogień weźmy zadania milenijne związane z równoważnością p<=>q
3
Równoważność p<=>q:
Równoważność p<=>q to zachodzenie zarówno warunku wystarczającego => jak i koniecznego ~> miedzy tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
p<=>q = (A1: p=>q)*(B1: p~>q)=1*1=1
Stąd mamy tabelę prawdy równoważności p<=>q:
Kod: |
TR - Tabela prawdy równoważności
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q=1 = 2:~p~>~q=1 [=] 3: q~>p=1 = 4:~q=>~p=1
## ## ## ##
B: 1: p~>q=1 = 2:~p=>~q=1 [=] 3: q=>p=1 = 4:~q~>~p=1
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Przykładowe zadania milenijne dotyczące równoważności p<=>q:
1.
p<=>q = (p=>q)*(q~>p) =1*1=0
Równoważność fałszywa (=0) bo w iloczynie logicznym brak dowolnego składnika z linii Bx
Dowód:
A1A3: p<=>q = (A1: p=>q)*(A3: q~>p)=1*1=0
Komentarz:
Zauważmy, że to jest wewnętrzna sprzeczność na gruncie KRZ (1*1=0) która nie widzi logiki dodatniej (bo Y) i ujemnej (bo ~Y)
W algebrze Kubusia która widzi logikę dodatnią (bo Y) i ujemną (bo ~Y) jest tu wszystko w porządku.
Dowód:
1: p<=>q =0
Czytamy:
Fałszem jest (=0) że spełniona jest definicja równoważności p<=>q
Prawo Prosiaczka:
(Y=0) = (~Y=1)
Prawo Prosiaczka możemy zastosować wybiórczo w stosunku do dowolnej zmiennej binarnej
Negujemy dwustronnie 1.
2: ~(p<=>q) =1
Czytamy:
Prawdą jest (=1), że nie jest spełniona (~) definicja równoważności p<=>q
Stąd zapis tożsamy do A1A3 to:
A1A3”: ~(p<=>q) = (A1: p=>q)*(A3: q~>p)=1*1=1
Jak widzimy w algebrze Kubusia, w bramkach logicznych, jest tu wszystko w porządku (1*1=1)
cnd
2.
p<=>q = (p~>q)*(q=>p) =1*1=0
Równoważność fałszywa (=0) bo w iloczynie logicznym brak dowolnego składnika z linii Ax
Dowód:
B1B3: p<=>q = (B1: p~>q)*(B3: q=>p) = 1*1 =0
Komentarz jak wyżej.
3.
p<=>q = (p=>q)*(p~>q) =1*1=1
Równoważność prawdziwa (=1) bo w iloczynie logicznym jest składnik z linii Ax oraz z linii Bx.
Dowód:
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) =1*1=1
To jest powszechnie znana podstawowa definicja równoważności p<=>q opisana kolumną A1B1.
4.
p<=>q = (p=>q)*(~p=>~q) =1*1 =1
Równoważność prawdziwa (=1) bo w iloczynie logicznym jest składnik z linii Ax oraz z linii Bx.
Dowód:
A1B2: p<=>q = (A1: p=>q)*(B2: ~p=>~q) =1*1=1
To jest operatorowa definicja równoważności p|<=>q (pkt. 2.14.1), czyli analiza symboliczna równoważności p<=>q (pkt. 2.14) przez wszystkie możliwe przeczenia p i q.
Na bazie tej definicji przyjmując za punkt odniesienia zdanie A1B1: p<=>q wyprowadzamy definicję zero-jedynkową równoważności A1B1: p<=>q = p*q+~p*~q (pkt. 10.5.3)
5.
p<=>q = (p=>q)*(q=>p) =1*1 =1
Równoważność prawdziwa (=1) bo w iloczynie logicznym jest składnik z linii Ax oraz z linii Bx.
Dowód:
A1B3: p<=>q = (A1: p=>q)*(B3: q=>p) =1*1=1
To jest podstawowa definicja równoważności używana w matematyce:
Równoważność p<=>q to warunek wystarczający => zachodzący w dwie strony
Gdzie:
p=>q - matematyczne twierdzenie proste
q=>p - matematyczne twierdzenie odwrotne
36.3.2 Zadania milenijne dotyczące implikacji prostej p|=>q
1.
Implikacja prosta p|=>q:
Implikacja prosta p|=>q to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
p|=>q = (A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
Kod: |
IP
Tabela prawdy implikacji prostej p|=>q
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q=1 = 2:~p~>~q=1 [=] 3: q~>p=1 = 4:~q=>~p=1
## ## ## ##
B: 1: p~>q=0 = 2:~p=>~q=0 [=] 3: q=>p=0 = 4:~q~>~p=0
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Przykładowe zadania milenijne dotyczące implikacji prostej p|=>q:
1.
p|=>q = (p=>q)*(q~>p) =1*1=0
Implikacja prosta p|=>q fałszywa (=0) bo w iloczynie logicznym brak dowolnego składnika z linii Bx
Dowód:
A1A3: p|=>q = (A1: p=>q)*(A3: q~>p)=1*1=0
Komentarz:
Zauważmy, że to jest wewnętrzna sprzeczność na gruncie KRZ (1*1=0) która nie widzi logiki dodatniej (bo Y) i ujemnej (bo ~Y)
W algebrze Kubusia która widzi logikę dodatnią (bo Y) i ujemną (bo ~Y) jest tu wszystko w porządku.
Dowód:
1: p|=>q =0
Czytamy:
Fałszem jest (=0) że spełniona jest definicja implikacji prostej p|=>q
Prawo Prosiaczka:
(Y=0) = (~Y=1)
Prawo Prosiaczka możemy zastosować wybiórczo w stosunku do dowolnej zmiennej binarnej
Negujemy dwustronnie 1.
2: ~(p|=>q) =1
Czytamy:
Prawdą jest (=1), że nie jest spełniona (~) definicja implikacji prostej p|=>q
Stąd zapis tożsamy do A1A3 to:
A1A3”: ~(p|=>q) = (A1: p=>q)*(A3: q~>p)=1*1=1
Jak widzimy w algebrze Kubusia, w bramkach logicznych, jest tu wszystko w porządku (1*1=1)
cnd
2.
p|=>q = (p=>q)*~(p~>q)=1*~(0)=1*1=1
Implikacja prosta p|=>q prawdziwa (=1) bo w iloczynie logicznym jest składnik z linii Ax oraz z linii Bx.
Dowód:
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) = 1*~(0)=1*1=1
To jest definicyjna implikacja prosta p|=>q zdefiniowana kolumną A1B1
3.
p|=>q = (p=>q)*~(p=>~q) =1*~(0)=1*1=1
Implikacja prosta p|=>q prawdziwa (=1) bo w iloczynie logicznym jest składnik z linii Ax oraz z linii Bx.
Dowód:
A1B2: p|=>q = (A1: p=>q)*~(B2: ~p=>~q) =1*~(0)=1*1=1
To jest operatorowa definicja implikacji prostej p||=>q (pkt. 2.12.1), czyli analiza symboliczna implikacji prostej p|=>q (pkt. 2.12) przez wszystkie możliwe przeczenia p i q.
Na bazie tej definicji przyjmując za punkt odniesienia zdanie A1: p=>q wyprowadzamy definicję zero-jedynkową warunku wystarczającego p=>q (pkt. 10.1.3)
36.3.3 Zadania milenijne dotyczące implikacji odwrotnej p|~>q
2.
Implikacja odwrotna p|~>q:
Implikacja odwrotna p|~>q to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
p|~>q = ~(A1: p=>q)*(B1: p~>q)=1*1=1
Kod: |
IO
Tabela prawdy implikacji odwrotnej p|~>q
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q=0 = 2:~p~>~q=0 [=] 3: q~>p=0 = 4:~q=>~p=0
## ## ## ##
B: 1: p~>q=1 = 2:~p=>~q=1 [=] 3: q=>p=1 = 4:~q~>~p=1
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Przykładowe zadania milenijne dotyczące implikacji odwrotnej p|~>q:
1.
p|~>q = (p~>q)*(q=>p) = 1*1 =0
Implikacja odwrotna p|~>q fałszywa (=0) bo w iloczynie logicznym brak dowolnego składnika z linii Ax
Dowód:
B1B3: p|~>q = (B1: p~>q)*(B3: q=>p) =1*1=0
Komentarz:
Zauważmy, że to jest wewnętrzna sprzeczność na gruncie KRZ (1*1=0) która nie widzi logiki dodatniej (bo Y) i ujemnej (bo ~Y)
W algebrze Kubusia która widzi logikę dodatnią (bo Y) i ujemną (bo ~Y) jest tu wszystko w porządku.
Dowód:
1: p|~>q =0
Czytamy:
Fałszem jest (=0) że spełniona jest definicja implikacji odwrotnej p|~>q
Prawo Prosiaczka:
(Y=0) = (~Y=1)
Prawo Prosiaczka możemy zastosować wybiórczo w stosunku do dowolnej zmiennej binarnej
Negujemy dwustronnie 1.
2: ~(p|~>q) =1
Czytamy:
Prawdą jest (=1), że nie jest spełniona (~) definicja implikacji odwrotnej p|~>q
Stąd zapis tożsamy do B1B3 to:
B1B3”: ~(p|~>q) = (B1: p~>q)*(B3: q=>p) =1*1=1
Jak widzimy w algebrze Kubusia, w bramkach logicznych, jest tu wszystko w porządku (1*1=1)
cnd
2.
p|~>q = ~(p=>q)*(p~>q)=~(0)*1=1*1=1
Implikacja odwrotna p|~>q prawdziwa (=1) bo w iloczynie logicznym jest składnik z linii Ax i z linii Bx.
Dowód:
A1B1: p|~>q = ~(A1: p=>q)*(B1: p~>q)=~(0)*1=1*1=1
To jest definicyjna implikacja odwrotna p|~>q zdefiniowana kolumną A1B1
3.
p|~>q = ~(p=>q)*(~p=>~q) =~(0)*1=1*1=1
Implikacja odwrotna p|~>q prawdziwa (=1) bo w iloczynie logicznym jest składnik z linii Ax i z linii Bx.
Dowód:
A1B2: p|~>q = ~(A1: p=>q)*(B2: ~p=>~q) =~(0)*1 =1*1=1
To jest operatorowa definicja implikacji odwrotnej p||~>q (pkt. 2.13.1), czyli analiza symboliczna implikacji odwrotnej p|~>q (pkt. 2.13) przez wszystkie możliwe przeczenia p i q.
Na bazie tej definicji przyjmując za punkt odniesienia zdanie B1: p~>q wyprowadzamy definicję zero-jedynkową warunku koniecznego p~>q (pkt. 10.3.3)
36.3.4 Zadania milenijne dotyczące chaosu p|~~>q
4.
Chaos p|~~>q:
Chaos p|~~>q to nie zachodzenie ani warunku wystarczającego =>, ani też koniecznego ~> miedzy tymi samymi punktami i w tym samym kierunku
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
p|~~>q = ~(A1: p=>q)*~(B1: p~>q)=~(0)*~(0)=1*1=1
Kod: |
CH
Tabela prawdy chaosu p|~~>q
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q=0 = 2:~p~>~q=0 [=] 3: q~>p=0 = 4:~q=>~p=0
## ## ## ##
B: 1: p~>q=0 = 2:~p=>~q=0 [=] 3: q=>p=0 = 4:~q~>~p=0
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Przykładowe zadania milenijne dotyczące chaosu p|~~>q
1.
p|~~>q = ~(p=>q)*~(q~>p) = ~(0)*~(0) =1*1=0
Definicja chaosu p|~~>q nie jest spełniona (=0) bo w iloczynie logicznym brak dowolnego składnika z linii Bx
Dowód:
A1A3: p|~~>q = ~(A1: p=>q)*~(A3: q~>p)=1*1=0
Komentarz:
Zauważmy, że to jest wewnętrzna sprzeczność na gruncie KRZ (1*1=0) która nie widzi logiki dodatniej (bo Y) i ujemnej (bo ~Y)
W algebrze Kubusia która widzi logikę dodatnią (bo Y) i ujemną (bo ~Y) jest tu wszystko w porządku.
Dowód:
1: p|~~>q =0
Czytamy:
Fałszem jest (=0) że spełniona jest definicja chaosu p|~~>q
Prawo Prosiaczka:
(Y=0) = (~Y=1)
Prawo Prosiaczka możemy zastosować wybiórczo w stosunku do dowolnej zmiennej binarnej
Negujemy dwustronnie 1.
2: ~(p|~~>q) =1
Czytamy:
Prawdą jest (=1), że nie jest spełniona (~) definicja chaosu p|~~>q
Stąd zapis tożsamy do A1A3 to:
A1A3”: ~(p|~~>q) = ~(A1: p=>q)*~(A3: q~>p)=1*1=1
Jak widzimy w algebrze Kubusia, w bramkach logicznych, jest tu wszystko w porządku (1*1=1)
cnd
2.
p|~~>q = ~(p~>q)*~(q=>p) = ~(0)*~(0)=1*1=0
Definicja chaosu p|~~>q nie jest spełniona (=0) bo w iloczynie logicznym brak dowolnego składnika z linii Ax
Dowód:
B1B3: p|~~>q =~(B1: p~>q)*~(B3:q=>p) = ~(0)*~(0)=1*1=0
Komentarz jak wyżej.
3.
p|~~>q = ~(p=>q)*~(p~>q) = ~(0)*~(0) = 1*1=1
Definicja chaosu p|~~>q jest spełniona (=1) bo w iloczynie logicznym jest składnik z linii Ax i z linii Bx.
Dowód:
A1B1: p|~~>q = ~(A1: p=>q)*~(B1: p~>q) = ~(0)*~(0) = 1*1=1
To jest podstawowa definicja chaosu p|~~>q opisana kolumną A1B1.
4.
p|~~>q = ~(p=>q)*~(~p=>~q) =~(0)*~(0) = 1*1 =1
Definicja chaosu p|~~>q jest spełniona (=1) bo w iloczynie logicznym jest składnik z linii Ax i z linii Bx.
Dowód:
A1B2: p|~~>q = ~(A1: p=>q)*~(B2: ~p=>~q) = ~(0)*~(0) = 1*1=1
to jest operatorowa definicja chaosu p||~~>q (pkt. 2.15.1), czyli analiza symboliczna chaosu p|~~>q (pkt. 2.15) przez wszystkie możliwe przeczenia p i q.
Na bazie tej definicji wyprowadzamy zero-jedynkową zdarzenia możliwego p~~>q (pkt. 10.10.3)
36.3.5 Zadania milenijne złożone
Zadania milenijne złożone to zadania związane z niewłaściwym użyciem spójnika implikacyjnego.
Zobaczmy to na przykładzie równoważności p<=>q:
3
Równoważność p<=>q:
Równoważność p<=>q to zachodzenie zarówno warunku wystarczającego => jak i koniecznego ~> miedzy tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
p<=>q = (A1: p=>q)*(B1: p~>q)=1*1=1
Stąd mamy tabelę prawdy równoważności p<=>q:
Kod: |
TR - Tabela prawdy równoważności
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q=1 = 2:~p~>~q=1 [=] 3: q~>p=1 = 4:~q=>~p=1
## ## ## ##
B: 1: p~>q=1 = 2:~p=>~q=1 [=] 3: q=>p=1 = 4:~q~>~p=1
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Przykładowe zadanie milenijne dotyczące równoważności p<=>q:
1.
p<=>q = (p=>q)*(p~>q) =1*1=1
Równoważność prawdziwa (=1) bo w iloczynie logicznym jest składnik z linii Ax oraz z linii Bx.
Dowód:
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) =1*1=1
To jest powszechnie znana podstawowa definicja równoważności p<=>q opisana kolumną A1B1.
Zauważmy, że jeśli zostawimy prawą stronę tożsamości wymieniając spójnik równoważności na jakikolwiek inny to w każdym przypadku dostaniemy fałsz (=0)
Wszystkie możliwe przypadki to:
1.
A1B1: p|=>q = (A1: p=>q)*(B1: p~>q) =?
W spójniku implikacji prostej p|=>q mamy:
A1: p=>q =1
B1: p~>q =0
Stąd mamy:
A1B1: p|=>q = (A1: p=>q)*(B1: p~>q) =1*0=0 - ta implikacja prosta p|=>q jest fałszywa
2.
A1B1: p|~>q = (A1: p=>q)*(B1: p~>q) =?
W spójniku implikacji odwrotnej p|~>q mamy:
A1: p=>q =0
B1: p~>q =1
Stąd mamy:
A1B1: p|~>q = (A1: p=>q)*(B1: p~>q) = 0*1=0 - ta implikacja odwrotna p|~>q jest fałszywa
3.
A1B1: p|~~>q = (A1: p=>q)*(B1: p~>q) =?
W spójniku chaosu p|~~>q mamy:
A1: p=>q =0
B1: p~>q =0
Stąd mamy:
A1B1: p|~~>q = (A1: p=>q)*(B1: p~>q) = 0*0=0 - ten spójnik chaosu p|~~>q jest fałszem
Dokładnie to samo można zrobić dla innego niż równoważność <=> spójnika implikacyjnego (|=>, |~>, |~~>), co pozostawiam jako pracę domową dla czytelnika.
Rozwiązanie tożsame w zapisach formalnych (ogólnych) dla wszystkich spójników znajdziemy w dowodzie prawa Puchacza (pkt. 2.10.1)
Prawo Puchacza:
Dowolne zdanie warunkowe „Jeśli p to q” może wchodzić w skład jednego i tylko jednego spójnika implikacyjnego.
36.4 Królestwo obłąkańców
Ziemska logika matematyczna - pozbawiony sensu bełkot obłąkańców
Opracowano na bazie dyskusji na forum śfinia i ateiście.pl
http://www.sfinia.fora.pl/filozofia,4/algebra-kubusia-rewolucja-w-logice-matematycznej,16435-7175.html#801573
@Rafal3006
Algebra Kubusia = jedyna poprawna logika matematyczna
@szaryobywatel - ziemski matematyk
Algebra Kubusia nie jest logiką matematyczną. Algebra Kubusia w ogóle nie jest teorią. Algebra Kubusia to pozbawiony sensu bełkot obłąkanego człowieka.
Fundamenty królestwa obłąkańców
Logika matematyczna ziemian stoi na definicjach wymyślonych przez dwóch obłąkańców:
Obłąkaniec I - król obłąkańców żyjący w matematycznym średniowieczu?
Obłąkaniec II - Bertrand Russell, król obłąkańców (1872-1970)
[link widoczny dla zalogowanych]
Obłąkaniec I wyssał z palca małego poniższą definicję implikacji:
Definicja ziemskiej implikacji podana przez Macjana w mojej dyskusji na śfinii:
http://www.sfinia.fora.pl/forum-kubusia,12/elementarz-algebry-boole-a-irbisol-macjan-str-10,2605-240.html#55877
@Macjan
Zrozum - treść zdania, czyli to, o czym ono mówi, nie może w żaden sposób wpływać na jego zapis symboliczny. Zdanie "... i ..." jest koniunkcją niezależnie od tego, co wstawimy w wykropkowane miejsca. Tak samo zdanie "Jeśli ... to ..." jest implikacją.
Obłąkaniec II wyssał z palca dużego fundamenty Klasycznego Rachunku Zdań
[link widoczny dla zalogowanych]
Z książki Johna D. Barrowa Kres możliwości?
Cytat (s. 226)
Bertrand Russell:
Warunkiem niesprzeczności systemu w logice klasycznej jest ścisły podział zdań na prawdziwe bądź fałszywe, bowiem ze zdania fałszywego można wywnioskować dowolne inne, fałszywe bądź prawdziwe.
Kiedy Bertrand Russell wypowiedział ten warunek na jednym z publicznych wykładów jakiś sceptyczny złośliwiec poprosił go, by udowodnił, że jeśli 2 razy 2 jest 5, to osoba pytająca jest Papieżem. Russell odparł: "Jeśli 2 razy 2 jest 5, to 4 jest 5; odejmujemy stronami 3 i wówczas 1=2. A że pan i Papież to 2, więc pan i Papież jesteście jednym."!
W ramach zadania domowego zadałem sobie wykazanie, że jeśli Napoleon Bonaparte był kobietą, to ja jestem jego ciotką. Na razie zgłaszam "bz".
36.4.1 Uczniowie króla Obłąkańca II
Wierni uczniowie króla Obłąkańca II upowszechniają jego dzieło, by trafiło pod strzechy.
[link widoczny dla zalogowanych]
@Salon24
Matryca implikacji od wieków budzi kontrowersje, niekiedy sięgające samej istoty logiki.
Matryca implikacji:
Kod: |
p q p=>q
1 1 1
0 1 1
1 0 0
0 0 1
|
Z dowolnego zdania fałszywego wynika dowolne zdanie prawdziwe (drugi wiersz matrycy) i dowolne zdanie fałszywe (czwarty wiersz matrycy). Twierdzenie to znane jest od wielu wieków w postaci łacińskiej formuły Falsum sequitur quodlibet (z fałszu wynika cokolwiek, czyli wszystko).
Mimo to, gdy Bertrand Russell opublikował swój system logiki oparty na omawianej matrycy implikacji materialnej, niektórzy filozofowie przyjęli ten system za rodzaj herezji logicznej.
Ktoś próbował wykpić B. Russella, ogłaszając list otwarty, w którym zaproponował mu do rozwiązania następujące zadanie:
Ponieważ według pana można udowodnić wszystko na podstawie jednego zdania fałszywego, proszę na podstawie fałszywego zdania "5 = 4" udowodnić, że jest pan papieżem.
Na pierwszy rzut oka zadanie to może się wydać niewykonalne. Intuicyjnie bowiem nie potrafimy dojrzeć żadnego związku między zdaniem "5 = 4" a zdaniem: "B. Russell jest papieżem".
Intuicji nie można jednak wierzyć ślepo, jest bowiem zawodna. Russell podjął zadanie i rozwiązał je w wyniku następującego rozumowania:
Opierając się na regule głoszącej, że od obu stron równości wolno odjąć tę samą liczbę, odejmuję od obu stron równości: "5 = 4", liczbę 3. Wyprowadzam w ten sposób ze zdania "5 = 4" zdanie "2 = 1".
Dowód, że jestem papieżem, jest już teraz zupełnie prosty: papież i ja to dwie osoby, ale 2 = 1 (w tym przypadku papież i B. Russell, czyli dwie osoby są jedną osobą), więc jestem papieżem.
Rozumowanie to jest zupełnie poprawne, zatem początkowa intuicja zgodnie z którą zadanie dane Russellowi wydawało się nierozwiązalne, okazała się zawodna.
Zdanie "B. Russell jest papieżem" rzeczywiście wynika ze zdania "5 = 4". Jest to przykład wynikania fałszu z fałszu (odpowiednik czwartego wiersza matrycy).
Równie łatwo możemy wykazać, że z tego samego zdania fałszywego wynika zdanie prawdziwe, np. zdanie "B. Russell jest wykształcony". Wystarczy do już wyprowadzonego zdania "B. Russell jest papieżem" dodać oczywiście prawdziwe zdanie "Każdy papież jest wykształcony" i mamy:
B. Russell jest papieżem
Każdy papież jest wykształcony
zatem B. Russell jest wykształcony
Można również łatwo wskazać inne, prawdziwe konsekwencje zdania "5 = 4", np. "B. Russell jest mężczyzną", "B. Russell zna język łaciński", B. Russell jest osobistością znaną w całym świecie" itp.
Teoretyczna możliwość wyprowadzenia dowolnego zdania z danego zdania fałszywego nie zawsze jest równoznaczna z praktyczna łatwością wykonania takiego zadania. Ale takie zadanie jest do rozwiązania.
36.4.2 Świadomość życia w szpitalu psychiatrycznym dla obłąkańców
Świadomość życia w szpitalu psychiatrycznym dla obłąkańców ma wielu ziemskich matematyków przy zdrowych zmysłach.
[link widoczny dla zalogowanych]
Logika, sens i wątpliwości
Marek Kordos
Delta, marzec 2013
Już przed laty, gdy brałem udział w tworzeniu jednej z kolejnych reform nauczania matematyki, miałem poważne wątpliwości, czy umieszczanie w programach nauczania matematyki (podstawach programowych, wykazach efektów nauczania, podręcznikach itp.) działu logika jest zgodne ze zdrowym rozsądkiem.
Oczywiście, wiem, że wielu głosi, iż nauczanie matematyki (jak niegdyś łaciny, której się zresztą uczyłem) to nauka logicznego myślenia. Ale, gdy czytałem otwierające wówczas podręczniki do liceum rozdziały poświęcone logice, trudno mi było powstrzymać się od wrażenia, że nie ma w nich żadnego sensu. Nie wymienię, rzecz jasna, żadnego konkretnego podręcznika (po co mi rozprawy sądowe – przecież podręcznik to wielkie pieniądze), ale wrażenie przy lekturze każdego z nich było podobne.
Od razu chciałbym powiedzieć, że nie chodzi o opinię, iż logika nigdy matematyce nie pomogła, bo unikanie błędów nie jest aktem twórczym (patrz Nicolas Bourbaki, Elementy historii matematyki). Chodzi o coś więcej. Ale nie śmiałem nalegać na usunięcie tego działu ze szkolnego nauczania, bo jeśli wszyscy widzą w nim sens, to może on tam – wbrew pozorom – istnieje.
Dopiero na sympozjum z okazji dziewięćdziesięciolecia Profesora Andrzeja Grzegorczyka dowiedziałem się, że moje wątpliwości nie są odosobnione i nawet w Instytucie Filozofii i Socjologii PAN prowadzone są prace nad taką modyfikacją logiki, by jej wady usunąć.
Co to za wady? Proszę spojrzeć na zdanie:
Dwa plus dwa równa się cztery wtedy i tylko wtedy, gdy Płock leży nad Wisłą.
Oczywiście, zdanie to jest prawdziwe, ale czy ma sens? Przecież między pewnym faktem arytmetycznym a innym faktem geograficznym żadnego związku nie ma. Dlaczego więc chcemy twierdzić (ba, uczyć tego), że te dwa zdania są równoważne?
Albo zdanie:
Jeśli dwa plus dwa jest równe pięć, to zachodzi twierdzenie Pitagorasa.
Z punktu widzenia logiki to zdanie jest prawdziwe. Tu już po obu stronach implikacji są zdania dotyczące faktów matematycznych. Dlaczego jednak chcemy zmusić młodego człowieka, by widział w tym sens?
Wyjaśnienie jest proste: w pierwszym przypadku chodzi o to, że równoważność zdań ma miejsce, gdy wartość logiczna obu zdań jest taka sama; w drugim – o to, że implikacja jest poprawna, gdy ma fałszywy poprzednik.
A więc logika sprowadza nasz świat do zbioru dwuelementowego, nic przeto dziwnego, że rzeczy absolutnie niepołączone żadnym znaczeniowym (semantycznym) związkiem muszą się znajdować w przynajmniej jednej z dwóch komórek, do jakiejś muszą trafić.
Powstają dwa pytania. Po pierwsze, czemu logika została tak skonstruowana, że – abstrahując od sensu – okalecza pojęciowy świat? Po drugie, czy faktycznie należy trzymać ją jak najdalej od młodzieży, bo tylko ją demoralizuje, każąc za wiedzę uważać takie androny, jak przytoczone powyżej?
Odpowiedź na pierwsze pytanie jest dość prosta. Nowoczesna logika formalna została stworzona (jak wielu uważa) przez Gottloba Fregego (1848-1925) tak, by obsługiwała matematykę, a tę rozumiano wówczas jako badanie prawdziwości zdań języków formalnych.
Odpowiedzi na drugie pytanie de facto nie ma. Tłumaczymy się z używania takich abstrahujących od znaczeń spójników logicznych tym, że alternatywa, koniunkcja i negacja są sensowne; że chcemy, aby młody człowiek wiedział, że zaprzeczeniem zdania, iż istnieje coś mające własność A, jest to, że wszystkie cosie własności A nie mają; że implikacja ze zdania prawdziwego daje jednak tylko zdania prawdziwe itd., itp.
Ale naprawdę chodzi o to, że – jak z małżeństwem i demokracją – lepszej propozycji dotąd nie wynaleziono. A szkoda.
@Rafal3006
Ostatnie zdanie jest już nieaktualne bo:
Algebra Kubusia, logika matematyczna pod którą podlega cały nasz Wszechświat martwy i żywy (w tym język potoczny człowieka) została rozszyfrowana.
36.4.3 Absolutna głupota potwornie śmierdzącego gówna zwanego KRZ
Definicja ziemskiej implikacji podana przez Macjana w mojej dyskusji na śfinii:
http://www.sfinia.fora.pl/forum-kubusia,12/elementarz-algebry-boole-a-irbisol-macjan-str-10,2605-240.html#55877
@Macjan
Zrozum - treść zdania, czyli to, o czym ono mówi, nie może w żaden sposób wpływać na jego zapis symboliczny. Zdanie "... i ..." jest koniunkcją niezależnie od tego, co wstawimy w wykropkowane miejsca. Tak samo zdanie "Jeśli ... to ..." jest implikacją.
Teraz uwaga!
Jak się udowadnia prawdziwość implikacji na gruncie KRZ doskonale wyjaśnił mój wróg Nr.1 na ateiście.pl, potwornie zarozumiały matematyk Windziarz po matematyce na Uniwersytecie Toruńskim.
Oto rzeczywisty algorytm nieskończonego iterowania na gruncie KRZ poszukujący pustynnej fatamorgany na gruncie logiki matematycznej.
Proszę zapiąć pasy, bo będą kosmiczne brednie gówna zwanego KRZ zademonstrowane na ateiście.pl w dniu 28.02.2010 przez potwornie zarozumiałego fanatyka KRZ, Windziarza.
Stan algebry Kubusia na dzień 2024-06-29
A1.
Jeśli dowolna liczba jest podzielna rzez 8 to jest podzielna przez 2
P8=>P2 =1
Znaczenie zdania A1 w algebrze Kubusia:
Podzielność dowolnej liczby przez 8 (P8) jest warunkiem wystarczającym => dla jej podzielności przez 2 (P2) wtedy i tylko wtedy gdy zbiór P8=[8,16,24…] jest podzbiorem => zbioru P2=[2,4,6,8..] - co każdy matematyki udowodni kiwnięciem małego palca w bucie.
[link widoczny dla zalogowanych]
28.02.2010, 23:08
@Windziarz
Cały czas problem z Kubusizmem polega na tym, że Rafał nie odróżnia zdań od funkcji zdaniowych.
Rafał pisze:
P8=>P2
Logicy piszą:
∀x.(P8(x)=>P2(x))
Rafał sprawdza:
(tutaj niepowtarzalny słowomyślotok zakończony słowami "implikacja prosta prawdziwa")
Logicy sprawdzają:
Dla x=0 P8(x)=1, P2(x)=1, (P8(x)=>P2(x))=(1=>1)=1
Dla x=1 P8(x)=0, P2(x)=0, (P8(x)=>P2(x))=(0=>0)=1
Dla x=2 P8(x)=0, P2(x)=1, (P8(x)=>P2(x))=(0=>1)=1
Dla x=7 P8(x)=0, P2(x)=0, (P8(x)=>P2(x))=(0=>0)=1
Dla x=8 P8(x)=1, P2(x)=1, (P8(x)=>P2(x))=(1=>1)=1
(a tak naprawdę stosują indukcję, by nie zapętlić się w nieskończoność)
Wyszły same jedynki - twierdzenie udowodnione.
Zauważmy, że w Windziarzowym iterowaniu po nieskończonym zbiorze liczb naturalnych LN=[1,2,3,4,5,6,7,8,9..] ziemska implikacja będzie fałszem wtedy i tylko wtedy gdy tabela zero-jedynkowa implikacji P8=>P2 zwróci wartość logiczną P8=>P2 =1 na zapytanie:
P8(x)=1 i P2(x)=0
W każdym innymi przypadku tabela zero-jedynkowa implikacji prostej P8=>P2 zwróci nam wartość logiczną 1
To takie polowanie na pustynną fatamorganę czas zacząć.
Problem w tym, ze dla udowodnienia prawdziwości zdania A1: P8=>P2 w tym systemie musimy przeiterować kompletny, nieskończony zbiór liczb naturalnych - jak to zrobić tego nie wie nikt, nawet sam Pan Bóg.
Dowód:
Kod: |
Definicja zero-jedynkowa ziemskiej implikacji P8=>P2
P8 P2 P8=>P2
A: 1 1 =1
B: 1 0 =0
C: 0 0 =1
D: 0 1 =1
|
Doskonale widać nieskończoną głupotę iterowania ziemskiej implikacji w gównie zwanym Klasycznym Rachunkiem Zdań.
Na czym ta głupota polega?
1.
Nie ma tu mowy by dojść do definicji warunku wystarczającego => jak to jest w algebrze Kubusia co zademonstrowałem wyżej w zdaniu A1.
Innymi słowy:
Nie ma tu absolutnie żadnych podstaw matematycznych by dla rozstrzygnięcia prawdziwości warunku wystarczającego A1:
A1.
Jeśli dowolna liczba jest podzielna rzez 8 to jest podzielna przez 2
P8=>P2 =1
badać czy zbiór P8=[8,16,24..] jest podzbiorem => zbioru P2=[2,4,6,8..]
2.
Co więcej, przy gówno-iterowaniu KRZ nie ma mowy o jakimkolwiek warunku wystarczającym =>.
Innymi słowy:
Gówno zwane KRZ z definicji nie widzi jakiegokolwiek warunku wystarczającego => bo przy iterowaniu jak u Windziarza wykluczone jest stwierdzenie tego faktu.
3.
Gówno zwane iterowaniem KRZ to błąd czysto matematyczny przy iterowaniu twierdzenia Pitagorasa.
Na czym ten błąd polega?
Twierdzenie Pitagorasa:
Jeśli trójkąt jest Prostokątny (TP) to zachodzi w nim suma kwadratów (SK)
TP=>SK =1
Windziarzowe iterowanie po nieskończonym zbiorze wszystkich możliwych trójkątów generuje nam tu zero-jedynkową tabelę prawdy
Kod: |
TP SK TP=>SK
A: 1 1 =1 - istnieje (=1) trójkąt prostokątny ze spełnioną SK
B: 1 0 =0 - nie istnieje (=0) trójkąt prostokątny z niespełnioną SK
C: 0 0 =1 - istnieje (=1) trójkąt nieprostokątny z niespełnioną SK
D: 0 1 =1 - istnieje (=1) trójkąt nieprostokątny ze spełnioną SK
|
Linia D powstała „dzięki” KRZ-owskiemu iterowaniu Windziarza wyżej, to oczywisty błąd czysto matematyczny który na gruncie algebry Kubusia dowodzi się w trywialny sposób.
Ten błąd w linii D to koszmar wszystkich ziemskich matematyków, którzy dwoją się i troją przykrywając gówno w linii D różnymi kocykami by mniej śmierdziało.
Niestety, zapachu gówna w linii D nie da się fizycznie zabić.
Najśmieszniejsze tłumaczenie tej jedynki w linii D wyżej podał Windziarz z ateisty.pl
Windziarz do Rafała3006:
Udowodnij że w innym Wszechświecie nie ma jedynki w linii D
- a widzisz, nie potrafisz, dlatego jedynka w linii D jest matematycznie poprawnie zapisana.
4.
Windziarzowe iterowania jest totalnie bez sensu!
Dlaczego?
Po pierwsze jest matematycznie błędne co udowadnia twierdzenie Pitagorasa wyżej, a po drugie w zdaniu A1: P8=>P2 nawet Bóg nie przeiteruje kompletnego, nieskończonego zbioru liczb naturalnych w zdaniu A1: P8=>P2 które to iterowanie jest konieczne dla stwierdzenia prawdziwości zdania A1.
A1.
