|
ŚFiNiA ŚFiNiA - Światopoglądowe, Filozoficzne, Naukowe i Artystyczne forum - bez cenzury, regulamin promuje racjonalną i rzeczową dyskusję i ułatwia ucinanie demagogii. Forum założone przez Wuja Zbója.
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 35331
Przeczytał: 23 tematy
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Śro 19:55, 06 Sty 2021 Temat postu: Algebra Kubusia - premiera: 2021-01-06 |
|
|
EDIT: 2021-01-22
Zacząłem pisać nową, ulepszoną algebrę Kubusia:
http://www.sfinia.fora.pl/forum-kubusia,12/algebra-kubusia-matematyka-jezyka-potocznego-2021-01-22,18263.html#574079
Algebra Kubusia - premiera: 2021-01-06
Link do premierowej algebry Kubusia:
http://www.sfinia.fora.pl/forum-kubusia,12/algebra-kubusia-matematyka-jezyka-potocznego-2020-12-06,17779.html#559367
Algebra Kubusia - matematyka języka potocznego 2021-01-06
Po 15 latach burzliwych dyskusji w temacie algebra Kubusia dobiliśmy do brzegu.
Ostatnie pół roku to moje samotne przemyślenia, zadawanie sobie auto problemów, które w spokoju i ciszy rozwiązywałem.
Ostatnie przełomowe odkrycie w algebrze Kubusia opisuję w kolejnym poście.
W niniejszym temacie nie chcę się walić cepami z ziemskimi matematykami - do tego pozostawiam otwarty wątek sąsiedni:
„Szach-mat który przejdzie do historii matematyki!”
http://www.sfinia.fora.pl/forum-kubusia,12/szach-mat-ktory-przejdzie-do-historii-matematyki,15663.html#505427
Wstęp:
[link widoczny dla zalogowanych]
Wikipedia napisał: |
Paradygmat a rewolucja naukowa:
W czasach nauki instytucjonalnej (określenie również wprowadzone przez Kuhna) podstawowym zadaniem naukowców jest doprowadzenie uznanej teorii i faktów do najściślejszej zgodności. W konsekwencji naukowcy mają tendencję do ignorowania odkryć badawczych, które mogą zagrażać istniejącemu paradygmatowi i spowodować rozwój nowego, konkurencyjnego paradygmatu.
Na przykład Ptolemeusz spopularyzował pogląd, że Słońce obiega Ziemię, i to przekonanie było bronione przez stulecia nawet w obliczu obalających go dowodów.
Jak zaobserwował Kuhn, w trakcie rozwoju nauki „nowości wprowadzane są z trudem i z towarzyszącym mu, zgodnym z oczekiwaniami, jawnym oporem”. I tylko młodzi uczeni, nie tak głęboko indoktrynowani przez uznane teorie – jak Newton, Lavoisier lub Einstein – mogą dokonać odrzucenia starego paradygmatu.
Takie rewolucje naukowe następują tylko po długich okresach nauki instytucjonalnej, tradycyjnie ograniczonej ramami, w których musiała się ona (nauka) znajdować i zajmować się badaniami, zanim mogła te ramy zniszczyć”. Zresztą kryzys zawsze niejawnie tai się w badaniach, ponieważ każdy problem, który nauka instytucjonalna postrzega jako łamigłówkę, może być ujrzany z innej perspektywy, jako sprzeczność (wyłom), a zatem źródło kryzysu – jest to „istotne obciążenie” badań naukowych.
Kryzysy w nauce:
Kryzysy są wyzwalane, gdy uczeni uznają odkryte sprzeczności za anomalię w dopasowaniu istniejącej teorii z naturą.
Wszystkie kryzysy są rozwiązywane na trzy sposoby:
1.
Nauka instytucjonalna może udowodnić zdolność do objęcia kryzysowego problemu, i w tym przypadku wszystko wraca do „normalności”.
2.
Alternatywnie, problem pozostaje, jest zaetykietowany, natomiast postrzega się go jako wynik niemożności użycia niezbędnych przyrządów do rozwiązania go, więc uczeni pozostawiają go przyszłym pokoleniom z ich bardziej rozwiniętymi (zaawansowanymi) przyborami.
