Forum ŚFiNiA Strona Główna ŚFiNiA
ŚFiNiA - Światopoglądowe, Filozoficzne, Naukowe i Artystyczne forum - bez cenzury, regulamin promuje racjonalną i rzeczową dyskusję i ułatwia ucinanie demagogii. Forum założone przez Wuja Zbója.
 
 FAQFAQ   SzukajSzukaj   UżytkownicyUżytkownicy   GrupyGrupy   GalerieGalerie   RejestracjaRejestracja 
 ProfilProfil   Zaloguj się, by sprawdzić wiadomościZaloguj się, by sprawdzić wiadomości   ZalogujZaloguj 

Śmieci

 
Napisz nowy temat   Odpowiedz do tematu    Forum ŚFiNiA Strona Główna -> Metodologia / Forum Kubusia
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 35257
Przeczytał: 24 tematy

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Sob 19:51, 31 Paź 2020    Temat postu: Śmieci

Algebra Kubusia - matematyka języka potocznego
1.18 Funkcje logiczne dwuargumentowe

Spis treści
1.8 Aksjomatyka algebry Boole’a 2
1.8.1 Aksjomatyka minimalna algebry Boole'a 3
1.9 Sterowanie windą autorstwa 5-cio latków 6
1.10 Algorytm Wuja Zbója przejścia do logiki przeciwnej 9
1.10.1 Prawo Małpki 9
1.11 Równoważność K<=>T w świecie żywym 10
1.12 Definicja spójnika „lub”(+) 11
1.12.1 Definicja operatora „lub”(+) 12
1.12.2 Diagram operatora „lub"(|+) w zdarzeniach niepustych i rozłącznych 12
1.12.3 Definicja spójnika „lub”(+) w zdarzeniach rozłącznych 13
1.12.4 Przykład operatora „lub"(|+) w zdarzeniach niepustych i rozłącznych 14
1.13 Definicja spójnika „i”(*) 16
1.13.1 Definicja operatora „i”(|*) 16
1.13.2 Diagram operatora „i”(|*) w zdarzeniach niepustych i rozłącznych 17
1.13.3 Przykład operatora „i”(|*) w zdarzeniach 18
1.14 Opis tabeli zero-jedynkowej równaniami algebry Boole’a 19
1.14.1 Opis tabeli zero-jedynkowej w logice jedynek 20
1.14.2 Opis tabeli zero-jedynkowej w logice zer 22
1.15 Związek opisu tabel zero-jedynkowych w logice jedynek i w logice zer 23
1.15.1 Prawo Małpki 23
1.15.2 Definicja funkcji alternatywno-koniunkcyjnej 25
1.15.3 Tworzenie tabeli zero-jedynkowej dla funkcji logicznej Y 25
1.16 Funkcje logiczne dwuargumentowe 26
1.16.1 Tabela wszystkich możliwych funkcji dwuargumentowych 27
1.16.2 Tabela wszystkich możliwych operatorów dwuargumentowych 28
1.16.3 Prawo Grzechotnika 30
1.17 Definicja spójników zupełnych w języku potocznym 30
1.17.1 Prawo Puchacza dla spójników zupełnych w języku potocznym 30
1.17.2 Startowa funkcja logiczna 31




1.8 Aksjomatyka algebry Boole’a

Definicja funkcji logicznej Y dwóch zmiennych binarnych p i q:
Funkcja logiczna Y w logice dodatniej (bo Y) dwóch zmiennych binarnych p i q to cyfrowy układ logiczny dający na wyjściu binarnym Y jednoznaczne odpowiedzi na wszystkie możliwe wymuszenia na wejściach p i q.

Definicja minimalnej aksjomatyki algebry Boole’a:
Aksjomatyka minimalna algebry Boole’a to minimalny zestaw definicji i praw algebry Boole’a koniecznych i wystarczających do minimalizacji równań algebry Boole’a.

Definicja znaczka w logice matematycznej:
Znaczek w logice matematycznej to symbol zdefiniowany odpowiednią tabelą zero-jedynkową

W algebrze Kubusia zachodzi tożsamość znaczków:
Spójnik „i”(*) z języka potocznego = bramka AND (*) w technice = koniunkcja (*) w matematyce
Spójnik „lub”(+) z języka potocznego = bramka OR(+) w technice = alternatywa (+) w matematyce
Dowód w pkt. 1.9

Definicje spójników „i”(*) i „lub”(+):

I.
(*) - spójnik „i”(*) z języka potocznego człowieka

Znaczek tożsamy w matematyce:
(*) - znaczek koniunkcji
Znaczek tożsamy w technice:
(*) - bramka logiczna AND

Definicja zero-jedynkowa spójnika „i”(*):
Kod:

   p* q  Y=p*q
A: 1* 1  =1
B: 1* 0  =0
C: 0* 1  =0
D: 0* 0  =0
Definicja spójnika „i”(*) w logice jedynek:
Y=1 <=> p=1 i q=1
inaczej:
Y=0
Definicja spójnika „i”(*) w logice zer:
Y=0 <=> p=0 lub q=0
Inaczej:
Y=1


II.
(+) - spójnik „lub”(+) z języka potocznego człowieka

Znaczek tożsamy w matematyce:
(+) - znaczek alternatywy
Znaczek tożsamy w technice:
(+) - bramka logiczna OR

Definicja zero-jedynkowa spójnika „lub”(+):
Kod:

   p+ q  Y=p+q
A: 1+ 1  =1
B: 1+ 0  =1
C: 0+ 1  =1
D: 0+ 0  =0
Definicja spójnika „lub”(+) w logice jedynek:
Y=1 <=> p=1 lub q=1
inaczej:
Y=0
Definicja spójnika „lub”(+) w logice zer:
Y=0 <=> p=0 i q=0
Inaczej:
Y=1

Uwaga:
Przy wypełnianiu tabel zero-jedynkowych w rachunku zero-jedynkowym nie ma znaczenia którą logiką będziemy się posługiwać. W przypadku spójnika „lub”(+) użycie logiki zer jest najszybszym sposobem wypełnienia wynikowej kolumny zero-jedynkowej.

1.8.1 Aksjomatyka minimalna algebry Boole'a

Aksjomatyka minimalna algebry Boole’a to minimalny zestaw definicji i praw algebry Boole’a koniecznych i wystarczających do minimalizacji równań algebry Boole’a.

1.
1=prawda
0=fałsz
Matematyczne związki:
1=~(0)=~0 - prawda (1) to zaprzeczenie (~) fałszu (0)
0=~(1)=~1 - fałsz (0) to zaprzeczenie (~) prawdy (1)

2.
Prawo podwójnego przeczenia:
p =~(~p) - logika dodatnia (bo p) jest tożsama z zanegowaną (~) logiką ujemną (bo ~p)
Prawo zaprzeczenia logiki dodatniej (bo p):
~p=~(p) - logika ujemna (bo ~p) jest tożsama z zanegowaną (~) logiką dodatnią (bo p)

3.
Elementem neutralnym w spójniku „i”(*) jest jedynka
p*1=p - łatwe do zapamiętania przez analogię do zwykłego mnożenia: x*1=x
p+1=1 - to jedyny wyjątek nie mający odpowiednika w zwykłym dodawaniu

4.
Elementem neutralnym w spójniku „lub”(+) jest zero
p+0=p - łatwe do zapamiętania poprzez analogię do zwykłego dodawania: x+0=x
p*0=0 - łatwe do zapamiętania poprzez analogię do zwykłego mnożenia: x*0=0

5.
Definicja dziedziny D w zbiorach:
A: p+~p=D =1 - zbiór ~p jest uzupełnieniem zbioru p do wspólnej dziedziny (D)
B: p*~p=[] =0 - zbiory p i ~p są rozłączne, stąd ich iloczyn logiczny to zbiór pusty []=0
Definicja dziedziny D w zdarzeniach:
C: p+~p=D =1 - zdarzenie ~p jest uzupełnieniem zdarzenia p do wspólnej dziedziny (D)
D: p*~p=[] =0 - zdarzenia p i ~p są rozłączne, stąd ich iloczyn logiczny to zbiór pusty []=0

Przykłady:
5A
Zdanie zawsze prawdziwe w zbiorach:
Dowolna liczba naturalna jest podzielna przez 2 lub nie jest podzielna przez 2
D=LN=[1,2,3,4,5,6,7,8,9..] - zbiór liczb naturalnych, wspólna dziedzina dla P2 i ~P2
P2+~P2=LN =1 - zbiór ~P2=[1,3,5,7,9..] jest uzupełnieniem zbioru P2=[2,4,6,8..] do dziedziny LN
~P2=[LN-P2]=[1,3,5,7,9..] - zbiór liczb naturalnych LN pomniejszony o zbiór liczb parzystych P2
5B.
Zdanie zawsze fałszywe w zbiorach:
Dowolna liczba naturalna jest podzielna przez 2 i nie jest podzielna przez 2
P2*~P2 =[] =0 - zbiory P2=[2,4,6,8..] i ~P2=[1,3,5,7,9..] są rozłączne, stąd ich iloczyn logiczny to 0
Uwaga:
W matematyce zdanie zawsze prawdziwe (5A) i zdanie zawsze fałszywe (5B) to bezużyteczne śmieci.

5C.
Zdanie zawsze prawdziwe w zdarzeniach:
Jutro pójdziemy do kina lub nie pójdziemy do kina
Y = K+~K =D =1 - zdarzenie ~K jest uzupełnieniem zdarzenia K do wspólnej dziedziny D
D={K,~K} - zbiór wszystkich możliwych zdarzeń w dniu jutrzejszym, wspólna dziedzina D
Chwilą czasową jest tu cały jutrzejszy dzień.
5D.
Zdanie zawsze fałszywe w zdarzeniach:
Jutro pójdziemy do kina i nie pójdziemy do kina
Y = K*~K =[] =0 - zdarzenie ~K jest rozłączne ze zdarzeniem K
Chwilą czasową jest tu cały jutrzejszy dzień

6.
Spójniki „i”(*) i „lub”(+) są przemienne
p*q=q*p
p+q=q+p

7.
Prawo redukcji/powielania zmiennych binarnych:
p*p=p
p+p=p

8.
Prawa De Morgana:
p+q = ~(~p*~q)
p*q = ~(~p+~q)

9.
Obsługa wielomianów logicznych jest identyczna jak wielomianów klasycznych pod warunkiem przyjęcia analogii:
Spójnik „lub”(+) to odpowiednik sumy algebraicznej (+) np. x+y
Spójnik „i”(*) to odpowiednik iloczynu algebraicznego (*) np. x*y
Stąd mamy:
Kolejność wykonywania działań w wielomianach logicznych:
przeczenie (~), nawiasy, „i”(*), „lub”(+)
bo robimy analogię do wielomianów klasycznych.

