Forum ŚFiNiA Strona Główna ŚFiNiA
ŚFiNiA - Światopoglądowe, Filozoficzne, Naukowe i Artystyczne forum - bez cenzury, regulamin promuje racjonalną i rzeczową dyskusję i ułatwia ucinanie demagogii. Forum założone przez Wuja Zbója.
 
 FAQFAQ   SzukajSzukaj   UżytkownicyUżytkownicy   GrupyGrupy   GalerieGalerie   RejestracjaRejestracja 
 ProfilProfil   Zaloguj się, by sprawdzić wiadomościZaloguj się, by sprawdzić wiadomości   ZalogujZaloguj 

Wielki test algebry Kubusia

 
Napisz nowy temat   Odpowiedz do tematu    Forum ŚFiNiA Strona Główna -> Metodologia / Forum Kubusia
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 35357
Przeczytał: 24 tematy

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Pią 23:19, 01 Lis 2019    Temat postu: Wielki test algebry Kubusia

Wielki test algebry Kubusia!

Wielki test algebry Kubusia to próba udowodnienia, że algebra Kubusia ma szansę być zrozumiała dla ucznia I klasy LO.

W tym wątku będę zamieszczał kolejne części:
„Algebry Kubusia dla LO”

Zaczynam od najtrudniejszego według mnie działu algebry Kubusia, czyli od omówienia algebry Boole’a. Starałem się uprościć ten dział jak to tylko było możliwe bez uszczerbku czegokolwiek istotnego w tej algebrze. Mam nadzieję, że to mi się udało, ale nie mnie o tym rozstrzygać, bowiem to co dla mnie jest trywialne, nie musi być trywialne dla ucznia I klasy LO.
W maksymalnym uproszczeniu algebrę Boole’a można by nawet wyrzucić całkowicie z algebry Kubusia i skupić się na kluczowej z punktu widzenia logiki matematycznej obsłudze zdań warunkowych „Jeśli p to q”, która jest nieprawdopodobnym banałem - i mówię to serio!
Liczę przede wszystkim na Michała, iż zechce testować niniejszy podręcznik algebry Kubusia dla LO.
Dobrze byłoby gdyby do testowania, czyli czytania ze zrozumieniem, przyłączyli się zawodowcy np. Fiklit, Irbisol i inni.
Zadaniem testerów jest śmiałe pokazywanie mi czego w podręczniku nie rozumieją (bowiem o wewnętrznej sprzeczności nie może tu być mowy!), tylko w ten sposób można sensownie pracować nad ulepszaniem podręcznika.
Wszystkich oczywiście gorąco zapraszam.

Mam nadzieję, że całkowitą algebrę Kubusia dla LO uda mi się zawrzeć w czterech krótkich częściach.
1.
Algebra Boole’a - tą część zamieszczam niżej jako pierwszą
2.
Algebra Kubusia - teoria zdarzeń w zdaniach warunkowych „Jeśli p to q”
3.
Algebra Kubusia - teoria zbiorów w zdaniach warunkowych „Jeśli p to q”
4.
Algebra Kubusia - obsługa obietnic i gróźb (ten dział jest najważniejszy z punktu widzenia istot żywych)

Syndrom Quebaba!

Dawno temu na ateiście.pl prowadziłem zaciętą dyskusję z Quebabem, studentem matematyki.
Dyskusja była jak zwykle typu „gadał dziad do obrazu” bo przecież w obszarze logiki matematycznej, wszystkie definicje z algebry Kubusia są sprzeczne z definicjami Klasycznego Rachunku Zdań.
Z Quebabem dyskutowałem chyba z 6 miesięcy do momentu gdy stwierdził, iż dzięki algebrze Kubusia dostał pałę chyba na jakimś kolokwium?

Ostatni post Quebaba na ateiście.pl to (26.03.2012, 20:33)
[link widoczny dla zalogowanych]

Po 4 latach z hakiem dostałem od Quebaba na matematyce.pl następujący post z podziękowaniem za dyskusję na ateiście.pl:
Qebab napisał:

Re: Logika a sens zadania
Wysłano: 23 sierpnia 2016, 19:01
Od: qed
Odbiorca: rafal3006
Od czasu naszej ostatniej dyskusji zdążyłem zacząć studia i skończyć magistra z matematyki. Nawet moja praca magisterska dotyczyła logiki właśnie!
Nie piszę jednak o tym, żeby się chwalić - przeciwnie, chciałbym Ci podziękować za to, że tak dużo mogłem nauczyć się z powodu Twojej manii!

Jeśli chcesz pogadać na poważnie, to powiedz najpierw, czy zapoznawałeś się już z logikami nieklasycznymi? Przede wszystkim, z logiką relewantną?
[link widoczny dla zalogowanych]

Publikuję ten list z PW mając domyślnie nadzieję że Quebab nie ma nic przeciwko.

