Forum ŚFiNiA Strona Główna ŚFiNiA
ŚFiNiA - Światopoglądowe, Filozoficzne, Naukowe i Artystyczne forum - bez cenzury, regulamin promuje racjonalną i rzeczową dyskusję i ułatwia ucinanie demagogii. Forum założone przez Wuja Zbója.
 
 FAQFAQ   SzukajSzukaj   UżytkownicyUżytkownicy   GrupyGrupy   GalerieGalerie   RejestracjaRejestracja 
 ProfilProfil   Zaloguj się, by sprawdzić wiadomościZaloguj się, by sprawdzić wiadomości   ZalogujZaloguj 

Smieci

 
Napisz nowy temat   Odpowiedz do tematu    Forum ŚFiNiA Strona Główna -> Metodologia / Forum Kubusia
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 36407
Przeczytał: 15 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Pon 10:39, 20 Lut 2023    Temat postu: Smieci

Algebra Kubusia - matematyka języka potocznego
32.0 Dowód śmieciowości ziemskiej teorii mnogości

Spis treści
32.0 Dowód śmieciowości ziemskiej teorii mnogości 1
32.1 Przypomnienie fundamentów algebry Kubusia 2
32.1.1 Przypomnienie definicji spójników elementarnych: ~~>, =>, ~> (pkt. 2.2) 2
32.1.2 Fundament algebry Kubusia w obsłudze zdań „Jeśli p to q” 3
32.1.3 Przypomnienie prawa Sowy (pkt. 2.6.1) 3
32.1.4 Przypomnienie prawa Słonia (pkt. 2.8) 4
32.1.5 Przypomnienie prawa Irbisa (pkt. 2.9) 4
32.2 Definicje znaczków (+) i (*) w matematyce klasycznej i logice matematycznej 5
32.2.1 Definicje znaczków (+) i (*) na gruncie matematyki klasycznej 6
32.2.2 Definicje znaczków (+) i (*) na gruncie logiki matematycznej 6
32.2.3 Definicje formalne znaczków (+) i (*) na gruncie teorii zbiorów 8
32.3 Dowód sprzeczności teorii mnogości z aktualną matematyką z 7 klasy SP 8
32.4 Równość zbiorów p=q rodem z teorii mnogości 11
32.4.1 Komentarz do prawa Irbisa na gruncie algebry Kubusia 11
32.4.2 Tożsamość zbiorów nieskończonych 12
32.4.3 Tożsamość zbiorów skończonych 13
32.5 Równoważność zbiorów p<=>q rodem z teorii mnogości 14
32.5.1 Uproszony dowód śmieciowości „teorii mnogości” 16
32.5 Co jest celem logiki matematycznej, algebry Kubusia? 17
32.6 Próba cywilizacji dziczy zwanej teorią mnogości 18
32.7 Cywilizacja dziczy zwanej teorią mnogości w równoważności p<=>q 19
32.7.1 Tabela prawdy równoważności p<=>q w zbiorach 20
32.7.2 Równoliczność p~q z TM vs definicja równoważności p<=>q z MK 21
32.8 Cywilizacja dziczy zwanej teorią mnogości w implikacji prostej p|=>q 22
32.8.1 Równoliczność p~q z TM vs definicja implikacji prostej p|=>q z AK 24
32.9 Cywilizacja dziczy zwanej teorią mnogości w implikacji odwrotnej p|~>q 25


32.0 Dowód śmieciowości ziemskiej teorii mnogości

2025-01-19
Film powinien zaczynać się od trzęsienia ziemi, potem zaś napięcie ma nieprzerwanie rosnąć
Alfred Hitchcock.


32.1 Przypomnienie fundamentów algebry Kubusia

Link do fundamentów algebry Kubusia:
http://www.sfinia.fora.pl/forum-kubusia,12/algebra-kubusia-matematyka-jezyka-potocznego,21937.html#680049
2.0 Kwintesencja algebry Kubusia

32.1.1 Przypomnienie definicji spójników elementarnych: ~~>, =>, ~> (pkt. 2.2)

Cała logika matematyczna w obsłudze zdań warunkowych „Jeśli p to q” stoi na zaledwie trzech znaczkach elementarnych (~~>, =>, ~>)

1.
Definicja elementu wspólnego ~~> zbiorów:

p~~>q = p*q =1 – wtedy i tylko wtedy gdy zbiory p i q mają (=1) element wspólny
Inaczej:
p~~>q =p*q =0 – wtedy i tylko wtedy gdy zbiory p i q nie mają (=0) elementu wspólnego (rozłączne)

##

2.
Definicja warunku wystarczającego =>:

p=>q =1 – wtedy i tylko wtedy gdy zajście p jest (=1) wystarczające => dla zajścia q
Inaczej:
p=>q =0 – wtedy i tylko wtedy gdy zajście p nie jest (=0) wystarczające => dla zajścia q

Matematycznie zachodzi tożsamość:
Warunek wystarczający => = Relacja podzbioru =>

Definicja relacji podzbioru =>:
Zbiór p jest podzbiorem => zbioru q wtedy i tylko wtedy gdy wszystkie elementy zbioru p należą do zbioru q

Definicja relacji podzbioru => w logice matematycznej:
p=>q =1 – wtedy i tylko wtedy gdy zbiór p jest (=1) podzbiorem => zbioru q
Inaczej:
p=>q =0 – wtedy i tylko wtedy gdy zbiór p nie jest (=0) podzbiorem => zbioru q

##

3.
Definicja warunku koniecznego ~>:

p~>q =1 – wtedy i tylko wtedy gdy zajście p jest (=1) konieczne ~> dla zajścia q
Inaczej:
p~>q =0 – wtedy i tylko wtedy gdy zajście p nie jest (=0) konieczne ~> dla zajścia q

Matematycznie zachodzi tożsamość:
Warunek konieczny ~> = Relacja nadzbioru ~>

Definicja relacji nadzbioru ~>:
Zbiór p jest nadzbiorem ~> zbioru q wtedy i tylko wtedy gdy zawiera co najmniej wszystkie elementy zbioru q

Definicja relacji nadzbioru ~> w logice matematycznej:
p~>q =1 – wtedy i tylko wtedy gdy zbiór p jest (=1) nadzbiorem ~> zbioru q
Inaczej:
p~>q =0 – wtedy i tylko wtedy gdy zbiór p nie jest (=0) nadzbiorem ~> zbioru q

Gdzie:
## - definicje różne na mocy definicji


32.1.2 Fundament algebry Kubusia w obsłudze zdań „Jeśli p to q”

W całym niniejszym rozdziale zdania warunkowe „Jeśli p to q” będziemy indeksować zgodnie z tabelą T0 niżej.
Kod:

T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
      ##        ##           ##        ##            ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5:  p+~q

Prawa Kubusia:        | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q  | A1: p=>q  = A4:~q=>~p
B1: p~>q = B2:~p=>~q  | B2:~p=>~q = B3: q=>p

Prawa Tygryska:       | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p   | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p   | B1: p~>q  = B4:~q~>~p
Gdzie:
p=>q = ~p+q - definicja warunku wystarczającego =>
p~>q = p+~q - definicja warunku koniecznego ~>
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

32.1.3 Przypomnienie prawa Sowy (pkt. 2.6.1)

I Prawo Sowy
Dla udowodnienia prawdziwości wszystkich zdań serii Ax potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Ax
Dla udowodnienia fałszywości wszystkich zdań serii Ax potrzeba i wystarcza udowodnić fałszywość dowolnego zdania serii Ax
##
II Prawo Sowy
Dla udowodnienia prawdziwości wszystkich zdań serii Bx potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Bx
Dla udowodnienia fałszywości wszystkich zdań serii Bx potrzeba i wystarcza udowodnić fałszywość dowolnego zdania serii Bx
Gdzie:
## - różne na mocy definicji

32.1.4 Przypomnienie prawa Słonia (pkt. 2.8)

I Prawo Słonia dla zbiorów:
W algebrze Kubusia w zbiorach zachodzi tożsamość [=] pojęć:
A1: p=>q - warunek wystarczający => [=] A1: p=>q - relacja podzbioru => [=] A1: p=>q - matematyczne twierdzenie proste
A1: p=>q = ~p+q
##
II Prawo Słonia dla zbiorów:
B1: p~>q - warunek konieczny ~> [=] B1: p~>q - relacja nadzbioru ~> [=] B3: q=>p - matematyczne twierdzenie odwrotne (w odniesieniu do A1)
Prawo Tygryska:
B1: p~>q = B3: q=>p = p+~q
Gdzie:
[=], „=”, <=> - tożsame znaczki tożsamości logicznej
<=> - wtedy o tylko wtedy
## - różne na mocy definicji
p i q musi być wszędzie tymi samymi p i q, inaczej błąd podstawienia

Definicja tożsamości logicznej [=]:
Prawdziwość dowolnego członu z tożsamości logicznej [=] wymusza prawdziwość pozostałych członów.
Fałszywość dowolnego członu z tożsamości logicznej [=] wymusza fałszywość pozostałych członów.