Przykład mnożenia wielomianów logicznych:
Niech będzie dana funkcja logiczna Y:
Y = (p+~q)*(~p+q) - postać koniunkcyjno-alternatywna (koniunkcja alternatyw)
Minimalizujemy:
Y = (p+~q)*(~p+q)
Y = p*~p + p*q +~q*~p + ~q*q - mnożenie logiczne każdego z każdym (jak w matematyce klasycznej)
Y = 0 + p*q + ~q*~p + 0 - prawo algebry Boole'a: x*~x=0
Y = p*q + ~q*~p - prawo algebry Boole'a: x+0=x
Y = p*q + ~p*~q - przemienność x*y=y*x
Stąd:
Nasza funkcja logiczna Y po minimalizacji przybiera postać:
Y = (p+~q)*(~p+q) = p*q + ~p*~q - funkcja alternatywno-koniunkcyjna (alternatywa koniunkcji)

Inny przykład wykorzystania praw algebry Boole’a.
Udowodnij prawo algebry Boole’a:
p + p*q =p
Dowód:
p + p*q = p*1+p*q = p*(1+q) = p*1 =p
Wykorzystane prawa algebry Boole’a:
p=p*1
Wyciągnięcie zmiennej p przed nawias identyczne jak w wielomianach klasycznych
p*(1+q)
1+q =1
p*1=p
cnd

Każde z praw logiki matematycznej można udowodnić w rachunku zero-jedynkowym.
Kod:

Definicja zero-jedynkowa spójnika „lub”(+):
   p+ q  Y=p+q
A: 1+ 1  =1
B: 1+ 0  =1
C: 0+ 1  =1
D: 0+ 0  =0


Przykład 1.
Udowodnij w rachunku zero-jedynkowym prawo rachunku zero-jedynkowego:
p+1 =1
Mamy tu:
p - zmienna binarna, mogąca przyjmować w osi czasu wartości logiczne 1 albo 0.
q=1 - stała binarna, twarda jedynka niezależna od czasu.
Korzystamy z definicji spójnika „lub”(+):
Kod:

Dla p i q=1 mamy:
   p+ q=1  Y=p+1
A: 1+ 1    =1
B: 1+ 1    =1
C: 0+ 1    =1
D: 0+ 1    =1

Stąd mamy dowód prawdziwości prawa rachunku zero-jedynkowego:
p+1 =1
cnd

Przykład 2.
Udowodnij w rachunku zero-jedynkowym prawo algebry Boole’a:
p+~p =1
Korzystamy z definicji spójnika „lub”(+):
Kod:

Dla p i q=~p mamy:
   p+~p  Y=p+~p
A: 1+ 0  =1
B: 1+ 0  =1
C: 0+ 1  =1
D: 0+ 1  =1

Stąd mamy dowód prawdziwości prawa rachunku zero-jedynkowego:
p+~p =1
cnd

Przykład 3.
Udowodnij w rachunku zero-jedynkowym prawo De Morgana dla sumy logicznej „lub”(+):
p+q = ~(~p*~q)
Zaczynamy od definicji spójnika „lub”(+)
Kod:

   p+ q  Y=p+q  ~Y=~(p+q) ~p ~q  ~Y=~p*~q  Y=~(~Y)=~(~p*~q)
A: 1+ 1  =1      =0        0* 0   =0        =1
B: 1+ 0  =1      =0        0* 1   =0        =1
C: 0+ 1  =1      =0        1* 0   =0        =1
D: 0+ 0  =0      =1        1* 1   =1        =0
   1  2   3       4        5  6    7         8
Gdzie:
Y=~(~Y) - prawo podwójnego przeczenia

Tożsamość kolumn wynikowych 3=8 (Y=Y) jest dowodem poprawności prawa De Morgana:
Y = 3: p+q = 8: ~(~p*~q)
#
Tożsamość kolumn wynikowych 4=7 (~Y=~Y) jest dowodem poprawności prawa De Morgana:
~Y = 4: ~(p+q) = 7:~p*~q
Gdzie:
# - różne w znaczeniu iż dowolna strona znaczka # jest negacją drugiej strony
cnd

1.9 Sterowanie windą autorstwa 5-cio latków

Rozważmy projektowanie sterowania windą.

Przyjmijmy wejście układu windy:
Na poziomie 5-cio latka zakładamy że winda ma dwa przyciski wejściowe układu (zmienne binarne):
Opis przycisku D=drzwi:
Z=1 - drzwi zamknięte (Z)
~Z=1 - drzwi nie zamknięte (~Z)
Opis przycisku P=piętro:
P=1 - przycisk piętro wciśnięty (P)
~P=1 - przycisk piętro nie wciśnięty (~P)

Przyjmijmy wyjście układu windy:
Wyjście układu opisane jest przez zmienną binarną J=jedzie:
J=1 - winda jedzie (J).
~J=1 - winda nie jedzie (~J)

I.
Pani przedszkolanka do Jasia (lat 5):


Powiedz nam Jasiu kiedy winda jedzie (J=1)?
Jaś:
A1.
Winda jedzie (J=1) wtedy i tylko wtedy gdy drzwi są zamknięte (Z=1) i wciśnięty jest przycisk piętro (P=1)
A1: J=Z*P
co w logice jedynek oznacza:
J=1 <=> Z=1 i P=1
Wniosek:
Jaś zaprojektował sterownie windą w logice dodatniej (bo J)

II.
Pani przedszkolanka do Zuzi (lat 5):


Powiedz nam Zuziu kiedy winda nie jedzie (~J=1)?
Zuzia:
B1.
Winda nie jedzie (~J=1) wtedy i tylko wtedy gdy drzwi nie są zamknięte (~Z=1) "lub"(+) nie jest wciśnięty przycisk piętro (~P=1)
B1: ~J = ~Z + ~P
co w logice jedynek oznacza:
~J=1 = ~Z=1 lub ~P=1
Wniosek:
Zuzia zaprojektowała sterowanie windą w logice ujemnej (bo ~J)

Wnioski końcowe:
Rozwiązania Jasia i Zuzi są matematycznie równoważne bo oczywisty związek logiki dodatniej (bo J) i ujemnej (bo ~J) jest następujący:

Jaś:
A1: J=Z*P
Moja logika dodatnia (bo J) to zanegowana logika ujemna (bo ~J), stąd mamy:
J = ~(~J)
Po podstawieniu:
B1: ~J = ~Z + ~P
Mamy:
J = ~(~Z+~P)
czyli:
A1: J = ~(~Z+~P) = Z*P - prawo De Morgana
cnd

Zuzia:
B1: ~J=~Z+~P
Moja logika ujemna (bo ~J) to zanegowana logika dodatnia (bo J), stąd mamy:
~J = ~(J)
Po podstawieniu:
A1: J=Z*P
Mamy:
~J = ~(Z*P)
czyli:
B1: ~J = ~(Z*P) = ~Z+~P - prawo De Morgana
cnd

Doskonale tu widać, że zarówno Jaś jak i Zuzia (oboje po 5 wiosenek) perfekcyjnie znają algebrę Kubusia bo po prostu pod nią podlegają.

Zachodzi matematyczna tożsamość:
Spójnik „i”(*) z języka potocznego = znana inżynierom bramka AND
Spójnik „lub”(+) z języka potocznego = znana inżynierom bramka OR

Przełożenie powyższych zdań na bramki logiczne jest trywialne:
Wszędzie, gdzie wymawiamy spójnik „i”(*) wstawiamy bramę AND.
Wszędzie, gdzie wymawiamy spójnik „lub”(+) wstawiamy bramkę OR
Kod:

T1
Zdania Jasia i Zuzi przełożone na język bramek logicznych „i”(*) i „lub”(+)
                  -------------
 Z------x-------->|           |
        |         |  „i”(*)   |---x--->  A1: J=Z*P (Jaś)
 P--x------------>|           |   |
    |   |         -------------   |
    |   |                         O = # (negator dwukierunkowy)
    |   |    ~Z   -------------   |
    |   |--O----->|           |   |
    |        ~P   | „lub”(+)  |---x--->  A2: ~J=~Z+~P (Zuzia)
    |------O----->|           |
                  -------------
Gdzie:
# - dowolna strona znaczka # jest negacją drugiej strony
O - negator dwukierunkowy (pkt. 1.1.2)
Zachodzi tożsamość znaczków:
# = O

To jest cała filozofia przełożenia logiki matematycznej Jasia i Zuzi na teorię bramek logicznych.

Uwaga:
W użytecznym sterowaniu trzeba wprowadzić dodatkową zmienną binarną sygnalizującą dojechanie windy na żądane piętro, gdzie winda automatycznie staje i przycisk P (piętro) wyskakuje. Przy zamkniętych drzwiach warunkiem koniecznym kolejnej jazdy jest wciśnięcie piętra różnego od tego, na którym winda aktualnie stoi.

1.10 Algorytm Wuja Zbója przejścia do logiki przeciwnej

Algorytm Wuja Zbója to uproszczony sposób przejścia z logiki dodatniej (bo Y) do logiki ujemnej (bo ~Y) i z powrotem.