Jeśli dowolna liczba jest podzielna rzez 8 to jest podzielna przez 2
P8=>P2 =1
Dziedzina po której iterujemy:
LN=[1,2,3,4,5,6,7,8,9..] - zbiór liczb naturalnych
|
|
Powrót do góry |
|
 |
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 37352
Przeczytał: 18 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Pon 20:40, 17 Mar 2025 Temat postu: |
|
|
Algebra Kubusia – matematyczna wojna wszech czasów
37.0 Prawo matematycznego głąba i jełopa w operatorze implikacji prostej p||=>q
Spis treści
37.0 Prawo matematycznego głąba i jełopa w operatorze implikacji prostej p||=>q 1
37.1 Symboliczna definicja implikacji prostej p|=>q 1
37.1.1 Symboliczna definicja operatora implikacji prostej p||=>q 3
37.1.2 Wyprowadzenie zero-jedynkowej definicji warunku wystarczającego => 3
37.1.3 Odzyskanie symbolicznej definicji operatora implikacji prostej p||=>q 4
37.2 Geneza wynikowych zer i jedynek w operatorze implikacji prostej p||=>q 7
37.2.1 Prawo matematycznego głąba 9
37.3 Operator implikacji prostej p||=>q vs algebra Boole’a 11
37.4 Przykład implikacji prostej P|=>4L 14
37.4.1 Operator implikacji prostej P||=>4L 16
37.4.2 Operator implikacji prostej P||=>4L vs algebra Boole’a 19
37.4.3 Prawo matematycznego jełopa w operatorze implikacji prostej P||=>4L 20
37.4.4 Irbisol, fanatyk KRZ uczy dzieci logiki matematycznej w przedszkolu 23
37.0 Prawo matematycznego głąba i jełopa w operatorze implikacji prostej p||=>q
Uwagi:
1.
Warunkiem koniecznym zrozumienia niniejszego punktu jest przeczytanie ze zrozumieniem fundamentów algebry Kubusia dla teorii zbiorów zawartych w punkcie 13.0
2.
Aktualna logika matematyczna ziemskich matematyków jest w 100% logiką schizofreniczną, mającą zerowy związek z otaczającym nas światem rzeczywistym, czego dowodem są prawa matematycznego głąba i jełopa w operatorze implikacji prostej p||=>q wyprowadzone w niniejszym punkcie.
37.1 Symboliczna definicja implikacji prostej p|=>q
Kod: |
T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
## ## ## ## ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5: p+~q
Prawa Kubusia: | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q | A1: p=>q = A4:~q=>~p
B1: p~>q = B2:~p=>~q | B2:~p=>~q = B3: q=>p
Prawa Tygryska: | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p | B1: p~>q = B4:~q~>~p
Gdzie:
p=>q = ~p+q - definicja warunku wystarczającego =>
p~>q = p+~q - definicja warunku koniecznego ~>
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Definicja implikacji prostej p|=>q:
Implikacja prosta p|=>q w logice dodatniej (bo q) to spełniony wyłącznie warunek wystarczający => między tymi samymi punktami i w tym samym kierunku.
A1: p=>q =1 - p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla zajścia q
Stąd:
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) = 1*~(0)=1*1=1
Czytamy:
Implikacja prosta p|=>q w logice dodatniej (bo q) jest spełniona (=1) wtedy i tylko wtedy gdy zajście p jest wystarczające => dla zajścia q (A1: p=>q=1), ale nie jest konieczne ~> dla zajścia q (B1: p~>q=0)
Definicja kontrprzykładu w zbiorach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane elementem wspólnym zbiorów p~~>~q=p*~q
Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)
Podstawmy definicję implikacji prostej p|=>q do matematycznych związków warunku wystarczającego => i koniecznego ~> z uwzględnieniem definicji kontrprzykładu, obowiązującego wyłącznie w warunku wystarczającym =>.
Kod: |
IP
Implikacja prosta p|=>q:
A1: p=>q =1 - p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla zajścia q
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) = 1*~(0)=1*1=1
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji prostej p|=>q
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q =1 = 2:~p~>~q =1 [=] 3: q~>p =1 = 4:~q=>~p =1
A': 1: p~~>~q=0 [=] 4:~q~~>p =0
## ## ## ##
B: 1: p~>q =0 = 2:~p=>~q =0 [=] 3: q=>p =0 = 4:~q~>~p =0
B': 2:~p~~>q =1 [=] 3: q~~>~p=1
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Prawa Sowy w implikacji prostej p|=>q:
Prawdziwość dowolnego zdania w serii Ax wymusza prawdziwość pozostałych zdań w tej linii
Fałszywość dowolnego zdania serii Bx wymusza fałszywość pozostałych zdań w tej linii
37.1.1 Symboliczna definicja operatora implikacji prostej p||=>q
Definicja operatora implikacji prostej p||=>q:
Operator implikacji prostej p||=>q to odpowiedź na dwa pytania
Kolumna A1B1:
Co może się wydarzyć jeśli zajdzie p?
Kolumna A2B2:
Co może się wydarzyć jeśli zajdzie ~p?
Na mocy tabeli implikacji prostej IP łatwo zapisujemy operatorową definicję implikacji prostej p||=>q
Kod: |
IP1
Symboliczna definicja operatora implikacji prostej p||=>q
A1B1:
Co może się wydarzyć jeśli zajdzie p?
A1: p=> q =1 - zajście p jest (=1) wystarczające => dla zajścia q
A1’: p~~>~q=0 - kontrprzykład A1’ dla A1: p=>q=1 musi być fałszem
A2B2:
Co może się wydarzyć jeśli zajdzie ~p?
A2: ~p~>~q =1 - zajście ~p jest (=1) konieczne ~> dla zajścia ~q
B2’:~p~~>q =1 - kontrprzykład B2’ dla B2:~p=>~q=0 musi być prawdą
Gdzie:
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
37.1.2 Wyprowadzenie zero-jedynkowej definicji warunku wystarczającego =>
Zapiszmy tabelę prawdy operatora implikacji prostej p||=>q w wersji skróconej:
Kod: |
T1
Definicja |Co w logice
symboliczna |jedynek oznacza
p||=>q |
A1: p=> q =1 |( p=1)=> ( q=1)=1
A1': p~~>~q=0 |( p=1)~~>(~q=1)=0
A2: ~p~>~q =1 |(~p=1)~> (~q=1)=1
B2':~p~~>q =1 |(~p=1)~~>( q=1)=1
a b c 1 2 3
|
Zero-jedynkową definicję warunku wystarczającego p=>q w logice dodatniej (bo q) otrzymamy kodując tabelę T1 z punktem odniesienia ustawionym na warunku wystarczającym =>:
A1: p=>q
W warunku wystarczającym A1: p=>q zmienne p i q są w postaci niezanegowanej.
Tabelę zero-jedynkową warunku wystarczającego A1: p=>q w logice dodatniej (bo q) otrzymamy wtedy i tylko wtedy gdy wszystkie zmienne w tabeli T1_12 sprowadzimy do postaci niezanegowanej.
Umożliwia to II prawo Prosiaczka:
(~p=1)=(p=0)
(~q=1)=(q=0)
które możemy stosować wybiórczo w stosunku do dowolnej zmiennej binarnej.
Zróbmy to:
Kod: |
T2
Definicja |Co w logice |Na mocy II |Zapis tożsamy
symboliczna |jedynek oznacza |prawa Prosiaczka |tabeli 456
p||=>q | | | p q p=>q
A1: p=> q =1 |( p=1)=> ( q=1)=1 |( p=1)=> ( q=1)=1 | 1=>1 =1
A1': p~~>~q=0 |( p=1)~~>(~q=1)=0 |( p=1)~~>( q=0)=0 | 1=>0 =0
A2: ~p~>~q =1 |(~p=1)~> (~q=1)=1 |( p=0)~> ( q=0)=1 | 0=>0 =1
B2’:~p~~>q =1 |(~p=1)~~>( q=1)=1 |( p=0)~~>( q=1)=1 | 0=>1 =1
a b c 1 2 3 4 5 6 7 8 9
|
Definicja:
Tabelę T2_789 nazywamy definicją warunku wystarczającego => w logice dodatniej (bo q) dla potrzeb rachunku zerojedynkowego.
Interpretacja warunku wystarczającego =>:
T2_789: p=>q - zajście p jest wystarczające => dla zajścia q
Do zapamiętania:
Kod: |
T3
Zero-jedynkowa definicja warunku wystarczającego =>
dla potrzeb rachunku zero-jedynkowego
p q Y=(p=>q)=~p+q
A1: 1=>1 1
A1’: 1=>0 0
A2: 0=>0 1
B2’: 0=>1 1
1 2 3
Do łatwego zapamiętania:
p=>q=0 <=> p=1 i q=0
Inaczej:
p=>q=1
Definicja warunku wystarczającego => w spójniku „lub”(+):
p=>q =~p+q
|
Uwaga:
Dla ułatwienia zrozumienia, indeksowanie linii w warunku wystarczającym p=>q (tabela T3) jest zgodne z tabelą prawdy operatora implikacji prostej p||=>q (tabela IP1), co matematycznie jest bez znaczenia.
37.1.3 Odzyskanie symbolicznej definicji operatora implikacji prostej p||=>q
Kod: |
IP:
Implikacja prosta p|=>q:
A1: p=>q =1 - p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla zajścia q
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) = 1*~(0)=1*1=1
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji prostej p|=>q
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q =1 = 2:~p~>~q =1 [=] 3: q~>p =1 = 4:~q=>~p =1
A': 1: p~~>~q=0 [=] 4:~q~~>p =0
## ## ## ##
B: 1: p~>q =0 = 2:~p=>~q =0 [=] 3: q=>p =0 = 4:~q~>~p =0
B': 2:~p~~>q =1 [=] 3: q~~>~p=1
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Prawa Sowy dla implikacji prostej p|=>q:
Prawdziwość dowolnego zdania serii Ax wymusza prawdziwość pozostałych zdań w tej linii
Fałszywość dowolnego zdania serii Bx wymusza fałszywość pozostałych zdań w tej linii
Na mocy powyższego punktu, wiedząc skąd bierze się zero-jedynkowa definicja warunku wystarczającego => łatwo odzyskać symboliczną definicję operatora implikacji prostej p||=>q
Dowód:
Niech będzie dana zero-jedynkowa definicja warunku wystarczającego p=>q
Kod: |
T3
Zero-jedynkowa definicja warunku wystarczającego =>
dla potrzeb rachunku zero-jedynkowego
p q Y=(p=>q)=~p+q
A1: 1=>1 1
A1’: 1=>0 0
A2: 0=>0 1
B2’: 0=>1 1
1 2 3
Do łatwego zapamiętania:
p=>q=0 <=> p=1 i q=0
Inaczej:
p=>q=1
Definicja warunku wystarczającego => w spójniku „lub”(+):
p=>q =~p+q
|
Algorytm odzyskiwania symbolicznej definicji operatora implikacji prostej p||=>q to cztery proste kroki.
Krok 1
Zapisujemy zero-jedynkową definicję warunku wystarczającego => w spójnikach „i”(*) i „lub”(+) definicją elementu wspólnego zbiorów ~~> korzystając z prawa Prosiaczka.
Prawo Prosiaczka:
(p=0)=(~p=1)
(q=0)=(~q=1)
Kod: |
T4
Odzyskiwanie symbolicznej definicji operatora implikacji prostej p||=>q
z zero-jedynkowej definicji warunku wystarczającego =>.
Y=~p+q
p q Y=p=>q|
A1: 1 1 1 | p~~> q= p* q=1 - zbiory p i q mają (=1) element wspólny
A1’: 1 0 0 | p~~>~q= p*~q=0 - p i ~q nie mają (=0) elementu wspólnego
A2: 0 0 1 |~p~~>~q=~p*~q=1 - ~p i ~q mają (=1) element wspólny
B2’: 0 1 1 |~p~~> q=~p* q=1 - zbiory ~p i q mają (=1) element wspólny
1 2 3
|
Uwaga:
Indeksowanie linii w poniższej analizie jest zgodne z symboliczną tabelą prawdy implikacji prostej p|=>q przedstawionej w tabeli IP wyżej.
Krok 2
Fałszywy (=0) kontrprzykład w linii A1’:
A1’: p~~>~q=p*~q=0
wymusza prawdziwy (=1) warunek wystarczający w linii A1 (i odwrotnie):
A1: p=>q =1
Zajście p jest (=1) wystarczające => dla zajścia q wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q
Krok 3
Prawdziwy kontrprzykład w linii B2’:
B2’: ~p~~>q = ~p*q=1
wymusza fałszywy warunek wystarczający => w linii B2:
B2: ~p=>~q =0
Zajście ~p nie jest (=0) wystarczające => dla zajścia ~q wtedy i tylko wtedy gdy zbiór ~p nie jest podzbiorem ~q
Krok 4
Prawo Kubusia:
B2: ~p=>~q = B1: p~>q =0
Fałszywy (=0) warunek wystarczający w linii B2:
B2: ~p=>~q =0
na mocy prawa Kubusia wymusza fałszywy (=0) warunek konieczny w punkcie B1.
B1: p~>q =0
Stąd mamy dowód, iż spełniona jest definicja implikacji prostej p|=>q (tabela IP) bo:
B1: p~>q =1
oraz:
A1: p=>q =0
Na mocy prawa Sowy mamy dowód, iż spełniona jest definicja operatora implikacji prostej p||=>q dająca odpowiedź na pytanie o p (kolumna A1B1) oraz na pytanie o ~p (kolumna A2B2)
Kod: |
IP1
Symboliczna definicja operatora implikacji prostej p||=>q
A1B1:
Co może się wydarzyć jeśli zajdzie p?
A1: p=> q =1 - zajście p jest (=1) wystarczające => dla zajścia q
A1’: p~~>~q=0 - kontrprzykład A1’ dla A1: p=>q=1 musi być fałszem
A2B2:
Co może się wydarzyć jeśli zajdzie ~p?
A2: ~p~>~q =1 - zajście ~p jest (=1) konieczne ~> dla zajścia ~q
B2’:~p~~>q =1 - kontrprzykład B2’ dla B2:~p=>~q=0 musi być prawdą
Gdzie:
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
37.2 Geneza wynikowych zer i jedynek w operatorze implikacji prostej p||=>q
Kod: |
IP
Implikacja prosta p|=>q:
A1: p=>q =1 - p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla zajścia q
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) = 1*~(0)=1*1=1
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji prostej p|=>q
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q =1 = 2:~p~>~q =1 [=] 3: q~>p =1 = 4:~q=>~p =1
A': 1: p~~>~q=0 [=] 4:~q~~>p =0
## ## ## ##
B: 1: p~>q =0 = 2:~p=>~q =0 [=] 3: q=>p =0 = 4:~q~>~p =0
B': 2:~p~~>q =1 [=] 3: q~~>~p=1
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Operator implikacji prostej p||=>q to odpowiedź na dwa pytania:
Kolumna A1B1:
Co może się wydarzyć jeśli zajdzie p?
Kolumna A2B2:
Co może się wydarzyć jeśli zajdzie ~p?
W punkcie 37.1.2 dowiedzieliśmy się skąd bierze się zero-jedynkowa definicja warunku wystarczającego =>:
p=>q = ~p+q
Kod: |
T3
Zero-jedynkowa definicja warunku wystarczającego =>
dla potrzeb rachunku zero-jedynkowego
p q Y=(p=>q)=~p+q
A1: 1=>1 1
A1’: 1=>0 0
A2: 0=>0 1
B2’: 0=>1 1
1 2 3
Do łatwego zapamiętania:
p=>q=0 <=> p=1 i q=0
Inaczej:
p=>q=1
Definicja warunku wystarczającego => w spójniku „lub”(+):
p=>q =~p+q
|
Natomiast w punkcie 37.1.3 poznaliśmy algorytm działania odwrotnego, czyli w kierunku od zero-jedynkowej definicji warunku wystarczającego p=>q=~p+q do symbolicznej definicji operatora implikacji prostej p||=>q
Kod: |
IP1
Symboliczna definicja operatora implikacji prostej p||=>q
A1B1:
Co może się wydarzyć jeśli zajdzie p?
A1: p=> q =1 - zajście p jest (=1) wystarczające => dla zajścia q
A1’: p~~>~q=0 - kontrprzykład A1’ dla A1: p=>q=1 musi być fałszem
A2B2:
Co może się wydarzyć jeśli zajdzie ~p?
A2: ~p~>~q =1 - zajście ~p jest (=1) konieczne ~> dla zajścia ~q
B2’:~p~~>q =1 - kontrprzykład B2’ dla B2:~p=>~q=0 musi być prawdą
Gdzie:
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Zauważmy, że udowadniając spełnienie warunku wystarczającego w linii A1:
A1: p=> q =1 - zajście p jest (=1) wystarczające => dla zajścia q
automatycznie udowadniamy:
1.
Na mocy definicji kontrprzykładu prawdziwość warunku wystarczającego A1: p=>q =1 wymusza fałszywość kontrprzykładu A1’ (i odwrotnie):
A1’: p~~>~q=0 - kontrprzykład A1’ dla A1: p=>q=1 musi być fałszem
2.
Na mocy prawa Kubusia:
A1: p=>q = A2: ~p~>~q
Prawdziwość warunku wystarczającego A1: p=>q =1 wymusza prawdziwość warunku koniecznego A2 w kolumnie A2B2 (i odwrotnie)
A2: ~p~>~q =1 - zajście ~p jest (=1) konieczne ~> dla zajścia ~q
KONIEC!
Nic więcej z udowodnionego warunku wystarczającego A1: p=>q =1 nie wynika.
Zauważmy, że z udowodnionej prawdziwości warunku wystarczającego A1: p=>q=1 (matematyczne twierdzenie proste) w żaden sposób nie wynika prawdziwość kontrprzykładu w linii B2’:
B2’:~p~~>q =1 - kontrprzykład B2’ dla B2:~p=>~q=0 musi być prawdą
Dla udowodnienia prawdziwości kontrprzykładu w linii B2’ musimy udowodnić fałszywość warunku wystarczającego B2: ~p=>~q =0
Najłatwiej to zrobić korzystając z prawa kontrapozycji.
Prawo kontrapozycji:
B2: ~p=>~q = B3: q=>p
Zauważmy że:
B3: q=>p to matematyczne twierdzenie odwrotne w stosunku do twierdzenia prostego A1: p=>q
Na mocy definicji zachodzi:
Twierdzenie proste A1: p=>q ## Twierdzenie odwrotne B3: q=>p
Gdzie:
## - twierdzenia różne na mocy definicji (co doskonale widać w tabeli IP)
p i q w zdaniach A1, A1’, A2 i B2’ musi być tymi samymi p i q, inaczej błąd podstawienia.
Wnioski:
1.
Jedynkę w linii B2’ mamy prawo postawić wtedy i tylko wtedy gdy udowodnimy fałszywość matematycznego twierdzenia odwrotnego B3: q=>p=0 w stosunku do udowodnionego twierdzenia prostego A1: p=>q =1
2.
Alternatywnie jedynkę w linii B2’ udowadniamy pokazując jeden element wspólny ~~> zbiorów ~p i q
B2’:~p~~>q =~p*q=1 - Istnieje (=1) element wspólny ~~> zbiorów ~p i q
Alternatywny sposób udowodnienia jedynki w punkcie B2’ jest prosty, ale ten dowód ma zero wspólnego z udowodnionym warunkiem wystarczającym w linii A1.
W aktualnie obowiązującej logice matematycznej ziemskich matematyków nie jest widoczny jakikolwiek warunek wystarczający bowiem obligatoryjnie stosowane jest tu prawo eliminacji warunku wystarczającego, poprawne również w algebrze Kubusia:
A1: p=>q = ~p+q
gdzie o żadnym warunku wystarczającym =>, czy też koniecznym ~> mowy być nie może.
Warunek wystarczający A1: p=>q z algebry Kubusia w ziemskiej logice matematycznej nosi nazwę implikacji, co nie ma nic wspólnego z pojęciami implikacja prosta p|=>q i implikacja odwrotna p||~>q z algebry Kubusia.
37.2.1 Prawo matematycznego głąba
Prawo eliminacji implikacji w ziemskiej logice matematycznej:
A1: p=>q =~p+q
Dowód iż definicja ziemskiej implikacji => nie ma nic wspólnego z warunkiem wystarczającym => w rozumieniu algebry Kubusia to aktualnie obowiązująca definicja ziemskiej implikacji =>, podana przez Macjana.
http://www.sfinia.fora.pl/forum-kubusia,12/elementarz-algebry-boole-a-irbisol-macjan-str-10,2605-240.html#55877
@Macjan
Zrozum - treść zdania, czyli to, o czym ono mówi, nie może w żaden sposób wpływać na jego zapis symboliczny. Zdanie "... i ..." jest koniunkcją niezależnie od tego, co wstawimy w wykropkowane miejsca. Tak samo zdanie "Jeśli ... to ..." jest implikacją.
Potwierdzenie definicji Macjana przez wykładowcę logiki matematycznej na AGH Kraków.
[link widoczny dla zalogowanych]
@Wykład logiki matematycznej na AGH
Elementy logiki matematycznej
Logika matematyczna zajmuje się zdaniami logicznymi.
Zdanie logiczne, to zdanie gramatyczne orzekające, któremu można przypisać jedną z dwóch ocen (wartość) Prawda (TRUE, 1); Fałsz (FALSE, 0 ) (czyli zdania logiczne podlegają wartościowaniu). Nie są zdaniami logicznymi zdania pytające i rozkazujące.
Funktory logiczne (spójniki):
- jednoargumentowe (wystarczy jedno zdanie)
negacja - ~ - (nieprawda, że ...)
- dwuargumentowe (wymagają dwóch zdań) np.
koniunkcja - * - (...i... )
alternatywa - + - (...lub...)
implikacja - => - (jeżeli ..., to...)
równoważność - <=> - (...wtedy i tylko wtedy, gdy...)
Zero-jedynkowe definicje dwuargumentowych spójników logicznych to:
Kod: |
p q | p*q | p+q | p=>q | p<=>q
1 1 | 1 | 1 | 1 | 1
1 0 | 0 | 1 | 0 | 0
0 1 | 0 | 1 | 1 | 0
0 0 | 0 | 0 | 1 | 1
|
@Rafal3006
Jak widzimy, w wykropkowane miejsca możemy wstawiać cokolwiek, byleby temu „cokolwiek” dało się przypisać pojęcie prawdy (=1) albo fałszu (=0), co lokuje nas w definicji implikacji materialnej rodem z Klasycznego Rachunku Zdań.
Jak udowodniliśmy w punkcie 37.2 udowodnienie prawdziwości matematycznego twierdzenia prostego A1: p=>q=1 w żaden sposób nie wymusza rzeczywistej jedynki w punkcie B2’.
Kod: |
IP1
Symboliczna definicja operatora implikacji prostej p||=>q
A1B1:
Co może się wydarzyć jeśli zajdzie p?
A1: p=> q =1 - zajście p jest (=1) wystarczające => dla zajścia q
A1’: p~~>~q=0 - kontrprzykład A1’ dla A1: p=>q=1 musi być fałszem
A2B2:
Co może się wydarzyć jeśli zajdzie ~p?
A2: ~p~>~q =1 - zajście ~p jest (=1) konieczne ~> dla zajścia ~q
B2’:~p~~>q =x - udowodnienie prawdziwości A1 nie determinuje jedynki w B2’!
Gdzie:
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Definicja matematycznego twierdzenia prostego A1:
A1: p=>q =1
Zajście p jest (=1) warunkiem wystarczającym => dla zajścia q wtedy i tylko wtedy gdy zbiór p jest (=1) podzbiorem => zbioru q
Przykład:
A1.
Jeśli dowolna liczba jest podzielna przez 8 to jest podzielna przez 2
P8=>P2 =1
Podzielność dowolnej liczby przez 8 jest warunkiem wystarczającym => dla jej podzielności przez 2 wtedy i tylko wtedy gdy zbiór P8=[8,16,24..] jest podzbiorem => zbioru P2=[2,4,6,8..].
Udowodnić relację podzbioru P8=>P2=1 potrafi każdy matematyk.
Stąd mamy:
Prawo Matematycznego super-głąba:
Matematycznym super-głąbem jest każdy fanatyk KRZ który korzysta z ziemskiej definicji implikacji podanej przez Macjana, potwierdzonej przez wykładowcę logiki „matematycznej” na AGH, która w zdaniu warunkowym „Jeśli p to q” nie wymaga badania jakiejkolwiek relacji w zbiorach między poprzednikiem p i następnikiem q.
Prawo matematycznego głąba:
Matematycznym głąbem jest każdy matematyk który po udowodnieniu matematycznego twierdzenia prostego w punkcie A1: p=>q =1 (to matematycy potrafią) postawi przyniesioną w teczce jedynkę w linii B2’.
Niestety, na dzień dzisiejszy wszyscy matematycy są głąbami, bo wszyscy potrafią poprawnie udowodnić matematyczne twierdzenie proste A1: p=>q=1 stawiając jednak wyjętą z dupy (nie popartą dowodem) jedynkę w punkcie B2’.
37.3 Operator implikacji prostej p||=>q vs algebra Boole’a
Zacznijmy od podstawowej definicji implikacji prostej p|=>q, gdzie w kolumnie A1B1 mamy odpowiedź na pytanie co może się wydarzyć jeśli zajdzie p?
Kod: |
IP
Implikacja prosta p|=>q:
A1: p=>q =1 - p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla zajścia q
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) = 1*~(0)=1*1=1
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji prostej p|=>q
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q =1 = 2:~p~>~q =1 [=] 3: q~>p =1 = 4:~q=>~p =1
A': 1: p~~>~q=0 [=] 4:~q~~>p =0
## ## ## ##
B: 1: p~>q =0 = 2:~p=>~q =0 [=] 3: q=>p =0 = 4:~q~>~p =0
B': 2:~p~~>q =1 [=] 3: q~~>~p=1
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Prawa Sowy dla implikacji prostej p|=>q:
Prawdziwość dowolnego zdania w linii Ax wymusza prawdziwość pozostałych zdań w tej linii
Fałszywość dowolnego zdania w linii Bx wymusza fałszywość pozostałych zdań w tej linii
W algebrze Kubusia zachodzą tożsamości w zbiorach:
Warunek wystarczający p=>q = relacja podzbioru p=>q
p=>q =1 <=> zbiór p jest podzbiorem q
Inaczej
p=>q =0
##
Warunek konieczny p~>q = relacja nadzbioru p~>q
p~>q =1 <=> zbiór p jest (=1) nadzbiorem ~> q
Inaczej:
p~>q =1
Gdzie:
## - różne na mocy definicji (patrz tabela IP)
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
Stąd mamy:
A1B1:
Definicja implikacji prostej p|=>q w zbiorach
Zbiór p jest podzbiorem zbioru q i nie jest tożsamy ze zbiorem q
A1: p=>q =1 - zbiór p jest (=1) podzbiorem => zbioru q
B1: p~>q =0 - zbiór p nie jest (=0) nadzbiorem ~> zbioru q
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) = 1*~(0)=1*1=1
Czytamy:
Definicja implikacji prostej p|=>q w zbiorach jest spełniona (=1) wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q (A1), ale nie jest nadzbiorem ~> zbioru q (B1)
Wspólna dziedzina D musi być szersza od sumy logicznej zbiorów p+q bowiem wtedy i tylko wtedy wszystkie zbiory p, q, ~p, ~q, będą niepuste.
Dowód w diagramie DIP niżej.
Na mocy powyższej definicji rysujemy diagram implikacji prostej p|=>q w zbiorach.
Kod: |
DIP
Diagram implikacji prostej p|=>q w zbiorach
----------------------------------------------------------------------
| p | ~p |
|------------------------|-------------------------------------------|
| q | ~q |
|--------------------------------------------|-----------------------|
| A1: p=>q=1 (p*q=1) |B2’: ~p~~>q=~p*q=1 |A2:~p~>~q=1 (~p*~q=1) |
----------------------------------------------------------------------
| Dziedzina D - suma logiczna zbiorów A1, B2', A2 |
| D=A1: p*q + A2:~p*~q + B2’:~p*q |
| A1’: p~~>~q=p*~q=[] - zbiór pusty |
|--------------------------------------------------------------------|
| Diagram implikacji prostej p|=>q w zbiorach |
----------------------------------------------------------------------
Gdzie:
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
Prawo Słonia:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>
|
Operator implikacji prostej p||=>q to odpowiedź na dwa pytania:
Kolumna A1B1:
Co może się wydarzyć jeśli zajdzie p?
Kolumna A2B2:
Co może się wydarzyć jeśli zajdzie ~p?
Stąd mamy:
Kod: |
IP1
Symboliczna definicja operatora implikacji prostej p||=>q
A1B1:
Co może się wydarzyć jeśli zajdzie p?
A1: p=> q =1 - zajście p jest (=1) wystarczające => dla zajścia q
A1’: p~~>~q=0 - kontrprzykład A1’ dla A1: p=>q=1 musi być fałszem
A2B2:
Co może się wydarzyć jeśli zajdzie ~p?
A2: ~p~>~q =1 - zajście ~p jest (=1) konieczne ~> dla zajścia ~q
B2’:~p~~>q =1 - kontrprzykład B2’ dla B2:~p=>~q=0 musi być prawdą
Gdzie:
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Zapiszmy symboliczną definicję operatora implikacji prostej p||=>q kodowaną zarówno spójnikami elementarnymi zdań warunkowych „Jeśli p to q” (=>, ~>, ~~>) jak i definicją elementu wspólnego zbiorów ~~>.
Definicja elementu wspólnego ~~> zbiorów
p~~>q =p*q =1 wtedy i tylko wtedy gdy istnieje (=1) wspólny element ~~> zbiorów p i q
Inaczej:
p~~>q=p*q =0
Kod: |
IP2
Symboliczna definicja operatora implikacji prostej p||=>q
z uwzględnieniem definicji elementu wspólnego zbiorów p~~>q=p*q
Y
A1: p=> q =1 = p* q =1 -jeśli p=>q=1 to istnieje(=1) wspólny element p*q=1
A1’: p~~>~q=0 = p*~q =0 -nie istnieje (=0) wspólny element p*~q
A2: ~p~>~q =1 =~p*~q =1 -jeśli ~p~>~q=1 to istnieje wspólny element ~p*~q=1
B2’:~p~~>q =1 =~p* q =1 -istnieje wspólny element zbiorów ~p i q
1 2 3 4 5 6
|
Komentarz:
Linia A1:
Jeśli spełniony jest warunek wystarczający A1:
A1: p=>q =1 - zbiór p jest podzbiorem => zbioru q (diagram DIP)
to iloczynem logicznym zbiorów p i q to jest zbiór p, czyli zbiór p*q jest zbiorem niepustym (=1)
Linia A1’:
Prawdziwy warunek wystarczający A1: p=>q=1 wymusza fałszywy kontrprzykład A1’ (i odwrotnie)
A1’: p~~>~q = p*~q =0 - co oznacza brak (=0) wspólnego elementu zbiorów p i ~q (diagram DIP)
Linia A2:
Prawo Kubusia:
A1: p=>q = A2:~p~>~q
Na mocy prawa Kubusia spełniony warunek wystarczający w punkcie A1: p=>q=1 wymusza spełniony warunek konieczny A2: ~p~>~q w punkcie A2
Jeśli spełniony jest warunek konieczny A2:
A2: ~p~>~q =1 - bo ~p jest nadzbiorem ~> ~q (diagram DIP)
to iloczynem logicznym zbiorów ~p i ~q jest zbiór ~q, czyli zbiór ~p*~q jest zbiorem niepustym (=1)
Linia B2’:
Istnieje wspólny element zbiorów ~~> ~p i q:
B2’: ~p~~>q = ~p*q =1 (diagram DIP)
Fakt 1:
Zauważmy, że w analizie operatora implikacji prostej p||=>q zbiory niepuste i rozłączne to: A1, A2, B2’.
Dowód rozłączności tych zbiorów (diagram DIP):
(A1: p*q)*(A2:~p*~q) =[] - bo p*~p=[]
(A1: p*q)*(B2’: ~p*q] =[] - bo p*~p=[]
(A2: ~p*~q)*(B2’: ~p*q) =[] - bo p*~p=[]
cnd
Fakt 2:
Z faktu 1 wynika, że dziedziną D w tabeli IP2 jest sumą logiczna zbiorów niepustych i rozłącznych:
D = A1: p*q + A2: ~p*~q + B2’: ~p*q (diagram DIP)
Funkcja logiczna Y opisująca tabelę symboliczną 456 w tabeli prawdy IP2 to:
Y = A1: p*q + A2: ~p*~q + B2’: ~p*q
co w logice jedynek (bo równanie alternatywno-koniunkcyjne) oznacza:
Y=1 <=> A1: p=1 i q=1 lub A2: ~p=1 i ~q=1 lub B2’:~p=1 i q=1
Zauważmy, że jeśli dowolny składnik sumy logicznej w równaniu alternatywno-koniunkcyjnym przyjmie wartość logiczną miękkiej jedynki to wymusi ona miękkie zera w pozostałych składnikach sumy logicznej.
Definicja miękkiej jedynki I miękkiego zera:
Miękka jedynka i miękkie zero to wartościowanie sumy logicznej opisującej zbiory niepuste i rozłączne dla konkretnego składnika sumy logicznej.
Dowód:
Załóżmy, że wylosowaliśmy element B2’:
Y(B2’) = B2’: ~p*q
co w logice jedynek oznacza:
Y(B2’)=1 <=> B2’: ~p=1 i q=1
Na mocy prawa Prosiaczka mamy:
(~p=1)=(p=0)
(q=1)=(~q=0)
Dla tego przypadku (iterowania) Y(B2’) mamy:
Y = A1: p*q + A2: ~p*~q + B2’: ~p*q
Y(B2’) = A1: 0*1 + A2: 1*0 + B2’: 1*1 = A1: 0 + A2: 0 + B2’: 1
Y(B2’) = B2’: ~p*q
cnd
Wniosek:
Doskonale tu widać sens definicji miękkich jedynek i miękkich zer w logice matematycznej.
Wnioski z Fakt 1 i Fakt 2:
Linia A1:
Jeśli z dziedziny D wylosujemy element należący do zbioru A1: p*q (miękka jedynka) to dla tego losowania linie A2 i B2’ będą zbiorami pustymi [] (miękkie zera)
Linia A2:
Jeśli z dziedziny D wylosujemy element należący do zbioru A2: ~p*~q (miękka jedynka) to dla tego losowania linie A1 i B2’ będą zbiorami pustymi [] (miękkie zera)
Linia B2’:
Jeśli z dziedziny D wylosujemy element należący do zbioru B2’: ~p*q (miękka jedynka) to dla tego losowania linie A1 i A2 będą zbiorami pustymi [] (miękkie zera)
Innymi słowy:
Z dziedziny D nie możemy wylosować elementu który by należał jednocześnie do dwóch dowolnych zbiorów rozłącznych A1, A2, B2’.
37.4 Przykład implikacji prostej P|=>4L
Definicja implikacji prostej p|=>q:
Implikacja prosta p|=>q w logice dodatniej (bo q) to spełniony wyłącznie warunek wystarczający => między tymi samymi punktami i w tym samym kierunku.
A1: p=>q =1 - p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla zajścia q
Stąd:
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) = 1*~(0)=1*1=1
Czytamy:
Implikacja prosta p|=>q w logice dodatniej (bo q) jest spełniona (=1) wtedy i tylko wtedy gdy zajście p jest wystarczające => dla zajścia q (A1: p=>q=1), ale nie jest konieczne ~> dla zajścia q (B1: p~>q=0)
Kod: |
IP
Implikacja prosta p|=>q:
A1: p=>q =1 - p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla zajścia q
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) = 1*~(0)=1*1=1
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji prostej p|=>q
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q =1 = 2:~p~>~q =1 [=] 3: q~>p =1 = 4:~q=>~p =1
A': 1: p~~>~q=0 [=] 4:~q~~>p =0
## ## ## ##
B: 1: p~>q =0 = 2:~p=>~q =0 [=] 3: q=>p =0 = 4:~q~>~p =0
B': 2:~p~~>q =1 [=] 3: q~~>~p=1
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Prawa Sowy w implikacji prostej p|=>q:
Prawdziwość dowolnego zdania w serii Ax wymusza prawdziwość pozostałych zdań w tej linii
Fałszywość dowolnego zdania serii Bx wymusza fałszywość pozostałych zdań w tej linii
Weźmy zdanie wypowiedziane pasujące do tabeli implikacji prostej p|=>q.
A1.
