Forum ŚFiNiA Strona Główna ŚFiNiA
ŚFiNiA - Światopoglądowe, Filozoficzne, Naukowe i Artystyczne forum - bez cenzury, regulamin promuje racjonalną i rzeczową dyskusję i ułatwia ucinanie demagogii. Forum założone przez Wuja Zbója.
 
 FAQFAQ   SzukajSzukaj   UżytkownicyUżytkownicy   GrupyGrupy   GalerieGalerie   RejestracjaRejestracja 
 ProfilProfil   Zaloguj się, by sprawdzić wiadomościZaloguj się, by sprawdzić wiadomości   ZalogujZaloguj 

Algebra Kubusia - wojna

 
Napisz nowy temat   Odpowiedz do tematu    Forum ŚFiNiA Strona Główna -> Metodologia / Forum Kubusia
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 37105
Przeczytał: 22 tematy

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Śro 19:29, 05 Mar 2025    Temat postu: Algebra Kubusia - wojna

2025-03-05
W tym temacie zamieszczam mało istotne polemiki z pełnej wersji algebry Kubusia zastapione ważniejszymi zagadnieniami w temacie logika matematyczna


Ostatnio zmieniony przez rafal3006 dnia Śro 19:32, 05 Mar 2025, w całości zmieniany 1 raz
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 37105
Przeczytał: 22 tematy

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Śro 19:31, 05 Mar 2025    Temat postu:

Algebra Kubusia - matematyka języka potocznego
23.0 Geneza twardych i miękkich zer i jedynek w algebrze Boole’a

Spis treści
23.0 Geneza twardych i miękkich zer i jedynek w algebrze Boole’a 1
23.1 Wstęp do twardych i miękkich zer i jedynek w warunku wystarczającym => 2
23.1.1 Geneza twardych i miękkich zer i jedynek w warunku wystarczającym => 5
23.2 Wstęp do twardych i miękkich zer i jedynek w równoważności <=> 11
23.2.1 Geneza twardych i miękkich zer i jedynek w równoważności <=> 16


23.0 Geneza twardych i miękkich zer i jedynek w algebrze Boole’a

Algebra Kubusia to matematyczny opis języka potocznego (w tym matematyki i fizyki).

Algebra Kubusia zawiera w sobie nową algebrę Boole’a mówiącą wyłącznie o spójnikach „i”(*) oraz „lub”(+) z języka potocznego człowieka.
Innymi słowy:
Aktualna algebra Boole’a w ogóle nie zajmuje się kluczową i najważniejszą częścią logiki matematycznej, czyli obsługą zdań warunkowych „Jeśli p to q” definiowanych warunkami wystarczającymi => i koniecznymi ~>.

Definicja nowej algebry Boole’a na poziomie znaczków:
Nowa algebra Boole’a to algebra dwuelementowa akceptująca zaledwie pięć znaczków:
1 = prawda
0 = fałsz
„nie”(~) - negacja (zaprzeczenie), słówko „NIE” w języku potocznym
Spójniki logiczne zgodne z językiem potocznym:
„i”(*) - spójnik „i”(*) w języku potocznym
„lub”(+) - spójnik „lub”(+) w języku potocznym

Dlaczego nowa algebra Boole’a?
1.
W algebrze Kubusia zachodzi tożsamość znaczków:
Spójnik „i”(*) z języka potocznego = bramka AND (*) w technice = koniunkcja (*) w matematyce
Spójnik „lub”(+) z języka potocznego = bramka OR(+) w technice = alternatywa (+) w matematyce
Dowód tego faktu na poziomie 5-cio latka znajdziemy w punkcie 1.9 (sterowanie windą).
2.
Stara algebra Boole’a nie zna kluczowych dla logiki matematycznej pojęć: logika dodatnia (bo p) i logika ujemna (bo ~p). Definicję znajdziemy w pkt. 1.1.1
3.
Stara algebra Boole'a jest wewnętrznie sprzeczna na poziomie funkcji logicznych w logice dodatniej (bo Y) i ujemnej (bo ~Y), co udowodnimy za chwilkę (pkt. 1.5.7 i 1.5.8)

Tragedią ziemskiej logiki matematycznej jest fakt, że nie zna ona pojęcia funkcji logicznej w logice ujemnej (bo ~Y), akceptując wyłącznie funkcje logiczne w logice dodatniej (bo Y).

Na początek przypomnijmy sobie kluczową definicję funkcji alternatywno-koniunkcyjnej podaną w punkcie 1.14.2 często używaną w poniższych rozważaniach.

Definicja funkcji alternatywno-koniunkcyjnej:
Funkcja logiczna Y ma postać alternatywno-koniunkcyjną wtedy i tylko wtedy gdy nie zawiera ani jednego członu w postaci koniunkcyjno-alternatywnej.
Inaczej funkcja Y ma postać koniunkcyjno-alternatywną lub mieszaną

Logiką zrozumiałą dla człowieka jest wyłącznie postać alternatywno-koniunkcyjna (dowód w pkt. 1.10) gdzie wszystkie zmienne na mocy prawa Prosiaczka sprowadzone są do logicznych jedynek.

Wniosek:
Jeśli w dowolnym równaniu algebry Boole'a napotkamy fragment koniunkcyjno-alternatywny to ten fragment wymnażamy logicznie przechodząc do funkcji alternatywno-koniunkcyjnej.

W tym miejscu czytelnik proszony jest o przypomnienie sobie wiadomości elementarnych w kwestii warunków wystarczających => i koniecznych ~> zawartych w punktach 2.4 do 2.5

23.1 Wstęp do twardych i miękkich zer i jedynek w warunku wystarczającym =>

Na mocy rachunku zero-jedynkowego mamy matematyczne związki warunku wystarczającego => i koniecznego ~> w zapisie skróconym (pkt. 2.5)
Kod:

T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
      ##        ##           ##        ##            ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5:  p+~q

Prawa Kubusia:        | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q  | A1: p=>q  = A4:~q=>~p
B1: p~>q = B2:~p=>~q  | B2:~p=>~q = B3: q=>p

Prawa Tygryska:       | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p   | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p   | B1: p~>q  = B4:~q~>~p
Gdzie:
p=>q = ~p+q - definicja warunku wystarczającego =>
p~>q = p+~q - definicja warunku koniecznego ~>
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

I Prawo Sowy
Dla udowodnienia prawdziwości wszystkich zdań serii Ax potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Ax
Dla udowodnienia fałszywości wszystkich zdań serii Ax potrzeba i wystarcza udowodnić fałszywość dowolnego zdania serii Ax
##
II Prawo Sowy
Dla udowodnienia prawdziwości wszystkich zdań serii Bx potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Bx
Dla udowodnienia fałszywości wszystkich zdań serii Bx potrzeba i wystarcza udowodnić fałszywość dowolnego zdania serii Bx
Gdzie:
## - różne na mocy definicji

Prawa Sowy to:
Ogólna definicja tożsamości logicznej „=” dla wielu zdań:
Prawdziwość dowolnego zdania w tożsamości logicznej „=” wymusza prawdziwość pozostałych zdań
Fałszywość dowolnego zdania w tożsamości logicznej „=” wymusza fałszywość pozostałych zdań

Tożsame znaczki tożsamości logicznej to:
„=”, [=], <=> (wtedy i tylko wtedy)

A1B1:
Definicja implikacji prostej p|=>q:

Implikacja prosta p|=>q w logice dodatniej (bo q) to spełniony wyłącznie warunek wystarczający => między tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
Stąd mamy:
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) =1*~(0)=1*1=1

Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>~q=p*~q
Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1
(i odwrotnie)

Na mocy definicji implikacji prostej p|=>q oraz definicji kontrprzykładu w zdarzeniach nasza tabela T0 przyjmuje szczegółową postać implikacji prostej p|=>q
Kod:

T1
Definicja implikacji prostej p|=>q z uwzględnieniem definicji kontrprzykładu działającej wyłącznie w warunkach wystarczających =>
       A1B1:         A2B2:    |     A3B3:         A4B4:           A5B5:
       Y=            Y=             Y=            Y=              Y=
A:  1: p=> q= 1 = 2:~p~>~q=1 [=] 3: q~>p =1  = 4:~q=>~p=1 [=] 5: ~p+q
A’: 1: p~~>~q=0 =                              4:~q~~>p=1
       ##            ##             ##            ##              ##
       Y=            Y=             Y=            Y=              Y=
B:  1: p~> q =0 = 2:~p=>~q=0 [=] 3: q=> p =0 = 4:~q~>p =0 [=] 5:  p+~q
B’:               2:~p~~>q=1     3: q~~>~p=1
Gdzie:
p=>q = ~p+q - definicja warunku wystarczającego =>
##
p~>q = p+~q - definicja warunku koniecznego ~>
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Definicja operatora implikacji prostej p||=>q:
Operator implikacji prostej p||=>q to układ równań logicznych na bazie kolumn A1B1 i A2B2 dający odpowiedź na pytanie o p i ~p

Kolumna A1B1:
A1B1: p|=>q = (A1: (p=>q)*~(B1: p~>q) - co może się wydarzyć jeśli zajdzie p?
Kolumna A2B2
A2B2: ~p|~>~q = (A2: ~p~>~q)*~(B2: ~p=>~q) - co może być jeśli zajdzie ~p?

