Forum ŚFiNiA Strona Główna ŚFiNiA
ŚFiNiA - Światopoglądowe, Filozoficzne, Naukowe i Artystyczne forum - bez cenzury, regulamin promuje racjonalną i rzeczową dyskusję i ułatwia ucinanie demagogii. Forum założone przez Wuja Zbója.
 
 FAQFAQ   SzukajSzukaj   UżytkownicyUżytkownicy   GrupyGrupy   GalerieGalerie   RejestracjaRejestracja 
 ProfilProfil   Zaloguj się, by sprawdzić wiadomościZaloguj się, by sprawdzić wiadomości   ZalogujZaloguj 

Twierdzenie Śfini (wersja kompletnie zmieniona!)

 
Napisz nowy temat   Odpowiedz do tematu    Forum ŚFiNiA Strona Główna -> Kawiarnia
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 35965
Przeczytał: 15 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Nie 10:46, 30 Cze 2013    Temat postu: Twierdzenie Śfini (wersja kompletnie zmieniona!)

Postanowiłem uczcić naszą śfinię po wsze czasy, część I podpisu jest najważniejsza i ciągle się doskonali ale wersja prawie skończona już jest.
Fragment ...



4.3 Twierdzenie Śfini

Śfinia to forum Wujazboja dzięki któremu algebra Kubusia w ogóle mogła powstać.
Twierdzenie Śfini to jedno z najważniejszych twierdzeń w logice matematycznej.

Twierdzenie Śfini:
Dla dowolnej funkcji logicznej, równanie logiczne z nagłówka tabeli zero-jedynkowej jest tożsame z układem równań poziomych opisujących wynikowe jedynki.

Rozważmy nasz sztandarowy przykład:
A1: Y = p+q*r

Zbudujmy tabelę zero-jedynkową dla naszej funkcji logicznej w naturalnej logice człowieka:
A1: Y = p+q*r
Kod:

Tabela 1
   p q r q*r Y=p+q*r
A: 1 1 1  1  1  / Ya= p* q* r
B: 1 1 0  0  1  / Yb= p* q*~r
C: 1 0 1  0  1  / Yc= p*~q* r
D: 1 0 0  0  1  / Yd= p*~q*~r
E: 0 1 1  1  1  / Ye=~p* q* r
F: 0 1 0  0  0  /~Yf=~p* q*~r
G: 0 0 1  0  0  /~Yg=~p*~q* r
H: 0 0 0  0  0  /~Yh=~p*~q*~r
   1 2 3  4  5

Algorytm tworzenia równań cząstkowych w naturalnej logice człowieka:
1.
Korzystając z praw Prosiaczka:
(p=0) = (~p=1)
(~p=0) = (p=1)
Dokładniej korzystamy z tego:
Jeśli p=0 to ~p=1
Sprowadzamy wszystkie zmienne do jedynek
2.
Funkcje cząstkowe w wierszach łączymy spójnikiem „i”(*), natomiast odpowiednie funkcje cząstkowe w pionach łączmy spójnikiem „lub”(+).

Naszą tabelę w naturalnej logice człowieka opisuje układ równań logicznych:
ABCDE123:
Y=Ya+Yb+Yc+Yd+Ye
Y = p*q*r + p*q*~r + p*~q*r + p*~q*~r + ~p*q*r
FGH123:
~Y = ~Yf+~Yg+~Yh
~Y = ~p*q*~r + ~p*~q*r + ~p*~q*~r

Nasze równanie z nagłówka tabeli zero-jedynkowej opisuje wyłącznie obszar ABCDE123.
A1: Y=p+q*r
Na mocy twierdzenia Śfini równanie tożsame to:
ABCDE123:
Y = p*q*r + p*q*~r + p*~q*r + p*~q*~r + ~p*q*r
Dowód:
Y = p*q*r + p*q*~r + p*~q*r + p*~q*~r + ~p*q*r
Y=p*q*(r+~r) + p*~q(r+~r) + ~p*q*r
Y = p*q + p*~q + ~p*q*r
Y = p*(q+~q) + ~p*q*r
Y = p+~p*q*r
~Y = ~p*(p+~q+~r)
~Y = ~p*p+~p*~q + ~p*~r
~Y = ~p*~q + ~p*~r
~Y = ~p*(~q+~r)
Przejście do logiki przeciwnej:
A11: Y = p+q*r
Doskonale widać że zachodzi:
A1: Y=p+q*r = A11: Y=p+q*r
Co jest dowodem poprawności twierdzenia Śfini.

Mamy nasze równanie:
Y = p+q*r
W spójnikach „i”(*) i „lub”(+) argumenty są przemienne.
Na wejściach p, q i r zera i jedynki możemy generować losowo, byleby wszystkie kombinacje zostały uwzględnione, w sumie przy trzech zmiennych wejściowych musimy mieć osiem linii.