Z definicji tożsamości logicznej [=] wynika, że:
a)
Udowodnienie prawdziwości dowolnego członu powyższej tożsamości logicznej gwarantuje prawdziwość dwóch pozostałych członów
b)
Udowodnienie fałszywości dowolnego członu powyższej tożsamości logicznej gwarantuje fałszywość dwóch pozostałych członów

Na mocy prawa Słonia i jego powyższej interpretacji, możemy dowodzić prawdziwości/fałszywości dowolnych zdań warunkowych "Jeśli p to q" mówiących o zbiorach metodą ”nie wprost"

32.1.5 Przypomnienie prawa Irbisa (pkt. 2.9)

Definicja równoważności p<=>q:
Równoważność p<=>q w logice dodatniej (bo q) to spełnienie zarówno warunku wystarczającego =>, jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
Stąd mamy definicję równoważności p<=>q w równaniu logicznym:
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) =1*1 =1
Lewą stronę czytamy:
Zajdzie p wtedy i tylko wtedy gdy zajdzie q
Prawą stronę czytamy:
Zajście p jest (=1) warunkiem koniecznym ~> (B1) i wystarczającym => (A1) dla zajścia q
Innymi słowy:
Do tego by zaszło q potrzeba ~> (B1) i wystarcza => (A1) by zaszło p

Ta wersja równoważności jest powszechnie znana.

Na mocy prawa Słonia (pkt. 32.1.3) oraz tabeli T0 możemy wygenerować dużą ilość tożsamych definicji równoważności p<=>q.

Przykładowe, najbardziej użyteczne definicje to:
1.
Matematyczna definicja równoważności p<=>q (znana każdemu matematykowi):

Równoważność p<=>q to jednoczesna prawdziwość matematycznego twierdzenia prostego A1: p=>q i matematycznego twierdzenia odwrotnego B3: q=>p
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q, twierdzenie proste A1.
B3: q=>p =1 - zajście q jest (=1) wystarczające => dla zajścia p, twierdzenie odwrotne (względem A1)
Stąd mamy:
A1B3: p<=>q = (A1: p=>q)*(B3: q=>p) =1*1 =1

2.
Definicja równoważności wyrażona relacjami podzbioru =>

Równoważność p<=>q to relacja podzbioru => zachodząca w dwie strony
A1: p=>q =1 - wtedy i tylko wtedy gdy zbiór p jest (=1) podzbiorem => zbioru q
B3: q=>p =1 - wtedy i tylko wtedy gdy zbiór q jest (=1) podzbiorem => zbioru p
Stąd mamy:
A1B3: p<=>q = (A1: p=>q)*(B3: q=>p) =1*1 =1

Stąd mamy:

Prawo Irbisa dla zbiorów:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q (A1) i jednocześnie zbiór q jest podzbiorem => zbioru p (B3)
A1B3: p=q <=> (A1: p=>q)*(B3: q=>p)= A1B3: p<=>q
Prawo Irbisa znane jest każdemu matematykowi.

Innymi słowy:
Każda równoważność prawdziwa p<=>q definiuje tożsamość zbiorów p=q (i odwrotnie)
A1B3: p<=>q = (A1: p=>q)*(B3: q=>p) <=> A1B3: p=q

32.2 Definicje znaczków (+) i (*) w matematyce klasycznej i logice matematycznej

Matematyka klasyczna:
(+) – symbol dodawania algebraicznego
(*) – symbol mnożenia algebraicznego
##
Logika matematyczna:
(+) – spójnik „lub”(+) z języka potocznego (suma logiczna w teorii zbiorów)
(*) – spójnik „i”(*) z języka potocznego (iloczyn logiczny w teorii zbiorów)
Gdzie:
## - różne na mocy definicji

Innymi słowy:
Dział matematyki klasycznej jest różny na mocy definicji ## od działu logiki matematycznej

To są dwa rozłączne światy matematyczne, stąd używanie tych samych znaczków (+) i (*) w dwóch fundamentalnie innych znaczeniach niczemu nie przeszkadza.

32.2.1 Definicje znaczków (+) i (*) na gruncie matematyki klasycznej

Dodawanie algebraiczne (+):
a+a+a = 3*a
Przykład:
a=4
Stąd mamy:
4+4+4 = 3*4 = 12

Mnożenie algebraiczne (*):
a*a*a = a^3 (a do potęgi (^) trzeciej)
Przykład:
a=4
Stąd mamy:
4*4*4 = 4^3 = 64

Przykład z matematyki klasycznej:
Pudełko A.
Mamy pudełko A z czterema zwierzakami:
A: [Tygrysek + Tygrysek + Tygrysek + Słoń] = A: [Trzy (3) Tygryski + Słoń]
Gdzie:
„+” – symbol dodawania algebraicznego

Sensowne pytania na gruncie matematyki klasycznej:
1.
Ile zwierzaków znajduje się w pudełku A?
Poprawna odpowiedź:
W pudełku A mamy 4 zwierzaki:
Trzy (3) Tygryski plus Słoń
2.
Ile Tygrysków znajduje się w pudełku A?
Poprawna odpowiedź:
W pudełku A mamy trzy (3) Tygryski

32.2.2 Definicje znaczków (+) i (*) na gruncie logiki matematycznej

Suma logiczna (+) zbiorów:
Y=p+q
Wszystkie elementy zbiorów p i q bez powtórzeń

Oznaczmy skrótowo:
K - Kubuś
T - Tygrysek
P - Prosiaczek
Zdefiniujmy dwa zbiory p i q:
p=[K, T] =1 - bo zbiór niepusty
q=[T, P] =1 - bo zbiór niepusty
Y=p+q=[K,T]+[T,P]=[K,T,T,P] = [K+T+T+P] = [K+T+P] = [K,T,P] =1 - bo zbiór wynikowy niepusty
Bo prawo Algebry Boole’a:
p+p =p
Uwaga:
Przecinek przy wyliczaniu elementów zbioru jest tożsamy ze spójnikiem „lub”(+) z algebry Boole’a co pokazano i udowodniono wyżej.

Przykład z logiki matematycznej:
Pudełko A.
Mamy pudełko A z czterema zwierzakami:
A: [Tygrysek + Tygrysek + Tygrysek + Słoń]
Gdzie:
„+” – symbol sumy logicznej zbiorów

Prawo algebry Boole’a:
Prawo redukcji/powielania dowolnego elementu w zbiorze
[a+a+..a] =[a]

Nasz przykład:
[Tygrysek+Tygrysek+Tygrysek] = [Tygrysek]
Stąd po minimalizacji pojęć w pudełku A mamy:
A: [Tygrysek + Tygrysek + Tygrysek + Słoń] = A: [Tgrysek + Słoń]

Wnioski:
1.
Logika matematyczna zajmuje się rozpoznawalnością pojęć z zbiorze.
2.
Logika matematyczna nigdy nie zajmuje się liczeniem algebraicznym elementów w zbiorze, bowiem znaczek sumy algebraicznej nie jest znaczkiem logiki matematycznej.

