|
ŚFiNiA ŚFiNiA - Światopoglądowe, Filozoficzne, Naukowe i Artystyczne forum - bez cenzury, regulamin promuje racjonalną i rzeczową dyskusję i ułatwia ucinanie demagogii. Forum założone przez Wuja Zbója.
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 35357
Przeczytał: 24 tematy
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Czw 19:42, 26 Maj 2016 Temat postu: Wstęp do algebry Kubusia |
|
|
Wstęp do algebry Kubusia
Autorzy:
Kubuś i przyjaciele
Kim jest Kubuś?
Kubuś to wirtualny Internetowy Miś, teleportowany do ziemskiego Internetu przez zaprzyjaźnioną cywilizację z innego Wszechświata.
Gdzie powstawała algebra Kubusia?
Forum śfinia.fora.pl to hlefik Kubusia, zawierający pełną historię powstawania AK:
http://www.sfinia.fora.pl/forum-kubusia,60/
Forum ateista.pl:
[link widoczny dla zalogowanych]
Forum yrizzona.freeforums.org:
[link widoczny dla zalogowanych]
Forum matematyka.pl:
[link widoczny dla zalogowanych]
Algebra Kubusia to końcowy efekt dziesięcioletniej dyskusji na forach sfinia.fora.pl, ateista.pl, yrizona.freeforums.org i matematyka.pl. Warunkiem koniecznym powstania algebry Kubusia było wolne od wszelkiej cenzury forum śfinia oraz kluczowe dyskusje z Rafalem3006, Wujem Zbójem i Fiklitem. Śfinia to hlefik Kubusia z zapisem pełnej historii narodzin algebry Kubusia.
Dziękuję wszystkim, którzy dyskutując z Kubusiem przyczynili się do powstania algebry Kubusia:
Rafał3006(medium), Wuj Zbój, Miki, Volrath, Macjan, Irbisol, Makaron czterojajeczny, Quebab, Windziarz, Fizyk, Idiota, Sogors, Fiklit, Yorgin, Pan Barycki, Zbigniewmiller, Mar3x, Wookie, Prosiak, Lucek, Andy72 i inni.
Kubuś
Wstęp:
Algebra Kubusia to algebra równań logicznych totalnie izolowana od jakichkolwiek zer i jedynek. Cała logika matematyczna zaszyta jest tu w symbolach niezaprzeczonych (p) i zaprzeczonych (~p). W algebrze Kubusia wszystkie zmienne binarne sprowadzone są do jedynek na mocy praw Prosiaczka, które zapewniają bezproblemowe przejście z logiki równań logicznych do klasycznego rachunku zero-jedynkowego (i odwrotnie). Z tego powodu algebra Kubusia jest algebrą, tak jak algebrą jest klasyczny rachunek zero-jedynkowy.
Pod algebrę Kubusia podlega cały nasz Wszechświat, żywy i martwy. Najbardziej genialne są tu definicje implikacji prostej |=> i odwrotnej |~>, gdzie w jednej połówce mamy gwarancję matematyczną =>, natomiast w drugiej połówce zaszyta jest najzwyklejsza przypadkowość (~>, ~~>).
W świecie żywym operatory implikacji obsługują matematyczną „wolną wolę” wszystkich istot żywych. Człowiek podlega pod matematykę ścisłą, algebrę Kubusia, i nie ma najmniejszych szans aby się spod niej uwolnić. To dzięki algebrze Kubusia człowiek może się sensownie komunikować z drugim człowiekiem i nie ma w tej komunikacji chaosu (bełkotu), jaki niechybnie byłby, gdyby nie algebra Kubusia.
Algebra Kubusia w matematyce to wszelkie twierdzenia matematyczne, zatem występuje w każdej dziedzinie matematyki, to również przepiękna obsługa zbiorów w naszym Wszechświecie, zewsząd nas otaczających.
Część I
Algebra Kubusia - podsumowanie
Część II
Nowa Teoria Zbiorów
http://www.sfinia.fora.pl/forum-kubusia,12/algebra-kubusia-w-trakcie-pisania,8727.html#281597
Spis treści
2.0 Definicje podstawowe 1
2.1 Podstawowe operacje na zbiorach 2
2.2 Spójniki implikacyjne 2
2.3 Rodzaje tożsamości w logice matematycznej 3
2.3.1 Tożsamość definiująca i wartościująca 3
2.3.2 Tożsamość logiczna „=” (inaczej zwana równoważnością <=>) 3
2.3.3 Tożsamość logiczna vs tożsamość klasyczna 4
3.0 Definicja definicji 5
3.1 Definicja minimalna 6
4.0 Podstawowe działania na zbiorach 7
4.1 Iloczyn logiczny zbiorów: 7
4.2 Suma logiczna zbiorów: 7
4.3 Różnica zbiorów p-q: 7
4.4 Zaprzeczenie zbioru: 8
5.0 Zdanie warunkowe „Jeśli p to q” 9
5.1 Budowa zdania warunkowego „Jeśli p to q” 10
5.2 Aksjomaty Kubusia 12
5.3 Kwantyfikator mały ~~> 14
5.3.1 Kwantyfikator mały ~~> w zbiorach 14
4.3.2 Kwantyfikator mały ~~> w zdarzeniach 15
5.4 Warunek wystarczający => 16
5.4.1 Warunek wystarczający => w zbiorach 17
5.4.2 Definicja kontrprzykładu dla zbiorów 18
5.4.3 Warunek wystarczający => w zdarzeniach 19
5.4.4 Definicja kontrprzykładu dla zdarzeń 20
5.5 Warunek konieczny ~> 21
5.5.1 Warunek konieczny ~> w zbiorach 22
5.5.2 Warunek konieczny ~> w zdarzeniach 22
Część III
Klasyczny rachunek zero-jedynkowy
http://www.sfinia.fora.pl/forum-kubusia,12/algebra-kubusia-w-trakcie-pisania,8727.html#281599
6.0 Klasyczny rachunek zero-jedynkowy 1
6.1 Prawa De Morgana 3
6.2 Najważniejsze prawa algebry Boole’a 5
Część IV
Klasyczna algebra Boole’a - operatory jednoargumentowe
http://www.sfinia.fora.pl/forum-kubusia,12/algebra-kubusia-w-trakcie-pisania,8727.html#281601
7.0 Klasyczna algebra Boole’a 1
7.1 Operatory logiczne 1
7.2 Prawa Prosiaczka 2
7.2.1 Prawa Prosiaczka w zbiorach 4
7.2.2 Prawa Prosiaczka w logice 3-latka 5
7.2.3 Prawa Prosiaczka w przedszkolu 6
8.0 Operatory jednoargumentowe 8
8.1 Operator transmisji 9
8.2 Operator negacji 12
Ostatnio zmieniony przez rafal3006 dnia Pią 18:00, 06 Wrz 2019, w całości zmieniany 9 razy
|
|
Powrót do góry |
|
|
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 35357
Przeczytał: 24 tematy
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Czw 19:45, 26 Maj 2016 Temat postu: |
|
|
Część II
Nowa Teoria Zbiorów
Spis treści
2.0 Definicje podstawowe 1
2.1 Podstawowe operacje na zbiorach 2
2.2 Spójniki implikacyjne 2
2.3 Rodzaje tożsamości w logice matematycznej 3
2.3.1 Tożsamość definiująca i wartościująca 3
2.3.2 Tożsamość logiczna „=” (inaczej zwana równoważnością <=>) 3
2.3.3 Tożsamość logiczna vs tożsamość klasyczna 4
3.0 Definicja definicji 5
3.1 Definicja minimalna 6
4.0 Podstawowe działania na zbiorach 7
4.1 Iloczyn logiczny zbiorów: 7
4.2 Suma logiczna zbiorów: 7
4.3 Różnica zbiorów p-q: 7
4.4 Zaprzeczenie zbioru: 8
5.0 Zdanie warunkowe „Jeśli p to q” 9
5.1 Budowa zdania warunkowego „Jeśli p to q” 10
5.2 Aksjomaty Kubusia 12
5.3 Kwantyfikator mały ~~> 14
5.3.1 Kwantyfikator mały ~~> w zbiorach 14
4.3.2 Kwantyfikator mały ~~> w zdarzeniach 15
5.4 Warunek wystarczający => 16
5.4.1 Warunek wystarczający => w zbiorach 17
5.4.2 Definicja kontrprzykładu dla zbiorów 18
5.4.3 Warunek wystarczający => w zdarzeniach 19
5.4.4 Definicja kontrprzykładu dla zdarzeń 20
5.5 Warunek konieczny ~> 21
5.5.1 Warunek konieczny ~> w zbiorach 22
5.5.2 Warunek konieczny ~> w zdarzeniach 22
2.0 Definicje podstawowe
Definicja zbioru:
Zbiór to zestaw dowolnych pojęć z obszaru Uniwersum
Definicja Uniwersum:
Uniwersum to zbiór wszelkich pojęć zrozumiałych dla człowieka
Definicja dziedziny:
Dziedzina to dowolny zbiór na którym operujemy, nic spoza dziedziny nas nie interesuje
W szczególności dziedziną może być Uniwersum.
Definicja zbioru niepustego i pustego:
Zbiór jest niepusty gdy zawiera co najmniej jeden element
p =[x] - zbiór niepusty
Zbiór jest pusty gdy nie zawiera żadnych elementów
p =[] - zbiór pusty
Wartości logiczne:
1 = prawda
0 = fałsz
Zbiory mają wartości logiczne:
p =[x] =1 - zbiór niepusty
p =[] =0 - zbiór pusty
2.1 Podstawowe operacje na zbiorach
„~” - symbol negacji (przeczenia), słówko „NIE” z naturalnego języka mówionego człowieka
Podstawowe operacje na zbiorach:
„-„ - różnica zbiorów p-q
Y=p-q - wszystkie elementy zbioru p pomniejszone o elementy zbioru q
„i”(*) - symbol iloczynu logicznego zbiorów p*q, spójnik „i”(*) w naturalnej logice człowieka
Y=p*q - wspólna część zbiorów p*q
„lub”(+) - symbol sumy logicznej zbiorów p+q, spójnik „lub”(+) w naturalnej logice człowieka
Y=p+q - wszystkie elementy zbiorów p i q bez powtórzeń
Wartościowanie podstawowych operacji na zbiorach:
1 (prawda) - zbiór wynikowy jest niepusty
0 (fałsz) - zbiór wynikowy jest pusty
2.2 Spójniki implikacyjne
Spójniki implikacyjne:
p~~>q - kwantyfikator mały ~~>, możliwe jest jednoczesne zajście p i q
p=>q - warunek wystarczający => (gwarancja matematyczna =>), wymuszam dowolne p i pojawia się q
p~>q - warunek konieczny ~>, zabieram wszystkie p i znika q
p<=>q - równoważność to warunek wystarczający => zachodzący w dwie strony
p<=>q = (p=>q)*(q=>p)
Wartościowanie spójników implikacyjnych:
1 (prawda) - dany warunek jest spełniony
0 (fałsz) - dany warunek nie jest spełniony
2.3 Rodzaje tożsamości w logice matematycznej
W logice matematycznej mamy do czynienia z trzema rodzajami tożsamości:
1. Tożsamość definiująca
2. Tożsamość wartościująca
3. Tożsamość logiczna (tożsama z równoważnością)
Pojęcie tożsamości w logice jest wystarczająco precyzyjne, bowiem rodzaj tożsamości wynika z konkretnego zapisu matematycznego.
2.3.1 Tożsamość definiująca i wartościująca
Zbiory:
p =[x] =1
Pierwsza tożsamość (=[x]) definiuje zbiór, (tożsamość definiująca) natomiast druga (=1) przypisuje temu zbiorowi wartość logiczną (tożsamość wartościująca).
Przykład:
p =[pies, kot] =1
p - nazwa zbioru
[pies, kot] - zawartość zbioru, wypisujemy elementy zbioru
=1 - wartość logiczna zbioru 1, bo zbiór niepusty
2.3.2 Tożsamość logiczna „=” (inaczej zwana równoważnością <=>)
Definicja warunku koniecznego ~>:
p~>q - warunek konieczny ~>, zabieram wszystkie p i znika q
Definicja warunku wystarczającego =>:
p=>q - warunek wystarczający => (gwarancja matematyczna =>), wymuszam dowolne p i pojawia się q
Przykład:
A.
Jeśli jutro będzie pochmurno (CH=1) to może ~> padać (P=1)
CH~>P =1*1 =1
Warunek konieczny ~> spełniony (=1) bo zabieram chmury (CH=1) i znika mi możliwość padania (P=1)
Chmury są warunkiem koniecznym ~> dla deszczu bo jak nie będzie chmur (~CH=1) to mamy gwarancję matematyczną => iż nie będzie padać (~P=1).
W naturalnej logice 5-cio latka odkryliśmy tu matematyczny związek między warunkiem koniecznym ~> i wystarczającym =>.
Prawo Kubusia:
CH~>P = ~CH=>~P
Prawdziwość dowolnej strony tożsamości logicznej „=” wymusza prawdziwość drugiej strony.
Na mocy prawa Kubusia mamy matematyczną pewność prawdziwości zdania C.
C.
Jeśli jutro nie będzie pochmurno (~CH=1) to na pewno => nie będzie padało (~P=1)
~CH=>~P =1*1 =1
Definicja warunku wystarczającego => spełniona bo jak nie będzie chmur (~CH=1) to mamy gwarancję matematyczną => iż nie będzie padać (~P=1)
Doskonale tu widać poprawność prawa Kubusia:
Prawdziwość zdania A: CH~>P daje nam gwarancję matematyczną => prawdziwości zdania C: ~CH=>~P i odwrotnie.
Prawa Kubusia w zapisie ogólnym:
p=>q = ~p~>~q
p~>q = ~p=>~q
gdzie:
„=” - tożsamość logiczna
Definicja tożsamości logicznej „=”:
Prawdziwość dowolnej strony tożsamości logicznej „=” wymusza prawdziwość drugiej strony.
p=>q = ~p~>~q
W logice matematycznej tożsamość logiczna „=” jest tożsama z równoważnością <=>:
„=” = „<=>”
Prawa Kubusia możemy więc zapisać w sposób matematycznie tożsamy:
p=>q <=> ~p~>~q
p~>q <=> ~p=>~q
2.3.3 Tożsamość logiczna vs tożsamość klasyczna
Prawo Słonia:
Każda tożsamość klasyczna jest tożsamością logiczną (i odwrotnie).