3.
W niewielu przypadkach pojawia się nowy kandydat na paradygmat, i wynika bitwa o jego uznanie będąca w istocie wojną paradygmatów.
Kuhn argumentuje, że rewolucje naukowe są nieskumulowanym epizodem rozwojowym, podczas którego starszy paradygmat jest zamieniany w całości lub po części przez niezgodny z nim paradygmat nowszy. Ale nowy paradygmat nie może być zbudowany na poprzedzającym go, a raczej może go tylko zamienić, gdyż „instytucjonalna tradycja naukowa wyłaniająca się z rewolucji naukowej jest nie tylko niezgodna, ale też nieuzgadnialna z tą, która pojawiła się przed nią”.
Rewolucja kończy się całkowitym zwycięstwem jednego z dwóch przeciwnych obozów.
|
Algebra Kubusia to punkt 3, bowiem 100% definicji z zakresu logiki matematycznej w algebrze Kubusia jest sprzecznych z fundamentem wszelkich logik matematycznych ziemian zwanym Klasycznym Rachunkiem Zdań.
Wiem z historii, a i obecnie po dużych wzrostach liczników odwiedzin, że historię rozszyfrowywania algebry Kubusia czyta wielu wybitnych polskich logików, najprawdopodobniej też wielu moderatorów z matematyki.pl.
Dlaczego bez zaproszenia najprawdopodobniej nigdy nie pójdę na forum matematyka.pl?
Po pierwsze:
Nie jest możliwa sensowna dyskusja dwóch stron „Rafal3006 vs ziemscy matematycy”, gdy obie strony będą się posługiwały sprzecznymi w 100% definicjami.
Ja wiem jakie definicje mają ziemscy matematycy w zakresie logiki matematycznej - wszystkie w 100% do bani. Oczywistym jest, że nie mogę zacząć myśleć definicjami rodem z KRZ, mimo że je doskonale znam, bo jestem świadom faktu, iż zacznę pływać w szambie zwanym Klasyczny Rachunek Zdań - tym szambie:
Przykładowe zdania prawdziwe w szambie zwanym KRZ:
a) Jeśli 2+2=4 to Płock leży nad Wisłą
b) Jeśli 2+2=5 to 2+2=4
c) Jeśli 2+2=5 to jestem papieżem
Przypadek dyskusji „gadał dziad do obrazu” już przerabiałem w dyskusji z Irbisolem, który za wszelką cenę dążył do obalenia algebry Kubusia.
Dowód w tym linku:
http://www.sfinia.fora.pl/forum-kubusia,12/szach-mat-ktory-przejdzie-do-historii-matematyki,15663.html#505427
Po drugie i najważniejsze:
Zbyt wczesne wejście na matematykę.pl spowoduje zastopowanie rozwoju rozszyfrowywania algebry Kubusia, bowiem pewne jest, że będę musiał matematykom z matematyki.pl bez przerwy tłumaczyć algebrę Kubusia od zera, zatem zabraknie mi czasu na udoskonalanie przekazu algebry Kubusia w taki sposób, by bez problemu zrozumiał ją przeciętny uczeń I klasy LO. Dokładnie do tego cały czas dążę z powodzeniem czego dowodem jest mój kolejny post w tym temacie.
Po trzecie:
Nie mam ochoty na udział w dyskusji z bufonami z matematyki.pl dla których bogiem jest Klasyczny Rachunek Zdań, dokładnie dlatego, że 100% (powtórzę: 100%) definicji w zakresie logiki matematycznej mamy sprzecznych.
