|
ŚFiNiA ŚFiNiA - Światopoglądowe, Filozoficzne, Naukowe i Artystyczne forum - bez cenzury, regulamin promuje racjonalną i rzeczową dyskusję i ułatwia ucinanie demagogii. Forum założone przez Wuja Zbója.
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 35363
Przeczytał: 23 tematy
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Pon 15:57, 06 Sty 2020 Temat postu: AK1 Algebra Kubusia - rachunek zero-jedynkowy |
|
|
AK1 Algebra Kubusia - rachunek zero-jedynkowy
2020-01-06
Autor:
Kubuś ze 100-milowego lasu
Rozszyfrowali:
Rafal3006 i przyjaciele
AK1
Algebra Kubusia - rachunek zero-jedynkowy
W skład algebry Kubusia wchodzą części:
AK1 Algebra Kubusia - rachunek zero-jedynkowy
AK2 Algebra Kubusia - teoria zdarzeń
Podręczniki AK1 i AK2 napisane są w ten sposób, że dla zrozumienia dowolnego z nich w zasadzie nie jest wymagana znajomość drugiego, choć oczywiście, pożądana kolejność czytania to AK1, AK2.
Dziękuję wszystkim, którzy dyskutując z Rafałem3006 przyczynili się do odkrycia algebry Kubusia:
Wuj Zbój, Miki, Volrath, Macjan, Irbisol, Makaron czterojajeczny, Quebab, Windziarz, Fizyk, Idiota, Sogors, Fiklit, Yorgin, Pan Barycki, Zbigniewmiller, Mar3x, Wookie, Prosiak, Lucek, Andy72, Michał Dyszyński, Szaryobywatel i inni.
Kluczowi przyjaciele Kubusia, dzięki którym algebra Kubusia została rozszyfrowana to (cytuje w kolejności zaistnienia):
1.
Rafał3006
2.
Wuj Zbój - dzięki któremu Rafal3006 poznał istotę implikacji od strony czysto matematycznej, której nie ma na studiach technicznych (elektronika na PW-wa).
Prawa Kubusia to efekt dyskusji w Wujem Zbójem:
p=>q = ~p~>~q
p~>q = ~p=>~q
Wuj jako pierwszy ziemianin potwierdził matematyczną poprawność tych praw
3.
Fiklit - który poświęcił 8 lat życia na cierpliwe tłumaczenie Rafałowi3006 jak wygląda otaczający nas świat z punktu widzenia Klasycznego Rachunku Zdań
Bez fiklita o rozszyfrowaniu algebry Kubusia moglibyśmy wyłącznie pomarzyć
Miejsce narodzin algebry Kubusia ze szczegółowo udokumentowaną historią jej odkrycia:
Algebra Kubusia - historia odkrycia 2006-2020
Spis treści
1.0 Algebra Boole’a 2
1.1 Prawa Prosiaczka 3
1.2 Minimalna aksjomatyka algebry Boole’a 4
1.3 Algorytm Wuja Zbója 5
1.3.1 Alternatywne przejście do logiki przeciwnej 8
1.4 Definicja operatora AND(|*) 9
1.4.1 Właściwości operatora AND(|*) 12
1.5 Definicja operatora OR(|+) 13
1.5.1 Właściwości operatora OR(|+) 17
1.0 Algebra Boole’a
Algebra Kubusia zawiera w sobie algebrę Boole’a mówiącą wyłącznie o spójnikach „i”(*) i „lub”(+).
Innymi słowy:
Algebra Boole’a w ogóle nie zajmuje się kluczową i najważniejszą częścią logiki matematycznej, czyli obsługą zdań warunkowych „Jeśli p to q”.
Definicja algebry Boole’a:
Algebra Boole’a to algebra dwuelementowa akceptująca zaledwie pięć znaczków:
0, 1, (~), (*), (+)
Algebra Boole’a to dwa wyróżnione elementy (zwykle [1,0]) o znaczeniu:
1 = prawda
0 = fałsz
oraz trzy spójniki logiczne zgodne z językiem potocznym:
(~) - negacja, słówko „NIE” w języku potocznym
„i”(*) - spójnik „i”(*) w języku potocznym
„lub”(+) - spójnik „lub”(+) w języku potocznym
Znaczenie tych spójników w języku potocznym poznamy za chwilę na przykładach z fizyki, analizując prosty obwód elektryczny z żarówką i przyciskami sterującymi ową żarówkę.
Definicja zmiennej binarnej:
Zmienna binarna to zmienna mogąca w osi czasu przyjmować wyłącznie dwie wartości logiczne 1 albo 0.
Zwyczajowymi zmiennymi w algebrze Boole’a są symbole:
p, q, r, Y
Prawo podwójnego przeczenia:
p=~(~p)
Przykład:
Jestem uczciwy = nie jestem nieuczciwy
U = ~(~U)
Definicja logiki dodatniej i ujemnej
Dowolna zmienna binarna zapisana jest w logice dodatniej (bo p) wtedy i tylko wtedy gdy nie jest zaprzeczona.
p = pies
Dowolna zmienna binarna zapisana jest w logice ujemnej (bo ~p) wtedy i tylko wtedy gdy jest zaprzeczona.