Sensowne pytania na gruncie logiki matematycznej jest tylko jedno:

Ile różnych na mocy definicji pojęć znajduje się w pudełku A?
Poprawna odpowiedź:
W pudełku A mamy dwa różna na mocy definicji pojęcia:
A: [Tygrysek, Słoń]

Iloczyn logiczny (*) zbiorów:
Y = p*q
Wspólne elementy zbiorów p i q bez powtórzeń
Y = p*q =1 - gdy zbiory p i q mają (=1) co najmniej jeden element wspólny (zbiór wynikowy jest niepusty)
Y = p*q =0 - gdy zbiory p i q nie mają (=0) elementu wspólnego (są rozłączne)

Oznaczmy skrótowo:
K - Kubuś
T - Tygrysek
P - Prosiaczek
S - Słoń
Zdefiniujmy zbiory p, q, r:
p=[K,T] =1 - bo zbiór niepusty
q=[T,P] =1 - bo zbiór niepusty
r=[P,S] =1 - bo zbiór niepusty
Y=p*q=[K,T]*[T,P]=[T] =1 - zbiory p i q mają (=1) co najmniej jeden element wspólny
Y=p*r=[K,T]*[P,S] =[] =0 - zbiory p i r nie mają (=0) elementu wspólnego

Identyczne wyniki można uzyskać poprzez wymnażanie logiczne zbiorów.
Przykład:
p*q = [K+T]*[T+P] = K*T + K*P + T*T + T*P =[] + [] + T + [] = T
bo:
K*T+ K*P + T*P =[]+[]+[] =0+0+0 =0 - iloczyn logiczny „*” zbiorów (pojęć) rozłącznych jest zbiorem pustym []
T*T =T
bo prawo algebry Boole’a:
p*p =p
Jak widzimy, przy wyliczaniu elementów zbioru przecinek jest tożsamy ze spójnikiem „lub”(+) rodem z algebry Boole’a.

32.2.3 Definicje formalne znaczków (+) i (*) na gruncie teorii zbiorów

Suma logiczna (+) zbiorów:
Y=p+q
Wszystkie elementy zbiorów p i q bez powtórzeń

Iloczyn logiczny (*) zbiorów:
Y = p*q
Wspólne elementy zbiorów p i q bez powtórzeń
Y = p*q =1 - gdy zbiory p i q mają (=1) co najmniej jeden element wspólny (zbiór wynikowy jest niepusty)
Y = p*q =0 - gdy zbiory p i q nie mają (=0) elementu wspólnego (są rozłączne)

32.3 Dowód sprzeczności teorii mnogości z aktualną matematyką z 7 klasy SP

W dowodzie posłużymy się cytatem z anglojęzycznej Wikipedii:
[link widoczny dla zalogowanych]
@Anglojęzyczna Wikipedia
W matematyce zbiór jest definiowany jako kolekcja dobrze zdefiniowanych odrębnych obiektów. Różne obiekty tworzące zbiór nazywane są elementami zbioru. Zasadniczo elementy zbiorów można zapisać w dowolnej kolejności, ale nie powinny się powtarzać. Zbiór jest zwykle reprezentowany przez wielką literę. W podstawowej teorii zbiorów dwa zbiory mogą być równoważne, równe lub nierówne sobie. W tym artykule omówimy, co oznaczają równy i równoważny zbiór z przykładami, a także różnicę między nimi.

Definicja 1
Czym są zbiory równe?

Dwa zbiory p i q mogą być równe tylko wtedy, gdy każdy element zbioru p jest również elementem zbioru q. Ponadto, jeśli dwa zbiory są podzbiorami siebie nawzajem, to mówi się, że są równe. Jest to reprezentowane przez:
p=q <=> (p=>q)*(q=>p)

Jeśli warunek omówiony powyżej nie jest spełniony, wówczas zbiory są nazywane nierównymi. Jest to reprezentowane przez:
p##q
Gdzie:
## - zbiory różne na mocy definicji


Przykład:
p=[Kubuś, Prosiaczek]
q=[Prosiaczek, Kubuś]
Wedle definicji 1 zachodzi oczywista tożsamość zbiorów p=q
(p=q) =1 - wtedy i tylko wtedy gdy zbiory p i q są tożsame
Inaczej:
(p=q) =0

Definicja 2
Czym są zbiory równoważne?

Aby były równoważne, zbiory powinny mieć tę samą kardynalność.[/size] Oznacza to, że powinna istnieć jednoznaczna korespondencja między elementami obu zbiorów. Tutaj jednoznaczna korespondencja oznacza, że dla każdego elementu w zbiorze A istnieje element w zbiorze B, dopóki zbiory nie zostaną wyczerpane.

Definicja A: Jeżeli dwa zbiory A i B mają tę samą moc , to istnieje funkcja celu ze zbioru A do B.
Definicja B: Dwa zbiory A i B są równoważne, jeżeli mają tę samą moc, tj. n ( A ) = n ( B ) .

Ogólnie rzecz biorąc, możemy powiedzieć, że dwa zbiory są sobie równoważne, jeśli liczba elementów w obu zbiorach jest równa. I nie jest konieczne, aby miały te same elementy lub były podzbiorem siebie nawzajem.


Przykład:
p=[Kubuś, Prosiaczek]
q=[Kubuś, sraczka]
Wedle definicji 2 zachodzi równoważność zbiorów:
p<=>q =1 wtedy i tylko wtedy gdy zbiory p i q są równoliczne, zawartość zbiorów p i q jest bez znaczenia
Inaczej:
p<=>q =0

Wykażemy teraz, że w aktualnej matematyce na poziomie szkoły podstawowej definicja 1 jest sprzeczna z definicją 2, co posyła teorię mnogości do piekła na wieczne piekielne męki.

I.
Teoria mnogości


Definicja równoważności <=> zbiorów w teorii mnogości:
Dwa zbiory p i q są równoważne p<=>q wtedy i tylko wtedy gdy zawierają identyczną liczbę elementów
(p<=>q) <=> (p~q) = 1<=>1 =1
Zawartość zbiorów p i q jest totalnie bez znaczenia

Innymi słowy:
Dwa zbiory p i q są równoważne p<=>q wtedy i tylko wtedy gdy są równoliczne
(p<=>q) <=> (p~q) = 1<=>1 =1
Inaczej:
p<=>q =0
Zawartość zbiorów p i q jest totalnie bez znaczenia

Przykład:
p=[Kubuś, Prosiaczek]
q=[Prosiaczek, sraczka]
Na mocy definicji równoważności p<=>q z teorii mnogości zbiory p i q są równoważne, bo zawierają identyczną liczbę elementów
(p<=>q) <=> (p~q) = 1<=>1 =1
Zawartość zbiorów p i q jest totalnie bez znaczenia

vs

II.
Matematyka klasyczna na poziomie 7 klasy szkoły podstawowej.


Definicja równoważności <=> zbiorów rodem z 7 klasy szkoły podstawowej:
Dwa zbiory p i q są równoważne p<=>q wtedy i tylko wtedy gdy są tożsame p=q
(p<=>q) <=> (p=q) = 1<=>1 =1
inaczej:
(p<=>q) =0
Zawartość zbiorów p i q nie jest tu bez znaczenia!
Zawartość zbiorów p i q jest tu kluczowa i najważniejsza!

Oczywiście o prawo Irbisa tu chodzi:
A1B3: p=q <=> (A1: p=>q)*(B3: q=>p) = A1B3: p<=>q
Równoważność Pitagorasa z 7 klasy SP:
A1B3: TP=SK <=> (A1: TP=>SK)*(B3: SK=>TP) = A1B3: TP<=>SK
Gdzie:
A1: TP=>SK =1 - twierdzenie proste Pitagorasa (udowodnione wieki temu)
B3: SK=>TP =1 - twierdzenie odwrotne Pitagorasa (udowodnione wieki temu)
A1B3: TP<=>SK - równoważność <=> Pitagorasa (udowodniona wieki temu)
A1B3: TP=SK - tożsamość zbiorów TP=SK (udowodniona wieki temu)

Co oznacza tożsamość zbiorów TP=SK?
Każdy element w zbiorze trójkątów prostokątnych TP ma swój jedyny, unikalny odpowiednik w zbiorze trójkątów ze spełnioną sumą kwadratów SK (i odwrotnie)

Przykład równoważności <=> prawdziwej dla zbiorów skończonych:
p=[Kubuś, Prosiaczek]
q=[Prosiaczek, Kubuś]
Oczywistym jest, że prawo Irbisa tu zachodzi:
A1B3: p=q <=> (A1: p=>q)*(B3: q=>p) = A1B3: p<=>q

Czytamy:
Nasze zbiory p i q są równoważne <=> wtedy i tylko wtedy gdy każdy element zbioru p należy do zbioru q i odwrotnie.