Dowód iż w roku 2009 w czasie mojego pierwszego wejścia na matematykę.pl spotkałem prawie samych bufonów, którzy zjedli wszystkie rozumy świata:
Przykłady:
silicium2002 » 4 sierpnia 2009, 12:02
[link widoczny dla zalogowanych]
silicium2002 napisał: |
To nie ma sensu. Czy ktoś czytał co za brednie powypisywał na tym forum do którego podał linki. Równie dobrze możemy założyć że 2 # 2 i zacząć pisać nową matematykę. Jestem przeciwny takiemu zaśmiecaniu forum. |
[link widoczny dla zalogowanych]
miodzio1988 napisał: |
Znowu te brednie? Realne zastosowania poprosimy. Postaw problem i rozwiąż go za pomocą tego co napisałeś tutaj. Tylko konkrety poproszę. |
Wyjątkiem był Rogal, moderator, który nawet stanął w mojej obronie:
Rogal do miodzio1988 napisał: |
Aleś się zacietwierzył - uważaj, abyś się jeszcze nie zapowietrzył :-).
Nie wiem, na jakiej podstawie uważasz to za brednie, skoro autor wyraźnie mówi, że robi sobie nowe definicji, które "przystosowują" klasyczną algebrę Boole'a do języka mówionego dzieci lat około pięciu w zakresie implikacji? Nie możesz obalać definicji. |
To dzięki Rogalowi moja najdłuższa dyskusja na matematyce.pl trwała aż 77 postów.
Trwała, dopóki Rogal mnie nie zbanował z uzasadnieniem jak niżej:
[link widoczny dla zalogowanych]
Moderator matematyki.pl, Rogal, w ostatnim poście napisał: |
Powtórzę się po raz ostatni - w matematyce niczego nie zmienisz, więc możesz nam przestać zawracać tym głowę - wszyscy już zrozumieli, o co chodzi - widzisz jaki entuzjazm? Nie jest potrzebny matematykom nowy operator do codziennego stosowania, bo te które są wystarczają.
Do wcześniej podanych przeze mnie rad, dodam jeszcze jedną - naprawdę zainteresuj się czymś takim jak logiki rozmyte - to jest prawdziwa logika człowieka, wszystko inne to tylko przybliżenia dla uproszczenia sprawy.
Jeśli ktoś będzie miał tutaj coś bardzo istotnego do dodania do tej dyskusji, co nie zostało powiedziane, niech napisze do mnie PW, to temat odblokuję.
|
Ostatnio zmieniony przez rafal3006 dnia Pią 8:27, 22 Sty 2021, w całości zmieniany 9 razy
|
|
Powrót do góry |
|
|
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 35331
Przeczytał: 23 tematy
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Śro 20:41, 06 Sty 2021 Temat postu: |
|
|
Ostatnie przełomowe odkrycie w algebrze Kubusia!
Ostatnie przełomowe odkrycie w algebrze Kubusia dotyczy jej przekazu w jak najprostszy sposób, by mógł ją zrozumieć przeciętny uczeń I klasy LO.
Prawo Kameleona:
Dwa zdania brzmiące identycznie z dokładnością do każdej literki i każdego przecinka nie muszą być matematycznie tożsame.
Wielkie prawo Kameleona:
Dwa zdania brzmiące identycznie z dokładnością do każdej literki i każdego przecinka nie musza być matematycznie tożsame, nawet gdy kodowanie w zapisach aktualnych tych zdań jest identyczne.
Definicja zapisu aktualnego zdania:
Zapis aktualny zdania to zapis bezpośrednio w języku potocznym, z pominięciem zmiennych formalnych (ogólnych)
Oba prawa Kameleona znam od bardzo dawna.
Prawo Kameleona to banał absolutny, łatwy do przekazania, zrozumiały przez każdego 5-cio latka, na odpowiednich dla niego przykładach np. o deszczu i chmurce o czym będzie w niniejszy poście.
Wielkie prawo Kameleona też znałem od bardzo dawna, ale przekaz tego prawa ziemianom był daleki od doskonałości, był za długi i wymagał złożonego myślenia.