~p=nie pies
1.1 Prawa Prosiaczka
I Prawo Prosiaczka:
Prawda (=1) w logice dodatniej (bo p) jest tożsama z fałszem (=0) w logice ujemnej (bo ~p)
(p=1) = (~p=0)
II Prawo Prosiaczka:
Prawda (=1) w logice ujemnej (bo ~p) jest tożsama z fałszem (=0) w logice dodatniej (bo p)
(~p=1) = (p=0)
Dowód na przykładzie:
Rozważmy sterowanie żarówką (diodą LED) jednym przyciskiem A
Kod: |
Schemat 1
Przykład ilustracji praw Prosiaczka w fizyce:
S A
------------- ______
-----| dioda LED |-------o o-----
| ------------- |
| |
______ |
___ U (źródło napięcia) |
| |
| |
------------------------------------
|
Przyjmijmy znaczenie symboli:
S - żarówka świeci
~S - żarówka nie świeci
Równie dobrze można by przyjąć odwrotnie, ale nie byłoby to zgodne z naturalną logiką człowieka, gdzie symbol przeczenia (~) oznacza w języku potocznym słówko „NIE”.
Dowód I prawa Prosiaczka na przykładzie:
S - żarówka świeci
Co matematycznie oznacza:
S=1 - prawdą jest (=1) że żarówka świeci (S)
Zdanie matematycznie tożsame na mocy prawa Prosiaczka:
(S=1)=(~S=0)
Czytamy:
~S=0 - fałszem jest (=0) że żarówka nie świeci (~S)
Prawdziwość I prawa Prosiaczka widać tu jak na dłoni:
(S=1) = (~S=0)
Dowód II prawa Prosiaczka na przykładzie:
~S - żarówka nie świeci
Co matematycznie oznacza:
~S=1 - prawdą jest (=1) że żarówka nie świeci (~S)
Zdanie matematycznie tożsame na mocy prawa Prosiaczka:
(~S=1)=(S=0)
Czytamy:
S=0 - fałszem jest (=0) że żarówka świeci (S)
Prawdziwość II prawa Prosiaczka widać tu jak na dłoni:
(~S=1) = (S=0)
1.2 Minimalna aksjomatyka algebry Boole’a
Definicja minimalnej aksjomatyki algebry Boole’a:
Aksjomatyka minimalna algebry Boole’a to minimalny zestaw praw algebry Boole’a koniecznych i wystarczających do poruszania się po równaniach algebry Boole’a.
Chodzi tu głównie o minimalizację równań algebry Boole’a.
Wynika z tego, że tabele zero-jedynkowe w takiej aksjomatyce nas kompletnie nie interesują.
Jak zobaczymy za chwilę, minimalna aksjomatyka algebry Boole’a to zaledwie osiem punktów które trzeba znać na pamięć.
Znaczenie 1 i 0 w algebrze Boole’a:
1 = prawda
0 = fałsz
Znaczenie spójników „i”(*) i „lub”(+):
(*) - spójnik „i”(*) z języka potocznego człowieka
(+) - spójnik „lub”(+) z języka potocznego człowieka
Najważniejsze prawa algebry Boole’a (aksjomatyka minimalna) to:
1.
1=~(0)=~0 - prawda (1) to zaprzeczenie (~) fałszu
0=~(1)=~1 - fałsz (0) to zaprzeczenie (~) prawdy
2.
Elementem neutralnym w spójniku „i”(*) jest jedynka
p*1=p (łatwe do zapamiętania przez analogię do zwykłego mnożenia: x*1=x)
p+1=1 (to jedyny wyjątek nie mający odpowiednika w zwykłym dodawaniu)
3.
Elementem neutralnym w spójniku „lub”(+) jest zero
p*0=0 (łatwe do zapamiętania poprzez analogię do zwykłego mnożenia: x*0=0)
p+0=p (łatwe do zapamiętania poprzez analogię do zwykłego dodawania: x+0=0)
4.
Definicja dziedziny w zdarzeniach:
p+~p=1 - zdarzenie ~p jest uzupełnieniem do dziedziny (D=1) dla zdarzenia p
p*~p=0 - zdarzenia p i ~p są rozłączne (p*~p=[]=0), stąd ich iloczyn logiczny to zero
5.
Spójniki „i”(*) i „lub”(+) są przemienne
p*q=q*p
p+q=q+p
6.
Prawo redukcji/powielania zmiennych:
p*p=p
p+p=p
7.
Prawa De Morgana:
p+q = ~(~p*~q)
p*q = ~(~p+~q)
8.
Obsługa wielomianów logicznych jest identyczna jak wielomianów klasycznych pod warunkiem przyjęcia analogii:
Spójnik „lub”(+) to odpowiednik sumy klasycznej (+) np. x+y
Spójnik „i”(*) to odpowiednik iloczynu klasycznego (*) np. x*y
Stąd mamy kolejność wykonywania działań w wielomianach logicznych:
nawiasy, „i”(*), „lub”(+)
bo robimy analogię do wielomianów klasycznych.
Pojęcia matematycznie tożsame:
„i”(*) = koniunkcja (*)
„lub”(+) = alternatywa (+)
Przykład mnożenia wielomianów logicznych:
Dane jest wyrażenie logiczne:
(p+~q)*(~p+q) - postać koniunkcyjno-alternatywna (koniunkcja alternatyw)
Minimalizujemy:
(p+~q)*(~p+q) = p*~p + p*q +~q*~p + ~q*q = 0 + p*q + ~q*~p + 0 = p*q + ~p*~q
Wykorzystane prawa algebry Boole’a:
p*~p=0
p+0 =p
Przemienność:
~q*~p = ~p*~q
Stąd:
Nasze wyrażenie po minimalizacji przybiera postać:
(p+~q)*(~p+q) = p*q + ~p*~q - funkcja alternatywno-koniunkcyjna (alternatywa koniunkcji)
Inny przykład wykorzystania praw algebry Boole’a.