Algorytm Wuja Zbója przejścia do logiki przeciwnej:
1.
Y = pq+~p~q - zapis dopuszczalny w technice z pominięciem spójnika „i”(*)
Uzupełniamy brakujące nawiasy i spójniki:
1: Y = (p*q)+(~p*~q) - postać alternatywno-koniunkcyjna (alternatywa koniunkcji)
2.
Przejście do logiki ujemnej (bo ~Y) poprzez negację zmiennych i wymianę spójników
2: ~Y = (~p+~q)*(p+q) - postać koniunkcyjno-alternatywna (koniunkcja alternatyw)
Koniec algorytmu Wuja Zbója

Kolejność wykonywania działań w algebrze Kubusia:
przeczenie (~), nawiasy, spójnik „i”(*), spójnik „lub”(+)

1.10.1 Prawo Małpki

Prawo Małpki:
Każda funkcja alternatywno-koniunkcyjna ma swój tożsamy odpowiednik w postaci funkcji koniunkcyjno-alternatywnej (i odwrotnie)

Dowód na przykładzie:
Definicja równoważności Y=p<=>q w spójnikach „i”(*) i „lub”(+):
1: Y = (p<=>q) = p*q + ~p*~q

Algorytm Wuja Zbója przejścia do logiki przeciwnej:
a)
Uzupełniamy brakujące nawiasy i spójniki:
1: Y = (p*q)+(~p*~q) - postać alternatywno-koniunkcyjna (alternatywa koniunkcji)
b)
Przejście do logiki ujemnej (bo ~Y) poprzez negację zmiennych i wymianę spójników
2: ~Y = (~p+~q)*(p+q) - postać koniunkcyjno-alternatywna (koniunkcja alternatyw)
Koniec algorytmu Wuja Zbója

Zauważmy że:
Jeśli wymnożymy wielomian 2 to otrzymamy tożsamą do niego postać alternatywno-koniunkcyjną.
Zróbmy to:
~Y = (~p+~q)*(p+q) = ~p*p + ~p*q + ~q*p + ~q*q = 0 + ~p*q + p*~q + 0 = p*~q + ~p*q
3: ~Y = (p*~q) + (~p*q) - postać alternatywno-koniunkcyjna (alternatywa koniunkcji)

Dla funkcji logicznej 3 ponownie korzystamy z algorytmu Wuja:
Przejście do logiki dodatniej (bo Y) poprzez negację zmiennych i wymianę spójników:
4: Y = (~p+q)*(p+~q) - funkcja koniunkcyjno-alternatywna (koniunkcja alternatyw)

Stąd mamy:
Kod:

Prawo Małpki:
1:  Y = p* q + ~p*~q <=> 4:  Y = (~p+ q)*(p+~q) – logika dodatnia (bo Y)
    #                        #
3: ~Y = p*~q + ~p* q <=> 2: ~Y = (~p+~q)*(p+ q) – logika ujemna (bo ~Y)
Gdzie:
# - dowolna strona znaczka # jest negację drugiej
p, q, Y muszą być wszędzie tymi samymi p, q, Y inaczej błąd podstawienia

Otrzymane funkcje logiczne Y i ~Y nie są tożsame, czyli:
(Y=~Y) =0
ale związane ze sobą spójnikiem "albo"($)

Definicja spójnika "albo"($) w spójnikach "i"(*) i "lub"(+):
p$q = p*~q + ~p*q – poznamy niebawem
Podstawmy:
p=Y
q=~Y
Y$~Y = (Y)*~(~Y) + ~(Y)*(~Y) = Y*Y + ~Y*~Y = Y+~Y=1

Przykład:
Dowolny człowiek mówi prawdę (P) albo nie mówi prawdy (~P)
P$~P =1
Trzeciej możliwości brak

1.11 Równoważność K<=>T w świecie żywym

Definicja równoważności p<=>q w świecie żywym:
Z równoważnością w świecie żywym mamy do czynienia wtedy i tylko wtedy gdy każde z czterech możliwych zdarzeń {A: p*q, B: p*~q, C: ~p*~q, D: ~p*q} ma szansę przyjąć wartość logiczną jeden

Definicja spójnika „<=> - wtedy i tylko wtedy” wyrażonego spójnikami „i”(*) i „lub”(+):
p<=>q = p*q + ~p*~q

W poprzednim punkcie wyprowadziliśmy wszystkie możliwe funkcje alternatywno-koniunkcyjne i koniunkcyjno-alternatywne związane z równoważnością p<=>q (prawo Małpki).
Podstawmy tabeli prawdy dla prawa Małpki konkretny przykład.

Przykład:
Pani w przedszkolu wypowiada obietnicę bezwarunkową:
1.
Jutro pójdziemy do kina tylko wtedy gdy pójdziemy do teatru
Innymi słowy:
Jutro pójdziemy do kina (K) wtedy i tylko wtedy gdy pójdziemy do teatru (T)
K<=>T = A: K*T + C: ~K*~T
Podstawmy celem skrócenia zapisów:
Y = K<=>T

Przyjmijmy następujące znaczenie symbolu Y:
Y - pani dotrzyma słowa (Y)
~Y - pani nie dotrzyma słowa (~Y), czyli pani skłamie (S=~Y)

Definicja równoważności w spójnikach „i”(*) i „lub”(+):
1: Y = A: K*T + C: ~K*~T - funkcja alternatywno-koniunkcyjna (alternatywa koniunkcji)
Co w logice jedynek obowiązującej wyłącznie w postaci alternatywno-koniunkcyjnej oznacza:
1: Y=1 <=> A: K=1 i T=1 lub C: ~K=1 i ~T=1
Czytamy:
Prawdą jest (=1) że pani dotrzyma słowa (Y) wtedy i tylko wtedy gdy:
Ya = K*T=1*1 =1 - jutro pójdziemy do kina (K=1) i do teatru (T=1)
lub
Yc = ~K*~T=1*1=1 - jutro nie pójdziemy do kina (~K=1) i nie pójdziemy do teatru (~T=1)
Gdzie:
Y = Ya+Yc - funkcja logiczna Y jest sumą logiczną funkcji cząstkowych Ya+Yc

Jak widzimy, odpowiedź kiedy pani dotrzyma słowa (Y=1) jest intuicyjnie zrozumiała.

Podstawmy nasz przykład do pierwszej linii w prawie Małpki (pkt. 1.10.1)
Kod:

Prawo Małpki:
1:  Y = p* q + ~p*~q <=> 4:  Y = (~p+ q)*(p+~q) – logika dodatnia (bo Y)
Dla p=K (kino) i q=T (teatr) mamy:
1:  Y = K* T + ~K*~T <=> 4:  Y = (~K+ T)*(K+~T) – logika dodatnia (bo Y)
Gdzie:
# - dowolna strona znaczka # jest negację drugiej
p, q, Y muszą być wszędzie tymi samymi p, q, Y inaczej błąd podstawienia

W punkcie 4 mamy alternatywną odpowiedź na pytanie kiedy pani dotrzyma słowa (Y=1)?
Zapiszmy tą odpowiedź:
Y=(~K+T)*(K+~T)
Czytamy:
Pani dotrzyma słowa (Y) wtedy i tylko wtedy gdy:
Jutro nie pójdziemy do kina (~K) lub pójdziemy do teatru (T)
„i”(*)
Jutro pójdziemy do kina (K) lub nie pójdziemy do teatru (~T)

Doskonale widać, że otrzymaliśmy masakrę, czyli odpowiedź na pytanie kiedy pani dotrzyma słowa (Y), której w języku potocznym żaden człowiek nie rozumie (z matematykiem włącznie).

Wniosek z naszego przykładu to prawo Pandy.

Prawo Pandy:
Jedyną funkcją logiczną zrozumiałą dla każdego człowieka jest funkcja alternatywno-koniunkcyjna

Definicja funkcji alternatywno-koniunkcyjnej:
Funkcja logiczna Y jest w postaci alternatywno-koniunkcyjnej wtedy i tylko wtedy gdy nie zawiera ani jednego członu w postaci koniunkcyjno-alternatywnej.
Inaczej funkcja Y jest w postaci koniunkcyjno-alternatywnej lub mieszanej.

Wniosek:
Wszelkie człony koniunkcyjno-alternatywne w funkcji logicznej Y musimy logicznie wymnożyć przechodząc do postaci alternatywno-koniunkcyjnej, bo tylko taka postać jest zrozumiała dla człowieka.

1.12 Definicja spójnika „lub”(+)

Definicja spójnika „lub”(+):
Definicja spójnika „lub"(+) to odpowiedź na pytanie kiedy zajdzie Y?
Y=p+q
co w logice jedynek oznacza:
Y=1 <=> p=1 lub q=1

1.12.1 Definicja operatora „lub”(+)

Definicja operatora „lub"(|+):
Operator „lub”(|+) to złożenie funkcji logicznej
1: Y=p+q w logice dodatniej (bo Y)
oraz funkcji logicznej
2: ~Y=~p*~q w logice ujemnej (bo ~Y)
dające odpowiedź na pytania o Y i ~Y

Kiedy zajdzie Y?
1.
Y=p+q
co w logice jedynek oznacza:
Y=1 <=> p=1 lub q=1
Innymi słowy:
Wystarczy, że zajdzie którekolwiek zdarzenie p lub q i już funkcja logiczna Y przybierze wartość logiczną 1, czyli:
Y = p*q + p*~q + ~p*q

#

.. a kiedy zajdzie ~Y?
Negujemy równanie 1 stronami:
2: ~Y=~(p+q)=~p*~q - prawo De Morgana
Stąd mamy:
2.
~Y=~p*~q
co w logice jedynek oznacza:
~Y=1 <=> ~p=1 i ~q=1
Gdzie:
# - różne, w znaczeniu iż dowolna strona znaczka # jest negacją drugiej strony

1.12.2 Diagram operatora „lub"(|+) w zdarzeniach niepustych i rozłącznych
Kod:

DL
Diagram operatora „lub"(|+) A1: Y|=p+q w zdarzeniach
--------------------------------------------------------------------------
| D=p*q+p*~q+~p*q+~p*~q=1 - dziedzina, suma logiczna zdarzeń rozłącznych |
--------------------------------------------------------------------------
| p                               |
------------------------------------------------------
                  | q                                |
--------------------------------------------------------------------------
| B: Yb=p*~q      | A: Ya=p*q     | C: Yc=~p*q       | D:~Yd=~p*~q       |
--------------------------------------------------------------------------

Kiedy zajdzie Y?
1.
Y = p+q
co w logice jedynek oznacza:
Y=1 <=> p=1 lub q=1
Innymi słowy:
Wystarczy że zajdzie cokolwiek (p=1) lub (q=1) i już funkcja logiczna Y przyjmie wartość logiczną (Y=1).
Z diagramu odczytujemy:
Y=Ya+Yb+Yc
Po rozwinięciu mamy:
1": Y = A: p*q + B: p*~q + C: ~p*q
Matematycznie zachodzi tożsamość logiczna [=]:
1. Y = p+q [=] 1”: Y = A: p*q + B: p*~q + C: ~p*q
Doskonale to widać z diagramu DL.