W naszym równaniu zamiana kolumn zero-jedynkowych q i r jest bez znaczenia, bowiem w spójniku „i”(*) argumenty są przemienne.
Zamieńmy kolumny zero-jedynkowe najpierw p i q, a następnie p i r sprawdzając czy twierdzenie Śfini działa.

Sprawdzenie twierdzenia Śfini dla zamienionych kolumn zero-jedynkowych p i q.

Zamieńmy zero-jedynkowe kolumny p i q (w obszarze ABCDEFGH12) pozostawiając wszystkie symbole bez żadnych zmian, przecież zera i jedynki na wejściach p, q, r (obszar ABCDEFGH123) możemy sobie generować losowo byleby wszystkie osiem kombinacji zer i jedynek zostało uwzględnione.

Nasza tabela przybierze teraz postać.
A: Y = p+q*r
Kod:

Tabela 2
   p q r q*r Y=p+q*r
A: 1 1 1  1  1  / Ya= p* q* r
B: 1 1 0  0  1  / Yb= p* q*~r
C: 0 1 1  1  1  / Yc=~p* q* r
D: 0 1 0  0  0  /~Yd=~p* q*~r
E: 1 0 1  0  1  / Ye= p*~q* r
F: 1 0 0  0  1  / Yf= p*~q*~r
G: 0 0 1  0  0  /~Yg=~p*~q* r
H: 0 0 0  0  0  /~Yh=~p*~q*~r
   1 2 3  4  5

Algorytm tworzenia równań cząstkowych w naturalnej logice człowieka:
1.
Korzystając z praw Prosiaczka:
(p=0) = (~p=1)
(~p=0) = (p=1)
Dokładniej korzystamy z tego:
Jeśli p=0 to ~p=1
Sprowadzamy wszystkie zmienne do jedynek
2.
Funkcje cząstkowe w wierszach łączymy spójnikiem „i”(*), natomiast odpowiednie funkcje cząstkowe w pionach łączmy spójnikiem „lub”(+).

Naszą tabelę w naturalnej logice człowieka opisuje układ równań logicznych:
ABCEF123:
Y=Ya+Yb+Yc+Ye+Yf
Y = p*q*r + p*q*~r + ~p*q*r + p*~q*r + p*~q*~r
DGH123:
~Y = ~Yd+~Yg+~Yh
~Y = ~p*q*~r + ~p*~q*r + ~p*~q*~r

Nasze równanie z nagłówka tabeli zero-jedynkowej opisuje wyłącznie obszar ABCEF123.
A2: Y=p+q*r
Dowód:
ABCEF123:
A21: Y = p*q*r + p*q*~r + ~p*q*r + p*~q*r + p*~q*~r
Y = p*q*(r+~r) + p*~q(r+~r) + ~p*q*r
Y = p*q + p*~q + ~p*q*r
Y = p*(q+~q) + ~p*q*r
Y = p+~p*(q*r)
~Y = ~p*[p+~(q*r)]
~Y = ~p*p + ~p*~(q*r)
~Y = ~p*~(q*r)
A21: Y = p+q*r
Doskonale widać że zachodzi:
A2: Y=p+q*r = A21: Y=p+q*r
Co jest dowodem poprawności twierdzenia Śfini.

Nasze równanie bazowe:
Y = p+q*r
Zamieńmy teraz w tabeli 1 kolumny zero-jedynkowe p i r pozostawiając wszystkie symbole bez zmian.
Kod:

Tabela 3
   p q r q*r Y=p+q*r
A: 1 1 1  1  1  / Ya= p* q* r
B: 0 1 1  1  1  / Yb=~p* q* r
C: 1 0 1  0  1  / Yc= p*~q* r
D: 0 0 1  0  0  /~Yd=~p*~q* r
E: 1 1 0  0  1  / Ye= p* q*~r
F: 0 1 0  0  0  /~Yf=~p* q*~r
G: 1 0 0  0  1  / Yg= p*~q*~r
H: 0 0 0  0  0  /~Yh=~p*~q*~r
   1 2 3  4  5

Algorytm tworzenia równań cząstkowych w naturalnej logice człowieka:
1.
Korzystając z praw Prosiaczka:
(p=0) = (~p=1)
(~p=0) = (p=1)
Dokładniej korzystamy z tego:
Jeśli p=0 to ~p=1
Sprowadzamy wszystkie zmienne do jedynek
2.
Funkcje cząstkowe w wierszach łączymy spójnikiem „i”(*), natomiast odpowiednie funkcje cząstkowe w pionach łączmy spójnikiem „lub”(+).