Udowodnij prawo algebry Boole’a:
p + p*q =p
Dowód:
p + p*q = p*1+p*q = p*(1+q) = p*1 =p
Wykorzystane prawa algebry Boole’a:
p=p*1
Wyciągnięcie zmiennej p przed nawias identyczne jak w wielomianach klasycznych
1+q=1
p*1=p
cnd
1.3 Algorytm Wuja Zbója
Definicja funkcji logicznej w algebrze Boole’a:
Funkcja logiczna Y w algebrze Boole’a to funkcja zmiennych binarnych połączonych spójnikami „i”(*) i „lub”(+)
Algorytm Wuja Zbója poznamy na przykładzie z życia wziętym, korzystając z definicji równoważności „wtedy i tylko wtedy” p<=>q wyrażonej spójnikami „i”(*) i „lub”(+) opisanej równaniem algebry Boole’a:
Y = p<=>q = p*q + ~p*~q
Co w logice matematycznej oznacza:
Y=1 <=> p=1 i q=1 lub ~p=1 i ~q=1
Przykład:
Pani w przedszkolu wypowiada obietnicę bezwarunkową:
1.
Jutro pójdziemy do kina wtedy i tylko wtedy gdy pójdziemy do teatru
K<=>T
Podstawmy celem skrócenia zapisów:
Y = K<=>T
Definicja równoważności w spójnikach „i”(*) i „lub”(+):
Y = K*T +~K*~T - funkcja alternatywno-koniunkcyjna (alternatywa koniunkcji)
co w logice matematycznej oznacza:
Y=1 <=> K=1 i T=1 lub ~K=1 i ~T=1
Przyjmijmy następujące znaczenie symbolu Y:
Y - pani dotrzyma słowa (Y)
~Y - pani nie dotrzyma słowa (~Y), czyli pani skłamie
Czytamy:
Prawdą jest (=1) że pani dotrzyma słowa (Y) wtedy i tylko wtedy gdy:
K*T=1*1 =1 - jutro pójdziemy do kina (K=1) i do teatru (T=1)
LUB
~K*~T=1*1=1 - jutro nie pójdziemy do kina (~K=1) i nie pójdziemy do teatru (~T=1)
W każdym innym przypadku, pani skłamie:
(~Y=1)=(Y=0) - prawo Prosiaczka
Dla każdego ucznia I klasy LO odpowiedź kiedy pani dotrzyma słowa (Y=1) jest intuicyjnie zrozumiała.
Prawo algebry Boole’a:
Każda funkcja alternatywno-koniunkcyjna ma swój tożsamy odpowiednik w postaci funkcji koniunkcyjno-alternatywnej
Dowód tego prawa na naszym przykładzie jest trywialny o ile skorzystamy z algorytmu przejścia do logiki przeciwnej autorstwa Wuja Zbója.
Przejdźmy z naszym przykładem na postać ogólną podstawiając:
K=p
T=q
Stąd mamy:
1.
Y = p*q + ~p*~q
W technicznej algebrze Boole’a często pomija się spójnik „i”(*) traktując go jako spójnik domyślny.
Stąd mamy funkcję matematycznie tożsamą:
1.
Y = pq+~p~q
Algorytm Wuja Zbója przejścia do logiki przeciwnej:
1.
Uzupełniamy brakujące nawiasy i spójniki:
Y = (p*q)+(~p*~q) - postać alternatywno-koniunkcyjna (alternatywa koniunkcji)
2.
Przejście do logiki ujemnej (bo ~Y) poprzez negację zmiennych i wymianę spójników
~Y = (~p+~q)*(p+q) - postać koniunkcyjno-alternatywna (koniunkcja alternatyw)
Koniec algorytmu Wuja Zbója
Zauważmy że:
Jeśli wymnożymy wielomian 2 to otrzymamy tożsamą do niego postać alternatywno-koniunkcyjną.
Zróbmy to:
~Y = (~p+~q)*(p+q) = ~p*p + ~p*q + ~q*p + ~q*q = 0 + ~p*q + p*~q + 0 = p*~q + ~p*q
3.
~Y = p*~q + ~p*q - postać alternatywno-koniunkcyjna (alternatywa koniunkcji)
Dla funkcji logicznej 3 ponownie korzystamy z algorytmu Wuja przechodząc do logiki dodatniej:
Mamy:
3.
~Y = (p*~q) + (~p*q)
Przejście do logiki dodatniej (bo Y) poprzez negację zmiennych i wymianę spójników:
4.
Y = (~p+q)*(p+~q) - funkcja koniunkcyjno-alternatywna (koniunkcja alternatyw)
Oczywistym jest, że zachodzą matematyczne tożsamości:
Y - pani dotrzyma słowa:
1: Y = p*q + ~p*~q [=] 4: Y=(p+~q)*(~p+q)
oraz:
~Y - pani skłamie
3: ~Y = p*~q + ~p*q [=] 2: ~Y = (~p+~q)*(p+q)
Zauważmy, że odpowiedź kiedy pani skłamie (~Y) zapisana w formie funkcji alternatywno-koniunkcyjnej również jest intuicyjnie zrozumiała dla każdego ucznia I klasy LO.
Nasz przykład:
3.
~Y=K*~T + ~K*T
co matematycznie oznacza:
~Y=1 <=> K=1 i ~T=1 lub ~K=1 i T=1
Czytamy:
Prawdą jest (=1), że pani skłamie (~Y) wtedy i tylko wtedy gdy:
K*~T=1*1=1 - jutro pójdziemy do kina (K=1) i nie pójdziemy do teatru (~T=1)
LUB
~K*T =1*1 =1 - jutro nie pójdziemy do kina (~K=1) i pójdziemy do teatru (T=1)
Zauważmy że, żadna z funkcji koniunkcyjno-alternatywnych nie jest zrozumiała dla człowieka.