Typowe zadanie z logiki matematycznej brzmi:
Zbadaj w skład jakiego operatora implikacyjnego wchodzi zdanie:
A1.
Jeśli jutro będzie padało to będzie pochmurno
P=>CH=1
Padanie (P) jest (=1) warunkiem wystarczającym => aby było pochmurno (CH) bo zawsze gdy pada, jest pochmurno.

Na mocy prawa Kłapouchego (pkt. 2.7) nasz punkt odniesienia to:
p=P (pada)
q=CH (chmury)
Szczegółowe rozwiązanie tego zadania mamy w punkcie 3.4.1.

Rozwiązanie skrótowe jest następujące:
Operator implikacji prostej P||=>CH w zapisie aktualnym (nasz przykład):
Operator implikacji prostej P||=>CH to układ równań A1B1 i A2B2 dający odpowiedź na pytanie o padanie (P) i nie padanie (~P)
Kolumna A1B1:
A1B1: P|=>CH = (A1: (P=>CH)*~(B1: P~>CH) - co może się wydarzyć jeśli jutro będzie padało (P)?
Kolumna A2B2
A2B2: ~P|~>~CH = (A2: ~P~>~CH)*~(B2: ~P=>~CH) - co może być jeśli jutro nie będzie padało (~P)?

Skrócona, symboliczna tabela prawdy operatora P||=>CH jest następująca:
Kod:

T1.
Operator implikacji prostej P||=>CH w znaczkach warunku wystarczającego =>,
warunku koniecznego ~> i zdarzenia możliwego ~~>
A1B1:
Co może się wydarzyć jeśli jutro będzie padało (P=1)?
A1:   P=> CH =1 – padanie jest (=1) wystarczające => dla istnienia chmur
A1’:  P~~>~CH=0 – niemożliwe jest (=0) zdarzenie pada i nie jest pochmurno
A2B2:
Co może się wydarzyć jeśli jutro nie będzie padało (~P=1)?
A2:  ~P~> ~CH=1 – brak padania jest warunkiem koniecznym ~> dla braku chmur
B2’: ~P~~> CH=1 – możliwe jest (=1) zdarzenie nie pada i jest pochmurno

Cechą charakterystyczną algebry Kubusia jest jej przełożenie na język potoczny w przełożeniu 1:1.
Przejdźmy z naszego przykładu na zapis ogólny przez podstawienie:
p=P(pada)
q=CH(chmury)

Stąd mamy tabelę T1 w zapisie ogólnym:
Kod:

T1.
Operator implikacji prostej p||=>q w znaczkach warunku wystarczającego =>,
warunku koniecznego ~> i zdarzenia możliwego ~~>
A1B1:
Co może się wydarzyć jeśli zajdzie p (p=1)?
A1:   p=> q =1 – zajście p jest (=1) wystarczające => dla zajścia q
A1’:  p~~>~q=0 – niemożliwe jest (=0) jednoczesne zajście p i ~q
A2B2:
Co może się wydarzyć jeśli zajdzie ~p (~p=1)?
A2:  ~p~> ~q=1 – zajście ~p jest warunkiem koniecznym ~> dla zajścia ~q
B2’: ~p~~> q=1 – możliwe jest (=1) jednoczesne zajście zdarzeń ~p i q

Z tabeli operatora implikacji prostej p||=>q łatwo wyprowadzamy zero-jedynkową definicję warunku wystarczającego p=>q w logice dodatniej (bo q).
Jak to się robi znajdziemy w punkcie 10.1.2.
Kod:

TW
Zero-jedynkowa definicja warunku wystarczającego =>:
   p  q  Y=(p=>q)=~p+q
A: 1  1   1
B: 1  0   0
C: 0  0   1
D: 0  1   1

Z powyższego wynika, że z zero-jedynkowej definicji warunku wystarczającego p=>q łatwo dojdziemy do symbolicznej definicji operatora implikacji prostej p||=>q podejmując działania odwrotne, co opisano w punkcie 10.2.

23.1.1 Geneza twardych i miękkich zer i jedynek w warunku wystarczającym =>

Na bazie wyprowadzonej wyżej zero-jedynkowej definicji warunku wystarczającego => TW możemy łatwo rozszyfrować o co chodzi w twierdzeniu Volratha.

Twierdzenie Volratha:
http://www.sfinia.fora.pl/forum-kubusia,12/kubusiowa-szkola-logiki-na-zywo-dyskusja-z-volrathem,3591-100.html#72062
Wysłany: Śro 13:43, 10 Gru 2008
wykładowca logiki matematycznej volrath napisał:

Niestety bazowa logika Boole'a domyślnie zakłada, że wszystkie jedynki są miękkie, a zera twarde. Tak już jest skonstruowana.

Kod:

TW
Zero-jedynkowa definicja warunku wystarczającego =>
   p  q  Y=(p=>q)=~p+q
A: 1  1  =1
B: 1  0  =0
C: 0  0  =1
D: 0  1  =1
   1  2   3

Jak wygenerować z tej tabeli operator implikacji prostej p||=>q?
Szczegóły znajdziemy w punkcie 10.2

Największą tragedią wszelkich ziemskich logik matematycznych jest prawo eliminacji warunku wystarczającego => (u Ziemian prawo eliminacji implikacji =>):
Y = (p=>q) = ~p+q
Prawo eliminacji warunku wystarczającego => prowadzi do zagłady wszelkich sensownych ziemskich logik matematycznych, gdyż po jego zastosowaniu wywalamy w kosmos kluczowe pojęcia logiki matematycznej tzn. zarówno definicję warunku wystarczającego => jak i definicję warunku koniecznego ~>.
Dosadniej mówiąc, wywalamy w kosmos poniższy fundament wszelkich sensownych logik matematycznych, nieznany ziemskim matematykom.
Kod:

T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
      ##        ##           ##        ##            ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5:  p+~q

Prawa Kubusia:        | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q  | A1: p=>q  = A4:~q=>~p
B1: p~>q = B2:~p=>~q  | B2:~p=>~q = B3: q=>p

Prawa Tygryska:       | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p   | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p   | B1: p~>q  = B4:~q~>~p
Gdzie:
p=>q = ~p+q - definicja warunku wystarczającego =>
p~>q = p+~q - definicja warunku koniecznego ~>
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Weźmy to nieszczęsne prawo eliminacji warunku wystarczającego => które sprowadza tabelę T0 wyżej do definicji operatora „lub”(|+) mającej zero wspólnego zarówno z warunkiem wystarczającym =>, jak i koniecznym ~>.