Podsumowanie:
Spójrzmy teraz na potencjalnego testera algebry Kubusia którego poszukuję.
Załóżmy że X zacznie czytać „Algebrę Kubusia dla LO” i napisze, że cokolwiek zrozumiał z AK.
Teoretycznie tak może być, ale w praktyce działa tu syndrom Quebaba, czyli X za żadne skarby nie napisze że cokolwiek zrozumiał bo natychmiast narazi się na wściekłe ataki ziemskich matematyków np. Irbisola.
W sumie X pójdzie za Irbisolem, czyli zacznie popierać Irbisola w walce z Rafałem3006 … no bo przecież wszyscy ziemscy matematycy nie mogą się mylić pisząc twardo że algebra Kubusia to gówno bo jest sprzeczna z aktualnym bogiem matematyków - Klasycznym Rachunkiem Zdań


Iskierka nadziei!

Niedawno (12-10-2019) wziąłem udział w dyskusji na matemtyce.pl:
[link widoczny dla zalogowanych]
prezentując nieznany matematykom algorytm minimalizacji funkcji logicznej z wykorzystaniem logiki dodatniej (bo Y) i ujemnej (bo ~Y).

Zadanie było takie:
Zminimalizuj poniższe wyrażenie logiczne:
(q=>r*p)+~r

Moje rozwiązanie:
W poniższej minimalizacji korzystamy z definicji znaczka =>:
p=>q = ~p+q

Rozwiązanie:
Zapiszmy nasze wyrażenie w postaci funkcji logicznej Y:
Y = (q=>r*p) + ~r = ~q+r*p + ~r
Uzupełniamy brakujące nawiasy bo kolejność wykonywania działań w logice to:
nawiasy, “i”(*), “lub”(+)
stąd mamy:
Y = ~q+(r*p)+~r
Zdefiniujmy funkcję cząstkową Y1:
Y1=(r*p)+~r
Przejście do logiki ujemnej (bo ~Y1) poprzez negację zmiennych i wymianę spójników na przeciwne:
~Y1 = (~r+~p)*r
Po wymnożeniu wielomianu logicznego mamy:
~Y1 = ~r*r + ~p*r = ~p*r
~Y1=r*~p
Powrót do logiki dodatniej (bo Y1) poprzez negację zmiennych i wymianę spójników na przeciwne:
Y1=~r+p
Odtwarzając podstawienie mamy:
Y = ~q+~r+p
Stąd w zapisie p=>q mamy:
Y = q=>(~r+p)
Stąd mamy tożsamość matematyczną:
Y = (q=>r*p)+~r = q=>(~r+p)
cnd

… i teraz sensacja!
Dostałem pierwsza i jedyną pochwałę algebry Kubusia od studenta matematyki który ewidentnie zrozumiał mój dowód.
Dostałem na ten temat informację na PW matematyka.pl w powiadomieniach:
Powiadomienia napisał:

Tomek496 podziękował Ci za ten post:
„Re: Zapisz negację/doprowadź do najprostszej postaci.”
12 października 2019, 14:48

Moja radość trwała krótko, bowiem moderator matematyki.pl napisał że wprowadzam studentów w błąd i za mój dowód wyżej każdy student matematyki … dostanie pałę i tyle.
… no i jak ja mam się przebić z algebrą Kubusia do serc ziemskich matematyków?
… oto jest pytanie.

Wniosek z tego taki, że matematycy są otwarci na nowe idee, o ile nowa idea nie uderza w fundament wszelkich ziemskich logik - czyli nie uderza w Klasyczny Rachunek Zdań.
Jest oczywistym że zrozumienie przez ziemskich matematyków algebry Kubusia (co nie jest dla matematyka problemem) jest tożsame z zawaleniem się wszystkich ziemskich logik matematycznych zbudowanych na fundamencie KRZ - a to już dla ziemskich matematyków jest nie do zaakceptowania i tu jest problem FUNDAMENTALNY, bo rozbija się o być albo nie być, gówna zwanego Klasycznym Rachunkiem Zdań i wszystkich logik matematycznych na tym gównie zbudowanych.


Ostatnio zmieniony przez rafal3006 dnia Wto 18:59, 17 Gru 2019, w całości zmieniany 11 razy
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 35357
Przeczytał: 24 tematy

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Pią 23:23, 01 Lis 2019    Temat postu:

Algebra Kubusia dla LO


Spis treści
1.0 Algebra Boole’a 1
1.1 Prawa Prosiaczka 2
1.2 Minimalna aksjomatyka algebry Boole’a 3
1.3 Algorytm Wuja Zbója 4
1.3.1 Alternatywne przejście do logiki przeciwnej 7
1.4 Definicja operatora AND(|*) 8
1.4.1 Właściwości operatora AND(|*) 11



1.0 Algebra Boole’a

Algebra Kubusia zawiera w sobie algebrę Boole’a mówiącą wyłącznie o spójnikach „i”(*) i „lub”(+).
Innymi słowy:
Algebra Boole’a w ogóle nie zajmuje się kluczową i najważniejszą częścią logiki matematycznej, czyli obsługą zdań warunkowych „Jeśli p to q”.