Weźmy przykładowo odpowiedź na pytanie „kiedy pani dotrzyma słowa” (Y=1) opisaną równaniem koniunkcyjno-alternatywnym 4.
Nasz przykład:
4.
Y = (K+~T)*(~K+T) - postać koniunkcyjno-alternatywna
Czytamy:
Pani dotrzyma słowa (Y) wtedy i tylko wtedy gdy:
(K+~T) - jutro pójdziemy do kina (K) lub nie pójdziemy do teatru (~T)
„i”(*)
(~K+T) - jutro nie pójdziemy do kina (~K) lub pójdziemy do teatru (T)
Jak widzimy stało się coś strasznego!
Powyższe zdanie to twardy dowód iż w języku potocznym postaci koniunkcyjno-alternatywnej żaden człowiek nie rozumie.
1.3.1 Alternatywne przejście do logiki przeciwnej
Mamy naszą funkcję logiczną w postaci alternatywno-koniunkcyjnej:
1.
Y = (p*q) + (~p*~q)
W logice matematycznej dowolną funkcję logiczną możemy dwustronnie zanegować:
~Y = ~((p*q)+(~p*~q))
Korzystamy z prawa De Morgana dla nawiasu zewnętrznego otrzymując:
~Y = ~(p*q) * ~(~p*~q)
Ponownie korzystamy z prawa De Morgana dla pozostałych nawiasów:
~Y = (~p+~q)*(p+q)
To co wyżej to przejście do logiki ujemnej (bo ~Y) „na piechotę” z wykorzystaniem praw De Morgana.
To „na piechotę” przy długich funkcjach logicznych będzie koszmarem trudnym do ogarnięcia.
Natomiast algorytm przejścia do logiki przeciwnej Wuja Zbója jest trywialny dla dowolnie długiej funkcji logicznej Y
Doskonale widać, że algorytm Wuja Zbója jest odpowiednikiem wzorów skróconego mnożenia znanych z wielomianów klasycznych.
Zminimalizujmy teraz funkcję logiczną podaną w zadaniu na matematyce.pl
[link widoczny dla zalogowanych]
Zadanie:
Zminimalizuj poniższe wyrażenie logiczne:
(q=>r*p)+~r
W poniższej minimalizacji korzystamy z definicji znaczka =>:
p=>q = ~p+q
Rozwiązanie:
Zapiszmy nasze wyrażenie w postaci funkcji logicznej Y:
Y = (q=>r*p) + ~r = ~q+r*p + ~r
Uzupełniamy brakujące nawiasy bo kolejność wykonywania działań w logice to:
nawiasy, “i”(*), “lub”(+)
stąd mamy:
Y = ~q+(r*p)+~r
Zdefiniujmy funkcję cząstkową Y1:
Y1=(r*p)+~r
Przejście do logiki ujemnej (bo ~Y1) poprzez negację zmiennych i wymianę spójników na przeciwne:
~Y1 = (~r+~p)*r
Po wymnożeniu wielomianu logicznego mamy:
~Y1 = ~r*r + ~p*r = ~p*r
~Y1=r*~p
Powrót do logiki dodatniej (bo Y1) poprzez negację zmiennych i wymianę spójników na przeciwne:
Y1=~r+p
Odtwarzając podstawienie mamy:
Y = ~q+~r+p
Stąd w zapisie p=>q mamy:
Y = q=>(~r+p)
Stąd mamy tożsamość matematyczną:
Y = (q=>r*p)+~r = q=>(~r+p)
cnd
1.4 Definicja operatora AND(|*)
Rozważmy schemat elektryczny żarówki sterowanej dwoma przyciskami połączonymi szeregowo.
Kod: |
Schemat 1
Fizyczna realizacja spójnika “i”(*)
Y p q
------------- ______ ______
-----| dioda LED |-------o o-----o o----
| ------------- |
| |
______ |
___ U (źródło napięcia) |
| |
| |
----------------------------------------------
|
Znaczenie symboli:
Y=1 - żarówka świeci
~Y=1 - żarówka nie świeci
p=1 - przycisk p wciśnięty
~p=1 - przycisk p nie wciśnięty
q=1 - przycisk q wciśnięty
~q=1 - przycisk q nie wciśnięty
Doskonale widać że:
1.
Żarówka świeci się (Y=1) wtedy i tylko wtedy gdy przycisk p będzie wciśnięty (p=1) i przycisk q będzie wciśnięty (q=1)
Y<=>p*q
<=> - symbol równoważności
Powyższa równoważność definiuje tożsamość pojęć:
Y = p*q
Co oznacza:
Pojęcie „żarówka świeci” (Y=1) jest tożsame „=” z pojęciem „wciśnięty przycisk p (p=1) i wciśnięty przyciska q (q=1)
Innymi słowy:
Z faktu świecenia się żarówki (Y=1) wnioskujemy iż wciśnięty jest przycisk p (p=1) i wciśnięty jest przycisk q (q=1) i odwrotnie.
Stąd mamy tożsamość:
A: Ya = p*q
co matematycznie oznacza:
A: Ya=1 <=> p=1 i q=1
… a kiedy żarówka nie będzie się świecić (~Y=1)?
2.