Dowód:
Definicja równoważności:
Równoważność to warunek wystarczający => zachodzący w dwie strony
p<=>q = (p=>q)*(~p=>~p)
Dla p=q otrzymujemy:
p<=>p = (p=>p)*(~p=>~p) =1*1 =1
gdzie:
p - dowolne pojęcie z obszaru Uniwersum
Matematycznie zachodzi:
Tożsamość klasyczna p=p jest dokładnie tym samym co tożsamość logiczna p<=>p
Kod: |
Tożsamość klasyczna = Tożsamość logiczna
p=p = p<=>p
|
Przykład:
Rozważmy tożsamość klasyczną:
pies=pies
Przyjmijmy dziedzinę:
U = Uniwersum (dowolne pojęcie zrozumiałe dla człowieka)
Wyznaczenie zbioru „nie pies” (~P=1)
~P=[U-P] - zbiór wszelkich pojęć z obszaru Uniwersum z wykluczeniem „psa”
Warunek wystarczający prosty p=>p:
A.
Jeśli coś jest psem to na pewno => jest psem
P=>P =1
Definicja warunku wystarczającego => spełniona bo:
Każdy zbiór jest podzbiorem => samego siebie
Warunek wystarczający odwrotny ~p=>~p:
C.
Jeśli coś nie jest psem to na pewno => nie jest psem
~P=>~P =1
Po podstawieniu zbioru ~P mamy:
[U-P] => [U-P] =1
Definicja warunku wystarczającego => spełniona bo:
Każdy zbiór jest podzbiorem => samego siebie
Stąd prawdziwa jest równoważność:
Zwierzę jest psem wtedy i tylko wtedy gdy jest psem
P<=>P = (P=>P)*(~P=>~P) =1*1 =1
Zauważmy, że dziedzina jest tu nieistotna, byleby zawierała w sobie zbiór wszystkich psów.
W naszym przykładzie przyjęliśmy najszerszą możliwą dziedzinę:
D=Uniwersum (zbiór wszelkich pojęć zrozumiałych dla człowieka)
Równie dobrze moglibyśmy przyjąć dziedzinę:
D = ZWZ - zbiór wszystkich zwierząt
Doskonale widać, że matematycznie to bez znaczenia.
Na mocy powyższego przykładu prawdziwe są zdania z logiki matematycznej, używane czasami przez człowieka dla podkreślenia „istoty rzeczy”:
pies to pies
koń to koń, jaki jest każdy widzi
dolar to dolar
Jeśli kocha to kocha, nie ucieknie
etc
3.0 Definicja definicji
Definicja definicji:
Pojęcie definiowane = właściwa definicja pojęcia definiowanego
Definicja psa:
Pies = zwierzę domowe, mające cztery łapy, szczekające
… a nawet.
Pies = zwierzę domowe, szczekające
gdzie:
„=” - tożsamość definicyjna
Dla każdego człowieka ta definicja jest wystarczająca.
Lewa strona znaku „=” to pojęcie definiowane.
Właściwa definicja pojęcia definiowanego to wyłącznie prawa strona.
Na mocy tej definicji (prawa strona) każdy człowiek jednoznacznie rozpozna tu psa, od 5-cio latka poczynając. Ta definicja definicji obowiązuje także w matematyce.
Przykład błędnej definicji:
Zwierzę domowe, hodowlane, występujące nad Wisłą, podać jego odgłos.
http://youtu.be/K0uwEbIxhQw
3.1 Definicja minimalna
Definicja psa:
A.
Pies to zwierzę domowe, szczekające, przyjaciel człowieka
P = ZD*S*PC =1
Pojęcia ZD, S i PC to stałe symboliczne których wartość logiczna w odniesieniu do psa jest nam znana, w naszym przypadku wartość logiczna tych stałych symbolicznych to 1 (wszystkie pasują do psa).
Czy pies jest zwierzęciem domowym?
TAK (ZD =1)
Czy pies szczeka?
TAK (S =1)
Czy pies jest przyjacielem człowieka?
TAK (PC =1)
Definicja stałej symbolicznej:
Stała symboliczna to nazwa symboliczna której wartość logiczna jest nam z góry znana i której nie jesteśmy w stanie zmienić.
Definicja „pojęcia”:
Dowolne „pojęcie” w naszym Wszechświecie definiowane jest iloczynem logicznym stałych symbolicznych o wartości logicznej równej 1.
Definicja definicji minimalnej:
Definicja jest definicją minimalną, jeśli usunięcie dowolnego członu w definicji powoduje matematyczną niejednoznaczność, czyli kolizję z innym „pojęciem”.
Definicja wystarczająco jednoznaczna:
Definicja wystarczająco jednoznaczna to definicja zrozumiała dla drugiego człowieka
Zauważmy, że można przyjąć nawet taką definicję minimalną psa:
B.
Pies to zwierzę szczekające, przyjaciel człowieka
P = S*PC =1*1 =1
Tu również nikt nie ma wątpliwości że chodzi o psa.
Zauważmy, że zabierając jedno pojęcie lądujemy w niejednoznaczności, zatem ta definicja złożona zaledwie z dwóch elementów jest definicją minimalną.
Przykład definicji nadmiarowej sprowadzonej do absurdu:
Pies to zwierzę szczekające, przyjaciel człowieka, nie będące kurą, nie będące drzewem, nie będące galaktyką … etc
P = S*PC*~K*~D*~G … =1
W iloczynie logicznym, definiującym pojęcie „pies” łatwo można dodać nieskończoną ilość pojęć prawdziwych w stosunku do psa, będących zaprzeczeniem fałszu:
Pies to nie kura
TAK (P*~K =1)
Pies to nie drzewo
TAK (P*~D =1)
etc
4.0 Podstawowe działania na zbiorach
W logice matematycznej dostępne są zaledwie cztery podstawowe operacje na zbiorach.
4.1 Iloczyn logiczny zbiorów:
Iloczyn logiczny zbiorów p*q to wspólna część tych zbiorów
p*q
Wartościowanie:
p*q =1 - jeśli zbiór wynikowy jest niepusty
p*q =0 - jeśli zbiór wynikowy jest pusty
Przykład:
p=[1,2,3,4]
q=[3,4,5,6]
r=[7,8]
p*q =q*p =[1,2,3,4]*[3,4,5,6] = [3,4] =1 - bo zbiór wynikowy niepusty
p*r =r*p =[1,2,3,4]*[7,8] =[] =0 - bo zbiór wynikowy jest pusty
Wnioski:
1.
Jeśli iloczyn logiczny zbiorów p i q jest zbiorem pustym to zbiory p i q są rozłączne (i odwrotnie)
2.
Iloczyn logiczny zbiorów jest przemienny: p*q = q*p
4.2 Suma logiczna zbiorów:
Suma logiczna zbiorów p+q to wszystkie elementy zbiorów p i q bez powtórzeń
p+q
Wartościowanie:
1 - jeśli zbiór wynikowy jest niepusty
Z IV aksjomatu Kubusia (punkt 4.2) wnioskujemy, iż wynikiem sumy logicznej zbiorów może być wyłącznie zbiór niepusty.
Przykład:
p=[1,2,3,4]
q=[3,4,5,6]
p+q = [1,2,3,4]+[3,4,5,6] = [1,2,3,4,5,6] =1 - bo zbiór wynikowy niepusty
4.3 Różnica zbiorów p-q:
Różnica zbiorów p-q to wszystkie elementy zbioru p pomniejszone o elementy zbioru q
p-q
Wartościowanie:
p-q =1 - jeśli zbiór wynikowy jest niepusty
p-q =0 - jeśli zbiór wynikowy jest pusty
Przykład:
Zdefiniujmy zbiory:
p=[1,2,3,4] =1 - zbiór wejściowy niepusty
q=[3,4,5,6] =1 - zbiór wejściowy niepusty
r=[1,2] =1 - zbiór wejściowy niepusty
s=[1,2] =1 - zbiór wejściowy niepusty
p-q = [1,2,3,4]-[3,4,5,6] =[1,2] =1 - bo zbiór wynikowy niepusty
q-p =[3,4,5,6]-[1,2,3,4] =[5,6] =1 - bo zbiór wynikowy niepusty
p-r =[1,2,3,4]-[1,2] =[3,4] =1 - bo zbiór wynikowy niepusty
r-p =[1,2]-[1,2,3,4] =[] =0 - bo zbiór wynikowy pusty
r-s =[1,2]-[1,2] =[] =0
Wnioski:
1.
Jeśli zbiory p i q są nie są tożsame ~[p=q] to różnica zbiorów nie jest przemienna, bo zbiór wynikowy p-q jest różny od q-p
Jeśli zbiory p i q nie są tożsame ~[p=q] to nie jest wszystko jedno który zbiór nazwiemy p a który q
2.
Jeśli zbiory p i q są tożsame [p=q] to różnica zbiorów p-q jest zbiorem pustym [] (i odwrotnie)
p-q = q-p =[]
Jeśli zbiory p i q są tożsame [p=q] to różnica zbiorów jest przemienna, co oznacza iż wszystko jedno jest który zbiór nazwiemy p a który q.
4.4 Zaprzeczenie zbioru:
Definicja dziedziny:
Dziedzina to dowolny zbiór na którym operujemy, nic spoza dziedziny nas nie interesuje
Definicja zaprzeczenia zbioru:
Zaprzeczenie zbioru to różnica dziedziny D i dowolnego zbioru x wewnątrz dziedziny (w tym D)
Oznaczmy:
D - dziedzina
Zaprzeczenie dziedziny to zbiór pusty []:
~D=[D-D] =[] =0 - zbiór pusty
Zaprzeczenie zbioru pustego to dziedzina:
~[] = D =1 - zbiór pełny (dziedzina)
Przykład:
Przyjmijmy dziedzinę:
D=[1,2,3,4,5,6] =1 - zbiór pełny
p=[1,2,3,4] =1 - zbiór wejściowy niepusty
~p =[D-p] =[1,2,3,4,5,6]-[1,2,3,4] =[5,6] =1 - bo zbiór wynikowy niepusty
Nazwa tożsama „zaprzeczenia zbioru”
Nazwa tożsama „zaprzeczenia zbioru” to „uzupełnienie zbioru do wybranej dziedziny”
W naszym przykładzie zbiór ~p=[5,6] jest uzupełnieniem do dziedziny D=[1,2,3,4,5,6] dla zbioru p=[1,2,3,4]
5.0 Zdanie warunkowe „Jeśli p to q”
Definicja zdania warunkowego „Jeśli p to q”
Jeśli p to q
gdzie:
p - poprzednik
q - następnik
Zdanie warunkowe „Jeśli p to q” w zbiorach opisuje wzajemną relację zbiorów p i q
Zdanie warunkowe „Jeśli p to q” w zdarzeniach opisuje wzajemną relację zdarzeń p i q
W zdaniu warunkowym „Jeśli p to q” między p i q mogą być tylko i wyłącznie trzy spójniki implikacyjne:
I. p~~>q - kwantyfikator mały ~~>, możliwe jest jednoczesne zajście p i q
II. p=>q - warunek wystarczający => (gwarancja matematyczna =>), wymuszam dowolne p i pojawia się q
III. p~>q - warunek konieczny ~>, zabieram wszystkie p i znika q
Wartościowanie zdań warunkowych „Jeśli p to q”:
Jeśli dany warunek jest spełniony (=1) to zdanie warunkowe „Jeśli p to q” jest prawdziwe (=1), inaczej jest fałszywe (=0)
I.
p~~>q - kwantyfikator mały ~~>, możliwe jest jednoczesne zajście p i q
A1.
Jeśli jutro będzie pochmurno (CH=1) to może ~~> nie padać (~P=1)
CH~~>~P = CH*~P =1*1 =1
Kwantyfikator mały ~~>spełniony bo możliwa jest (=1) sytuacja „są chmury” (CH=1) i „nie pada” (~P=1)
A2.
Jeśli jutro będzie pochmurno (CH=1) to może ~> nie padać (~P=1)
CH~>~P = 1*1 =0
Warunek konieczny ~> w zdaniu A2 nie jest spełniony (=0) bo zabieram chmury (CH=1) nie wykluczając sytuacji „nie pada” (~P=1)
II.
p=>q - warunek wystarczający => (gwarancja matematyczna =>), wymuszam dowolne p i pojawia się q
A3.
Jeśli jutro będzie padało (P=1) to na pewno => będzie pochmurno (CH=1)
P=>CH = 1*1 =1
Warunek wystarczający => spełniony (=1) bo zawsze gdy wymuszam deszcz (P=1), pojawiają się chmury (CH=1)
Padanie deszczu (P=1) jest warunkiem wystarczającym => dla istnienia chmur (CH=1)
Padanie deszczu (P=1) daje nam gwarancję matematyczną => istnienia chmur (CH=1)
Matematycznie zachodzi:
Warunek wystarczający => = gwarancja matematyczna =>
III
p~>q - warunek konieczny ~>, zabieram wszystkie p i znika q
A4.
Jeśli jutro będzie pochmurno (CH=1) to może ~> padać (P=1)
CH~>P =1*1 =1
Warunek konieczny ~> spełniony (=1) bo zabieram chmury (CH=1) i znika mi możliwość padania (P=1)
Chmury (CH=1) są warunkiem koniecznym ~> dla deszczu (P=1), bo jak nie ma chmur (~CH=1) to mamy gwarancję matematyczną => braku opadów (~P=1)
W naturalnej logice 5-cio latka odkryliśmy tu matematyczny związek między warunkiem koniecznym ~> i wystarczającym =>.
Prawo Kubusia:
CH~>P = ~CH=>~P
Prawdziwość dowolnej strony tożsamości logicznej „=” wymusza prawdziwość drugiej strony.
Prawo Kobry:
Warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q” jest jego prawdziwość pod kwantyfikatorem małym ~~>
Innymi słowy:
Dowolne zdanie warunkowe „Jeśli p to q” ma szansę być prawdziwym wtedy i tylko wtedy gdy prawdziwe jest to samo zdanie pod kwantyfikatorem małym ~~>
Przykłady:
A5.
Jeśli jutro będzie padało (P=1) to może ~~> być pochmurno (CH=1)
P~~>CH = P*CH = 1*1 =1
Definicja kwantyfikatora małego ~~> spełniona (=1) bo możliwa jest sytuacja „pada” (P=1) i „są chmury” (CH=1)
A6.