Definicja algebry Boole’a:
Algebra Boole’a to algebra dwuelementowa akceptująca zaledwie pięć znaczków:
0, 1, (~), (*), (+)
Znaczenie znaczków:
1 = prawda
0 = fałsz
(~) - negacja, słówko „NIE” w języku potocznym
„i”(*) - spójnik „i”(*) w języku potocznym
„lub”(+) - spójnik „lub”(+) w języku potocznym
Znaczenie tych spójników w języku potocznym poznamy za chwilę na przykładach z fizyki, analizując prosty obwód elektryczny z żarówką i przyciskami sterującymi ową żarówkę.

Definicja zmiennej binarnej:
Zmienna binarna to zmienna mogąca w osi czasu przyjmować wyłącznie dwie wartości logiczne 1 albo 0.

Zwyczajowymi zmiennymi w algebrze Boole’a są symbole:
p, q, r, Y

Prawo podwójnego przeczenia:
p=~(~p)
Przykład:
Jestem uczciwy = nie jestem nieuczciwy
U = ~(~U)

Definicja logiki dodatniej i ujemnej
Dowolna zmienna binarna zapisana jest w logice dodatniej (bo p) wtedy i tylko wtedy gdy nie jest zaprzeczona.
p = pies
Dowolna zmienna binarna zapisana jest w logice ujemnej (bo ~p) wtedy i tylko wtedy gdy jest zaprzeczona.
~p=nie pies


1.1 Prawa Prosiaczka

I Prawo Prosiaczka:
Prawda (=1) w logice dodatniej (bo p) jest tożsama z fałszem (=0) w logice ujemnej (bo ~p)
(p=1) = (~p=0)

II Prawo Prosiaczka:
Prawda (=1) w logice ujemnej (bo ~p) jest tożsama z fałszem (=0) w logice dodatniej (bo p)
(~p=1) = (p=0)

Dowód na przykładzie:
Rozważmy sterowanie żarówką (diodą LED) jednym przyciskiem A
Kod:

Schemat 1
Przykład ilustracji praw Prosiaczka w fizyce:
             S               A
       -------------       ______
  -----| dioda LED |-------o    o-----
  |    -------------                 |
  |                                  |
______                               |
 ___    U (źródło napięcia)          |
  |                                  |
  |                                  |
  ------------------------------------

Przyjmijmy znaczenie symboli:
S - żarówka świeci
~S - żarówka nie świeci
Równie dobrze można by przyjąć odwrotnie, ale nie byłoby to zgodne z naturalną logiką człowieka, gdzie symbol przeczenia (~) oznacza w języku potocznym słówko „NIE”.

Dowód I prawa Prosiaczka na przykładzie:
S - żarówka świeci
Co matematycznie oznacza:
S=1 - prawdą jest (=1) że żarówka świeci (S)
Zdanie matematycznie tożsame na mocy prawa Prosiaczka:
(S=1)=(~S=0)
Czytamy:
~S=0 - fałszem jest (=0) że żarówka nie świeci (~S)
Prawdziwość I prawa Prosiaczka widać tu jak na dłoni:
(S=1) = (~S=0)

Dowód II prawa Prosiaczka na przykładzie:
~S - żarówka nie świeci
Co matematycznie oznacza:
~S=1 - prawdą jest (=1) że żarówka nie świeci (~S)
Zdanie matematycznie tożsame na mocy prawa Prosiaczka:
(~S=1)=(S=0)
Czytamy:
S=0 - fałszem jest (=0) że żarówka świeci (S)
Prawdziwość II prawa Prosiaczka widać tu jak na dłoni:
(~S=1) = (S=0)


1.2 Minimalna aksjomatyka algebry Boole’a

Definicja minimalnej aksjomatyki algebry Boole’a:
Aksjomatyka minimalna algebry Boole’a to minimalny zestaw praw algebry Boole’a koniecznych i wystarczających do poruszania się po równaniach algebry Boole’a.
Chodzi tu głównie o minimalizację równań algebry Boole’a.

Wynika z tego, że tabele zero-jedynkowe w takiej aksjomatyce nas kompletnie nie interesują.
Jak zobaczymy za chwilę, minimalna aksjomatyka algebry Boole’a to zaledwie osiem punktów które trzeba znać na pamięć.

Znaczenie 1 i 0 w algebrze Boole’a:
1 = prawda
0 = fałsz
Znaczenie spójników „i”(*) i „lub”(+):
(*) - spójnik „i”(*) z języka potocznego człowieka
(+) - spójnik „lub”(+) z języka potocznego człowieka