Żarówka nie będzie się świecić (~Y=1) wtedy i tylko wtedy gdy nie będzie wciśnięty przycisk p (~p=1) lub nie będzie wciśnięty przycisk q (~q=1)
~Y<=>(~p+~q)
<=> - symbol równoważności
Tu mamy identycznie:
Powyższa równoważność definiuje tożsamość pojęć:
~Y = ~p+~q
Co oznacza:
Pojęcie „żarówka nie świeci” (~Y=1) jest tożsame „=” z pojęciem „nie wciśnięty przycisk p (~p=1) lub nie wciśnięty przycisk q (~q=1)”
Innymi słowy:
Z faktu nie świecenia się żarówki (~Y=1) wnioskujemy iż nie jest wciśnięty przycisk p (~p=1) lub nie jest wciśnięty przycisk q (~q=1) i odwrotnie.
Stąd mamy tożsamość:
~Y = ~p + ~q
co matematycznie oznacza:
~Y=1 <=> ~p=1 lub ~q=1
Zdanie matematycznie tożsame do 2 to szczegółowy opis wszystkich możliwych przypadków w których żarówka nie świeci się (~Y=1):
Innymi słowy:
Żarówka nie świeci (~Y=1) wtedy i tylko wtedy gdy:
B: ~Yb = ~p*~q=1*1=1 - nie jest wciśnięty p (~p=1) i nie jest wciśnięty q (~q=1)
LUB
C: ~Yc = ~p* q =1*1 =1 - nie jest wciśnięty p (~p=1) i jest wciśnięty q (q=1)
LUB
D: ~Yd = p*~q=1*1 =1 - jest wciśnięty p (p=1) i nie jest wciśnięty q (~q=1)
Funkcje ~Yb, ~Yc i ~Yd nazywamy funkcjami cząstkowymi opisującymi stan nie świecenia się żarówki opisany równaniem algebry Boole’a:
~Y = ~Yb + ~Yc + ~Yd
Po rozwinięciu mamy:
2a.
~Y = B: ~p*~q + C: ~p*q + D: p*~q
co matematycznie oznacza:
~Y=1 <=> B: ~p=1 i ~q=1 lub C: ~p=1 i q=1 lub D: p=1 i ~q=1
Pozostaje nam udowodnić tożsamość funkcji logicznych 2 i 2a.
Minimalizujemy funkcje 2a:
~Y = ~p*~q + ~p*q + p*~q
~Y = ~p*(~q+q)+p*~q
~Y = ~p+(p*~q)
Przejście do logiki dodatniej (bo Y) poprzez negację zmiennych i wymianę spójników:
Y = p*(~p+q)
Y = p*~p + p*q
Y=p*q
Powrót do logiki ujemnej (bo ~Y) poprzez negację zmiennych i wymianę spójników:
~Y=~p+~q
cnd
stąd mamy matematyczną tożsamość:
~Y = BCD: ~p+~q = B: ~p*~q + C: ~p*q + D: p*~q
Zapiszmy serię zdań ABCD w symbolicznej tabeli prawdy:
Kod: |
Tabela 1
Tabela |Co matematycznie |Dla punktu |Tabela
symboliczna |oznacza |odniesienia |matematycznie
| |A: Y=p*q mamy |tożsama
| | | p q Y=p*q
A: p* q= Ya |( p=1)*( q=1)=( Ya=1)|( p=1)*( q=1)=( Ya=1)| 1* 1 1
B:~p*~q=~Yb |(~p=1)*(~q=1)=(~Yb=1)|( p=0)*( q=0)=( Yb=0)| 0* 0 0
C:~p* q=~Yc |(~p=1)*( q=1)=(~Yc=1)|( p=0)*( q=1)=( Yc=0)| 0* 1 0
D: p*~q=~Yd |( p=1)*(~q=1)=(~Yd=1)|( p=1)*( q=0)=( Yd=0)| 1* 0 0
a b c d e f | g h I | 1 2 3
| Prawa Prosiaczka |
| (~p =1)=( p =0) |
| (~q =1)=( q =0) |
| (~Yx=1)=( Yx=0) |
|
Zauważmy, że tabela zero-jedynkowa ABCD123 zakodowana jest dla punktu odniesienia ustawionego na zdaniu A:
A: Y=p*q
co matematycznie oznacza:
A: Y=1 <=> p=1 i q=1
Nagłówek w kolumnie wynikowej 3 (Y) pokazuje linię w tabeli symbolicznej ABCDabc względem której kodowana jest tabela zero-jedynkowa, czyli tu wskazuje wyłącznie linię A.
Zero-jedynkową definicją spójnika „i”(*) dla potrzeb rachunku zero-jedynkowego jest kompletna tabela zero-jedynkowa ABCD123.
Jednak nagłówek w kolumnie 3 dotyczy de facto wyłącznie linii A.
Doskonale to widać w tabeli zero-jedynkowej ABCD123:
Y=1<=>p=1 i q=1
Tabela symboliczna ABCDdef zakodowana jest w logice jedynek zgodnie z naturalną logiką matematyczną człowieka, gdzie wszystkie zmienne mają wartość logiczną 1.
Logika jedynek zawsze prowadzi do równania alternatywno-koniunkcyjnego:
~Y = BCD: ~p+~q = B: ~p*~q + C: ~p*q + D: p*~q
Możliwe jest zakodowanie tabeli symbolicznej ABCDdef w logice zer (trzeba totalnie wszystko zanegować i wymienić spójniki na przeciwne), ale takie kodowanie prowadzi do równań koniunkcyjno-alternatywnych, kompletnie niezrozumiałych dla człowieka, zatem nie będziemy się tym zajmować.
Zakodujmy teraz naszą tabelę symboliczną ABCDabc względem funkcji logicznej:
BCD: ~Y=~p+~q
która opisuje obszar BCDabc tabeli symbolicznej.