Problem wielkiego prawa Kameleona udało mi się rozwiązać w sposób bardzo prosty poprzez podanie trywialnego algorytmu, umożliwiającego jego zrozumienie przeciętnemu uczniowi I klasy LO.
http://www.sfinia.fora.pl/forum-kubusia,12/algebra-kubusia-matematyka-jezyka-potocznego-2021-01-06,17779.html#559439
Spis treści
3.8 Punkt odniesienia w logice matematycznej 1
3.8.1 Prawo Kameleona 3
3.8.2 Wielkie prawo Kameleona 5
3.9 Lekcja logiki matematycznej I klasie LO 8
3.9.1 Definicje warunku wystarczającego => i koniecznego w zdarzeniach 8
3.9.2 Matematyczne związki warunków wystarczających => i koniecznych ~> 9
3.9.3 Operator implikacji prostej P||=>CH w I klasie LO 11
3.9.4 Operator implikacji prostej ~CH||=>~P w I klasie LO 14
3.9.5 Rozwiązanie problemu wielkiego prawa Kameleona 18
3.8 Punkt odniesienia w logice matematycznej
Definicja zmiennej binarnej:
Zmienna binarna to zmienna mogąca przyjmować wyłącznie dwie wartości logiczne 0 albo 1.
Przykład:
1: uczciwy / 2: nie uczciwy
1.
U=1 - prawdą jest (=1) że jestem uczciwy (U)
albo
2.
U=0 - fałszem jest (=0), że jestem uczciwy (U)
Prawo Prosiaczka:
(p=0) = (~p=1)
Stąd mamy zmienną binarną w zapisie symbolicznym izolowaną od wszelkich zer:
1.
U - uczciwy
co w logice jedynek oznacza:
U=1 - prawdą jest (=1) że jestem uczciwy (U)
2.
~U - nie (~) uczciwy
co w logice jedynek oznacza:
~U=1 - prawdą jest (=1) że jestem nieuczciwy (~U)
Doskonale widać, że wyłącznie symboliczne zmienne binarne używane są w języku potocznym człowieka:
1: U (uczciwy) # 2: ~U (nie uczciwy)
Gdzie:
# - różne w znaczeniu iż dowolna strona znaczka # jest negacją drugiej strony
Definicja zmiennej formalnej:
Zmienna formalna to zwyczajowa zmienna binarna nie mająca związku ze zmienną aktualną.
Zwyczajowo w logice matematycznej zmienne formalne oznaczane są symbolami Y, p, q, r ..
Definicja zmiennej aktualnej:
Zmienna aktualna to zmienna mająca ścisły związek z językiem potocznym człowieka
Przykład:
Prawo podwójnego przeczenia w zapisie aktualnym (język potoczny):
Jestem uczciwy = nie jestem nieuczciwy
U = ~(~U)
Prawo podwójnego przeczenia w zapisie formalnym:
Podstawiamy:
U=p
Stąd mamy prawo podwójnego przeczenia w zapisie formalnym (ogólnym):
p=~(~p)
Definicja zapisu formalnego:
Zapis formalny w logice matematycznej to zapis praw logiki matematycznej z użyciem zmiennych formalnych (zwyczajowo Y, p, q, r ..) nie związany bezpośrednio z językiem potocznym człowieka.
Definicja zapisu aktualnego:
Zapis aktualny w logice matematycznej to operowanie symbolami mającymi ścisły związek ze zdaniami w języku potocznym.
Wszelkie prawa logiki matematycznej stosujemy tu bezpośrednio w zapisach aktualnych.
Punkt odniesienia w logice matematycznej:
Dla dowolnego zdania warunkowego „Jeśli … to …” w zapisie aktualnym punkt odniesienia ustalamy wtedy i tylko wtedy, gdy zamierzamy rozstrzygnąć w skład jakiego operatora logicznego wchodzi zdanie wypowiedziane, inaczej mamy ustawienia domyślne.
Ustawienia domyślne w zdaniach warunkowych „Jeśli p to q”:
Ustawienia domyślne w zdaniu warunkowym „Jeśli p to q”:
Po „Jeśli..” domyślnie zapisujemy poprzednik p, zaś po „to..” domyślnie zapisujemy następnik q
Prawo punktu odniesienia:
W dowolnym zdaniu warunkowym „Jeśli … to …” w zapisie aktualnym przyjętym za punkt odniesienia zawsze zapisujemy po „Jeśli …” poprzednik p, zaś po „to…” następnik q.
p=poprzednik
q=następnik
Przykład:
Twierdzenie proste Pitagorasa dla trójkątów prostokątnych:
A1.