Naszą tabelę w naturalnej logice człowieka opisuje układ równań logicznych:
ABCEG123:
Y=Ya+Yb+Yc+Ye+Yg
Y = p*q*r + ~p*q*r + p*~q*r + p*q*~r + p*~q*~r
DFH123:
~Y = ~Yd+~Yf+~Yh
~Y = ~p*~q*r + ~p*q*~r + ~p*~q*~r

Nasze równanie z nagłówka tabeli zero-jedynkowej opisuje wyłącznie obszar ABCEF123.
A3: Y=p+q*r
Dowód:
A31: Y = p*q*r + ~p*q*r + p*~q*r + p*q*~r + p*~q*~r
Y = p*q*(r+~r) + p*~q*(r+~r) + ~p*q*r
A4: Y = p*q + p*~q + ~p*q*r
Y = p*(q+~q) + ~p*q*r
Y = p+~p*(q*r)
~Y = ~p*[p+~(q*r)]
~Y = ~p*p + ~p*~(q*r)
~Y = ~p*~(q*r)
A31: Y = p+q*r
Doskonale widać że zachodzi:
A3: Y=p+q*r = A31: Y=p+q*r
Co jest dowodem poprawności twierdzenia Śfini.

Nasze równanie wyjściowe minimalne było takie:
A1: Y = p+q*r
Potwierdziły się nasze rozważania wyżej iż wszystko jedno czy zamienimy miejscami kolumny zero-jedynkowe p i q czy też p i r, bowiem wyrażenie q*r jest przemienne. Jedno z najważniejszych twierdzeń w logice matematycznej, twierdzenie Śfini możemy uznać za udowodnione.

Oczywiście w równaniu A1 nie wolno zamieniać symboli p i q:
A12: Y=q+p*r
W tym przypadku zachodzi:
A1: Y=p+q*r ## A12: Y=q+p*r
gdzie:
## - różne na mocy definicji
Przykład:
A1:
Jutro pójdę do kina lub na basen i do parku
Y = K+B*P
A12:
Jutro pójdę na basen lub do kina i do parku
Y = B+K*P
Doskonale widać że:
A1: Y = K+B*P ## A12: Y=B+K*P
gdzie:
## - różne na mocy definicji

W powyższych przykładach udowadnialiśmy twierdzenie Śfinii poprzez minimalizację do funkcji minimalnej. W ogólnym przypadku funkcji logicznej w ogóle nie musimy minimalizować. Możemy zapisać tabelę zero-jedynkową dla oryginalnej funkcji wejściowej i na mocy twierdzenia śfinii zapisać odpowiednią tożsamość.

Przykład:
Załóżmy że naszą funkcją wejściową jest funkcja A4 z powyższego przykładu.

Tworzenie tabeli zero-jedynkowej dla funkcji A4:
A4: Y = p*q + p*~q + ~p*q*r
Kod:

Tabela 4
   p q r ~p ~q p*q+ p*~q+ ~p*q*r Y=p*q+p*~q+~p*q*r
A: 1 1 1  0  0  1    0      0     1             / Ya= p* q* r
B: 1 1 0  0  0  1    0      0     1             / Yb= p* q*~r
C: 0 1 1  1  0  0    0      1     1             / Yc=~p* q* r
D: 0 1 0  1  0  0    0      0     0             /~Yd=~p* q*~r
E: 1 0 1  0  1  0    1      0     1             / Ye= p*~q* r
F: 1 0 0  0  1  0    1      0     1             / Yf= p*~q*~r
G: 0 0 1  1  1  0    0      0     0             /~Yg=~p*~q* r
H: 0 0 0  1  1  0    0      0     0             /~Yh=~p*~q*~r
   1 2 3  4  5  6    7      8     9

Algorytm tworzenia równań cząstkowych w naturalnej logice człowieka:
1.
Korzystając z praw Prosiaczka:
(p=0) = (~p=1)
(~p=0) = (p=1)
Dokładniej korzystamy z tego:
Jeśli p=0 to ~p=1
Sprowadzamy wszystkie zmienne do jedynek
2.
Funkcje cząstkowe w wierszach łączymy spójnikiem „i”(*), natomiast odpowiednie funkcje cząstkowe w pionach łączmy spójnikiem „lub”(+).