Można to też udowodnić w sposób czysto matematyczny:
1. Y = p+q [=] 1”: Y = A: p*q + B: p*~q + C: ~p*q
Minimalizujemy prawą stronę:
Y = p*q + p*~q + ~p*q
Y = p*(q+~q) + ~p*q
Prawa algebry Boole’a:
q+~q=1
p*1=p
Y = p+(~p*q)
Przejście do logiki ujemnej (bo ~Y) poprzez negacją zmiennych i wymianę spójników:
~Y = ~p*(p+~q)
~Y = ~p*p + ~p*~q
Prawa algebry Boole’a:
wymnożenie wielomianu logicznego
~p*p=0
0+x=x
~Y=~p*~q
Powrót do logiki dodatniej (bo Y) poprzez negację zmiennych i wymianę spójników:
1: Y=p+q
stąd mamy:
1. Y = p+q [=] 1”: Y = A: p*q + B: p*~q + C: ~p*q
cnd


#

… a kiedy zajdzie ~Y?
Negujemy dwustronnie równanie 1.
~Y = ~(p+q) = ~p*~q - prawo De Morgana
Stąd mamy:
2.
~Y=~p*~q
co w logice jedynek oznacza:
~Y=1 <=> ~p=1 i ~q=1

Gdzie:
# - różne, w znaczeniu iż dowolna strona znaczka # jest negacją drugiej strony

1.12.3 Definicja spójnika „lub”(+) w zdarzeniach rozłącznych

Do zapamiętania:
Definicja spójnika “lub”(+) w zdarzeniach rozłącznych (patrz wyżej):
p+q = p*q + p*~q + ~p*q

1.12.4 Przykład operatora „lub"(|+) w zdarzeniach niepustych i rozłącznych

Definicja operatora „lub”(|+):
Operator „lub”(|+) to złożenie funkcji logicznej
1: Y=p+q w logice dodatniej (bo Y)
oraz funkcji logicznej
2: ~Y=~p*~q w logice ujemnej (bo ~Y)
dające odpowiedź na pytania o Y i ~Y

Pani przedszkolanka:
1.
Jutro pójdziemy do kina (K=1) lub do teatru (T=1)
Y=K+T
co w logice jedynek oznacza:
Y=1 <=> K=1 lub T=1
Czytamy:
Pani dotrzyma słowa (Y=1) wtedy i tylko wtedy gdy jutro pójdziemy do kina (K=1) lub do teatru (T=1)
Innymi słowy:
Prawdą jest (=1), że pani dotrzyma słowa (Y) wtedy i tylko wtedy gdy jutro pójdziemy do kina (K=1) lub do teatru (T=1)

Definicja spójnika „lub”(+) w zdarzeniach rozłącznych:
p+q = p*q + p*~q + ~p*q
Podstawiając nasze zdanie 1 mamy:
p=K (kino)
q=T (teatr)
1”: Y = K+T + A: K*T + B: K*~T + C: ~K*T
co w logice jedynek (bo funkcja alternatywno-koniunkcyjna) oznacza:
1”: Y=1 <=> A: K=1 i T=1 lub B: K=1 i ~T=1 lub C: ~K=1 i T=1
Czytamy:
Pani dotrzyma słowa (Y=1) wtedy i tylko wtedy gdy:
A: Ya = K*T=1*1=1 - jutro pójdziemy do kina (K=1) i pójdziemy do teatru (T=1)
lub
B: Yb = K*~T =1*1 =1 - jutro pójdziemy do kina (K=1) i nie pójdziemy do teatru (~T=1)
lub
C: Yc = ~K*T =1*1 =1 - jutro nie pójdziemy do kina (~K=1) i pójdziemy do teatru (T=1)

Stąd mamy:
Y = Yb+Yc+Yd – funkcja logiczna Y jest sumą logiczną funkcji cząstkowych Ya, Yb, Yc

#
… a kiedy pani nie dotrzyma słowa (~Y=1) = pani skłamie (S=~Y)?
Negujemy równanie 1 dwustronnie:
2: ~Y=~(K+T) = ~K*~T - prawo De Morgana
Stąd mamy:
2.
~Y=~K*~T
co w logice jedynek oznacza:
~Y=1 <=> ~K=1 i ~T=1
Czytamy:
Pani nie dotrzyma słowa (~Y=1) wtedy i tylko wtedy gdy jutro nie pójdziemy do kina (~K=1) i nie pójdziemy do teatru (~T=1)
Innymi słowy:
Prawdą jest (=1), że pani nie dotrzyma słowa (~Y) wtedy i tylko wtedy gdy jutro nie pójdziemy do kina (~K=1) i nie pójdziemy do teatru (~T=1)

Gdzie:
# - różne, w znaczeniu iż dowolna strona znaczka # jest negacją drugiej strony
Kod:

DL
Diagram operatora "lub"(|+) A1: Y|=K+T w zdarzeniach
--------------------------------------------------------------------------
| D=K*T+K*~T+~K*T+~K*~T=1 - dziedzina, suma logiczna zdarzeń możliwych   |
--------------------------------------------------------------------------
| p=[K]                           |
------------------------------------------------------
                  | q=[T]                            |
--------------------------------------------------------------------------
| B: Yb=p*~q= K*~T| A: Ya=p*q=K*T | C: Yc=~p*q=~K*T  | D:~Yd=~p*~q=~K*~T |
--------------------------------------------------------------------------

Zauważmy, że wszystkie możliwe zdarzenia ABCD są rozłączne i niepuste oraz uzupełniają się wzajemnie do dziedziny.

Dziedziną dla naszego przykładu jest zbiór wszystkich możliwych zdarzań niepustych i rozłącznych które jutro mogą wystąpić:
D = |Ya|+|Yb|+|Yc|+|Yd|
Gdzie:
|Yx| - funkcja logiczna Yx z pominięciem przeczenia
Stąd mamy:
Y = A: p*q + B: p*~q + C: ~p*q + D: ~p*~q
Minimalizujemy:
Y = p*(q+~q) + ~p*(q+~q)
Y = p+~p =1
Dziedzina jest poprawna.
cnd

W dniu jutrzejszym ma szansę wystąpić wyłącznie jedno z powyższych zdarzeń niepustych i rozłącznych.
Dla naszego przykładu mamy:
1.
Kiedy jutro pani dotrzyma słowa (Y) = pani nie skłamie (Y=~S)?
Y=Ya+Yb+Yc
Zdarzenia cząstkowe to:
Ya = K*T =1*1=1
Możliwe jest (=1) zdarzenie: jutro pójdziemy do kina (K=1) i do teatru (T=1)
Pani dotrzyma słowa (Ya=1)
lub
B:
Yb = K*~T=1*1=1
Możliwe jest (=1) zdarzenie: jutro pójdziemy do kina (K=1) i nie pójdziemy do teatru (~T=1)
Pani dotrzyma słowa (Yb=1)
lub
C:
Yc = ~K*T =1*1=1
Możliwe jest (=1) zdarzenie: jutro nie pójdziemy do kina (~K=1) i pójdziemy do teatru (T=1)
Pani dotrzyma słowa (Yc=1)

… a kiedy pani nie dotrzyma słowa (~Y=1)?
2.
Pani nie dotrzyma słowa (~Y=1) tylko w jednym przypadku:
D:
~Yd = ~K*~T =1*1=1
Możliwe jest (=1) zdarzenie: jutro nie pójdziemy do kina (~K=1) i nie pójdziemy do teatru (~T=1)
Pani nie dotrzyma słowa (~Yd=1)

Doskonale widać, że zdarzenia A, B, C i D są niepuste i rozłączne tzn. żadne z tych zdarzeń nie może zajść jednocześnie z innym zdarzeniem.

1.13 Definicja spójnika „i”(*)

Definicja spójnika „i”(*):
Definicja spójnika „i”(*) to odpowiedź na pytanie kiedy zajdzie Y?
Y=p*q
co w logice jedynek oznacza:
Y=1 <=> p=1 i q=1

1.13.1 Definicja operatora „i”(|*)

Definicja operatora „i”(|*):
Operator „i”(|*) to złożenie funkcji logicznej
1: Y=p*q w logice dodatniej (bo Y)
oraz funkcji logicznej 2: ~Y=~p+~q w logice ujemnej (bo ~Y)
dające odpowiedź na pytanie o Y i ~Y

Kiedy zajdzie Y?
1.
Y=p*q
co w logice jedynek oznacza:
Y=1 <=> p=1 i q=1
#
.. a kiedy zajdzie ~Y?
Negujemy równanie 1 stronami:
2: ~Y=~(p*q)=~p+~q - prawo De Morgana
Stąd mamy:
2.
~Y=~p+~q
co w logice jedynek oznacza:
~Y=1 <=> ~p=1 lub ~q=1
Innymi słowy:
Pozostałe przypadki niepuste i rozłączne, poza funkcją logiczną Y=p*q muszą być zapisane w logice ujemnej (bo ~Y).

Gdzie:
# - różne, w znaczeniu iż dowolna strona znaczka # jest negacją drugiej strony

1.13.2 Diagram operatora „i”(|*) w zdarzeniach niepustych i rozłącznych

Stąd mamy:
Kod:

DI
Diagram operatora „i”(|*) A1: Y|=p*q w zdarzeniach
--------------------------------------------------------------------------
| D=p*q+p*~q+~p*q+~p*~q=1 - dziedzina, suma logiczna zdarzeń rozłącznych |
--------------------------------------------------------------------------
| p                               |
------------------------------------------------------
                  | q                                |
--------------------------------------------------------------------------
| B:~Yb=p*~q      | A: Ya=p*q     | C:~Yc=~p*q       | D:~Yd=~p*~q       |
--------------------------------------------------------------------------

Kiedy zajdzie Y?
1.
Y = p*q
co w logice jedynek oznacza:
Y=1 <=> p=1 i q=1
bo w równaniach alternatywno-koniunkcyjnych jedynki są domyślne.