Jeśli trójkąt jest prostokątny to na 100% => zachodzi w nim suma kwadratów
TP=>SK =1
Wartość logiczna zdania A1 jest równa 1, bo twierdzenie proste Pitagorasa matematycy udowodnili poprawnie wieki temu.
Przyjmijmy zdanie A1 za punkt odniesienia.
Na mocy prawa punktu odniesienia zapisujemy w zapisach formalnych (ogólnych):
p=>q =1
Gdzie:
p=TP
q=SK
Powyższe prawo punktu odniesienia to zaproponowany standard w logice dodatniej obowiązujący wszystkich ludzi. Matematycznie jest wszystko jedno co nazwiemy p a co q, jednak w imię wspólnego języka musimy trzymać się zaproponowanego standardu - inaczej będziemy mieli kociokwik we wzajemnym porozumiewaniu się, czego dowód będzie w kolejnym punkcie.
Analogia do świata fizyki, czyli powszechnie przyjęty standard:
1. Wektor napięcia wskazuje zawsze wyższy potencjał
2. Prąd elektryczny płynie zawsze od wyższego do niższego potencjału
Matematycznie, dla 1 i 2 możliwe są cztery różne punkty odniesienia matematycznie równie dobre, ale rozwiązując np. sieć elektryczną nie wolno mieszać przyjętego standardu w jednym rozumowaniu (zadaniu) bo wyjdą nam kosmiczne głupoty. Punkty 1 i 2 są powszechnie przyjętym standardem we wszystkich podręcznikach do nauki elektryki i elektroniki i należy to uszanować, nie robiąc bałaganu.
Ciekawostka:
W Węgierskich i Niemieckich podręcznikach fizyki znajdziemy inny punku odniesienia dla napięcia, gdzie wektor napięcia wskazuje zawsze niższy potencjał, a nie jak w krajach anglosaskich i w Polsce potencjał wyższy.
3.8.1 Prawo Kameleona
Zadanie matematyczne w 100-milowym lesie bowiem póki co, żaden ziemski matematyk nie zna jeszcze algebry Kubusia.
… ale wkrótce to się zmieni.
Zadanie 1
Przeanalizuj logicznie poniższe zdanie:
A1.
Jeśli jutro będzie padało to na 100% => będzie pochmurno
P=>CH =1
Padanie jest warunkiem wystarczającym => dla istnienia chmur, bo zawsze gdy pada, są chmury
Dla zdania A1 badamy warunek konieczny ~> między tymi samymi punktami i w tym samym kierunku:
B1.
Jeśli jutro będzie padało to na 100% ~> będzie pochmurno
P~>CH =0
Padanie nie jest warunkiem koniecznym ~> dla istnienia chmur, bo chmury mogą istnieć bez padania.
Domyślny punkt odniesienia:
Zdanie wypowiedziane jako pierwsze jest domyślnym punktem odniesienia.
Prawo punktu odniesienia:
W dowolnym zdaniu warunkowym „Jeśli … to …” w zapisie aktualnym przyjętym za punkt odniesienia zawsze zapisujemy po „Jeśli …” poprzednik p, zaś po „to…” następnik q.