Najważniejsze prawa algebry Boole’a (aksjomatyka minimalna) to:
1.
1=~(0)=~0 - prawda (1) to zaprzeczenie (~) fałszu
0=~(1)=~1 - fałsz (0) to zaprzeczenie (~) prawdy
2.
Elementem neutralnym w spójniku „i”(*) jest jedynka
p*1=p
p+1=1
3.
Elementem neutralnym w spójniku „lub”(+) jest zero
p*0=0
p+0=p
4.
Definicja dziedziny w zdarzeniach:
p+~p=1 - zdarzenie ~p jest uzupełnieniem do dziedziny (D=1) dla zdarzenia p
p*~p=0 - zdarzenia p i ~p są rozłączne (p*~p=[]=0), stąd ich iloczyn logiczny to zero
5.
Spójniki „i”(*) i „lub”(+) są przemienne
p*q=q*p
p+q=q+p
6.
Prawo redukcji/powielania zmiennych:
p*p=p
p+p=p
7.
Prawa De Morgana:
p+q = ~(~p*~q)
p*q = ~(~p+~q)
8.
Obsługa wielomianów logicznych jest identyczna jak wielomianów klasycznych pod warunkiem przyjęcia analogii:
Spójnik „lub”(+) to odpowiednik sumy klasycznej (+) np. x+y
Spójnik „i”(*) to odpowiednik iloczynu klasycznego (*) np. x*y
Stąd mamy kolejność wykonywania działań w wielomianach logicznych:
nawiasy, „i”(*), „lub”(+)
bo robimy analogię do wielomianów klasycznych.

Pojęcia matematycznie tożsame:
„i”(*) = koniunkcja (*)
„lub”(+) = alternatywa (+)

Przykład mnożenia wielomianów logicznych:
Dane jest wyrażenie logiczne:
(p+~q)*(~p+q) - postać koniunkcyjno-alternatywna (koniunkcja alternatyw)
Minimalizujemy:
(p+~q)*(~p+q) = p*~p + p*q +~q*~p + ~q*q = 0 + p*q + ~q*~p + 0 = p*q + ~p*~q
Wykorzystane prawa algebry Boole’a:
p*~p=0
p+0 =p
Przemienność:
~q*~p = ~p*~q
Stąd:
Nasze wyrażenie po minimalizacji przybiera postać:
(p+~q)*(~p+q) = p*q + ~p*~q - funkcja alternatywno-koniunkcyjna (alternatywa koniunkcji)

Inny przykład wykorzystania praw algebry Boole’a.
Udowodnij prawo algebry Boole’a:
p + p*q =p
Dowód:
p + p*q = p*1+p*q = p*(1+q) = p*1 =p
Wykorzystane prawa algebry Boole’a:
p=p*1
Wyciągnięcie zmiennej p przed nawias identyczne jak w wielomianach klasycznych
1+q=1
p*1=p
cnd


1.3 Algorytm Wuja Zbója

Definicja funkcji logicznej w algebrze Boole’a:
Funkcja logiczna Y w algebrze Boole’a to funkcja zmiennych binarnych połączonych spójnikami „i”(*) i „lub”(+)

Algorytm Wuja Zbója poznamy na przykładzie z życia wziętym, korzystając z definicji równoważności „wtedy i tylko wtedy” p<=>q wyrażonej spójnikami „i”(*) i „lub”(+) opisanej równaniem algebry Boole’a:
Y = p<=>q = p*q + ~p*~q
Co w logice matematycznej oznacza:
Y=1 <=> p=1 i q=1 lub ~p=1 i ~q=1

Przykład:
Pani w przedszkolu wypowiada obietnicę bezwarunkową:
1.
Jutro pójdziemy do kina wtedy i tylko wtedy gdy pójdziemy do teatru
K<=>T
Podstawmy celem skrócenia zapisów:
Y = K<=>T
Definicja równoważności w spójnikach „i”(*) i „lub”(+):
Y = K*T +~K*~T - funkcja alternatywno-koniunkcyjna (alternatywa koniunkcji)
co w logice matematycznej oznacza:
Y=1 <=> K=1 i T=1 lub ~K=1 i ~T=1
Przyjmijmy następujące znaczenie symbolu Y:
Y - pani dotrzyma słowa (Y)
~Y - pani nie dotrzyma słowa (~Y), czyli pani skłamie
Czytamy:
Prawdą jest (=1) że pani dotrzyma słowa (Y) wtedy i tylko wtedy gdy:
K*T=1*1 =1 - jutro pójdziemy do kina (K=1) i do teatru (T=1)
LUB
~K*~T=1*1=1 - jutro nie pójdziemy do kina (~K=1) i nie pójdziemy do teatru (~T=1)

W każdym innym przypadku, pani skłamie:
(~Y=1)=(Y=0) - prawo Prosiaczka
Dla każdego ucznia I klasy LO odpowiedź kiedy pani dotrzyma słowa (Y=1) jest intuicyjnie zrozumiała.

Prawo algebry Boole’a:
Każda funkcja alternatywno-koniunkcyjna ma swój tożsamy odpowiednik w postaci funkcji koniunkcyjno-alternatywnej

Dowód tego prawa na naszym przykładzie jest trywialny o ile skorzystamy z algorytmu przejścia do logiki przeciwnej autorstwa Wuja Zbója.