Na mocy prawa Irbisa doskonale widać tożsamość p=q naszych zbiorów
cnd

P.S.
http://www.sfinia.fora.pl/metodologia,12/2-2-4,3832.html#76453
konrado5 napisał:
Ja słyszałem, że Russell podał jakiś dowód na to, że "2+2=4", który zajmował 200 stron i zawierał jeden błąd. Na czym ten dowód polegał?


W dalszej części zajmiemy się szczegółowym wyjaśnieniem powyższego dowodu oraz dowodami alternatywnymi.

32.4 Równość zbiorów p=q rodem z teorii mnogości

[link widoczny dla zalogowanych]
@Anglojęzyczna Wikipedia
W matematyce zbiór jest definiowany jako kolekcja dobrze zdefiniowanych odrębnych obiektów. Różne obiekty tworzące zbiór nazywane są elementami zbioru. Zasadniczo elementy zbiorów można zapisać w dowolnej kolejności, ale nie powinny się powtarzać. Zbiór jest zwykle reprezentowany przez wielką literę. W podstawowej teorii zbiorów dwa zbiory mogą być równoważne, równe lub nierówne sobie. W tym artykule omówimy, co oznaczają równy i równoważny zbiór z przykładami, a także różnicę między nimi.

Definicja 1
Czym są zbiory równe?

Dwa zbiory p i q mogą być równe tylko wtedy, gdy każdy element zbioru p jest również elementem zbioru q. Ponadto, jeśli dwa zbiory są podzbiorami siebie nawzajem, to mówi się, że są równe. Jest to reprezentowane przez:
p=q <=> (p=>q)*(q=>p)

Jeśli warunek omówiony powyżej nie jest spełniony, wówczas zbiory są nazywane nierównymi. Jest to reprezentowane przez:
p##q
Gdzie:
## - zbiory różne na mocy definicji


Powyższy cytat to 100% zgodność z algebrą Kubusia, dlatego zmieniłem tu notację ma zgodną z AK.
1.
p=>q =1 – wtedy i tylko wtedy gdy zbiór p jest (=1) podzbiorem => zbioru q
Inaczej:
p=>q =0 – wtedy i tylko wtedy gdy zbiór p nie jest (=0) podzbiorem => zbioru q
2.
Matematycznie zachodzi tożsamość pojęć:
Zbiory równe p=q z aktualnej matematyki = Zbiory tożsame p=q z algebry Kubusia

Prawo Irbisa dla zbiorów:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q (A1) i jednocześnie zbiór q jest podzbiorem => zbioru p (B3)
A1B3: p=q <=> (A1: p=>q)*(B3: q=>p)= A1B3: p<=>q
Prawo Irbisa znane jest każdemu matematykowi.

Jak widzimy, prawo Irbisa jest w aktualnej matematyce teoretycznie znane, ale w praktyce nieznane bo jest sprzeczne z definicją równoważności p<=>q rodem z teorii mnogości (pkt. 32.5)

32.4.1 Komentarz do prawa Irbisa na gruncie algebry Kubusia

Kod:

T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
      ##        ##           ##        ##            ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5:  p+~q

Prawa Kubusia:        | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q  | A1: p=>q  = A4:~q=>~p
B1: p~>q = B2:~p=>~q  | B2:~p=>~q = B3: q=>p

Prawa Tygryska:       | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p   | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p   | B1: p~>q  = B4:~q~>~p
Gdzie:
p=>q = ~p+q - definicja warunku wystarczającego =>
p~>q = p+~q - definicja warunku koniecznego ~>
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


I Prawo Słonia dla zbiorów:
W algebrze Kubusia w zbiorach zachodzi tożsamość [=] pojęć:
A1: p=>q - warunek wystarczający => [=] A1: p=>q - relacja podzbioru => [=] A1: p=>q - matematyczne twierdzenie proste
A1: p=>q = ~p+q

Matematyczne twierdzenie proste:
A1: p=>q =1 – wtedy i tylko wtedy gdy zbiór p jest (=1) podzbiorem => zbioru q
Inaczej:
A1: p=>q =0 – wtedy i tylko wtedy gdy zbiór p nie jest (=0) podzbiorem => zbioru q
##
Matematyczne twierdzenie odwrotne (względem A1):
B3: q=>p =1 – wtedy i tylko wtedy gdy zbiór q jest (=1) podzbiorem => zbioru p
Inaczej:
B3: q=>p =0 – wtedy i tylko wtedy gdy zbiór q nie jest (=0) podzbiorem => zbioru p

Matematycznie zachodzi:
A1: Twierdzenie proste p=>q = ~p+q ## Twierdzenie odwrotne B3: q=>p = ~q+p
Gdzie:
## - twierdzenia różne na mocy definicji

32.4.2 Tożsamość zbiorów nieskończonych

Przykład działania prawa Irbisa w zbiorach nieskończonych to równoważność Pitagorasa TP<=>SK.

Prawo Irbisa dla równoważności Pitagorasa TP<=>SK:
Dwa zbiory TP i SK są tożsame TP=SK wtedy i tylko wtedy gdy znajdują się w relacji równoważności TP<=>SK (i odwrotnie)
A1B3: TP=SK <=> (A1: TP=>SK)*(B3: SK=>TP) = A1B3: TP<=>SK
To samo w zapisie formalnym:
A1B3: p=q <=> (A1: p=>q)*(B3: q=>p) = A1B3: p<=>q
Gdzie:
A1: TP=>SK – matematyczne twierdzenie proste Pitagorasa (udowodnione wieki temu)
B3: SK=>TP – matematyczne twierdzenie odwrotne Pitagorasa (udowodnione wieki temu)

Dla B3 skorzystajmy z prawa Tygryska:
B3: q=>p = B1: p~>q

Stąd mamy tożsamą wersję równoważności Pitagorasa:
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) =1*1=1
Nasz przykład:
A1B1: TP<=>SK = (A1: TP=>SK)*(B1: TP~>SK) =1*1=1
Lewą stronę czytamy:
Trójkąt jest prostokątny TP wtedy i tylko wtedy gdy zachodzi w nim suma kwadratów SK
Prawą stronę czytamy:
Bycie trójkątem prostokątnym TP jest warunkiem koniecznym ~> (B1) i wystarczającym => (A1) do tego, by w trójkącie tym zachodziła suma kwadratów SK
Innymi słowy:
Do tego by w trójkącie zachodziła suma kwadratów (SK) potrzeba ~> (B1) i wystarcza => (A1) by ten trójkąt był prostokątny TP

Ta definicja równoważności A1B1: p<=>q jest powszechnie znana, nie tylko matematykom.
Dowód:
Klikamy na goglach:
„koniecznym i wystarczającym”
Wyników: kilkadziesiąt tysięcy
„potrzeba i wystarcza”
Wyników: Kilkadziesiąt tysięcy

Wniosek:
Równoważność Pitagorasa TP<=>SK definiuje tożsamość zbiorów TP=SK

Co oznacza tożsamość zbiorów TP=SK?
Każdy element w zbiorze trójkątów prostokątnych TP ma swój jedyny, unikalny odpowiednik w zbiorze trójkątów ze spełnioną sumą kwadratów SK (i odwrotnie)

Twardy dowód nieznajomości prawa Irbisa w logice matematycznej ziemskich matematyków.
Klikamy na goglach:
„równoważność Pitagorasa”
Wyników: 4
Oczywiście wszystkie linki prowadzą do algebry Kubusia.