p=poprzednik
q=następnik
Za punkt odniesienia przyjmujemy zdanie A1 wypowiedziane jako pierwsze, stąd:
p=P (pada)
q=CH (chmury)
Wniosek:
Zdania A1 i B1 wchodzą w skład definicji implikacji prostej P|=>CH:
Implikacja prosta P|=>CH to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
A1: P=>CH =1 - padanie jest (=1) wystarczające => dla istnienia chmur
B1: P~>CH =0 - padanie nie jest (=0) konieczne ~> dla istnienia chmur bo chmury mogą istnieć bez padania
Stąd mamy definicję implikacji prostej P|=>CH w równaniu logicznym:
P|=>CH = (A1: P=>CH)*~(B1: P~>CH) = 1*~(0) =1*1 =1
Matematyczne związki warunków wystarczających => i koniecznych ~> w implikacji prostej P|=>CH
Kod: |
T1
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji prostej P|=>CH
P|=>CH = (A1: P=>CH)*~(B1: P~>CH)=1*~(0)=1*1=1
Punkt odniesienia:
p=P (pada)
q=CH (chmury)
AB12: | AB34:
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q =1 = 2:~p~>~q =1 [=] 3: q~>p =1 = 4:~q=>~p =1
A: 1: P=>CH =1 = 2:~P~>~CH=1 [=] 3: CH~>P =1 = 4:~CH=>~P =1
## ## | ## ##
B: 1: p~>q =0 = 2:~p=>~q =0 [=] 3: q=>p =0 = 4:~q~>~p =0
B: 1: P~>CH =0 = 2:~P=>~CH=0 [=] 3: CH=>P =0 = 4:~CH~>~P =0
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Matematycznie zachodzi w zapisie aktualnym:
A1: P=>CH = ~P+CH ## B1: P~>CH =P+~CH
To samo w zapisie formalnym (ogólnym):
A1: p=>q =~p+q ## B1: p~>q = p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
Zauważmy, że w języku potocznym (zapis aktualny) zdania A1 i B1 brzmią identycznie z dokładnością do każdej literki i każdego przecinka a mimo to nie są to zdania tożsame.
Różność zdań A1 i B1 rozpoznajemy po znaczkach warunku wystarczającego => i koniecznego ~> wbudowanych w treść zdań.
Stąd mamy wyprowadzone prawo Kameleona.
Prawo Kameleona:
Dwa zdania brzmiące identycznie z dokładnością do każdej literki i każdego przecinka nie muszą być matematycznie tożsame.
Prawo Kameleona to bezpośrednie uderzenie w fundament wszelkich logik matematycznych ziemskich matematyków.
Fundament wszelkich logik matematycznych ziemskich matematyków:
Dwa zdania brzmiące identycznie z dokładnością do każdej literki i każdego przecinka są matematycznie tożsame.
Fundament ziemskich logik matematycznych jest fałszem, bo znaleźliśmy kontrprzykład w postaci zdań A1 i B1 wyżej.
3.8.2 Wielkie prawo Kameleona
Wielkie prawo Kameleona:
Dwa zdania brzmiące identycznie z dokładnością do każdej literki i każdego przecinka nie musza być matematycznie tożsame, nawet gdy kodowanie w zapisach aktualnych tych zdań jest identyczne.
Definicja zapisu aktualnego zdania:
Zapis aktualny zdania to zapis bezpośrednio w języku potocznym, z pominięciem zmiennych formalnych (ogólnych)
Wyprowadzenie wielkiego prawa Kameleona.
Zadanie 2
Przeanalizuj logicznie poniższe zdanie:
B1.
Jeśli jutro będzie pochmurno to może ~> padać
CH~>P =1
Chmury (CH=1) są warunkiem koniecznym ~> dla padania (P=1) bo jak nie ma chmur (~CH=1) to na 100% => nie pada (~P=1)
Zauważmy, że prawo Kubusia samo nam tu wyskoczyło:
B1: CH~>P = B2:~CH=>~P
Dla zdania B1 badamy warunek wystarczający => między tymi samymi punktami i w tym samym kierunku:
A1.
Jeśli jutro będzie pochmurno to na 100% => będzie padać
CH=>P =0
Chmury nie są (=0) warunkiem wystarczającym => dla padania bo nie zawsze gdy są chmury, pada.
Domyślny punkt odniesienia:
Zdanie wypowiedziane jako pierwsze jest domyślnym punktem odniesienia.