Przejdźmy z naszym przykładem na postać ogólną podstawiając:
K=p
T=q
Stąd mamy:
1.
Y = p*q + ~p*~q
W technicznej algebrze Boole’a często pomija się spójnik „i”(*) traktując go jako spójnik domyślny.
Stąd mamy funkcję matematycznie tożsamą:
1.
Y = pq+~p~q

Algorytm Wuja Zbója przejścia do logiki przeciwnej:
1.
Uzupełniamy brakujące nawiasy i spójniki:
Y = (p*q)+(~p*~q) - postać alternatywno-koniunkcyjna (alternatywa koniunkcji)
2.
Przejście do logiki ujemnej (bo ~Y) poprzez negację zmiennych i wymianę spójników
~Y = (~p+~q)*(p+q) - postać koniunkcyjno-alternatywna (koniunkcja alternatyw)
Koniec algorytmu Wuja Zbója

Zauważmy że:
Jeśli wymnożymy wielomian 2 to otrzymamy tożsamą do niego postać alternatywno-koniunkcyjną.
Zróbmy to:
~Y = (~p+~q)*(p+q) = ~p*p + ~p*q + ~q*p + ~q*q = 0 + ~p*q + p*~q + 0 = p*~q + ~p*q
3.
~Y = p*~q + ~p*q - postać alternatywno-koniunkcyjna (alternatywa koniunkcji)

Dla funkcji logicznej 3 ponownie korzystamy z algorytmu Wuja przechodząc do logiki dodatniej:
Mamy:
3.
~Y = (p*~q) + (~p*q)
Przejście do logiki dodatniej (bo Y) poprzez negację zmiennych i wymianę spójników:
4.
Y = (~p+q)*(p+~q) - funkcja koniunkcyjno-alternatywna (koniunkcja alternatyw)

Oczywistym jest, że zachodzą matematyczne tożsamości:
Y - pani dotrzyma słowa:
1: Y = p*q + ~p*~q [=] 4: Y=(p+~q)*(~p+q)
oraz:
~Y - pani skłamie
3: ~Y = p*~q + ~p*q [=] 2: ~Y = (~p+~q)*(p+q)

Zauważmy, że odpowiedź kiedy pani skłamie (~Y) zapisana w formie funkcji alternatywno-koniunkcyjnej również jest intuicyjnie zrozumiała dla każdego ucznia I klasy LO.

Nasz przykład:
3.
~Y=K*~T + ~K*T
co matematycznie oznacza:
~Y=1 <=> K=1 i ~T=1 lub ~K=1 i T=1
Czytamy:
Prawdą jest (=1), że pani skłamie (~Y) wtedy i tylko wtedy gdy:
K*~T=1*1=1 - jutro pójdziemy do kina (K=1) i nie pójdziemy do teatru (~T=1)
LUB
~K*T =1*1 =1 - jutro nie pójdziemy do kina (~K=1) i pójdziemy do teatru (T=1)

Zauważmy że, żadna z funkcji koniunkcyjno-alternatywnych nie jest zrozumiała dla człowieka.
Weźmy przykładowo odpowiedź na pytanie „kiedy pani dotrzyma słowa” (Y=1) opisaną równaniem koniunkcyjno-alternatywnym 4.
Nasz przykład:
4.
Y = (K+~T)*(~K+T) - postać koniunkcyjno-alternatywna
Czytamy:
Pani dotrzyma słowa (Y) wtedy i tylko wtedy gdy:
(K+~T) - jutro pójdziemy do kina (K) lub nie pójdziemy do teatru (~T)
„i”(*)
(~K+T) - jutro nie pójdziemy do kina (~K) lub pójdziemy do teatru (T)

Jak widzimy stało się coś strasznego!
Powyższe zdanie to twardy dowód iż w języku potocznym postaci koniunkcyjno-alternatywnej żaden człowiek nie rozumie.

1.3.1 Alternatywne przejście do logiki przeciwnej

Mamy naszą funkcję logiczną w postaci alternatywno-koniunkcyjnej:
1.
Y = (p*q) + (~p*~q)
W logice matematycznej dowolną funkcję logiczną możemy dwustronnie zanegować:
~Y = ~((p*q)+(~p*~q))
Korzystamy z prawa De Morgana dla nawiasu zewnętrznego otrzymując:
~Y = ~(p*q) * ~(~p*~q)
Ponownie korzystamy z prawa De Morgana dla pozostałych nawiasów:
~Y = (~p+~q)*(p+q)
To co wyżej to przejście do logiki ujemnej (bo ~Y) „na piechotę” z wykorzystaniem praw De Morgana.
To „na piechotę” przy długich funkcjach logicznych będzie koszmarem trudnym do ogarnięcia.
Natomiast algorytm przejścia do logiki przeciwnej Wuja Zbója jest trywialny dla dowolnie długiej funkcji logicznej Y
Doskonale widać, że algorytm Wuja Zbója jest odpowiednikiem wzorów skróconego mnożenia znanych z wielomianów klasycznych.