#

… a kiedy zajdzie ~Y?
Negujemy dwustronnie równanie 1.
~Y = ~(p*q) = ~p+~q - prawo De Morgana
Stąd mamy:
2.
~Y=~p+~q
Innymi słowy:
Wystarczy że zajdzie cokolwiek (~p=1) lub (~q=1) i już funkcja logiczna ~Y przyjmie wartość logiczną (~Y=1).
Z diagramu DI odczytujemy:
~Y=~Yb+~Yc+~Yd
Po rozwinięciu mamy:
2": ~Y = B: p*~q + C: ~p*q + D: ~p*~q
Matematycznie zachodzi tożsamość logiczna [=]:
2: ~Y = ~p+~q [=] 2": ~Y = B: p*~q + C: ~p*q + D: ~p*~q
Doskonale to widać z diagramu DI.

Można to też udowodnić w sposób czysto matematyczny:
2": ~Y = B: p*~q + C: ~p*q + D: ~p*~q
Minimalizujemy prawą stronę:
~Y = p*~q + ~p*(q+~q)
~Y = ~p+(p*~q)
Przejście do logiki dodatniej (bo Y) poprzez negacją zmiennych i wymianę spójników:
Y = p*(~p+q)
Y = p*~p + p*q
Y = p*q
Powrót do logiki ujemnej (bo ~Y) poprzez negację zmiennych i wymianę spójników:
2: ~Y = ~p+~q
stąd mamy:
2: ~Y = ~p+~q [=] 2": ~Y = B: p*~q + C: ~p*q + D: ~p*~q
cnd

Gdzie:
# - różne, w znaczeniu iż dowolna strona znaczka # jest negacją drugiej strony

1.13.3 Przykład operatora „i”(|*) w zdarzeniach

Definicja operatora „i”(|*):
Operator „i”(|*) to złożenie funkcji logicznej
1: Y=p*q w logice dodatniej (bo Y)
oraz funkcji logicznej
2: ~Y=~p+~q w logice ujemnej (bo ~Y)
dające odpowiedź na pytanie o Y i ~Y

Pani przedszkolanka:
1.
Jutro pójdziemy do kina (K=1) i do teatru (T=1)
Y=K*T
co w logice jedynek oznacza:
Y=1 <=> K=1 i T=1
Czytamy:
Pani dotrzyma słowa (Y=1) wtedy i tylko wtedy gdy jutro pójdziemy do kina (K=1) i do teatru (T=1)
Innymi słowy:
Prawdą jest (=1), że pani dotrzyma słowa (Y) wtedy i tylko wtedy gdy jutro pójdziemy do kina (K=1) i do teatru (T=1)

#
… a kiedy pani nie dotrzyma słowa (~Y=1) = pani skłamie (S=~Y)?
Negujemy równanie 1 dwustronnie:
BCD:
2: ~Y=~(K*T) = ~K+~T - prawo De Morgana
Stąd mamy:
2.
~Y=~K+~T
co w logice jedynek oznacza:
~Y=1 <=> ~K=1 lub ~T=1
Czytamy:
BCD:
Pani nie dotrzyma słowa (~Y=1) wtedy i tylko wtedy gdy jutro nie pójdziemy do kina (~K=1) lub nie pójdziemy do teatru (~T=1)
Innymi słowy:
Prawdą jest (=1), że pani nie dotrzyma słowa (~Y) wtedy i tylko wtedy gdy jutro nie pójdziemy do kina (~K=1) lub nie pójdziemy do teatru (~T=1)

Gdzie:
# - różne, w znaczeniu iż dowolna strona znaczka # jest negacją drugiej strony

Matematycznie oznacza to, że jutro nie pójdziemy w dowolne miejsce i już pani nie dotrzyma słowa (~Y=1), czyli:
~Y=B: K*~T + C: ~K*T + D:~K*~T
co w logice jedynek oznacza:
~Y=1 <=> B: K=1 i ~T=1 lub C: ~K=1 i T=1 lub D: ~K=1 i ~T=1
bo w równaniu alternatywno-koniunkcyjnym wszystkie zmienne sprowadzone są do jedynek.
Czytamy:
Pani nie dotrzyma słowa (~Y=1) wtedy i tylko wtedy gdy:
B: ~Yb = K*~T=1*1=1 - jutro pójdziemy do kina (K=1) i nie pójdziemy do teatru (~T=1)
lub
C: ~Yc = ~K*T =1*1 =1 - jutro nie pójdziemy do kina (~K=1) i pójdziemy do teatru (T=1)
lub
D: ~Yd = ~K*~T =1*1 =1 - jutro nie pójdziemy do kina (~K=1) i nie pójdziemy do teatru (~T=1)
Kod:

D1
Diagram operatora „i”(|*) A1: Y|=K*T w zdarzeniach
--------------------------------------------------------------------------
| D=K*T+K*~T+~K*T+~K*~T=1 - dziedzina, suma logiczna zdarzeń możliwych   |
--------------------------------------------------------------------------
| p=[K]                           |
------------------------------------------------------
                  | q=[T]                            |
--------------------------------------------------------------------------
| B:~Yb=p*~q= K*~T| A: Ya=p*q=K*T | C:~Yc=~p*q=~K*T  | D:~Yd=~p*~q=~K*~T |
--------------------------------------------------------------------------


1.14 Opis tabeli zero-jedynkowej równaniami algebry Boole’a

Algebra Boole’a akceptuje wyłącznie pięć znaczków: {0, 1, „nie”(~), „i”(*), „lub”(+)}

Definicja standardu dodatniego w języku potocznym człowieka:
W języku potocznym ze standardem dodatnim mamy do czynienia wtedy i tylko wtedy gdy wszelkie przeczenia w zdaniach są uwidocznione w kodowaniu matematycznym tych zdań.

Logiką matematyczną zrozumiałą dla każdego człowieka (od 5-cio latka poczynając) są wyłącznie równania alternatywno-koniunkcyjne w których wszystkie zmienne sprowadzone są do jedynek na mocy prawa Prosiaczka.

Weźmy zero-jedynkową definicję równoważności p<=>q:
Kod:

T1
          Y=
   p   q p<=>q
A: 1<=>1  =1
B: 1<=>0  =0
C: 0<=>0  =1
D: 0<=>1  =0


Definicja pełnej tabeli zero-jedynkowej:
Pełna tabela zero-jedynkowa układu logicznego (bramka logiczna) to zero-jedynkowy zapis wszystkich sygnałów wejściowych w postaci niezanegowanej (p, q, r..) i zanegowanej (~p, ~q, ~r..) oraz zapis wyjścia Y również w postaci niezanegowanej (Y) i zanegowanej (~Y).

Algorytm przejścia z dowolnej tabeli zero-jedynkowej do jej opisu w spójnikach „i”(*) i „lub”(+):

1.
Tworzymy pełną definicję tabeli zero-jedynkowej, czyli:

Zapisujemy wszelkie zmienne po stronie wejścia p i q w postaci niezanegowanej i zanegowanej.
Do wyjścia Y również dopisujemy postać zanegowaną ~Y
W powstałej tabeli tworzymy równania cząstkowe dla wszystkich linii.

2.
SD - standard dodatni języka potocznego = logika jedynek

W logice jedynek opisujemy wyłącznie jedynki gdzie w poziomie używamy spójnika „i”(*) zaś w pionie spójnika „lub”(+)
Logika jedynek prowadzi do równań alternatywno-koniunkcyjnych zgodnych z naturalną logika matematyczną człowieka, co oznacza, że będą one rozumiane w języku potocznym przez wszystkich ludzi, od 5-cio latka poczynając.

3.
SU - standard ujemny (niezrozumiały dla człowieka) = logika zer

W logice zer opisujemy wyłącznie zera gdzie w poziomie używamy spójnika „lub”(+) zaś w pionie spójnika „i”(*)
Logika zer prowadzi do równań koniunkcyjno-alternatywnych totalnie niezrozumiałych w języku potocznym. Z tego względu zawsze wymnażamy wielomian koniunkcyjno-alternatywny przechodząc do tożsamej postaci alternatywno-koniunkcyjnej.

1.14.1 Opis tabeli zero-jedynkowej w logice jedynek

Dla wyjaśnienia zagadnienia posłużymy się zero-jedynkową tabelą równoważności p<=>q:
Kod:

T1
          Y=
   p   q p<=>q
A: 1<=>1  =1
B: 1<=>0  =0
C: 0<=>0  =1
D: 0<=>1  =0

SD - standard dodatni języka potocznego = logika jedynek:
W logice jedynek opisujemy wyłącznie jedynki gdzie w poziomie używamy spójnika „i”(*) zaś w pionie spójnika „lub”(+)
Logika jedynek prowadzi do równań alternatywno-koniunkcyjnych zgodnych z naturalną logika matematyczną człowieka, co oznacza, że będą one rozumiane w języku potocznym przez wszystkich ludzi, od 5-cio latka poczynając.