Jeśli jutro będzie padało (P=1) to na pewno => będzie pochmurno (CH=1)
P=>CH =1
Padanie deszczu (P=1) jest warunkiem wystarczającym => dla istnienia chmur (CH=1)
Doskonale widać, że warunkiem koniecznym prawdziwości zdania A6: P=>CH jest prawdziwość tego samego zdania pod kwantyfikatorem małym A5: P~~>CH
A7.
Jeśli jutro będzie padało (P=1) to może ~~> nie być pochmurno (~CH=1)
P~~>~CH = P*~CH = 1*1 =[] =0
Zdanie pod kwantyfikatorem małym ~~> jest fałszywe (=0) bo niemożliwa jest sytuacja „pada” (P=1) i „nie ma chmur” (~CH=1)
Na mocy prawa Kobry, jeśli w zdaniu A7 wymienimy spójnik na warunek wystarczający => lub konieczny ~> to zdanie A7 na pewno będzie fałszywe:
A7’.
Jeśli jutro będzie padało to na pewno => nie być pochmurno
P=>~CH =0 - na mocy prawa Kobry
Definicja warunku wystarczającego => nie jest spełniona bo zdarzenia „pada” i „nie ma chmur” są rozłączne.
A7’’.
Jeśli jutro będzie padało to może ~> nie być pochmurno
P~>~CH =0 - na mocy prawa Kobry
Definicja warunku koniecznego ~> nie jest spełniona zdarzenia „pada” i „nie ma chmur” są rozłączne.
5.1 Budowa zdania warunkowego „Jeśli p to q”
Definicja zdania warunkowego „Jeśli p to q”
Jeśli p to q
gdzie:
p - poprzednik
q - następnik
Zdanie warunkowe „Jeśli p to q” w zbiorach opisuje wzajemną relację zbiorów p i q
Zdanie warunkowe „Jeśli p to q” w zdarzeniach opisuje wzajemną relację zdarzeń p i q
Twierdzenie Pitagorasa - pełne brzmienie:
A.
Jeśli wylosowany trójkąt x ze zbioru wszystkich trójkątów (ZWT) jest prostokątny (TP) to na pewno => zachodzi w nim suma kwadratów
x*ZWT*TP=>SK =1
Dziedzina:
ZWT - zbiór wszystkich trójkątów
Bycie trójkątem prostokątnym daje nam gwarancję matematyczną => iż zachodzi w nim suma kwadratów.
Jeśli w zdaniu A pod x podstawimy TP to wszystko jest w porządku:
x=TP
stąd:
TP*ZWT*TP =>SK
Prawa teorii zbiorów:
TP*TP = TP - bo iloczyn logiczny zbiorów tożsamych jest dowolnym ze zbiorów
ZWT*TP = TP - bo ZWT jest nadzbiorem zbioru TP
Stąd zapis matematycznie tożsamy:
TP=>SK
Wniosek:
Doskonale widać, że zdanie A jest prawdziwe tylko i wyłącznie dla trójkątów prostokątnych i fałszywe dla trójkątów nieprostokątnych (~TP).
Dowód:
Podstawiamy:
x=~TP - trójkąt nieprostokątny
Stąd:
~TP*ZWT*TP => SK
Prawa teorii zbiorów:
~TP*TP =[] - bo zbiory ~TP i TP są rozłączne
[]*ZWT=[] - iloczyn logiczny zbioru pustego z czymkolwiek jest zbiorem pustym
stąd otrzymujemy:
A: [] =>SK =0
Dla trójkątów nieprostokątnych twierdzenie Pitagorasa jest fałszywe bo prawo Kobry.
Prawo Kobry:
Warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q” jest jego prawdziwość pod kwantyfikatorem małym ~~>
Innymi słowy:
Dowolne zdanie „Jeśli p to q” ma szansę być prawdziwym wtedy i tylko wtedy gdy prawdziwe jest to samo zdanie pod kwantyfikatorem małym ~~>
Dla trójkątów nieprostokątnych zdanie A pod kwantyfikatorem małym ~~> brzmi:
A: [] ~~>SK = []*SK =[] =0
Wniosek:
Dla trójkątów nieprostokątnych zdanie A jest fałszywe.
Stąd mamy jak na dłoni, szczegółową budowę zdania warunkowego „Jeśli p to q”.
Zapiszmy jeszcze raz nasze zdanie:
A.
Jeśli wylosowany trójkąt x ze zbioru wszystkich trójkątów (ZWT) jest prostokątny (TP) to na pewno => zachodzi w nim suma kwadratów
x*ZWT*TP=>SK
To samo w zapisie ogólnym:
AOG.
Jeśli dowolny element x z przyjętej dziedziny X jest [p=wybrany element] to [q=konkretna cecha tego elementu]
x*X*p=>q
Tłumaczymy AOG na nasz przykład A:
Jeśli dowolny element x = Jeśli wylosowany trójkąt x
z przyjętej dziedziny x = ze zbioru wszystkich trójkątów (ZWT)
jest [p=wybrany element] = jest prostokątny (TP)
to [q=konkretna cecha tego elementu] = to w trójkącie tym zachodzi suma kwadratów
Spróbujmy podstawić pod p zbiór pusty:
Jeśli dowolny element x z przyjętej dziedziny X jest […] to [q=konkretna cecha tego elementu]
W zbiorze pustym nie ma żadnego elementu, zatem nie jesteśmy w stanie opisywać konkretnej cechy elementu którego nie widzimy (nie znamy), co potwierdza poprawność prawa Kobry
5.2 Aksjomaty Kubusia
Definicja zbioru:
Zbiór to zestaw dowolnych pojęć z obszaru Uniwersum
Definicja Uniwersum:
Uniwersum to zbiór wszelkich pojęć zrozumiałych dla człowieka
Definicja dziedziny:
Dziedzina to dowolny zbiór na którym operujemy, nic spoza dziedziny nas nie interesuje
W szczególności dziedziną może być Uniwersum.
Aksjomaty Kubusia
I.
Człowiek może operować wyłącznie na pojęciach dla niego zrozumiałych
II.
W zdaniu warunkowym „Jeśli p to q” wartości logiczne p i q nie mogą być znane z góry
III.
Każde pojęcie z obszaru Uniwersum jest zbiorem
IV.
W zdaniach warunkowych „Jeśli p to q” pod p i q możemy podstawiać wyłącznie zbiory (pojęcia) niepuste.
V.
Zbiór pusty w logice matematycznej może powstać wyłącznie w matematycznych operacjach na zbiorach niepustych
Aksjomat V to wniosek z aksjomatu IV
Ad. I
Człowiek może operować wyłącznie na pojęciach dla niego zrozumiałych
pies - pojęcie zrozumiałe
blebleku - pojęcie niezrozumiałe
Ad. II
W zdaniu warunkowym „Jeśli p to q” wartości logiczne p i q nie mogą być znane z góry
Dowód:
W całym obszarze języka mówionego, we wszelkich środkach masowego przekazu, nie istnieje ani jedno zdanie warunkowe „Jeśli p to q” w którym wartości logiczne p i q znane byłyby z góry.
Wniosek:
Definicja logiki matematycznej:
Logika to matematyczny opis nieznanego, czyli przyszłości lub nieznanej przeszłości
Wbrew pozorom przeszłość nie musi być znana.
Przykład :
Poszukiwanie mordercy
Założenia:
1. Morderstwa dokonano w Warszawie
2. Podejrzany Kowalski
A.
Jeśli Kowalski był w Warszawie w dniu morderstwa to mógł ~> zamordować
W~>Z =1
Bycie Kowalskiego w Warszawie w dniu morderstwa było warunkiem koniecznym ~>, aby był on mordercą.
Jeśli znamy rozwiązanie np. Kowalski jest mordercą to zdanie A wyżej traci sens, wiemy wszystko i żadna logika matematyczna nie jest nam tu potrzebna.
Ad. III
Każde pojęcie z obszaru Uniwersum jest zbiorem
Przykład matematyczny:
Zdefiniujmy dziedzinę:
LR - zbiór liczb rzeczywistych
Utwórzmy zbiór p zbudowany z jednej liczby tego zbioru:
p=[2]
Zaprzeczenie zbioru p to:
~p=[LR-2] - zbiór liczb rzeczywistych z wykluczeniem liczby 2
Matematycznie zachodzi:
p+~p = [2]+[LR-2] = LR =1 (dziedzina)
Zbiór ~p=[LR-2] jest uzupełnieniem do dziedziny dla zbioru p=[2]
oraz:
p*~p = [2]*[LR-2] = [] =0 - bo zbiory p i ~p są rozłączne
Matematycznie zachodzi również:
p ## ~p
[2] ## [LR-2]
gdzie:
## - zbiory różne na mocy definicji
Przykład nie matematyczny
Zdefiniujmy zbiór zawierający jedno pojęcie z obszaru Uniwersum:
C = [kolor czerwony]
Przyjmijmy dziedzinę:
Uniwersum (U) - wszelkie możliwe pojęcia zrozumiałe dla człowieka
Na mocy definicji zaprzeczenia zapisujemy:
~C = [U-C] - dowolne pojęcie z palety Uniwersum z wykluczeniem „koloru czerwonego”
Zaprzeczeniem „koloru czerwonego” jest dowolne pojęcie z Uniwersum różne od pojęcia „kolor czerwony”, w szczególności może to być dowolny inny kolor.
Wypiszmy kilka pojęć wchodzących do zbioru ~C.
~C =[kolor biały, krowa, krasnoludek, miłość, Wszechświat …]
Dowolne z tych pojęć jest zaprzeczeniem koloru czerwonego.
W tym ujęciu „kolor czerwony” to zbiór jednoelementowy:
C = [kolor czerwony]
Stąd mamy III aksjomat Kubusia:
Każde pojęcie z obszaru Uniwersum jest zbiorem
W szczególności będzie to zbiór jednoelementowy
Ad. IV
W zdaniach warunkowych „Jeśli p to q” pod p i q możemy podstawiać wyłącznie zbiory (pojęcia) niepuste.
Aksjomat IV wynika bezpośrednio z prawa Kobry.
Warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q” jest jego prawdziwość pod kwantyfikatorem małym ~~>
Innymi słowy:
Dowolne zdanie „Jeśli p to q” ma szansę być prawdziwym wtedy i tylko wtedy gdy prawdziwe jest to samo zdanie pod kwantyfikatorem małym ~~>
Definicja kwantyfikatora małego ~~>:
Jeśli zajdzie p to może ~~> zajść q
p~~>q = p*q
Dla p lub q będącego zbiorem pustym otrzymujemy zdanie fałszywe:
[]~~>q = []*q =[] =0
5.3 Kwantyfikator mały ~~>
Definicja kwantyfikatora małego ~~>:
A.
Jeśli zajdzie p to może ~~> zajść q
p~~>q = p*q
Dla udowodnienia prawdziwości zdania pod kwantyfikatorem małym ~~> wystarczy pokazać jeden wspólny element zbiorów p i q
5.3.1 Kwantyfikator mały ~~> w zbiorach
Definicja kwantyfikatora małego ~~>:
A.
Jeśli zajdzie p to może ~~> zajść q
p~~>q = p*q
Zbiory:
Dla udowodnienia zdania pod kwantyfikatorem małym ~~> wystarczy pokazać jeden wspólny element zbiorów p i q
Wartościowanie dla zbiorów:
Kwantyfikator mały p~~>q =1 jest spełniony (=1) gdy istnieje wspólny element zbiorów p*q (Inaczej: p~~>q =0)
Przemienność argumentów:
Argumenty w kwantyfikatorze małym ~~> są przemienne bo argumenty w iloczynie logicznym zbiorów p*q są przemienne:
p*q = q*p
Zapis tożsamy kwantyfikatora małego ~~> dla zbiorów:
\/x p(x)~~>q(x) = p(x)*q(x)
Istnieje takie x, które należy jednocześnie do zbiorów p(x) i q(x)
Przykłady w zbiorach:
Dziedzina: LN
LN=[1,2,3,4,5,6,7,8,9..] - zbiór liczb naturalnych
P2 =[2,4,6,8..] - zbiór liczb podzielnych przez 2 (parzystych)
P8 =[8,16,24..] - zbiór liczb podzielnych przez 8
~P2=[LN-P2] =[1,3,5,7,9..] - zbiór liczb niepodzielnych przez 2 (nieparzystych)
A.
Jeśli liczba jest podzielna przez 8 to może ~~> być podzielna przez 2
P8~~>P2 =P8*P2 =1 bo 8
Definicja kwantyfikatora małego ~~> spełniona (=1) bo istnieje wspólny element zbiorów P8=[8,16,24..] i P2=[2,4,6,8 ..] np. 8
B.
Jeśli liczba jest podzielna przez 8 to może ~~> nie być podzielna przez 2
P8~~>~P2 = P8*~P2 = [] =0
Definicja kwantyfikatora małego ~~> nie jest spełniona (=0) bo zbiory P8=[8,16,24..] i ~P2=[1,3,5,7..] są rozłączne.
Kwantyfikator mały jest przemienny bo argumenty w iloczynie logicznym są przemienne:
P8*P2 = P2*P8
P8*~P2 = ~P2*P8
4.3.2 Kwantyfikator mały ~~> w zdarzeniach
Definicja kwantyfikatora małego ~~> w zdarzeniach:
A.
Jeśli zajdzie p to może ~~> zajść q
p~~>q = p*q
Zdarzenia:
Dla udowodnienia prawdziwości zdania pod kwantyfikatorem małym ~~> wystarczy sama możliwość jednoczesnego zajścia zdarzeń p i q
Wartościowanie dla zdarzeń:
Kwantyfikator mały p~~>q =1 jest spełniony (=1) gdy możliwe jest jednoczesne zajście zdarzeń p i q (Inaczej: p~~>q =0)
Przemienność argumentów:
Argumenty w kwantyfikatorze małym ~~> są przemienne bo argumenty w iloczynie logicznym zbiorów p*q są przemienne:
p*q = q*p
Zapis tożsamy kwantyfikatora małego ~~> dla zdarzeń:
\/x p(x)~~>q(x) = p(x)*q(x)
Możliwe jest (Vx) jednoczesne zajście zdarzeń p(x) i q(x)
Przykłady w zdarzeniach:
A.
Jeśli jutro będzie padało to może ~~> być pochmurno
P~~>CH = P*CH =1
Definicja kwantyfikatora małego ~~> spełniona, bo możliwa jest (=1) sytuacja „pada” i „są chmury”
B.