Definicja operatora „lub”(|+):
Operator „lub”(|+) układ równań logicznych 1 i 2 dający odpowiedź na pytanie o funkcję logiczną w logice dodatniej (bo Y) i ujemnej (bo ~Y)
1.
Kiedy zajdzie Y?
Y = ~p+q
co w logice jedynek (bo funkcja alternatywno-koniunkcyjna) oznacza:
Y=1 <=> ~p=1 lub q=1
Czytamy:
Prawdą jest (=1), że zajdzie Y (Y) wtedy i tylko wtedy gdy nie zajdzie p (~p=1) lub zajdzie q (q=1)

… a kiedy zajdzie ~Y
Negujemy równanie 1 stronami:
~Y = (~p+q) = p*~q – na mocy prawa De Morgana
stąd mamy:
2.
Kiedy zajdzie ~Y?
~Y=p*~q
co w logice jedynek (bo funkcja alternatywno-koniunkcyjna) oznacza:
~Y=1 <=> p=1 i ~q=1
Czytamy:
Prawdą jest (=1), że nie zajdzie Y (~Y) wtedy i tylko wtedy gdy zajdzie p (p=1) i nie zajdzie q (~q=1)

Uwaga:
W każdym innym przypadku zajdzie Y.
Zauważmy, że mamy tylko jedno zdarzenie rozłączne dające odpowiedź na pytanie o ~Y, dlatego łatwo generujemy funkcję logiczną Y w zdarzeniach rozłącznych tzn. wszystkie pozostałe zdarzenia z wykluczeniem zdarzenia ~Y.
1’: Y = A: p*q + C: ~p*~q + D: ~p*q
Co w logice jedynek (bo funkcja alternatywno-koniunkcyjna) oznacza:
1’: Y=1 <=> A: p=1 i q=1 lub C: ~p=1 i ~q=1 lub D: ~p=1 i q=1

Oczywistym jest, że matematycznie musi zachodzić tożsamość logiczna [=]:
1: Y=~p+q [=] 1’: Y = A: p*q + C: ~p*~q + D: ~p*q
Sprawdzenie poprzez minimalizację prawej strony:
1’.
Y = p*q + ~p*~q + ~p*q
Y = p*q + ~p*(~q+q) – wyciągnięcie zmiennej ~p przed nawias
Y = ~p + (p*q) – bo ~q+q=1 oraz x*1=x, prawa algebry Boole’a
Y = ~p+(p*q)
Przejście do logiki ujemnej (bo ~Y) poprzez negację zmiennych i wymianę spójników:
~Y = p*(~p+~q)
~Y = p*~p + p*~q
~Y = p*~q – bo p*~p=0 oraz 0+x=x, prawa algebry Boole’a
Powrót do logiki dodatniej (bo Y) poprzez negację zmiennych i wyminę spójników:
Y = ~p+q
Stąd mamy dowód interesującej nas tożsamości:
1: Y=~p+q [=] 1’: Y = A: p*q + C: ~p*~q + D: ~p*q
c.n.d

Zobaczmy jak beznadziejne jest prawo eliminacji warunku wystarczającego => na naszym przykładzie.
A1.
Jeśli jutro będzie padało to na 100% => będzie pochmurno
P=>CH =1
Padanie (P) jest warunkiem wystarczającym => do tego aby było pochmurno (CH), bo zawsze gdy pada, jest pochmurno.
Innymi słowy:
Padanie (P) daje nam gwarancję matematyczną => istnienie chmur (CH), o czym każdy 5-cio latek wie
Matematycznie zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>
Znaczenie zdania A1 jak wyżej rozumie każdy 5-cio latek.

Zastosujmy do zdania A1 prawo eliminacji warunku wystarczającego =>:
p=>q = ~p+q
Nasz przykład:
P=>CH = ~P+CH
Stąd zdanie „tożsame” do zdania A1 brzmi:
1.
Jutro nie będzie padało (~P) lub będzie pochmurno (CH)
1: Y = ~P+CH
co w logice jedynek (bo funkcja alternatywno-koniunkcyjna) oznacza:
Y=1 <=> ~P=1 lub CH=1
Czytamy:
Prawdą jest (=1), że jutro wystąpi zdarzenie Y (Y=1) wtedy i tylko wtedy gdy nie będzie padało (~P) lub będzie pochmurno (CH)
Oczywistym jest, że sensu tego zdania żaden 5-cio latek nie zrozumie, że nie wspomnę o tożsamości:
A1: P=>CH = 1: ~P+CH
która formalnie zachodzi, ale która zabija występujący w zdaniu A1 warunek wystarczający =>.

… a kiedy nie zajdzie zdarzenie Y (~Y=1)?
Negujemy równanie 1 stronami:
~Y = ~(~P+CH) = P*~CH
Stąd mamy:
2.
~Y = P*~CH
co w logice jedynek (bo funkcja alternatywno-koniunkcyjna) oznacza:
~Y=1 <=> P=1 i ~CH=1
Czytamy:
Prawdą jest (=1) że nie zajdzie zdarzenie (~Y): pada (P=1) i nie jest pochmurno (~CH)

Znaczenie symbolu Y:
Y=1 – prawdą jest (=1), że zajdzie zdarzenie Y (Y)
~Y=1 – prawdą jest (=1), że nie zajdzie zdarzenie Y (~Y)

Jak widzimy, sens zdania 2 rozumie każdy 5-cio latek, czego nie da się powiedzieć o zdaniu 1.

Aby zrozumieć sens zdania 1 musimy skorzystać z rozpiski tego zdania na zdarzenia rozłaczne, co wyżej w zapisach formalnych wyprowadziliśmy:
1: Y=~p+q [=] 1’: Y = A: p*q + C: ~p*~q + D: ~p*q
Nasz przykład:
1: Y=~P+CH [=] 1’: Y = A: P*CH + C: ~P*~CH + D: ~P*CH
Stąd mamy:
1’.
Kiedy zajdzie zdarzenie (Y=1)?
Y = A: P*CH + C: ~P*~CH + D: ~P*CH
co w logice jedynek (bo funkcja alternatywno-koniunkcyjna) oznacza:
Y=1 <=> A: P=1 i CH=1 lub C: ~P=1 i ~CH=1 lub D: ~P=1 i CH=1
Czytamy:
Prawdą jest (=1), ze możliwe jest zdarzenie Y (Y) wtedy i tylko wtedy gdy:
A: Ya=P*CH=1*1=1 – możliwe jest (=1) zdarzenie: pada (P=1) i jest pochmurno (CH=1)
lub
C: Yc=~P*~CH=1*1=1 - możliwe jest (=1) zdarzenie: nie pada (~P=1) i nie jest pochmurno (~CH=1)
lub
D: Yd=~P*CH=1*1=1 – możliwe jest (=1) zdarzenie: nie pada (~P=1) i jest pochmurno (CH=1)

Jak widzimy, prawdziwość zdań składowych Ya, Yc i Yd jest oczywista dla każdego 5-cio latka, ale by do tych zdań dojść trzeba znać zawansowaną algebrę Boole’a w postaci zamiany sumy logicznej p+q na serię zdarzeń rozłącznych.

Prawo zamiany sumy logicznej p+q na serię zdarzeń rozłącznych:
p+q = p*q + p*~q + ~p*q

Dowód poprawności powyższego prawa.
Nasz przykład w zapisach formalnych:
Y = ~p+q = (~p)*q + (~p)*~q + ~(~p)*q
stąd po minimalizacji mamy:
Y = ~p+q = A: p*q + C: ~p*~q + D: ~p*q

Przejdźmy teraz do finału naszych rozważań:
Kod:

T2
Pełna tabela prawdy opisująca operator „lub”(|+)
Y=ACD:~p+q = A: p*q + C: ~p*~q + D: ~p*q
                                        |Komentarz
   p  q ~p ~q  Y=ACD:~p+q # ~Y=B: ~p*~q |
A: 1  1  0  0   1         #   0         | Ya= p* q |Yacd=~p+q = Ya+Yc+Yd
B: 1  0  0  1   0         #   1         |~Yb= p*~q |~Yb=p*~q
C: 0  0  1  1   1         #   0         | Yc=~p*~q
D: 0  1  1  0   1         #   0         | Yd=~p* q
   1  2  3  4   5             6           7   8  9
Gdzie:
# - dowolna strona znaczka # jest zaprzeczeniem drugiej strony

Nasz przykład (poziom 5-cio latka):
Kod:

T3
Pełna tabela prawdy opisująca operator „lub”(|+)
Y=ACD:~P+CH = A: P*CH + C: ~P*~CH + D: ~P*CH
                                           |Komentarz
   P CH ~P ~CH  Y=ACD:~P+CH # ~Y=B: ~P*~CH |
A: 1  1  0  0    1          #   0          | Ya= P* CH |Yacd=Ya+Yc+Yd
B: 1  0  0  1    0          #   1          |~Yb= P*~CH |~Yb=P*~CH
C: 0  0  1  1    1          #   0          | Yc=~P*~CH
D: 0  1  1  0    1          #   0          | Yd=~P* CH
   1  2  3  4    5              6            7   8   9
Gdzie:
# - dowolna strona znaczka # jest zaprzeczeniem drugiej strony

W tabeli T3 doskonale widać, że w pełnej tabeli zero-jedynkowej operatora „lub”(|+) opisujemy wyłącznie jedynki prowadzące do równań alternatywno-koniunkcyjnych, gdyż tylko te równania są zrozumiałe dla człowieka.
Opis wynikowych zer prowadzi do równań koniunkcyjno-alternatywnych, których żaden człowiek nie rozumie od 5-cio latka poczynając, na najwybitniejszych matematykach kończąc, czego dowód mamy w punkcie 1.10 (prawo Pandy).