Jeśli dowolne zwierzę jest psem (P) to ma cztery łapy (4L)
P=>4L =1
Na mocy prawa Kłapouchego zdanie A1 jest domyślnym punktem odniesienia:
p=>q =1
Gdzie:
p=P=[pies] - zbiór jednoelementowy P=[pies]
q=4L=[pies, słoń..] - zbiór wszystkich zwierząt mających cztery łapy 4L=[pies, słoń ..]
Dowód na poziomie 5-cio latka:
Bycie psem (P) jest warunkiem wystarczającym => by mieć cztery łapy (4L) bo wszystkie psy mają cztery łapy
Dowód na poziomie ucznia I klasy LO:
Bycie psem (P) jest warunkiem wystarczającym => by mieć cztery łapy (4L) wtedy i tylko wtedy gdy zbiór P=[pies] jest podzbiorem => zbioru zwierząt z czterema łapami 4L=[pies, słoń ..] - co jak widać jest spełnione.
Dla udowodnienia iż mamy do czynienia z implikacją prostą p|=>q potrzeba i wystarcza udowodnić fałszywość dowolnego zdania serii Bx.
Wybieramy zdanie B1:
B1.
Jeśli dowolne zwierzę jest psem (P) to ma cztery łapy (4L)
P~>4L =0
Bycie psem (P) nie jest (=0) warunkiem koniecznym ~> by mieć cztery lapy 4L bo zbiór P=[pies] nie jest (=0) nadzbiorem ~> zbioru 4L=[pies, słoń ..] - co każdy 5-cio latek widzi.
Stąd mamy wyprowadzone prawo Kameleona.
Prawo Kameleona:
Dwa zdania warunkowe „Jeśli p to q” brzmiące identycznie z dokładnością do każdej literki i każdego przecinka nie muszą być matematycznie tożsame.
Dowód to zdania A1 i B1 wyżej.
Różność matematyczną zdań A1 i B1 rozpoznajmy po ich matematycznym kodowaniu.
Zdania A1 i B1 są różne na mocy definicji warunku wystarczającego => i koniecznego ~>
Kod: |
TK - tabela Kameleona
Definicja warunku wystarczającego => ## Definicja warunku koniecznego ~>
Y = (p=>q) = ~p+q ## Y=(p~>q) = p+~q
|
Definicja znaczka różne na mocy definicji ##:
Dwie funkcje logiczne Y w tej samej logice (tu dodatniej bo Y) są różne na mocy definicji wtedy i tylko wtedy gdy prawe strony tych funkcji nie są tożsame
Tabela Kameleona TK spełnia definicję znaczka różne na mocy definicji ##
Stąd mamy dowód iż zdanie wypowiedziane A1: P=>4L jest częścią implikacji prostej P|=>4L.
Definicja implikacji prostej P|=>4L:
Implikacja prosta P|=>4L to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
A1: P=>4P=1 - bycie psem wystarcza => by mieć cztery łapy
B1: P~>4L =0 - bycie psem nie jest konieczne ~> by mieć cztery lapy bo kontrprzykład: Słoń
Stąd mamy:
P|=>4L = (A1: P=>4L)*~(B1: P~>4L) = 1*~(0)=1*1=1
37.4.1 Operator implikacji prostej P||=>4L
Diagram implikacji prostej p|=>q w zbiorach wyprowadzono w punkcie 37.3
Kod: |
DIP
Diagram implikacji prostej p|=>q w zbiorach
----------------------------------------------------------------------
| p | ~p |
|------------------------|-------------------------------------------|
| q | ~q |
|--------------------------------------------|-----------------------|
| A1: p=>q=1 (p*q=1) |B2’: ~p~~>q=~p*q=1 |A2:~p~>~q=1 (~p*~q=1) |
----------------------------------------------------------------------
| Dziedzina D - suma logiczna zbiorów A1, B2', A2 |
| D=A1: p*q + A2:~p*~q + B2’:~p*q |
| A1’: p~~>~q=p*~q=[] - zbiór pusty |
|--------------------------------------------------------------------|
| Diagram implikacji prostej p|=>q w zbiorach |
----------------------------------------------------------------------
Gdzie:
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
Prawo Słonia:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>
|
Operator implikacji prostej p|=>q to odpowiedź na dwa pytania:
Kolumna A1B1:
Co może się wydarzyć jeśli zajdzie p?
Kolumna A2B2:
Co może się wydarzyć jeśli zajdzie ~p?
Mamy nasze zdanie wypowiedziane A1.
A1.
Jeśli zwierzę jest psem (P) to ma cztery łapy (4L)
P=>4L =1
To samo w zapisie formalnym na mocy prawa Kłapouchego:
p=>q =1
Gdzie:
p=P=[pies] - zbiór jednoelementowy P=[pies]
q=4L=[pies, słoń ..] - zbiór wszystkich zwierząt mających cztery łapy 4L=[pies, słoń ..]
Wspólna dziedzina dla poprzednika p i następnika q to:
ZWZ - zbiór wszystkich zwierząt
ZWZ=[pies, słoń, kura ..]
Obliczmy potrzebne nam do dalszej analizy zbiory ~p i ~q definiowane jako zaprzeczenia zbiorów p i q we wspólnej dziedzinie ZWZ:
~p=~P=[ZWZ-P] =[słoń, kura ..] - zbiór wszystkich zwierząt ZWZ z wykluczeniem psa (~P)
~q=~4L=[ZWZ-4L] =[kura ..] - zbiór wszystkich zwierząt ZWZ nie mających czterech łap (~4L)
Podsumowując dla naszego przykładu mamy:
p = P=[pies]
q = 4L=[pies, słoń ..]
~p=~P=[słoń, kura ..]
~q=~4L=[kura..]
Analiza operatora implikacji prostej p||=>q przez wszystkie możliwe przeczenia p i q:
Kolumna A1B1:
Co może się wydarzyć jeśli ze zbioru wszystkich zwierząt wylosujemy psa (P)?
Z kolumny A1B1 odczytujemy:
A1.
Jeśli zwierzę jest psem (P) to ma cztery łapy (4L)
P=>4L =1
to samo w zapisie formalnym:
p=>q =1 (patrz diagram DIP)
Dowód na poziomie 5-cio latka:
Bycie psem (P) jest warunkiem wystarczającym => by mieć cztery łapy (4L) bo każdy pies ma cztery łapy
Dowód na poziomie ucznia I klasy LO:
Bycie psem (P) jest warunkiem wystarczającym => by mieć cztery łapy (4L) wtedy i tylko wtedy gdy zbiór jednoelementowy P=[pies] jest podzbiorem => zbioru zwierząt z czterema łapami 4L=[pies, słoń ..]
Zauważmy że:
Jeśli zbiór P=[pies] jest podzbiorem => zbioru 4L=[pies, słoń ..] to na 100% istnieje wspólny element ~~> zbiorów P i 4L
A1: P~~>4L = [pies]*[pies, słoń ..] =1 bo pies
To samo w zapisach formalnych:
A1: p~~>q=p*q =1 (diagram DIP)
Kontrprzykład A1’ dla prawdziwego warunku wystarczającego A1: P=>4L=1 musi być fałszem.
A1’
Jeśli zwierzę jest psem (P) to może ~~> nie mieć czterech łap (~4L)
P~~>~4L = P*~4L =0
to samo w zapisie formalnym:
p~~>~q = p*~q =0 (diagram DIP)
Czytamy:
Fałszem jest (=0), że istnieje wspólny element zbiorów p i ~q (diagram DIP)
Dowód „nie wprost”:
Fałszywość kontrprzykładu A1’ wynika z prawdziwości warunku wystarczającego A1: P=>4L
Dowód wprost:
P~~>~4L = P*~4L = [pies]*[kura ..] =0
Jednoelementowy zbiór P=[pies] jest rozłączny ze zbiorem zwierząt nie mających czterech łap ~4L=[kura..], zatem zbiory te nie mają elementu wspólnego.
cnd
.. a jeśli zwierzę nie jest psem (~P)?
Kolumna A2B2:
Co może się wydarzyć jeśli ze zbioru wszystkich zwierząt ZWZ wylosujemy zwierzę nie będące psem (~P)?
Z kolumny A2B2 odczytujemy:
A2.
Jeśli zwierzę nie jest psem (~P) to może ~> nie mieć czterech (~4L)
~P~>~4L =1
to samo w zapisie formalnym:
~p~>~q =1 (diagram DIP)
Dowód „nie wprost”:
Nie bycie psem (~P) jest konieczne ~> by nie mieć czterech łap (~4L) bo jak się jest psem (P) to na 100% => ma się cztery łapy (4L)
Jak widzimy prawo Kubusia samo nam tu wyskoczyło:
A2: ~P~>~4L = A1: P=>4L
Dowód wprost:
Nie bycie psem (~P) jest warunkiem koniecznym ~> by nie mieć czterech łap (~4L) wtedy i tylko wtedy gdy zbiór ~P=[słoń, kura..] jest nadzbiorem ~> zbioru ~4L=[kura..]
Zauważmy że:
Jeśli zbiór ~P=[słoń, kura ..] jest nadzbiorem ~> zbioru ~4L=[kura..] to na 100% istnieje wspólny element zbiorów ~P i ~4L
~P~~>~4L = [słoń, kura..]*[kura..] =1 bo kura
To samo w zapisie formalnym:
~p~~>~q =~p*~q =1 - istnieje wspólny element zbiorów ~p i ~q (diagram DIP)
LUB
B2’.
Jeśli zwierzę nie jest psem (~P) to może ~~> mieć cztery łapy (4L)
~P~~>4L=~P*4L =1
to samo w zapisie formalnym:
~p~~>q = ~p*q =1 (diagram DIP)
istnieje (=1) wspólny element zbiorów ~P=[słoń, kura…] oraz 4L=[pies, słoń ..] np. słoń
Pokazanie jednego takiego zwierzaka np. słonia kończy dowód istnienia elementu wspólnego ~~> zbiorów ~P i 4L
Zauważmy, że nie zachodzi tu ani relacja podzbioru =>:
~P=[słoń, kura..] => 4L=[pies, słoń..] =0 - bo kury nie ma w zbiorze 4L=[pies, słoń..]
ani też relacja nadzbioru ~>:
~P=[słoń, kura..] ~> 4L=[pies, słoń..] =0 - bo psa nie ma w zbiorze ~P=[słoń, kura..]
37.4.2 Operator implikacji prostej P||=>4L vs algebra Boole’a
Zapiszmy tabelę prawdy operatora implikacji prostej P||=>4L w powiązaniu z algebrą Boole’a
Kod: |
IP3
Symboliczna definicja operatora implikacji prostej p||=>q
z uwzględnieniem definicji elementu wspólnego zbiorów p~~>q=p*q
Y Y=~p+q=A1: p*q+A2:~p*~q+B2’:~p*q
A1: p=> q =1 = p* q =1 -jeśli p=>q=1 to istnieje wspólny element p*q=1
A1’: p~~>~q=0 = p*~q =0 -nie istnieje (=0) wspólny element p*~q =0
A2: ~p~>~q =1 =~p*~q =1 -jeśli ~p~>~q=1 to istnieje wspólny element ~p*~q=1
B2’:~p~~>q =1 =~p* q =1 -istnieje wspólny element zbiorów ~p i q
1 2 3 4 5 6
Definicja operatora implikacji prostej P||=>4L dla naszego przykładu A1
Gdzie:
p=P - zbiór jednoelementowy P=[pies]
q=4L - zbiór wszystkich zwierząt mających cztery łapy 4L=[pies, słoń ..]
Y Y=~P+4L=A1: P*4L+A2:~P*~4L+B2’:~P*4L
A1: P=> 4L =1 = P* 4L =1 -jeśli P=>4L=1 to istnieje wspólny element P*4L=1
A1’: P~~>~4L=0 = P*~4L =0 -nie istnieje (=0) wspólny element P*~4L =0
A2: ~P~>~4L =1 =~P*~4L =1 -jeśli ~P~>~4L=1 to istnieje element ~P*~4L=1
B2’:~P~~>4L =1 =~P* 4L =1 -istnieje wspólny element zbiorów ~P i 4L
1 2 3 4 5 6
|
Zero-jedynkową definicję warunku wystarczającego A1: p=>q (123) otrzymujemy kodując tabelę symboliczną operatora implikacji prostej p||=>q (123) względem linii A1: p=>q.
Jak to się robi wyjaśniliśmy w punkcie 37.1.2
Aktualna, ziemska logika „matematyczna” nie zna tabeli symbolicznej operatora implikacji prostej p||=>q (123) wyrażonej spójnikami implikacyjnymi (=>, ~>, ~~>)
Ziemska logika matematyczna obligatoryjnie korzysta tu z prawa eliminacji warunku wystarczającego, poprawnego również w algebrze Kubusia
A1: p=>q = ~p+q
W tym momencie przechodzimy do algebry Boole’a zapisanej symbolicznie w kolumnach 456, która rozpoznaje tylko i wyłącznie pięć znaczków:
1 - prawda
0 - fałsz
(*) - spójnik „i”(*) z języka potocznego
(+) - spójnik „lub”(+) z języka potocznego
Zauważmy, że w algebrze Boole’a nie istnieją elementarne spójniki implikacyjne w zbiorach {=>, ~>, ~~>} dostępne w algebrze Kubusia:
1.
p=>q =1
Zajście p jest (=1) wystarczające => dla zajścia q
wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q
Inaczej:
p=>q =0
2.
p~>q =1
Zajście p jest (=1) konieczne ~> dla zajścia q
wtedy i tylko wtedy gdy zbiór p jest nadzbiorem ~> zbioru q
Inaczej:
p~>q =0
3.
p~~>q = p*q =1
Istnieje (=1) wspólny element zbiorów p i q
Inaczej:
p~~>q = p*q =[] =0
Idźmy zatem tropem ziemskiej logiki nie znającej definicji elementarnych spójników implikacyjnych {=>,~>, ~~>}
Dla dowodu, iż w zdaniach warunkowych „Jeśli p to q” ziemska logika matematyczna nie ma najmniejszego pojęcia zarówno o warunku wystarczającym => jak i koniecznym ~> posłużymy się naszym przykładem A1: P=>4L
37.4.3 Prawo matematycznego jełopa w operatorze implikacji prostej P||=>4L
Równanie algebry Boole’a opisujące tabelę symboliczną 456 to:
Y = A1: P*4L + A2: ~P*~4L + B2’: ~P*4L
Dziedzina dla funkcji logicznej Y to:
ZWZ - zbiór wszystkich zwierząt
I.
Losowanie A1:
Kod: |
IP3
Definicja operatora implikacji prostej P||=>4L dla naszego przykładu A1
Gdzie:
p=P - zbiór jednoelementowy P=[pies]
q=4L - zbiór wszystkich zwierząt mających cztery łapy 4L=[pies, słoń ..]
Y Y=(A1: P=>4L)=~P+4L=A1: P*4L+A2:~P*~4L+B2’:~P*4L
A1: P=> 4L =1 = P* 4L =1 -jeśli P=>4L=1 to istnieje wspólny element P*4L=1
A1’: P~~>~4L=0 = P*~4L =0 -nie istnieje (=0) wspólny element P*~4L =0
A2: ~P~>~4L =1 =~P*~4L =1 -jeśli ~P~>~4L=1 to istnieje element ~P*~4L=1
B2’:~P~~>4L =1 =~P* 4L =1 -istnieje wspólny element zbiorów ~P i 4L
1 2 3 4 5 6
|
Równanie algebry Boole’a opisujące tabelę symboliczną 456 to:
Y = A1: P*4L + A2: ~P*~4L + B2’: ~P*4L
Załóżmy, że ze zbioru wszystkich zwierząt ZWZ wylosowaliśmy psa (P=1), który ma cztery łapy (4L=1):
P*4L=[pies]
Dla tego losowania lądujemy w linii A1 (456):
A1: Y(A1)=P*4L=1*1=1
Na mocy prawa Prosiaczka mamy:
(P=1)=(~P=0)
(4L=1)=(~4L=0)
Podstawmy to do równania Y opisującego tabelę symboliczną algebry Boole’a 456:
Y(A1) = A1: (P=1)*(4L=1) + A2: (~P=0)*(~4L=0) + B2’: (~P=0)*(4L=1) = A1: 1 + A2: 0 + B2’: 0
Stąd mamy:
A1: Y(A1) = A1: P*4L
Co w logice jedynek oznacza:
A1: Y(A1)=1 <=> A1: P=1 i 4L=1
Jak widzimy dla psa (P=1) mającego cztery lapy (4L=1) wyłącznie funkcja cząstkowa Y(A1) będzie prawdą, pozostałe funkcje cząstkowe przyjmą wartość logiczną FAŁSZ (=0):
A2: Y(A2) =0 - w spójnikach implikacyjnych (123) zdanie A2 będzie tu fałszem A2: ~P~>~4L=0
B2”: Y(B2’) =0 - w spójnikach implikacyjnych (123) zdanie B2’ będzie tu fałszem B2’: ~P~~>4L =0
Podsumowując:
Nasza funkcja cząstkowa Y(A1) przyjmie brzmienie:
A1.
Jeśli zwierzę jest psem (P) to na 100% => ma cztery łapy (4L)
A1: P=>4L =1
To samo w zapisach formalnych:
A1: p=>q =1 (diagram DIP)
Zdanie A1 jest prawdziwe tylko i wyłącznie dla psa.
Bycie psem (P) jest (=1) warunkiem wystarczającym => by mieć cztery łapy wtedy i tylko wtedy gdy zbiór P=[pies] jest podzbiorem => zbioru zwierząt z czterema łapami 4L=[pies, słoń ..]
Wniosek z linii A1:
Błędem czysto matematycznym ziemskich matematyków jest twierdzenie, że zdanie A1: P=>4L jest prawdziwe dla dowolnego zwierzęcia ze zbioru wszystkich zwierząt ZWZ, czyli jest prawdziwe dla:
Y(A1) = [P*4L] = [pies] =1
Y(A2) = [~P*~4L] = [kura, mrówka, wąż, wieloryb …] =1
Y(B2’) = [~P*4L] = [słoń, koń, hipopotam ..] =1
Innymi słowy:
Totalnie cała aktualna logika „matematyczna” to potwornie śmierdzące gówno, żadna logika matematyczna.
cnd
Prawo matematycznego jełopa:
Dowolny matematyk który twierdzi, że zdanie:
A1.
Jeśli dowolne zwierzę jest psem to ma cztery łapy
P=>4L=1
jest prawdziwe dla dowolnego zwierzęcia ze zbioru wszystkich zwierząt ZWZ=[pies, słoń, kura, mrówka, wąż, wieloryb, pchła, hipopotam ..]
jest matematycznym jełopem
Niestety, pod definicję matematycznego jełopa podpada każdy ziemski matematyk - żaden z tych nieszczęśników nie jest przy zdrowych zmysłach.
II.
Losowanie A2:
Kod: |
IP3
Definicja operatora implikacji prostej P||=>4L dla naszego przykładu A1
Gdzie:
p=P - zbiór jednoelementowy P=[pies]
q=4L - zbiór wszystkich zwierząt mających cztery łapy 4L=[pies, słoń ..]
Y Y=(A1: P=>4L)=~P+4L=A1: P*4L+A2:~P*~4L+B2’:~P*4L
A1: P=> 4L =1 = P* 4L =1 -jeśli P=>4L=1 to istnieje wspólny element P*4L=1
A1’: P~~>~4L=0 = P*~4L =0 -nie istnieje (=0) wspólny element P*~4L =0
A2: ~P~>~4L =1 =~P*~4L =1 -jeśli ~P~>~4L=1 to istnieje element ~P*~4L=1
B2’:~P~~>4L =1 =~P* 4L =1 -istnieje wspólny element zbiorów ~P i 4L
1 2 3 4 5 6
|
Załóżmy, że ze zbioru wszystkich zwierząt ZWZ wylosowaliśmy zwierzę które nie jest psem (~P=1) i nie ma czterech łap (~4L=1).
~P*~4L=[kura..]
Dla tego losowania lądujemy w linii A2 (456):
A2: Y(A2)=A2: ~P*~4L=1*1=1
Na mocy prawa Prosiaczka mamy:
(~P=1)=(P=0)
(~4L=1)=(4L=0)
Podstawmy to do równania Y opisującego tabelę symboliczną algebry Boole’a 456:
Y(A2) = A1: (P=0)*(4L=0) + A2: (~P=1)*(~4L=1) + B2’: (~P=1)*(4L=0) = A1: 0 + A2: 1 + B2’: 0
Stąd mamy:
A2: Y(A2) = A2: ~P*~4L
Co w logice jedynek oznacza:
A2: Y(A2)=1 <=> A2: ~P=1 i ~4L=1
Jak widzimy dla zwierzęcia nie będącego psem (~P=1) i nie mającego czterech łap (~4L=1) wyłącznie funkcja cząstkowa Y(A2) będzie prawdą, pozostałe funkcje cząstkowe przyjmą wartość logiczną FAŁSZ (=0), czyli:
A1: Y(A1) =0 - w spójnikach implikacyjnych (123) zdanie A1 będzie tu fałszem A1: P=>4L=0
B2’: Y(B2’) =0 - w spójnikach implikacyjnych (123) zdanie B2’ będzie tu fałszem B2’: ~P~~>4L =0
W przełożeniu na analizę w spójnikach implikacyjnych 123 zdanie A2 będzie prawdziwe tylko i wyłącznie dla zwierząt które nie są psami (~P=1) i nie mają czterech łap (~4L=1)
A2: ~P*~4L=[kura ..]
Nasza funkcja cząstkowa Y(A2) przyjmie brzmienie:
A2.
Jeśli zwierzę jest nie jest psem (~P) to może ~> nie mieć czterech łap (~4L)
A2: ~P~>~4L =1
To samo w zapisach formalnych:
A2: ~p~>~q =1 (diagram DIP)
Nie bycie psem (~P) jest warunkiem koniecznym ~> by nie mieć czterech łap (~4L) bo zbiór ~P=[słoń, kura..] jest nadzbiorem ~> zbioru ~4L=[kura ..]
To zdanie jest prawdziwe tylko i wyłącznie dla zwierząt które nie są psami (~P=1) i nie mają czterech łap (~4L=1)
III.
Losowanie B2’:
Kod: |
IP3
Definicja operatora implikacji prostej P||=>4L dla naszego przykładu A1
Gdzie:
p=P - zbiór jednoelementowy P=[pies]
q=4L - zbiór wszystkich zwierząt mających cztery łapy 4L=[pies, słoń ..]
Y Y=(A1: P=>4L)=~P+4L=A1: P*4L+A2:~P*~4L+B2’:~P*4L
A1: P=> 4L =1 = P* 4L =1 -jeśli P=>4L=1 to istnieje wspólny element P*4L=1
A1’: P~~>~4L=0 = P*~4L =0 -nie istnieje (=0) wspólny element P*~4L =0
A2: ~P~>~4L =1 =~P*~4L =1 -jeśli ~P~>~4L=1 to istnieje element ~P*~4L=1
B2’:~P~~>4L =1 =~P* 4L =1 -istnieje wspólny element zbiorów ~P i 4L
1 2 3 4 5 6
|
Załóżmy, że ze zbioru wszystkich zwierząt ZWZ wylosowaliśmy zwierzę które nie jest psem (~P=1) i ma cztery lapy (4L=1)
~P*4L=[słoń ..]
Dla tego losowania lądujemy w linii B2’ (456):
B2’: Y(B2’)= B2’:~P*4L=1*1=1
Na mocy prawa Prosiaczka mamy:
(~P=1)=(P=0)
(4L=1)=(~4L=0)
Podstawmy to do równania Y opisującego tabelę symboliczną algebry Boole’a 456:
Y(B2’) = A1: (P=0)*(4L=1) + A2: (~P=1)*(~4L=0) + B2’: (~P=1)*(4L=1) = A1: 0 + A2: 0 + B2’: 1
Stąd mamy:
B2’: Y(B2’) = B2’: ~P*4L
Co w logice jedynek oznacza:
B2’: Y(B2’)=1 <=> B2’: ~P=1 i 4L=1
Jak widzimy dla zwierzęcia nie będącego psem (~P=1) i mającego cztery łapy (4L=1) wyłącznie funkcja cząstkowa Y(B2’) będzie prawdą, pozostałe funkcje cząstkowe przyjmą wartość logiczną FAŁSZ (=0), czyli
A1: Y(A1) =0 - w spójnikach implikacyjnych (123) zdanie A1 będzie fałszem A1: P=>4L=0
A2: Y(A2) =0 - w spójnikach implikacyjnych (123) zdanie A2 będzie fałszem A2: ~P~>~4L=0
W przełożeniu na analizę w spójnikach implikacyjnych 123 zdanie B2’ będzie prawdziwe tylko i wyłącznie dla zwierząt które nie są psami (~P=1) i mają cztery łapy (4L=1)
B2’.
Jeśli zwierzę jest nie jest psem (~P) to może ~~> mieć czterech łap (4L)
~P~~>4L = ~P*4L =1
To zdanie jest prawdziwe tylko i wyłącznie dla zwierząt które nie są psami (~P=1) i mają cztery łapy (4L=1)
Istnieje (=1) wspólny element ~~> zbiorów ~P=[słoń, kura ..] i 4L=[pies, słoń ..] np. słoń
cnd
37.4.4 Irbisol, fanatyk KRZ uczy dzieci logiki matematycznej w przedszkolu
Prawo matematycznego jełopa:
Dowolny matematyk który twierdzi, że zdanie:
A1.
Jeśli dowolne zwierzę jest psem to ma cztery łapy
P=>4L=1
jest prawdziwe dla dowolnego zwierzęcia ze zbioru wszystkich zwierząt ZWZ=[pies, słoń, kura, mrówka, wąż, wieloryb, pchła, hipopotam ..]
jest matematycznym jełopem
Niestety, pod definicję matematycznego jełopa podpada każdy ziemski matematyk - żaden z tych nieszczęśników nie jest przy zdrowych zmysłach.
Post z początków rozszyfrowywania algebry Kubusia, gdy ta jeszcze niemowlęciem była:
http://www.sfinia.fora.pl/forum-kubusia,12/kubusiowa-szkola-logiki-na-zywo-dyskusja-z-volrathem,3591-25.html#69416
Wysłany: Nie 0:09, 02 Lis 2008
@Volrath - wykładowca logiki matematycznej
Rozważmy zdanie:
Jeśli zwierzę jest psem to ma cztery łapy
P=>4L=?
Kod: |
Wiemy, że:
P 4L P=>4L
A: 1 1 =1 ; P i 4L = 1 (pies)
B: 1 0 =0 : P i ~4L = 0 (brak psów bez 4 łap)
C: 0 0 =1 ;~P i ~4L = 1 (kura)
D: 0 1 =1 ;~P i 4L = 1 (słoń)
|
Należy zdanie sprawdzić względem każdej opcji, by stwierdzić, że zdanie P=>4L jest prawdziwe.
Na przykład:
Zdanie P => 4L
Jest prawdziwe, ale nie dlatego "bo pies", ale także dlatego, bo reszta (kura, słoń, pies bez czterech łap).
Linia A
O psach? 1 1 jest prawdziwe.
Linia B
O psach bez 4 łap? 1 0 jest fałszywe. Czyli zgodne z informacjami bazowymi (P i ~4L = 0).
Linia C
Czy zdanie P => 4L jest prawdziwe dla kury?
Kura = ~P i ~4L. P => 4L dla 0 0 (bo ~P i ~4L) jest prawdziwe. Więc jest spełnione dla kury.
Linia D
Dla słoni?
Analogicznie dla 0 1 (~P i 4L) jest prawdziwe.
Czyli w sumie zdanie P => 4L jest prawdziwe (bo wszystko się zgadza z bazową tabelą "wiedzy")
Pani w przedszkolu:
Drogie dzieci, wybitny znawca logiki matematycznej Irbisol, będzie was teraz uczył logiki matematycznej znanej każdemu ziemskiemu matematykowi, zwanej Klasycznym Rachunkiem Zdań.
Irbisol:
Weźmy na początek zdanie które doskonale rozumie każde z was:
A1.
Jeśli zwierzę jest psem to ma cztery łapy
P=>4L =?
Może ktoś wie co oznacza to zdanie?
Jaś (lat 5):
Pewnie że wiemy, to zdanie zna każdy 5-cio latek, a oznacza ono że:
Każdy pies ma cztery łapy
Innymi słowy bycie psem (P) daje nam gwarancję =>, że mamy cztery lapy (4L)
Irbisol:
Drogie dziecko, tak jest w twoim ptasim móżdżku.
Logika matematyczna zwana Klasycznym Rachunkiem Zdań mówi tu co innego.
Zaciekawiony Jaś (lat 5):
Proszę nam opowiedzieć, co ma do powiedzenia pana logika matematyczna w tym temacie.
Irbisol:
Dobrze opowiadam na przykładach.
Linia A
Czy zdanie warunkowe A1: P=>4L jest prawdziwe dla psa?
Jaś:
Oczywiście że jest, każdy głupi to wie
Irbisol:
Bardzo bobrze Jasiu
Linia C
Czy zdanie warunkowe A1: P=>4L jest prawdziwe dla zwierzątka nie będącego psem (~P) i nie mającego czterech łap (~4L)
Jaś:
Dla tego przypadku zdanie A1: P=>4L jest fałszywe (=0), bo w zdaniu A1 w poprzedniku mamy zastrzeżenie:
„Jeśli zwierzę jest psem …”
Zatem zdanie A1 P=>4L jest fałszywe (=0) dla zwierzątka które nie jest psem (~P) i nie ma czterech łap (~4L)
Irbisol:
Niestety Jasiu, widzę, że niejaki Kubuś potwornie wyprał twój biedny mózg.
Matematyczna prawda w jedynej poprawnej logice matematycznej zwanej KRZ jest taka:
Zdanie A1: P=>4L jest prawdziwe (=1) dla wszelkich zwierzątek nie będących psami (~P) i nie mających czterech łap (~4L)
Innymi słowy:
Przykładowo zdanie warunkowe A1: P=>4L jest tu prawdziwe dla: mrówki, kury, węża, wieloryba itd.
linia D
Czy zdanie warunkowe A1: P=>4L jest prawdziwe dla zwierzątka nie będącego psem (~P) i mającego cztery łapy (4L)?
Zuzia (lat 5)
Dla tego przypadku zdanie A1: P=>4L jest fałszywe (=0), bo w zdaniu A1 w poprzedniku mamy zastrzeżenie:
„Jeśli zwierzę jest psem …”
Zatem zdanie A1: P=>4L jest fałszywe (=0) dla dowolnego zwierzątka nie będącego psem (~P) i mającego cztery łapy (4L).
Irbisol:
Źle, źle, po trzykroć źle!
Nasza fenomenalna logika matematyczna KRZ mówi nam, że zdanie warunkowe A1: P=>4L jest prawdziwe (=1) dla dowolnego zwierzątka które nie jest psem (~P) i ma cztery łapy (4L), czyli jest prawdziwe dla słonia, kota, krokodyla, żyrafy itd.
Oj biedne, nieszczęśliwe dzieci - teraz już jestem pewien, również w tym przedszkolu był przede mną niejaki Kubuś, totalny debil logiki matematycznej.
Irbisol do pani przedszkolanki:
Dlaczego przede mną wpuściła pani do swojego przedszkola tego debila Kubusia, przecież potwornie wyprał mózgi pani dzieci z jedynej poprawnej logiki matematycznej zwanej Klasycznym Rachunkiem Zdań obowiązującej w naszym Wszechświecie.
Pani przedszkolanka:
Po pierwsze:
Nie było tu przed panem żadnego Kubusia.
Po drugie:
Podzielam zdanie moich dzieci w temacie znaczenia zdania warunkowego A1: P=>4L
Po trzecie:
Proszę wypierdalać z mojego przedszkola, nie pozwolę by jakieś swoje prywatne gówna wciskał pan do mózgów moich dzieci.
Po czwarte:
…. pani z wciekłością kopie Irbisola w cztery litery a ten wylatuje przez otwarte na jego szczęście okno.
|
|
Powrót do góry |
|
 |
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 37352
Przeczytał: 18 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Pon 20:43, 17 Mar 2025 Temat postu: |
|
|
Algebra Kubusia – matematyczna wojna wszech czasów
38.0 Prawo matematycznego głąba i jełopa w operatorze implikacji odwrotnej p||~>q
Spis treści
38.0 Prawo matematycznego głąba i jełopa w operatorze implikacji odwrotnej p||~>q 1
38.1 Symboliczna definicja implikacji odwrotnej p|~>q 1
38.1.1 Symboliczna definicja operatora implikacji odwrotnej p||~>q 3
38.1.2 Wyprowadzenie zero-jedynkowej definicji warunku koniecznego ~> 3
38.1.3 Odzyskanie symbolicznej definicji operatora implikacji odwrotnej p||~>q 4
38.2 Geneza wynikowych zer i jedynek w operatorze implikacji odwrotnej p||~>q 7
38.2.1 Prawo matematycznego głąba 9
38.3 Operator implikacji odwrotnej p||~>q vs algebra Boole’a 12
38.4 Przykład implikacji odwrotnej 4L|~>P 16
38.4.1 Operator implikacji odwrotnej 4L||~>P 17
38.4.2 Operator implikacji odwrotnej 4L||~>P vs algebra Boole’a 20
38.4.3 Prawo matematycznego jełopa w operatorze implikacji odwrotnej 4L||~>P 21
38.0 Prawo matematycznego głąba i jełopa w operatorze implikacji odwrotnej p||~>q
Uwagi:
1.
Warunkiem koniecznym zrozumienia niniejszego punktu jest przeczytanie ze zrozumieniem fundamentów algebry Kubusia dla teorii zbiorów zawartych w punkcie 13.0
2.
Aktualna logika matematyczna ziemskich matematyków jest w 100% logiką schizofreniczną, mającą zerowy związek z otaczającym nas światem rzeczywistym, czego dowodem są prawa matematycznego głąba i jełopa w operatorze implikacji odwrotnej p||~>q wyprowadzone w niniejszym punkcie.
38.1 Symboliczna definicja implikacji odwrotnej p|~>q
Kod: |
T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
## ## ## ## ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5: p+~q
Prawa Kubusia: | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q | A1: p=>q = A4:~q=>~p
B1: p~>q = B2:~p=>~q | B2:~p=>~q = B3: q=>p
Prawa Tygryska: | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p | B1: p~>q = B4:~q~>~p
Gdzie:
p=>q = ~p+q - definicja warunku wystarczającego =>
p~>q = p+~q - definicja warunku koniecznego ~>
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Definicja implikacji odwrotnej p|~>q:
Implikacja odwrotna p|~>q w logice dodatniej (bo q) to spełniony wyłącznie warunek konieczny ~> między tymi samymi punktami i w tym samym kierunku.
A1: p=>q =0 - p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - p jest (=1) konieczne ~> dla zajścia q
Stąd:
A1B1: p|~>q = ~(A1: p=>q)*(B1: p~>q) = ~(0)*1=1*1=1
Czytamy:
Implikacja odwrotna p|~>q w logice dodatniej (bo q) jest spełniona (=1) wtedy i tylko wtedy gdy zajście p jest konieczne ~> dla zajścia q (B1: p~>q=1), ale nie jest wystarczające => dla zajścia q (A1: p=>q=0)
Definicja kontrprzykładu w zbiorach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane elementem wspólnym zbiorów p~~>~q=p*~q
Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)
Podstawmy definicję implikacji odwrotnej p|~>q do matematycznych związków warunku wystarczającego => i koniecznego ~> z uwzględnieniem definicji kontrprzykładu, obowiązującego wyłącznie w warunku wystarczającym =>.
Kod: |
IO
Implikacja odwrotna p|~>q:
A1: p=>q =0 - p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - p jest (=1) konieczne ~> dla zajścia q
A1B1: p|~>q = ~(A1: p=>q)*(B1: p~>q) = ~(0)*1=1*1=1
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji odwrotnej p|~>q
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q =0 = 2:~p~>~q =0 [=] 3: q~>p =0 = 4:~q=>~p =0
A': 1: p~~>~q=1 [=] 4:~q~~>p =1
## ## ## ##
B: 1: p~>q =1 = 2:~p=>~q =1 [=] 3: q=>p =1 = 4:~q~>~p =1
B': 2:~p~~>q =0 [=] 3: q~~>~p=0
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Prawa Sowy w implikacji odwrotnej p|~>q:
Prawdziwość dowolnego zdania w serii Bx wymusza prawdziwość pozostałych zdań w tej linii
Fałszywość dowolnego zdania serii Ax wymusza fałszywość pozostałych zdań w tej linii
38.1.1 Symboliczna definicja operatora implikacji odwrotnej p||~>q
Definicja operatora implikacji odwrotnej p||~>q:
Operator implikacji odwrotnej p||~>q to odpowiedź na dwa pytania
Kolumna A1B1:
Co może się wydarzyć jeśli zajdzie p?