32.4.3 Tożsamość zbiorów skończonych

Przykład 1
Działanie definicji równoważności p<=>q z pierwszej części cytatu rodem z 7 klasy szkoły podstawowej.
Weźmy dwa zbiory:
p=[Tygrysek, Prosiaczek, Słoń]
q=[Słoń, Prosiaczek, Tygrysek]
A1B3: p<=>q = (A1: p=>q)*(B3: q=>p) =1*1=1
Dowód:
Każdy zbiór jest podzbiorem => siebie samego
Kolejność elementów w zbiorze jest bez znaczenia

Prawo Irbisa:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy znajdują się w relacji równoważności p<=>q (i odwrotnie)
A1B3: p=q <=> (A1: p=>q)*(B3: q=>p) = A1B3: p<=>q
Nasz przykład – twierdzenie proste A1:
A1: p=>q =1 – zbiór p jest (=1) podzbiorem => zbioru q
Dowód:
A1: p=[Tygrysek, Prosiaczek, Słoń] => q=[Słoń, Tygrysek, Prosiaczek] =1 – zbiór p jest podzbiorem => q
##
Nasz przykład – twierdzenie odwrotne B3:
B3: q=>p =1 – zbiór q jest (=1) podzbiorem => zbioru p
Dowód:
B3: q=[Słoń, Prosiaczek, Tygrysek] => p=[Tygrysek, Prosiaczek, Słoń]=1 – zbiór q jest podzbiorem => p

Gdzie:
## - twierdzenia różne na mocy definicji

Wniosek na mocy prawa Irbisa:
Zbiór p jest tożsamy ze zbiorem q (p=q), bo kolejność umieszczenia elementów w zbiorze jest bez znaczenia

32.5 Równoważność zbiorów p<=>q rodem z teorii mnogości

Weźmy drugą część tego samego cytatu z Wikipedii:
[link widoczny dla zalogowanych]
@Wikipedia
Definicja 2
Czym są zbiory równoważne?

Aby były równoważne, zbiory powinny mieć tę samą kardynalność. Oznacza to, że powinna istnieć jednoznaczna korespondencja między elementami obu zbiorów. Tutaj jednoznaczna korespondencja oznacza, że dla każdego elementu w zbiorze A istnieje element w zbiorze B, dopóki zbiory nie zostaną wyczerpane.

Definicja A: Jeżeli dwa zbiory A i B mają tę samą moc , to istnieje funkcja celu ze zbioru A do B.
Definicja B: Dwa zbiory A i B są równoważne, jeżeli mają tę samą moc, tj. n ( A ) = n ( B ) .

Ogólnie rzecz biorąc, możemy powiedzieć, że dwa zbiory są sobie równoważne, jeśli liczba elementów w obu zbiorach jest równa. I nie jest konieczne, aby miały te same elementy lub były podzbiorem siebie nawzajem.


Na mocy powyższego zapisujemy definicję równoliczności dwóch zbiorów p i q.

Definicja równoliczności "~" zbiorów p i q:
Dwa zbiory p i q są równoliczne p~q wtedy i tylko wtedy gdy mają identyczną liczbę elementów:
p~q =1 – wtedy i tylko wtedy gdy mają (=1) identyczną liczbę elementów
Inaczej:
p~q =0 – wtedy i tylko wtedy gdy zbiory p i q nie mają (=0) identycznej liczby elementów
Gdzie:
"~" - symbol równoliczności zbiorów

Stąd mamy:
Definicja równoważności p<=>q rodem z teorii mnogości:
Dwa zbiory p i q są równoważne p<=>q wtedy i tylko wtedy gdy są równoliczne p~q

Przykład działania definicji równoważności p<=>q rodem z teorii mnogości.

Przykład 2
Weźmy dwa zbiory:
p=[Tygrysek, Prosiaczek, Słoń]
q=[Słoń, Prosiaczek, Tygrysek]
p~q=1 – wtedy i tylko wtedy gdy zbiory p i q są równoliczne

Jak widzimy definicja równoliczności „~” jest tu spełniona, zatem spełniona jest także definicja równoważności p<=>q rodem z teorii mnogości.
p<=>q [=] p~q

Definicja tożsamości logicznej [=]:
Prawdziwość dowolnej strony tożsamości logicznej [=] wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej [=] wymusza fałszywość drugiej strony

Zauważmy, że w przykładzie 2 spełnione jest też prawo Irbisa rodem z 7 klasy szkoły podstawowej.

Prawo Irbisa dla zbiorów:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q (A1) i jednocześnie zbiór q jest podzbiorem => zbioru p (B3)
A1B3: p=q <=> (A1: p=>q)*(B3: q=>p)= A1B3: p<=>q
Prawo Irbisa znane jest każdemu matematykowi.

Jak widzimy, prawo Irbisa jest w aktualnej matematyce teoretycznie znane, ale w praktyce nieznane bo jest sprzeczne z definicją równoważności p<=>q rodem z teorii mnogości.
Zauważmy, że definicja równoliczności p~q pokrywa się z definicją równoważności p<=>q (prawo Irbisa) wtedy i tylko wtedy gdy zbiory p i q będą tożsame p=q, co w przykładzie 2 jest spełnione.
W każdym innym przypadku zbiorów równolicznych p~q definicja równoważności p<=>q rodem z 7 klasy szkoły podstawowej (prawo Irbisa) nie jest spełniona

Dowody na przykładach.

Przykład 3
p=[Tygrysek, Prosiaczek, Słoń]
q=[Słoń, Prosiaczek, Kubuś]
p<=>q =0

Przykład 4
p=[Tygrysek, Prosiaczek, Słoń]
q=[mydło, powidło, złote gacie]
p<=>q =0
Doskonale widać, że zbiorów q równolicznych do zbioru p można zapisać nieskończenie wiele, ale tylko w jedynym, jedynym przypadku (gdy zbiory p i q będą tożsame) spełniona będzie definicja równoważności p<=>q rodem z 7 klasy szkoły podstawowej (prawo Irbisa)

Prawo Irbisa na poziomie 7 klasy szkoły podstawowej.

Prawo Irbisa dla równoważności Pitagorasa TP<=>SK:
Dwa zbiory TP i SK są tożsame TP=SK wtedy i tylko wtedy gdy znajdują się w relacji równoważności TP<=>SK (i odwrotnie)
A1B3: TP=SK <=> (A1: TP=>SK)*(B3: SK=>TP) = A1B3: TP<=>SK
To samo w zapisie formalnym:
A1B3: p=q <=> (A1: p=>q)*(B3: q=>p) = A1B3: p<=>q
Gdzie:
A1: TP=>SK – matematyczne twierdzenie proste Pitagorasa (udowodnione wieki temu)
B3: SK=>TP – matematyczne twierdzenie odwrotne Pitagorasa (udowodnione wieki temu)

Wnioski:
Definicja równoliczności zbiorów „~” jest matematycznym śmieciem w całym obszarze logiki matematycznej, bowiem z punktu widzenia logiki matematycznej o niczym nie rozstrzyga.
1.
Nie rozstrzyga o równoważności p<=>q zbiorów tożsamych, czego dowód mamy wyżej
2.
Nie rozstrzyga o implikacji prostej p|=>q (pkt. 14.0) i odwrotnej p|~>q (pkt. 15.0) bowiem tu z definicji zbiory p i q nie mogą być równoliczne
3.
Nie rozstrzyga o istnieniu elementu wspólnego zbiorów p~~>q, bowiem tu zbiory równoliczne mogą mieć wspólny element p~~>q =1 (przykład 3) albo mogą nie mieć elementu wspólnego p~~>q=0 (przykład 4)

Podsumowując:
Definicja równoliczności zbiorów p~q będąca matematycznym fundamentem teorii mnogości jest matematycznym śmieciem, matematycznie zbędnym!

… zatem idzie do piekła na wieczne piekielne męki.

32.5.1 Uproszony dowód śmieciowości „teorii mnogości”

Definicja równoliczności zbiorów:
Dwa zbiory p i q są równoliczne p~q wtedy i tylko wtedy gdy mają tą samą liczbę elementów
p~q =1 - wtedy i tylko wtedy gdy mają taką samą liczbę elementów
Inaczej:
p~q =0
Gdzie:
"~" znaczek równoliczności

Definicja równoliczności (p~q) z teorii mnogości wymaga by zbiory p i q miały identyczną ilość elementów nie interesując się jakie to elementy, zatem zbiory p i q mogą zawierać dowolne śmiecie byleby zgadzała się liczba tych śmieci.