Definicja twardego zera w logice dodatniej (bo Y):
W dowolnej tabeli zero-jedynkowej twarde zero w logice dodatniej (bo Y) oznacza, iż nie istnieją iterowania (przypadki) w których na pozycji twardego zera może pojawić się jedynka.

Zauważmy, ze w tabeli T3 jedyne twarde zero w logice dodatniej (bo Y) które dla dowolnego iterowania nigdy nie przyjmie wartości logicznej 1 mamy na pozycji B5.

Dowód:
Dowód iż w tabeli T3 mamy do czynienia z jednym twardym zerem to matematyczny opis punktu B5:
B5: Yb=0 <=> P=1 i ~CH=1
Interpretacja:
Fałszem jest (=0), że zajdzie zdarzenie (Yb): pada (P=1) i nie jest pochmurno (~CH=1)
O czym każdy 5-cio latek wie.

Definicja miękkiej jedynki w logice dodatniej (bo Y):
W dowolnej tabeli zero-jedynkowej miękka jedynka w logice dodatniej (bo Y) oznacza, iż istnieją iterowania (przypadki) w których na pozycji jedynki pojawia się logiczne zero.

Zbadajmy jak to jest z logicznymi jedynkami w kolumnie wynikowej Y (ABCD5).
Wynikowe jedynki w kolumnie wynikowej Y (ABCD5) opisuje równanie logiczne:
Y = ~P+CH = A: P*CH + C: ~P*~CH + D: ~P*CH
W rozpisce spójnika „lub”(+) na zdarzenia rozłączne mamy:
1.
Kiedy zajdzie (Y=1)?

Y = A: P*CH + C: ~P*~CH + D: ~P*CH
Co w logice jedynek (bo równanie alternatywno-koniunkcyjne) oznacza:
Y=1 <=> A: P=1 i CH=1 lub C: ~P=1 i ~CH=1 lub D: ~P=1 i CH=1

I.
Założenie konkretnego iterowania Ya:
A: Ya = P*CH =1*1=1 – możliwe jest (=1) zdarzenie (Ya): pada (P=1) i jest pochmurno (CH=1)
Założenie:
P=1 i CH=1
Prawo Prosiaczka:
(P=1)=(~P=0)
(CH=1)=(~CH=0)
Podstawmy to iterowanie do równania 1:
Y = A: P*CH + C:~P*~CH + D: ~P*CH = A: (P=1)*(CH=1)=1 + C: (~P=0)*(~CH=0)=0 + D: (~P=0)*(CH=1)=0
Jak widzimy, dla iterowania P=1 i CH=1 wyłącznie w linii A mamy jedynkę, zaś w liniach C i D mamy 0.
Innymi słowy:
Jedynki w liniach C i D w tabeli T3 są miękkimi jedynkami, bo dla konkretnego iterowania (tu P=1 i CH=1) mogą przyjąć wartości logiczne 0.
Zauważmy, że dla tego iterowania zero w punkcie B5 (Yb) pozostanie zerem.
Dowód:
Yb=0 <=> B: P*~CH = (P=1)*(~CH=0)= 1*0=0

II.
Założenie konkretnego iterowania Yc:
C: Yc=~P*~CH=1*1=1 - możliwe jest (=1) zdarzenie (Yc): nie pada (~P=1) i nie jest pochmurno (~CH=1)
Założenie:
~P=1 i ~CH=1
Prawo Prosiaczka:
(~P=1)=(P=0)
(~CH=1)=(CH=0)
Podstawmy to iterowanie do równania 1:
Y = A: P*CH + C:~P*~CH + D: ~P*CH = A: (P=1)*(CH=0)=0 + C: (~P=1)*(~CH=1)=1 + D: (~P=1)*(CH=0)=0
Dla iterowania ~P=1 i ~CH=1 wyłącznie w linii C mamy jedynkę, zaś w liniach A i D mamy 0.
Innymi słowy:
Jedynki w liniach A i D w tabeli T3 są miękkimi jedynkami, bo dla konkretnego iterowania (tu ~P=1 i ~CH=1) mogą przyjąć wartości logiczne 0.
Zauważmy, że dla tego iterowania zero w punkcie B5 (Yb) pozostanie zerem.
Dowód:
Yb=0 <=> B: P*~CH = (P=0)*(~CH=1)= 0*1=0

III.
Ostatnie możliwe iterowanie to Yd:
D: Yd = ~P*CH =1*1=1 – możliwe jest (=1) zdarzenie (Yc): nie pada (~P=1) i jest pochmurno (CH=1)
Założenie:
~P=1 i CH=1
Prawo Prosiaczka:
(~P=1)=(P=0)
(CH=1)=(~CH=0)
Podstawmy to iterowanie do równania 1:
Y= A: P*CH + C: ~P*~CH + D: ~P*CH = A: (P=0)*(CH=1)=0 + C: (~P=1)*(~CH=0)=0 + D: (~P=1)*(CH=1)=1
Jak widzimy, dla iterowania ~P=1 i CH=1 wyłącznie w linii D mamy jedynkę, zaś w liniach A i C mamy 0.
Innymi słowy:
Jedynki w liniach A i C w tabeli T3 są miękkimi jedynkami, bo dla konkretnego iterowania (tu ~P=1 i CH=1) mogą przyjąć wartości logiczne 0.
Zauważmy, że dla tego iterowania zero w punkcie B5 (Yb) pozostanie zerem.
Dowód:
Yb=0 <=> B: P*~CH = (P=0)*(~CH=0) = 0*0=0

Jak widzimy wyżej dla dowolnego iterowania tabeli T3 zero w punkcie B5 zawsze pozostanie zerem (Yb=0), co oznacza iż jest to twarde zero.

Podsumowując:
W kolumnie ABCD5 wszystkie jedynki są miękkimi jedynkami, co jest dowodem wewnętrznej sprzeczności logiki matematycznej po zastosowaniu prawa eliminacji warunku wystarczającego =>:
A1: P=>CH = ~P+CH = A: P*CH + C: ~P*~CH + D: ~P*CH
bowiem w znaczkach =>, ~> i ~~> w punkcie A5 występuje ewidentna twarda jedynka wymuszająca twarde zero punkcie B5 (kontrprzykład).

Dowód:
Kod:

T1.
Operator implikacji prostej P||=>CH w znaczkach warunku wystarczającego =>,
warunku koniecznego ~> i zdarzenia możliwego ~~>
A1B1:
Co może się wydarzyć jeśli jutro będzie padało (P=1)?
A:  P=> CH =1 – padanie jest (=1) wystarczające => dla istnienia chmur
B:  P~~>~CH=0 – niemożliwe jest (=0) zdarzenie pada i nie jest pochmurno
A2B2:
Co może się wydarzyć jeśli jutro nie będzie padało (~P=1)?
C: ~P~> ~CH=1 – brak padania jest warunkiem koniecznym ~> dla braku chmur
D: ~P~~> CH=1 – możliwe jest (=1) zdarzenie nie pada i jest pochmurno



23.2 Wstęp do twardych i miękkich zer i jedynek w równoważności <=>

Na mocy rachunku zero-jedynkowego mamy matematyczne związki warunku wystarczającego => i koniecznego ~> w zapisie skróconym (pkt. 2.5)
Kod:

T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
      ##        ##           ##        ##            ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5:  p+~q

Prawa Kubusia:        | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q  | A1: p=>q  = A4:~q=>~p
B1: p~>q = B2:~p=>~q  | B2:~p=>~q = B3: q=>p

Prawa Tygryska:       | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p   | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p   | B1: p~>q  = B4:~q~>~p
Gdzie:
p=>q = ~p+q - definicja warunku wystarczającego =>
p~>q = p+~q - definicja warunku koniecznego ~>
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

I Prawo Sowy
Dla udowodnienia prawdziwości wszystkich zdań serii Ax potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Ax
Dla udowodnienia fałszywości wszystkich zdań serii Ax potrzeba i wystarcza udowodnić fałszywość dowolnego zdania serii Ax
##
II Prawo Sowy
Dla udowodnienia prawdziwości wszystkich zdań serii Bx potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Bx
Dla udowodnienia fałszywości wszystkich zdań serii Bx potrzeba i wystarcza udowodnić fałszywość dowolnego zdania serii Bx
Gdzie:
## - różne na mocy definicji