Kolumna A2B2:
Co może się wydarzyć jeśli zajdzie ~p?
Na mocy tabeli implikacji odwrotnej IO łatwo zapisujemy operatorową definicję implikacji odwrotnej p||~>q
Kod: |
IO1
Symboliczna definicja operatora implikacji odwrotnej p||~>q
A1B1:
Co może się wydarzyć jeśli zajdzie p?
B1: p~> q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
A1’: p~~>~q=1 - kontrprzykład A1’ dla A1: p=>q=0 musi być prawdą
A2B2:
Co może się wydarzyć jeśli zajdzie ~p?
B2: ~p=>~q =1 - zajście ~p jest (=1) wystarczające => dla zajścia ~q
B2’:~p~~>q =0 - kontrprzykład B2’ dla B2:~p=>~q=1 musi być fałszem
Gdzie:
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
38.1.2 Wyprowadzenie zero-jedynkowej definicji warunku koniecznego ~>
Zapiszmy tabelę prawdy operatora implikacji odwrotnej p||~>q w wersji skróconej:
Kod: |
T1
Definicja |Co w logice
symboliczna |jedynek oznacza
p||~>q |
B1: p~> q =1 |( p=1)~> ( q=1)=1
A1': p~~>~q=1 |( p=1)~~>(~q=1)=1
B2: ~p=>~q =1 |(~p=1)=> (~q=1)=1
B2':~p~~>q =0 |(~p=1)~~>( q=1)=0
a b c 1 2 3
|
Zero-jedynkową definicję warunku koniecznego p~>q w logice dodatniej (bo q) otrzymamy kodując tabelę T1 z punktem odniesienia ustawionym na warunku koniecznym ~>:
B1: p~>q
W warunku koniecznym ~> B1 zmienne p i q są w postaci niezanegowanej.
Tabelę zero-jedynkową warunku koniecznego B1: p~>q w logice dodatniej (bo q) otrzymamy wtedy i tylko wtedy gdy wszystkie zmienne w tabeli T1_12 sprowadzimy do postaci niezanegowanej.
Umożliwia to II prawo Prosiaczka:
(~p=1)=(p=0)
(~q=1)=(q=0)
które możemy stosować wybiórczo w stosunku do dowolnej zmiennej binarnej.
Zróbmy to:
Kod: |
T2
Definicja |Co w logice |Na mocy II |Zapis tożsamy
symboliczna |jedynek oznacza |prawa Prosiaczka |tabeli 456
p||~>q | | | p q p~> q
B1: p~> q =1 |( p=1)~> ( q=1)=1 |( p=1)~> ( q=1)=1 | 1~>1 =1
A1': p~~>~q=1 |( p=1)~~>(~q=1)=1 |( p=1)~~>( q=0)=1 | 1~>0 =1
B2: ~p=>~q =1 |(~p=1)=> (~q=1)=1 |( p=0)=> ( q=0)=1 | 0~>0 =1
B2':~p~~>q =0 |(~p=1)~~>( q=1)=0 |( p=0)~~>( q=1)=0 | 0~>1 =0
a b c 1 2 3 4 5 6 7 8 9
|
Definicja:
Tabelę T2_789 nazywamy zero-jedynkową definicją warunku koniecznego ~> w logice dodatniej (bo q) dla potrzeb rachunku zero-jedynkowego.
Interpretacja warunku koniecznego ~>:
T2_789: p~>q - zajście p jest konieczne ~> dla zajścia q
Do zapamiętania:
Kod: |
T3
Zero-jedynkowa definicja warunku koniecznego ~>
dla potrzeb rachunku zero-jedynkowego
p q Y=(p~>q)=p+~q
B1: 1~>1 1
A1’: 1~>0 1
B2: 0~>0 1
B2’: 0~>1 0
1 2 3
Do łatwego zapamiętania:
p~>q=0 <=> p=0 i q=1
Inaczej:
p~>q=1
Definicja warunku koniecznego ~> w spójniku „lub”(+):
p~>q =p+~q
|
Uwaga:
Dla ułatwienia zrozumienia, indeksowanie linii w warunku koniecznym ~> (tabela T3) jest zgodne z tabelą prawdy operatora implikacji odwrotnej p||~>q (tabela IO1), co matematycznie jest bez znaczenia.
38.1.3 Odzyskanie symbolicznej definicji operatora implikacji odwrotnej p||~>q
Kod: |
IO
Implikacja odwrotna p|~>q:
A1: p=>q =0 - p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - p jest (=1) konieczne ~> dla zajścia q
A1B1: p|~>q = ~(A1: p=>q)*(B1: p~>q) = ~(0)*1=1*1=1
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji odwrotnej p|~>q
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q =0 = 2:~p~>~q =0 [=] 3: q~>p =0 = 4:~q=>~p =0
A': 1: p~~>~q=1 [=] 4:~q~~>p =1
## ## ## ##
B: 1: p~>q =1 = 2:~p=>~q =1 [=] 3: q=>p =1 = 4:~q~>~p =1
B': 2:~p~~>q =0 [=] 3: q~~>~p=0
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Prawa Sowy dla implikacji odwrotnej p|~>q:
Prawdziwość dowolnego zdania serii Bx wymusza prawdziwość pozostałych zdań w tej linii
Fałszywość dowolnego zdania serii Ax wymusza fałszywość pozostałych zdań w tej linii
Na mocy powyższego punktu, wiedząc skąd bierze się zero-jedynkowa definicja warunku koniecznego ~> łatwo odzyskać symboliczną definicję operatora implikacji odwrotnej p||~>q
Dowód:
Niech będzie dana zero-jedynkowa definicja warunku koniecznego p~>q
Kod: |
T3
Zero-jedynkowa definicja warunku koniecznego ~>
dla potrzeb rachunku zero-jedynkowego
p q Y=(p~>q)=p+~q
B1: 1~>1 1
A1’: 1~>0 1
B2: 0~>0 1
B2’: 0~>1 0
1 2 3
Do łatwego zapamiętania:
p~>q=0 <=> p=0 i q=1
Inaczej:
p~>q=1
Definicja warunku koniecznego ~> w spójniku „lub”(+):
p~>q =p+~q
|
Algorytm odzyskiwania symbolicznej definicji operatora implikacji odwrotnej p||~>q to cztery proste kroki.
Krok 1
Zapisujemy zero-jedynkową definicję warunku koniecznego ~> w spójnikach „i”(*) i „lub”(+) definicją elementu wspólnego zbiorów ~~> korzystając z prawa Prosiaczka.
Prawo Prosiaczka:
(p=0)=(~p=1)
(q=0)=(~q=1)
Kod: |
T4
Odzyskiwanie symbolicznej definicji operatora implikacji odwrotnej p||~>q
z zero-jedynkowej definicji warunku koniecznego ~>.
Y=p+~q
p q Y=(p~>q)|
B1: 1~>1 1 | p~~> q= p* q=1 -zbiory p i q mają (=1) element wspólny
A1’: 1~>0 1 | p~~>~q= p*~q=1 - p i ~q mają (=1) element wspólny ~~>
B2: 0~>0 1 |~p~~>~q=~p*~q=1 - ~p i ~q mają (=1) element wspólny ~~>
B2’: 0~>1 0 |~p~~> q=~p* q=0 - ~p i q nie mają (=0) elem. wspólnego
1 2 3
|
Uwaga:
Indeksowanie linii w poniższej analizie jest zgodne z symboliczną tabelą prawdy implikacji odwrotnej p|~>q przedstawionej w tabeli IO wyżej.
Krok 2
Fałszywy (=0) kontrprzykład w linii B2’:
B2’: ~p~~>q=~p*q=0
wymusza prawdziwy (=1) warunek wystarczający w linii B2 (i odwrotnie):
B2: ~p=>~q =1
Zajście ~p jest (=1) wystarczające => dla zajścia ~q wtedy i tylko wtedy gdy zbiór ~p jest podzbiorem => zbioru ~q
Krok 3
Prawo Kubusia:
B2: ~p=>~q = B1: p~>q =1
Na mocy prawa Kubusia, prawdziwy (=1) warunek wystarczający w linii B2:
B2: ~p=>~q=1
wymusza prawdziwy (=1) warunek konieczny ~> w linii B1:
B1: p~>q=1 (i odwrotnie)
Krok 4
Prawdziwy kontrprzykład w linii A1’:
A1’: p~~>~q = p*~q=1
wymusza fałszywy warunek wystarczający => w linii A1:
A1: p=>q =0
Zajście p nie jest (=0) wystarczające => dla zajścia q wtedy i tylko wtedy gdy zbiór p nie jest podzbiorem q
Stąd mamy dowód, iż spełniona jest definicja implikacji odwrotnej p|~>q (tabela IO) bo:
B1: p~>q =1
oraz:
A1: p=>q =0
Na mocy prawa Sowy mamy dowód, iż spełniona jest definicja operatora implikacji odwrotnej p||~>q dająca odpowiedź na pytanie o p (kolumna A1B1) oraz na pytanie o ~p (kolumna A2B2)
Kod: |
IO1
Symboliczna definicja operatora implikacji odwrotnej p||~>q
A1B1:
Co może się wydarzyć jeśli zajdzie p?
B1: p~> q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
A1’: p~~>~q=1 - kontrprzykład A1’ dla A1: p=>q=0 musi być prawdą
A2B2:
Co może się wydarzyć jeśli zajdzie ~p?
B2: ~p=>~q =1 - zajście ~p jest (=1) wystarczające => dla zajścia ~q
B2’:~p~~>q =0 - kontrprzykład B2’ dla B2:~p=>~q=1 musi być fałszem
Gdzie:
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
38.2 Geneza wynikowych zer i jedynek w operatorze implikacji odwrotnej p||~>q
Kod: |
IO
Implikacja odwrotna p|~>q:
A1: p=>q =0 - p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - p jest (=1) konieczne ~> dla zajścia q
A1B1: p|~>q = ~(A1: p=>q)*(B1: p~>q) = ~(0)*1=1*1=1
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji odwrotnej p|~>q
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q =0 = 2:~p~>~q =0 [=] 3: q~>p =0 = 4:~q=>~p =0
A': 1: p~~>~q=1 [=] 4:~q~~>p =1
## ## ## ##
B: 1: p~>q =1 = 2:~p=>~q =1 [=] 3: q=>p =1 = 4:~q~>~p =1
B': 2:~p~~>q =0 [=] 3: q~~>~p=0
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Operator implikacji odwrotnej p||~>q to odpowiedź na dwa pytania:
Kolumna A1B1:
Co może się wydarzyć jeśli zajdzie p?
Kolumna A2B2:
Co może się wydarzyć jeśli zajdzie ~p?
W punkcie 38.1.2 dowiedzieliśmy się skąd bierze się zero-jedynkowa definicja warunku koniecznego ~>:
p~>q = p+~q
Kod: |
T3
Zero-jedynkowa definicja warunku koniecznego ~>
dla potrzeb rachunku zero-jedynkowego
p q Y=(p~>q)=p+~q
B1: 1~>1 1
A1’: 1~>0 1
B2: 0~>0 1
B2’: 0~>1 0
1 2 3
Do łatwego zapamiętania:
p~>q=0 <=> p=0 i q=1
Inaczej:
p~>q=1
Definicja warunku koniecznego ~> w spójniku „lub”(+):
p~>q =p+~q
|
Natomiast w punkcie 38.1.3 poznaliśmy algorytm działania odwrotnego, czyli w kierunku od zero-jedynkowej definicji warunku koniecznego p~>q=p+~q do symbolicznej definicji operatora implikacji odwrotnej p||~>q
Kod: |
IO1
Symboliczna definicja operatora implikacji odwrotnej p||~>q
A1B1:
Co może się wydarzyć jeśli zajdzie p?
B1: p~> q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
A1’: p~~>~q=1 - kontrprzykład A1’ dla A1: p=>q=0 musi być prawdą
A2B2:
Co może się wydarzyć jeśli zajdzie ~p?
B2: ~p=>~q =1 - zajście ~p jest (=1) wystarczające => dla zajścia ~q
B2’:~p~~>q =0 - kontrprzykład B2’ dla B2:~p=>~q=1 musi być fałszem
Gdzie:
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Definicja twierdzenia matematycznego:
Twierdzenie matematyczne p=>q to spełniony warunek wystarczający => w kierunku od p do q
p=>q =1
Zajście p jest (=1) warunkiem wystarczającym => dla zajścia q wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q
W tabeli IO1 z twierdzeniem matematycznym mamy do czynienia w linii B2.
B2.
Jeśli zajdzie ~p to na 100% => zajdzie ~q
~p=>~q =1
Zajście ~p jest warunkiem wystarczającym => dla zajścia ~q wtedy i tylko wtedy gdy zbiór ~p jest podzbiorem => zbioru ~q
W matematyce łatwiej dowodzi się relacji podzbioru p=>q gdy p i q nie są zaprzeczone, co łatwo osiągamy korzystając z prawa kontrapozycji, które każdy matematyk zna.
Prawo kontrapozycji:
B2: ~p=>~q = B3: q=>p =1
Gdzie:
B3: q=>p - matematyczne twierdzenie odwrotne w stosunku do twierdzenia prostego A1: p=>q
Zauważmy że:
Udowadniając prawdziwość warunku wystarczającego w linii B2:
B2: ~p=>~q =1
automatycznie udowadniamy:
1.
Na mocy definicji kontrprzykładu prawdziwość warunku wystarczającego B2: ~p=>~q =1 wymusza fałszywość kontrprzykładu B2’ (i odwrotnie):
B2’: ~p~~>q=0 - kontrprzykład B2’ dla prawdziwego B2: ~p=>~q=1 musi być fałszem
2.
Prawo Kubusia:
B2:~p=>~q = B1: p~>q
Na mocy prawa Kubusia prawdziwość warunku wystarczającego B2: ~p=>~q =1 wymusza prawdziwość warunku koniecznego B1 w kolumnie A1B1 (i odwrotnie)
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
KONIEC!
Nic więcej z udowodnionego warunku wystarczającego B2:~p=>~q =1 nie wynika.
Zauważmy, że z udowodnionej prawdziwości warunku wystarczającego B2:~p=>~q=1 w żaden sposób nie wynika prawdziwość kontrprzykładu w linii A1’:
A1’: p~~>~q=1 - kontrprzykład A1’ dla A1: p=>q=0 musi być prawdą
Dla udowodnienia prawdziwości kontrprzykładu w linii A1’ musimy udowodnić fałszywość warunku wystarczającego A1: p=>q =0
A1.
Jeśli zajdzie p to na 100% => zajdzie q
p=>q =0
Czytamy:
Fałszem jest (=0), iż zajście p jest wystarczające => dla zajścia q wtedy i tylko wtedy gdy zbiór p nie jest (=0) podzbiorem => zbioru q.
Zauważmy że:
B3: q=>p to matematyczne twierdzenie odwrotne w stosunku do twierdzenia prostego A1: p=>q
Na mocy definicji zachodzi:
Twierdzenie proste A1: p=>q ## Twierdzenie odwrotne B3: q=>p
Gdzie:
## - twierdzenia różne na mocy definicji (co doskonale widać w tabeli IO)
p i q w zdaniach B1, A1’, B2 i B2’ musi być tymi samymi p i q, inaczej błąd podstawienia.
Wnioski:
1.
Jedynkę w linii A1’ mamy prawo postawić wtedy i tylko wtedy gdy udowodnimy fałszywość matematycznego twierdzenia prostego A1: p=>q=0 w stosunku do udowodnionego twierdzenia odwrotnego B3: q=>p=1
2.
Alternatywnie jedynkę w linii A1’ udowadniamy pokazując jeden element wspólny ~~> zbiorów p i ~q
A1’: p~~>~q = p*~q=1 - istnieje (=1) element wspólny ~~> zbiorów p i ~q
Alternatywny sposób udowodnienia jedynki w punkcie A1’ jest prosty, ale ten dowód ma zero wspólnego z udowodnionym warunkiem wystarczającym w linii B2:~p=>~q.
W aktualnie obowiązującej logice matematycznej ziemskich matematyków nie jest widoczny jakikolwiek warunek wystarczający bowiem obligatoryjnie stosowane jest tu prawo eliminacji warunku wystarczającego, poprawne również w algebrze Kubusia:
B1: p~>q = B2:~p=>~q = B3: q=>p = p+~q
gdzie o żadnym warunku wystarczającym =>, czy też koniecznym ~> mowy być nie może.
Warunek wystarczający B2: ~p=>~q z algebry Kubusia w ziemskiej logice matematycznej nosi nazwę implikacji, co nie ma nic wspólnego z pojęciami implikacja prosta p|=>q i implikacja odwrotna p||~>q z algebry Kubusia.
38.2.1 Prawo matematycznego głąba
Prawo eliminacji implikacji w ziemskiej logice matematycznej:
B1: p~>q = B2:~p=>~q = B3: q=>p = p+~q
Dowód iż definicja ziemskiej implikacji => nie ma nic wspólnego z warunkiem wystarczającym => w rozumieniu algebry Kubusia to aktualnie obowiązująca definicja ziemskiej implikacji =>, podana przez Macjana.
http://www.sfinia.fora.pl/forum-kubusia,12/elementarz-algebry-boole-a-irbisol-macjan-str-10,2605-240.html#55877
@Macjan
Zrozum - treść zdania, czyli to, o czym ono mówi, nie może w żaden sposób wpływać na jego zapis symboliczny. Zdanie "... i ..." jest koniunkcją niezależnie od tego, co wstawimy w wykropkowane miejsca. Tak samo zdanie "Jeśli ... to ..." jest implikacją.
Potwierdzenie definicji Macjana przez wykładowcę logiki matematycznej na AGH Kraków.
[link widoczny dla zalogowanych]
@Wykład logiki matematycznej na AGH
Elementy logiki matematycznej
Logika matematyczna zajmuje się zdaniami logicznymi.
Zdanie logiczne, to zdanie gramatyczne orzekające, któremu można przypisać jedną z dwóch ocen (wartość) Prawda (TRUE, 1); Fałsz (FALSE, 0 ) (czyli zdania logiczne podlegają wartościowaniu). Nie są zdaniami logicznymi zdania pytające i rozkazujące.
Funktory logiczne (spójniki):
- jednoargumentowe (wystarczy jedno zdanie)
negacja - ~ - (nieprawda, że ...)
- dwuargumentowe (wymagają dwóch zdań) np.
koniunkcja - * - (...i... )
alternatywa - + - (...lub...)
implikacja - => - (jeżeli ..., to...)
równoważność - <=> - (...wtedy i tylko wtedy, gdy...)
Zero-jedynkowe definicje dwuargumentowych spójników logicznych to:
Kod: |
p q | p*q | p+q | p=>q | p<=>q
1 1 | 1 | 1 | 1 | 1
1 0 | 0 | 1 | 0 | 0
0 1 | 0 | 1 | 1 | 0
0 0 | 0 | 0 | 1 | 1
|
@Rafal3006
Jak widzimy, w wykropkowane miejsca możemy wstawiać cokolwiek, byleby temu „cokolwiek” dało się przypisać pojęcie prawdy (=1) albo fałszu (=0), co lokuje nas w definicji implikacji materialnej rodem z Klasycznego Rachunku Zdań.
Jak udowodniliśmy w punkcie 38.2 udowodnienie prawdziwości matematycznego twierdzenia odwrotnego B3:
B3: q=>p = B2:~p=>~q
w żaden sposób nie wymusza rzeczywistej jedynki w punkcie A1’.
Kod: |
IO1
Symboliczna definicja operatora implikacji odwrotnej p||~>q
A1B1:
Co może się wydarzyć jeśli zajdzie p?
B1: p~> q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
A1’: p~~>~q=x - udowodnienie prawdziwości B2 nie wymusza jedynki w A1’!
A2B2:
Co może się wydarzyć jeśli zajdzie ~p?
B2: ~p=>~q =1 - zajście ~p jest (=1) wystarczające => dla zajścia ~q
B2’:~p~~>q =0 - kontrprzykład B2’ dla B2:~p=>~q=1 musi być fałszem
Gdzie:
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Definicja matematycznego twierdzenia odwrotnego B3:
B3: q=>p = B2: ~p=>~q = B1: p~>q
Zajście q jest (=1) warunkiem wystarczającym => dla zajścia p wtedy i tylko wtedy gdy zbiór q jest (=1) podzbiorem => zbioru p
Przykład spełnionego warunku koniecznego ~> w linii B1.
B1.
Jeśli zwierzę ma cztery łapy (4L) to może ~> być psem (P)
4L~>P=1
To samo w zapisie formalnym:
p~>q =1
Na mocy prawa Kłapouchego nasz punkt odniesienia to:
p=P=4L=[pies, słoń ..] - zbiór zwierząt z czterema łapami
q=P=[pies] - jednoelementowy zbiór P=[pies]
Czytamy:
Posiadanie czterech łap (4L) jest warunkiem koniecznym ~> by być psem (P), wtedy i tylko wtedy gdy zbiór zwierząt z czterema łapami 4L=[pies, słoń ..] jest nadzbiorem ~> zbioru jednoelementowego P=[pies], co każdy 5-cio latek widzi.
Udowadniając prawdziwość warunku koniecznego B1: 4L~>P=1 automatycznie udowadniamy:
1.
Prawdziwość warunku wystarczającego B2: ~4L=>~P =1 bo prawo Kubusia:
Prawo Kubusia:
B1: 4L~>P = B2: ~4L=>~P =1
To samo w zapisie formalnym:
B1: p~>q = B2: ~p=>~q
B2.
Jeśli zwierzę nie ma czterech łap (~4L) to na 100% => nie jest psem (~P)
~4L=>~P =1
Brak czterech łap (~4L) jest warunkiem wystarczającym => by nie być psem (~P) bo zbiór zwierząt nie mający czterech łap ~4L=[kura ..] jest podzbiorem => zbioru zwierząt nie będących psami ~P=[słoń, kura ..]
Relacji podzbioru => nie musimy tu udowadniać na mocy prawa Kubusia, choć akurat tu widać to gołym okiem.
2.
Prawdziwość warunku wystarczającego B2: ~4L=>~P=1 wymusza fałszywość kontrprzykładu B2’
B2’
Jeśli zwierzę nie ma czterech łap (~4L) to może ~~> być psem (P)
~4L~~>P = ~4L*P =0
To samo w zapisie formalnym:
~p~~>q=~p*q =0
Nie istnieje (=0) wspólny element zbioru ~4L=[kura..] oraz zbioru P=[pies], co każdy 5-cio latek widzi
Zauważmy, że udowadniając prawdziwość warunku koniecznego B1: 4L~>P =1 w żaden sposób nie dowodzimy jedynki w punkcie A1’
Wnioski:
1.
Jedynkę w linii A1’ mamy prawo postawić wtedy i tylko wtedy gdy udowodnimy fałszywość twierdzenia B2: ~4L=>~P =0
2.
Alternatywnie jedynkę w linii A1’ udowadniamy pokazując jeden element wspólny ~~> zbiorów p i ~q
A1’: p~~>~q = p*~q=1 - Istnieje (=1) element wspólny ~~> zbiorów p i ~q
Nasz przykład:
A1’: 4L~~>~P=4L*~P =1
Istnieje (=1) wspólny element zbiorów 4L=[pies, słoń ..] praz ~P=[słoń, kura ..] np. słoń.
Alternatywny sposób udowodnienia jedynki w punkcie A1’ jest prosty, ale ten dowód ma zero wspólnego z udowodnionym warunkiem wystarczającym w linii B2:~p=>~q.
W aktualnie obowiązującej logice matematycznej ziemskich matematyków nie jest widoczny jakikolwiek warunek wystarczający bowiem obligatoryjnie stosowane jest tu prawo eliminacji warunku wystarczającego, poprawne również w algebrze Kubusia:
B1: p~>q = B2:~p=>~q = B3: q=>p = p+~q
gdzie o żadnym warunku wystarczającym =>, czy też koniecznym ~> mowy być nie może.
Warunek wystarczający B2:~p=>~q z algebry Kubusia w ziemskiej logice matematycznej nosi nazwę implikacji, co nie ma nic wspólnego z pojęciami implikacja prosta p|=>q i implikacja odwrotne p||~>q z algebry Kubusia.
Stąd mamy:
Prawo Matematycznego super-głąba:
Matematycznym super-głąbem jest każdy fanatyk KRZ który korzysta z ziemskiej definicji implikacji podanej przez Macjana, potwierdzonej przez wykładowcę logiki „matematycznej” na AGH, która w zdaniu warunkowym „Jeśli p to q” nie wymaga badania jakiejkolwiek relacji w zbiorach między poprzednikiem p i następnikiem q.
Prawo matematycznego głąba:
Matematycznym głąbem jest każdy matematyk który po udowodnieniu warunku wystarczającego B2: ~p=>~q =1 (to matematycy potrafią) postawi przyniesioną w teczce jedynkę w linii A1’.
Niestety, na dzień dzisiejszy wszyscy matematycy są głąbami, bo wszyscy potrafią poprawnie udowodnić matematyczne twierdzenie proste B2: ~p=>~q=1 po skorzystaniu z prawa kontrapozycji:
B2: ~p=>~q = B3: q=>p
stawiając jednak wyjętą z dupy (nie popartą dowodem) jedynkę w punkcie A1’.
38.3 Operator implikacji odwrotnej p||~>q vs algebra Boole’a
Zacznijmy od podstawowej definicji implikacji odwrotnej p|~>q, gdzie w kolumnie A1B1 mamy odpowiedź na pytanie co może się wydarzyć jeśli zajdzie p?
Kod: |
IO
Implikacja odwrotna p|~>q:
A1: p=>q =0 - p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - p jest (=1) konieczne ~> dla zajścia q
A1B1: p|~>q = ~(A1: p=>q)*(B1: p~>q) = ~(0)*1=1*1=1
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji odwrotnej p|~>q
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q =0 = 2:~p~>~q =0 [=] 3: q~>p =0 = 4:~q=>~p =0
A': 1: p~~>~q=1 [=] 4:~q~~>p =1
## ## ## ##
B: 1: p~>q =1 = 2:~p=>~q =1 [=] 3: q=>p =1 = 4:~q~>~p =1
B': 2:~p~~>q =0 [=] 3: q~~>~p=0
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Prawa Sowy dla implikacji odwrotnej p|~>q:
Prawdziwość dowolnego zdania w linii Bx wymusza prawdziwość pozostałych zdań w tej linii
Fałszywość dowolnego zdania w linii Ax wymusza fałszywość pozostałych zdań w tej linii
W algebrze Kubusia zachodzą tożsamości w zbiorach:
Warunek wystarczający p=>q = relacja podzbioru p=>q
p=>q =1 <=> zbiór p jest podzbiorem q
Inaczej
p=>q =0
##
Warunek konieczny p~>q = relacja nadzbioru p~>q
p~>q =1 <=> zbiór p jest (=1) nadzbiorem ~> q
Inaczej:
p~>q =1
Gdzie:
## - różne na mocy definicji (patrz tabela IP)
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
Stąd mamy:
A1B1:
Definicja implikacji odwrotnej p|~>q w zbiorach:
Zbiór p jest nadzbiorem ~> zbioru q i nie jest tożsamy ze zbiorem q
A1: p=>q =0 - zbiór p nie jest (=0) podzbiorem => zbioru q
B1: p~>q =1 - zbiór p jest (=1) nadzbiorem ~> zbioru q
p|~>q = ~(A1: p=>q)*(B1: p~>q) = ~(0)*1 = 1*1 =1
Czytamy:
Definicja implikacji odwrotnej p|~>q w zbiorach jest spełniona (=1) wtedy i tylko wtedy gdy zbiór p jest nadzbiorem ~> zbioru q (B1), ale nie jest podzbiorem => zbioru q (A1)
Wspólna dziedzina D musi być szersza od sumy logicznej zbiorów p+q bowiem wtedy i tylko wtedy wszystkie zbiory p, q, ~p, ~q, będą niepuste.
Dowód w diagramie DIO niżej.
Na mocy powyższej definicji rysujemy diagram implikacji odwrotnej p|~>q w zbiorach.
Kod: |
DIO
Diagram implikacji odwrotnej p|~>q w zbiorach
----------------------------------------------------------------------
| q | ~q |
|---------------------|----------------------------------------------|
| p | ~p |
|-------------------------------------------|------------------------|
| B1: p~>q=1 (p*q=1) | A1’: p~~>~q=p*~q=1 | B2:~p=>~q=1 (~p*~q=1) |
----------------------------------------------------------------------
| Dziedzina: |
| D =B1: p*q+ A1’: p*~q+ B2:~p*~q (suma logiczna zbiorów niepustych) |
| B2’: ~p~~>q=~p*q=[] - zbiór pusty |
|--------------------------------------------------------------------|
|Diagram implikacji odwrotnej p|~>q w zbiorach |
----------------------------------------------------------------------
Gdzie:
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
Prawo Słonia:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>
|
Operator implikacji odwrotnej p||~>q to odpowiedź na dwa pytania:
Kolumna A1B1:
Co może się wydarzyć jeśli zajdzie p?
Kolumna A2B2:
Co może się wydarzyć jeśli zajdzie ~p?
Stąd mamy:
Kod: |
IO1
Symboliczna definicja operatora implikacji odwrotnej p||~>q
A1B1:
Co może się wydarzyć jeśli zajdzie p?
B1: p~> q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
A1’: p~~>~q=1 - kontrprzykład A1’ dla A1: p=>q=0 musi być prawdą
A2B2:
Co może się wydarzyć jeśli zajdzie ~p?
B2: ~p=>~q =1 - zajście ~p jest (=1) wystarczające => dla zajścia ~q
B2’:~p~~>q =0 - kontrprzykład B2’ dla B2:~p=>~q=1 musi być fałszem
Gdzie:
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Zapiszmy symboliczną definicję operatora implikacji odwrotnej p||~>q kodowaną zarówno spójnikami elementarnymi zdań warunkowych „Jeśli p to q” (=>, ~>, ~~>) jak i definicją elementu wspólnego zbiorów ~~>.
Definicja elementu wspólnego ~~> zbiorów
p~~>q =p*q =1 wtedy i tylko wtedy gdy istnieje (=1) wspólny element ~~> zbiorów p i q
Inaczej:
p~~>q=p*q =0
Kod: |
IO2
Symboliczna definicja operatora implikacji odwrotnej p||~>q
z uwzględnieniem definicji elementu wspólnego zbiorów p~~>q=p*q
Y
B1: p~> q =1 = p* q =1 -jeśli p~>q=1 to istnieje(=1) wspólny element p*q=1
A1’: p~~>~q=1 = p*~q =1 -istnieje (=1) wspólny element zbiorów p*~q
B2: ~p=>~q =1 =~p*~q =1 -jeśli ~p=>~q=1 to istnieje wspólny element ~p*~q=1
B2’:~p~~>q =0 =~p* q =0 -nie istnieje (=0) wspólny element zbiorów ~p i q
1 2 3 4 5 6
|
Komentarz:
Linia B1:
Jeśli spełniony jest warunek konieczny B1:
B1: p~>q =1 - zbiór p jest nadzbiorem ~> zbioru q (diagram DIO)
to iloczynem logicznym zbiorów p i q to jest zbiór q, czyli zbiór p*q jest zbiorem niepustym (=1)
Linia A1’:
Fałszywy warunek wystarczający A1: p=>q=0 wymusza prawdziwy kontrprzykład A1’ (i odwrotnie)
A1’: p~~>~q = p*~q =1 - istnieje (=1) wspólny element zbiorów p i ~q (diagram DIO)
Linia B2:
Prawo Kubusia:
B1: p~>q = B2:~p=>~q
Na mocy prawa Kubusia spełniony warunek konieczny w punkcie B1: p~>q=1 wymusza spełniony warunek wystarczający B2: ~p=>~q w punkcie B2
Jeśli spełniony jest warunek wystarczający B2:
B2: ~p=>~q =1 - bo ~p jest podzbiorem => ~q (diagram DIO)
to iloczynem logicznym zbiorów ~p i ~q jest zbiór ~p, czyli zbiór ~p*~q jest zbiorem niepustym (=1)
Linia B2’:
Prawdziwy warunek wystarczający w punkcie B2: ~p=>~q =1 wymusza fałszywy kontrprzykład B2’ (i odwrotnie)
B2’: ~p~~>q = ~p*q =0 - nie istnieje (=0) wspólny element zbiorów ~~> ~p i q (diagram DIO)
Fakt 1:
Zauważmy, że w analizie operatora implikacji odwrotnej p||~>q zbiory niepuste i rozłączne to: B1, A1’, B2
Dowód rozłączności tych zbiorów (diagram DIO):
(B1: p*q)*(A1’: p*~q) =[] - bo q*~q=[]
(B1: p*q)*(B2: ~p*~q] =[] - bo p*~p=[]
(B2: ~p*~q)*(A1’: p*~q) =[] - bo p*~p=[]
cnd
Fakt 2:
Z faktu 1 wynika, że dziedziną D w tabeli IO2 jest suma logiczna zbiorów niepustych i rozłącznych:
D = B1: p*q + A1’: p*~q + B2: ~p*~q (diagram DIO)
Funkcja logiczna Y opisująca tabelę symboliczną 456 w tabeli prawdy IO2 to:
Y = B1: p*q + A1’: p*~q + B2: ~p*~q
co w logice jedynek (bo równanie alternatywno-koniunkcyjne) oznacza:
Y=1 <=> B1: p=1 i q=1 lub A1’: p=1 i ~q=1 lub B2:~p=1 i ~q=1
Zauważmy, że jeśli dowolny składnik sumy logicznej w równaniu alternatywno-koniunkcyjnym przyjmie wartość logiczną miękkiej jedynki to wymusi ona miękkie zera w pozostałych składnikach sumy logicznej.
Definicja miękkiej jedynki I miękkiego zera:
Miękka jedynka i miękkie zero to wartościowanie sumy logicznej opisującej zbiory niepuste i rozłączne dla konkretnego składnika sumy logicznej.
Dowód:
Załóżmy, że wylosowaliśmy element A1’:
Y(A1’) = A1’: p*~q
co w logice jedynek oznacza:
Y(A1’)=1 <=> A1’: p=1 i ~q=1
Na mocy prawa Prosiaczka mamy:
(p=1)=(~p=0)
(~q=1)=(q=0)
Dla tego przypadku (iterowania) Y(A1’) mamy:
Y = B1: p*q + A1’: p*~q + B2: ~p*~q
Y(A1’) = B1: 1*0 + A1’: 1*1 + B2: 0*1 = B1: 0 + A1’: 1 + B2: 0
Y(A1’) = A1’: p*~q
cnd
Wniosek:
Doskonale tu widać sens definicji miękkich jedynek i miękkich zer w logice matematycznej.
Wnioski z Fakt 1 i Fakt 2:
Linia B1:
Jeśli z dziedziny D wylosujemy element należący do zbioru B1: p*q (miękka jedynka) to dla tego losowania linie A1’ i B2 będą zbiorami pustymi [] (miękkie zera)
Linia A1’:
Jeśli z dziedziny D wylosujemy element należący do zbioru A1’: p*~q (miękka jedynka) to dla tego losowania linie B1 i B2 będą zbiorami pustymi [] (miękkie zera)
Linia B2:
Jeśli z dziedziny D wylosujemy element należący do zbioru B2: ~p*~q (miękka jedynka) to dla tego losowania linie B1 i A1’ będą zbiorami pustymi [] (miękkie zera)
Innymi słowy:
Z dziedziny D nie możemy wylosować elementu który by należał jednocześnie do dwóch dowolnych zbiorów rozłącznych B1, A1’, B2.
38.4 Przykład implikacji odwrotnej 4L|~>P
Definicja implikacji odwrotnej p|~>q:
Implikacja odwrotna p|~>q w logice dodatniej (bo q) to spełniony wyłącznie warunek konieczny ~> między tymi samymi punktami i w tym samym kierunku.