Zastosujmy logikę jedynek do tabeli zero-jedynkowej równoważności Y = p<=>q:
Kod:

T2
Pełna definicja     |Co w logice jedynek |Równania
zero-jedynkowa Y    |oznacza             |cząstkowe
                    |                    |
   p  q ~p ~q  Y ~Y |                    |
A: 1  1  0  0 =1 =0 | Ya=1<=> p=1 i  q=1 | Ya= p* q
B: 1  0  0  1 =0 =1 |~Yb=1<=> p=1 i ~q=1 |~Yb= p*~q
C: 0  0  1  1 =1 =0 | Yc=1<=>~p=1 i ~q=1 | Yc=~p*~q
D: 0  1  1  0 =0 =1 |~Yd=1<=>~p=1 i  q=1 |~Yd=~p* q
   1  2  3  4  5  6   a       b      c     d   e  f


Kiedy zajdzie Y?
Z tabeli równań cząstkowych def odczytujemy:
1: Y = Ya+Yc
Po rozwinięciu mamy sumę logiczną zdarzeń rozłącznych:
1: Y = A: p*q + C: ~p*~q
T2_1:
Y= p*q + ~p*~q
co w logice jedynek oznacza:
Y=1 <=> A: p=1 i q=1 lub C: ~p=1 i ~q=1
#
Kiedy zajdzie ~Y?
Z tabeli równań cząstkowych def otrzymujemy:
2: ~Y=~Yb+~Yd
Po rozwinięciu mamy sumę logiczną zdarzeń rozłącznych:
2: ~Y = B: p*~q + D: ~p*q
T2_2:
~Y = p*~q + ~p*q
co w logice jedynek oznacza:
~Y=1 <=> B: p=1 i ~q=1 lub D: ~p=1 i q=1
Gdzie:
# - różne, w znaczeniu iż dowolna strona znaczka # jest negacją drugiej strony

Zauważmy, że możliwe jest szybsze wygenerowania równań algebry Boole’a w logice jedynek z pominięciem bloku abc.
Kod:

T2
Pełna definicja     |Równania cząstkowe
zero-jedynkowa Y    |w logice jedynek
                    |
   p  q ~p ~q  Y ~Y |
A: 1  1  0  0 =1 =0 | Ya= p* q
B: 1  0  0  1 =0 =1 |~Yb= p*~q
C: 0  0  1  1 =1 =0 | Yc=~p*~q
D: 0  1  1  0 =0 =1 |~Yd=~p* q
   1  2  3  4  5  6   d   e  f


Definicja logiki 5-cio latka:
Logika 5-cio latka w definicji operatora logicznego Y|=f(x) wyrażonego spójnikami „i”(*) i „lub”(+) to logika jedynek gdzie finalnie otrzymujemy odpowiedzi na pytania o Y i ~Y w funkcjach alternatywno-koniunkcyjnych, doskonale rozumianych przez każdego 5-cio latka (pkt. 1.10)


1.14.2 Opis tabeli zero-jedynkowej w logice zer

Dla wyjaśnienia zagadnienia posłużymy się zero-jedynkową tabelą równoważności p<=>q:
Kod:

T1
          Y=
   p   q p<=>q
A: 1<=>1  =1
B: 1<=>0  =0
C: 0<=>0  =1
D: 0<=>1  =0

SU - standard ujemny (niezrozumiały dla człowieka) = logika zer.
W logice zer opisujemy wyłącznie zera gdzie w poziomie używamy spójnika „lub”(+) zaś w pionie spójnika „i”(*)
Logika zer prowadzi do równań koniunkcyjno-alternatywnych totalnie niezrozumiałych w języku potocznym.

Zastosujmy logikę zer do tej samej tabeli zero-jedynkowej równoważności Y = p<=>q:
Kod:

T3
Pełna definicja     |Co w logice zer       |Równania
zero-jedynkowa Y    |oznacza               |cząstkowe
                    |                      |
   p  q ~p ~q  Y ~Y |                      |
A: 1  1  0  0 =1 =0 |~Ya=0<=>~p=0 lub ~q=0 |~Ya=~p+~q
B: 1  0  0  1 =0 =1 | Yb=0<=>~p=0 lub  q=0 | Yb=~p+ q
C: 0  0  1  1 =1 =0 |~Yc=0<=> p=0 lub  q=0 |~Yc= p+ q
D: 0  1  1  0 =0 =1 | Yd=0<=> p=0 lub ~q=0 | Yd= p+~q
   1  2  3  4  5  6   a       b        c     d   e  f


Kiedy zajdzie Y?
Z tabeli równań cząstkowych def odczytujemy:
3: Y = Yb*Yd - spójnik „i”(*) bo opis tabeli zero-jedynkowej w logice ujemnej
Po rozwinięciu mamy:
3. Y = (B: ~p+q)*(D: p+~q)
T3_3:
Y = (~p+q)*(p+~q)
co w logice zer oznacza:
Y=0 <=> (B: ~p=0 lub q=0)*(D: p=0 lub ~q=0)
#
Kiedy zajdzie ~Y?
Z tabeli równań cząstkowych def odczytujemy:
4: ~Y = ~Ya*~Yc - spójnik „i”(*) bo opis tabeli zero-jedynkowej w logice ujemnej
Po rozwinięciu mamy:
4: ~Y = (A: ~p+~q)*(C: p+q)
T3_4:
~Y = (~p+~q)*(p+q)
co w logice zer oznacza:
~Y=0 <=> (A: ~p=0 lub ~q=0)*(C: p=0 lub q=0)
Gdzie:
# - różne, w znaczeniu iż dowolna strona znaczka # jest negacją drugiej strony

Zauważmy, że możliwe jest szybsze wygenerowania równań algebry Boole’a w logice zer z pominięciem bloku abc.
Kod:

T3
Pełna definicja     |Równania cząstkowe
zero-jedynkowa Y    |w logice zer
                    |
   p  q ~p ~q  Y ~Y |
A: 1  1  0  0 =1 =0 |~Ya=~p+~q
B: 1  0  0  1 =0 =1 | Yb=~p+ q
C: 0  0  1  1 =1 =0 |~Yc= p+ q
D: 0  1  1  0 =0 =1 | Yd= p+~q
   1  2  3  4  5  6   d   e  f


Definicja logiki Diabła:
Logika Diabła w definicji operatora logicznego Y|=f(x) wyrażonego spójnikami „i”(*) i „lub”(+) to logika zer gdzie finalnie otrzymujemy odpowiedzi na pytania o Y i ~Y w funkcjach koniunkcyjno-alternatywnych, totalnie niezrozumiałych przez człowieka (pkt. 1.10)

Z tego względu w języku potocznym zawsze wymnażamy wielomian koniunkcyjno-alternatywny przechodząc do tożsamej postaci alternatywno-koniunkcyjnej.

1.15 Związek opisu tabel zero-jedynkowych w logice jedynek i w logice zer

Zapiszmy symbolicznie tabelę T2 i T3 jedna pod drugą:

Tabela T2
Logika jedynek = logika 5-cio latka:
T2_1: Y= p*q + ~p*~q - funkcja alternatywno-koniunkcyjna (alternatywa koniunkcji)
#
T2_2: ~Y = p*~q + ~p*q - funkcja alternatywno-koniunkcyjna (alternatywa koniunkcji)

Tabela T3
Logika zer = logika Diabła:
T3_3: Y = (~p+q)*(p+~q) - funkcja koniunkcyjno-alternatywna (koniunkcja alternatyw)
#
T3_4: ~Y = (~p+~q)*(p+q) - funkcja koniunkcyjno-alternatywna (koniunkcja alternatyw)

Uzasadnienie nazwy „logika 5-cio latka” i „logika Diabła” znajdziemy w punkcie 1.10 gdzie mamy dowód na przykładzie iż w języku potocznym:
1.
Funkcje alternatywno-koniunkcyjne są doskonale rozumiane przez każdego człowieka od 5-cio latka poczynając
2.
Funkcji koniunkcyjno-alternatywnych żaden człowiek nie rozumie od 5-cio latka poczynając na matematyku kończąc.

1.15.1 Prawo Małpki

Prawo Małpki:
Każda funkcja alternatywno-koniunkcyjna ma swój tożsamy odpowiednik w postaci funkcji koniunkcyjno-alternatywnej (i odwrotnie)

Rozszerzoną teorię w zakresie prawa Małpki znajdziemy w punkcie:
25.0 Algorytm Małpki – wielkie wydarzenie w historii logiki matematycznej

Dowód:
Funkcje Y i ~Y w tabelach T2 i T3 dotyczą tej samej tabeli zero-jedynkowej, stąd zachodzą tożsamości logiczne:
Kod:

T2_1: Y= p* q+ ~p*~q = T3_3: Y=(~p+ q)*( p+~q)
      #                      #
T2_2:~Y= p*~q+ ~p* q = T3_4:~Y=(~p+~q)*( p+ q)

Gdzie:
# - różne, w znaczeniu iż dowolna strona znaczka # jest negacją drugiej strony

Otrzymane funkcje logiczne Y i ~Y nie są tożsame:
(Y=~Y) =0
ale związane ze sobą spójnikiem "albo"($)

Definicja spójnika "albo"($) w spójnikach "i"(*) i "lub"(+):
p$q = p*~q + ~p*q – poznamy niebawem (pkt. 7.0)
Podstawmy:
p=Y
q=~Y
Y$~Y = (Y)*~(~Y) + ~(Y)*(~Y) = Y*Y + ~Y*~Y = Y+~Y=1

Przykład:
Dowolny człowiek mówi prawdę (P) albo nie mówi prawdy (~P)
P$~P =1
Trzeciej możliwości brak

Definicja tożsamości logicznej <=>:
Prawdziwość dowolnej strony tożsamości logicznej <=> wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej <=> wymusza fałszywość drugiej strony

W algebrze Kubusia zachodzą tożsamości znaczków:
<=>, „=”, [=] - tożsame znaczki tożsamości logicznej

Wisienka na torcie:
Dowód braku tożsamości:
(Y=~Y) =0

Prawo Irbisa dla zbiorów/zdarzeń (pkt. 2.9):
Dowolna równoważność prawdziwa p<=>q definiuje tożsamość zbiorów/zdarzeń p=q i odwrotnie.
Stąd mamy:
p=q <=> A1B3: (p<=>q) = (A1: p=>q)*(B3: q=>p) =1*1=1

Definicja równoważności p<=>q w spójnikach "i"(*) i "lub"(+):
Y = p<=>q = p*q + ~p*~q
Podstawmy:
p=Y, q=~Y
stąd mamy:
Y = (Y<=>~Y) = (Y)*(~Y) + ~(Y)* ~(~Y) = = Y*~Y + ~Y*Y = 0+0 =0
Stąd:
Na mocy prawa Irbisa nie zachodzi (=0) tożsamość:
(Y=~Y) =0

1.15.2 Definicja funkcji alternatywno-koniunkcyjnej

Definicja funkcji alternatywno-koniunkcyjnej:
Funkcja logiczna Y ma postać alternatywno-koniunkcyjną wtedy i tylko wtedy gdy nie zawiera ani jednego członu w postaci koniunkcyjno-alternatywnej.
Inaczej funkcja Y ma postać koniunkcyjno-alternatywną lub mieszaną

Logiką zrozumiałą dla człowieka jest wyłącznie postać alternatywno-koniunkcyjna (dowód w pkt. 1.10) gdzie wszystkie zmienne na mocy prawa Prosiaczka sprowadzone są do logicznych jedynek.