Prawa Sowy to:
Ogólna definicja tożsamości logicznej „=” dla wielu zdań:
Prawdziwość dowolnego zdania w tożsamości logicznej „=” wymusza prawdziwość pozostałych zdań
Fałszywość dowolnego zdania w tożsamości logicznej „=” wymusza fałszywość pozostałych zdań

Tożsame znaczki tożsamości logicznej to:
„=”, [=], <=> (wtedy i tylko wtedy)

A1B1:
Definicja równoważności p<=>q:

Równoważność p<=>q w logice dodatniej (bo q) to spełnienie zarówno warunku wystarczającego =>, jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
Stąd:
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) =1*1 =1

Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>~q=p*~q
Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1
(i odwrotnie)

Na mocy definicji równoważności p<=>q oraz definicji kontrprzykładu w zdarzeniach nasza tabela T0 przyjmuje szczegółową postać równoważności p<=>q
Kod:

T1
Definicja implikacji równoważności p<=>q z uwzględnieniem definicji kontrprzykładu działającej wyłącznie w warunkach wystarczających =>
       A1B1:         A2B2:    |     A3B3:         A4B4:           A5B5:
       Y=            Y=             Y=            Y=              Y=
A:  1: p=> q= 1 = 2:~p~>~q=1 [=] 3: q~>p =1  = 4:~q=>~p=1 [=] 5: ~p+q
A’: 1: p~~>~q=0 =                              4:~q~~>p=1
       ##            ##             ##            ##              ##
       Y=            Y=             Y=            Y=              Y=
B:  1: p~> q =1 = 2:~p=>~q=1 [=] 3: q=> p =1 = 4:~q~>p =1 [=] 5:  p+~q
B’:               2:~p~~>q=0     3: q~~>~p=0
Gdzie:
p=>q = ~p+q - definicja warunku wystarczającego =>
##
p~>q = p+~q - definicja warunku koniecznego ~>
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Definicja operatora równoważności p|<=>q w zapisie formalnym:
Operator równoważności p|<=>q to układ równań A1B1 i A2B2 dający odpowiedź na pytanie o p (A1B1) i ~p (A2B2).
Kolumna A1B1:
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) - co może się wydarzyć jeśli zajdzie p?
Kolumna A2B2:
A2B2: ~p<=>~q = (A2:~p~>~q)*(B2: ~p=>~q) - co może się wydarzyć jeśli zajdzie ~p?

Typowe zadanie z logiki matematycznej brzmi:
Dany jest schemat elektryczny sterowania żarówką S przez przycisk A .
Kod:

S1 Schemat 1
             S               A       
       -------------       ______     
  -----| Żarówka   |-------o    o-----
  |    -------------                 |
  |                                  |
______                               |
 ___    U (źródło napięcia)          |
  |                                  |
  |                                  |
  ------------------------------------

Zbadaj jaki operator implikacyjny realizuje powyższy układ?

Rozwiązanie:
A1.
Jeśli wciśnięty jest przycisk A (A=1) to na 100% => żarówka S świeci się (S=1)
A=>S =1
Wciśnięcie przycisku A (A=1) jest (=1) warunkiem wystarczającym => dla świecenia żarówki S (S=1), bo w układzie nie ma przycisku C (zmienna wolna) połączonego szeregowo z przyciskiem A

Na mocy prawa Kłapouchego mamy:
p=A (przycisk)
q=S ( żarówka)
Stąd mamy zdanie A1 w zapisie formalnym:
A1: p=>q =1

Badamy spełnienie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku.
B1.
Jeśli wciśnięty jest przycisk A (A=1) to na 100% ~> świeci się żarówka S (S=1)
A~>S =1
To samo w zapisie formalnym:
p~>q =1
Wciśnięcie przycisku A (A=1) jest (=1) warunkiem konicznym ~> dla świecenia się żarówki S (S=1), bo w układzie nie ma dodatkowego przycisku B (zmienna wolna) połączonego równolegle do A, który by zaświecił żarówkę S niezależnie od stanu przycisku A.

Stąd mamy rozwiązanie iż mamy tu to czynienia z równoważnością A<=>S:
Kod:

S1 Schemat 1
Fizyczna realizacja równoważności A<=>S w zdarzeniach:
A1: A=>S =1 - wciśnięcie A jest (=1) wystarczające => dla świecenia S
B1: A~>S =1 - wciśnięcie A jest (=1) konieczne ~> dla świecenia S
A<=>S=(A1: A=>S)*(B1: A~>S)=1*1=1
             S               A       
       -------------       ______     
  -----| Żarówka   |-------o    o-----
  |    -------------                 |
  |                                  |
______                               |
 ___    U (źródło napięcia)          |
  |                                  |
  |                                  |
  ------------------------------------
Zmienne związane definicją: A, S
Zmienna wolna: brak, nie ma żadnych innych przycisków z wyjątkiem A
Istotą równoważności jest brak zmiennych wolnych

Definicja zmiennej związanej:
Zmienna związana to zmienna występujące w układzie uwzględniona w opisie matematycznym układu.
Zmienna związana z definicji jest ustawiana na 0 albo 1 przez człowieka.

Definicja zmiennej wolnej:
Zmienna wolna to zmienna występująca w układzie, ale nie uwzględniona w opisie matematycznym układu.
Zmienna wolna z definicji może być ustawiana na 0 albo 1 poza kontrolą człowieka.
W układzie S1 nie ma zmiennych wolnych.

Stąd mamy:
Definicja równoważności A<=>S:
Równoważność A<=>S w logice dodatniej (bo S) to spełnienie zarówno warunku wystarczającego =>, jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: A=>S =1 - wciśnięcie A jest (=1) wystarczające => dla świecenia żarówki S
B1: A~>S =1 - wciśnięcie A jest (=1) konieczne ~> dla świecenia żarówki S
Stąd mamy definicję równoważności A<=>S w równaniu logicznym:
A1B1: A<=>S = (A1: A=>S)*(B1: A~>S) =1*1 =1

Na mocy prawa Kłapouchego nasz punkt odniesienia:
p=A (przycisk A)
q=S (żarówka S)

Stąd mamy to samo w zapisie formalnym:
Definicja równoważności p<=>q:
Równoważność p<=>q w logice dodatniej (bo p) to spełnienie zarówno warunku wystarczającego =>, jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 – zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 – zajście p jest (=1) konieczne ~> dla zajścia q
Stąd mamy definicję równoważności p<=>q w równaniu logicznym:
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) =1*1=1

Definicja operatora równoważności p|<=>q w zapisie formalnym:
Operator równoważności p|<=>q to układ równań A1B1 i A2B2 dający odpowiedź na pytanie o p (A1B1) i ~p (A2B2).
Kolumna A1B1:
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) - co może się wydarzyć jeśli zajdzie p?
Kolumna A2B2:
A2B2: ~p<=>~q = (A2:~p~>~q)*(B2: ~p=>~q) - co może się wydarzyć jeśli zajdzie ~p?

Przejdźmy na zapis aktualny podstawiając:
p=A (przycisk A)
q=S (żarówka S)

Stąd mamy:
Definicja operatora równoważności A|<=>S w zapisie aktualnym:
Operator równoważności A|<=>S w logice dodatniej (bo S) to układ równań A1B1 i A2B2 dający odpowiedź na pytanie o wciśnięty przycisk A (A) oraz o nie wciśnięty przycisk A (~A)
Kolumna A1B1:
A1B1: A<=>S = (A1: A=>S)*(B1: A~>S) - co może się wydarzyć jeśli A jest wciśnięty (A=1)?
Kolumna A2B2:
A2B2: ~A<=>~S = (A2:~A~>~S)*(B2: ~A=>~S) - co może się wydarzyć jeśli A nie jest wciśnięty (~A=1)?