Kod: |
Tabela 2
Tabela |Co matematycznie |Dla punktu |Tabela
symboliczna |oznacza |odniesienia |matematycznie
| |BCD:~Y=~p+~q mamy |tożsama
| | |~p ~q ~Y=~p+~q
A: p* q= Ya |( p=1)*( q=1)=( Ya=1)|(~p=0)*(~q=0)=(~Ya=0)| 0+ 0 0
B:~p*~q=~Yb |(~p=1)*(~q=1)=(~Yb=1)|(~p=1)*(~q=1)=(~Yb=1)| 1+ 1 1
C:~p* q=~Yc |(~p=1)*( q=1)=(~Yc=1)|(~p=1)*(~q=0)=(~Yc=1)| 1+ 0 1
D: p*~q=~Yd |( p=1)*(~q=1)=(~Yd=1)|(~p=0)*(~q=1)=(~Yd=1)| 0+ 1 1
a b c d e f | g h I | 1 2 3
| Prawa Prosiaczka |
| ( p =1)=(~p =0) |
| ( q =1)=(~q =0) |
| ( Ya=1)=(~Ya=0) |
|
Zauważmy, że tabela zero-jedynkowa ABCD123 zakodowana jest z punktem odniesienia ustawionym na obszarze BCDabc tabeli symbolicznej definiującej spójnik „lub”(+)
BCD: ~Y=~p+~q
co matematycznie oznacza:
BCD: ~Y=1 <=> ~p=1 lub ~q=1
Sens ostatniego zapisu doskonale widać w tabeli zero-jedynkowej BCD123.
Nagłówek kolumny wynikowej 3 (~Y) odnosi się do obszaru BCDabc w tabeli symbolicznej ABCDabc względem którego kodowana jest tabela zero-jedynkowa:
BCD: ~Y=~p+~q
Zero-jedynkową definicją spójnika „lub”(+) dla potrzeb rachunku zero-jedynkowego jest kompletna tabela zero-jedynkowa ABCD123.
Jednak nagłówek w kolumnie 3 dotyczy de facto wyłącznie obszaru BCD123.
Widać to doskonale w samej tabeli ABCD123:
~Y=1<=>~p=1 lub ~q=1
Z tabeli symbolicznej ABCDabcd odczytujemy:
BCDabc: ~Y=~Ya+~Yb+~Yc
Po rozwinięciu mamy:
BCDabc: ~Y=~p+~q = B: ~p*~q+ C: ~p*q+ D: p*~q
Definicja operatora AND(|*):
Operator AND(|*) musi opisywać wszystkie linie tabeli symbolicznej ABCDabc, czyli również wszystkie linie tabeli zero-jedynkowej ABCD123.
Stąd:
Definicja operatora AND(|*) to układ równań logicznych dających odpowiedź na pytanie o funkcję logiczną w logice dodatniej (bo Y) oraz o funkcję logiczną w logice ujemnej (bo ~Y):
1.
Y=p*q
co matematycznie oznacza:
Y=1 <=> p=1 i q=1
2.
~Y=~p+~q
co matematycznie oznacza:
~Y=1 <=> ~p=1 lub ~q=1
1.4.1 Właściwości operatora AND(|*)
Podsumujmy nasze rozważania w niniejszym rozdziale:
I.
Definicja spójnika „i”(*) dla potrzeb rachunku zero-jedynkowego jest następująca:
Kod: |
Zero jedynkowa definicja spójnika „i”(*):
p q p*q
A: 1* 1 1
B: 1* 0 0
C: 0* 1 0
D: 0* 0 0
Definicja do zapamiętania:
p*q=1 <=> p=1 i q=1
Inaczej:
p*q=0
Gdzie:
<=> - wtedy i tylko wtedy
Doskonale to widać w tabeli wyżej
|
II.
Operator AND(|*) tu układ równań logicznych opisujący funkcję w logice dodatniej (bo Y) oraz ujemnej (bo ~Y):
1.
Y=p*q
co matematycznie oznacza:
Y=1 <=> p=1 i q=1
2.
~Y=~p+~q
co matematycznie oznacza:
~Y=1 <=> ~p=1 lub ~q=1
III.
Pełna definicja spójnika „lub”(+) opisująca szczegółowo wszystkie możliwe zdarzenia rozłączne które mogą wystąpić to:
p+q = p*q + p*~q + ~p*q
Dla ~p i ~q mamy:
~p+~q = ~p*~q + ~p*q + p*~q
1.5 Definicja operatora OR(|+)
Rozważmy schemat elektryczny żarówki sterowanej dwoma przyciskami połączonymi równolegle.
Kod: |
Schemat 2
Fizyczna realizacja spójnika „lub”(+):
q
______
-----o o-----
Y | p |
------------- | ______ |
-----| dioda LED |-------o o-----
| ------------- |
| |
______ |
___ U (źródło napięcia) |
| |
| |
------------------------------------
|
Znaczenie symboli:
Y=1 - żarówka świeci
~Y=1 - żarówka nie świeci
p=1 - przycisk p wciśnięty
~p=1 - przycisk p nie wciśnięty
q=1 - przycisk q wciśnięty
~q=1 - przycisk q nie wciśnięty
Prawo Prosiaczka:
(~q=1)=(q=0) - przycisk q nie wciśnięty
Ze schematu ideowego łatwo odczytujemy kiedy żarówka będzie się świecić (Y=1):
1.
Żarówka świeci się (Y=1) wtedy i tylko wtedy gdy przycisk p będzie wciśnięty (p=1) lub przycisk q będzie wciśnięty (q=1)
Y<=>p+q
<=> - symbol równoważności
Powyższa równoważność definiuje tożsamość pojęć:
Y = p+q
Co oznacza:
Pojęcie „żarówka świeci” (Y=1) jest tożsame „=” z pojęciem „wciśnięty przycisk p (p=1) lub wciśnięty przycisk q (q=1)
Innymi słowy:
Z faktu świecenia się żarówki (Y=1) wnioskujemy iż wciśnięty jest przycisk p (p=1) lub wciśnięty jest przycisk q (q=1) i odwrotnie.