Jeśli jutro będzie padało to może ~~> nie być pochmurno
P~~>~CH = P*~CH =[] =0
Definicja kwantyfikatora małego ~~> nie jest spełniona (=0), bo niemożliwa jest sytuacja „pada” i „nie ma chmur”
Wniosek:
Dla prawdziwości kwantyfikatora małego ~~> wystarczy sama możliwość jednoczesnego zajścia zdarzenia p i q
Kwantyfikator mały ~~> jest przemienny bo iloczyn logiczny zbiorów (zdarzeń) jest przemienny:
P*CH = CH*P
P*~CH = ~CH*P
5.4 Warunek wystarczający =>
Definicja warunku wystarczającego =>
A.
Jeśli zajdzie p to na pewno => zajdzie q
p=>q
Zbiory:
Definicja warunku wystarczającego p=>q jest spełniona wtedy i tylko wtedy zbiór p jest podzbiorem => zbioru q
Zdarzenia:
Definicja warunku wystarczającego p=>q spełniona wtedy i tylko wtedy gdy zajście zdarzenia p wymusza zajście zdarzenia q
Przemienność argumentów w warunku wystarczającym =>:
Warunek wystarczający => nie jest przemienny, gdy zbiory (zdarzenia) p i q nie są tożsame ~[p=q]
LUB
Warunek wystarczający => jest przemienny gdy zbiory (zdarzenia) p i q są tożsame [p=q]
Przykład warunku wystarczającego => nieprzemiennego:
A.
Jeśli liczba jest podzielna przez 8 to na pewno => jest podzielna przez 2
P8=>P2 =1
Definicja warunku wystarczającego => spełniona bo:
Zbiór P8=[8,16,24..] jest podzbiorem => zbioru P2=[2,4,6,8..]
Zdanie odwrotne brzmi:
AO.
Jeśli liczba jest podzielna przez 2 to na pewno => jest podzielna przez 8
P2=>P8 =0
Definicja warunku wystarczającego => nie jest spełniona bo:
Zbiór P2=[2,4,6,8..] nie jest podzbiorem => zbioru P8=[8,16,24..]
Definicja równoważności:
Równoważność to warunek wystarczający => zachodzący w dwie strony
p<=>q = (p=>q)*(p<=q)
Nasz przykład:
RA.
P8<=>P2 = (P8=>P2)*(P8<=P2) = 1*0 =0
Wniosek:
Warunek wystarczający A: P8=>P2 nie wchodzi w skład definicji równoważności.
Przykład warunku wystarczającego => przemiennego:
A.
Jeśli dowolna liczba jest liczbą naturalną to na pewno => ta sama dowolna liczba jest liczbą naturalną
LN=>LN =1
Definicja warunku wystarczającego spełniona bo poprzednik jest tu identyczny z następnikiem, co gwarantuje prawdziwość warunku wystarczającego w dwie strony, co gwarantuje przemienność argumentów w zdaniu warunkowym „Jeśli p to p”
LN<=>LN = (LN=>LN)*(LN<=LN) = 1*1 =1
Wniosek:
Warunek wystarczający A: LN=>LN wchodzi w skład definicji równoważności.
5.4.1 Warunek wystarczający => w zbiorach
Definicja warunku wystarczającego =>
A.
Jeśli zajdzie p to na pewno => zajdzie q
p=>q
Zbiory:
Definicja warunku wystarczającego p=>q jest spełniona wtedy i tylko wtedy zbiór p jest podzbiorem => zbioru q
Wnioski:
Wylosowanie dowolnej liczby ze zbioru p jest warunkiem wystarczającym => na to, by ta liczba należała do zbioru q
Wylosowane dowolnej liczby ze zbioru p daje nam gwarancję matematyczną => iż ta liczba jest z zbiorze q
Matematycznie zachodzi:
Warunek wystarczający => = gwarancja matematyczna =>
Wartościowanie:
Warunek wystarczający p=>q =1 jest spełniony (=1) wtedy i tylko wtedy gdy zbiór p jest podzbiorem zbioru q (Inaczej: p=>q =0)
Definicja warunku wystarczającego => w kwantyfikatorze dużym
/\x p(x)=>q(x)
Dla każdego x, jeśli x należy do zbioru p(x) to na pewno => należy do zbioru q(x)
Definicja podzbioru właściwego =>:
Zbiór p jest podzbiorem właściwym |=> zbioru q wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q i nie jest tożsamy ze zbiorem q, co matematycznie zapisujemy ~[p=q]
p|=>q = (p=>q)*~[p=q]
Argumenty w podzbiorze właściwym p|=>q nie są przemienne.
Definicja podzbioru właściwego |=> to definicja implikacji prostej p|=>q w algebrze Kubusia.
Przykład 1.
Przyjmijmy zbiory p i q nie tożsame ~[p=q]
p=[1,2]
q=[1,2,3,4]
Zbiór p jest podzbiorem => zbioru q, stąd
p=>q =1
Zbiór q nie jest podzbiorem => zbioru p, stąd:
q=>p =0
Wniosek:
Jeśli argumenty w warunku wystarczającym => nie są przemienne, zbiory p i q nie są tożsame ~[p=q] (i odwrotnie)
Definicja podzbioru niewłaściwego p<=>q:
Zbiór p jest zbiorem niewłaściwym <=> dla zbioru q wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q i jest tożsamy ze zbiorem q, co matematycznie zapisujemy [p=q]
p<=>q = (p=>q)*[p=q]
Argumenty w podzbiorze niewłaściwym <=> są przemienne co oznacza, że wszystko jedno co nazwiemy p a co q.
Oczywistość z powodu tożsamości zbiorów [p=q]
Definicja podzbioru niewłaściwego to definicja równoważności p<=>q w algebrze Kubusia.
Przykład 2.
Przyjmijmy zbiory p i q tożsame [p=q]
p=[1,2,3,4]
q=[1,2,3,4]
p=>q =1 - zbiór p jest podzbiorem => zbioru q
q=>p =1 - zbiór q jest podzbiorem => zbioru p
Wniosek:
Jeśli argumenty w warunku wystarczającym => są przemienne, to zbiory p i q są tożsame [p=q] (i odwrotnie)
Stąd mamy matematyczną definicję tożsamości zbiorów p i q [p=q]:
Zbiory p i q są tożsame [p=q], wtedy i tylko wtedy <=> gdy zbiór p jest podzbiorem => zbioru q i jednocześnie zbiór q jest podzbiorem => zbioru p
[p=q] = (p=>q)*(q=>p) = 1*1 =1
5.4.2 Definicja kontrprzykładu dla zbiorów
Definicja kontrprzykładu:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane kwantyfikatorem małym p~~>~q =p*~q
Rozstrzygnięcia:
A.
Prawdziwość kontrprzykładu p~~>~q =p*~q =1 daje nam pewność => fałszywości zdania kodowanego warunkiem wystarczającym p=>q =0 (i odwrotnie)
B.
Fałszywość kontrprzykładu p~~>~q =p*~q =0 daje nam pewność => prawdziwości warunku wystarczającego p=>q=1 (i odwrotnie)
Przykład warunku wystarczającego => w zbiorach
Dziedzina: LN
LN=[1,2,3,4,5,6,7,8,9..] - zbiór liczb naturalnych
P2 =[2,4,6,8..] - zbiór liczb podzielnych przez 2 (parzystych)
P8 =[8,16,24..] - zbiór liczb podzielnych przez 8
~P2=[LN-P2] =[1,3,5,7,9..] - zbiór liczb niepodzielnych przez 2 (nieparzystych)
A.
Jeśli liczba jest podzielna przez 8 to na pewno => jest podzielna przez 2
P8=>P2 =1
Definicja warunku wystarczającego => spełniona bo zbiór P8=[8,16,24..] jest podzbiorem zbioru P2=[2,4,6,8..]
Wylosowanie dowolnej liczby ze zbioru P8=[8,16,24..] jest warunkiem wystarczającym => na to aby ta liczba należała do zbioru P2=[2,4,6,8..]
Wylosowanie dowolnej liczby ze zbioru P8=[8,16,24..] daje nam gwarancję matematyczną => iż ta liczba będzie należała do zbioru P2=[2,4,6,8..]
Matematycznie zachodzi:
Warunek wystarczający => = gwarancja matematyczna
Kontrprzykładem dla warunku wystarczającego A: P8=>P2 jest zdanie z zanegowanym następnikiem kodowane kwantyfikatorem małym B: P8~~>~P2
Prawdziwość warunku wystarczającego A: P8=>P2 =1 daje nam gwarancję matematyczną fałszywości kontrprzykładu B: P8~~>~P2 =0
Sprawdzamy:
B.
Jeśli liczba jest podzielna przez 8 to może ~~> nie być podzielna przez 2
P8~~>~P2 = P8*~P2 =[] =0
Definicja kwantyfikatora nie jest spełniona (=0), bo zbiory P8=[8,16,24..] i ~P2=[1,3,5,7,9..] są rozłączne.
Fałszywość kwantyfikatora małego B: P8~~>~P2 =0 daje nam gwarancję matematyczną => prawdziwości warunku wystarczającego A: P8=>P2 =1
Przemienność argumentów:
Argumenty w warunku wystarczającym A: P8=>P2 nie są przemienne bo:
A: P8=>P2 =1 - bo zbiór P8=[8,16,24..] jest podzbiorem => zbioru P2=[2,4,6,8..]
AO: P2=>P8 =0 - bo zbiór P2=[2,4,6,8..] nie jest podzbiorem => zbioru P8=[8,16,24..]
5.4.3 Warunek wystarczający => w zdarzeniach
A.
Jeśli zajdzie p to na pewno => zajdzie q
p=>q
Zdarzenia:
Definicja warunku wystarczającego p=>q jest spełniona wtedy i tylko wtedy zbiór p gdy zajście zdarzenia p wymusza => zdarzenie q
Wnioski:
Zajście zdarzenia p jest warunkiem wystarczającym => na to, by zaszło zdarzenie q
Zajście zdarzenie p daje nam gwarancję matematyczną => zajścia zdarzenia q
Matematycznie zachodzi:
Warunek wystarczający => = gwarancja matematyczna =>
Wartościowanie:
Warunek wystarczający p=>q =1 jest spełniony (=1) wtedy i tylko wtedy gdy zajście zdarzenia p wymusza zajście zdarzenia q. (Inaczej: p=>q =0)
Definicja warunku wystarczającego => w kwantyfikatorze dużym
/\x p(x)=>q(x)
Dla każdego zdarzenia x, jeśli zajdzie p(x) to zajdzie q(x)
5.4.4 Definicja kontrprzykładu dla zdarzeń
Definicja kontrprzykładu:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane kwantyfikatorem małym p~~>~q =p*~q
Rozstrzygnięcia:
A.
Prawdziwość kontrprzykładu p~~>~q =p*~q =1 daje nam pewność => fałszywości zdania kodowanego warunkiem wystarczającym p=>q =0 (i odwrotnie)
B.
Fałszywość kontrprzykładu p~~>~q =p*~q =0 daje nam pewność => prawdziwości warunku wystarczającego p=>q=1 (i odwrotnie)
Przykład warunku wystarczającego => w zdarzeniach
A.
Jeśli jutro będzie padało to na pewno => będzie pochmurno
P=>CH =1
Padanie deszczu jest warunkiem wystarczającym => dla istnienia chmur, bo zawsze gdy „pada”, „są chmury”
Padanie deszczu daje nam gwarancję matematyczną => istnienia chmur
Matematycznie zachodzi:
Warunek wystarczający => = gwarancja matematyczna =>
Z prawdziwości warunku wystarczającego A: P=>CH =1 wynika fałszywość kontrprzykładu B: P~~> ~CH=0 (i odwrotnie).
B.
Jeśli jutro będzie padało to może ~~> nie być pochmurno
P~~>~CH = P*~CH = [] =0
Definicja kwantyfikatora małego ~~> nie jest spełniona (=0), bo niemożliwa jest sytuacja „pada” i „nie ma chmur”
Z fałszywości kontrprzykładu B: P~~>~CH=0 wynika prawdziwość warunku wystarczającego => A: P=>CH =1 (i odwrotnie)
Przemienność argumentów:
Warunek wystarczający A: P=>CH nie jest przemienny bo zdanie odwrotne jest fałszywe:
AO.
Jeśli jutro będzie pochmurno to na pewno => będzie padało
CH=>P =0
Warunek wystarczający AO: CH=>P nie jest spełniony (=0) bo prawdziwy jest kontrprzykład:
B: CH~~>~P= CH*~P =1 - może się zdarzyć, że są chmury (CH=1) i nie pada (~P=1)
5.5 Warunek konieczny ~>
Definicja warunku koniecznego ~>:
A.
Jeśli zajdzie p to może ~> zajść q
p~>q
Zbiory:
Warunek konieczny ~> jest spełniony, jeśli zbiór p zawiera w sobie wszystkie elementy zbioru q
Zabieram wszystkie p i znika mi q
Wartościowanie:
Warunek konieczny p~>q =1 jest spełniony (=1) wtedy i tylko wtedy gdy zbiór p jest nadzbiorem ~> zbioru q (Inaczej: p~>q =0)
Zdarzenia:
Warunek konieczny p~>q jest spełniony wtedy i tylko wtedy gdy zabierając zdarzenie p wykluczamy zajście zdarzenia q
Wartościowanie:
Warunek konieczny p~>q =1 jest spełniony (=1) wtedy i tylko wtedy gdy zabierając zdarzenie p wykluczamy zdarzenie q (Inaczej: p~>q =0)
Definicja nadzbioru właściwego |~>:
Zbiór p jest nadzbiorem właściwym |~> zbioru q wtedy i tylko wtedy gdy zbiór p jest nadzbiorem ~> zbioru q i nie jest tożsamy ze zbiorem q, co matematycznie zapisujemy ~[p=q]
p|~>q = (p~>q)*~[p=q]
Argumenty w nadzbiorze właściwym p|~>q nie są przemienne.
Definicja nadzbioru właściwego to definicja implikacji odwrotnej p|~>q w algebrze Kubusia.
Przykład 1.
Przyjmijmy zbiory p i q nie tożsame ~[p=q]
p=[1,2,3,4]
q=[1,2]
Zbiór p jest nadzbiorem ~> zbioru q, stąd
p~>q =1
Zbiór q nie jest nadzbiorem ~> zbioru p, stąd:
q~>p =0
Wniosek:
Jeśli argumenty w warunku koniecznym ~> nie są przemienne, to zbiory p i q nie są tożsame ~[p=q] (i odwrotnie)
Definicja nadzbioru niewłaściwego p<=>q:
Zbiór p jest nadzbiorem niewłaściwym <=> dla zbioru q wtedy i tylko wtedy gdy zbiór p jest nadzbiorem ~> zbioru q i jest tożsamy ze zbiorem q, co matematycznie zapisujemy [p=q]
p<=>q = (p~>q)*[p=q]
Argumenty w nadzbiorze niewłaściwym <=> są przemienne co oznacza, że wszystko jedno co nazwiemy p a co q.