Szczegółową analizę operatora równoważności A|<=>S znajdziemy w punkcie 6.6.1.
Podsumowanie tej analizy mamy w poniższej tabeli prawdy.
Kod:

T1
Operator równoważności A|<=>S w znaczkach warunku wystarczającego =>,
warunku koniecznego ~> i zdarzenia możliwego ~~>
A1B1:
A<=>S = (A1: A=>S)*(B2:~A=>~S)=1*1=1
A1:  A=> S =1 – wciśnięcie A jest (=1) wystarczające => dla świecenia S
A1’: A~~>~S=0 – niemożliwe jest (=0) zdarzenie: wciśnięty A i nie świeci ~S
A2B2:
~A<=>~S = (A1: A=>S)*(B2:~A=>~S)=1*1=1
B2: ~A=>~S =1 –nie wciśnięcie ~A jest wystarczające => dla nie świecenia ~S
B2’:~A~~>S =0 - niemożliwe jest (=0) zdarzenie: nie wciśnięty ~A i świeci S

Cechą charakterystyczną algebry Kubusia jest jej przełożenie na język potoczny w przełożeniu 1:1.
Przejdźmy z naszego przykładu na zapis ogólny przez podstawienie:
p=A (przycisk)
q=S (żarówka)
Stąd mamy tabelę T1 w zapisie ogólnym:
Kod:

T1
Operator równoważności p|<=>q w znaczkach warunku wystarczającego =>,
warunku koniecznego ~> i zdarzenia możliwego ~~>
A1B1:
p<=>q = (A1: p=>q)*(B2:~p=>~q)=1*1=1
A1:  p=> q =1 – zajście p jest (=1) wystarczające => dla zajścia q
A1’: p~~>~q=0 – niemożliwe jest (=0) zdarzenie: zajdzie p i nie zajdzie ~q
A2B2:
~p<=>~q = (A1: p=>q)*(B2:~p=>~q)=1*1=1
B2: ~p=>~q =1 –nie zajście ~p jest wystarczające => dla nie zajścia ~q
B2’:~p~~>q =0 - niemożliwe jest (=0) zdarzenie: nie zajdzie ~p i zajdzie q

Z tabeli operatora równoważności p|<=>q łatwo wyprowadzamy zero-jedynkową definicję równoważności p<=>q w logice dodatniej (bo q).
Jak to się robi znajdziemy w punkcie 10.5.3
Kod:

TR
Zero-jedynkowa definicja równoważności <=>:
   p  q  Y=(p<=>q)=p*q+~p*~q
A: 1  1   1
B: 1  0   0
C: 0  0   1
D: 0  1   0

Z powyższego wynika, że z zero-jedynkowej definicji równoważności p<=>q łatwo dojdziemy do symbolicznej definicji operatora równoważności p|<=>q podejmując działania odwrotne, co opisano w punkcie 10.6.

23.2.1 Geneza twardych i miękkich zer i jedynek w równoważności <=>

Na bazie wyprowadzonej wyżej zero-jedynkowej definicji równoważności TR możemy łatwo rozszyfrować o co chodzi w twierdzeniu Volratha.

Twierdzenie Volratha:
http://www.sfinia.fora.pl/forum-kubusia,12/kubusiowa-szkola-logiki-na-zywo-dyskusja-z-volrathem,3591-100.html#72062
Wysłany: Śro 13:43, 10 Gru 2008
wykładowca logiki matematycznej volrath napisał:

Niestety bazowa logika Boole'a domyślnie zakłada, że wszystkie jedynki są miękkie, a zera twarde. Tak już jest skonstruowana.

Kod:

TR
Zero-jedynkowa definicja równoważności <=>:
   p  q  Y=(p<=>q)=p*q+~p*~q
A: 1  1  =1
B: 1  0  =0
C: 0  0  =1
D: 0  1  =0
   1  2   3

Jak wygenerować z tej tabeli operator równoważności p|<=>q?
Szczegóły znajdziemy w punkcie 10.6

Największą tragedią wszelkich ziemskich logik matematycznych jest prawo eliminacji równoważności <=>, które każdy ziemski matematyk zna i obligatoryjnie stosuje:
Y = (p<=>q) = p*q+~p*~q

Prawo eliminacji równoważności <=> prowadzi do zagłady wszelkich sensownych ziemskich logik matematycznych, gdyż po jego zastosowaniu wywalamy w kosmos kluczowe pojęcia logiki matematycznej tzn. zarówno definicję warunku wystarczającego => jak i definicję warunku koniecznego ~>.
Dosadniej mówiąc, wywalamy w kosmos poniższy fundament wszelkich sensownych logik matematycznych, nieznany ziemskim matematykom.
Kod:

T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
      ##        ##           ##        ##            ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5:  p+~q

Prawa Kubusia:        | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q  | A1: p=>q  = A4:~q=>~p
B1: p~>q = B2:~p=>~q  | B2:~p=>~q = B3: q=>p

Prawa Tygryska:       | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p   | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p   | B1: p~>q  = B4:~q~>~p
Gdzie:
p=>q = ~p+q - definicja warunku wystarczającego =>
p~>q = p+~q - definicja warunku koniecznego ~>
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Weźmy to nieszczęsne prawo eliminacji równoważności <=> które sprowadza tabelę T0 wyżej do definicji operatora równoważności p<=>q wyrażonego spójnikami „i”(*) i „lub”(+) który ma zero wspólnego zarówno z warunkiem wystarczającym =>, jak i koniecznym ~>.

Definicja operatora równoważności p<=>q wyrażonego spójnikami „i”(*) i „lub”(+):
Operator równoważności p<=>q układ równań logicznych 1 i 2 dający odpowiedź na pytanie o funkcję logiczną w logice dodatniej (bo Y) i ujemnej (bo ~Y)
1.
Kiedy zajdzie Y?
Y = (p<=>q)= p*q+~p*~q
co w logice jedynek (bo funkcja alternatywno-koniunkcyjna) oznacza:
Y=1 <=> p=1 i q=1 lub ~p=1 i ~q=1
Czytamy:
Prawdą jest (=1), że zajdzie Y wtedy i tylko wtedy gdy zajdzie p i zajdzie q lub nie zajdzie ~p i nie zajdzie ~q

… a kiedy zajdzie ~Y
Mamy równanie 1:
1: Y=(p*q)+(~p*~q)
Przejście do logiki ujemnej (bo ~Y) poprzez negację zmiennych i wymianę spójników:
2’: ~Y = (~p+~q)*(p+q)
Otrzymaliśmy funkcję koniunkcyjno-alternatywną której w języku potocznym nikt nie rozumie, co za chwilkę udowodnimy.
Przejście do tożsamej funkcji alternatywno-koniunkcyjnej zrozumiałej przez każdego 5-cio latka polega tu na wymnożeniu wielomianu logicznego po prawej stronie:
2: ~Y = ~p*p + ~p*q + ~q*p + ~q*q = p*~q + ~p*q
bo:
~p*p=0, 0+x=x – prawa algebry Boole’a
~q*q=0, 0+x=x – te same prawa algebry Boole’a
Przemienność spójników „i’(*) i „lub”(+)
Kolejność wykonywania działań w logice matematycznej jest identyczna jak w matematyce klasycznej dla znaczków mnożenia algebraicznego (*) i sumy algebraicznej (+):
nawiasy, „i”(*), „lub”(+)

Stąd mamy:
2.
Kiedy zajdzie ~Y?
~Y=p*~q + ~p*q
co w logice jedynek (bo funkcja alternatywno-koniunkcyjna) oznacza:
~Y=1 <=> p=1 i ~q=1 lub ~p=1 i q=1
Czytamy:
Prawdą jest (=1), że nie zajdzie ~Y wtedy i tylko wtedy gdy zajdzie p i nie zajdzie ~q lub nie zajdzie ~p i zajdzie q

Podstawmy pod powyższą matematykę formalną nasz przykład:
p=A (przycisk)
q=S (żarówka)

Wtedy mamy:
Definicja operatora równoważności A|<=>S wyrażona spójnikami „i”(*) i „lub”(+):
Definicja operatora równoważności A|<=>S układ równań logicznych 1 i 2 dający odpowiedź na pytanie o funkcję logiczną w logice dodatniej (bo Y) i ujemnej (bo ~Y)
1.
Które zdarzenia są możliwe (Y=1)?
Y = (A<=>S)= A: A*S+C: ~A*~S
co w logice jedynek (bo funkcja alternatywno-koniunkcyjna) oznacza:
Y=1 <=> A: A=1 i S=1 lub C: ~A=1 i ~S=1
Czytamy:
Prawdą jest (=1), że zdarzenia możliwe (Y=1) to:
A: Ya=A*S=1*1=1 – przycisk A wciśnięty (A=1) i żarówka świeci się (S=1)
lub
C: Yc=~A*~S=1*1=1 – przycisk A nie wciśnięty (~A=1) i żarówka nie świeci się (~S=1)
Gdzie:
Zdarzenia możliwe Y to suma logiczna zdarzeń cząstkowych:
Y = Ya+Yc
Y = A: A*S+C: ~A*~S