A1: p=>q =0 - p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - p jest (=1) konieczne ~> dla zajścia q
Stąd:
A1B1: p|~>q = ~(A1: p=>q)*(B1: p~>q) = ~(0)*1=1*1=1
Czytamy:
Implikacja odwrotna p|~>q w logice dodatniej (bo q) jest spełniona (=1) wtedy i tylko wtedy gdy zajście p jest konieczne ~> dla zajścia q (B1: p~>q=1), ale nie jest wystarczające => dla zajścia q (A1: p=>q=0)
Kod: |
IO
Implikacja odwrotna p|~>q:
A1: p=>q =0 - p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - p jest (=1) konieczne ~> dla zajścia q
A1B1: p|~>q = ~(A1: p=>q)*(B1: p~>q) = ~(0)*1=1*1=1
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji odwrotnej p|~>q
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q =0 = 2:~p~>~q =0 [=] 3: q~>p =0 = 4:~q=>~p =0
A': 1: p~~>~q=1 [=] 4:~q~~>p =1
## ## ## ##
B: 1: p~>q =1 = 2:~p=>~q =1 [=] 3: q=>p =1 = 4:~q~>~p =1
B': 2:~p~~>q =0 [=] 3: q~~>~p=0
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Prawa Sowy w implikacji odwrotnej p|~>q:
Prawdziwość dowolnego zdania w serii Bx wymusza prawdziwość pozostałych zdań w tej linii
Fałszywość dowolnego zdania serii Ax wymusza fałszywość pozostałych zdań w tej linii
Weźmy zdanie wypowiedziane pasujące do tabeli implikacji odwrotnej p|~>q.
B1.
Jeśli zwierzę ma cztery łapy (4L) to może ~> być psem (P)
4L~>P =1
Na mocy prawa Kłapouchego nasz punkt odniesienia to:
p~>q =1
p=4L=[pies, słoń ..] - zbiór zwierząt z czterema łapami 4L=[pies, słoń ..]
q=P=[pies] - jednoelementowy zbiór P=[pies]
Bycie zwierzątkiem z czterema łapami (4L) jest warunkiem koniecznym ~> by być psem (P) wtedy i tylko wtedy gdy zbiór zwierząt z czterema łapami 4L=[pies, słoń ..] jest nadzbiorem ~> jednoelementowego zbioru P=[pies] co każdy 5-cio latek widzi.
Z tabeli IO widać, że aby być pewnym iż mamy do czynienia z implikacją odwrotną p|~>q musimy udowodnić fałszywość dowolnego zdania z linii Ax
Wybieramy zdanie A1.
A1.
Jeśli zwierzę ma cztery łapy (4L) to na 100% => jest psem (P)
4L=>P =0
To samo w zapisie formalnym:
p=>q =0
Bycie zwierzątkiem z czterema łapami (4L) nie jest (=0) warunkiem wystarczającym => do tego by być psem (P) bo zbiór zwierząt z czterema łapami 4L=[pies, słoń..] nie jest (=0) podzbiorem => zbioru jednoelementowego P=[pies], co każdy 5-cio latek widzi.
Stąd mamy dowód iż zdanie wypowiedziane B1: 4L~>P jest częścią implikacji odwrotnej 4L|~>P
Definicja implikacji odwrotnej 4L|~>P:
Implikacja odwrotna 4L|~>P w logice dodatniej (bo P) to spełniony wyłącznie warunek konieczny ~> między tymi samymi punktami i w tym samym kierunku.
A1: 4L=>P =0 - bycie zwierzęciem z czterema łapami (4L) nie jest (=0) wystarczające dla bycia psem (P)
B1: p~>q =1 - bycie zwierzęciem z czterema łapami (4L) jest (=1) konieczne ~> dla bycia psem (P)
Stąd:
A1B1: 4L|~>P = ~(A1: 4L=>P)*(B1: 4L~>P) = ~(0)*1=1*1=1
38.4.1 Operator implikacji odwrotnej 4L||~>P
Diagram implikacji odwrotnej p|~>q w zbiorach wyprowadzony w punkcie 38.3
Kod: |
DIO
Diagram implikacji odwrotnej p|~>q w zbiorach
----------------------------------------------------------------------
| q | ~q |
|---------------------|----------------------------------------------|
| p | ~p |
|-------------------------------------------|------------------------|
| B1: p~>q=1 (p*q=1) | A1’: p~~>~q=p*~q=1 | B2:~p=>~q=1 (~p*~q=1) |
----------------------------------------------------------------------
| Dziedzina: |
| D =B1: p*q+ A1’: p*~q+ B2:~p*~q (suma logiczna zbiorów niepustych) |
| B2’: ~p~~>q=~p*q=[] - zbiór pusty |
|--------------------------------------------------------------------|
|Diagram implikacji odwrotnej p|~>q w zbiorach |
----------------------------------------------------------------------
Gdzie:
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
Prawo Słonia:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>
|
Operator implikacji odwrotnej p||~>q to odpowiedź na dwa pytania:
Kolumna A1B1:
Co może się wydarzyć jeśli zajdzie p?
Kolumna A2B2:
Co może się wydarzyć jeśli zajdzie ~p?
Mamy nasze zdanie wypowiedziane B1.
B1.
Jeśli zwierzę ma cztery łapy (4L) to może ~> być psem (P)
4L~>P =1
Na mocy prawa Kłapouchego nasz punkt odniesienia to:
p~>q =1
Gdzie:
p=4L=[pies, słoń ..] - zbiór zwierząt z czterema łapami 4L=[pies, słoń ..]
q=P=[pies] - jednoelementowy zbiór P=[pies]
Bycie zwierzątkiem z czterema łapami (4L) jest warunkiem koniecznym ~> by być psem (P) wtedy i tylko wtedy gdy zbiór zwierząt z czterema łapami 4L=[pies, słoń ..] jest nadzbiorem ~> jednoelementowego zbioru P=[pies] … co każdy 5-cio latek widzi.
Przyjmujemy dziedzinę:
ZWZ=[pies, słoń, kura ..] - zbiór wszystkich zwierząt
Obliczamy zbiory ~p i ~q definiowane jako uzupełnienie zbiorów p i q do wspólnej dziedziny ZWZ
~p=~4L=[ZWZ-4L] = [kura ..] - zbiór wszystkich zwierząt ZWZ=[pies, słoń, kura..] z wykluczeniem zbioru zwierząt mających cztery łapy 4L=[pies, słoń ..]
~q=~P=[ZWZ-P]=[słoń, kura ..] - zbiór wszystkich zwierząt ZWZ=[pies, słoń, kura..] z wykluczeniem jednoelementowego zbioru P=[pies]
Wszystkie zbiory niepuste {p, q, ~p, ~q} potrzebne do dalszej analizy to:
p=4L=[pies, słoń ..] - zbiór zwierząt z czterema łapami 4L=[pies, słoń ..]
q=P=[pies] - jednoelementowy zbiór P=[pies]
~p=~4L=[kura ..] - zbiór wszystkich zwierząt ZWZ z wykluczeniem zbioru zwierząt z czterem łapami
~q=~P=[słoń, kura ..] - zbiór wszystkich zwierząt ZWZ z wykluczeniem [psa]
Analiza operatora implikacji odwrotnej p||~>q przez wszystkie możliwe przeczenia p i q:
Kolumna A1B1:
Co może się wydarzyć jeśli ze zbioru wszystkich zwierząt wylosujemy zwierzę z czterema łapami (4L)?
Z kolumny A1B1 odczytujemy:
B1.
Jeśli zwierzę ma cztery łapy (4L) to może ~> być psem (P)
4L~>P =1
Na mocy prawa Kłapouchego nasz punkt odniesienia to:
p~>q =1
Bycie zwierzątkiem z czterema łapami (4L) jest warunkiem koniecznym ~> by być psem (P) wtedy i tylko wtedy gdy zbiór zwierząt z czterema łapami 4L=[pies, słoń ..] jest nadzbiorem ~> jednoelementowego zbioru P=[pies] … co każdy 5-cio latek widzi.
Zauważmy że:
Jeśli zbiór 4L=[pies, słoń ..] jest nadzbiorem ~> zbioru P=[pies] to na 100% istnieje wspólny element zbiorów 4L i P
B1: 4L~~>P = [pies, słoń ..]*[pies] =1 bo pies
To samo w zapisach formalnych:
B1: p~~>q=p*q =1 (diagram DI0)
Kontrprzykład A1’ dla fałszywego warunku wystarczającego A1: 4L=>P=0 musi być prawdą.
A1’
Jeśli zwierzę ma cztery łapy (4L) to może ~~> nie być psem (~P)
4L~~>~P = 4L*~P =[pies, słoń ..]*[słoń, kura..] =1 bo słoń
to samo w zapisie formalnym:
p~~>~q = p*~q =1 (diagram DIO)
Istnieje (=1) wspólny element zbiorów 4L=[pies, słoń ..] i ~P=[słoń, kura ..] np. słoń
Zauważmy, że:
1.
Zbiór 4L=[pies, słoń ..] nie jest (=0) podzbiorem => zbioru ~P=[słoń, kura..]
Dowód: pies jest w zbiorze 4L a nie ma go w zbiorze ~P
2.
Zbiór 4L=[pies, słoń ..] nie jest (=0) nadzbiorem ~> zbioru ~P=[słoń, kura..]
Dowód:
Kura jest w zbiorze ~P i nie ma jej w zbiorze 4L
.. a jeśli zwierzę nie ma czterech łap (~4L)?
Kolumna A2B2:
Co może się wydarzyć jeśli ze zbioru wszystkich zwierząt ZWZ wylosujemy zwierzę nie mające czterech łap (~4L)
Z kolumny A2b2 odczytujemy:
B2.
Jeśli zwierzą nie ma czterech łap (~4L) to na 100% => nie jest psem (~P)
~4L=>~P=1
To samo w zapisie formalnym:
B2: ~p=>~q =1 (diagram DIO)
Dowód „nie wprost”:
Spełnionej relacji podzbioru B2:~4L=>~P=1 nie musimy dowodzić, gwarantuje nam to prawo Kubusia:
B2: ~4L=>~P = B1: 4L~>P =1
Dowód „wprost”:
Brak czterech łap (~4L) jest (=1) warunkiem wystarczającym => by nie być psem (~P) wtedy i tylko wtedy gdy zbiór zwierząt nie mających czterech łap ~4L=[kura..] jest podzbiorem => zbioru zwierząt nie będących psem ~P=[słoń, kura..] - co każdy 5-cio latek widzi.
Zauważmy że:
Jeśli zbiór ~4L=[kura..] jest podzbiorem zbioru ~P=[słoń, kura..] na 100% istnieje wspólny element zbiorów ~4L i ~P
B2: ~4L~~>~P = [kura]*[słoń, kura..] =1 bo kura
LUB
B2’.
Jeśli zwierzę nie ma czterech łap (~4L) to może ~~> być psem (P)
~4L~~>P = ~4L*P = [kura..]*[pies] =0 - zbiory ~4L i P są rozłączne
to samo w zapisie formalnym:
~p~~>q = ~p*q =0 (diagram DIO)
Nie istnieje (=0) wspólny element zbiorów ~4L=[kura..] oraz P=[pies] bo zbiory te są rozłączne.
38.4.2 Operator implikacji odwrotnej 4L||~>P vs algebra Boole’a
Zapiszmy tabelę prawdy operatora implikacji odwrotnej 4L||~>P w powiązaniu z algebrą Boole’a
Kod: |
IO3
Symboliczna definicja operatora implikacji odwrotnej p||~>q
z uwzględnieniem definicji elementu wspólnego zbiorów p~~>q=p*q
Y=(B1: p~>q)= p+~q = B1: (p~>q)*A1’: p*~q+B2:~p*~q
B1: p~> q =1 = p* q =1 -jeśli p~>q=1 to istnieje(=1) wspólny element p*q=1
A1’: p~~>~q=1 = p*~q =1 -istnieje (=1) wspólny element zbiorów p*~q
B2: ~p=>~q =1 =~p*~q =1 -jeśli ~p=>~q=1 to istnieje wspólny element ~p*~q=1
B2’:~p~~>q =0 =~p* q =0 -nie istnieje (=0) wspólny element zbiorów ~p i q
1 2 3 4 5 6
Definicja operatora implikacji odwrotnej p||~>q dla naszego przykładu B1
Gdzie:
p=4L=[pies, słoń ..] - zbiór wszystkich zwierząt mających cztery łapy
q=P=[pies] - zbiór jednoelementowy P=[pies]
Y Y=(B1: 4L~>P)=P+~4L=B1: 4L*P+A1’: 4L*~P+B2:~4L*~P
B1: 4L~> P =1 = 4L* P =1 -jeśli 4L~>P=1 to istnieje wspólny element 4L*P=1
A1’: 4L~~>~P=1 = 4L*~P =1 -istnieje (=1) wspólny element 4L*~P =1
B2: ~4L=>~P =1 =~4L*~P =1 -jeśli ~4L=>~P=1 to istnieje(=1) element ~4L*~P=1
B2’:~4L~~>P =0 =~4L* P =0 -nie istnieje(=0) wspólny element zbiorów ~4L i P
1 2 3 4 5 6
|
Zero-jedynkową definicję warunku koniecznego B1: p~>q (123) otrzymujemy kodując tabelę symboliczną operatora implikacji odwrotnej p||~>q (123) względem linii B1: p~>q.
Jak to się robi wyjaśniliśmy w punkcie 38.1.2
Aktualna, ziemska logika „matematyczna” nie zna tabeli symbolicznej operatora implikacji odwrotnej p||~>q (123) wyrażonej spójnikami elementarnymi (=>, ~>, ~~>)
Ziemska logika matematyczna obligatoryjnie korzysta tu z prawa eliminacji warunku koniecznego, poprawnego również w algebrze Kubusia
B1: p~>q = p+~q
W tym momencie przechodzimy do algebry Boole’a zapisanej symbolicznie w kolumnach 456, która rozpoznaje tylko i wyłącznie pięć znaczków:
1 - prawda
0 - fałsz
(*) - spójnik „i”(*) z języka potocznego
(+) - spójnik „lub”(+) z języka potocznego
Zauważmy, że w algebrze Boole’a nie istnieją elementarne spójniki implikacyjne w zbiorach {=>, ~>, ~~>} dostępne w algebrze Kubusia:
1.
p=>q =1
Zajście p jest (=1) wystarczające => dla zajścia q
wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q
Inaczej:
p=>q =0
2.
p~>q =1
Zajście p jest (=1) konieczne ~> dla zajścia q
wtedy i tylko wtedy gdy zbiór p jest nadzbiorem ~> zbioru q
Inaczej:
p~>q =0
3.
p~~>q = p*q =1
Istnieje (=1) wspólny element zbiorów p i q
Inaczej:
p~~>q = p*q =[] =0
Idźmy zatem tropem ziemskiej logiki nie znającej definicji elementarnych spójników implikacyjnych {=>,~>, ~~>}
Dla dowodu iż w zdaniach warunkowych „Jeśli p to q” ziemska logika matematyczna nie ma najmniejszego pojęcia zarówno o warunku wystarczającym => jak i koniecznym ~> posłużymy się naszym przykładem B1: 4L|~>P
38.4.3 Prawo matematycznego jełopa w operatorze implikacji odwrotnej 4L||~>P
Równanie algebry Boole’a opisujące tabelę symboliczną 456 to:
Y = B1: 4L*P + A1’: 4L*~P + B2: ~4L*~P
Dziedzina dla funkcji logicznej Y to:
ZWZ - zbiór wszystkich zwierząt
I.
Losowanie B1:
Kod: |
IO3
Definicja operatora implikacji odwrotnej 4L||~>P dla naszego przykładu B1
Gdzie:
p=4L=[pies, słoń ..] - zbiór wszystkich zwierząt mających cztery łapy
q=P=[pies] - zbiór jednoelementowy P=[pies]
Y Y=(B1: 4L~>P)=P+~4L=B1: 4L*P+A1’: 4L*~P+B2:~4L*~P
B1: 4L~> P =1 = 4L* P =1 -jeśli 4L~>P=1 to istnieje wspólny element 4L*P=1
A1’: 4L~~>~P=1 = 4L*~P =1 -istnieje (=1) wspólny element 4L*~P =1
B2: ~4L=>~P =1 =~4L*~P =1 -jeśli ~4L=>~P=1 to istnieje(=1) element ~4L*~P=1
B2’:~4L~~>P =0 =~4L* P =0 -nie istnieje(=0) wspólny element zbiorów ~4L i P
1 2 3 4 5 6
|
Równanie algebry Boole’a opisujące tabelę symboliczną 456 to:
Y = B1: 4L*P + A1’: 4L*~P + B2: ~4L*~P
Załóżmy, że ze zbioru wszystkich zwierząt ZWZ wylosowaliśmy zwierzę mające cztery łapy (4L=1) i będące psem (P=1)
4L*P=[pies]
Dla tego losowania lądujemy w linii B1 (456):
B1: Y(B1)=4L*P=1*1=1
Na mocy prawa Prosiaczka mamy:
(4L=1)=(~4L=0)
(P=1)=(~P=0)
Podstawmy to do równania Y opisującego tabelę symboliczną algebry Boole’a 456:
Y(B1) = B1: (4L=1)*(P=1) + A1’: (4L=1)*(~P=0) + B2: (~4L=0)*(~P=0) = B1: 1 + A1’: 0 + B2: 0
Stąd mamy:
B1: Y(B1) = B1: 4L*P
Co w logice jedynek oznacza:
Y(B1)=1 <=> B1: 4L=1 i P=1
Jak widzimy dla zbioru zwierząt mających cztery łapy (4L=1) będących psami (P=1) wyłącznie funkcja cząstkowa Y(B1) będzie prawdą, pozostałe funkcje cząstkowe przyjmą wartość logiczną FAŁSZ (=0):
A1’: Y(A1’) =0 - w spójnikach implikacyjnych (123) zdanie A1’ będzie tu fałszem A1’: 4L~~>P =0
B2: Y(B2) =0 - w spójnikach implikacyjnych (123) zdanie B2 będzie tu fałszem B2: ~4L=>~P =0
W przełożeniu na analizę w spójnikach implikacyjnych 123 zdanie B1 będzie prawdziwe tylko i wyłącznie dla zwierzęcia mającego cztery łapy (4L) które jest psem (P)
Nasza funkcja cząstkowa Y(B1) przyjmie brzmienie:
B1.
Jeśli zwierzę ma cztery łapy (4L) to może ~> być psem (P)
4L~>P =1
To samo w zapisie formalnym:
B1: p~>q =1 (diagram DIO)
Zdanie B1 jest prawdziwe tylko i wyłącznie dla zbioru zwierząt mających cztery łapy (4L) będących psami (P), czyli wyłącznie dla psa.
Bycie zwierzątkiem z czterema łapami (4L) jest warunkiem koniecznym ~> by być psem (P) wtedy i tylko wtedy gdy zbiór zwierząt z czterema łapami 4L=[pies, słoń ..] jest nadzbiorem ~> jednoelementowego zbioru P=[pies] … co każdy 5-cio latek widzi.
II.
Losowanie A1’
Kod: |
IO3
Definicja operatora implikacji odwrotnej 4L||~>P dla naszego przykładu B1
Gdzie:
p=4L=[pies, słoń ..] - zbiór wszystkich zwierząt mających cztery łapy
q=P=[pies] - zbiór jednoelementowy P=[pies]
Y Y=(B1: 4L~>P)=P+~4L=B1: 4L*P+A1’: 4L*~P+B2:~4L*~P
B1: 4L~> P =1 = 4L* P =1 -jeśli 4L~>P=1 to istnieje wspólny element 4L*P=1
A1’: 4L~~>~P=1 = 4L*~P =1 -istnieje (=1) wspólny element 4L*~P =1
B2: ~4L=>~P =1 =~4L*~P =1 -jeśli ~4L=>~P=1 to istnieje(=1) element ~4L*~P=1
B2’:~4L~~>P =0 =~4L* P =0 -nie istnieje(=0) wspólny element zbiorów ~4L i P
1 2 3 4 5 6
|
Równanie algebry Boole’a opisujące tabelę symboliczną 456 to:
Y = B1: 4L*P + A1’: 4L*~P + B2: ~4L*~P
Załóżmy, że ze zbioru wszystkich zwierząt ZWZ wylosowaliśmy zwierzę które ma cztery łapy (4L=1) i nie jest psem (~P=1).
4L*~P = [pies, słoń ..]*[słoń, kura..] =1 bo słoń
Dla tego losowania lądujemy w linii A1’ (456):
A1’: Y(A1’)=A1’: 4L*~P=1*1=1
Na mocy prawa Prosiaczka mamy:
(4L=1)=(~4L=0)
(~P=1)=(P=0)
Podstawmy to do równania Y opisującego tabelę symboliczną algebry Boole’a 456:
Y(A1’) = B1: (4L=1)*(P=0) + A1’: (4L=1)*(~P=1) + B2: (~4L=0)*(~P=1) = B1: 0 + A1’: 1 + B2: 0
Stąd mamy:
A1’: Y(A1’) = A1’: 4L*~P
Co w logice jedynek oznacza:
A1’: Y(A1’)=1 <=> A1’: 4L=1 i ~P=1
Jak widzimy dla zbioru zwierząt mających cztery łapy (4L) i nie będących psami (~P) wyłącznie funkcja cząstkowa Y(A1’) będzie prawdą, pozostałe funkcje cząstkowe przyjmą wartość logiczną FAŁSZ (=0):
B1: Y(B1) =0 - w spójnikach implikacyjnych (123) zdanie B1 będzie tu fałszem B1: 4L~>P =0
B2: Y(B2) =0 - w spójnikach implikacyjnych (123) zdanie B2 będzie tu fałszem B2: ~4L=>~P =0
W przełożeniu na analizę w spójnikach implikacyjnych 123 zdanie A1’ będzie prawdziwe tylko i wyłącznie dla zwierząt mających cztery łapy (4L) i nie będących psami (~P) np. słoń
Nasza funkcja cząstkowa Y(A1’) przyjmie brzmienie:
A1’.
Jeśli zwierzę ma cztery łapy (4L) to może ~~> nie być psem (~P)
A1’: 4L~~>~P = 4L*~P=1
To samo w zapisie formalnym:
A1’: p~~>~q = p*~q =1 (diagram DIO)
Istnieje (=1) wspólny element zbiorów 4L=[pies, słoń ..] i ~P=[słoń, kura ..] np. słoń
Zdanie A1’ jest prawdziwe tylko i wyłącznie dla zwierząt mających cztery łapy (4L) i nie będących psami (~P) np. słoń
III.
Losowanie B2:
Kod: |
IO3
Definicja operatora implikacji odwrotnej 4L||~>P dla naszego przykładu B1
Gdzie:
p=4L=[pies, słoń ..] - zbiór wszystkich zwierząt mających cztery łapy
q=P=[pies] - zbiór jednoelementowy P=[pies]
Y Y=(B1: 4L~>P)=P+~4L=B1: 4L*P+A1’: 4L*~P+B2:~4L*~P
B1: 4L~> P =1 = 4L* P =1 -jeśli 4L~>P=1 to istnieje wspólny element 4L*P=1
A1’: 4L~~>~P=1 = 4L*~P =1 -istnieje (=1) wspólny element 4L*~P =1
B2: ~4L=>~P =1 =~4L*~P =1 -jeśli ~4L=>~P=1 to istnieje(=1) element ~4L*~P=1
B2’:~4L~~>P =0 =~4L* P =0 -nie istnieje(=0) wspólny element zbiorów ~4L i P
1 2 3 4 5 6
|
Równanie algebry Boole’a opisujące tabelę symboliczną 456 to:
Y = B1: 4L*P + A1’: 4L*~P + B2: ~4L*~P
Załóżmy, że ze zbioru wszystkich zwierząt ZWZ wylosowaliśmy zwierzę które nie ma czterech łap (~4L=1) i nie jest psem (~P=1).
~4L*~P = [kura..]*[słoń, kura..] =1 bo kura
Dla tego losowania lądujemy w linii B2 (456):
B2: Y(B2)= B2: ~4L*~P=1*1=1
Na mocy prawa Prosiaczka mamy:
(~4L=1)=(4L=0)
(~P=1)=(P=0)
Podstawmy to do równania Y opisującego tabelę symboliczną algebry Boole’a 456:
Y(B2) = B1: (4L=0)*(P=0) + A1’: (4L=0)*(~P=1) + B2: (~4L=1)*(~P=1) = B1: 0 + A1’: 0 + B2: 1
Stąd mamy:
B2: Y(B2) = B2: ~4L*~P
Co w logice jedynek oznacza:
B2: Y(B2)=1 <=> B2: ~4L=1 i ~P=1
Jak widzimy dla zbioru zwierząt nie mających czterech łap (~4L) i nie będących psami (~P) wyłącznie funkcja cząstkowa Y(B2) będzie prawdą, pozostałe funkcje cząstkowe przyjmą wartość logiczną FAŁSZ (=0):
B1: Y(B1) =0 - w spójnikach implikacyjnych (123) zdanie B1 będzie tu fałszem B1: 4L~>P =0
A1’: Y(A1’) =0 - w spójnikach implikacyjnych (123) zdanie A1’ będzie tu fałszem A1’: 4L~~>~P =0
W przełożeniu na analizę w spójnikach implikacyjnych 123 zdanie B2 będzie prawdziwe tylko i wyłącznie dla zwierząt nie mających czterech łap (~4L) i nie będących psami (~P) np. kura
B2: ~4L*~P =[kura..]
Nasza funkcja cząstkowa Y(B2) w spójnikach „i”(*) i „lub”(+) zapisana w linii 456 przyjmie brzmienie:
B2.
Jeśli zwierzę nie ma czterech łap (4L) to może ~~> nie być psem (~P)
B2: ~4L~~>~P = ~4L*~P=1
To samo w zapisach formalnych:
B2: ~p~~>~q =~p*~q =1 (diagram DIO)
Zdanie B2 jest prawdziwe tylko i wyłącznie dla zwierząt nie mających czterech łap (~4L) i nie będących psami (~P) np. kura
Zauważmy, że zdanie B2 w spójnikach implikacyjnych (123) brzmi:
B2.
Jeśli zwierzą nie ma czterech łap (~4L) to na 100% => nie jest psem (~P)
~4L=>~P=1
To samo w zapisie formalnym:
B2: ~p=>~q =1 (diagram DIO)
Dowód „wprost”:
Brak czterech łap (~4L) jest (=1) warunkiem wystarczającym => by nie być psem (~P) wtedy i tylko wtedy gdy zbiór zwierząt nie mających czterech łap ~4L=[kura..] jest podzbiorem => zbioru zwierząt nie będących psem ~P=[słoń, kura..] - co każdy 5-cio latek widzi.
Wniosek z dowodu B2:
Leży, kwiczy cała logika matematyczna ziemskich matematyków twierdzących, że zdanie B2:~4L=>~P jest prawdziwe dla dowolnego zwierzęcia ze zbioru wszystkich zwierząt ZWZ, czyli jest prawdziwe dla:
B1: Y(B1) = [4L*P] = [pies] =1
A1’: Y(A1’) = [4L*~P] = [słoń, koń, hipopotam ..] =1
B2: Y(B2) = [~4L*~P] = [kura, mrówka, wąż, wieloryb …] =1
Innymi słowy:
Aktualna logika „matematyczna” to potwornie śmierdzące gówno, żadna logika matematyczna!
cnd
Prawo matematycznego jełopa:
Dowolny matematyk który twierdzi, że zdanie:
B2.
Jeśli zwierzą nie ma czterech łap (~4L) to na 100% => nie jest psem (~P)
~4L=>~P=1
To samo w zapisie formalnym:
B2: ~p=>~q =1 (diagram DIO)
jest prawdziwe dla dowolnego zwierzęcia ze zbioru wszystkich zwierząt ZWZ=[pies, słoń, kura, mrówka, wąż, wieloryb, pchła, hipopotam ..]
jest matematycznym jełopem
Niestety, pod definicję matematycznego jełopa podpada każdy ziemski matematyk - żaden z tych nieszczęśników nie jest przy zdrowych zmysłach.
|
|
Powrót do góry |
|
 |
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 37352
Przeczytał: 18 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Pon 20:45, 17 Mar 2025 Temat postu: |
|
|
Algebra Kubusia – matematyczna wojna wszech czasów
39.0 Prawo matematycznego głąba i jełopa w operatorze równoważności p|<=>q
Spis treści
39.0 Prawo matematycznego głąba i jełopa w operatorze równoważności p|<=>q 1
39.1 Podstawowa definicja równoważności p<=>q w zbiorach 2
39.1.1 Prawa Słonia dla zbiorów 3
39.1.2 Matematyczna definicja równoważności p<=>q w zbiorach 3
39.1.3 Prawo Irbisa w zbiorach 3
39.2 Tabela prawdy równoważności p<=>q w zbiorach 4
39.2.1 Relacje między równoważnością A1B1: p<=>q a A2B2: ~p<=>~q 5
39.3 Diagram równoważności p<=>q w zbiorach 6
39.4 Definicja równoważności p<=>q w zbiorach 7
39.4.1 Operator równoważności p|<=>q 9
39.5 Tabela prawdy operatora równoważności p|<=>q 11
39.5.1 Zero-jedynkowa definicja równoważności p<=>q 12
39.5.2 Odtworzenie p|<=>q z tabeli zero-jedynkowej równoważności p<=>q 13
39.6 Wirtualne definicje warunku wystarczającego => i koniecznego ~> w p<=>q 16
39.6.1 Prawo matematycznego super-głąba w równoważności 17
39.7 Operator równoważności p|<=>q vs algebra Boole’a 18
39.7.1 Prawo matematycznego jełopa 21
39.7.2 Prawo matematycznego jełopa na przykładzie równoważności Pitagorasa 21
39.0 Prawo matematycznego głąba i jełopa w operatorze równoważności p|<=>q
Uwagi:
1.
Warunkiem koniecznym zrozumienia niniejszego punktu jest przeczytanie ze zrozumieniem fundamentów algebry Kubusia dla teorii zbiorów zawartych w punkcie 13.0
2.
Aktualna logika matematyczna ziemskich matematyków jest w 100% logiką schizofreniczną, mającą zerowy związek z otaczającym nas światem rzeczywistym, czego dowodem są prawa matematycznego głąba i jełopa w operatorze równoważności p|<=>q wyprowadzone w niniejszym punkcie.
Bezdyskusyjnie najcenniejszą definicją w całym obszarze matematyki dla potrzeb matematyki klasycznej, świata techniki i programowania komputerów jest definicja równoważności p<=>q której istoty póki co ziemscy matematycy nie rozumieją, mimo że poprawnie matematycznie ją udowadniają.
Nie rozumieją dlatego, że nie znają kluczowych tu zero-jedynkowych definicji warunku wystarczającego => i koniecznego ~>, praw Słonia, prawa Irbisa, oraz definicji kontrprzykładu dla zbiorów w interpretacji z algebry Kubusia.
Mówiąc dosadnie: 100% definicji rodem z Klasycznego Rachunku Zdań jest do bani.
Przykładowo:
Równoważność Pitagorasa TP<=>SK definiuje tożsamość zbiorów TP=SK (i odwrotnie) o czym matematycy nie wiedzą.
39.1 Podstawowa definicja równoważności p<=>q w zbiorach
Kod: |
T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
## ## ## ## ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5: p+~q
Prawa Kubusia: | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q | A1: p=>q = A4:~q=>~p
B1: p~>q = B2:~p=>~q | B2:~p=>~q = B3: q=>p
Prawa Tygryska: | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p | B1: p~>q = B4:~q~>~p
Gdzie:
p=>q = ~p+q - definicja warunku wystarczającego =>
p~>q = p+~q - definicja warunku koniecznego ~>
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Definicja równoważności p<=>q:
Równoważność p<=>q w logice dodatniej (bo q) to spełnienie zarówno warunku wystarczającego =>, jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
Stąd mamy definicję równoważności p<=>q w równaniu logicznym:
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) =1*1 =1
Czytamy:
Równoważność p<=>q w logice dodatniej (bo q) jest spełniona (=1) wtedy i tylko wtedy gdy
zajście p jest (=1) konieczne ~> (B1) i wystarczające => (A1) dla zajścia q
Innymi słowy:
Do tego by zaszło q potrzeba ~> (B1) i wystarcza => (A1) by zaszło p
Powyższa definicja równoważności znana jest wszystkim ludziom (nie tylko matematykom):
Dowód:
Klikamy na googlach:
„konieczne i wystarczające”
Wyników: kilkanaście tysięcy
"koniecznym i wystarczającym"
Wyników: kilkanaście tysięcy
„potrzeba i wystarcza”
Wyników: kilkanaście tysięcy
39.1.1 Prawa Słonia dla zbiorów
I Prawo Słonia dla zbiorów:
W algebrze Kubusia w zbiorach zachodzi tożsamość [=] pojęć:
A1: p=>q - warunek wystarczający => [=] A1: p=>q - relacja podzbioru => [=] A1: p=>q - matematyczne twierdzenie proste
Y = A1: p=>q = ~p+q
##
II Prawo Słonia dla zbiorów:
B1: p~>q - warunek konieczny ~> [=] B1: p~>q - relacja nadzbioru ~> [=] B3: q=>p - matematyczne twierdzenie odwrotne (w odniesieniu do A1)
bo prawo Tygryska:
Y = B1: p~>q = B3: q=>p = p+~q
Gdzie:
## - różne na mocy definicji
p i q musi być wszędzie tymi samymi p i q, inaczej błąd podstawienia
[=], „=”, <=> - tożsame znaczki tożsamości logicznej
<=> - wtedy o tylko wtedy
Stąd korzystając z prawa Słonia dla zbiorów możemy wygenerować dużą ilość tożsamych definicji równoważności p<=>q.
39.1.2 Matematyczna definicja równoważności p<=>q w zbiorach
1.
Matematyczna definicja równoważności p<=>q (znana każdemu matematykowi):
Równoważność p<=>q to jednoczesna prawdziwość matematycznego twierdzenia prostego A1: p=>q i matematycznego twierdzenia odwrotnego B3: q=>p
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q, twierdzenie proste A1.
B3: q=>p =1 - zajście q jest (=1) wystarczające => dla zajścia p, twierdzenie odwrotne (względem A1)
Stąd mamy:
A1B3: p<=>q = (A1: p=>q)*(B3: q=>p) =1*1 =1
2.
Definicja równoważności wyrażona relacjami podzbioru =>
Równoważność p<=>q to relacja podzbioru => zachodząca w dwie strony
A1: p=>q =1 - wtedy i tylko wtedy gdy zbiór p jest (=1) podzbiorem => zbioru q
B3: q=>p =1 - wtedy i tylko wtedy gdy zbiór q jest (=1) podzbiorem => zbioru p
Stąd mamy:
A1B3: p<=>q = (A1: p=>q)*(B3: q=>p) =1*1 =1
Stąd mamy wprowadzone kluczowe w równoważności prawo Irbisa.
39.1.3 Prawo Irbisa w zbiorach
Prawo Irbisa:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q (A1: p=>q) i jednocześnie zbiór q jest podzbiorem => zbioru p (B3: q=>p)
A1B3: p=q <=> (A1: p=>q)*(B3: q=>p)= A1B3: p<=>q
Tą definicję tożsamości zbiorów zna każdy matematyk.
Innymi słowy:
Każda równoważność prawdziwa p<=>q definiuje tożsamość zbiorów p=q (i odwrotnie)
A1B3: p=q <=> A1B3: p<=>q = (A1: p=>q)*(B3: q=>p)
Na mocy prawa Słonia prawo Irbisa możemy też zapisać w relacjach podzbioru => i nadzbioru ~>.
Prawo Irbisa:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy zbiór p jest (=1) podzbiorem => zbioru q (A1) i jednocześnie zbiór p jest (=1) nadzbiorem ~> zbioru q (B1)
A1: p=>q =1 - wtedy i tylko wtedy gdy zbiór p jest (=1) podzbiorem => zbioru q
B1: p~>q =1 - wtedy i tylko wtedy gdy zbiór p jest (=1) nadzbiorem ~> zbioru q
Stąd mamy:
A1B1: p=q <=> (A1: p=>q)*(B1: p~>q) = A1B1: p<=>q
Tożsamy dowód bezpośredni:
Na mocy definicji podzbioru => i nadzbioru ~> każdy zbiór jest jednocześnie podzbiorem => (A1) i nadzbiorem ~> (B1) siebie samego.