Oczywistość z powodu tożsamości zbiorów [p=q]
Przykład 2.
Przyjmijmy zbiory p i q tożsame [p=q]
p=[1,2,3,4]
q=[1,2,3,4]
p~>q =1 - zbiór p jest nadzbiorem ~> zbioru q
q~>p =1 - zbiór q jest nadzbiorem ~> zbioru p
Wniosek:
Jeśli argumenty w warunku koniecznym ~> są przemienne, to zbiory p i q są tożsame [p=q] (i odwrotnie)
Stąd mamy matematyczną definicję tożsamości zbiorów p i q [p=q]:
Zbiory p i q są tożsame [p=q], wtedy i tylko wtedy <=> gdy zbiór p jest nadzbiorem ~> zbioru q i jednocześnie zbiór q jest nadzbiorem ~> zbioru p
[p=q] = (p~>q)*(q~>p) = 1*1 =1
5.5.1 Warunek konieczny ~> w zbiorach
Definicja warunku koniecznego ~> w zbiorach:
A.
Jeśli zajdzie p to może ~> zajść q
p~>q
Warunek konieczny ~> jest spełniony, jeśli zbiór p zawiera w sobie wszystkie elementy zbioru q
Zabieram wszystkie p i znika mi q
Wartościowanie:
Warunek konieczny p~>q =1 jest spełniony (=1) wtedy i tylko wtedy gdy zbiór p jest nadzbiorem ~> zbioru q (Inaczej: p~>q =0)
Przykład:
Jeśli liczba jest podzielna przez 2 to może ~> być podzielna przez 8
P2~>P8 =1
Definicja warunku koniecznego ~> spełniona bo zbiór P2=[2,4,6,8..] jest nadzbiorem zbioru P8=[8,16,24..]
Podzielność dowolnej liczby przez 2 jest warunkiem koniecznym ~> jej podzielności przez 8, bo jak liczba nie jest podzielna przez 2 to na pewno => nie jest podzielna przez 8
P2~>P8 = ~P2=>~P8
Ostatnie zdanie to matematyczny związek warunku koniecznego P2~>P8 z warunkiem wystarczającym ~P2~>~P8
Prawdziwość dowolnej strony powyższej tożsamości wymusza prawdziwość drugiej strony.
5.5.2 Warunek konieczny ~> w zdarzeniach
Definicja warunku koniecznego ~> w zdarzeniach:
A.
Jeśli zajdzie p to może ~> zajść q
p~>q
Zajście zdarzenia p jest konieczne ~> dla zajścia zdarzenia q
Zabieram zdarzenie p wykluczając zajście zdarzenia q
Przykład:
A.
Jeśli jutro będzie pochmurno to może ~> padać
CH~>P =1
Definicja warunku koniecznego ~> spełniona bo zabieram chmury wykluczając padanie.
Istnienie chmur jest warunkiem koniecznym ~> dla deszczu, bo jak nie ma chmur to na pewno => nie pada
CH~>P = ~CH=>~P
Ostatnie zdanie to matematyczny związek warunku koniecznego CH~>P z warunkiem wystarczającym ~CH=>~P
Prawdziwość dowolnej strony powyższej tożsamości wymusza prawdziwość drugiej strony.
Ostatnio zmieniony przez rafal3006 dnia Pią 5:38, 27 Maj 2016, w całości zmieniany 1 raz
|
|
Powrót do góry |
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 35357
Przeczytał: 24 tematy
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Czw 19:46, 26 Maj 2016 Temat postu: |
|
|
Część III
Klasyczny rachunek zero-jedynkowy
Spis treści
6.0 Klasyczny rachunek zero-jedynkowy 1
6.1 Prawa De Morgana 3
6.2 Najważniejsze prawa algebry Boole’a 5
6.0 Klasyczny rachunek zero-jedynkowy
Definicje podstawowe.
Zmienna binarna (techniczna algebra Boole’a):
Zmienna mogąca przyjmować w osi czasu wyłącznie dwie wartości 0 albo 1
Przykłady:
p, q, ~r
Funkcja logiczna (techniczna algebra Boole’a):
Funkcja przyjmująca w osi czasu wyłącznie dwie wartości 0 albo 1 w zależności od aktualnego stanu zmiennych binarnych i użytego operatora logicznego.
Przykłady funkcji logicznych:
Y=p*q+~r
p=>q
gdzie:
„*”, „+”, => - spójniki logiczne
Funkcja logiczna opisana spójnikami „i”(*) i „lub”(+):
Funkcja logiczna Y (wyjście cyfrowe w układzie logicznym) to funkcja n-zmiennych binarnych połączonych spójnikami „i”(*) albo „lub”(+) mogąca w osi czasu przyjmować wyłącznie 0 albo 1 w zależności od aktualnej wartości wejściowych zmiennych binarnych.
Y - funkcja logiczna
Przykład:
Y=p*q+p*~q+~p*q
Definicja logiki dodatniej i ujemnej w operatorach w spójnikach „lub”(+) i „i”(*):
Funkcja logiczna Y zapisana jest w logice dodatniej wtedy i tylko wtedy gdy nie jest zanegowana.
Y=p+q - logika dodatnia bo Y
~Y=~p*~q - logika ujemna bo ~Y
Kod: |
Definicja spójnika „lub”(+) dla potrzeb klasycznego rachunku zero-jedynkowego
p q Y=p+q
A: 1 1 =1
B: 1 0 =1
C: 0 1 =1
D: 0 0 =0
1 2 3
|
Definicja spójnika „lub”(+):
Y=p+q
co matematycznie oznacza:
Y=1 <=> p=1 lub q=1
Definicja spójnika „lub”(+) to wyłącznie obszar ABC123, co doskonale widać w powyższej tabeli.
Linia D123 to tylko uzupełnienie definicji spójnika „lub”(+) do pełnego operatora logicznego OR(|+).
Prawo Sowy:
Nagłówek dowolnej tabeli zero-jedynkowej opisuje wyłącznie wynikowe jedynki w tej tabeli.
Prawo Sowy poznamy niebawem, dla potrzeb klasycznego rachunku zero-jedynkowego znajomość tego prawa nie jest potrzebna.
Kod: |
Definicja spójnika „i”(*) dla potrzeb klasycznego rachunku zero-jedynkowego
p q Y=p*q
A: 1 1 =1
B: 1 0 =0
C: 0 1 =0
D: 0 0 =0
1 2 3
|
Definicja spójnika „i”(*):
Y=p*q
co matematycznie oznacza:
Y=1 <=> p=1 i q=1
Definicja spójnika „i”(*) to wyłącznie linia A123.
Obszar BCD123 to wyłącznie uzupełnienie definicji spójnika „i”(*) do pełnego operatora logicznego AND(|*)
Prawo Sowy:
Nagłówek dowolnej tabeli zero-jedynkowej opisuje wyłącznie wynikowe jedynki w tej tabeli.
Prawo Sowy poznamy niebawem, dla potrzeb klasycznego rachunku zero-jedynkowego znajomość tego prawa nie jest potrzebna.
Algebra Boole’a to technika bramek logicznych.
Znaczenie symboli:
p, q - wejścia układu
Y - wyjście układu, kompletna kolumna wynikowa
W klasycznym rachunku zero-jedynkowym nie interesuje nas wewnętrzna budowa operatora logicznego, czyli nie interesują nas cząstkowe równania logiczne opisujące poszczególne linie operatora, które niebawem poznamy.
Klasyczny rachunek zero-jedynkowy to komputerowe (czyli bezmyślne) przemiatanie zer i jedynek na wszelkie możliwe sposoby, gdzie tożsamość kolumn wynikowych jest dowodem formalnym zachodzącego prawa logicznego.
Maszynowa definicja operatora logicznego (techniczna algebra Boole’a):
Operator logiczny to odpowiedź układu na wszystkie możliwe stany 0 i 1 na wejściach p i q
Operator logiczny to kompletna kolumna wynikowa Y będąca odpowiedzią na wszystkie możliwe wymuszenia 0 i 1 na wejściu układu. Pojedyńcze linie tabeli zero-jedynkowej nie są operatorami logicznymi.
Abstrakcyjnie maszynowy operator logiczny to czarna skrzynka o dwóch kabelkach wejściowych p i q oraz jednym wyjściu Y. Fizyczna budowa operatora logicznego jest nieistotna, w skrajnym przypadku może to być dowolna ilość układów cyfrowych np. milion. Aby zbadać z jakim operatorem logicznym mamy do czynienia nie musimy wnikać w wewnętrzną budowę układu logicznego. Wystarczy że wykonamy zaledwie cztery kroki A, B, C i D podając na wejścia p i q wszystkie możliwe kombinacje 0 i 1 i zapisując odpowiedzi układu na wyjściu Y.
Kolejność wierszy w tabeli zero-jedynkowej nie ma żadnego znaczenia, możemy je dowolnie przestawiać. Istotne jest aby dowolnemu, uporządkowanemu wymuszeniu na wejściach p i q odpowiadała zawsze ta sama cyferka 0 albo 1.
W najpopularniejszej technice TTL cyfry 0 i 1 to po prostu napięcia które łatwo zmierzyć woltomierzem o znaczeniu:
0 = 0,0V-0,4V
1 = 2,4V-5.0V
Możliwe są też bramki świetlne, biologiczne, mechaniczne etc. Z punktu widzenia matematyki to kompletnie bez znaczenia.
6.1 Prawa De Morgana
Prawo De Morgana dla spójnika „lub”(+):
Y = p+q = ~(~p*~q)
Dowód formalny w rachunku zero-jedynkowym:
Kod: |
p q Y=p+q ~Y=~(p+q) ~p ~q ~Y=~p*~q Y=~(~p*~q)
A: 1 1 =1 =0 0 0 =0 =1
B: 1 0 =1 =0 0 1 =0 =1
C: 0 1 =1 =0 1 0 =0 =1
D: 0 0 =0 =1 1 1 =1 =0
1 2 3 4 5 6 7 8 |
Prawo De Morgana w logice dodatniej (bo Y):
A1.
Y = p+q = ~(~p*~q)
Identyczne kolumny wynikowe 3 i 8
cnd
Prawo De Morgana w logice ujemnej (bo ~Y):
A2.
~Y = ~(p+q) = ~p*~q
Identyczne kolumny wynikowe 4 i 7
cnd
Z powyższego wynika, że tożsamości w równaniach logicznych możemy wyłącznie dwustronnie negować i korzystać z prawa podwójnego przeczenia. Nie ma tu czegoś takiego jak przeniesienie zmiennej na drugą stronę z przeciwnym znakiem, znane nam z matematyki klasycznej.
Bezpośrednio z A1 i A2 wynika prawo przejścia do logiki przeciwnej:
Negujemy zmienne i wymieniamy spójniki na przeciwne
A1: Y=p+q - funkcja logiczna w logice dodatniej (bo Y)
Negujemy zmienne i wymieniamy spójniki na przeciwne:
A2: ~Y=~p*~q - funkcja logiczna w logice ujemnej (bo ~Y)
Prawo De Morgana dla spójnika „i”(*):
Y = p*q = ~(~p+~q)
Dowód formalny w rachunku zero-jedynkowym:
Kod: |
p q Y=p*q ~Y=~(p*q) ~p ~q ~Y=~p+~q Y=~(~p+~q)
A: 1 1 =1 =0 0 0 =0 =1
B: 1 0 =0 =1 0 1 =1 =0
C: 0 1 =0 =1 1 0 =1 =0
D: 0 0 =0 =1 1 1 =1 =0
1 2 3 4 5 6 7 8 |
Prawo De Morgana w logice dodatniej (bo Y):
B1.
Y = p*q = ~(~p+~q)
Identyczne kolumny wynikowe ABCD3 i ABCD8
cnd
Prawo De Morgana w logice ujemnej (bo ~Y):
B2.
~Y = ~(p*q) = ~p+~q
Identyczne kolumny wynikowe ABCD4 i ABCD7
cnd
Z powyższego wynika, że tożsamości w równaniach logicznych możemy wyłącznie dwustronnie negować i korzystać z prawa podwójnego przeczenia. Nie ma tu czegoś takiego jak przeniesienie zmiennej na drugą stronę z przeciwnym znakiem, znane nam z matematyki klasycznej.
Bezpośrednio z powyższego wynika prawo przejścia do logiki przeciwnej:
Negujemy zmienne i wymieniamy spójniki na przeciwne
B1: Y=p*q - funkcja logiczna w logice dodatniej (bo Y)
Negujemy zmienne i wymieniamy spójniki
B2: ~Y=~p+~q - funkcja logiczna w logice ujemnej (bo ~Y)
Przykład rodem z przedszkola, pokazujący ze znaczki „+” i „*” to nic innego jak spójniki logiczne „lub”(+) i „i”(*) z naturalnej logiki matematycznej człowieka.
Pani:
A.
Jutro pójdziemy do kina lub do teatru
Y=K+T
co matematycznie oznacza:
Y=1 <=> K=1 lub T=1
Matematycznie zdanie A oznacza:
A.
Prawdą jest (=1), że pani dotrzyma słowa (Y) wtedy i tylko wtedy gdy jutro pójdziemy do kina (K=1) lub pójdziemy do teatru (T=1)
Y = K+T
co matematycznie oznacza:
Y=1 <=> K=1 i T=1
Wystarczy że pójdziemy w dowolne miejsce i już pani dotrzyma słowa, dalsze działania, czyli czy pójdziemy w drugie miejsce czy nie pójdziemy, są bez znaczenia.
… a kiedy Pani skłamie?
Przejście do logiki ujemnej (bo ~Y) poprzez negację zmiennych i wymianę spójników
~Y=~K*~T
co matematycznie oznacza:
~Y=1 <=> ~K=1 i ~T=1
stąd:
B.
Prawdą jest (=1) że pani skłamie (~Y) wtedy i tylko wtedy gdy jutro nie pójdziemy do kina (~K=1) i nie pójdziemy do teatru (~T=1)
~Y=~K*~T
co matematycznie oznacza:
~Y=1 <=> ~K=1 i ~T=1
Pani może skłamać tylko w jednym przypadku, gdy nie pójdziemy ani do kina, ani do teatru.