… a które zdarzenia są niemożliwe (~Y=1)?
2.
~Y=A*~S + ~A*S
co w logice jedynek (bo funkcja alternatywno-koniunkcyjna) oznacza:
~Y=1 <=> A=1 i ~S=1 lub ~A=1 i S=1
Czytamy:
Prawdą jest (=1), że zdarzenia niemożliwe (~Y=1) to:
B: Yb=A*~S=1*1=1 – przycisk A wciśnięty (A=1) i żarówka nie świeci się (~S=1)
lub
D: Yd=~A*S=1*1=1 – przycisk A nie wciśnięty (~A=1) i żarówka świeci się (S=1)
Gdzie:
Zdarzenia niemożliwe ~Y to suma logiczna zdarzeń cząstkowych:
~Y = ~Yb+~Yd
Stąd po rozwinięciu mamy:
~Y = B: A*~S + D: ~A*S

Jak widzimy, wszystkie zdania wyżej są zrozumiałe dla każdego ucznia I klasy LO.
Ale!
Weźmy funkcję Y w logice dodatniej (bo Y):
1.
Y = (A*S) + (~A*~S)
Przejście do logiki ujemnej (bo ~Y) poprzez negację zmiennych i wymianę spójników na przeciwne:
2’.
~Y = (~A+~S)*(A+S) – funkcja koniunkcyjno-alternatywna
Wypowiedzmy zdanie 2’ zapisane w postaci funkcji koniunkcyjno-alternatywnej
Zdarzenia niemożliwe (~Y=1) to:
(nie wciśnięty przycisk ~A lub żarówka nie świeci się ~S)
„i”(*)
(wciśnięty przycisk A lub żarówka świeci się S)

Jak widzimy, języku potocznym dostaliśmy bełkot którego nikt nie rozumie.
Stąd mamy prawo Pandy (pkt. 1.10).

Prawo Pandy:
Jedyną funkcją logiczną zrozumiałą dla każdego człowieka jest funkcja alternatywno-koniunkcyjna

Definicja funkcji alternatywno-koniunkcyjnej:
Funkcja logiczna Y jest w postaci alternatywno-koniunkcyjnej wtedy i tylko wtedy gdy nie zawiera ani jednego członu w postaci koniunkcyjno-alternatywnej.
Inaczej funkcja Y jest w postaci koniunkcyjno-alternatywnej lub mieszanej.

Wniosek:
Wszelkie człony koniunkcyjno-alternatywne w funkcji logicznej Y musimy logicznie wymnożyć przechodząc do postaci alternatywno-koniunkcyjnej, bo tylko taka postać jest zrozumiała dla człowieka.

Dokładnie dlatego w naszej analizie schematu S1 przeszliśmy z funkcją koniunkcyjno-alternatywną:
2’: ~Y = (~A+~S)*(A+S)
do tożsamej funkcji alternatywno- koniunkcyjnej:
~Y=A*~S + ~A*S
która jest rozumiana przez każdego człowieka od ucznia I klasy LO poczynając.

Przejdźmy teraz do finału naszych rozważań.
Zero-jedynkowa tabela prawdy operatora równoważności p|<=>q wyrażonego spójnikami „i”(*) i „lub”(+) to:
Kod:

T2
Pełna tabela prawdy operatora równoważności p|<=>q w „i”(*) i „lub”(|+)
 Yac = Ya + Yc = A: p* q + C: ~p*~q
~Ybd = ~Yb+~Yd = B: p*~q + D: ~p* q
                                         |Komentarz
   p  q ~p ~q  Yac=Ya+Yc  # ~Ybd=~Yb+~Yd |
A: 1  1  0  0   1         #   0          | Ya= p* q | Yac=p* q + ~p*~q
B: 1  0  0  1   0         #   1          |~Yb= p*~q |~Ybd=p*~q + ~p* q
C: 0  0  1  1   1         #   0          | Yc=~p*~q
D: 0  1  1  0   0         #   1          |~Yd=~p* q
   1  2  3  4   5             6            7   8  9
Gdzie:
# - dowolna strona znaczka # jest zaprzeczeniem drugiej strony

To samo dla naszego przykładu A|<=>S:
Kod:

T3
Pełna tabela prawdy operatora równoważności A|<=>S w „i”(*) i „lub”(|+)
 Yac = Ya + Yc = A: A* S + C: ~A*~S
~Ybd = ~Yb+~Yd = B: A*~S + D: ~A* S
                                         |Komentarz
   A  S ~A ~S  Yac=Ya+Yc  # ~Ybd=~Yb+~Yd |
A: 1  1  0  0   1         #   0          | Ya= A* S | Yac=A* S + ~A*~S
B: 1  0  0  1   0         #   1          |~Yb= A*~S |~Ybd=A*~S + ~A* S
C: 0  0  1  1   1         #   0          | Yc=~A*~S
D: 0  1  1  0   0         #   1          |~Yd=~A* S
   1  2  3  4   5             6            7   8  9
Gdzie:
# - dowolna strona znaczka # jest zaprzeczeniem drugiej strony

W tabeli T3 doskonale widać, że w pełnej tabeli zero-jedynkowej operatora równoważności A|<=>S wyrażonego spójnikami „i”(*) i „lub”(+) opisujemy wyłącznie jedynki prowadzące do równań alternatywno-koniunkcyjnych (algorytm w pkt. 1.13.1), gdyż tylko te równania są zrozumiałe dla człowieka.
Opis wynikowych zer (algorytm w pkt. 1.13.2) prowadzi do równań koniunkcyjno-alternatywnych, których żaden człowiek nie rozumie od 5-cio latka poczynając, na najwybitniejszych matematykach kończąc, czego dowód mamy wyżej oraz w punkcie 1.10 (prawo Pandy).

Definicja twardego zera w logice dodatniej (bo Y):
W dowolnej tabeli zero-jedynkowej twarde zero w logice dodatniej (bo Y) oznacza, iż nie istnieją iterowania (przypadki) w których na pozycji twardego zera może pojawić się jedynka.

Zauważmy, ze w tabeli T3 mamy dwa twarde zera (B5 i D5) w logice dodatniej (bo Y) które dla dowolnego iterowania nigdy nie przyjmie wartości logicznej 1.

Dowód:
Dowód iż w tabeli T3 mamy do czynienia z twardym zerem na B5 to matematyczny opis punktu B5:
B5: Yb=0 <=> A=1 i ~S=1
Interpretacja:
Fałszem jest (=0), że zajdzie zdarzenie (Yb): wciśnięty przycisk A (A=1) i nie świeci żarówka S (~S=1)
O czym każdy uczeń I klasy LO wie.
Prawo Prosiaczka które możemy stosować wybiórczo do dowolnej zmiennej binarnej:
(Yb=0)=(~Yb=1)
Podstawiając do tabeli T3 mamy zdanie tożsame:
B6: ~Yb=1 <=> A=1 i ~S=1
Czytamy:
Prawdą jest (=1), że nie zajdzie zdarzenie Yb (~Yb): wciśnięty przycisk A (A=1) i nie świeci żarówka S (~S=1)
O czym każdy uczeń I klasy LO wie.

Z ostatniego zapisu mamy poprawne równanie cząstkowe alternatywno-koniunkcyjne które z definicji opisuje wyłącznie jedynki w linii B w tabeli T3.
B6: ~Yb=A*~S
co w logice jedynek (bo funkcja alternatywno-koniunkcyjna) oznacza:
B6: ~Yb=1 <=> A=1 i ~S=1
Ten zapis jest w 100% zgodny z tabelą T3.

Zauważmy, że na mocy prawa Prosiaczka poprawna jest tożsamość zdań:
B5: Yb=0 <=> A=1 i ~S=1 [=] B6: ~Yb=1 <=> A=1 i ~S=1
bo operujemy tu na wartościowaniu linii B.