Zminimalizujmy teraz funkcję logiczną podaną w zadaniu na matematyce.pl
[link widoczny dla zalogowanych]

Zadanie:
Zminimalizuj poniższe wyrażenie logiczne:
(q=>r*p)+~r

W poniższej minimalizacji korzystamy z definicji znaczka =>:
p=>q = ~p+q

Rozwiązanie:
Zapiszmy nasze wyrażenie w postaci funkcji logicznej Y:
Y = (q=>r*p) + ~r = ~q+r*p + ~r
Uzupełniamy brakujące nawiasy bo kolejność wykonywania działań w logice to:
nawiasy, “i”(*), “lub”(+)
stąd mamy:
Y = ~q+(r*p)+~r
Zdefiniujmy funkcję cząstkową Y1:
Y1=(r*p)+~r
Przejście do logiki ujemnej (bo ~Y1) poprzez negację zmiennych i wymianę spójników na przeciwne:
~Y1 = (~r+~p)*r
Po wymnożeniu wielomianu logicznego mamy:
~Y1 = ~r*r + ~p*r = ~p*r
~Y1=r*~p
Powrót do logiki dodatniej (bo Y1) poprzez negację zmiennych i wymianę spójników na przeciwne:
Y1=~r+p
Odtwarzając podstawienie mamy:
Y = ~q+~r+p
Stąd w zapisie p=>q mamy:
Y = q=>(~r+p)
Stąd mamy tożsamość matematyczną:
Y = (q=>r*p)+~r = q=>(~r+p)
cnd


1.4 Definicja operatora AND(|*)

Rozważmy schemat elektryczny żarówki sterowanej dwoma przyciskami połączonymi szeregowo.

Kod:

Schemat 2
Fizyczna realizacja spójnika “i”(*)
             Y               p          q       
       -------------       ______     ______
  -----| dioda LED |-------o    o-----o    o----
  |    -------------                           |
  |                                            |
______                                         |
 ___    U (źródło napięcia)                    |
  |                                            |
  |                                            |
  ----------------------------------------------


Znaczenie symboli:
Y=1 - żarówka świeci
~Y=1 - żarówka nie świeci
p=1 - przycisk p wciśnięty
~p=1 - przycisk p nie wciśnięty
q=1 - przycisk q wciśnięty
~q=1 - przycisk q nie wciśnięty

Doskonale widać że:
1.
Żarówka świeci się (Y=1) wtedy i tylko wtedy gdy przycisk p będzie wciśnięty (p=1) i przycisk q będzie wciśnięty (q=1)
Y<=>p*q
<=> - symbol równoważności
Powyższa równoważność definiuje tożsamość pojęć:
Y = p*q
Co oznacza:
Pojęcie „żarówka świeci” (Y=1) jest tożsame „=” z pojęciem „wciśnięty przycisk p (p=1) i wciśnięty przyciska q (q=1)
Innymi słowy:
Z faktu świecenia się żarówki (Y=1) wnioskujemy iż wciśnięty jest przycisk p (p=1) i wciśnięty jest przycisk q (q=1) i odwrotnie.
Stąd mamy tożsamość:
A: Ya = p*q
co matematycznie oznacza:
A: Ya=1 <=> p=1 i q=1
… a kiedy żarówka nie będzie się świecić (~Y=1)?
2.
Żarówka nie będzie się świecić (~Y=1) wtedy i tylko wtedy gdy nie będzie wciśnięty przycisk p (~p=1) lub nie będzie wciśnięty przycisk q (~q=1)
~Y<=>(~p+~q)
<=> - symbol równoważności
Tu mamy identycznie:
Powyższa równoważność definiuje tożsamość pojęć:
~Y = ~p+~q
Co oznacza:
Pojęcie „żarówka nie świeci” (~Y=1) jest tożsame „=” z pojęciem „nie wciśnięty przycisk p (~p=1) lub nie wciśnięty przycisk q (~q=1)”
Innymi słowy:
Z faktu nie świecenia się żarówki (~Y=1) wnioskujemy iż nie jest wciśnięty przycisk p (~p=1) i nie jest wciśnięty przycisk q (~q=1) i odwrotnie.
Stąd mamy tożsamość:
~Y = ~p + ~q
co matematycznie oznacza:
~Y=1 <=> ~p=1 lub ~q=1

Zdanie matematycznie tożsame do 2 to szczegółowy opis wszystkich możliwych przypadków w których żarówka nie świeci się (~Y=1):
Innymi słowy:
Żarówka nie świeci (~Y=1) wtedy i tylko wtedy gdy:
B: ~Yb = ~p*~q=1*1=1 - nie jest wciśnięty p (~p=1) i nie jest wciśnięty q (~q=1)
LUB
C: ~Yc = ~p* q =1*1 =1 - nie jest wciśnięty p (~p=1) i jest wciśnięty q (q=1)
LUB
D: ~Yd = p*~q=1*1 =1 - jest wciśnięty p (p=1) i nie jest wciśnięty q (~q=1)

Funkcje ~Yb, ~Yc i ~Yd nazywamy funkcjami cząstkowymi opisującymi stan nie świecenia się żarówki opisany równaniem algebry Boole’a:
~Y = ~Ya + ~Yb + ~Yc
Po rozwinięciu mamy:
3.
~Y = B: ~p*~q + C: ~p*q + D: p*~q
co matematycznie oznacza:
~Y=1 <=> B: ~p=1 i ~q=1 lub C: ~p=1 i q=1 lub D: p=1 i ~q=1