Korzystając z prawa Słonia prawo Irbisa możemy też zapisać w warunkach koniecznym ~> (B1) i wystarczającym => (A1).
Na mocy prawa Słonia zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>
Prawo Irbisa:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy zajście p jest konieczne ~> (B1) i wystarczające => (A1) dla zajścia q
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
Stąd mamy:
A1B1: p=q <=> (A1: p=>q)*(B1: p~>q) = A1B1: p<=>q
Stąd mamy tabelę prawdy równoważności p<=>q z uwzględnieniem prawa Irbisa.
39.2 Tabela prawdy równoważności p<=>q w zbiorach
Kod: |
TR
Tabela prawdy równoważności p<=>q z uwzględnieniem prawa Irbisa
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w równoważności p<=>q
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
Stąd mamy definicję równoważności A1B1: p<=>q w równaniu logicznym:
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) =1*1 =1
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q=1 = 2:~p~>~q=1 [=] 3: q~>p=1 = 4:~q=>~p=1 [=] 5: ~p+q =1
## ## ## ## ##
B: 1: p~>q=1 = 2:~p=>~q=1 [=] 3: q=>p=1 = 4:~q~>~p=1 [=] 5: p+~q=1
-----------------------------------------------------------------------
Równoważność <=>: | Równoważność <=>:
AB: 1: p<=>q=1 = 2:~p<=>~q=1 [=] 3: q<=>p=1 = 4:~q<=>~p=1 [=] 5: p*q+~p*~q
definiuje tożsamość zbiorów: | definiuje tożsamość zbiorów:
AB: 1: p=q # 2:~p=~q | 3: q=p # 4:~q=~p
Gdzie:
# - różne w znaczeniu iż jedna strona znaczka # jest negacją drugiej strony
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
"=",[=],<=> - tożsame znaczki tożsamości logicznej
|
I Prawo Sowy dla równoważności p<=>q:
Prawdziwość dowolnego zdania serii Ax wymusza prawdziwość wszystkich zdań serii Ax
##
II Prawo Sowy dla równoważności p<=>q:
Prawdziwość dowolnego zdania serii Bx wymusza prawdziwość wszystkich zdań serii Bx
Gdzie:
## - różne na mocy definicji
Tożsamość zbiorów jest przemienna, stąd mamy:
Kod: |
Równoważność <=>: | Równoważność <=>:
A1B1: A3B3: | A2B2: A4B4:
AB: 1: p<=>q=1 = 3: q<=>p=1 [=] 2: ~p<=>~q = 4:~q<=>~p=1 [=] 5: p*q+~p*~q
definiuje tożsamość zbiorów: | definiuje tożsamość zbiorów:
AB: 1: p=q = 3: q=p # 2: ~p=~q = 4:~q=~p
Gdzie:
Gdzie:
# - różne w znaczeniu iż jedna strona znaczka # jest negacją drugiej strony
|
Zauważmy że:
Z przemienności zbiorów:
1: p=q = 3: q=p
Wynika przemienność argumentów w równoważności:
1: p<=>q = 3: q<=>p
Wniosek:
W matematycznym opisie równoważności potrzeba i wystarcza opisać matematyczne związki między kolumnami A1B1 i A2B2.
39.2.1 Relacje między równoważnością A1B1: p<=>q a A2B2: ~p<=>~q
A1B1:
Definicja równoważności p<=>q w logice dodatniej (bo q):
Równoważność p<=>q w logice dodatniej (bo q) to spełnienie zarówno warunku wystarczającego =>, jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
Stąd mamy:
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) =1*1 =1
Prawo Irbisa:
Dowolna równoważność prawdziwa p<=>q definiuje tożsamość zbiorów p=q (i odwrotnie)
Stąd mam:
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) <=> p=q
[=]
A2B2:
Definicja równoważności ~p<=>~q w logice ujemnej (bo ~q):
Równoważność ~p<=>~q w logice ujemnej (bo ~q) to spełnienie zarówno warunku wystarczającego =>, jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A2: ~p~>~q =1 - zajście ~p jest (=1) konieczne ~> dla zajścia ~q
B2: ~p=>~q =1 - zajście ~p jest (=1) wystarczające => dla zajścia ~q
Stąd:
A2B2: ~p<=>~q = (A2:~p~>~q)*(B2: ~p=>~q) =1*1=1
Prawo Irbisa:
Równoważność prawdziwa ~p<=>~q definiuje tożsamość zbiorów ~p=~q (i odwrotnie)
Stąd mamy:
A2B2: ~p<=>~q = (A2:~p~>~q)*(B2: ~p=>~q) <=> ~p=~q
Gdzie:
[=] - tożsamość logiczna
Wzajemne relacje między A1B1 i A2B2 są następujące:
Kod: |
Równoważność A1B1: | Równoważność A2B2:
p<=>q = (A1: p=>q)*(B1: p~>q) [=] ~p<=>~q = (A2:~p~>~q)*(B2: ~p=>~q)
Definiuje tożsamość zbiorów: | Definiuje tożsamość zbiorów:
p=q # ~p=~q
Gdzie:
[=] - tożsamość logiczna
# - dowolna strona znaczka # jest negacją drugiej strony
Dowód:
Diagram DR (pkt. 39.3)
|
39.3 Diagram równoważności p<=>q w zbiorach
Definicja równoważności p<=>q w zbiorach:
Zbiór p jest podzbiorem => zbioru q i jest tożsamy ze zbiorem q
Dziedzina musi być szersza do sumy logicznej zbiorów p+q bowiem wtedy i tylko wtedy wszystkie zbiory p, ~p, q i ~q będą niepuste (rozpoznawalne), co doskonale widać na diagramie DR niżej.
A1: p=>q =1 - zbiór p jest (=1) podzbiorem => zbioru q (z definicji)
B1: p~>q =1 - zbiór p jest (=1) nadzbiorem ~> zbioru q (z definicji)
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) = 1*1 =1
Czytamy:
Równoważność p<=>q w logice dodatniej (bo q) jest prawdziwa (=1) wtedy i tylko wtedy gdy zbiór p jest jednocześnie podzbiorem => (A1) i nadzbiorem ~> (B1) dla zbioru q
Wniosek:
Musi zachodzić tożsamość zbiorów p=q bowiem wtedy i tylko wtedy zbiór p jest podzbiorem => zbioru q (A1: p=>q) i jednocześnie zbiór p jest nadzbiorem ~> zbioru q (B1: p~>q).
Dowód
Każdy zbiór jest jednocześnie podzbiorem => i nadzbiorem ~> siebie samego
Stąd mamy diagram równoważności p<=>q w zbiorach:
Kod: |
DR
Diagram równoważności p<=>q w zbiorach
definiujący tożsamość zbiorów p=q.
---------------------------------------------------------------------------
| p | ~p |
|---------------------------------|---------------------------------------|
| q | ~q |
|---------------------------------|---------------------------------------|
|Definicja równoważności: | Definicja równoważności: |
|A1B1: p<=>q=(A1:p=>q)*(B1:p~>q) [=] A2B2: ~p<=>~q=(A2:~p~>~q)*(B2:~p=>~q)|
|Definiuje tożsamość zbiorów | Definiuje tożsamość zbiorów: |
| p=q # ~p=~q |
---------------------------------------------------------------------------
| A1: p=>q=1 (p*q=1) | B2:~p=>~q=1 (~p*~q=1) |
| Dziedzina: |
| D=A1: p*q+ B2:~p*~q - suma logiczna zbiorów niepustych A1 i B2 |
| A1’: p~~>~q=p*~q=[]=0 - zbiór pusty |
| B2’: ~p~~>q =~p*q=[]=0 - zbiór pusty |
|-------------------------------------------------------------------------|
Gdzie:
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
[=] - tożsamość logiczna
# - dowolna strona znaku # jest negacją drugiej strony
p#~p
p=~(~p) - prawo podwójnego przeczenia
Wnioski:
1.
Definicja równoważności p<=>q definiuje tożsamość zbiorów p=q
która to tożsamość wymusza tożsamość zbiorów ~p=~q (i odwrotnie)
2.
Równoważność p<=>q to dwa i tylko dwa zbiory niepuste i rozłączne
p=q i ~p=~q uzupełniające się wzajemnie do dziedziny D.
p+~p=D=1
p*~p=[]=0
Dowód: diagram DR
3.
W definicji równoważności p<=>q nie ma mowy o jakimkolwiek
„rzucaniu monetą” jak to miało miejsce w implikacji prostej p|=>q
|
39.4 Definicja równoważności p<=>q w zbiorach
Definicja kontrprzykładu w zbiorach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane elementem wspólnym zbiorów p~~>~q=p*~q
Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)
Uwagi:
1.
Na mocy definicji kontrprzykładu prawdziwe warunki wystarczające => w linii Ax wymuszają fałszywe kontrprzykłady Ax'
2.
Na mocy definicji kontrprzykładu prawdziwe warunki wystarczające => w linii Bx wymuszają fałszywe kontrprzykłady Bx'
Stąd mamy:
Tabela prawdy równoważności p<=>q z uwzględnieniem prawa Irbisa i definicji kontrprzykładu obowiązującego wyłącznie w warunku wystarczającym =>
Kod: |
TR
Tabela prawdy równoważności p<=>q:
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w równoważności p<=>q
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
Stąd mamy definicję równoważności A1B1: p<=>q w równaniu logicznym:
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) =1*1 =1
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q =1 = 2:~p~>~q =1 [=] 3: q~>p =1 = 4:~q=>~p =1
A': 1: p~~>~q=0 [=] 4:~q~~>p =0
## ## ## ##
B: 1: p~>q =1 = 2:~p=>~q =1 [=] 3: q=>p =1 = 4:~q~>~p =1
B': 2:~p~~>q =0 [=] 3: q~~>~p=0
-----------------------------------------------------------------------
Równoważność <=>: | Równoważności <=>:
AB: 1: p<=>q=1 = 2:~p<=>~q=1 [=] 3: q<=>p=1 = 4:~q<=>~p=1
definiuje tożsamość zbiorów: | definiuje tożsamość zbiorów:
AB: 1: p=q # 2:~p=~q | 3: q=p # 4:~q=~p
Gdzie:
# - różne w znaczeniu iż jedna strona znaczka # jest negacją drugiej strony
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
"=",[=],<=> - tożsame znaczki tożsamości logicznej
|
Prawa Sowy dla równoważności p<=>q:
Prawdziwość dowolnego zdania serii Ax wymusza prawdziwość pozostałych zdań w tej linii
Prawdziwość dowolnego zdania serii Bx wymusza prawdziwość pozostałych zdań w tej linii
Zauważmy że:
1.
Definicję równoważności p<=>q w logice dodatniej (bo q) mamy w kolumnie A1B1.
A1B1:
Definicja równoważności p<=>q w logice dodatniej (bo q):
Równoważność p<=>q w logice dodatniej (bo q) to spełnienie zarówno warunku wystarczającego =>, jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
Stąd mamy:
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) =1*1 =1
Wnioski:
a) Równoważność A1B1: p<=>q w logice dodatniej (bo q) daje odpowiedź na pytanie o p.
b) Równoważność A1B1: p<=>q definiuje tożsamość zbiorów p=q (i odwrotnie)
2.
Definicję równoważności ~p<=>~q w logice ujemnej (bo ~q) mamy w kolumnie A2B2.
A2B2:
Definicja równoważności ~p<=>~q w logice ujemnej (bo ~q):
Równoważność ~p<=>~q w logice ujemnej (bo ~q) to spełnienie zarówno warunku wystarczającego =>, jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A2: ~p~>~q =1 - zajście ~p jest (=1) konieczne ~> dla zajścia ~q
B2: ~p=>~q =1 - zajście ~p jest (=1) wystarczające => dla zajścia ~q
Stąd:
A2B2: ~p<=>~q = (A2:~p~>~q)*(B2: ~p=>~q) =1*1=1
Wnioski:
a) Równoważność A2B2: ~p<=>~q w logice ujemnej (bo ~q) daje odpowiedź na pytanie o ~p.
b) Równoważność A2B2: ~p<=>~q definiuje tożsamość zbiorów ~p=~q (i odwrotnie)
39.4.1 Operator równoważności p|<=>q
Definicja operatora równoważności p|<=>q:
Operator równoważności p|<=>q to układ równań A1B1 i A2B2 dający odpowiedź na pytanie o p (A1B1) i ~p (A2B2).
Kolumna A1B1:
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) - co może się wydarzyć jeśli zajdzie p?
Kolumna A2B2:
A2B2: ~p<=>~q = (A2:~p~>~q)*(B2: ~p=>~q) - co może się wydarzyć jeśli zajdzie ~p?
A1B1:
Co może się wydarzyć jeśli zajdzie p?
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) =1*1=1
Czytamy:
Równoważność p<=>q w logice dodatniej (bo q) jest spełniona (=1) wtedy i tylko wtedy gdy zajście p jest warunkiem koniecznym ~> (B1) i wystarczającym => (A1) dla zajścia q
Prawą stronę czytamy:
Zajście p jest (=1) konieczne ~> (B1) i wystarczające => (A1) dla zajścia q
Na mocy prawa Słonia czytamy:
Równoważność p<=>q w logice dodatniej (bo q) jest spełniona (=1) wtedy i tylko wtedy gdy zbiór p jest nadzbiorem ~> zbioru q (B1) i jednocześnie zbiór p jest podzbiorem => zbioru q (A1)
Wniosek:
Zbiory p i q są tożsame p=q
Dowód: diagram DR
A1B1
Co może się wydarzyć jeśli zajdzie p?
Odpowiedź w zdaniach warunkowych "Jeśli p to q" odczytujemy z kolumny A1B1:
A1.
Jeśli dowolny element z dziedziny D należy do zbioru p to na 100% => należy do zbioru q
p=>q =1
Przynależność dowolnego elementu do zbioru p jest (=1) warunkiem wystarczającym => by ten element należał do zbioru q wtedy i tylko wtedy gdy zbiór p jest (=1) podzbiorem => zbioru q
Dowód: diagram DR
Prawdziwy warunek wystarczający A1: p=>q wymusza fałszywy kontrprzykład A1' (i odwrotnie)
A1'.
Jeśli dowolny element należy do zbioru p to może ~~> należeć do zbioru ~q
p~~>~q=p*~q =0
Nie istnieje (=0) wspólny element zbiorów p i ~q
To jest dowód "nie wprost" fałszywości zdania A1' na mocy definicji kontrprzykładu.
Dowód wprost: diagram DR
… a jeśli zajdzie ~p?
Idziemy do kolumny A2B2.
A2B2:
Co może się wydarzyć jeśli zajdzie ~p?
A2: ~p~>~q =1 - zajście ~p jest (=1) konieczne ~> dla zajścia ~q
B2: ~p=>~q =1 - zajście ~p jest (=1) wystarczające => dla zajścia ~q
A2B2: ~p<=>~q = (A2:~p~>~q)*(B2: ~p=>~q) =1*1=1
Czytamy:
Równoważność ~p<=>~q w logice ujemnej (bo ~q) jest spełniona (=1) wtedy i tylko wtedy gdy
zajście ~p jest (=1) konieczne ~> (A2) i wystarczające => (B2) dla zajścia ~q
Na mocy prawa Słonia czytamy:
Równoważność ~p<=>~q w logice ujemnej (bo ~q) jest spełniona (=1) wtedy i tylko wtedy gdy zbiór ~p jest (=1) nadzbiorem ~> (A2) i podzbiorem => (B2) zbioru ~q
Wniosek:
Zbiory ~p i ~q są tożsame ~p=~q
Dowód: diagram DR
A2B2
Co może się wydarzyć jeśli zajdzie ~p?
Odpowiedź w zdaniach warunkowych "Jeśli p to q" odczytujemy z kolumny A2B2:
B2
Jeśli dowolny element z dziedziny D należy do zbioru ~p to na 100% => należy do zbioru ~q
~p=>~q =1
Przynależność elementu do zbioru ~p jest (=1) warunkiem wystarczającym => dla jego przynależności do zbioru ~q
Na mocy prawa Słonia dla zbiorów czytamy:
Wylosowanie dowolnego elementu ze zbioru ~p jest warunkiem wystarczającym => by ten element należał do zbioru ~q wtedy i tylko wtedy gdy zbiór ~p jest podzbiorem => zbioru ~q
Dowód: diagram DR
Prawdziwość warunku wystarczającego => B2 wymusza fałszywość kontrprzykładu B2' (i odwrotnie)
B2'
Jeśli dowolny element należy do zbioru ~p to może ~~> należeć do zbioru q
~p~~>q = ~p*q =0
Nie istnieje (=0) wspólny element zbiorów ~p i q
To jest dowód "nie wprost" fałszywości zdania B2' na mocy definicji kontrprzykładu.
Dowód wprost: diagram DR
Podsumowanie:
Jak widzimy, istotą operatora równoważności p|<=>q jest gwarancja matematyczna => po stronie p (zdanie A1), jak również gwarancja matematyczna po stronie ~p (zdanie B2)
W operatorze równoważności p|<=>q nie ma miejsca na jakiekolwiek "rzucanie monetą" w sensie "na dwoje babka wróżyła", jak to miało miejsce w operatorze implikacji prostej p||=>q i odwrotnej p||~>q.
Zauważmy że:
a)
Układ równań logicznych jest przemienny, stąd mamy:
Operator równoważności ~p|<=>~q to układ równań logicznych:
A2B2: ~p<=>~q = (A2:~p~>~q)*(B2: ~p=>~q) - co się stanie jak zajdzie ~p?
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) - co się stanie jak zajdzie p?
Doskonale widać, że analiza matematyczna operatora równoważności A2B2: ~p|<=>~q w logice ujemnej (bo ~q) będzie identyczna jak operatora równoważności A1B1: p|<=>q w logice dodatniej (bo q) z tym, że zaczynamy od kolumny A2B2 kończąc na kolumnie A1B1.
b)
Także kolejność wypowiadanych zdań jest dowolna, tak więc zdania z powyższej analizy A1, A1’, B2, B2’ możemy wypowiadać w sposób losowy - matematycznie to bez znaczenia.
39.5 Tabela prawdy operatora równoważności p|<=>q
Prawo Krokodyla (pkt. 21.2):
W obsłudze zdań warunkowych "Jeśli p to q" przez wszystkie możliwe przeczenia p i q logika matematyczna musi widzieć tą samą ilość twardych zer i twardych jedynek, inaczej jest wewnętrzne sprzeczna.
Definicja twardej jedynki:
W zdaniach warunkowych "Jeśli p to q" twarda jedynka to spełniony warunek wystarczający => w analizie matematycznej zdania "Jeśli p to q" przez wszystkie możliwe przeczenia p i q, przy pomocy znaczków elementarnych =>, ~> i ~~>.
A1: p=>q =1 - twarda jedynka
Definicja twardego zera:
W zdaniach warunkowych "Jeśli p to q" na mocy definicji kontrprzykładu spełniony warunek wystarczający A1: p=>q wymusza fałszywość kontrprzykładu w linii A1' (i odwrotnie)
A1': p~~>~q=p*~q =0 - twarde zero
Notacja w algebrze Kubusia:
Przez A1' oznaczamy kontrprzykład dla warunku wystarczającego A1
Definicja operatora równoważności p|<=>q:
Operator równoważności p|<=>q to odpowiedź na dwa pytania:
Kolumna A1B1:
Co może się wydarzyć jeśli zajdzie p?
oraz:
Kolumna A2B2:
Co może się wydarzyć jeśli zajdzie ~p?
Tabela prawdy operatora równoważności p|<=>q na mocy analizy w poprzednim punkcie:
Kod: |
TR1
Tabela prawdy operatora równoważności p|<=>q
A1B1: p<=>q=(A1: p=>q)*(B1: p~>q)
A1: p=> q =1 - zajście p jest wystarczające => dla zajścia q
Twarda jedynka w A1 wymusza twarde zero w A1' (i odwrotnie)
A1': p~~>~q=0 - prawdziwość A1: p=>q wymusza fałszywość kontrprzykładu A1'
Twarde zero w A1' wymusza twardą jedynkę w A1 (i odwrotnie)
A2B2: ~p<=>~q=(A2:~p~>~q)*(B2:~p=>~q)
B2: ~p=>~q =1 - zajście ~p jest wystarczające => dla zajścia ~q
Twarda jedynka w B2 wymusza twarde zero w B2' (i odwrotnie)
B2':~p~~>q =0 - prawdziwość B2:~p=>~q wymusza fałszywość kontrprzykładu B2'
Twarde zero w B2' wymusza twardą jedynkę w B2 (i odwrotnie)
|
Prawo Krokodyla (pkt.21.2):
W obsłudze zdań warunkowych "Jeśli p to q" przez wszystkie możliwe przeczenia p i q logika matematyczna musi widzieć tą samą ilość twardych zer i twardych jedynek, inaczej jest wewnętrzne sprzeczna.
Jak widzimy, w operatorze równoważności p|<=>q mamy dwie twarde jedynki (A1 i B2) oraz dwa twarde zera (A1', B2'), co oznacza spełnienie prawa Krokodyla i brak wewnętrznej sprzeczności algebry Kubusia.
39.5.1 Zero-jedynkowa definicja równoważności p<=>q
Zapiszmy tabelę prawdy operatora równoważności p|<=>q w wersji skróconej:
Kod: |
T2
Definicja |Co w logice
symboliczna |jedynek oznacza
p|<=>q |
A1B1:
p<=>q=(A1: p=>q)*(B1: p~>q)
A1: p=> q =1 |( p=1)=> ( q=1)=1
A1': p~~>~q=0 |( p=1)~~>(~q=1)=0
A2B2:
~p<=>~q=(A2:~p~>~q)*(B2:~p=>~q)
B2: ~p=>~q =1 |(~p=1)=> (~q=1)=1
B2':~p~~>q =0 |(~p=1)~~>( q=1)=0
a b c 1 2 3
|
Zero-jedynkową definicję równoważności p<=>q w logice dodatniej (bo q) otrzymamy kodując tabelę T2 z punktem odniesienia ustawionym na równoważności p<=>q:
A1B1: p<=>q
W równoważności A1B1: p<=>q zmienne p i q są w postaci niezanegowanej.
Tabelę zero-jedynkową równoważności A1B1: p<=>q w logice dodatniej (bo q) otrzymamy wtedy i tylko wtedy gdy wszystkie zmienne w tabeli T2_12 sprowadzimy do postaci niezanegowanej.
Umożliwia to II prawo Prosiaczka:
(~p=1)=(p=0)
które możemy stosować wybiórczo w stosunku do dowolnej zmiennej binarnej.
Zróbmy to:
Kod: |
T3
Definicja |Co w logice |Na mocy II |Zapis tożsamy
symboliczna |jedynek oznacza |prawa Prosiaczka |tabeli 456
p|<=>q | | |
A1B1: | |
p<=>q=(A1: p=>q)*(B1: p~>q) | | p q p<=> q
A1: p=> q =1 |( p=1)=> ( q=1)=1 |( p=1)=> ( q=1)=1 | 1<=>1 =1
A1': p~~>~q=0 |( p=1)~~>(~q=1)=0 |( p=1)~~>( q=0)=0 | 1<=>0 =0
A2B2: |
~p<=>~q=(A2:~p~>~q)*(B2:~p=>~q) |
B2: ~p=>~q =1 |(~p=1)=> (~q=1)=1 |( p=0)=> ( q=0)=1 | 0<=>0 =1
B2':~p~~>q =0 |(~p=1)~~>( q=1)=0 |( p=0)~~>( q=1)=0 | 0<=>1 =0
a b c 1 2 3 4 5 6 7 8 9
|
Definicja:
Tabelę T3_789 nazywamy zero-jedynkową definicją równoważności p<=>q w logice dodatniej (bo q) dla potrzeb rachunku zerojedynkowego.
Interpretacja równoważności p<=>q:
T3_789: p<=>q - zajdzie p wtedy i tylko wtedy gdy zajdzie q
Do zapamiętania:
Kod: |
Zero-jedynkowa definicja równoważności p<=>q
dla potrzeb rachunku zero-jedynkowego
p q Y=(p<=>q)=p*q+~p*~q
A1: 1<=>1 1
A1’: 1<=>0 0
B2: 0<=>0 1
B2’: 0<=>1 0
1 2 3
Do łatwego zapamiętania:
p<=>q=1 <=> A1: p=1 i q=1 lub B2: p=0 i q=0
Inaczej:
p<=>q=0
|
Wyprowadzenie tabeli zero-jedynkowej równoważności z jej definicji w spójnikach „i”(*) i „lub”(+).
Definicja równoważności w spójnikach "i"(*) i "lub"(+):
Y=(p<=>q) = A1: p*q + B2:~p*~q
co w logice jedynek oznacza:
Y=(p<=>q)=1 <=> A1: p=1 i q=1 lub B2: ~p=1 i ~q=1
I Prawo Prosiaczka:
(~p=1)=(p=0)
(~q=1)=(q=0)
Stąd mamy definicję zero-jedynkową równoważności p<=>q:
p<=>q=1 <=> A1: p=1 i q=1 lub B2: p=0 i q=0
Inaczej:
p<=>q=0
39.5.2 Odtworzenie p|<=>q z tabeli zero-jedynkowej równoważności p<=>q
Algorytm odwrotny, czyli odtworzenie operatora równoważności p|<=>q z zero-jedynkowej definicji równoważności p<=>q jest następujący.
Dla ułatwienia zrozumienia zachowujemy iterowanie linii z wyprowadzonej wyżej zero-jedynkowej definicji równoważności p<=>q, co matematycznie jest bez znaczenia.
Niech będzie dana tabela zero-jedynkowa równoważności <=>
Kod: |
Zero-jedynkowa definicja równoważności p<=>q
dla potrzeb rachunku zero-jedynkowego
p q Y=(p<=>q)=p*q+~p*~q
A1: 1<=>1 1
A1’: 1<=>0 0
B2: 0<=>0 1
B2’: 0<=>1 0
1 2 3
Do łatwego zapamiętania:
p<=>q=1 <=> A1: p=1 i q=1 lub B2: p=0 i q=0
Inaczej:
p<=>q=0
|
Jak wygenerować z tej tabeli operator równoważności p|<=>q?
Definicja pełnej tabeli zero-jedynkowej:
Pełna tabela zero-jedynkowa układu logicznego (bramka logiczna) to zero-jedynkowy zapis wszystkich sygnałów wejściowych w postaci niezanegowanej (p, q, r..) i zanegowanej (~p, ~q, ~r..) oraz zapis wyjścia Y również w postaci niezanegowanej (Y) i zanegowanej (~Y) (pkt. 1.14)
Krok 1
Budujemy pełną tabelę zero-jedynkową dla równoważności p<=>q po czym opisujemy wyłącznie wynikowe jedynki stosując w poziomie spójnik "i'(*) zaś w pionie spójnik "lub"(+).
Powyższy algorytm prowadzi do wygenerowania równań alternatywno-koniunkcyjnych Y i ~Y zrozumiałych dla każdego 5-cio latka (pkt. 1.14.1)
Kod: |
T1.
Tabela zero-jedynkowa równoważności p<=>q w "lub"(+) i "i"(*)
|Opis jedynek |Opis jedynek |Tabela w zdarzeniach
|dla Y=(p<=>q) |dla ~Y=~(p<=>q)|możliwych ~~> dla Y
p q ~p ~q | Y ~Y | | | Y ~Y
A1: 1 1 0 0 | 1 0 | Ya= p* q | | p~~> q= p* q =1 =0
A1’: 1 0 0 1 | 0 1 | |~Yb= p*~q | p~~>~q= p*~q =0 =1
B2: 0 0 1 1 | 1 0 | Yc=~p*~q | |~p~~>~q=~p*~q =1 =0
B2’: 0 1 1 0 | 0 1 | |~Yd=~p* q |~p~~> q=~p* q =0 =1
a b c d e f g h i j k l 1 2 3 4 5
|
W tabeli 12345 w opisie kolumny Y obowiązuje prawo Prosiaczka:
(~Yb=1) = (Yb=0)
oraz
(~Yd=1) = (Yd=0)
które możemy stosować wybiórczo do dowolnej zmiennej binarnej.
Definicja równoważności p<=>q w spójnikach "i"(*) i "lub"(+) to odpowiedź na pytania o Y i ~Y
1.
Kiedy zajdzie Y?
Odczytujemy z tabeli ghi:
Y=Y(A1)+Y(B2) = A1: p*q+ B2: ~p*~q
2.
Kiedy zajdzie ~Y?
Odczytujemy z tabeli jkl:
~Y=~Y(A1’)+~Y(B2’) = A1’: p*~q + B2’: ~p*q
Tabela konieczna i wystarczająca dla odtworzenia operatora równoważności p|<=>q w warunkach wystarczających =>, koniecznych ~> i zdarzeniach możliwych ~~> to tabela 12345.
Tabela 12345 to tabela wszystkich zdarzeń możliwych (Yx=1) i niemożliwych (Yx=0) jakie mogą zajść na mocy definicji równoważności p<=>q. Jak widzimy, możliwe są (=1) zdarzenia Y(x)=1 A1 i B2 oraz niemożliwe są (=0) zdarzenia Y(x)=0 A1’ i B2’.
Krok 2
Zapisujemy tabelę wszystkich zdarzeń możliwych (Y=1) i niemożliwych (Y=0) jakie mogą zajść w zero-jedynkowej definicji równoważności p<=>q
Kod: |
T2.
Y=(p<=>q)=p*q+~p*~q
A1: p~~> q =1 - istnieje (=1) wspólny element zbiorów p i q
A1’: p~~>~q =0 - nie istnieje (=0) wspólny element zbiorów p i ~q
B2: ~p~~>~q =1 - istnieje (=1) wspólny element zbiorów ~p i ~q
B2’:~p~~> q =0 - nie istnieje (=0) wspólny element zbiorów ~p i q
|
Definicja kontrprzykładu w zbiorach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane elementem wspólnym zbiorów p~~>~q=p*~q
Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)
Krok 3
Na mocy definicji kontrprzykładu z braku elementu wspólnego ~~> zbiorów p i ~q:
A1’: p~~>~q=0
Wynika prawdziwość warunku wystarczającego => A1 (i odwrotnie):
A1: p=>q =1 - zajście p jest wystarczające => dla zajścia q
Krok 4
Na mocy definicji kontrprzykładu z braku elementu wspólnego zbiorów ~p i q:
B2’: ~p~~>q =0
wynika prawdziwość warunku wystarczającego => B2 (i odwrotnie):
B2: ~p=>~q =1 - zajście ~p jest (=1) wystarczające => dla zajścia ~q
Stąd mamy odtworzoną tabelę prawdy operatora równoważności p|<=>q dającą odpowiedź na pytanie co może się wydarzyć jeśli zajdzie p (A1, A1’) oraz co może się wydarzyć jeśli zajdzie ~p (B2, B2’)
Kod: |
TR1
Tabela prawdy operatora równoważności p|<=>q
A1B1: p<=>q=(A1: p=>q)*(B1: p~>q)
A1: p=> q =1 - zajście p jest wystarczające => dla zajścia q
Twarda jedynka w A1 wymusza twarde zero w A1' (i odwrotnie)
A1': p~~>~q=0 - prawdziwość A1: p=>q wymusza fałszywość kontrprzykładu A1'
Twarde zero w A1' wymusza twardą jedynkę w A1 (i odwrotnie)
A2B2: ~p<=>~q=(A2:~p~>~q)*(B2:~p=>~q)
B2: ~p=>~q =1 - zajście ~p jest wystarczające => dla zajścia ~q
Twarda jedynka w B2 wymusza twarde zero w B2' (i odwrotnie)
B2':~p~~>q =0 - prawdziwość B2:~p=>~q wymusza fałszywość kontrprzykładu B2'
Twarde zero w B2' wymusza twardą jedynkę w B2 (i odwrotnie)
|
39.6 Wirtualne definicje warunku wystarczającego => i koniecznego ~> w p<=>q
Zacznijmy od znanego w elektronice pojęcia „pamięć wirtualna”.
[link widoczny dla zalogowanych]
@Wikipedia
Pamięć wirtualna – mechanizm zarządzania pamięcią komputera zapewniający procesowi wrażenie pracy w jednym, dużym, ciągłym obszarze pamięci operacyjnej, podczas gdy fizycznie może być ona pofragmentowana, nieciągła i częściowo przechowywana na urządzeniach pamięci masowej.
Pamięć wirtualna działa na zasadzie przedefiniowania adresów pamięci (fizycznych) na adresy używane przez procesy (logiczne) tak, aby „oszukać” procesy i dać im wrażenie pracy w ciągłej przestrzeni adresowej. Pamięć wirtualna oznacza znacznie większą ilość pamięci RAM dla procesu niż fizycznie dostępna w systemie
Zauważmy, że z punktu odniesienia programisty (programu komputerowego) nie jest dostępna rzeczywista realizacja pamięci wirtualnej - programistę w ogóle to nie interesuje.
W równoważności mamy podobnie:
Zauważmy, że przy wyprowadzaniu zero-jedynkowej definicji równoważności p<=>q (39.5.1) nie była nam potrzebna ani zero-jedynkowa definicja warunku wystarczającego =>, ani też zero-jedynkowa definicja warunku koniecznego ~>.
Matematycznie, zero-jedynkową definicję równoważności można wygenerować korzystając z zero-jedynkowych definicji warunku wystarczającego => i koniecznego ~>
Dowód:
Kod: |
Zero-jedynkowa definicja warunku wystarczającego =>
p q Y=(p=>q)=~p+q
A: 1 1 =1
B: 1 0 =0
C: 0 0 =1
D: 0 1 =1
|
##
Kod: |
Zero-jedynkowa definicja warunku koniecznego ~>
p q Y=(p~>q)=p+~q
A: 1 1 =1
B: 1 0 =1
C: 0 0 =1
D: 0 1 =0
|
Gdzie:
## - różne na mocy definicji
p i q musi być wszędzie tymi samymi p i q inaczej błąd podstawienia
Definicja znaczka różne na mocy definicji ##:
Dwie funkcje logiczne Y w tej samej logice (tu dodatniej bo Y) są różne na mocy definicji wtedy i tylko wtedy gdy dla identycznych wymuszeń na wejściach p i q mają różne kolumny wynikowe Y
Podstawowa, znana wszystkim ludziom definicja równoważności to:
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) =1*1=1
Prawą stronę czytamy:
Zajście p jest warunkiem koniecznym ~> (B1) i wystarczającym => (A1) do tego, by zaszło q
Klikamy na goglach:
„koniecznym i wystarczającym”
Wyników: kilkanaście tysięcy
cnd
Skorzystajmy z zero-jedynkowych definicji warunku wystarczającego => i koniecznego ~> w celu wygenerowania zero-jedynkowej definicji równoważności p<=>q.
Kod: |
Zero-jedynkowa definicja równoważności p<=>q
p q p=>q p~>q p<=>q=(p=>q)*(p~>q)
A: 1 1 =1 =1 =1
B: 1 0 =0 =1 =0
C: 0 0 =1 =1 =1
D: 0 1 =1 =0 =0
1 2 3 4 5
|
Zauważmy, że w świecie rzeczywistym (naszym świecie) w równoważności p<=>q mamy dostęp tylko i wyłącznie do sygnałów wejściowych p i q oraz do kolumny wynikowej p<=>q, czego dowód mieliśmy w punkcie 39.5.1.
Kolumny wynikowe p=>q i p~>q są kolumnami wirtualnymi niedostępnymi w naszym świecie rzeczywistym - można je fizycznie zaobserwować wyłącznie w teorii bramek logicznych, czego dowód znajdziemy w punkcie 13.7.3
Wnioski:
1.
Nie ma sensu analizować linia po linii warunku wystarczającego p=>q bo w punkcie D3 wyjdzie nam kosmiczna głupota jakoby zbiory ~p i q miały element wspólny, co w świecie rzeczywistym jest wykluczone (punkt D5)
2.