Znaczenie symboli:
Y - pani dotrzyma słowa, logika dodatnia (bo Y)
~Y - pani skłamie, logika ujemna (bo ~Y)
W równaniach algebry Boole’a (nasze zdania A i B), logika matematyczna zaszyta jest w symbolach niezaprzeczonych (bo p) i zaprzeczonych (bo ~p) - wszystkie zmienne sprowadzone są do jedynek, w zerach i jedynkach nie ma tu żadnej logiki. Płynne przejście z tabel zero-jedynkowych do równań algebry Boole’a i z powrotem, zapewniają prawa Prosiaczka, które niebawem poznamy.
6.2 Najważniejsze prawa algebry Boole’a
Definicja zero-jedynkowa (maszynowa) operatora OR:
Kod: |
p q Y=p+q
A: 1 1 =1
B: 1 0 =1
C: 0 1 =1
D: 0 0 =0
1 2 3 |
Prawa zero-jedynkowe wynikające z definicji operatora OR:
1+1 =1
1+0 =1
0+1 =1
0+0 =0
Prawa algebry Boole’a wynikające z definicji operatora OR:
p+0 =p
p+1 =1
p+p =p
p+~p =1
Dowody formalne:
Kod: |
p ~p 1 0 p+1 p+0 p+~p
A: 1 0 1 0 1 1 1
B: 0 1 1 0 1 0 1
1 2 3 4 5 6 7 |
Poprawność wszystkich praw algebry Boole’a widać jak na dłoni.
W szczególności:
p+0=p
czego dowodem jest tożsamość kolumn 1 i 6.
Definicja zero-jedynkowa (maszynowa) operatora AND:
Kod: |
p q Y=p*q
A: 1 1 =1
B: 1 0 =0
C: 0 1 =0
D: 0 0 =0
1 2 3 |
Prawa zero-jedynkowe wynikające z definicji operatora AND:
1*1 =1
1*0 =0
0*1 =0
0*0 =0
Prawa algebry Boole’a wynikające z definicji operatora AND:
p*1 =p
p*0 =0
p*p =p
p*~p=0
Dowody formalne:
Kod: |
p ~p 1 0 p*1 p*0 p*~p
A: 1 0 1 0 1 0 0
B: 0 1 1 0 0 0 0
1 2 3 4 5 6 7 |
Poprawność wszystkich praw algebry Boole’a widać jak na dłoni.
W szczególności:
p*1=p
czego dowodem jest tożsamość kolumn 1 i 5.
Fundament algebry Boole’a:
p*~p =0
p+~p =1
Przydatne prawa dodatkowe
Łączność:
p+(q+r) = (p+q)+r
p*(q*r)=(p*q)*r
Przemienność:
p+q=q+r
p*q=q*r
Mnożenie logiczne wielomianów:
(p+q)*(r+s) = p*r+p*s+q*r+q*s
Wyciąganie zmiennej przed nawias:
p*q+p*r = p*(q+r)
Najważniejszym prawem algebry Boole’a jest prawo przejścia do logiki przeciwnej.
Prawo przejścia do logiki przeciwnej:
Negujemy zmienne i wymieniamy spójniki na przeciwne
Przykład:
Y=p+q(r+~s)
Algorytm Wuja Zbója:
A.
Uzupełniamy brakujące nawiasy i spójniki
Y = p+[q*(r+~s)]
co matematycznie oznacza:
Y=1 <=> p=1 lub [q=1 i (r=1 lub ~s=1)]
B.
Negujemy zmienne i wymieniamy spójniki na przeciwne, „lub”(+) na „i”(*) i odwrotnie
~Y = ~p*[~q+(~r*s)]
C.
Opuszczamy zbędne nawiasy
~Y = ~p*(~q+~r*s)
Powyższe równanie to postać koniunkcyjno-alternatywna, sprzeczna z naturalną logiką człowieka, co wkrótce udowodnimy. Mnożąc zmienną ~p przez wielomian otrzymamy postać alternatywno-koniunkcyjną, zgodną z naturalną logiką człowieka.
D.
~Y = ~p*~q + ~p*~r*s
co matematycznie oznacza:
~Y=1 <=> (~p*~q)=1 lub (~p*~r*s)=1
Kolejność wykonywania działań zarówno w logice dodatniej jak i ujemnej:
Nawiasy, „i”(*), „lub”(+)
Związek logiki dodatniej i ujemnej:
Y=~(~Y)
Podstawiając A i C mamy prawo De Morgana dla naszej funkcji logicznej A.
Y = p+q*(r+~s) = ~[~p*(~q+~r*s)]
Przykład minimalizacji funkcji logicznej:
Y = p+q = p*q + p*~q + ~p*q
Dowód tożsamości:
0. Y = p*q + p*~q + ~p*q
1. Y = p(q+~q) + ~p*q
2. Y = p*1 + ~p*q
3. Y = p+~p*q
Wykorzystane prawa:
1. Wyciągniecie zmiennej p przed nawias
2. q+~q=1
3. p*1=p
Mamy:
3. Y=p+(~p*q)
Przejście do logiki ujemnej poprzez negacje zmiennych i wymianę spójników:
4. ~Y = ~p*(p+~q)
5. ~Y = p*~p + ~p*~q
6. ~Y = 0 + ~p*~q
7. ~Y = ~p*~q
Wykorzystane prawa
4. Przejście do logiki ujemnej
5. Mnożenie zmiennej ~p przez wielomian
6. p*~p=0
7. 0+x=x
Mamy funkcję minimalną w logice ujemnej (bo ~Y):
~Y=~p*~q
Przechodząc do logiki przeciwnej mamy funkcje minimalną w logice dodatniej (bo Y)
Y = p+q
cnd
Układ równań minimalnych:
Y=p+q
~Y=~p*~q
to nic innego jak definicja operatora OR w algebrze Kubusia.
Twierdzenie przydatne w minimalizacji równań logicznych.
Twierdzenie:
Dowolny fragment funkcji logicznej wolno nam wydzielić i zapisać jako niezależną funkcję logiczną, którą po minimalizacji możemy z powrotem wstawić do układu.
Przydatność tego twierdzenia poznamy na przykładzie:
Zminimalizuj funkcję logiczną Y metodą równań algebry Boole’a:
A: Y = ~p*q*~r + ~p*~q*r + ~p*~q*~r
Rozwiązanie:
Y = ~p*q*~r + ~p*~q(r+~r) /wyciągnięcie ~p*~q przed nawias
Y = ~p*q*~r + ~p*~q /r+~r=1; ~p*~q*1 =~p*~q
Y = ~p(q*~r+~q) /wyciągnięcie ~p przed nawias
B: Y = ~p*(z) / Podstawienie: z=q*~r+~q
-----------------------------------------------------------------
z=(q*~r) + ~q
Przejście do logiki ujemnej (bo ~z) poprzez negację zmiennych i wymianę spójników
~z = (~q+r)*q
~z = ~q*q + r*q /po wymnożeniu wielomianu
~z = r*q /~q*q=0; 0+r*p = r*p
~z = q*r
Powrót do logiki dodatniej poprzez negację zmiennych i wymianę spójników
z = ~q + ~r / Funkcja logiczna „z” po minimalizacji
------------------------------------------------------------------
B: Y = ~p*(z) /Przepisanie równania B
C: Y = ~p*(~q + ~r) / Podstawienie zminimalizowanej funkcji „z”
Po wymnożeniu zmiennej przez wielomian mamy:
D: Y = ~p*~q + ~p*~r
Funkcje C i D to funkcje minimalne, których nie da się dalej minimalizować.
|
|
Powrót do góry |
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 35357
Przeczytał: 24 tematy
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Czw 19:48, 26 Maj 2016 Temat postu: |
|
|
Część IV
Klasyczna algebra Boole’a - operatory jednoargumentowe
Spis treści
7.0 Klasyczna algebra Boole’a 1
7.1 Operatory logiczne 1
7.2 Prawa Prosiaczka 3
7.2.1 Prawa Prosiaczka w zbiorach 5
7.2.2 Prawa Prosiaczka w logice 3-latka 5
7.2.3 Prawa Prosiaczka w przedszkolu 6
8.0 Operatory jednoargumentowe 8
8.1 Operator transmisji 9
8.1.1 Operator transmisji w zbiorach 13
8.2 Operator negacji 14
8.2.1 Operator negacji w zbiorach 18
7.0 Klasyczna algebra Boole’a
Klasyczna algebra Boole’a to opis wszelkich tabel zero-jedynkowych, w tym operatorów logicznych przy pomocy spójników logicznych:
„lub”(+) - spójnik „lub” z naturalnej logiki matematycznej człowieka
„i”(*) - spójnik „i” z naturalnej logiki matematycznej człowieka
„~” - negacja, przedrostek NIE z naturalnej logiki matematycznej człowieka
Klasyczna algebra Boole’a to zarówno tabele zero-jedynkowe, jak i równania algebry Boole’a opisujące te tabele. Spójniki logiczne „lub”(+) i „i”(*) to tylko „połówki” operatorów logicznych OR(|+) i AND(|*) a nie kompletne operatory logiczne, co za chwilę udowodnimy.
7.1 Operatory logiczne
Definicja zmiennej binarnej:
Zmienna binarna to symbol mogący przyjmować wyłącznie dwie wartości logiczne 0 albo 1
p=[0,1]
Zmienna binarna = Zmienna dwuwartościowa
Definicja układu logicznego:
Układ logiczny to obiekt o n-wejściach binarnych i tylko jednym wyjściu binarnym Y
Kod: |
------------------
p0 -----| |
| |
p1 -----| f(p1,p2..pn)=? |------> Y=f(p1,p2..pn)
..... | |
pn -----| |
------------------
|
Definicja operatora logicznego:
Operator logiczny to jednoznaczna odpowiedź układu zwana funkcją logiczną Y na wszystkie możliwe wymuszenia na wejściach układu.
Innymi słowy:
Operator to przypisanie jednoznacznej odpowiedzi (czyli stanu na wyjściu) każdemu możliwemu stanowi na wejściach (wejściu).
Innymi słowy:
Odpowiedź operatora, to pojawienie się konkretnego stanu na wyjściu w odpowiedzi na stan na wejściach. Odpowiedź na dany stan jest zawsze taka sama. Zestawienie wszystkich możliwych stanów na wejściach oraz przypisanych im odpowiedzi opisuje operator.
Na wejściach [p1,p2..pn] mogą pojawiać się tylko i wyłącznie sygnały 0 albo 1
Na wyjściu Y również mogą się pojawiać tylko i wyłącznie sygnały 0 albo 1
Zauważmy że:
Dla jednego wejścia p mamy dwa możliwe wymuszenia na wejściu p:
p=[0,1]
2^n = 2^1 =2
Dla dwóch wejść p i q możliwych wymuszeń na wejściach p i q jest cztery:
p, q =[11, 10, 01,00]
2^n = 2^2 =4
Dla 3 wejść p, q i r możliwych wymuszeń na wejściach p, q, r jest osiem
p,q,r =[111, 110, 101, 100, 011, 010, 001, 000]
2^n = 2^3 =8
itd.
Ilość operatorów logicznych (IOL) w powiązaniu z ilością wejść to:
IOL=(2^n)^2
gdzie:
n - ilość wejść układu logicznego
Stąd mamy:
Ilość operatorów jednoargumentowych (logika jednowartościowa):
(2^1)^2 = 2^2=4
Ilość operatorów dwuargumentowych (logika dwuwartościowa):
(2^2)^2 = 4^2 =16
Ilość operatorów trzyargumentowych (logika trójwartościowa)
(2^3)^2 = 8*8 =64
Ilość operatorów czteroargumentowych (logika czterowartościowa)
(2^4)^2 = 16*16 = 256
itd.
Łatwo policzyć, że w logice ośmiowartościowej operatorów logicznych będzie 65536.
Na mocy definicji operatora logicznego możemy zapisać.
Ilość operatorów logicznych w logice n wartościowej opisana jest wzorem:
IOL=(2^n)^2
gdzie:
n - ilość wejść w układzie logicznym (logika n-wartościowa)
W naszym Wszechświecie dostępne są wyłącznie operatory jednoargumentowe i dwuargumentowe, co odpowiada logice jednowartościowej i dwuwartościowej.
Operatory 3-ardumentowe i większe to czysta abstrakcja, bez związku z dostępną nam rzeczywistością, warta mniej więcej tyle co teoria o nieskończonej ilości Wszechświatów (skala makro) lub teoria strun (skala mikro). Obie te teorie mają tylko jedną zaletę, żadnej z nich nie da się zweryfikować, czyli obalić - na zawsze pozostaną one w sferze bajek (wierzeń).
7.2 Prawa Prosiaczka
Definicja zmiennej binarnej:
Zmienna binarna to symbol mogący przyjmować wyłącznie dwie wartości logiczne 0 albo 1
p=[0,1]
Zmienna binarna = Zmienna dwuwartościowa
Definicja negacji:
Negacją „~” zmiennej binarnej p nazywamy jej przeciwny stan zero-jedynkowy
Kod: |
p ~p
A: 1 0
B: 0 1
1 2
„~” - symbol negacji
|
Wyprowadzenie I prawa Prosiaczka:
Opis linii A12:
A.
Jeśli p=1 to na pewno => ~p=0
(p=1)=>(~p=0)
Jeśli ~p=0 to na pewno => p=1
(~p=0)=>(P=1)
Definicja równoważności:
p<=>q = (p=>q)*(q=>p)
Podstawiamy:
p=(p=1)
q=(~p=0)
Stąd mamy:
(p=1)<=>(~p=0) = [(p=1)=>(~p=0)]*[(~p=0)=>(p=1)] = 1*1 =1
Stąd mamy:
I prawo Prosiaczka:
(p=1) <=> (~p=0)
Równoważność oznacza tu matematyczną tożsamość logiczną:
(p=1) = (~p=0)
Wyprowadzenie II prawa Prosiaczka:
Opis linii B12:
B.
Jeśli p=0 to na pewno => ~p=1
(p=0)=>(~p=1)
Jeśli ~p=1 to na pewno => p=0
(~p=1)=>(p=0)
Definicja równoważności:
p<=>q = (p=>q)*(q=>p)
Podstawiamy:
p=(~p=1)
q=(p=0)
Stąd mamy:
(p=0)<=>(~p=1) = [(p=0)=>(~p=1)]*[(p=0)=>(~p=1)] = 1*1 =1
Stąd mamy:
II prawo Prosiaczka:
(p=0) <=> (~p=1)
Równoważność oznacza tu matematyczną tożsamość logiczną:
(p=0) = (~p=1)
Definicja tożsamości logicznej:
p<=>p
Zapis tożsamy:
p=p
Prawda po dowolnej stronie znaku tożsamości logicznej „=” wymusza prawdę po stronie przeciwnej
Fałsz po dowolnej stronie tożsamości logicznej „=” wymusza fałsz po stronie przeciwnej
Tożsamość logiczna ma wszelkie cechy tożsamości klasycznej, dlatego możemy tu użyć znaku tożsamości klasycznej.