Matematycznie ziemska definicja równoliczności p~q zbiorów jest poprawna, bowiem nie pokażemy tu kontrprzykładu typu zbiory p i q są równoliczne p~q=1 i jednocześnie te same zbiory nie są równoliczna p~q=0
Dowód iż definicja równoliczności zbiorów p~q jest gównem polega na udowodnieniu totalnej jej nieprzydatności do czegokolwiek w logice matematycznej!

Definicja równoliczności zbiorów p~q jest potwornie śmierdzącym gównem bo:
Weźmy dwa zbiory p i q
p=[tygrysek, prosiaczek, słoń]
q=[słoń, prosiaczek, sraczka]

Pytanie wstępne:
Czy zbiory p i q są równoliczne?
p~q =1
TAK!

Pytanie 1.
Czy definicja równoliczności p~q rozstrzyga o zachodzącej tu relacji podzbioru =>?
p=>q =1
Odpowiedź:
NIE!

Pytanie 2.
Czy definicja równoliczności p~q rozstrzyga o zachodzącej tu relacji nadzbioru ~>?
p~>q =1
Odpowiedź:
NIE!

Pytanie 3.
Czy definicja równoliczności p~q rozstrzyga o zachodzącej tu relacji równoważności <=> w rozumieniu 7 klasy szkoły podstawowej (równoważność Pitagorasa)?
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) =1*1=1
Odpowiedź:
NIE!

Pytanie 4.
Czy definicja równoliczności p~q rozstrzyga o istnieniu tu elementu wspólnego zbiorów ~~>?
p~~>q = p*q =1
Odpowiedź:
NIE!

Dla ostatniego NIE podajemy kontrprzykład:
p=[tygrysek, prosiaczek, słoń]
r=[mydło, powidło, złote gacie]
Jak widzimy równoliczność zbiorów p~r jest spełniona:
p~r =1
Natomiast definicja elementu wspólnego zbiorów p~~>r nie jest spełniona:
p~~>r = p*r =0

Podsumowanie:
Fundament "teorii mnogości" którym jest "równoliczność zbiorów p~q" to potwornie śmierdzące gówno dokładnie z powodu nieprzydatności tego gówna do czegokolwiek w logice matematycznej czego dowód mamy w punktach 1-4 wyżej.

32.5 Co jest celem logiki matematycznej, algebry Kubusia?

Celem jedynie poprawnej w naszym Wszechświecie logiki matematycznej zwanej algebrą Kubusia jest przypisanie dowolnego zdania warunkowego „Jeśli p to q” spełniającego algorytm Puchacza (pkt. 2.11) do jednego z pięciu możliwych operatorów implikacyjnych.
Uwaga:
To jest cel jedyny i wyłączny, absolutnie niczym więcej logika matematyczna definiowana zdaniami warunkowymi „Jeśli p to q” się nie zajmuje.

Definicje wszystkich możliwych operatorów implikacyjnych definiowanych zdaniami warunkowymi „Jeśli p to q” zawarto w punktach 2.12 do 2.15 plus rozdział 7.2 (spójnik „albo”($))
1.
p|=>q – implikacja prosta (2.12)
p||=>q – operator implikacji prostej (2.12.1)
2.
p|~>q – implikacja odwrotna (2.13)
p||~>q – operator implikacji odwrotnej (2.13.1)
3.
p<=>q – równoważność (2.14)
p|<=>q – operator równoważności (2.14.1)
4.
p|~~>q – chaos (2.15)
p||~~>q – operator chaosu (2.15.1)
5.
p$q – spójnik „albo” (7.2)
p|$q – operator „albo” (7.2.1)

32.6 Próba cywilizacji dziczy zwanej teorią mnogości

Definicja równoliczności zbiorów:
Dwa zbiory p i q są równoliczne p~q wtedy i tylko wtedy gdy mają tą samą liczbę elementów
p~q =1 - wtedy i tylko wtedy gdy p i q mają (=1) taką samą liczbę elementów
Inaczej:
p~q =0 – wtedy i tylko wtedy gdy p i q nie mają (=0) takiej samej liczby elementów
Gdzie:
"~" znaczek równoliczności

Definicja równoważności p<=>q rodem z teorii mnogości:
Dwa zbiory p i q są równoważne p<=>q wtedy i tylko wtedy gdy są równoliczne p~q

W niniejszym rozdziale pokażemy, że wciskanie na siłę definicji równoliczności zbiorów p~q do logiki matematycznej jest:
1.
Niewykonalne dla zbiorów nieskończonych, bo nie da policzyć ile jest elementów w zbiorze nieskończonym np. zbiór liczb podzielnych przez 2
P2=[2,4,6,8..]
To jest oczywistość, która nie potrzebuje dowodu.
2.
Sztuką dla sztuki, czyli w zbiorach skończonych zbędnym dublowaniem definicji z algebry Kubusia
Tu spróbujemy:
- podpiąć definicję równoliczności p~q pod definicję równoważności p<=>q rodem z 7 klasy SP
- podpiąć definicję braku równoliczności ~(p~q) pod definicję implikacji prostej p|=>q z AK
- podpiąć definicję braku równoliczności ~(p~q) pod definicję implikacji odwrotnej p|~>q z AK
3.
W algebrze Kubusia istnieją bezcenne zbiory skończone rozłączne wykorzystywane w definicji kontrprzykładu i do tego faktu nie da się fizycznie doczepić równoliczności zbiorów p~q bo nie znamy dziedziny na których zbiory skończone p i q operują i w ogóle „nie wiemy w którym kościele dzwony biją”.

32.7 Cywilizacja dziczy zwanej teorią mnogości w równoważności p<=>q

Zobaczmy na początek jedyną poprawną definicję równoważności p<=>q w zbiorach na gruncie algebry Kubusia i dopiero po tym fakcie będziemy się zastanawiać jak tu wcisnąć to potwornie śmierdzące gówno zwane równolicznością zbiorów p~q.
Kod:

T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
      ##        ##           ##        ##            ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5:  p+~q

Prawa Kubusia:        | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q  | A1: p=>q  = A4:~q=>~p
B1: p~>q = B2:~p=>~q  | B2:~p=>~q = B3: q=>p

Prawa Tygryska:       | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p   | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p   | B1: p~>q  = B4:~q~>~p
Gdzie:
p=>q = ~p+q - definicja warunku wystarczającego =>
p~>q = p+~q - definicja warunku koniecznego ~>
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

I Prawo Słonia dla zbiorów:
W algebrze Kubusia w zbiorach zachodzi tożsamość [=] pojęć:
A1: p=>q - warunek wystarczający => [=] A1: p=>q - relacja podzbioru => [=] A1: p=>q - matematyczne twierdzenie proste
A1: p=>q = ~p+q
##
II Prawo Słonia dla zbiorów:
B1: p~>q - warunek konieczny ~> [=] B1: p~>q - relacja nadzbioru ~> [=] B3: q=>p - matematyczne twierdzenie odwrotne (w odniesieniu do A1)
Prawo Tygryska:
B1: p~>q = B3: q=>p = p+~q
Gdzie:
[=], „=”, <=> - tożsame znaczki tożsamości logicznej
<=> - wtedy o tylko wtedy
## - różne na mocy definicji
p i q musi być wszędzie tymi samymi p i q, inaczej błąd podstawienia

Definicja tożsamości logicznej [=]:
Prawdziwość dowolnego członu z tożsamości logicznej [=] wymusza prawdziwość pozostałych członów.
Fałszywość dowolnego członu z tożsamości logicznej [=] wymusza fałszywość pozostałych członów.

Na mocy prawa Słonia i jego powyższej interpretacji, możemy dowodzić prawdziwości/fałszywości dowolnych zdań warunkowych "Jeśli p to q" mówiących o zbiorach metodą ”nie wprost"

1.
Matematyczna definicja równoważności p<=>q (znana każdemu matematykowi):

Równoważność p<=>q to jednoczesna prawdziwość matematycznego twierdzenia prostego A1: p=>q i matematycznego twierdzenia odwrotnego B3: q=>p
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q, twierdzenie proste A1.
B3: q=>p =1 - zajście q jest (=1) wystarczające => dla zajścia p, twierdzenie odwrotne (względem A1)
Stąd mamy:
A1B3: p<=>q = (A1: p=>q)*(B3: q=>p) =1*1 =1

2.
Definicja równoważności wyrażona relacjami podzbioru =>

Równoważność p<=>q to relacja podzbioru => zachodząca w dwie strony
A1: p=>q =1 - wtedy i tylko wtedy gdy zbiór p jest (=1) podzbiorem => zbioru q
B3: q=>p =1 - wtedy i tylko wtedy gdy zbiór q jest (=1) podzbiorem => zbioru p
Stąd mamy:
A1B3: p<=>q = (A1: p=>q)*(B3: q=>p) =1*1 =1

Stąd mamy wprowadzone kluczowe w równoważności prawo Irbisa.