Prawo punktu odniesienia:
W dowolnym zdaniu warunkowym „Jeśli … to …” w zapisie aktualnym przyjętym za punkt odniesienia zawsze zapisujemy po „Jeśli …” poprzednik p, zaś po „to…” następnik q.
p=poprzednik
q=następnik
Za punkt odniesienia przyjmujemy zdanie B1 wypowiedziane jako pierwsze, stąd:
p=CH (chmury)
q=P (pada)
Wniosek:
Zdania A1 i B1 wchodzą w skład definicji implikacji odwrotnej CH|~>P:
Definicja implikacji odwrotnej CH|~>P:
Implikacja odwrotna CH|~>P to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: CH=>P =0 - chmury nie są (=0) warunkiem wystarczającym => dla padania
B1: CH~>P =1 - chmury są (=1) warunkiem koniecznym ~> dla padania
Stąd mamy definicję implikacji odwrotnej CH|~>P w równaniu logicznym:
CH|~>P = ~(A1: CH=>P)*(B1: CH~>P) = ~(0)*1 =1*1 =1
Zdanie bazowe w zadaniu 2, punt odniesienia to:
B1.
Jeśli jutro będzie pochmurno to może ~> padać
CH~>P =1
Chmury (CH=1) są warunkiem koniecznym ~> dla padania (P=1) bo jak nie ma chmur (~CH=1) to na 100% => nie pada (~P=1)
Punkt odniesienia ustawiony na zdaniu B1 to:
p=CH (chmury)
q=P (pada)
Kod: |
T2
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji odwrotnej CH|~>P:
CH|~>P = ~(A1: CH=>P)*(B1: CH~>P)=~(0)*1 =1*1 =1
Punkt odniesienia:
p=CH (chmury)
q=P (pada)
AB12: | AB34:
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q =0 = 2:~p~>~q =0 [=] 3: q~>p =0 = 4:~q=>~p =0
A: 1: CH=>P =0 = 2:~CH~>~P=0 [=] 3: P~>CH =0 = 4:~P=>~CH =0
## ## | ## ##
B: 1: p~>q =1 = 2:~p=>~q =1 [=] 3: q=>p =1 = 4:~q~>~p =1
B: 1: CH~>P =1 = 2:~CH=>~P=1 [=] 3: P=>CH =1 = 4:~P~>~CH =1
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Porównajmy to ze zdaniem bazowym w zadaniu 1:
Zdanie bazowe w zadaniu 1, punkt odniesienia to:
A1.
Jeśli jutro będzie padało to na 100% => będzie pochmurno
P=>CH =1
Padanie jest warunkiem wystarczającym => dla istnienia chmur, bo zawsze gdy pada, są chmury
Punkt odniesienia ustawiony na zdaniu B1 to:
p=P (pada)
q=CH (chmury)
Kod: |
T1
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji prostej P|=>CH
P|=>CH = (A1: P=>CH)*~(B1: P~>CH)=1*~(0)=1*1=1
Punkt odniesienia:
p=P (pada)
q=CH (chmury)
AB12: | AB34:
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q =1 = 2:~p~>~q =1 [=] 3: q~>p =1 = 4:~q=>~p =1
A: 1: P=>CH =1 = 2:~P~>~CH=1 [=] 3: CH~>P =1 = 4:~CH=>~P =1
## ## | ## ##
B: 1: p~>q =0 = 2:~p=>~q =0 [=] 3: q=>p =0 = 4:~q~>~p =0
B: 1: P~>CH =0 = 2:~P=>~CH=0 [=] 3: CH=>P =0 = 4:~CH~>~P =0
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Zauważmy, że w zapisach formalnych (ogólnych) mamy tu 100% jednoznaczność:
T1_A1: p=>q =~p+q ## T2_B3: q=>p = ~q+p
Gdzie:
## - różne na mocy definicji warunku wystarczającego =>
Zobaczmy co się stanie jak dokładnie do powyższej relacji dopiszemy zdania w zapisie aktualnym (w języku potocznym)
Kod: |
Zapis formalny (ogólny)
T1_A1: p=>q = ~p+q ## T2_B3: q=>p = ~q+p
Zapis tego samego w zapisach aktualnych (język potoczny):
Punkt odniesienia: ### Punkt odniesienia:
p=P (pada) ### p=CH (chmury)
q=CH (chmury) ### q=P (pada)
T1_A1: P=>CH = ~P+CH ### T2_B3: P=>CH = ~P+CH
Gdzie:
## - różne na mocy definicji warunku wystarczającego =>
Warunek wystarczający => nie jest przemienny
### - różne na mocy wielkiego prawa Kameleona (błąd podstawienia)
|
Zauważmy, że w zapisach aktualnych ewidentnie zachodzi tożsamość logiczna [=]:
Kod: |
T1_A1: P=>CH = ~P+CH [=] T2_B3: P=>CH = ~P+CH
|
Innymi słowy:
Zdania T1_A1 oraz T2_B3 brzmią identycznie z dokładnością do każdej literki i każdego przecinka.