Przykład:
2=2
Zapis matematycznie tożsamy:
2<=>2
dowód:
Definicja równoważności:
p<=>q = (p=>q)*(~p=>~q)
2<=>2 = (2=>2)*(~2=>~2) = 1*1 =1
Dziedzina jest tu bez znaczenia, może być:
Uniwersum - wszelkie możliwe pojęcia zrozumiałe dla człowieka
Definicja logiki dodatniej i ujemnej:
Dowolna zmienna binarna wyrażona jest w logice dodatniej gdy nie jest zanegowana, inaczej mamy do czynienia z logiką ujemną.
Stąd mamy końcową definicję praw Prosiaczka.
I prawo Prosiaczka:
Prawda (=1) w logice dodatniej (bo q) jest tożsama z fałszem (=0) w logice ujemnej (bo ~q)
(p=1) = (~p=0)
II prawo Prosiaczka:
Prawda (=1) w logice ujemnej (bo ~p) jest tożsama z fałszem (=0) w logice dodatniej (bo p)
(~p=1) = (p=0)
7.2.1 Prawa Prosiaczka w zbiorach
Kod: |
-------------
|P |
| p=1 |
| ~p=0 |
-------------
|
I prawo Prosiaczka dla zbiorów:
(p=1) = (~p=0)
Zdanie:
Prawdą jest (=1) że to jest zbiór p
(p=1)
jest tożsame ze zdaniem:
Fałszem jest (=0) że to jest zbiór ~p
(~p=0)
stąd:
(p=1) = (~p=0)
Kod: |
-------------
|~P |
| ~p=1 |
| p=0 |
-------------
|
II Prawo Prosiaczka dla zbiorów
(~p=1) = (p=0)
Zdanie:
Prawdą jest (=1) że to jest zbiór ~p
(~p=1)
jest tożsame ze zdaniem:
Fałszem jest (=0) że to jest zbiór p
p=0
Stąd:
(~p=1) = (p=0)
7.2.2 Prawa Prosiaczka w logice 3-latka
I prawo Prosiaczka:
Prawda (=1) w logice dodatniej (bo q) jest tożsama z fałszem (=0) w logice ujemnej (bo ~q)
(p=1) = (~p=0)
II prawo Prosiaczka:
Prawda (=1) w logice ujemnej (bo ~p) jest tożsama z fałszem (=0) w logice dodatniej (bo p)
(~p=1) = (p=0)
Prawa Prosiaczka doskonale znają w praktyce wszyscy ludzie na ziemi, od 3-latka poczynając na prof. matematyki kończąc.
Tata i synek Jaś (lat 3) na spacerze w ZOO
Jaś pokazując paluszkiem słonia mówi:
A.
Popatrz tata, to jest słoń!
S=1
Matematycznie:
Prawdą jest (=1) że to jest słoń (S)
Tata:
… a może to nie jest słoń?
Jaś:
B.
Fałszem jest (=0) że to nie jest słoń (~S)
~S=0
Zdania A i B są matematycznie tożsame o czym wie każdy 3-latek, który genialnie posługuje się w praktyce prawami Prosiaczka.
I prawo Prosiaczka:
A: (S=1) = B: (~S=0)
Jaś pokazuje paluszkiem kozę i mówi:
C.
Popatrz tata, to nie jest słoń
~S=1
Matematycznie:
Prawdą jest (=1), że to nie jest słoń
Tata:
… a może to jednak słoń?
Jaś:
D.
Fałszem jest (=0) że to jest słoń
S=0
Zdania C i D są matematycznie tożsame o czym wie każdy 3-latek, który genialnie posługuje się w praktyce prawami Prosiaczka.
II prawo Prosiaczka
C: (~S=1) = D: (S=0)
7.2.3 Prawa Prosiaczka w przedszkolu
Świat niezdeterminowany, matematyczny opis nieznanej przyszłości.
Pani:
A.
Jutro pójdziemy do kina
Y=K
co matematycznie oznacza:
Y=1 <=> K=1
Czytamy:
Prawdą jest (=1) że pani dotrzyma słowa (Y) wtedy i tylko wtedy gdy jutro pójdziemy do kina (K=1)
Y=K
co matematycznie oznacza:
Y=1 <=> K=1
… a kiedy pani skłamie?
Negujemy zdanie A stronami:
~Y=~K
co matematycznie oznacza:
~Y=1 <=> ~K=1
stąd:
B.
Prawdą jest (=1) że pani skłamie (~Y), wtedy i tylko wtedy gdy jutro nie pójdziemy do kina (~K=1)
~Y=~K
co matematycznie oznacza:
~Y=1 <=> ~K=1
To jest matematyczny opis przyszłości, pani mająca wolną wolę jutro może dotrzymać słowa (Y=1), ale równie dobrze może skłamać (~Y=1).
Świat zdeterminowany:
Załóżmy że jest pojutrze i wiemy, że wczoraj byliśmy w kinie.
Mamy zdeterminowaną i znaną przeszłość.
Zaszło zdarzenie:
K=1 - wczoraj byliśmy w kinie
Zdanie A jest tu prawdziwe:
AP1.
Prawdą jest (=1), że pani dotrzymała słowa (Y) bo wczoraj byliśmy w kinie (K=1)
Y=K
co matematycznie oznacza:
Y=1 <=> K=1
Zastosujmy prawo Prosiaczka:
(Y=1) =(~Y=0)
Zdanie tożsame do AP:
AP2.
Fałszem jest (=0), że pani skłamała (~Y) bo wczoraj byliśmy w kinie (K=1)
(~Y=0) <=> K=1)
Matematycznie zachodzi tożsamość zdań:
AP1 = AP2
W równaniach algebry Boole’a zmienne binarne sprowadzone są do jedynek na mocy praw Prosiaczka (patrz AP1=AP2). W logice matematycznej jedynki są domyślne, możemy je pominąć nic nie tracąc na jednoznaczności, co widać w równaniu AP1. Równania AP2 nie da się zapisać w postaci równania algebry Boole’a izolowanego od wszelkich zer i jedynek, jak to zrobiono w równaniu AP1.
Zdanie B jest dla naszego zdeterminowanego przypadku (K=1) fałszywe.
Dowód:
Mamy przyszłość opisaną zdaniem B.
B.
Prawdą jest (=1) że pani skłamie (~Y), wtedy i tylko wtedy gdy jutro nie pójdziemy do kina (~K=1)
~Y=~K
co matematycznie oznacza:
~Y=1 <=> ~K=1
Wczoraj zaszło:
(K=1)=(~K=0) - byliśmy w kinie (prawo Prosiaczka)
Do równania B z prawej strony możemy zatem podstawić:
K=1 albo ~K=0
Podstawiamy (K=1)
~Y=1 <=> K=1
Równoważność <=> to tożsamość logiczna „=”:
Prawa strona K=1 wymusi tu zatem:
Y=1 <=> K=1
czyli:
Pani dotrzymała słowa Y=1.
Podstawmy drugi możliwy wariant z prawej strony (~K=0), co wymusi (~Y=0)
Czyli:
(~Y=0) <=> (~K=0)
Lewą stronę czytamy:
Fałszem jest (=0) że pani skłamała (~Y).
Podsumowując:
Doskonale widać, że prawa Prosiaczka działają fenomenalnie zarówno w świecie niezdeterminowanym, jak i zdeterminowanym. Możemy je zatem stosować wszędzie, do dowolnej zmiennej binarnej, bez żadnych ograniczeń.
8.0 Operatory jednoargumentowe
Układ jednoargumentowy:
Układ jednoargumentowy to obiekt o jednym wejściu binarnym p i jednym wyjściu binarnym Y
Kod: |
----------
| |
p ----| f(p)=? |----> Y=f(p)
| |
----------
|
Definicja operatora logicznego:
Operator logiczny to jednoznaczna odpowiedź układu zwana funkcją logiczną Y na wszystkie możliwe wymuszenia na wejściach układu.
Wszystkie możliwe operatory jednoargumentowe to:
Kod: |
Operatory jednoargumentowe
p T N D ~D
1 =1 =0 =1 =0
0 =0 =1 =1 =0
|
T - operator transmisji, na wyjściu T pojawiają się stany z wejścia p
N - operator negacji, na wyjściu N pojawiają się zanegowane stany z wejścia p
D - dziedzina (zbiór pełny)
~D - zaprzeczenie dziedziny (zbiór pusty)
Kod: |
Operatory jednoargumentowe w tabeli szczegółowej
|Operator |Operator |Dziedzina
|transmisji |negacji |
| T | N | D
p |Y=p ~Y=~p |Y=~p ~Y=p |D=Y+~Y ~D=~(Y+~Y)=Y*~Y
A: 1 | =1 =0 | =0 =1 | =1 =0
B: 0 | =0 =1 | =1 =0 | =1 =0
1 a b c d e f
|
Wszystkich możliwych stanów na wyjściu Y, ~Y, D i ~D jest cztery.
8.1 Operator transmisji
Definicja operatora logicznego:
Operator logiczny to jednoznaczna odpowiedź układu zwana funkcją logiczną Y na wszystkie możliwe wymuszenia na wejściach układu.
Definicja operatora transmisji:
Operator transmisji to generowanie na wyjściu Y stanu zawsze zgodnego z wejściem p
Kod: |
p Y=?
A: 1 1
B: 0 0
1 2
|
Na mocy praw Prosiaczka tworzymy tabelę zero-jedynkową z zanegowanymi zmiennymi p i Y:
~Y=f(~p)
Prawa Prosiaczka:
I. (p=1) = (~p=0)
II. (p=0) = (~p=1)
Pełna definicja operatora transmisji:
Kod: |
Definicja zero-jedynkowa |Definicja symboliczna
operatora transmisji |operatora transmisji
p Y=? ~p ~Y=? |
A: 1 1 0 0 | Y=1<=> p=1 Y= p
B: 0 0 1 1 |~Y=1<=>~p=1 ~Y=~p
1 2 3 4 5 6 7 8
|
Na mocy prawa Prosiaczka w tabeli AB1234 dla każdej linii zachodzą tożsamości matematyczne.
Linia A12= Linia A34
A1: (p=1) = A3: (~p=0)
A2: (Y=1) = A4: (~Y=0)
Linia B12 = Linia B34
B1: (p=0) = B3: (~p=1)
B2: (Y=0) = B4: (~Y=1)
W definicji symbolicznej operatora transmisji AB56 opisujemy wyłącznie wynikowe jedynki w pełnej definicji operatora negacji AB1234.
Jedynka (prawda) jest w logice matematycznej domyślna, stąd tabelę AB56 możemy zapisać w postaci tabeli AB78 nic nie tracąc na jednoznaczności.
Operator transmisji w równaniach algebry Boole’a to złożenie funkcji logicznej w logice dodatniej (bo Y) z funkcją logiczną w logice ujemnej (bo ~Y).
Operator transmisji to układ równań logicznych:
1: A5678
Y = p
co matematycznie oznacza:
Y=1 <=> p=1
2: B5678
~Y=~p
co matematycznie oznacza:
~Y=1 <=>~p=1
Dopiero w tym momencie w tabeli zero-jedynkowej AB1234 możemy podstawić wyznaczone funkcje logiczne Y i ~Y.
Kod: |
Definicja zero-jedynkowa |Definicja symboliczna
operatora transmisji |operatora transmisji
p Y=p ~p ~Y=~p |
A: 1 1 0 0 | Y=1<=> p=1 Y= p
B: 0 0 1 1 |~Y=1<=>~p=1 ~Y=~p
1 2 3 4 5 6 7 8
|
Doskonale widać, że:
Funkcja logiczna Y opisuje wyłącznie wynikową jedynkę w tabeli zero-jedynkowej AB12
Y=p
co matematycznie oznacza:
Y=1<=>p=1
Podobnie:
Funkcja logiczna ~Y opisuje wyłącznie wynikową jedynkę w tabeli zero-jedynkowej AB34
~Y=~p
co matematycznie oznacza:
~Y=1<=>~p=1
Stąd mamy jedno z najważniejszych praw logiki matematycznej.
Prawo Sowy:
W dowolnej tabeli zero-jedynkowej nagłówek tabeli opisuje wyłącznie wynikowe jedynki w tej tabeli
Wynikowe zera w dowolnej tabeli zero-jedynkowej to tylko kopie linii z jedynkami w wyniku z tabeli przeciwnej (prawo Prosiaczka) dla potrzeb rachunku zero-jedynkowego.
Nasza tabela:
Linia A34 nie biorąca udziału w logice bo ~Y=0 to kopia linii A12 biorącej udział w logice bo Y=1 na mocy prawa Prosiaczka
A1: (p=1) = A3: (~p=0)
A2: (Y=1) = A4: (~Y=0)
Podobnie:
Linia B12 nie biorąca udziału w logice bo Y=0 to kopia linii B34 biorącej udział w logice bo ~Y=1 na mocy prawa Prosiaczka.
B3: (~p=1) = B1: (p=0)
B4: (~Y=1) = B2: (Y=0)
Prawo dziedziny
Dowolna tabela zero-jedynkowa operuje wyłącznie w obrębie dziedziny zdefiniowanej jako:
Y+~Y = D =1 (zbiór pełny)
Y*~Y =~D =[] =0 (zbiór pusty)
Zauważmy, że definicja dziedziny to legalne operatory logiczne jednoargumentowe D i ~D.
Zobaczmy to w tabeli zero-jedynkowej:
Kod: |
Definicja zero-jedynkowa |Definicja symboliczna |Definicja dziedziny
operatora transmisji |operatora transmisji |
p Y=p ~p ~Y=~p | | D=Y+~Y ~D=~(Y+~Y)=~Y*Y
A: 1 =1 0 =0 | Y=1<=> p=1 Y= p | =1 =0
B: 0 =0 1 =1 |~Y=1<=>~p=1 ~Y=~p | =1 =0
1 2 3 4 5 6 7 8 9 0
|
Podsumowanie:
Definicja operatora transmisji w układzie równań logicznych:
1.