Prawo Irbisa:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q (A1: p=>q) i jednocześnie zbiór q jest podzbiorem => zbioru p (B3: q=>p)
A1B3: p=q <=> (A1: p=>q)*(B3: q=>p)= A1B3: p<=>q
Tą definicję tożsamości zbiorów zna każdy matematyk.

Innymi słowy:
Każda równoważność prawdziwa p<=>q definiuje tożsamość zbiorów p=q (i odwrotnie)
A1B3: p=q <=> A1B3: p<=>q = (A1: p=>q)*(B3: q=>p)

Prawo Tygryska:
B3: q=>p = B1: p~>q
B1: p~>q =1 – wtedy i tylko wtedy gdy zajście p jest (=1) konieczne ~> dla zajścia q

Stąd prawo Irbisa możemy też zapisać w relacjach podzbioru => i nadzbioru ~>.

Prawo Irbisa:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy zbiór p jest (=1) podzbiorem => zbioru q (A1) i jednocześnie zbiór p jest (=1) nadzbiorem ~> zbioru q (B1)
A1: p=>q =1 - wtedy i tylko wtedy gdy zbiór p jest (=1) podzbiorem => zbioru q
B1: p~>q =1 - wtedy i tylko wtedy gdy zbiór p jest (=1) nadzbiorem ~> zbioru q
Stąd mamy:
A1B1: p=q <=> (A1: p=>q)*(B1: p~>q) = A1B1: p<=>q
Tożsamy dowód bezpośredni:
Na mocy definicji podzbioru => i nadzbioru ~> każdy zbiór jest jednocześnie podzbiorem => (A1) i nadzbiorem ~> (B1) siebie samego (pkt. 16.1.2 i 16.1.3)

32.7.1 Tabela prawdy równoważności p<=>q w zbiorach

Korzystając z prawa Słonia prawo Irbisa możemy też zapisać w warunkach koniecznym ~> (B1) i wystarczającym => (A1).

Prawo Irbisa:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy zajście p jest konieczne ~> (B1) i wystarczające => (A1) dla zajścia q
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
Stąd mamy:
A1B1: p=q <=> (A1: p=>q)*(B1: p~>q) = A1B1: p<=>q

Stąd mamy tabelę prawdy równoważności p<=>q z uwzględnieniem prawa Irbisa.
Kod:

TR
Tabela prawdy równoważności p<=>q z uwzględnieniem prawa Irbisa
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w równoważności p<=>q
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
Stąd mamy definicję równoważności A1B1: p<=>q w równaniu logicznym:
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) =1*1 =1

       A1B1:       A2B2:      |     A3B3:       A4B4:
A:  1: p=>q=1  = 2:~p~>~q=1  [=] 3: q~>p=1  = 4:~q=>~p=1  [=] 5: ~p+q =1
       ##           ##              ##           ##               ##
B:  1: p~>q=1  = 2:~p=>~q=1  [=] 3: q=>p=1  = 4:~q~>~p=1  [=] 5:  p+~q=1
-----------------------------------------------------------------------
Równoważność <=>:             |     Równoważność <=>:
AB: 1: p<=>q=1 = 2:~p<=>~q=1 [=] 3: q<=>p=1 = 4:~q<=>~p=1 [=] 5: p*q+~p*~q
definiuje tożsamość zbiorów:  |     definiuje tożsamość zbiorów:
AB: 1: p=q     # 2:~p=~q      |  3: q=p     # 4:~q=~p
Gdzie:
# - różne w znaczeniu iż jedna strona znaczka # jest negacją drugiej strony
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
"=",[=],<=> - tożsame znaczki tożsamości logicznej

I Prawo Sowy dla równoważności p<=>q:
Prawdziwość dowolnego zdania serii Ax wymusza prawdziwość wszystkich zdań serii Ax
##
II Prawo Sowy dla równoważności p<=>q:
Prawdziwość dowolnego zdania serii Bx wymusza prawdziwość wszystkich zdań serii Bx
Gdzie:
## - różne na mocy definicji
Tożsamość zbiorów jest przemienna, stąd mamy:
Kod:

Równoważność <=>:             |     Równoważność <=>:
       A1B1:        A3B3:     |     A2B2:        A4B4:
AB: 1: p<=>q=1 = 3: q<=>p=1  [=] 2: ~p<=>~q = 4:~q<=>~p=1 [=] 5: p*q+~p*~q
definiuje tożsamość zbiorów:  |     definiuje tożsamość zbiorów:
AB: 1: p=q     = 3: q=p       #  2: ~p=~q   = 4:~q=~p
Gdzie:
Gdzie:
# - różne w znaczeniu iż jedna strona znaczka # jest negacją drugiej strony


32.7.2 Równoliczność p~q z TM vs definicja równoważności p<=>q z MK

Zastanówmy się jak uwzględnić równoliczność zbiorów p~q o definicji z teorii mnogości by nie obalić równoważności p<=>q rodem z matematyki klasycznej na poziomie 7 klasy szkoły podstawowej (równoważność Pitagorasa)

Definicja równoliczności zbiorów:
Dwa zbiory p i q są równoliczne p~q wtedy i tylko wtedy gdy mają tą samą liczbę elementów
p~q =1 - wtedy i tylko wtedy gdy mają taką samą liczbę elementów
Inaczej:
p~q =0
Gdzie:
"~" znaczek równoliczności

Definicja równoważności p<=>q rodem z teorii mnogości:
Dwa zbiory p i q są równoważne p<=>q wtedy i tylko wtedy gdy są równoliczne p~q

Prawo Irbisa:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q (A1: p=>q) i jednocześnie zbiór q jest podzbiorem => zbioru p (B3: q=>p)
A1B3: p=q <=> (A1: p=>q)*(B3: q=>p) = A1B3: p<=>q
Tą definicję tożsamości zbiorów zna każdy matematyk.

Na mocy prawa Irbisa jedyna poprawna definicja równoważności w zbiorach p<=>q uwzględniająca równoliczność zbiorów p~q to.

Prawo Irbisa z uwzględnieniem równoliczności p~q z TM:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy są równoliczne (p~q) oraz zbiór p jest podzbiorem => zbioru q (A1: p=>q) i jednocześnie zbiór q jest podzbiorem => zbioru p (B3: q=>p)
A1B3: p=q <=> (A1: p=>q)*(B3: q=>p)= A1B3: p<=>q

Zauważmy że w powyższej definicji wstawka “gdy są równoliczne (p~q)” jest tu nikomu niepotrzebną „sztuką dla sztuki” bo z prawa Irbisa wiadomo, że dowolne zbiory tożsame p=q z definicji są równoliczne p~q.

Podsumowując:
Definicja równoliczności zbiorów p~q w definiowaniu tożsamości zbiorów p=q to „sztuka dla sztuki”, psu na budę potrzebna.