Nie ma sensu analizować linia po linii warunku koniecznego p~>q bo w punkcie B4 wyjdzie nam kosmiczna głupota jakoby zbiory p i ~q miały element wspólny, co w świecie rzeczywistym jest wykluczone (punkt B5)
39.6.1 Prawo matematycznego super-głąba w równoważności
Algebra Kubusia:
W zero-jedynkowej definicji równoważności p<=>q kolumna 3 definiuje wirtualny warunek wystarczający p=>q gdzie w świecie rzeczywistym nie jest dostępna jedynka w punkcie D3.
W logice „matematycznej” ziemskich matematyków warunek wystarczający => z algebry Kubusia nosi nazwę implikacji o definicji jak niżej.
Prawo eliminacji implikacji w ziemskiej logice matematycznej:
A1: p=>q =~p+q
Dowód iż definicja ziemskiej implikacji => nie ma nic wspólnego z warunkiem wystarczającym => w rozumieniu algebry Kubusia to aktualnie obowiązująca definicja ziemskiej implikacji =>, podana przez Macjana.
http://www.sfinia.fora.pl/forum-kubusia,12/elementarz-algebry-boole-a-irbisol-macjan-str-10,2605-240.html#55877
@Macjan
Zrozum - treść zdania, czyli to, o czym ono mówi, nie może w żaden sposób wpływać na jego zapis symboliczny. Zdanie "... i ..." jest koniunkcją niezależnie od tego, co wstawimy w wykropkowane miejsca. Tak samo zdanie "Jeśli ... to ..." jest implikacją.
Potwierdzenie definicji Macjana przez wykładowcę logiki matematycznej na AGH Kraków.
[link widoczny dla zalogowanych]
@Wykład logiki matematycznej na AGH
Elementy logiki matematycznej
Logika matematyczna zajmuje się zdaniami logicznymi.
Zdanie logiczne, to zdanie gramatyczne orzekające, któremu można przypisać jedną z dwóch ocen (wartość) Prawda (TRUE, 1); Fałsz (FALSE, 0 ) (czyli zdania logiczne podlegają wartościowaniu). Nie są zdaniami logicznymi zdania pytające i rozkazujące.
Funktory logiczne (spójniki):
- jednoargumentowe (wystarczy jedno zdanie)
negacja - ~ - (nieprawda, że ...)
- dwuargumentowe (wymagają dwóch zdań) np.
koniunkcja - * - (...i... )
alternatywa - + - (...lub...)
implikacja - => - (jeżeli ..., to...)
równoważność - <=> - (...wtedy i tylko wtedy, gdy...)
Zero-jedynkowe definicje dwuargumentowych spójników logicznych to:
Kod: |
p q | p*q | p+q | p=>q | p<=>q
1 1 | 1 | 1 | 1 | 1
1 0 | 0 | 1 | 0 | 0
0 1 | 0 | 1 | 1 | 0
0 0 | 0 | 0 | 1 | 1
|
@Rafal3006
Jak widzimy, w wykropkowane miejsca możemy wstawiać cokolwiek, byleby temu „cokolwiek” dało się przypisać pojęcie prawdy (=1) albo fałszu (=0), co lokuje nas w definicji implikacji materialnej rodem z Klasycznego Rachunku Zdań.
Stąd mamy:
Prawo Matematycznego super-głąba:
Matematycznym super-głąbem jest każdy fanatyk KRZ który korzysta z ziemskiej definicji implikacji podanej przez Macjana, potwierdzonej przez wykładowcę logiki „matematycznej” na AGH, która w zdaniu warunkowym „Jeśli p to q” nie wymaga badania jakiejkolwiek relacji w zbiorach między poprzednikiem p i następnikiem q.
39.7 Operator równoważności p|<=>q vs algebra Boole’a
Zacznijmy od podstawowej definicji równoważności p<=>q, gdzie w kolumnie A1B1 mamy odpowiedź na pytanie co może się wydarzyć jeśli zajdzie p?
Kod: |
TR
Równoważność p<=>q:
A1: p=>q =1 - p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - p jest (=1) konieczne ~> dla zajścia q
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q)=1*1=1
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w równoważności p<=>q
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q =1 = 2:~p~>~q =1 [=] 3: q~>p =1 = 4:~q=>~p =1
A': 1: p~~>~q=0 [=] 4:~q~~>p =0
## ## ## ##
B: 1: p~>q =1 = 2:~p=>~q =1 [=] 3: q=>p =1 = 4:~q~>~p =1
B': 2:~p~~>q =0 [=] 3: q~~>~p=0
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Prawa Sowy dla równoważności p<=>q:
Prawdziwość dowolnego zdania w linii Ax wymusza prawdziwość pozostałych zdań w tej linii
Prawdziwość dowolnego zdania w linii Bx wymusza prawdziwość pozostałych zdań w tej linii
Z tabeli TR odczytujemy tabelę prawdy operatora równoważności p|<=>q
Kod: |
TR1
Tabela prawdy operatora równoważności p|<=>q
A1B1: p<=>q=(A1: p=>q)*(B1: p~>q)
A1: p=> q =1 - zajście p jest wystarczające => dla zajścia q
Twarda jedynka w A1 wymusza twarde zero w A1' (i odwrotnie)
A1': p~~>~q=0 - prawdziwość A1: p=>q wymusza fałszywość kontrprzykładu A1'
Twarde zero w A1' wymusza twardą jedynkę w A1 (i odwrotnie)
A2B2: ~p<=>~q=(A2:~p~>~q)*(B2:~p=>~q)
B2: ~p=>~q =1 - zajście ~p jest wystarczające => dla zajścia ~q
Twarda jedynka w B2 wymusza twarde zero w B2' (i odwrotnie)
B2':~p~~>q =0 - prawdziwość B2:~p=>~q wymusza fałszywość kontrprzykładu B2'
Twarde zero w B2' wymusza twardą jedynkę w B2 (i odwrotnie)
|
Komentarz:
Linia A1:
Jeśli spełniony jest warunek wystarczający A1:
A1: p=>q =1 - zbiór p jest podzbiorem => zbioru q (DR 39.3)
to iloczynem logicznym zbiorów p i q to jest zbiór p, czyli zbiór p*q jest zbiorem niepustym (=1)
Linia A1’:
Prawdziwy warunek wystarczający A1: p=>q=1 wymusza fałszywy kontrprzykład A1’ (i odwrotnie)
A1’: p~~>~q = p*~q =0 - co oznacza brak (=0) wspólnego elementu zbiorów p i ~q (DR 39.3)
Linia B2:
Jeśli spełniony jest warunek wystarczający B2:
B2: ~p=>~q =1 - zbiór ~p jest podzbiorem => zbioru ~q (DR 39.3)
to iloczynem logicznym zbiorów ~p i ~q to jest zbiór ~p, czyli zbiór ~p*~q jest zbiorem niepustym (=1)
Linia B2’:
Prawdziwy warunek wystarczający B2: ~p=>~q=1 wymusza fałszywy kontrprzykład B2’ (i odwrotnie)
B2’: ~p~~>q = ~p*q =0 - co oznacza brak (=0) wspólnego elementu zbiorów ~p i q (DR 39.3)
Stąd mamy wyprowadzoną symboliczną definicję operatora równoważności p<=>q z uwzględnieniem definicji elementu wspólnego zbiorów p~~>q=p*q
Kod: |
TR2
Symboliczna definicja operatora równoważności p|<=>q
z uwzględnieniem definicji elementu wspólnego zbiorów p~~>q=p*q
A1B1: p<=>q=(A1: p=>q)*(B1: p~>q)
Y=(p<=>q)=A1: p*q+B2:~p*~q
A1: p=> q =1 = p* q =1 -jeśli p=>q=1 to istnieje(=1) wspólny element p*q=1
A1’: p~~>~q=0 = p*~q =0 -nie istnieje (=0) wspólny element p*~q =0
A2B2: ~p<=>~q=(A2:~p~>~q)*(B2:~p=>~q)
B2: ~p=>~q =1 =~p*~q =1 -jeśli ~p=>~q=1 to istnieje wspólny element ~p*~q=1
B2’:~p~~>q =1 =~p* q =0 -nie istnieje (=0) wspólny element zbiorów ~p i q
1 2 3 4 5 6
|
Fakt 1:
Zauważmy, że w analizie operatora równoważności p|<=>q zbiory niepuste i rozłączne to: A1 i B2
Dowód rozłączności tych zbiorów (DR 39.3):
(A1: p*q)*(B2:~p*~q) =[] - bo p*~p=[]
cnd
Fakt 2:
Z diagramu DR wynika, że dziedzina D to suma logiczna zbiorów niepustych i rozłącznych:
D = A1: p*q + B2: ~p*~q
Funkcja logiczna Y opisująca tabelę symboliczną 456 w tabeli prawdy TR2 to:
Y = A1: p*q + B2: ~p*~q
co w logice jedynek (bo równanie alternatywno-koniunkcyjne) oznacza:
Y=1 <=> A1: p=1 i q=1 lub B2: ~p=1 i ~q=1
Zauważmy, że jeśli dowolny składnik sumy logicznej w równaniu alternatywno-koniunkcyjnym przyjmie wartość logiczną miękkiej jedynki to wymusi ona miękkie zera w pozostałych składnikach sumy logicznej.
Definicja miękkiej jedynki i miękkiego zera:
Miękka jedynka i miękkie zero to wartościowanie sumy logicznej opisującej zbiory niepuste i rozłączne dla konkretnego składnika sumy logicznej.
Dowód:
Funkcja logiczna Y opisująca tabelę symboliczną 456 w tabeli prawdy TR2 to:
Y = A1: p*q + B2: ~p*~q
Możliwe są tu dwa przypadki iterowania:
1.
Załóżmy, że wylosowaliśmy element należący do zbioru A1:
A1: Y(A1) = A1: p*q
co w logice jedynek oznacza:
A1: Y(A1)=1 <=> A1: p=1 i q=1
Na mocy prawa Prosiaczka mamy:
(p=1)=(~p=0)
(q=1)=(~q=0)
Dla tego przypadku (iterowania) Y(A1) mamy (456):
Definicja równoważności p<=>q w spójnikach „i”(*) i „lub”(+)
Y = A1: p*q + B2: ~p*~q
Y(A1) = A1: 1*1 + B2: 0*0 = A1: 1 + B2: 0
A1: Y(A1) = p*q
Wniosek:
Jeśli z dziedziny D wylosujemy element należący do zbioru A1: p*q (miękka jedynka) to dla tego losowania linia B2 będzie zbiorem pustymi [] (miękkie zero)
2.
Załóżmy, że wylosowaliśmy element należący do zbioru B2:
B2: Y(B2) = B2: ~p*~q
co w logice jedynek oznacza:
B2: Y(B2)=1 <=> B2: ~p=1 i ~q=1
Na mocy prawa Prosiaczka mamy:
(~p=1)=(p=0)
(~q=1)=(q=0)
Dla tego przypadku (iterowania) Y(B2) mamy (456):
Definicja równoważności p<=>q w spójnikach „i”(*) i „lub”(+)
Y = A1: p*q + B2: ~p*~q
Y(B2) = A1: 0*0 + B2: 1*1 = A1: 0 + B2: 1
B2: Y(B2) = B2: ~p*~q
Wniosek:
Jeśli z dziedziny D wylosujemy element należący do zbioru B2: ~p*~q (miękka jedynka) to dla tego losowania linia A1 będzie zbiorem pustym [] (miękkie zero)
Podsumowując:
Doskonale tu widać sens definicji miękkich jedynek i miękkich zer w logice matematycznej.
Zauważmy, że z dziedziny D nie możemy wylosować elementu który by należał jednocześnie do dwóch zbiorów niepustych A1: p*q i B2:~p*~q, bowiem zbiory te są rozłączne (DR 39.3)
39.7.1 Prawo matematycznego jełopa
Dowolny matematyk który twierdzi że równoważność p<=>q definiuje zarówno tożsamość zbiorów p=q jak i tożsamość zbiorów ~p=~q jest matematycznym jełopem
Dowód w punkcie wyżej.
39.7.2 Prawo matematycznego jełopa na przykładzie równoważności Pitagorasa
Kod: |
T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
## ## ## ## ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5: p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Weźmy twierdzenie proste Pitagorasa A1: p=>q
A1.
Jeśli trójkąt jest prostokątny (TP) to na 100% => zachodzi w nim suma kwadratów (SK)
A1: TP=>SK =1
To samo w zapisach formalnych:
A1: p=>q =1
Na mocy prawa Kłapouchego mamy ustalony punkt odniesienia to:
p=TP (zbiór trójkątów prostokątnych)
q=SK (zbiór trójkątów ze spełniona sumą kwadratów)
Na mocy prawa Słonia czytamy:
Bycie trójkątem prostokątnym (TP) jest (=1) warunkiem wystarczającym => do tego aby zachodziła w nim suma kwadratów (SK) wtedy i tylko wtedy gdy zbiór TP jest podzbiorem => zbioru SK
Twierdzenie proste Pitagorasa ludzkość udowodniła wieki temu.
Zdanie A1 to znane każdemu uczniowi 8 klasy SP twierdzenie proste Pitagorasa.
Aby rozstrzygnąć z jakim operatorem implikacyjnym mamy do czynienia musimy udowodnić prawdziwość/fałszywość dowolnego zdania serii Bx.
Wybieramy twierdzenie odwrotne Pitagorasa B3: q=>p
B3.
Jeśli w dowolnym trójkącie spełniona jest suma kwadratów (SK) to na 100% => trójkąt ten jest prostokątny (TP)
B3: SK=>TP=1
To samo w zapisie formalnym:
B3: q=>p =1
Na mocy prawa Słonia czytamy:
Bycie trójkątem w którym spełniona jest suma kwadratów (SK) jest warunkiem wystarczającym => do tego aby ten trójkąt był prostokątny (TP) wtedy i tylko wtedy gdy zbiór trójkątów ze spełnioną sumą kwadratów (SK) jest podzbiorem => zbioru trójkątów prostokątnych (TP)
Twierdzenie odwrotne Pitagorasa ludzkość udowodniła wieki temu.
Na mocy prawa Sowy mamy tu do czynienia z równoważnością Pitagorasa TP<=>SK.
Prawo Irbisa:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy znajdują cię w relacji równoważności p<=>q
A1B1: p=q <=> A1B1: p<=>q = (A1: p=>q)*(B1: p~>q)
Równoważność TP<=>SK to kolumna A1B1 dająca odpowiedź na pytanie co może się wydarzyć, jeśli ze zbioru wszystkich trójkątów (ZWT) wylosujemy trójkąt prostokątny TP.
Definicja kontrprzykładu w zbiorach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane elementem wspólnym zbiorów p~~>~q=p*~q
Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)
Stąd mamy tabelę prawdy równoważności TP<=>SK z uwzględnieniem prawa Irbisa i definicji kontrprzykładu działającej wyłącznie w warunkach wystarczających =>
Kod: |
TR
Równoważność p<=>q w zapisie formalnym:
Równoważność p<=>q to zachodzenie zarówno warunku koniecznego ~> jak
jak i wystarczającego => między tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) =1*1 =1
Na mocy prawa Kłapouchego punkt odniesienia dla naszego przykładu to:
p=TP
q=SK
Równoważność TP<=>SK w zapisie aktualnym:
Równoważność TP<=>SK to zachodzenie zarówno warunku koniecznego ~> jak
jak i wystarczającego => między tymi samymi punktami i w tym samym kierunku
A1: TP=>SK =1 - bycie TP jest (=1) wystarczające => dla zachodzenia SK
<=> zbiór TP jest (=1) podzbiorem => zbioru SK
B1: TP~>SK =1 - bycie TP jest (=1) konieczne ~> dla zachodzenia SK
<=> zbiór TP jest nadzbiorem ~> zbioru SK
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) =1*1 =1
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w równoważności p<=>q
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=> q =1 = 2:~p~> ~q =1 [=] 3: q~> p =1 = 4:~q=> ~p =1
A': 1: p~~> ~q =0 [=] 4:~q~~> p =0
To samo w zapisie aktualnym:
A: 1: TP=>SK =1 = 2:~TP~>~SK=1 [=] 3: SK~>TP =1 = 4:~SK=>~TP=1
A': 1: TP~~>~SK=0 [=] 4:~SK~~>TP=0
## ## ## ##
B: 1: p~> q =1 = 2:~p=> ~q =1 [=] 3: q=> p =1 = 4:~q~> ~p =1
B': 2:~p~~>q =0 [=] 3: q~~> ~p =0
To samo w zapisie aktualnym:
B: 1: TP~>SK =1 = 2:~TP=>~SK=1 [=] 3: SK=> TP =1 = 4:~SK~>~TP=1
B': 2:~TP~~>SK=0 [=] 3: SK~~>~TP=0
-----------------------------------------------------------------------
Równoważność <=>: | Równoważność <=>:
AB: 1: p<=> q =1 = 2:~p<=>~q =1 [=] 3: q<=> p = 1 = 4:~q<=>~p=1
definiuje tożsamość zbiorów: | definiuje tożsamość zbiorów:
AB: 1: p=q # 2:~p=~q | 3: q=p # 4:~q=~p
To samo w zapisie aktualnym:
Równoważność <=>: | Równoważność <=>:
AB: 1: TP<=>SK =1 = 2:~TP<=>~SK=1 [=] 3: SK<=>TP =1 = 4:~SK<=>~TP=1
definiuje tożsamość zbiorów: | definiuje tożsamość zbiorów:
AB: 1: TP=SK # 2:~TP=~SK | 3: SK=TP # 4:~SK=~TP
Gdzie:
# - różne w znaczeniu iż dowolna strona # jest negacją drugiej strony
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
"=",[=],<=> - tożsame znaczki tożsamości logicznej
|
W tabeli TR doskonale widać potwierdzenie prawa Jełopa:
1.
Jeśli ze zbioru wszystkich trójkątów wylosujemy trójkąt prostokątny (TP) to matematyczny opis dla tego przypadku mamy w kolumnie A1B1.
Równoważność:
AB1: TP<=>SK =1
Definiuje tu wyłącznie zbiór:
AB1: TP=SK (TP - zbiór trójkątów prostokątnych)
nie mogąc jednocześnie definiować zbioru:
AB2: ~TP=~SK (~TP - zbiór trójkątów nieprostokątnych)
bowiem zbiory te są rozłączne, czyli nie można wylosować elementu należącego jednocześnie do tych dwóch zbiorów (DR 39.3)
2.
Jeśli ze zbioru wszystkich trójkątów wylosujemy trójkąt nieprostokątny (~TP) to matematyczny opis dla tego przypadku mamy w kolumnie A2B2.
Równoważność:
AB2: ~TP<=>~SK =1
Definiuje tu wyłącznie zbiór:
AB2: ~TP=~SK (~TP - zbiór trójkątów nieprostokątnych)
nie mogąc jednocześnie definiować zbioru:
AB1: TP=SK (TP - zbiór trójkątów prostokątnych)
bowiem zbiory te są rozłączne, czyli nie można wylosować elementu należącego jednocześnie do tych dwóch zbiorów (DR 39.3)
|
|
Powrót do góry |
|
 |
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 37352
Przeczytał: 18 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Pon 20:48, 17 Mar 2025 Temat postu: |
|
|
Algebra Kubusia – matematyczna wojna wszech czasów
40.0 Geneza rozszyfrowywania algebry Kubusia
Spis treści
40.0 Geneza rozszyfrowywania algebry Kubusia 1
40.1 Czym jest algebra Kubusia? 1
40.2 Kim jest Rafal3006? 2
40.3 Dla kogo algebra Kubusia? 3
40.4 Jakie jest znaczenie algebry Kubusia dla ludzkości? 5
40.5 Algebra Kubusia: Czy podbije serca matematyków? 6
40.5.1 Historia dyskusji z Fiklitem 6
40.6 Jak to się zaczęło? 8
40.6.1 Początki – rok 2006 9
40.6.2 Weryfikowalność algebry Kubusia 10
40.7 Irbisol – odwieczny wróg algebry Kubusia 10
40.7.1 Podziękowanie dla Irbisola 11
40.8 Prawdopodobieństwo rozszyfrowania algebry Kubusia bez Rafała3006 12
40.8.1 Warunek konieczny rozszyfrowania algebry Kubusia 12
40.8.2 Warunek podstawowy rozszyfrowania algebry Kubusia 13
40.9 Błędy nauki 15
40.10 Czym byłby nasz świat bez wariatów? 16
40.0 Geneza rozszyfrowywania algebry Kubusia
Fundamentem wszelkich logik matematycznych jest algebra Boole’a z jej rachunkiem zero-jedynkowym.
Algebra Boole’a nie zajmuje się kluczowymi w logice matematycznej zdaniami warunkowymi typu „Jeśli p to q” opisywanymi warunkami wystarczającymi => i koniecznymi ~> - taki opis to fundament algebry Kubusia.
40.1 Czym jest algebra Kubusia?
Motto Rafała3006:
Napisać algebrę Kubusia w taki sposób, by ziemski matematyk był w stanie ją zrozumieć i zaakceptować, mimo iż na starcie nie zna ani jednej definicji obowiązującej w AK.
Algebra Kubusia to jedyna poprawna logika matematyczna pod którą podlega cały nasz Wszechświat, żywy i martwy.
Kluczowe elementy algebry Kubusia w świecie żywym to matematyczna obsługa wszelkich obietnic i gróźb będąca fundamentem działania wszelkich istot żywych (nie tylko człowieka).
Naturalnymi ekspertami algebry Kubusia są 5-cio latki i humaniści.
Algebra Kubusia to podłożenie matematyki pod język potoczny człowieka, czyli coś, o czym matematycy marzą od 2500 lat (od Sokratesa).
Rozszyfrowanie algebry Kubusia to 19 lat dyskusji na forum filozoficznym w Polsce, to około 37 000 postów napisanych przez Rafała3006 wyłącznie w temacie "Logika matematyczna"
Pełna historia rozszyfrowywania algebry Kubusia dostępna jest na forum śfinia:
http://www.sfinia.fora.pl/forum-kubusia,60/
Matematycznego potwora którego nie sposób zrozumieć, zwanego dla niepoznaki Klasycznym Rachunkiem Zdań znajdziemy w każdym podręczniku matematyki do I klasy LO
Dowód iż KRZ to gwałt na rozumku każdego 5-cio latka to przykładowe zdania tu prawdziwe:
1: Jeśli 2+2=5 to jestem papieżem
2: Jeśli pies ma 8 łap to Księżyc krąży wokół Ziemi
3: Dwa plus dwa równa się cztery wtedy i tylko wtedy, gdy Płock leży nad Wisłą.
Dowód na serio prawdziwości zdania 1 znajdziemy tu:
[link widoczny dla zalogowanych]
Dowód na serio prawdziwości zdania 2 znajdziemy w podręczniku matematyki do I klasy LO:
[link widoczny dla zalogowanych]
Komentarz do zdania 3 znajdziemy w Delcie'2013:
[link widoczny dla zalogowanych]
Algebrę Kubusia wyssaliśmy z mlekiem matki i nie musimy się jej uczyć - wszyscy jesteśmy jej ekspertami w praktyce bo po prostu pod nią podlegamy nie mając żadnych szans, by się od niej uwolnić. Aktualnie żaden ziemski matematyk nie wie, iż w komunikacji z 5-cio latkami i humanistami używa tylko i wyłącznie algebry Kubusia.
Mam nadzieję, że to się wkrótce zmieni, bowiem nie jest możliwe by matematycy na poziomie rozumiejący teorię bramek logicznych (są tacy) nie załapali algebry Kubusia mającej 100% pokrycie w bramkach logicznych w przełożeniu 1:1, czego dowód znajdziemy w punkcie 11.0.
Matematycznie zachodzi tożsamość:
Algebra Kubusia = Biblia, napisana językiem zrozumiałym dla prostego człowieka.
Oznacza to, że 100% zdań w Biblii dotyczących obietnic i gróźb Chrystusa jest zgodnych z algebrą Kubusia tzn. żadne zdanie w Biblii w tym zakresie nie jest sprzeczne z AK.
Dowód tego faktu znajdziemy w punktach 3.6 i 4.6.
Podsumowując:
Matematyczna wersja algebry Kubusia jest tak samo potrzebna do szczęścia 5-cio latkowi i humaniście jak gramatyka języka polskiego, której nigdy nie znałem i nie znam, a mimo to po polsku piszę. Pewne elementy algebry Kubusia można nauczać już w przedszkolu w formie zabawy, bowiem 5-cio latki doskonale ją znają nie wiedząc, że to jest matematyka ścisła opisująca otaczającą nas rzeczywistość.
40.2 Kim jest Rafal3006?
Jestem absolwentem Technikum Energetycznego w Ostrowcu Świętokrzyskim oraz elektroniki na Politechnice Warszawskiej, Instytut Automatyki, rok 1980.
Po skończeniu studiów zdałem sobie sprawę, iż w praktyce sterowań w technice mikroprocesorowej (moja specjalizacja) wykorzystuję niewielką ilość wiedzy którą wpajano mi na studiach.
Wpadłem wówczas na pomysł napisania serii podręczników do nauki elektroniki dla hobbystów przy założeniu, że odbiorca nie zna prawa Ohma, czyli z założenia były to podręczniki dla I klasy LO, gdzie po łagodnej równi pochyłej czytelnik był prowadzony od takich pojęć jak napięcie, prąd, prawo Ohma … poprzez elektronikę klasyczną, bramki logiczne, układy scalone średniej skali integracji, układy mikroprocesorowe, do praktycznego programowania różnych sterowań w języku asemblera mikroprocesora Z80 przy pomocy opracowanego przeze mnie sterownika o nazwie CA80.
CA80 jest dziś legendą wśród starszej daty elektroników, doczekał się nawet debiutu w Krzemowej Dolinie.
Prezentacja komputerka CA80 w Computer History Museum, Mountain View, 6-7 Sierpień 2022
https://youtu.be/RKOvcejgb_0
https://www.youtube.com/watch?v=zh_pjpe64sw
Czym był CA80 dla wielu młodych ludzi w latach 80-tych najlepiej pokazuje 117 autentycznych recenzji z tamtego okresu:
[link widoczny dla zalogowanych]
Oryginały napisanych przeze mnie prawie 40 lat temu podręczników MIK01-MIK11 do nauki elektroniki i mikroelektroniki dostępne są w wersji pdf na forum elektroda.pl dzięki Andrzejowi Liskowi który je zeskanował (trzeba się zarejestrować by mieć do nich dostęp):
[link widoczny dla zalogowanych]
Uważam, że podręczniki te nadal są aktualne i ciekawe dla uczniów techników o specjalności elektrycznej i elektronicznej. Szczególnie polecam MIK01 i MIK02 zawierające wiedzę podstawową, która nigdy się nie zestarzeje np. napięcie, prąd, prawo Ohma (MIK01), zrozumienie fundamentów działania wszelkich mikroprocesorów na poziomie sprzętowym (MIK02).
Ciekawostką jest fakt, że mikroprocesor Z80 opisywany w MIK02 wywodzi się z linii mikroprocesorów Intela i8080 której zwieńczeniem był 16 bitowy mikroprocesor i8086 zastosowany w pierwszym poważnym komputerze osobistym IBM PC (rok 1981) będącym protoplastą wszelkich obecnych komputerów tzn. program napisany w języku asemblera na staruszka i8086 będzie działał poprawnie w dzisiejszych komputerach zbudowanych na najnowszych procesorach firmy Intel np. i5-1235u
Z perspektywy czasu myślę, że mój CA80 był wstępem koniecznym dla rozszyfrowania algebry Kubusia, logiki matematycznej pod którą podlega cały nasz Wszechświat żywy i martwy.
Myślę, że o CA80 z czasem ludzie zapomną, bo to były początki techniki mikroprocesorowej, natomiast „Algebra Kubusia” jeśli ziemscy matematycy ją zaakceptują (to tylko kwestia czasu), będzie żyła „wiecznie”.
40.3 Dla kogo algebra Kubusia?
Algebrę Kubusia dedykuję wszystkim matematykom, podobnym do Marka Kordosa, którzy potrafią spojrzeć krytycznie na fundament wszelkich ziemskich logik matematycznych zwany Klasycznym Rachunkiem Zdań.
Kim jest Marek Kordos?
[link widoczny dla zalogowanych]
Marek Tomasz Kordos (ur. 7 marca 1940) – polski matematyk, doktor habilitowany, geometra i historyk matematyki oraz jej popularyzator.
Życiorys
Założyciel i wieloletni redaktor naczelny miesięcznika Delta, autor wielu książek, współzałożyciel Ośrodka Kultury Matematycznej oraz Stowarzyszenia na rzecz Edukacji Matematycznej. Zatrudniony na stanowisku profesora nadzwyczajnego aż do emerytury pracował jako wykładowca akademicki na Wydziale Matematyki, Informatyki i Mechaniki Uniwersytetu Warszawskiego. Specjalizuje się w geometrii i historii matematyki. Doktorat i habilitację uzyskał za prace z geometrii rzutowo-metrycznych.
[link widoczny dla zalogowanych]
Logika, sens i wątpliwości
Marek Kordos
Delta, marzec 2013
Już przed laty, gdy brałem udział w tworzeniu jednej z kolejnych reform nauczania matematyki, miałem poważne wątpliwości, czy umieszczanie w programach nauczania matematyki (podstawach programowych, wykazach efektów nauczania, podręcznikach itp.) działu logika jest zgodne ze zdrowym rozsądkiem.
Oczywiście, wiem, że wielu głosi, iż nauczanie matematyki (jak niegdyś łaciny, której się zresztą uczyłem) to nauka logicznego myślenia. Ale, gdy czytałem otwierające wówczas podręczniki do liceum rozdziały poświęcone logice, trudno mi było powstrzymać się od wrażenia, że nie ma w nich żadnego sensu. Nie wymienię, rzecz jasna, żadnego konkretnego podręcznika (po co mi rozprawy sądowe – przecież podręcznik to wielkie pieniądze), ale wrażenie przy lekturze każdego z nich było podobne.
Od razu chciałbym powiedzieć, że nie chodzi o opinię, iż logika nigdy matematyce nie pomogła, bo unikanie błędów nie jest aktem twórczym (patrz Nicolas Bourbaki, Elementy historii matematyki). Chodzi o coś więcej. Ale nie śmiałem nalegać na usunięcie tego działu ze szkolnego nauczania, bo jeśli wszyscy widzą w nim sens, to może on tam – wbrew pozorom – istnieje.
Dopiero na sympozjum z okazji dziewięćdziesięciolecia Profesora Andrzeja Grzegorczyka dowiedziałem się, że moje wątpliwości nie są odosobnione i nawet w Instytucie Filozofii i Socjologii PAN prowadzone są prace nad taką modyfikacją logiki, by jej wady usunąć.
Co to za wady? Proszę spojrzeć na zdanie:
Dwa plus dwa równa się cztery wtedy i tylko wtedy, gdy Płock leży nad Wisłą.
Oczywiście, zdanie to jest prawdziwe, ale czy ma sens? Przecież między pewnym faktem arytmetycznym a innym faktem geograficznym żadnego związku nie ma. Dlaczego więc chcemy twierdzić (ba, uczyć tego), że te dwa zdania są równoważne?
Albo zdanie:
Jeśli dwa plus dwa jest równe pięć, to zachodzi twierdzenie Pitagorasa.
Z punktu widzenia logiki to zdanie jest prawdziwe. Tu już po obu stronach implikacji są zdania dotyczące faktów matematycznych. Dlaczego jednak chcemy zmusić młodego człowieka, by widział w tym sens?
Wyjaśnienie jest proste: w pierwszym przypadku chodzi o to, że równoważność zdań ma miejsce, gdy wartość logiczna obu zdań jest taka sama; w drugim – o to, że implikacja jest poprawna, gdy ma fałszywy poprzednik.
A więc logika sprowadza nasz świat do zbioru dwuelementowego, nic przeto dziwnego, że rzeczy absolutnie niepołączone żadnym znaczeniowym (semantycznym) związkiem muszą się znajdować w przynajmniej jednej z dwóch komórek, do jakiejś muszą trafić.
Powstają dwa pytania. Po pierwsze, czemu logika została tak skonstruowana, że – abstrahując od sensu – okalecza pojęciowy świat? Po drugie, czy faktycznie należy trzymać ją jak najdalej od młodzieży, bo tylko ją demoralizuje, każąc za wiedzę uważać takie androny, jak przytoczone powyżej?
Odpowiedź na pierwsze pytanie jest dość prosta. Nowoczesna logika formalna została stworzona (jak wielu uważa) przez Gottloba Fregego (1848-1925) tak, by obsługiwała matematykę, a tę rozumiano wówczas jako badanie prawdziwości zdań języków formalnych.
Odpowiedzi na drugie pytanie de facto nie ma. Tłumaczymy się z używania takich abstrahujących od znaczeń spójników logicznych tym, że alternatywa, koniunkcja i negacja są sensowne; że chcemy, aby młody człowiek wiedział, że zaprzeczeniem zdania, iż istnieje coś mające własność A, jest to, że wszystkie cosie własności A nie mają; że implikacja ze zdania prawdziwego daje jednak tylko zdania prawdziwe itd., itp.
Ale naprawdę chodzi o to, że – jak z małżeństwem i demokracją – lepszej propozycji dotąd nie wynaleziono. A szkoda.
Komentarz Rafała3006:
Ostatnie zdanie jest już nieaktualne bo:
Algebra Kubusia, logika matematyczna pod którą podlega cały nasz Wszechświat martwy i żywy (w tym język potoczny człowieka) została rozszyfrowana.
40.4 Jakie jest znaczenie algebry Kubusia dla ludzkości?
Teoretycznie żadne, bo wszyscy podlegamy pod algebrę Kubusia będąc jej ekspertami w praktyce, nie mając żadnych szans by się od niej uwolnić.
Logika matematyczna to poziom 5-cio letniego dziecka, eksperta algebry Kubusia.
Praktyczne znaczenie algebry Kubusia jest niebotyczne przede wszystkim w obszarze filozofii, ale nie tylko - skończy się pranie mózgów na studiach np. pedagogicznych gdzie dla przeciętnego studenta logika matematyczna jest potworem, niezrozumiałym i strasznym.
Dowód:
Czym jest współczesna logika matematyczna dla przeciętnego studenta celnie ujął dr hab. Krzysztof A. Wieczorek we wstępie do swojej książki „Logika dla opornych”:
[link widoczny dla zalogowanych]
Krzysztof A. Wieczorek
Logika dla opornych
Wszystko co powinniście wiedzieć o logice, ale nie uważaliście na zajęciach
WSTĘP
Celem tego podręcznika nie jest systematyczny wykład logiki. Książek takich jest już wystarczająco dużo, więc osoba głębiej zainteresowana tym przedmiotem na pewno nie będzie miała kłopotu ze znalezieniem czegoś odpowiedniego dla siebie. Niniejsza pozycja przeznaczona jest przede wszystkim dla tych, którzy pobieżnie zetknąwszy się z logiką, na przykład jako z przedmiotem wykładanym podczas krótkiego kursu na wyższej uczelni, z przerażeniem stwierdzili, że nic z tego nie rozumieją. Przyświeca mi cel pokazania takim osobom, że wbrew pozorom logika wcale nie jest taka trudna, jak by się to mogło początkowo wydawać, a jej nauka nie musi przypominać drogi przez mękę.
Większość tradycyjnych podręczników logiki najeżona jest technicznymi terminami, sucho brzmiącymi definicjami i twierdzeniami oraz skomplikowanymi wzorami. Brakuje im natomiast przykładów ilustrujących zawarty materiał teoretyczny i wyjaśniających bardziej złożone zagadnienia w sposób zrozumiały dla osób uważających się za „humanistów”, a nie „ścisłowców”. Sytuacja ta sprawia, że po zapoznaniu się z treścią takiego podręcznika lub po wysłuchaniu wykładu opracowanego na jego podstawie, adept logiki ma trudności z rozwiązaniem nawet bardzo prostych zdań umieszczanych na końcach rozdziałów lub w specjalnych zbiorach ćwiczeń z logiki. Taki stan rzeczy przyprawia o mdłości i ból głowy zarówno wielu wykładowców logiki zrozpaczonych rzekomą całkowitą niezdolnością do poprawnego myślenia okazywaną przez ich studentów, jak i tych ostatnich, zmuszonych do zaliczenia przedmiotu, z którego niemal nic nie rozumieją.