Pozostaje nam udowodnić tożsamość funkcji logicznych 2 i 3.
Minimalizujemy funkcje 3:
~Y = ~p*~q + ~p*q + p*~q
~Y = ~p*(~q+q)+p*~q
~Y = ~p+(p*~q)
Przejście do logiki dodatniej (bo Y) poprzez negację zmiennych i wymianę spójników:
Y = p*(~p+q)
Y = p*~p + p*q
Y=p*q
Powrót do logiki ujemnej (bo ~Y) poprzez negację zmiennych i wymianę spójników:
~Y=~p+~q
cnd

stąd mamy matematyczną tożsamość:
~Y = BCD: ~p+~q = B: ~p*~q + C: ~p*q + D: p*~q

Zapiszmy serię zdań ABCD w symbolicznej tabeli prawdy:
Kod:

Tabela 1
Tabela      |Co matematycznie     |Dla punktu           |Tabela
symboliczna |oznacza              |odniesienia          |matematycznie
            |                     |A: Y=p*q mamy        |tożsama
            |                     |                     | p  q  Y=p*q
A: p* q= Ya |( p=1)*( q=1)=( Ya=1)|( p=1)*( q=1)=( Ya=1)| 1* 1   1
B:~p*~q=~Yb |(~p=1)*(~q=1)=(~Yb=1)|( p=0)*( q=0)=( Yb=0)| 0* 0   0
C:~p* q=~Yc |(~p=1)*( q=1)=(~Yc=1)|( p=0)*( q=1)=( Yc=0)| 0* 1   0
D: p*~q=~Yd |( p=1)*(~q=1)=(~Yd=1)|( p=1)*( q=0)=( Yd=0)| 1* 0   0
   a  b  c     d      e      f       g      h      I      1  2   3
                                  | Prawa Prosiaczka    |
                                  | (~p =1)=( p =0)     |
                                  | (~q =1)=( q =0)     |
                                  | (~Yx=1)=( Yx=0)     |

Zauważmy, że tabela zero-jedynkowa ABCD123 zakodowana jest dla punktu odniesienia ustawionego na zdaniu A:
A: Y=p*q
co matematycznie oznacza:
A: Y=1 <=> p=1 i q=1
Nagłówek w kolumnie wynikowej 3 (Y) pokazuje linię w tabeli symbolicznej ABCDabc względem której kodowana jest tabela zero-jedynkowa, czyli tu wskazuje wyłącznie linię A.
Zero-jedynkową definicją spójnika „i”(*) dla potrzeb rachunku zero-jedynkowego jest kompletna tabela zero-jedynkowa ABCD123.
Jednak nagłówek w kolumnie 3 dotyczy de facto wyłącznie linii A, co doskonale widać w tabeli zero-jedynkowej ABCD123.
Tabela symboliczna ABCDdef zakodowana jest w logice jedynek zgodnie z naturalną logiką matematyczną człowieka, gdzie wszystkie zmienne mają wartość logiczną 1.
Logika jedynek zawsze prowadzi do równania alternatywno-koniunkcyjnego:
~Y = BCD: ~p+~q = B: ~p*~q + C: ~p*q + D: p*~q
Możliwe jest zakodowanie tabeli symbolicznej ABCDdef w logice zer (trzeba totalnie wszystko zanegować i wymienić spójniki na przeciwne), ale takie kodowanie prowadzi do równań koniunkcyjno-alternatywnych, kompletnie niezrozumiałych dla człowieka, zatem nie będziemy się tym zajmować.

Zakodujmy teraz naszą tabelę symboliczną ABCDabc względem funkcji logicznej:
BCD: ~Y=~p+~q
która opisuje obszar BCDabc tabeli symbolicznej.
Kod:

Tabela 2
Tabela      |Co matematycznie     |Dla punktu           |Tabela
symboliczna |oznacza              |odniesienia          |matematycznie
            |                     |BCD:~Y=~p+~q mamy    |tożsama
            |                     |                     |~p ~q ~Y=~p+~q
A: p* q= Ya |( p=1)*( q=1)=( Ya=1)|(~p=0)*(~q=0)=(~Ya=0)| 0+ 0   0
B:~p*~q=~Yb |(~p=1)*(~q=1)=(~Yb=1)|(~p=1)*(~q=1)=(~Yb=1)| 1+ 1   1
C:~p* q=~Yc |(~p=1)*( q=1)=(~Yc=1)|(~p=1)*(~q=0)=(~Yc=1)| 1+ 0   1
D: p*~q=~Yd |( p=1)*(~q=1)=(~Yd=1)|(~p=0)*(~q=1)=(~Yd=1)| 0+ 1   1
   a  b  c     d      e      f       g      h      I      1  2   3
                                  | Prawa Prosiaczka    |
                                  | ( p =1)=(~p =0)     |
                                  | ( q =1)=(~q =0)     |
                                  | ( Ya=1)=(~Ya=0)     |