Naszą tabelę w naturalnej logice człowieka opisuje układ równań logicznych:
ABCEF123:
Y=Ya+Yb+Yc+Ye+Yf
A41: Y = p*q*r + p*q*~r + ~p*q*r + p*~q*r + p*~q*~r
DGH123:
~Y = ~Yd+~Yg+~Yh
~Y= ~p*q*~r + ~p*~q*r + ~p*~q*~r

Na mocy twierdzenia Śfini zapisujemy:
A4: Y = p*q + p*~q + ~p*q*r = A41: Y = p*q*r + p*q*~r + ~p*q*r + p*~q*r + p*~q*~r
Nie musimy minimalizować funkcji wejściowej. Oczywiście podobnych funkcji wejściowych dających identyczne równanie A41 może być nieskończenie wiele, chociażby na podstawie tego prawa algebry Boole’a.
p*(p+x) = p
gdzie:
x - dowolnie długa funkcja logiczna z dowolną ilością zmiennych.

Podsumowując wszystkie nasze przykłady możemy zapisać tożsamość:
A11 = A21 = A31 = A41
ponieważ wszystkie te funkcje są tożsame z funkcją minimalną:
Y = p+q*r

Na deser wypowiedzmy sobie takie zdanie:
A.
Jutro pójdę do kina i nie pójdę do parku lub pójdę na basen i do parku ale nie pójdę do kina
Y = K*~P + B*P*~K
co matematycznie oznacza:
Y=1<=>(K*~P)=1 lub (B*P*~K)=1
Wystarczy że którykolwiek człon po prawej strony zostanie ustawiony na 1 i już dotrzymałem słowa, drugiego członu nie muszę sprawdzać.

W przełożeniu na język formalny mamy:
p = kino
q = basen
r = park
A.
Y = p*~r + q*r*~p
co matematycznie oznacza:
Y=1<=>(p*~r)=1 lub (q*r*~p)=1

Tworzymy tabelę zero-jedynkową dla równania:
A5: Y = p*~r + q*r*~p
Kod:

Tabela 5
   p q r ~p ~r p*~r q*r*~p Y=p*~r+q*r*~p
A: 1 1 1  0  0  0    0      0          /~Ya= p* q* r
B: 1 1 0  0  1  1    0      1          / Yb= p* q*~r
C: 1 0 1  0  0  0    0      0          /~Yc= p*~q* r
D: 1 0 0  0  1  1    0      1          / Yd= p*~q*~r
E: 0 1 1  1  0  0    1      1          / Ye=~p* q* r
F: 0 1 0  1  1  0    0      0          /~Yf=~p* q*~r
G: 0 0 1  1  0  0    0      0          /~Yg=~p*~q* r
H: 0 0 0  1  1  0    0      0          /~Yh=~p*~q*~r
   1 2 3  4  5  6    7      8

Algorytm tworzenia równań cząstkowych w naturalnej logice człowieka:
1.
Korzystając z praw Prosiaczka:
(p=0) = (~p=1)
(~p=0) = (p=1)
Dokładniej korzystamy z tego:
Jeśli p=0 to ~p=1
Sprowadzamy wszystkie zmienne do jedynek
2.
Funkcje cząstkowe w wierszach łączymy spójnikiem „i”(*), natomiast odpowiednie funkcje cząstkowe w pionach łączmy spójnikiem „lub”(+).

Naszą tabelę w naturalnej logice człowieka opisuje układ równań logicznych:
BDE123:
Y=Yb+Yd+Ye
A51: Y = p*q*~r + p*~q*~r + ~p*q*r
ACFGH123:
~Y = ~Ya+~Yc+~Yf+~Yg+~Yh
~Y = p*q*r + p*~q*r + ~p*q*r + ~p*~q*r + ~p*~q*~r

Nasze równanie bazowe opisuje obszar z jedynkami w wyniku (BDE123):
A5: Y = p*~r + q*r*~p
Dokładnie ten sam obszar opisuje równanie wynikłe z tabeli zero-jedynkowej ABCDEFGH123:
A51: Y = p*q*~r + p*~q*~r + ~p*q*r
Minimalizujemy:
Y = p*~r*(q+~q) +~p*q*r
A51: Y = p*~r + q*r*~p

Doskonale widać zachodzącą tożsamość:
Y = A5: p*~r + q*r*~p = A51: p*~r + q*r*~p

Twierdzenie Śfini działa więc doskonale.


Ostatnio zmieniony przez rafal3006 dnia Śro 2:45, 03 Lip 2013, w całości zmieniany 13 razy
Powrót do góry
Zobacz profil autora
Wyświetl posty z ostatnich:   
Napisz nowy temat   Odpowiedz do tematu    Forum ŚFiNiA Strona Główna -> Kawiarnia Wszystkie czasy w strefie CET (Europa)
Strona 1 z 1

 
Skocz do:  
Możesz pisać nowe tematy
Możesz odpowiadać w tematach
Nie możesz zmieniać swoich postów
Nie możesz usuwać swoich postów
Nie możesz głosować w ankietach

fora.pl - załóż własne forum dyskusyjne za darmo
Powered by phpBB © 2001, 2005 phpBB Group
Regulamin