Doświadczenie zdobyte przeze mnie podczas lat nauczania logiki na różnych kierunkach uniwersyteckich wskazuje jednakże, iż najczęściej nieumiejętność rozwiązywania zadań z logiki nie jest wynikiem jakichkolwiek braków umysłowych studentów ani nawet ich lenistwa, ale po prostu przerażenia wywoływanego przez gąszcz niezrozumiałych dla nich wzorów, twierdzeń i definicji. Panika ta widoczna jest szczególnie u osób obdarzonych bardziej humanistycznym typem umysłowości, alergicznie reagujących na wszystko, co kojarzy im się z matematyką.
Można oczywiście ubolewać nad tym, że tak wielu młodych ludzi nie chce pokonać w sobie uprzedzeń do logiki i zmuszać ich „dla ich dobra” do przyswajania tej wiedzy w tradycyjnej formie. Czy ma to jednak większy sens? Da się oczywiście sprawić, że uczeń poświęci tydzień czasu przed egzaminem (często wspomagając się przy tym różnego rodzaju chemicznymi „środkami dopingującymi”) na pamięciowe wykucie kilkudziesięciu twierdzeń i 7 praw, a następnie nauczy się ich mechanicznego stosowania. Nie zmieni to jednak faktu, iż student taki w dalszym ciągu nie będzie rozumiał istoty tego, co robi, ani jaki jest właściwie cel wykonywanych przez niego operacji.
40.5 Algebra Kubusia: Czy podbije serca matematyków?
W ciągu 19 lat dyskusji w temacie logiki matematycznej dyskutowałem z wieloma matematykami z najwyższej półki (Volrath, Macjan, Fiklit)
Na szczególną uwagę zasługuje tu Fiklit, prawdopodobnie wykładowca logiki matematycznej który poświęcił 7 lat życia na dyskusję ze mną w temacie logiki matematycznej.
Kluczowi przyjaciele algebry Kubusia:
Kluczowi przyjaciele algebry Kubusia bez których ta nowatorska teoria matematyczna nie mogłaby zaistnieć to:
1.
Irbisol, fanatyk KRZ, odwieczny wróg Nr. 1 algebry Kubusia od 15 lat usiłujący ją obalić.
Dzięki Irbisolu – bez ciebie algebra Kubusia nie mogłaby zaistnieć.
2.
Fiklit, prawdopodobnie wykładowca ziemskiej logiki matematycznej, dzięki któremu w ciągu 7-letniej dyskusji poznałem tok myślenia w temacie „Logika matematyczna” współczesnych, ziemskich matematyków.
Dzięki Fiklicie – bez ciebie algebra Kubusia nie mogłaby zaistnieć
40.5.1 Historia dyskusji z Fiklitem
Tu jest post wejściowy Fiklita na forum Yrizona, będący dowodem jego profesjonalizmu w temacie ziemskiej logiki matematycznej:
Wysłany: Śro 17:37, 12 Wrz 2012
http://www.sfinia.fora.pl/forum-kubusia,12/finalowa-dyskusja-wszech-czasow-z-fiklitem-na-yrizonie-c-i,6149-175.html#181230
W kolejnym swoim poście Fiklit napisał:
Wysłany: Pią 0:23, 14 Wrz 2012
http://www.sfinia.fora.pl/forum-kubusia,12/finalowa-dyskusja-wszech-czasow-z-fiklitem-na-yrizonie-c-i,6149-200.html#181262
@Fiklit
Dag, dzięki, ale na razie nie będę czytał wcześniejszych prac, bo zauważyłem, że jest ich kilka wersji i już na wstępie nie wszystko dokładnie rozumiem. Dlatego wolę jak mi Kubuś robi indywidualny wykład, bo mam możliwość na bieżąco wyjaśniać pojawiające się wątpliwości.
W tym wytłuszczonym widać, że Fiklit już w drugim swoim poście na Yrizonie zadeklarował chęć bliższego poznania algebry Kubusia - nasza dyskusja trwała 7 lat.
Ile postów napisał Fiklit na forum śfinia w dyskusji ze mną na temat logiki matematycznej?
Fiklit: Dołączył: 24 Wrz 2012, Posty: 4197
Początek dyskusji z Fiklitem to forum Yrizona o czym jest wyżej.
Do fanatyków KRZ: Wystarczy?
Podsumowując:
Czy gdyby algebra Kubusia była bez sensu, jak twierdzą fanatycy KRZ, to czy Fiklit dyskutowałby ze mną 7 lat pisząc 4197 postów w temacie logiki matematycznej?
Ostatni post Fiklita:
Wysłany: Pon 10:37, 25 Mar 2019
http://www.sfinia.fora.pl/forum-kubusia,12/gowno-logika-ziemian-zwana-klasycznym-rachunkiem-zdan,11921-1175.html#441721
@Fiklit
Czy mamy szanse to nie wiem, ale biorąc pod uwagę postępy AK w podboju świata, to można pokusić się o nieśmiałe stwierdzenie, że trzymamy się całkiem dobrze.
Rafał, ty nie potrafisz tłumaczyć. Do tego potrzeba choć trochę umiejętności zrozumienia czego druga osoba nie rozumie. Ty nawet nie rozumiesz na czym polega problem ze zrozumieniem "rzucania monetą" i nie jesteś w stanie znaleźć rozwiązania.
Dowód iż w logice matematycznej mamy „rzucanie monetą” na poziomie matematyki ogólnej (bez żadnych przykładów) jest trywialny i jest on dostępny w aktualnej wersji algebry Kubusia:
http://www.sfinia.fora.pl/forum-kubusia,12/algebra-kubusia-matematyka-jezyka-potocznego,21937.html#680051
2.12.1 Operator implikacji prostej p||=>q
2.13.1 Operator implikacji odwrotnej p||~>q
Przykro mi Fiklicie, że nie zdołałem ci wytłumaczyć algebry Kubusia w sposób zrozumiały.
Powodem tego jest fakt, że 100% definicji w obszarze logiki matematycznej mamy innych, chodzi tu przede wszystkim o biegłą znajomość teorii bramek logicznych (tu jestem ekspertem) gdzie brak w logice matematycznej ziemskich matematyków pojęcia funkcji logicznej w logice dodatniej (bo Y) i ujemnej (bo ~Y) jest powodem jej wewnętrznej sprzeczności.
Patrz prawo Grzechotnika (1.8.4, 1.8.6, 1.9.1, 1.18.3, 11.8.1)
Prawo Grzechotnika:
Aktualna, ziemska algebra Boole'a która nie widzi funkcji logicznych w logice dodatniej (bo Y) i ujemnej (bo ~Y) jest wewnętrznie sprzeczna na poziomie funkcji logicznych.
Wniosek: Miejsce aktualnej algebry Boole’a jest w koszu na śmieci.
Co dalej z algebrą Kubusia?
Czy ma szansę zaistnieć w ziemskiej matematyce?
Mam nadzieję że tak, choć nie wykluczam, że umrze razem ze mną.
Jakie są perspektywy propagowania algebry Kubusia wśród matematyków?
Nie wiem.
Wiem tylko, że fanatycy KRZ nigdy nie zaakceptują algebry Kubusia.
Moim zdaniem należy pozwolić im umrzeć w spokoju bo nic ich do algebry Kubusia nie przekona.
1.
Twierdzenia matematyczne uważane są za prawdziwe, ponieważ w niczyim interesie nie leży, by uważać je za fałszywe.
Monteskiusz.
2.
Klasyczny Rachunek Zdań uważany jest za prawdziwy, ponieważ w niczyim interesie nie leży, by uważać go za fałszywy
Rafał3006
Algebra Kubusia to logika matematyczna przyszłych pokoleń matematyków.
Liczę na matematyków znających biegle teorię bramek logicznych, są tacy np. Volrath (pkt. 22.0)
40.6 Jak to się zaczęło?
Wszystko zaczęło się na forum wiara.pl gdzie Wuj Zbój zaczął mi udowadniać w rachunku zero-jedynkowym, że ateiści mogą do tego samego nieba co wierzący.
W swoim dowodzie użył nieznanej mi wówczas zero-jedynkowej definicji implikacji, mimo że z racji zawodu byłem ekspertem bramek logicznych (elektronika na Politechnice Warszawskiej).
Po krótkiej dyskusji Wuj zaprosił mnie na swoje forum śfinia.
ŚFiNiA - Światopoglądowe, Filozoficzne, Naukowe i Artystyczne forum - bez cenzury.
Link do forum filozoficznego sfinia z jego niezwykłym regulaminem pozwalającym głosić dowolne herezje bez obawy o bana - tylko i wyłącznie dzięki temu algebra Kubusia została rozszyfrowana:
http://www.sfinia.fora.pl/zaprzyjaznione-portale,60/
Na forum śfinia mamy dostęp do pełnej, 20 letniej historii rozszyfrowywania algebry Kubusia.
Startowa dyskusja w temacie logiki matematycznej jest w tym linku:
http://www.sfinia.fora.pl/forum-kubusia,12/definicja-implikacji-wedlug-rafala3006-p-wieczorka,685.html#14369
Tu algebra Kubusia była niemowlęciem jeszcze, musiało minąć kolejnych 20 lat zanim została w 100% rozszyfrowana.
Efekt końcowy na dzień 2024-12-24 w wersji pdf mamy tu:
[link widoczny dla zalogowanych]
Kod: | https://www.dropbox.com/s/hy14p42kup25c32/Kompendium%20algebry%20Kubusia.pdf?dl=0 |
40.6.1 Początki – rok 2006
Początki algebry Kubusia to arcyciekawa dyskusja z Wujem Zbójem na PW, gdzie wiele nocek spędziliśmy na dyskusji o algebrze Boole’a.
Jako absolwent elektroniki i autor podręczników w tym temacie, doskonale znałem logikę dodatnią i ujemną na poziomie sprzętu, o czym można poczytać w Internecie:
[link widoczny dla zalogowanych]
Byłem pewien, że skoro logika dodatnia i ujemna istnieje na poziomie sprzętu to musi istnieć na poziomie matematyki.
Pewność to jedno, a rozszyfrowanie logiki dodatniej i ujemnej na poziomie logiki matematycznej która z definicji nie może być zależna od jakiegokolwiek sprzętu, to zupełnie co innego.
Szczególnym problemem było na początku znalezienia sposobu błyskawicznego przejścia z logiki dodatniej (bo Y) do ujemnej (bo ~Y) i z powrotem.
Y=f(x)
.. a kiedy zajdzie ~Y?
Negujemy dwustronnie funkcję logiczną Y.
~Y=~f(x)
Oczywiście dla prostych funkcji, to banał, korzystamy a prawa De Morgana i po bólu
Przykład:
1.
Y=p+q
… kiedy zajdzie ~Y?
Negujemy dwustronnie funkcję Y:
2.
~Y=~(p+q) = ~p*~q - prawo De Morgana
Po kilku chyba miesiącach walki z tym problemem zapisałem algorytm skróconego przejścia z Y do ~Y i z powrotem dla dowolnie długiej funkcji logicznej Y, ale w moim systemie każde takie przejście łączyło się ze zmianą kolejności wykonywania działań co od strony czysto matematycznej było do bani. Do mojego systemu Wuj wprowadził obowiązek używania nawiasów, co rozwiązało problem radykalnie - dlatego to przejście nosi teraz nazwę algorytmu Wuja Zbója przejścia z logiki dodatniej (bo Y) do ujemnej (bo ~Y) i z powrotem dla dowolnie długiej funkcji logicznej Y.
Kluczowym przełomem w dyskusji na temat logiki matematycznej było odkrycie przeze mnie w rachunku zero-jedynkowym praw Kubusia.
Prawa Kubusia:
p=>q = ~p~>~q
p~>q = ~p=>~q
Gdzie:
=> - definicja obietnicy
~> - definicja groźby
… tak to się wtedy nazywało, bo te znaczki pasowały mi do obsługi obietnic i gróźb w świecie żywym
Nazwa obecna:
=> - warunek wystarczający
~> - warunek konieczny
Definicja warunku wystarczającego =>:
p=>q – zajęcie p jest (=1) wystarczające => dla zajścia q
Definicja warunku koniecznego ~>:
p~>q – zajście p jest (=1) konieczne ~> dla zajścia q
Wuj Zbój potwierdził matematyczną poprawność praw Kubusia.
Tu jest ten historyczny moment:
http://www.sfinia.fora.pl/forum-kubusia,12/implikacja-na-miare-xxi-wieku,1483.html#28815
Wysłany: Pon 15:02, 01 Sty 2007
wujzboj napisał: | rafal3006 napisał: | p~>q = ~p=>~q
p=>q = ~p~>~q | OK. |
Ze zdziwieniem stwierdziłem, że praw Kubusia nie mogę znaleźć w Internecie, co było dla mnie wielkim zaskoczeniem.
Kolejnym przełomem w odkrywaniu algebry Kubusia było okrycie definicji brakującego tu znaczka zdarzenia możliwego ~~>
Definicja zdarzenia możliwego ~~>:
p~~>q =1 – możliwe jest jednoczesne zajście zdarzeń ~~>: p i q
Pierwsza dyskusja z zawodowym logikiem Volrathem była dla mnie arcyciekawa bo doskonale znał teorię bramek logicznych i mieliśmy wspólny w tym temacie język.
Znaczenie tej dyskusji doceniłem dopiero 16 lat później, gdy wnioski Volratha z naszej dyskusji wykorzystałem w końcowej algebrze Kubusia (pkt. 22.0).
Kolejny zawodowy matematyk z którym dyskutowałem to Macjan, dyskusja była ciekawa bo Macjan zaakceptował znaczki => i ~> (wtedy jeszcze nie było znaczka ~~>).
Ostatnim kluczowym partnerem w dyskusji na temat algebry Kubusia był Fiklit, który na bieżąco wskazywał słabe punkty algebry Kubusia, dzięki czemu mogłem ją korygować. Wiedza prezentowana przez Fiklita, oraz jego 6-cio letnia cierpliwość w dyskusji ze mną wskazuje, iż być może jest znakomitym wykładowcą logiki matematycznej - stąd jego cierpliwość dla początkującego studenta.
40.6.2 Weryfikowalność algebry Kubusia
Twardy dowód poprawności czysto matematycznej algebry Kubusia:
Algebra Kubusia ma 100% potwierdzenie w teorii bramek logicznych w przełożeniu 1:1 tzn. pod każde zdanie prawdziwe na gruncie AK możemy podłożyć teorię bramek logicznych.
Wniosek:
Algebra Kubusia jest weryfikowalna w laboratorium układów cyfrowych.
Dowodem jest tu rozdział:
11.0 Algebra Kubusia w bramkach logicznych
Z racji wykształcenia (elektronika na Politechnice Warszawskiej) jestem ekspertem bramek logicznych od zawsze, mając pewność absolutną, że algebra Kubusia jest w 100% zgodna z teorią bramek logicznych - gdybym tej pewności nie miał, to o żadnej logice bym nie dyskutował.
40.7 Irbisol – odwieczny wróg algebry Kubusia
Oddzielnym tematem jest Irbisol, zaciekły wróg algebry Kubusia, od 18 lat za wszelką cenę pragnący ją zniszczyć.
Polecam finałową dyskusję z Irbisolem od tego momentu:
http://www.sfinia.fora.pl/filozofia,4/algebra-kubusia-rewolucja-w-logice-matematycznej,16435-9325.html#820799
Proszę się nie zrażać epitetami z dwóch stron w mojej dyskusji z Irbisolem, to normalka w zaciętej dyskusji która nie przeszkadza ani mnie, ani Irbisolowi (znamy się osobiście).
Dlaczego 18-letnia dyskusja z Irbisolem była dla mnie bezcenna?
Dzięki dyskusji z Irbisolem wędrowaliśmy po dziewiczych obszarach matematyki do których bez jego pomocy nigdy bym nie dotarł.
Wypunktuję dlaczego dyskusja z Irbisolem była dla mnie bezcenna:
1.
Irbisol nie jest matematykiem (jest absolwentem uczelni technicznej, jak ja) - to jest najważniejsza jego korzystna cecha na potrzeby naszej dyskusji
2.
Irbisol rozumie równania algebry Boole'a którymi się posługuję co znajduje potwierdzenie w dawnej naszej dyskusji
3.
Irbisol ślepo wierzy, że przy pomocy KRZ da się opisać logikę matematyczną, którą posługują się ludzie.
Innymi słowy:
KRZ jest dla niego bogiem (póki co) któremu nie jest w stanie się sprzeciwić
Cecha Nr.3 jest tu kluczowa, dzięki niej możliwe było starcie wszech czasów:
Algebra Kubusia vs Klasyczny Rachunek Zdań (w wersji Irbisola)
Podsumowując:
Z żadnym ziemski matematykiem nie miałbym szans na dyskusję w stylu Irbisola posługującego się jego prywatnym KRZ z KRZ matematyków mającym zero wspólnego.
Kluczowa różnica:
Irbisol ślepo wierzy w poniższą tożsamość:
Warunek wystarczający => = Implikacja rodem z KRZ =>
W świecie matematyków to jest oczywista brednia.
cnd
Uwaga:
Dzięki pseudo-tożsamości Irbisola mieliśmy wspólny punkt zaczepienia, bo definicję warunku wystarczającego => rozumieliśmy identycznie, od zawsze.
Przykładowo, Irbisol bez najmniejszych oporów zrozumiał, że równoważność Pitagorasa:
A1B3: TP<=>SK = (A: TP=>SK)*(B3: SK=>TP)=1*1=1
Definiuje tożsamość zbiorów TP=SK, o czym na dzień dzisiejszy, żaden ziemski matematyk nie ma najmniejszego pojęcia.
40.7.1 Podziękowanie dla Irbisola
Dzięki Irbisolu za 18 letnią dyskusję – bez ciebie nie byłoby algebry Kubusia!
Tak w ogóle to nie mam pewności, czy wszelkimi naszymi poczynaniami nie sterował bezpośrednio Kubuś, ale to by oznaczało, że nasza "wolna wola" jest picem, tak więc lepiej zrezygnować z takiego "filozofowania".
https://www.youtube.com/watch?v=Fz8J-WXXjaA
@Sprzedawcy Marzeń - Myslovitz"]
Płyta : Korova Milky Bar.
Tekst :
Jaki piękny jest ten świat, tylko czarne, białe
To jest proste, widzę - wiem
Już tu siedzę jakiś czas, lubię dużo wiedzieć
I nie wzrusza mnie już nic
Ty widzisz we mnie coś, nie ma ideału
A miłość ślepa jest
I chyba nie wiesz, że telewizja kłamie
Nie wszystko możesz mieć
Nie mogę zrobić nic, sterowany jestem wciąż
Nie musisz starać się, przecież jesteś też jak ja
Powiedzieć coś bym chciał, mam pustkę w głowie
Zgubiłem znowu się
I nie chce mi się nic, jestem już zmęczony
To nie był dobry dzień
Nie mogę zrobić nic, sterowany jestem wciąż
Nie musisz starać się, przecież jesteś też jak ja
Nie mogę zrobić nic, sterowany jestem wciąż
40.8 Prawdopodobieństwo rozszyfrowania algebry Kubusia bez Rafała3006
W niniejszym rozdziale poruszymy ciekawy problem:
Co by było, gdyby nie było Rafała3006?
Innymi słowy:
Czy ludzkość zdołałaby rozszyfrować algebrę Kubusia bez pomocy Rafała3006?
Zauważmy, że algebra Kubusia została rozszyfrowana totalnie przypadkowo o czym możemy poczytać w punkcie 40.0
40.8.1 Warunek konieczny rozszyfrowania algebry Kubusia
Warunkiem koniecznym rozszyfrowania algebry Kubusia było zaistnienie zero-jedynkowych tabel wszystkich możliwych spójników logicznych jednoargumentowych i dwuargumentowych, oraz aktualnego rachunku zero-jedynkowego na bazie tych tabel zdefiniowanego.
Dowód iż ludzkość od dawna zna te tabele mamy w tym linku:
[link widoczny dla zalogowanych]
@Wikipedia
W KRZ występuje 20 stałych logicznych: 4 spójniki jednoargumentowe i 16 spójników dwuargumentowych. Nie wszystkie z nich mają nazwy i przypisane im symbole. Najczęściej używa się tylko pięciu spójników: jednoargumentowego spójnika negacji i dwuargumentowych spójników równoważności, implikacji, koniunkcji i alternatywy
W którym roku ludzkość poznała powyższe tabele tego nie wiem, ale myślę że jest to w przybliżeniu okres Georga Boole’a (1815-1864)
40.8.2 Warunek podstawowy rozszyfrowania algebry Kubusia
Warunkiem podstawowym rozszyfrowania algebry Kubusia było odkrycie logiki dodatniej (bo Y) i ujemnej (bo ~Y) na gruncie wszystkich możliwych jednoargumentowych spójników logicznych, co nie jest trudne, czego dowód mamy na pierwszych stronach algebry Kubusia.
Kluczowa jest tu:
Tabela wszystkich możliwych operatorów jednoargumentowych (pkt. 1.4.2)
Kod: |
TJ
Tabela wszystkich możliwych operatorów jednoargumentowych
Operator transmisji Y|=p
A1: Y= p # B1: ~Y=~p
## ##
Operator negacji Y=|~p
A2: Y=~p # B2: ~Y= p
## ##
Zdanie zawsze prawdziwe Y|=1 (stała binarna)
A3: Y=1 # B3: ~Y=0
## ##
Zdanie zawsze fałszywe Y|=0 (stała binarna)
A4: Y=0 # B4: ~Y=1
Matematycznie zachodzi tożsamość:
~Y=~(Y)
~p=~(p)
Stąd mamy:
p, Y muszą być wszędzie tymi samymi p, Y inaczej błąd podstawienia
Gdzie:
# - dowolna strona znaczka # jest negacją drugiej strony
## - różne na mocy definicji
|
Definicja znaczka różne #:
Dowolna strona znaczka różne # jest negacją drugiej strony
Definicja znaczka różne na mocy definicji ##:
Dwie funkcje logiczne są różne na mocy definicji ## wtedy i tylko wtedy gdy nie są tożsame i żadna z nich nie jest negacją drugiej
Doskonale widać, że w tabeli TJ definicje obu znaczków # i ## są perfekcyjnie spełnione.
Na bazie odkrycia logiki dodatniej (bo Y) i ujemnej (bo ~Y) łatwo można dojść do prawa Grzechotnika (pkt. 1.5.4 i 1.7 - poziom 5-cio latka)
Prawo Grzechotnika (pkt. 1.5.4):
Aktualna, ziemska algebra Boole'a która nie widzi funkcji logicznych w logice dodatniej (bo Y) i ujemnej (bo ~Y) jest wewnętrznie sprzeczna na poziomie funkcji logicznych.
Dowód:
Relacja matematyczna między operatorami Y|=p a Y|=~p (pkt. 1.5.3)
Kod: |
OT
Zamknięty świat operatora transmisji Y|=p
Definicja operatora transmisji: Y|=p
Wejście |Wyjście
| A1: B1:
p # ~p | Y=p # ~Y=~p
1 # 0 | 1 # 0
0 # 1 | 0 # 1
Gdzie:
# - dowolna strona znaczka # jest negacją drugiej strony
Zamknięty świat oznacza tu, że żadne zdanie z operatora negacji Y|=~p
nie ma prawa znaleźć się w operatorze transmisji Y|=p
|
##
Kod: |
ON
Zamknięty świat operatora negacji Y|=~p
Definicja operatora negacji: Y|=~p
Wejście |Wyjście
| A2: B2:
p # ~p | Y=~p # ~Y=p
1 # 0 | 0 # 1
0 # 1 | 1 # 0
Gdzie:
# - dowolna strona znaczka # jest negacją drugiej strony
Zamknięty świat oznacza tu, że żadne zdanie z operatora transmisji Y|=p
nie ma prawa znaleźć się w operatorze negacji Y|=~p
|
Zmienne p, Y muszą być wszędzie tymi samymi p, Y inaczej błąd podstawienia
Gdzie:
# - dowolna strona znaczka # jest negacją drugiej strony
## - różne na mocy definicji
Aktualny rachunek zero-jedynkowy ziemskich matematyków operuje tylko i wyłącznie na wyrażeniach algebry Boole’a, czyli na prawych stronach funkcji logicznych Y i ~Y.
Innymi słowy:
Ziemscy matematycy operując w rachunku zero-jedynkowym wyłącznie na prawych stronach funkcji logicznej w logice dodatniej (bo Y) i ujemnej (bo ~Y) z definicji usuwają zewsząd wszelkie funkcje Y i ~Y.
Zauważmy, że po usunięciu Y i ~Y z tabel OT i ON będziemy mieli tożsamość kolumn wynikowych:
A1: p = B2: p
oraz:
A2: ~p = B1: ~p
Co oznacza, iż najważniejszy znaczek logiki matematycznej, znaczek różne na mocy definicji ## leży w gruzach.
Innymi słowy:
Logika matematyczna bez znaczka ## jest wewnętrznie sprzeczna.
Dokładnie o tym mówi prawo Grzechotnika.
Teoretycznie dalej wszystko powinno pójść lawinowo tzn. zainteresowani matematycy powinni dać sobie radę ze 100% rozszyfrowaniem algebry Kubusia.
Problem w tym że:
Monteskiusz: Teorie matematyczne uważane są za prawdziwe, ponieważ w niczyim interesie nie leży, by uważać je za fałszywe.
Z historii ludzkości wiemy, że wielkie idee niezgodne z obowiązującym stanem aktualnym zawsze były wściekle zwalczane.
40.9 Błędy nauki
Autor: Luc Bürgin
Ludzie mają widocznie skłonność do przedwczesnego i negatywnego oceniania perspektyw rozwojowych pewnych dziedzin nauki. Niektóre rewolucyjne odkrycia lub idee przez lata bojkotowano i zwalczano tylko dlatego, że dogmatycznie nastawieni luminarze nauki nie umieli odrzucić swych ulubionych, choć przestarzałych i skostniałych idei i przekonań. Jednym słowem: „Niemożliwe!" hamowali postęp nauki, a przykładami można dosłownie sypać jak z rękawa:
• Gdy w XVIII wieku Antoine-Laurem de Lavoisier zaprzeczył istnieniu „flogistonu" – nieważkiej substancji, która wydziela się w trakcie procesu spalania i w którą wierzyli wszyscy ówcześni chemicy – i po raz pierwszy sformułował teorię utleniania, świat nauki zatrząsł się z oburzenia. „Observations sur la Physique", czołowy francuski magazyn naukowy, wytoczył przeciwko Lavoisierowi najcięższe działa, a poglądy uczonego upowszechniły się dopiero po zażartych walkach.
• Gdy w 1807 roku matematyk Jean-Baptiste Joseph de Fourier wystąpił przed Paryską Akademią Nauk z wykładem na temat przewodnictwa cieplnego w obwodzie zamkniętym i wyjaśnił, że każdą funkcję okresową można przedstawić w postaci nieskończonej sumy prostych funkcji okresowych (sinus, cosinus), wstał Joseph-Louis de Lagrange, jeden z najwybitniejszych matematyków tamtej epoki, i bez ogródek odrzucił tę teorię. A ponieważ przeciwko Fourierowi wystąpili także inni słynni uczeni, np. Pierre-Simon de Laplace, Jean-Baptiste Biot, Denis Poisson i Leonhard Euler, musiało minąć sporo czasu, zanim uznano doniosłość jego odkrycia. Obecnie nie można sobie wyobrazić matematyki i fizyki bez analizy Fouriera.
• Gdy w latach czterdziestych XIX wieku John James Waterston, nieznany młody fizyk, przedstawił brytyjskiemu Towarzystwu Królewskiemu swój rękopis, dwaj recenzenci nie pozostawili na nim suchej nitki. Gdyby w 1891 roku fizyk i późniejszy laureat Nagrody Nobla John William Rayleight nie odnalazł oryginalnego rękopisu w archiwach tej szacownej instytucji, na próżno szukalibyśmy w podręcznikach fizyki nazwiska Waterstona. A to właśnie on był pierwszym badaczem, który sformułował tak zwaną zasadę ekwipartycji energii dla specjalnego przypadku. W 1892 roku Rayleight napisał: „Bardzo trudno postawić się w sytuacji recenzenta z 1845 roku, ale można zrozumieć, że treść artykułu wydała mu się nadmiernie abstrakcyjna i nie przemówiły do niego zastosowane obliczenia matematyczne. Mimo to dziwi, że znalazł się krytyk, według którego: "Cały artykuł to czysty nonsens, który nie nadaje się nawet do przedstawienia Towarzystwu". Inny opiniujący zauważył: "[...] analiza opiera się – co przyznaje sam autor – na całkowicie hipotetycznej zasadzie, z której zamierza on wyprowadzić matematyczne omówienie zjawisk materiałów sprężystych [...]. Oryginalna zasada wynika z przyjęcia założenia, którego nie mogę zaakceptować i które w żadnym razie nie może służyć jako zadowalająca podstawa teorii matematycznej".
• Gdy pod koniec XIX wieku Wilhelm Conrad Röntgen, odkrywca promieni, bez których trudno sobie wyobrazić współczesną medycynę, opublikował wyniki swoich badań, musiał wysłuchać wielu krytycznych komentarzy. Nawet światowej sławy brytyjski fizyk lord Kelvin określił promienie rentgenowskie mianem .,sprytnego oszustwa''. Friedrich Dessauer, profesor fizyki medycznej, w czasie wykładu wygłoszonego 12 lipca 1937 roku na uniwersytecie w szwajcarskim Fryburgu powiedział w odniesieniu do odkrycia Röntgena: „Nadal widzę sceptyków wykrzykujących: "Niemożliwe!". I nadal słyszę proroków, wielkie autorytety tamtych lat, którzy odmawiali promieniom rentgenowskim jakiegokolwiek, także medycznego, znaczenia".
• Gdy Werner von Siemens, twórca elektrotechniki, zaprezentował przed Scientific Community teorię ładunku elektrostatycznego przewodów zamkniętych i otwartych, wywołał falę gwałtownych sprzeciwów. „Początkowo nie wierzono w moją teorię, ponieważ była sprzeczna z obowiązującymi w tamtych czasach poglądami", wspominał Siemens w autobiografii wydanej pod koniec XIX wieku.
• Podobnych przeżyć doświadczył William C. Bray z Uniwersytetu Kalifornijskiego w Berkeley, gdy w 1921 roku poinformował o zaobserwowaniu oscylującej okresowo reakcji chemicznej. W 1987 roku w fachowym czasopiśmie „Chemical and Engineering News" ukazał się artykuł R. Epsteina, który napisał, że amerykański uczony został wyśmiany i wyszydzony, bo reakcja taka wydawała się niepodobieństwem. I choć odkrycie Braya potwierdzono w teorii i w praktyce, to musiało upłynąć pięćdziesiąt lat, nim uznano znaczenie jego pracy.
Studenci rzadko mają okazję zetknąć się z podobnymi przykładami, ponieważ naukowcy, jak wszyscy inni ludzie, przejawiają osobliwą skłonność do zapominania o rozmaitych „wpadkach", z jakimi na przestrzeni lat musiała się uporać ich dyscyplina wiedzy. Z dumnie wypiętą piersią sprzedają uczniom historię nauki jako pasmo nieustających sukcesów. Wstydliwie przemilczają opowieści o walkach, które poprzedzają wielkie przełomy.
40.10 Czym byłby nasz świat bez wariatów?
”I tak jak obłęd, w wyższym tego słowa znaczeniu, jest początkiem wszelkiej mądrości, tak schizofrenia jest początkiem wszelkiej sztuki, wszelkiej fantazji.”
Herman Hesse.
Przewodnik Lekarza 1/2009
Tytuł: Wielcy twórcy i ich choroby
autorzy:
prof. dr hab. n. med. Andrzej Steciwko
kierownik Katedry i Zakładu Medycyny Rodzinnej
Akademii Medycznej we Wrocławiu;
rektor Państwowej Medycznej Wyższej Szkoły Zawodowej w Opolu
lek. Dominika Siejka
Katedra i Zakład Medycyny Rodzinnej
Akademii Medycznej we Wrocławiu,
kierownik Katedry i Zakładu prof. dr hab. n. med. Andrzej Steciwko
[link widoczny dla zalogowanych]
Fragmenty …
W historii, zarówno nauki, jak i sztuki, czy rozwoju kultury ogromną rolę odegrało kilkudziesięciu, a być może kilkuset ludzi, którzy na zawsze zmienili myślenie i postrzeganie człowieka. To dzięki nim, dzięki pojedynczym myślom jednostek, które na przestrzeni wieków określane były jako geniusze, nasza świadomość, wiedza o świecie oraz kultura społeczna rozwijały się, a etapy tej ewolucji często nie odbywały się stopniowo i powoli, lecz gwałtownymi skokami. Współcześni im oraz historycy badający ich życie już dawno zauważali, iż często wyróżnia ich jakaś właściwość, która u zwykłych ludzi uważana jest za poważną chorobę lub ułomność, a która wzmacnia cechy pozwalające tym jednostkom osiągać niezwykłe rezultaty. Czy to przypadek, czy też choroba może zrodzić geniusz? To pytanie naukowcy zadawali sobie od dawna. Istnieje wiele przykładów, które zdają się odpowiadać twierdząco na to pytanie. Czy jednak choroba jest przyczyną czy skutkiem geniuszu?
Choroba afektywna dwubiegunowa była i jest, można by powiedzieć, „popularna” wśród wybitnych artystów, zwłaszcza związanych z muzyką i literaturą. Cierpieli na nią m.in.: Piotr Czajkowski, Siergiej Rachmaninow, Virginia Woolf, Samuel Clemens (Mark Twain), Hermann Hesse, Tennessee Williams, Ernest Hemingway, Edgar Allan Poe i Paul Gauguin. Analiza biografii stu znanych pisarzy i poetów doprowadziła profesora psychiatrii z Uniwersytetu Oksfordzkiego, Feliksa Posta, do wniosku, że ok. 80% z nich miało zaburzenia nastroju i emocji. Z kolei Nancy Andreasen, neuropsychiatra z University of Iowa, obserwowała 30 amerykańskich pisarzy przez 15 lat i również u ok. 80% z nich stwierdziła zaburzenia nastroju i emocji, a u połowy zdiagnozowała chorobę maniakalno-depresyjną. Przypuszcza się, iż jest to związane z faktem, że w chorobie afektywnej dwubiegunowej w trakcie epizodów manii, a także w schizofrenii w fazie przedurojeniowej, dochodzi do nadmiernego wydzielania dopaminy, a jednocześnie do pobudzenia ośrodka nagrody w mózgu, co prowadzi do wzmożonej aktywności, a także intensywnego odczuwania wszelkich doznań i myśli. Może to w pewien sposób tłumaczyć, dlaczego ludzie na krawędzi choroby psychicznej dostrzegają czy wyczuwają rzeczy, które dla zwykłych śmiertelników są niewidoczne, a także rzucają się w wir kreatywnej pracy [5].
Według niektórych na schizofrenię chorował także jeden z największych fizyków – Izaak Newton. W swoim dziele Philosophiae naturalis principia mathematica (1687 r.) Newton przedstawił prawo powszechnego ciążenia, a także prawa ruchu leżące u podstaw mechaniki klasycznej. Również Albertowi Einsteinowi – laureatowi Nagrody Nobla w dziedzinie fizyki za wyjaśnienie efektu fotoelektrycznego, twórcy szczególnej i ogólnej teorii względności oraz współtwórcy korpuskularno-falowej teorii światła – niektórzy badacze przypisują schizofrenię, a inni zespół Aspergera (wspomniane zaburzenie ze spektrum zaburzeń autystycznych).
Ostatnio zmieniony przez rafal3006 dnia Pon 22:24, 17 Mar 2025, w całości zmieniany 1 raz
|
|
Powrót do góry |
|
 |
|
|
Nie możesz pisać nowych tematów Nie możesz odpowiadać w tematach Nie możesz zmieniać swoich postów Nie możesz usuwać swoich postów Nie możesz głosować w ankietach
|
fora.pl - załóż własne forum dyskusyjne za darmo
Powered by phpBB © 2001, 2005 phpBB Group
|