Prawo Małpiątka:
Jeśli w dowolnym równaniu algebry Boole'a napotkamy fragment koniunkcyjno-alternatywny to ten fragment wymnażamy logicznie przechodząc do funkcji alternatywno-koniunkcyjnej

1.15.3 Tworzenie tabeli zero-jedynkowej dla funkcji logicznej Y

Zadanie:
Utwórz tabelę zero-jedynkową dla poniższej funkcji alternatywno-koniunkcyjnej:
Y = (p<=>q) = p*q +~p*~q
co w logice jedynek (bo funkcja alternatywno-koniunkcyjna) oznacza:
Y=1 <=> p=1 i q=1 lub ~p=1 i ~q=1

Stąd w punktach A5 i C5 w pełnej tabeli zero-jedynkowej stawiamy jedynki
Kod:

Pełna tabela zero-jedynkowa
   p  q ~p ~q  Y ~Y
A: 1  1  0  0  1
B: 1  0  0  1
C: 0  0  1  1  1
D: 0  1  1  0
   1  2  3  4  5  6

Mamy wszystko, dalsze wypełnianie pełnej tabeli zero-jedynkowej to komputerowy automat na mocy definicji negacji, nic a nic nie trzeba myśleć.
Kod:

T1
   p  q ~p ~q  Y ~Y
A: 1  1  0  0  1  0
B: 1  0  0  1  0  1
C: 0  0  1  1  1  0
D: 0  1  1  0  0  1
   1  2  3  4  5  6


1.16 Funkcje logiczne dwuargumentowe

Definicja funkcji logicznej Y dwóch zmiennych binarnych p i q:
Funkcja logiczna Y=f(p,q) w logice dodatniej (bo Y) dwóch zmiennych binarnych p i q to cyfrowy układ logiczny dający na wyjściu binarnym Y jednoznaczne odpowiedzi na wszystkie możliwe wymuszenia na wejściach p i q.

Definicja operatora logicznego dwuargumentowego Y|=f(p,q) w spójnikach "i"(*) i "lub"(+):
Operator logiczny dwuargumentowy Y|=f(p,q) wyrażony spójnikami "i”(*) i "lub"(+) to układ równań logicznych 1 i 2 dający odpowiedź na pytanie o Y i ~Y
1.
Y=f(p,q)
.. a kiedy zajdzie ~Y?
#
Negujemy funkcję logiczną 1 dwustronnie:
2.
~Y=~f(p,q)

Przykład:
1.
Y = p+q
co w logice jedynek oznacza:
Y=1 <=> p=1 lub q=1
bo w równaniach alternatywno-koniunkcyjnych jedynki są domyślne.
#
2.
… a kiedy zajdzie ~Y?
Negujemy dwustronnie równanie 1:
~Y = ~(p+q) = ~p*~q - na mocy prawa De Morgana.
co w logice jedynek oznacza:
~Y=1 <=> ~p=1 i ~q=1
bo w równaniach alternatywno-koniunkcyjnych jedynki są domyślne.
Gdzie:
# - różne, w znaczeniu iż dowolna strona znaczka # jest negacją drugiej strony

Wszystkie możliwe wymuszenia binarne (dwuwartościowe) na wejściach p i q dla funkcji logicznej w logice dodatniej (bo Y) to:
Kod:

T1
Wszystkie możliwe wymuszenia binarne na wejściach p i q
dla funkcji logicznej w logice dodatniej (bo Y)
   p  q  Y=f(p,q)
A: 1  1  x
B: 1  0  x
C: 0  1  x
D: 0  0  x
Gdzie:
x={0,1}
Y - funkcja logiczna
f(p,q) - wyrażenie algebry Boole’a

Z definicji funkcji logicznej Y wynika, że możliwe jest szesnaście i tylko szesnaście różnych na mocy definicji ## funkcji logicznych dwuargumentowych w logice dodatniej (bo Y).
Funkcje te definiujemy tabelą prawdy pokazującą wszystkie możliwe wspólne wymuszenia na wejściach p i q oraz wszystkie możliwe, różne na mocy definicji ## odpowiedzi na wyjściu Y.

Każda ze zmiennych binarnych {p, q, Y} może występować w logice dodatniej (bo x) albo w logice ujemnej (bo ~x). Oczywistym jest, że zmienna binarna w logice dodatniej (bo x) wymusza zmienną binarną w logice ujemnej (bo ~x), albo odwrotnie.
Na dowolny układ cyfrowy można zatem spojrzeć w logice dodatniej (bo Y) albo w logice ujemnej (bo ~Y).
Kod:

T2
Wymuszenia binarne w logice dodatniej {p, q, Y}
wymuszają logikę ujemną {~p, ~q, ~Y) i odwrotnie.
   p  q  Y=f(p,q)  #  ~p ~q  ~Y=~f(p,q)
A: 1  1  x         #   0  0 ~(x)
B: 1  0  x         #   0  1 ~(x)
C: 0  1  x         #   1  0 ~(x)
D: 0  0  x         #   1  1 ~(x)
Gdzie:
x={0,1}
f(p,q) - wyrażenie algebry Boole’a
Y=f(p,q) # ~Y=~f(p,q)
# - różne, w znaczeniu iż dowolna strona # jest negacją drugiej strony
Matematycznie zachodzi tożsamość:
~Y=~(Y)
~p=~(p)
~q=~(q)
Stąd mamy:
p, q, Y muszą być wszędzie tymi samymi p, q, Y inaczej błąd podstawienia


1.16.1 Tabela wszystkich możliwych funkcji dwuargumentowych

W tabeli wszystkich możliwych dwuargumentowych funkcji logicznych TF2 (niżej) po raz pierwszy w historii ludzkości zdefiniowano wszystkie występujące w logice matematycznej, elementarne znaczki logiczne.
Kod:

TF2
Tabela prawdy wszystkich możliwych dwuargumentowych funkcji logicznych Y
w logice dodatniej (bo Y)
        |Grupa I        |Grupa II       |Grupa III             | Grupa IV
        |Spójniki „i”(*)|Spójniki =>, ~>|Spójniki <=>, $       | Wejścia
        |oraz „lub”(+)  ||=>, |~>       ||~~>, |~~~>           | p i q
        | Y  Y |  Y  Y  | Y  Y   Y   Y  |  Y    Y   Y      Y   | Y  Y  Y  Y
   p  q | *  + | ~* ~+  | => ~> |=> |~> | <=>   $  |~~>   |~~~>| p  q ~p ~q
A: 1  1 | 1  1 |  0  0  | 1  1   0   0  |  1    0   1      0   | 1  1  0  0
B: 1  0 | 0  1 |  1  0  | 0  1   0   1  |  0    1   1      0   | 1  0  0  1
C: 0  1 | 0  1 |  1  0  | 1  0   1   0  |  0    1   1      0   | 0  1  1  0
D: 0  0 | 0  0 |  1  1  | 1  1   0   0  |  1    0   1      0   | 0  0  1  1
          A  A    A  A    A  A   A   A     A    A   A      A     A  A  A  A
          0  1    2  3    4  5   6   7     8    9  10     11    12 13 14 15

Definicja znaczka różne na mocy definicji ## w logice dodatniej (bo Y):
Dwie funkcje logiczne Y w logice dodatniej (bo Y) są różne na mocy definicji ## wtedy i tylko wtedy gdy dla identycznych wymuszeń na wejściach p i q:
p - w logice dodatniej (bo p)
oraz
q - w logice dodatniej (bo q)
mają różne kolumny wynikowe Y w logice dodatniej (bo Y).
Doskonale widać, że wszystkie funkcje Y w tabeli TF2 spełniają definicję znaczka różne na mocy definicji ## w logice dodatniej (bo Y)

Poprawność powyższej definicji łatwo sprawdzić w laboratorium bramek logicznych:
1.
Budujemy 16 różnych na mocy definicji ## bramek logicznych definiowanych tabelą TF0-15
2.
Wybieramy dowolne dwie różne bramki łącząc galwanicznie ich wyjścia Y.
Na wspólnych wejściach p i q wybranych bramek wymuszamy wszystkie możliwe kombinacje zero-jedynkowe ABCDpq.
3.
Pewne jest, że w laboratorium zobaczymy kupę dymu i smrodu co jest dowodem różności na mocy definicji ## wybranych bramek.

Prawo negacji funkcji logicznej:
Dowolną funkcję logiczną mamy prawo dwustronnie zanegować przechodząc do logiki przeciwnej.

1.16.2 Tabela wszystkich możliwych operatorów dwuargumentowych

Definicja operatora logicznego Y|=f(x) w spójnikach "i"(*) i "lub"(+):
Operator logiczny Y|=f(x) to układ równań logicznych dający odpowiedź na pytanie o Y i ~Y.