Stąd mamy tożsamość:
Y = p+q
co matematycznie oznacza:
Y=1 <=> p=1 lub q=1
Zdanie matematycznie tożsame do 1 to szczegółowy opis wszystkich możliwych przypadków w których żarówka świeci się (Y=1):
Innymi słowy:
1a.
Żarówka świeci (Y=1) wtedy i tylko wtedy gdy:
A: Ya = p*q=1*1=1 - jest wciśnięty p (p=1) i jest wciśnięty q (q=1)
LUB
B: Yb = p*~q =1*1 =1 - jest wciśnięty p (p=1) i nie jest wciśnięty q (~q=1)
LUB
C: Yc = ~p*q=1*1 =1 - nie jest wciśnięty p (~p=1) i jest wciśnięty q (q=1)
Funkcje Ya, Yb, i Yc nazywamy funkcjami cząstkowymi opisującymi stan świecenia się żarówki opisany równaniem algebry Boole’a:
Y = Ya+Yb+Yc
Po rozwinięciu mamy:
1a.
Y = A: p*q + B: p*~q + C: ~p*q
co matematycznie oznacza:
Y=1 <=> A: p=1 i q=1 lub B: p=1 i ~q=1 lub C: ~p=1 i q=1
Pozostaje nam udowodnić tożsamość funkcji logicznych 1 i 1a.
Minimalizujemy funkcję logiczną 1a:
Y = p*q + p*~q + ~p*q
Y = p*(q+~q) + ~p*q
Y = p+(~p*q)
Przejście do logiki ujemnej (bo ~Y) poprzez negację zmiennych i wymianę spójników:
~Y=~p*(p+~q)
~Y=~p*p + ~p*~q
~Y=~p*~q
Powrót do logiki dodatniej (bo Y) poprzez negację zmiennych i wymianę spójników:
Y=p+q
cnd
stąd mamy matematyczną tożsamość:
Y = ABC: p+q = A: p*q + B: p*~q + C: ~p*q
Stąd mamy szczegółową definicję spójnika „lub”(+) w postaci sumy logicznej trzech rozłącznych zdarzeń:
p+q = p*q + p*~q + ~p*q
Powyższą definicję warto zapamiętać, bowiem w logice matematycznej dość często się przydaje przy rozpisce co może się wydarzyć w obszarze dwóch zmiennych p i q połączonych spójnikiem „lub”(+)
… a kiedy żarówka nie będzie się świecić (~Y=1)?
Odczytujemy ze schematu ideowego:
2.
Żarówka nie będzie się świecić (~Y=1) wtedy i tylko wtedy gdy nie będzie wciśnięty przycisk p (~p=1) i nie będzie wciśnięty przycisk q (~q=1)
~Y<=>~p*~q
<=> - symbol równoważności
Tu mamy identycznie:
Powyższa równoważność definiuje tożsamość pojęć:
~Y = ~p*~q
Co oznacza:
Pojęcie „żarówka nie świeci” (~Y=1) jest tożsame „=” z pojęciem „nie wciśnięty przycisk p (~p=1) i nie wciśnięty przycisk q (~q=1)”
Innymi słowy:
Z faktu nie świecenia się żarówki (~Y=1) wnioskujemy iż nie jest wciśnięty przycisk p (~p=1) i nie jest wciśnięty przycisk q (~q=1) i odwrotnie.
Stąd mamy tożsamość:
D: ~Yd = ~p* ~q
co matematycznie oznacza:
D: ~Yd=1 <=> ~p=1 i ~q=1
Zapiszmy serię zdań ABCD w symbolicznej tabeli prawdy:
Kod: |
Tabela 1
Tabela |Co matematycznie |Dla punktu |Tabela
symboliczna |oznacza |odniesienia |matematycznie
| |ABC: Y=p+q mamy |tożsama
| | | p q Y=p+q
A: p* q= Ya |( p=1)*( q=1)=( Ya=1)|( p=1)*( q=1)=( Ya=1)| 1+ 1 1
B: p*~q= Yb |( p=1)*(~q=1)=( Yb=1)|( p=1)*( q=0)=( Yb=1)| 1+ 0 1
C:~p* q= Yc |(~p=1)*( q=1)=( Yc=1)|( p=0)*( q=1)=( Yc=1)| 0+ 1 1
D:~p*~q=~Yd |(~p=1)*(~q=1)=(~Yd=1)|( p=0)*( q=0)=( Yd=0)| 0+ 0 0
a b c d e f g h I 1 2 3
| Prawa Prosiaczka |
| (~p =1)=( p =0) |
| (~q =1)=( q =0) |
| (~Yx=1)=( Yx=0) |
|
Zauważmy, że tabela zero-jedynkowa ABCD123 zakodowana jest dla punktu odniesienia ustawionego na zdaniu zdefiniowanym obszarem ABCabc w tabeli symbolicznej.
ABC: Y=p+q
co matematycznie oznacza:
ABC: Y=1 <=> p=1 lub q=1
Doskonale to widać w tabeli zero-jedynkowej ABCD123.
Nagłówek w kolumnie wynikowej 3 (Y) pokazuje obszar ABCabc tabeli symbolicznej względem którego kodowana jest tabela zero-jedynkowa.
Zero-jedynkową definicją spójnika „lub”(+) dla potrzeb rachunku zero-jedynkowego jest kompletna tabela zero-jedynkowa ABCD123.