32.8 Cywilizacja dziczy zwanej teorią mnogości w implikacji prostej p|=>q
Kod:

T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
      ##        ##           ##        ##            ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5:  p+~q

Prawa Kubusia:        | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q  | A1: p=>q  = A4:~q=>~p
B1: p~>q = B2:~p=>~q  | B2:~p=>~q = B3: q=>p

Prawa Tygryska:       | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p   | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p   | B1: p~>q  = B4:~q~>~p
Gdzie:
p=>q = ~p+q - definicja warunku wystarczającego =>
p~>q = p+~q - definicja warunku koniecznego ~>
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Definicja kontrprzykładu w zbiorach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane elementem wspólnym zbiorów p~~>~q=p*~q
Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)

Definicja implikacji prostej p|=>q:
Implikacja prosta p|=>q w logice dodatniej (bo q) to spełniony wyłącznie warunek wystarczający => między tymi samymi punktami i w tym samym kierunku.
A1: p=>q =1 - p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla zajścia q
Stąd:
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) = 1*~(0)=1*1=1
Czytamy:
Implikacja prosta p|=>q w logice dodatniej (bo q) jest spełniona (=1) wtedy i tylko wtedy gdy zajście p jest wystarczające => dla zajścia q (A1: p=>q=1), ale nie jest konieczne ~> dla zajścia q (B1: p~>q=0)

Podstawmy definicję implikacji prostej p|=>q do matematycznych związków warunku wystarczającego => i koniecznego ~> z uwzględnieniem definicji kontrprzykładu, obowiązującego wyłącznie w warunku wystarczającym =>.
Kod:

IP:
Implikacja prosta p|=>q:
A1: p=>q =1 - p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla zajścia q
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) = 1*~(0)=1*1=1
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji prostej p|=>q
       A1B1:         A2B2:      |     A3B3:           A4B4:
A:  1: p=>q  =1  = 2:~p~>~q =1 [=] 3: q~>p  =1  =  4:~q=>~p =1
A': 1: p~~>~q=0                [=]                 4:~q~~>p =0
       ##             ##              ##              ##
B:  1: p~>q  =0  = 2:~p=>~q =0 [=] 3: q=>p  =0  =  4:~q~>~p =0
B':                2:~p~~>q =1 [=] 3: q~~>~p=1   

Prawa Kubusia:        | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q  | A1: p=>q  = A4:~q=>~p
B1: p~>q = B2:~p=>~q  | B2:~p=>~q = B3: q=>p

Prawa Tygryska:       | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p   | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p   | B1: p~>q  = B4:~q~>~p
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

I Prawo Sowy dla implikacji prostej p|=>q
Dla udowodnienia prawdziwości wszystkich zdań serii Ax potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Ax
##
II Prawo Sowy dla implikacji prostej p|=>q
Dla udowodnienia fałszywości wszystkich zdań serii Bx potrzeba i wystarcza udowodnić fałszywość dowolnego zdania serii Bx
Gdzie:
## - różne na mocy definicji

Uwagi:
1.
Na mocy definicji kontrprzykładu prawdziwe warunki wystarczające => w linii Ax wymuszają fałszywe kontrprzykłady Ax'
2.
Na mocy definicji kontrprzykładu fałszywe warunki wystarczające => w linii Bx wymuszają prawdziwe kontrprzykłady Bx'.

Prawa Słonia:
Warunek wystarczający => = Relacja podzbioru =>
Warunek konieczny ~> = Relacja nadzbioru ~>

Na mocy praw Słonia mamy definicję implikacji prostej p|=>q w relacjach podzbioru => i nadzbioru ~>

Definicja implikacji prostej p|=>q w relacji podzbioru => i nadzbioru ~>:
Implikacja prosta p|=>q w logice dodatniej (bo q) to spełniona wyłącznie relacja podzbioru => między tymi samymi punktami i w tym samym kierunku.
A1: p=>q =1 – gdy zbiór p jest (=1) podzbiorem => zbioru q
B1: p~>q =0 – gdy zbiór p nie jest (=0) nadzbiorem ~> zbioru q
Stąd:
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) = 1*~(0)=1*1=1
Czytamy:
Implikacja prosta p|=>q w logice dodatniej (bo q) jest spełniona (=1) wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q (A1) i jednocześnie nie jest nadzbiorem ~> zbioru q (B1)

Z definicji implikacji prostej p|=>q w zbiorach wynika że:
Zbiór p musi być podzbiorem => zbioru q oraz że zbiory p i q nie mogą być tożsame ~(p=q)

32.8.1 Równoliczność p~q z TM vs definicja implikacji prostej p|=>q z AK

Zastanówmy się jak uwzględnić równoliczność zbiorów p~q o definicji z teorii mnogości w definicji implikacji prostej p|=>q.

Definicja równoliczności zbiorów:
Dwa zbiory p i q są równoliczne p~q wtedy i tylko wtedy gdy mają tą samą liczbę elementów
p~q =1 - wtedy i tylko wtedy gdy zbiory p i q mają taką samą liczbę elementów
Inaczej:
p~q =0
Gdzie:
"~" znaczek równoliczności

Definicja równoważności p<=>q rodem z teorii mnogości:
Dwa zbiory p i q są równoważne p<=>q wtedy i tylko wtedy gdy są równoliczne p~q

Prawo Irbisa:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q (A1: p=>q) i jednocześnie zbiór q jest podzbiorem => zbioru p (B3: q=>p)
A1B3: p=q <=> (A1: p=>q)*(B3: q=>p)= A1B3: p<=>q
Tą definicję tożsamości zbiorów zna każdy matematyk.

Rozwiązanie:
Definicja implikacji prostej p|=>q z uwzględnieniem definicji równoliczności p~q:
Implikacja prosta p|=>q w logice dodatniej (bo q) to brak równoliczności zbiorów p i q ~(p~q) oraz spełniona wyłącznie relacja podzbioru => między tymi samymi punktami i w tym samym kierunku.
A1: p=>q =1 – gdy zbiór p jest (=1) podzbiorem => zbioru q
B1: p~>q =0 – gdy zbiór p nie jest (=0) nadzbiorem ~> zbioru q
Stąd:
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) = 1*~(0)=1*1=1

W implikacji prostej p|=>q zbiory p i q z definicji nie są tożsame, tak więc wstawka „brak równoliczności zbiorów p i q ~(p~q)” to nikomu niepotrzebna „sztuka dla sztuki”

32.9 Cywilizacja dziczy zwanej teorią mnogości w implikacji odwrotnej p|~>q

W algebrze Kubusia omówiona wyżej implikacja prosta p|=>q jest różna na mocy definicji ## od implikacji odwrotnej p|~>q ale problem z równolicznością zbiorów p~q tu występujący będzie identyczny jak w implikacji prostej p|=>q

Definicja implikacji odwrotnej p|~>q w relacji podzbioru => i nadzbioru ~>:
Implikacja odwrotna p|~>q w logice dodatniej (bo q) to spełniona wyłącznie relacja nadzbioru ~> między tymi samymi punktami i w tym samym kierunku.
A1: p=>q =0 – gdy zbiór p nie jest (=0) podzbiorem => zbioru q
B1: p~>q =1 – gdy zbiór p jest (=1) nadzbiorem ~> zbioru q
Stąd:
A1B1: p|~>q = ~(A1: p=>q)*(B1: p~>q) = ~(0)*1=1*1=1
Czytamy:
Implikacja odwrotna p|~>q w logice dodatniej (bo q) jest spełniona (=1) wtedy i tylko wtedy gdy zbiór p jest nadzbiorem ~> zbioru q (B1) i jednocześnie nie jest podzbiorem => zbioru q (A1)

Z definicji implikacji odwrotnej p|~>q w zbiorach wynika że:
Zbiór p musi być nadzbiorem ~> zbioru q oraz że zbiory p i q nie mogą być tożsame ~(p=q)


Ostatnio zmieniony przez rafal3006 dnia Czw 8:30, 23 Sty 2025, w całości zmieniany 2494 razy
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 36407
Przeczytał: 15 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Pon 0:02, 28 Paź 2024    Temat postu:

...

Ostatnio zmieniony przez rafal3006 dnia Pon 0:06, 28 Paź 2024, w całości zmieniany 1 raz
Powrót do góry
Zobacz profil autora
Wyświetl posty z ostatnich:   
Napisz nowy temat   Odpowiedz do tematu    Forum ŚFiNiA Strona Główna -> Metodologia / Forum Kubusia Wszystkie czasy w strefie CET (Europa)
Strona 1 z 1

 
Skocz do:  
Nie możesz pisać nowych tematów
Nie możesz odpowiadać w tematach
Nie możesz zmieniać swoich postów
Nie możesz usuwać swoich postów
Nie możesz głosować w ankietach

fora.pl - załóż własne forum dyskusyjne za darmo
Powered by phpBB © 2001, 2005 phpBB Group
Regulamin