Y=p
co matematycznie oznacza:
Y=1 <=> p=1
… a kiedy zajdzie ~Y?
Negujemy równanie 1 stronami:
2.
~Y=~p
co matematycznie oznacza:
~Y=1 <=> ~p=1
Związek logiki dodatniej (bo Y) z logiką ujemną (bo ~Y):
Logika dodatnia to zanegowana logika ujemna:
Y = ~(~Y)
Podstawiając 1 i 2 mamy prawo podwójnego przeczenia w logice dodatniej (bo Y):
Y = p = ~(~p)
Związek logiki ujemnej (bo ~Y) z logiką dodatnią (bo Y):
Logika ujemna to zanegowana logika dodatnia:
~Y = ~(Y)
Podstawiając 1 i 2 mamy:
~Y = ~p = ~(p) = ~p
Udajmy się do ekspertów algebry Kubusia, do przedszkola, celem zweryfikowania poznanej teorii.
Pani:
A.
Jutro pójdziemy do kina
Y=K
co matematycznie oznacza:
Prawdą jest (=1) że pani dotrzyma słowa (Y) wtedy i tylko wtedy gdy jutro pójdziemy do kina (K=1)
Y=K
co matematycznie oznacza:
Y=1 <=> K=1 - logika dodatnia bo Y
Zuzia do Jasia:
… a kiedy pani skłamie?
Mózg Jasia, poza jego świadomością, neguje stronami równanie A
~Y=~K
co matematycznie oznacza:
~Y=1 <=> ~K=1
Jaś:
Prawdą jest (=1) że pani skłamie (~Y) wtedy i tylko wtedy gdy jutro nie pójdziemy do kina (~K=1)
~Y=~K
co matematycznie oznacza:
~Y=1 <=> ~K=1 - logika ujemna bo ~Y
Znaczenie symboli Y i ~Y:
Y - pani dotrzyma słowa
~Y - pani skłamie
Jak działa dziedzina dla naszego przykładu?
Definicja dziedziny:
D = Y+~Y =1
Y=K
~Y=~K
D = Y+~Y = K+~K =1
stąd:
Pani w przedszkolu:
C.
Jutro pójdziemy do kina lub nie pójdziemy do kina
Y=K+~K =D =1
Cokolwiek jutro pani nie zrobi to dotrzyma słowa.
Nie ma tu szans na kłamstwo.
Stąd operator dziedziny D możemy również zdefiniować jako operator chaosu.
Matematyczna definicja operatora chaosu:
Chaos = wszystko może się zdarzyć
W praktyce języka mówionego:
chaos = bełkot
co widać na tym przykładzie.
Definicja zaprzeczenia dziedziny:
~D = Y+~Y = Y*~Y =1
Y=K
~Y=~K
~D = Y*~Y = K*~K =0
stąd:
Pani w przedszkolu:
Jutro pójdziemy do kina i nie pójdziemy do kina
Y=K*~K =0
W momencie wypowiedzenia tego zdania pani popełniła seppuku, czyli skłamała (Y=0), i nie ma żadnych szans na dotrzymanie słowa w dniu jutrzejszym.
8.1.1 Operator transmisji w zbiorach
Definicja operatora transmisji:
Na wyjściu Y pojawiają się stany z wejścia p
Definicja operatora transmisji w układzie równań logicznych:
1.
Y=p
co matematycznie oznacza:
Y=1 <=> p=1
2.
~Y=~p
co matematycznie oznacza:
~Y=1 <=>~p=1
Matematycznie spełniona jest definicja dziedziny:
Y+~Y = D =1 - zbiór ~Y jest uzupełnieniem do dziedziny dla zbioru Y
Y*~Y = [] =0 - bo zbiory Y i ~Y są rozłączne
Na tej podstawie rysujemy diagram operatora transmisji w zbiorach.
Podsumowanie:
Jeśli funkcję logiczną Y przypiszemy zbiorowi P to otrzymamy definicję operatora transmisji w układzie równań logicznych:
Y=p
~Y=~p
Operator transmisji DT to suma logiczna funkcji Y i ~Y:
DT=Y+~Y = p+~p =1
~DT=~(Y+~Y) = Y*~Y = p*~p =[] =0
Ogólnie, dla dowolnego operatora logicznego zachodzi:
Operator ## funkcja w logice dodatniej (bo Y) ## funkcja w logice ujemnej (bo ~Y)
gdzie:
## - różne na mocy definicji
Zależność matematyczna jest tu taka:
Operator = Y+~Y
Oraz:
Y # ~Y
gdzie:
# - zbiory rozłączne
Analogia do logiki 5-cio latka:
Człowiek = człowiek będący kobietą + człowiek nie będący kobietą
C = K+~K
Matematycznie zachodzi:
C ## K ## ~K
gdzie:
## - różne na mocy definicji
oraz:
K # ~K
gdzie:
# - zbiory rozłączne
8.2 Operator negacji
Definicja operatora logicznego:
Operator logiczny to jednoznaczna odpowiedź układu zwana funkcją logiczną Y na wszystkie możliwe wymuszenia na wejściach układu.
Definicja operatora negacji:
Operator negacji to generowanie na wyjściu Y stanu zawsze przeciwnego do wejścia p
Kod: |
p Y=?
A: 1 0
B: 0 1
1 2
|
Na mocy praw Prosiaczka tworzymy tabelę zero-jedynkową z zanegowanymi zmiennymi p i Y:
~Y=f(~p)
Prawa Prosiaczka:
I. (p=1) = (~p=0)
II. (p=0) = (~p=1)
Pełna definicja operatora negacji:
Kod: |
Definicja zero-jedynkowa |Definicja symboliczna
operatora negacji |operatora negacji
p Y=? ~p ~Y=? |
A: 1 0 0 1 |~Y=1<=> p=1 ~Y= p
B: 0 1 1 0 | Y=1<=>~p=1 Y=~p
1 2 3 4 5 6 7 8
|
Na mocy prawa Prosiaczka w tabeli AB1234 dla każdej linii zachodzą tożsamości matematyczne.
Linia A12= Linia A34
A1: (p=1) = A3: (~p=0)
A2: (Y=0) = A4: (~Y=1)
Linia B12 = Linia B34
B1: (p=0) = B3: (~p=1)
B2: (Y=1) = B4: (~Y=0)
W definicji symbolicznej operatora negacji AB56 opisujemy wyłącznie wynikowe jedynki w pełnej definicji operatora negacji AB1234.
Jedynka (prawda) jest w logice matematycznej domyślna, stąd tabelę AB56 możemy zapisać w postaci tożsamej tabeli AB78 nic nie tracąc na jednoznaczności.
Operator negacji w równaniach algebry Boole’a to złożenie funkcji logicznej w logice dodatniej (bo Y) z funkcją logiczną w logice ujemnej (bo ~Y).
Operator negacji to układ równań logicznych:
1: B5678
Y = ~p
co matematycznie oznacza:
Y=1 <=> ~p=1
2: A5678
~Y=p
co matematycznie oznacza:
~Y=1 <=> p=1
Dopiero w tym momencie w tabeli zero-jedynkowej AB1234 możemy podstawić wyznaczone funkcje logiczne Y i ~Y.
Kod: |
Definicja zero-jedynkowa |Definicja symboliczna
operatora negacji |operatora negacji
p Y=~p ~p ~Y=p |
A: 1 0 0 1 |~Y=1<=> p=1 ~Y= p
B: 0 1 1 0 | Y=1<=>~p=1 Y=~p
1 2 3 4 5 6 7 8
|
Doskonale widać, że:
Funkcja logiczna Y opisuje wyłącznie wynikową jedynkę w tabeli zero-jedynkowej AB12
Y=~p
co matematycznie oznacza:
Y=1<=>~p=1
Podobnie:
Funkcja logiczna ~Y opisuje wyłącznie wynikową jedynkę w tabeli zero-jedynkowej AB34
~Y=p
co matematycznie oznacza:
~Y=1<=> p=1
Stąd mamy jedno z najważniejszych praw logiki matematycznej.
Prawo Sowy:
W dowolnej tabeli zero-jedynkowej nagłówek tabeli opisuje wyłącznie wynikowe jedynki w tej tabeli
Wynikowe zera w dowolnej tabeli zero-jedynkowej to tylko kopie linii z jedynkami w wyniku z tabeli przeciwnej (na mocy praw Prosiaczka) dla potrzeb rachunku zero-jedynkowego.
Nasza tabela:
Linia A12 nie biorąca udziału w logice bo Y=0 to kopia linii A34 biorącej udział w logice bo ~Y=1 na mocy prawa Prosiaczka
A3: (~p=0) = A1: (p=1)
A4: (~Y=1) = A2: (Y=0)
Podobnie:
Linia B34 nie biorąca udziału w logice bo ~Y=0 to kopia linii B12 biorącej udział w logice bo Y=1 na mocy prawa Prosiaczka.
B1: (p=0) = B3: (~p=1)
B2: (Y=1) = B4: (~Y=0)
Prawo dziedziny
Dowolna tabela zero-jedynkowa operuje wyłącznie w obrębie dziedziny zdefiniowanej jako:
Y+~Y = D =1 (zbiór pełny)
Y*~Y =~D =0 (zbiór pusty)
Zauważmy, że definicja dziedziny to legalne operatory logiczne jednoargumentowe D i ~D.
Zobaczmy to w tabeli zero-jedynkowej:
Kod: |
Definicja zero-jedynkowa |Definicja symboliczna |Definicja dziedziny
operatora negacji |operatora negacji |
p Y=~p ~p ~Y=p | | D=Y+~Y ~D=~(Y+~Y)=Y*~Y
A: 1 =0 0 =1 |~Y=1<=> p=1 ~Y= p | =1 =0
B: 0 =1 1 =0 | Y=1<=>~p=1 Y=~p | =1 =0
1 =2 3 4 5 6 7 8 9 0
|
Podsumowanie:
Definicja operatora negacji w układzie równań logicznych:
1.
Y=~p
co matematycznie oznacza:
Y=1 <=> ~p=1
… a kiedy zajdzie ~Y?
Negujemy równanie 1 stronami:
2.
~Y=p
co matematycznie oznacza:
~Y=1 <=> p=1
Związek logiki dodatniej (bo Y) z logiką ujemną (bo ~Y):
Logika dodatnia to zanegowana logika ujemna:
Y = ~(~Y)
Podstawiając 1 i 2 mamy:
Y = ~p = ~(p) =~p
Związek logiki ujemnej (bo ~Y) z logiką dodatnią (bo Y):
Logika ujemna to zanegowana logika dodatnia:
~Y = ~(Y)
Podstawiając 1 i 2 mamy prawo podwójnego przeczenia w logice ujemnej (bo ~Y):
~Y = p = ~(~p)
Algebra Kubusia to logika matematyczna wszystkich 5-cio latków, udajmy się zatem do przedszkola aby ją zweryfikować.
Pani:
A.
Jutro nie pójdziemy do kina
Y=~K
co matematycznie oznacza:
Prawdą jest (=1) że pani dotrzyma słowa (Y) wtedy i tylko wtedy gdy jutro nie pójdziemy do kina (~K=1)
Y=~K
co matematycznie oznacza:
Y=1 <=> ~K=1 - logika dodatnia bo Y
Zuzia do Jasia:
… a kiedy pani skłamie?
Mózg Jasia, poza jego świadomością, neguje stronami równanie A
~Y=K
co matematycznie oznacza:
~Y=1 <=> K=1
Jaś:
Prawdą jest (=1) że pani skłamie (~Y) wtedy i tylko wtedy gdy jutro pójdziemy do kina (K=1)
~Y=K
co matematycznie oznacza:
~Y=1 <=> K=1 - logika ujemna bo ~Y
Znaczenie symboli Y i ~Y:
Y - pani dotrzyma słowa
~Y - pani skłamie
Jak działa dziedzina dla naszego przykładu?
Definicja dziedziny:
D = Y+~Y
Y=~K
~Y=K
D = ~Y+Y = K+~K
stąd:
Pani w przedszkolu:
C.
Jutro pójdziemy do kina lub nie pójdziemy do kina
Y= K+~K =D =1
Cokolwiek jutro pani nie zrobi to dotrzyma słowa.
Nie ma tu szans na kłamstwo.
Stąd operator D możemy również zdefiniować jako operator chaosu.
Matematyczna definicja chaosu:
Chaos oznacza że wszystko może się zdarzyć, matematycznie niczego nie można przewidzieć.
W praktyce języka mówionego:
chaos = bełkot
co widać na tym przykładzie.
Definicja zaprzeczenia dziedziny:
~D = ~(~Y+Y) = Y*~Y
Y=~K
~Y=K
~D = ~Y*Y = K*~K =0
stąd:
Pani w przedszkolu:
Jutro pójdziemy do kina i nie pójdziemy do kina
Y=K*~K =0
W momencie wypowiedzenia tego zdania pani popełniła seppuku, czyli skłamała (Y=0), i nie ma żadnych szans na dotrzymanie słowa w dniu jutrzejszym.
8.2.1 Operator negacji w zbiorach
Definicja operatora negacji:
Na wyjściu Y pojawiają się zanegowane stany z wejścia p
Definicja operatora negacji w układzie równań logicznych:
1.
Y=~p
co matematycznie oznacza:
Y=1 <=> ~p=1
2.
~Y=p
co matematycznie oznacza:
~Y=1 <=> p=1
Matematycznie spełniona jest definicja dziedziny:
Y+~Y = D =1 - zbiór ~Y jest uzupełnieniem do dziedziny dla zbioru Y
Y*~Y = [] =0 - bo zbiory Y i ~Y są rozłączne
Na tej podstawie rysujemy diagram operatora negacji w zbiorach.
Podsumowanie:
Jeśli funkcję logiczną Y przypiszemy zbiorowi ~P to otrzymamy definicję operatora negacji w układzie równań logicznych:
Y=~p
~Y=p
Operator negacji DN to suma logiczna funkcji Y i ~Y:
DN=Y+~Y = p+~p =1
~DN=~(Y+~Y) = Y*~Y = p*~p =[] =0
Ostatnio zmieniony przez rafal3006 dnia Nie 8:34, 29 Maj 2016, w całości zmieniany 8 razy
|
|
Powrót do góry |
|
|
|
|
Nie możesz pisać nowych tematów Nie możesz odpowiadać w tematach Nie możesz zmieniać swoich postów Nie możesz usuwać swoich postów Nie możesz głosować w ankietach
|
fora.pl - załóż własne forum dyskusyjne za darmo
Powered by phpBB © 2001, 2005 phpBB Group
|