Jednak nagłówek w kolumnie 3 dotyczy de facto wyłącznie obszaru ABC123, co doskonale widać w tabeli zero-jedynkowej ABCD123.
Tabela symboliczna ABCDdef zakodowana jest w logice jedynek zgodnie z naturalną logiką matematyczną człowieka, gdzie wszystkie zmienne mają wartość logiczną 1.
Logika jedynek zawsze prowadzi do równania alternatywno-koniunkcyjnego:
Y = ABC: p+q = A: p*q + B: p*~q + C: ~p*q
Możliwe jest zakodowanie tabeli symbolicznej ABCDdef w logice zer (trzeba totalnie wszystko zanegować i wymienić spójniki na przeciwne), ale takie kodowanie prowadzi do równań koniunkcyjno-alternatywnych, kompletnie niezrozumiałych dla człowieka, zatem nie będziemy się tym zajmować.
Zakodujmy teraz naszą tabelę symboliczną ABCDabc względem funkcji logicznej:
D: ~Y=~p*~q
która opisuje linię D w tabeli symbolicznej.
Kod: |
Tabela 2
Tabela |Co matematycznie |Dla punktu |Tabela
symboliczna |oznacza |odniesienia |matematycznie
| |D:~Y=~p*~q mamy |tożsama
| | |~p ~q ~Y=~p*~q
A: p* q= Ya |( p=1)*( q=1)=( Ya=1)|(~p=0)*(~q=0)=(~Ya=0)| 0* 0 0
B: p*~q= Yb |( p=1)*(~q=1)=( Yb=1)|(~p=0)*(~q=1)=(~Yb=0)| 0* 1 0
C:~p* q= Yc |(~p=1)*( q=1)=( Yc=1)|(~p=1)*(~q=0)=(~Yc=0)| 1* 0 0
D:~p*~q=~Yd |(~p=1)*(~q=1)=(~Yd=1)|(~p=1)*(~q=1)=(~Yd=1)| 1* 1 1
a b c d e f g h I 1 2 3
| Prawa Prosiaczka |
| ( p =1)=(~p =0) |
| ( q =1)=(~q =0) |
| ( Yx=1)=(~Yx=0) |
|
Zauważmy, że tabela zero-jedynkowa ABCD123 zakodowana jest z punktem odniesienia ustawionym na linii Dabc.
~Y=~Yd - bo jest tylko jedna linia ~Yd w tabeli ABCDabc
Stąd:
D: ~Y=~p*~q
co matematycznie oznacza:
D: ~Y=1 <=> ~p=1 i ~q=1
Sens ostatniego zapisu doskonale widać w tabeli zero-jedynkowej BCD123.
Nagłówek kolumny wynikowej 3 (~Y) odnosi się do linii D w tabeli symbolicznej ABCDabc względem którego kodowana jest tabela zero-jedynkowa:
D: ~Y=~p*~q
Zero-jedynkową definicją spójnika „i”(*) dla potrzeb rachunku zero-jedynkowego jest kompletna tabela zero-jedynkowa ABCD123.
Jednak nagłówek w kolumnie 3 dotyczy de facto wyłącznie linii D123 - widać to doskonale w samej tabeli ABCD123.
Definicja operatora OR(|+):
Operator OR(|+) musi opisywać wszystkie linie tabeli symbolicznej ABCDabc, czyli również wszystkie linie tabeli zero-jedynkowej ABCD123.
Stąd:
Definicja operatora OR(|+) to układ równań logicznych dających odpowiedź na pytanie o funkcję logiczną w logice dodatniej (bo Y) oraz o funkcję logiczną w logice ujemnej (bo ~Y):
1.
Y=p+q
co matematycznie oznacza:
Y=1 <=> p=1 lub q=1
2.
~Y=~p*~q
co matematycznie oznacza:
~Y=1 <=> ~p=1 i ~q=1
1.5.1 Właściwości operatora OR(|+)
Podsumujmy nasze rozważania w niniejszym rozdziale:
I.
Definicja spójnika „lub”(+) dla potrzeb rachunku zero-jedynkowego jest następująca:
Kod: |
Zero jedynkowa definicja spójnika „lub”(+):
p q p+q
A: 1+ 1 1
B: 1+ 0 1
C: 0+ 1 1
D: 0+ 0 0
Definicja do zapamiętania:
p+q=1 <=> p=1 lub q=1
Inaczej:
p+q=0
Gdzie:
<=> - wtedy i tylko wtedy
Doskonale to widać w tabeli wyżej
|
II.
Operator OR(|+) tu układ równań logicznych opisujący funkcję w logice dodatniej (bo Y) oraz ujemnej (bo ~Y):
1.
Y=p+q
co matematycznie oznacza:
Y=1 <=> p=1 lub q=1
2.
~Y=~p*~q
co matematycznie oznacza:
~Y=1 <=> ~p=1 i ~q=1
III.
Pełna definicja spójnika „lub”(+) opisująca szczegółowo wszystkie możliwe zdarzenia rozłączne które mogą wystąpić to:
p+q = p*q + p*~q + ~p*q
Ostatnio zmieniony przez rafal3006 dnia Śro 7:41, 01 Kwi 2020, w całości zmieniany 7 razy
|
|
Powrót do góry |
|
|
|
|
|
|
Nie możesz pisać nowych tematów Nie możesz odpowiadać w tematach Nie możesz zmieniać swoich postów Nie możesz usuwać swoich postów Nie możesz głosować w ankietach
|
fora.pl - załóż własne forum dyskusyjne za darmo
Powered by phpBB © 2001, 2005 phpBB Group
|