Zastosujmy prawo negacji funkcji logicznej do tabeli TF2
Kod:

TF0-15
-------------------------------------------------------------------
TF0-3
Grupa spójników „i”(*) oraz „lub”(+) w logice dodatniej (bo Y)
oraz w logice ujemnej (bo ~Y)
A0:  Y=p*q  "i"(*) w j. potocznym   # B0:  ~Y=~( p* q) =~p+~q
     ##                                     ##
A1:  Y=p+q  "lub"(+) w j. potocznym # B1:  ~Y=~( p+ q) =~p*~q
     ##                                     ##
A2:  Y=~(p*q)=~p+~q NAND w technice # B2:  ~Y=~(~p+~q) = p* q
     ##                                     ##
A3:  Y=~(p+q)=~p*~q NOR w technice  # B3:  ~Y=~(~p*~q) = p+ q
     ##
--------------------------------------------------------------------
TF4-5
Grupa warunków wystarczających p=>q i koniecznych p~>q:
Definicja warunku wystarczającego p=>q:
A4:  Y = (p=>q) = ~p+q              # B4:  ~Y=~(p=>q) = p*~q
     ##                                     ##
Definicja warunku koniecznego p~>q:
A5:  Y = (p~>q) = p+~q              # B5:  ~Y=~(p~>q) =~p* q
     ##                                     ##
--------------------------------------------------------------------
TF6-7
Grupa spójników implikacyjnych p|=>q i p|~>q:
Definicja implikacji prostej p|=>q:
A6:  Y = p|=>q  =~p* q              # B6:  ~Y=~(p|=>q)= p+~q
     ##                                     ##
Definicja implikacji odwrotnej p|~>q:
A7:  Y = p|~>q  = p*~q              # B7:  ~Y=~(p|~>q)=~p+ q
     ##                                     ##
--------------------------------------------------------------------
TF8-9
Grupa spójników równoważnościowych p<=>q i p$q
Definicja równoważności p<=>q:
A8:  Y = p<=>q = ~(p$q) =p*q+~p*~q  # B8:  ~Y=~(p<=>q)=(p$q)=p*~q+~p*q
     ##                                     ##
Definicja spójnika „albo”($):
A9:  Y = p$q = ~(p<=>q)=p*~q+~p*q   # B9:  ~Y=~(p$q) =(p<=>q)=p*q+~p*~q
     ##                                     ##
--------------------------------------------------------------------
TF10-11
Grupa spójników chaosu p|~~>q:
Definicja chaosu (zdanie zawsze prawdziwe): Y=p|~~>q=1:
A10: Y=p|~~>q=(p+q+~p*~q)=1         # B10: ~Y=~(p|~~>q)=(p+q)*~(p+q)=0
     ##                                     ##
Definicja śmierci (zdanie zawsze fałszywe): Y=p|~~~>q=0:
A11: Y =p|~~~>q = (p+q)*~(p+q)=0    # B11: ~Y=~(p|~~~>q)=(p+q+~p*~q)=1
     ##
--------------------------------------------------------------------
TF12-15
Grupa spójników jednoargumentowych w logice dodatniej (bo Y)
oraz w logice ujemnej (bo ~Y)
     ##                                    ##
A12: Y = p                          # B12:~Y=~p
     ##                                    ##
A13: Y = q                          # B13:~Y=~q
     ##                                    ##
A14: Y =~p                          # B14:~Y= p
     ##                                    ##
A15: Y =~q                          # B15:~Y= q
Gdzie:
#  - różne w znaczeniu iż dowolna strona # jest negacją drugiej strony
## - różne na mocy definicji funkcji logicznych
Matematycznie zachodzi tożsamość:
~Y=~(Y)
~p=~(p)
~q=~(q)
Stąd mamy:
p, q, Y muszą być wszędzie tymi samymi p, q, Y inaczej błąd podstawienia

Funkcje logiczne Y w logice dodatniej (bo Y) w ilości 16 sztuk (A0-A15) to funkcje różne na mocy definicji ##.

Definicja znaczka różne #:
Dowolna strona znaczka różne # jest negacją drugiej strony

Definicja znaczka różne na mocy definicji ##:
Dwie funkcje logiczne (Y,~Y) są różne na mocy definicji ## wtedy i tylko wtedy gdy nie są tożsame i żadna z nich nie jest zaprzeczeniem drugiej.

Doskonale widać, że w tabeli TF0-15 definicje obu znaczków # i ## są perfekcyjnie spełnione.

1.16.3 Prawo Grzechotnika

Prawo Grzechotnika:
Ziemska algebra Boole’a która nie widzi funkcji logicznych w logice dodatniej (bo Y) i ujemnej (bo ~Y) jest wewnętrznie sprzeczna na poziomie funkcji logicznych.

Dowód tego faktu dla tabeli TF0-15 znajdziemy w punkcie 24.7

1.17 Definicja spójników zupełnych w języku potocznym

Definicja spójników zupełnych w języku potocznym:
Spójniki zupełne w języku potocznym (w tym w matematyce i fizyce) to spójniki "i"(*) i "lub"(+) przy pomocy których można zdefiniować każdą z 16 możliwych funkcji logicznych w logice dodatniej (bo Y) oraz w logice ujemnej (bo ~Y) widocznych w tabeli TF0-15.

Jedynymi spójnikami zupełnymi w logice matematycznej zgodnymi z językiem potocznym 5-cio latków są spójniki z algebry Boole'a:
(+) - spójnik "lub"(+) zgodny z językiem potocznym
(*) - spójnik "i"(*) zgodny z językiem potocznym

1.17.1 Prawo Puchacza dla spójników zupełnych w języku potocznym

Prawo Puchacza dla spójników zupełnych w języku potocznym:
Funkcje logiczne Y i ~Y opisujące linię x w tabeli TF0-15 dostępne są tylko i wyłącznie w linii x.
Żadna z tych funkcji nie jest dostępna w jakiejkolwiek linii poza linią x

W tabeli TF0-15 widać, że dowolna linia tej tabeli jest różna na mocy definicji ## od jakiejkolwiek innej linii w tej tabeli.

Definicja operatora logicznego Y|=f(x)w spójnikach "i"(*) i "lub"(+):
Operator logiczny Y|=f(x) to układ równań logicznych dający odpowiedź na pytanie o Y i ~Y.

Rozważmy sztandarowy przykład:

I.
Definicja operatora "lub"(|+) A1B1:


Patrz tabela TF0-15:
A1
Definicja spójnika "lub"(+):
Y = p+q
co w logice jedynek oznacza:
Y=1 <=> p=1 lub q=1
#
… a kiedy zajdzie ~Y
Negujemy dwustronnie 1:
B1.
~Y=~p*~q
co w logice jedynek oznacza:
~Y=1 <=> ~p=1 i ~q=1

Gdzie:
# - różne w znaczeniu iż dowolna strona znaczka # jest negacją drugiej strony

Łatwo sprawdzić w tabeli TF0-15, iż przykładowa funkcja logiczna w logice dodatniej (bo Y):
A1.
Definicja spójnika "lub"(+):
Y = p+q
co w logice jedynek oznacza:
Y=1 <=> p=1 lub q=1
należy tylko i wyłącznie do operatora "lub"(|+) (A1B1) nie należąc do jakiegokolwiek innego operatora zdefiniowanego w tabeli TF0-15.

Łatwo też sprawdzić w tabeli TF0-15, iż przykładowa funkcja logiczna w logice ujemnej (bo ~Y):
B1.
~Y=~p*~q
co w logice jedynek oznacza:
~Y=1 <=> ~p=1 i ~q=1
należy tylko i wyłącznie do operatora "lub"(|+) (A1B1) nie należąc do jakiegokolwiek innego operatora zdefiniowanego w tabeli TF0-15.

1.17.2 Startowa funkcja logiczna

Definicja startowej funkcji logicznej:
Startowa funkcja logiczna to funkcja opisująca zdanie startowe wypowiedziane przez człowieka, od którego zaczynamy analizę.

Przykład:
Pani przedszkolanka:
1.
Jutro pójdziemy do kina lub do teatru
Y=K+T
co w logice jedynek (naturalna logika człowieka) oznacza:
Y=1 <=> K=1 lub T=1
Czytamy:
Prawdą jest (=1) że pani dotrzyma słowa (Y) wtedy i tylko wtedy gdy jutro pójdziemy do kina (K=1) lub pójdziemy do teatru (T=1)
#
.. a kiedy pani nie dotrzyma słowa (~Y=1)?
Negujemy funkcję startową 1 dwustronnie.
~Y=~(K+T) = ~K*~T - prawo De Morgana
stąd mamy:
2.
~Y=~K*~T
co w logice jedynek oznacza:
~Y=1 <=> ~K=1 i ~T=1
Czytamy:
Prawdą jest (=1), że pani nie dotrzyma słowa (~Y) wtedy i tylko wtedy gdy jutro nie pójdziemy do kina (~K=1) i nie pójdziemy do teatru (~T=1)
Znaczenie zmiennej Y:
Y - pani dotrzyma słowa (Y=1)
~Y - pani nie dotrzyma słowa (~Y=1)

Gdzie:
# - dowolna strona znaczka # jest negacją drugiej strony

Doskonale widać, że funkcją startową jest tu funkcja:
1: Y=K+T


Ostatnio zmieniony przez rafal3006 dnia Nie 10:29, 22 Wrz 2024, w całości zmieniany 2063 razy
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 35257
Przeczytał: 24 tematy

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Sob 19:53, 31 Paź 2020    Temat postu:

...

Ostatnio zmieniony przez rafal3006 dnia Nie 8:59, 01 Lis 2020, w całości zmieniany 1 raz
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 35257
Przeczytał: 24 tematy

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Sob 23:49, 31 Paź 2020    Temat postu:

....

Ostatnio zmieniony przez rafal3006 dnia Nie 9:00, 01 Lis 2020, w całości zmieniany 1 raz
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 35257
Przeczytał: 24 tematy

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Sob 12:35, 22 Maj 2021    Temat postu: Re: Śmieci

...

Ostatnio zmieniony przez rafal3006 dnia Śro 13:06, 29 Cze 2022, w całości zmieniany 2 razy
Powrót do góry
Zobacz profil autora
Wyświetl posty z ostatnich:   
Napisz nowy temat   Odpowiedz do tematu    Forum ŚFiNiA Strona Główna -> Metodologia / Forum Kubusia Wszystkie czasy w strefie CET (Europa)
Strona 1 z 1

 
Skocz do:  
Nie możesz pisać nowych tematów
Nie możesz odpowiadać w tematach
Nie możesz zmieniać swoich postów
Nie możesz usuwać swoich postów
Nie możesz głosować w ankietach

fora.pl - załóż własne forum dyskusyjne za darmo
Powered by phpBB © 2001, 2005 phpBB Group
Regulamin