Zauważmy, że tabela zero-jedynkowa ABCD123 zakodowana jest z punktem odniesienia ustawionym na obszarze BCDabc tabeli symbolicznej definiującej spójnik „lub”(+)
BCD: ~Y=~p+~q
co matematycznie oznacza:
BCD: ~Y=1 <=> ~p=1 lub ~q=1
Sens ostatniego zapisu doskonale widać w tabeli zero-jedynkowej BCD123.
Nagłówek kolumny wynikowej 3 (~Y) odnosi się do obszaru BCDabc w tabeli symbolicznej ABCDabc względem którego kodowana jest tabela zero-jedynkowa:
BCD: ~Y=~p+~q
Zero-jedynkową definicją spójnika „lub”(+) dla potrzeb rachunku zero-jedynkowego jest kompletna tabela zero-jedynkowa ABCD123.
Jednak nagłówek w kolumnie 3 dotyczy de facto wyłącznie obszaru BCD123 - widać to doskonale w samej tabeli ABCD123.
Z tabeli symbolicznej ABCDabcd odczytujemy:
BCDabc: ~Y=~Ya+~Yb+~Yc
Po rozwinięciu mamy:
BCDabc: ~Y=~p+~q = B: ~p*~q+ C: ~p*q+ D: p*~q

Definicja operatora AND(|*):
Operator AND(|*) musi opisywać wszystkie linie tabeli symbolicznej ABCDabc, czyli również wszystkie linie tabeli zero-jedynkowej ABCD123.
Stąd:
Definicja operatora AND(|*) to układ równań logicznych dających odpowiedź na pytanie o funkcję logiczną w logice dodatniej (bo Y) oraz o funkcję logiczną w logice ujemnej (bo ~Y):
1.
Y=p*q
co matematycznie oznacza:
Y=1 <=> p=1 i q=1
2.
~Y=~p+~q
co matematycznie oznacza:
~Y=1 <=> ~p=1 lub ~q=1

1.4.1 Właściwości operatora AND(|*)

Podsumujmy nasze rozważania w niniejszym rozdziale:
I.
Definicja spójnika „i”(*) dla potrzeb rachunku zero-jedynkowego jest następująca:
Kod:

Zero jedynkowa definicja spójnika „i”(*):
   p  q p*q
A: 1* 1  1
B: 1* 0  0
C: 0* 1  0
D: 0* 0  0
Definicja do zapamiętania:
p*q=1 <=> p=1 i q=1
Inaczej:
p*q=0
Gdzie:
<=> - wtedy i tylko wtedy
Doskonale to widać w tabeli wyżej


II.
Operator AND(|*) tu układ równań logicznych opisujący funkcję w logice dodatniej (bo Y) oraz ujemnej (bo ~Y):
1.
Y=p*q
co matematycznie oznacza:
Y=1 <=> p=1 i q=1
2.
~Y=~p+~q
co matematycznie oznacza:
~Y=1 <=> ~p=1 lub ~q=1

III.
Pełna definicja spójnika „lub”(+) opisująca szczegółowo wszystkie możliwe zdarzenia rozłączne które mogą wystąpić to:
p+q = p*q + p*~q + ~p*q
Dla ~p i ~q mamy:
~p+~q = ~p*~q + ~p*q + p*~q











Kod:

Zero jedynkowa definicja spójnika „lub”(+):
   p  q p+q
A: 1  1  1
B: 1  0  1
C: 0  1  1
D: 0  0  0
Definicja do zapamiętania:
p*q=1 <=> p=1 lub q=1
Inaczej:
p*q=0
Gdzie:
<=> - wtedy i tylko wtedy
Doskonale to widać w tabeli wyżej


Ostatnio zmieniony przez rafal3006 dnia Sob 14:40, 02 Lis 2019, w całości zmieniany 13 razy
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 35357
Przeczytał: 24 tematy

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Pią 23:25, 01 Lis 2019    Temat postu:

Algebra Kubusia - teoria zdarzeń w zdaniach warunkowych „Jeśli p to q”

... do napisania.
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 35357
Przeczytał: 24 tematy

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Pią 23:26, 01 Lis 2019    Temat postu:

Algebra Kubusia - teoria zbiorów w zdaniach warunkowych „Jeśli p to q”

do napisania
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 35357
Przeczytał: 24 tematy

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Pią 23:27, 01 Lis 2019    Temat postu:

Algebra Kubusia - obsługa obietnic i gróźb

do napisania
Powrót do góry
Zobacz profil autora
Wyświetl posty z ostatnich:   
Napisz nowy temat   Odpowiedz do tematu    Forum ŚFiNiA Strona Główna -> Metodologia / Forum Kubusia Wszystkie czasy w strefie CET (Europa)
Strona 1 z 1

 
Skocz do:  
Nie możesz pisać nowych tematów
Nie możesz odpowiadać w tematach
Nie możesz zmieniać swoich postów
Nie możesz usuwać swoich postów
Nie możesz głosować w ankietach

fora.pl - załóż własne forum dyskusyjne za darmo
Powered by phpBB © 2001, 2005 phpBB Group
Regulamin