Jeśli opuścimy wartościowanie to dostaniemy błąd czysto matematyczny:
Kod:

T4
B5: Yb=A*~S ## B6:~Yb=A*~S
Gdzie:
## - funkcje różne na mocy definicji ##

Definicja znaczka różne na mocy definicji ##:
Dwie funkcje logiczne są różna na mocy definicji wtedy i tylko wtedy gdy nie są tożsame i żadna z nich nie jest zaprzeczeniem drugiej.
W tabeli T4 definicja znaczka ## jest spełniona.

Podobnie:
Dowód iż w tabeli T3 mamy do czynienia z jednym twardym zerem to matematyczny opis punktu D5:
D5: Yd=0 <=> ~A=1 i S=1
Interpretacja:
Fałszem jest (=0), że zajdzie zdarzenie (Yd): nie wciśnięty przycisk A (~A=1) i świeci żarówka S (S=1)
O czym każdy uczeń I klasy LO wie.
Prawo Prosiaczka które możemy stosować wybiórczo do dowolnej zmiennej binarnej:
(Yd=0)=(~Yd=1)
Podstawiając do tabeli T3 mamy:
D6: ~Yd=1 <=> ~A=1 i S=1
Stąd zdanie tożsame:
D6: ~Yd=1 <=> ~A=1 i S=1
Czytamy:
Prawdą jest (=1), że nie zajdzie zdarzenie Yd (~Yd): nie wciśnięty przycisk A (~A=1) i świeci żarówka S (S=1)
O czym każdy uczeń I klasy LO wie.

Z ostatniego zapisu mamy poprawne równanie cząstkowe dla linii D:
D6: ~Yd=~A*S
co w logice jedynek (bo funkcja alternatywno-koniunkcyjna) oznacza:
D6: ~Yd=1 <=> ~A=1 i S=1
Ten zapis jest w 100% zgodny z tabelą T3.

Zauważmy, że na mocy prawa Prosiaczka poprawna jest tożsamość zdań:
D5: Yd=0 <=> ~A=1 i S=1 [=] D6: ~Yd=1 <=> ~A=1 i S=1
bo operujemy tu wartościowaniu linii D.

Jeśli opuścimy wartościowanie to dostaniemy błąd czysto matematyczny:
Kod:

T5
D5: Yd=~A*S ## D6:~Yd=~A*S
Gdzie:
## - funkcje różne na mocy definicji ##

Definicja znaczka różne na mocy definicji ##:
Dwie funkcje logiczne są różna na mocy definicji wtedy i tylko wtedy gdy nie są tożsame i żadna z nich nie jest zaprzeczeniem drugiej.
W tabeli T5 definicja znaczka ## jest spełniona.

Definicja miękkiej jedynki w logice dodatniej (bo Y):
W dowolnej tabeli zero-jedynkowej miękka jedynka w logice dodatniej (bo Y) oznacza, iż istnieją iterowania (przypadki) w których na pozycji jedynki pojawia się logiczne zero.

Zbadajmy jak to jest z logicznymi jedynkami w kolumnie wynikowej Y (ABCD5).
Wynikowe jedynki w kolumnie wynikowej Y (ABCD5) opisuje równanie logiczne:
Y = A5: A*S + C5: ~A*~S

W rozpisce spójnika „lub”(+) na zdarzenia rozłączne mamy:
1.
Kiedy zajdzie (Y=1)?

Y = A5: A*S + C5: ~A*~S
Co w logice jedynek (bo równanie alternatywno-koniunkcyjne) oznacza:
Y=1 <=> A5: A=1 i S=1 lub C5: ~A=1 i ~S=1

I.
Założenie konkretnego iterowania Ya:
A: Ya = A*S =1*1=1 – możliwe jest (=1) zdarzenie (Ya): przycisk wciśnięty (A=1) i żarówka świeci (S=1)
Założenie:
A=1 i S=1
Prawo Prosiaczka:
(A=1) = (~A=0)
(S=1)=(~S=0)
Podstawmy to iterowanie do równania 1:
Y = A5: A*S + C5: ~A*~S = A5: (A=1)*(S=1)=1*1=1 + C5: (~A=0)*(~S=0)=0*0=0
Jak widzimy, dla iterowania A=1 i S=1 wyłącznie w punkcie A5 mamy jedynkę, zaś w punkcie C5 mamy zero.
Innymi słowy:
Jedynka w punkcie C5 w tabeli T3 są jest miękką jedynką, bo dla konkretnego iterowania (tu A=1 i S=1) przyjmuje wartość logiczną 0.
Zauważmy, że dla naszego iterowania (A=1 i S=1) w punktach B5 i D5 dostaniemy 0.
Dowód:
B5: Yb=0 <=> B5: A*~S = B5: (A=1)*(~S=0)=1*0 =0
D5: Yd=0 <=> D5: ~A*S = D5: (~A=0)*(S=1)=0*1=0

II.
Ostatnie możliwe założenie konkretnego iterowania Yc to:
C5: Yc=~A*~S=1*1=1 -możliwe jest (=1) zdarzenie (Yc): nie wciśnięty A (~A=1) i żarówka nie świeci ~S
Założenie:
~A=1 i ~S=1
Prawo Prosiaczka:
(~A=1)=(A=0)
(~S=1)=(S=0)
Podstawmy to iterowanie do równania 1:
Y = A5: A*S + C5: ~A*~S = A5: (A=0)*(S=0)=0*0=0 + C5: (~A=1)*(~S=1)=1*1=1
Jak widzimy, dla iterowania ~A=1 i ~S=1 wyłącznie w punkcie C5 mamy jedynkę, zaś w linii A mamy zero.
Innymi słowy:
Jedynka w punkcie A5 w tabeli T3 są jest miękką jedynką, bo dla konkretnego iterowania (tu ~A=1 i ~S=1) przyjmuje wartość logiczną 0.
Zauważmy, że dla naszego iterowania (~A=1 i ~S=1) w punktach B5 i D5 dostaniemy 0.
Dowód:
B5: Yb=0 <=> B: A*~S = B: (A=0)*(~S=1)=0*1 =0
D5: Yd=0 <=> D: ~A*S = D: (~A=1)*(S=0)=1*0 =0

Jak widzimy wyżej dla dowolnego iterowania tabeli T3 zera w punktach B5 i D5 zawsze pozostaną zerami, co oznacza iż są to twarde zera.

Natomiast jedynki w punktach A5 i C5 są miękkimi jedynkami bo istnieją iterowania (przypadki) dla których w tych miejscach pojawia się zero.

Podsumowując:
W kolumnie ABCD5 wszystkie jedynki są miękkimi jedynkami, co jest dowodem wewnętrznej sprzeczności logiki matematycznej po zastosowaniu prawa eliminacji równoważności A<=>S:
Y = (A<=>S) = A5: A*S + C5: ~A*~S
bowiem w znaczkach =>, ~> i ~~> w punkcie A5 istnieje twarda jedynka wymuszająca twarde zero w punkcie B5 (kontrprzykład)
Także w punkcie C5 występują ewidentna twarda jedynka wymuszająca twarde zero punkcie D5 (kontrprzykład).

Dowód:
Kod:

T1.
Operator równoważności p|<=>q w znaczkach warunku wystarczającego =>,
warunku koniecznego ~> i zdarzenia możliwego ~~>
A1B1:
Co może się wydarzyć jeśli przycisk A będzie wciśnięty (A=1)?
A5:  A=> S =1 – wciśnięcie A jest (=1) wystarczające => dla świecenia S
B5:  A~~>~S=0 – niemożliwe jest (=0) zdarzenie: wciśnięty A i nie świeci S
A2B2:
Co może się wydarzyć jeśli przycisk A nie jest wciśnięty (~A=1)?
C5: ~A=>~S=1 –nie wciśnięcie A(~A=1) wystarcza => dla nie świecenia S(~S=1)
D5: ~A~~>S=1 –niemożliwe jest (=0) zdarzenie: nie wciśnięty A i świeci S

c.n.d.
Powrót do góry
Zobacz profil autora
Wyświetl posty z ostatnich:   
Napisz nowy temat   Odpowiedz do tematu    Forum ŚFiNiA Strona Główna -> Metodologia / Forum Kubusia Wszystkie czasy w strefie CET (Europa)
Strona 1 z 1

 
Skocz do:  
Nie możesz pisać nowych tematów
Nie możesz odpowiadać w tematach
Nie możesz zmieniać swoich postów
Nie możesz usuwać swoich postów
Nie możesz głosować w ankietach

fora.pl - załóż własne forum dyskusyjne za darmo
Powered by phpBB © 2001, 2005 phpBB Group
Regulamin