T1_A1 [=] T2_B3:
Jeśli jutro będzie padało to na 100% => będzie pochmurno
P=>CH =1
Padanie jest warunkiem wystarczającym => dla istnienia chmur, bo zawsze gdy pada, są chmury
Co gorsza kodowanie matematyczne zdań T1_A1 oraz T2_B3 w zapisie aktualnym również jest identyczne, co widać wyżej.
Jednak zdanie T1_A1: P=>CH nie jest logicznie tożsame ze zdaniem T2_B3: P=>CH bowiem zdania te widziane są z dwóch różnych punktów odniesienia.
Punkt odniesienia dla zdania T1_A1: P=>CH (w zapisie ogólnym T1_A1: p=>q) to:
p=P (pada)
q=CH (chmury)
Natomiast punkt odniesienia dla zdania T2_B3: P=>CH (w zapisie ogólnym T2_B3: q=>p) to:
q=P (pada)
p=CH (chmury)
Wniosek:
W zapisie aktualnym nie wolno nam postawić znaku tożsamości logicznej [=] między zdaniami T1_A1 i T2_B3 bo popełnimy trywialny błąd podstawienia.
Prawo Sowy:
Warunkiem koniecznym porównywania czegokolwiek w logice matematycznej jest uprzednie ustalenie wspólnego punktu odniesienia.
Dowód prawa Sowy to niniejszy przykład.
Stąd mamy wyprowadzone wielkie prawo Kameleona.
Wielkie prawo Kameleona:
Dwa zdania brzmiące identycznie z dokładnością do każdej literki i każdego przecinka nie musza być matematycznie tożsame, nawet gdy kodowanie w zapisach aktualnych tych zdań jest identyczne.
Definicja zapisu aktualnego zdania:
Zapis aktualny zdania to zapis bezpośrednio w języku potocznym, z pominięciem zmiennych formalnych (ogólnych)
3.9 Lekcja logiki matematycznej I klasie LO
Wielkie prawo Kameleona:
Dwa zdania brzmiące identycznie z dokładnością do każdej literki i każdego przecinka nie musza być matematycznie tożsame, nawet gdy kodowanie w zapisach aktualnych tych zdań jest identyczne.
Definicja zapisu aktualnego zdania:
Zapis aktualny zdania to zapis bezpośrednio w języku potocznym, z pominięciem zmiennych formalnych (ogólnych)
Jak w języku potocznym zneutralizować to paskudne, wielkie prawo Kameleona?
Przecież nikt w języku potocznym nie przechodzi do zapisów formalnych by cokolwiek udowodnić.
Spokojnie, zajmiemy się tym banałem po zrozumieniu niniejszej lekcji logiki matematycznej w I klasie LO w 100-milowym lesie, bowiem póki co żaden ziemski matematyk nie zna algebry Kubusia.
Na początek przypomnijmy sobie najważniejsze prawa logiki matematycznej wiążące warunki wystarczające => i konieczne ~>
3.9.1 Definicje warunku wystarczającego => i koniecznego w zdarzeniach
Cała logika matematyczna w obsłudze zdań warunkowych „Jeśli p to q” stoi na zaledwie trzech znaczkach (~~>, =>, ~>) definiujących wzajemne relacje zdarzeń p i q
I.
Definicja zdarzenia możliwego ~~>:
Jeśli zajdzie p to może ~~> zajść q
p~~>q =p*q =1
Definicja zdarzenia możliwego ~~> jest spełniona (=1) wtedy i tylko wtedy gdy możliwe jest jednoczesne zajście zdarzeń p i q.
Inaczej:
p~~>q=p*q =[] =0
Decydujący w powyższej definicji jest znaczek zdarzenia możliwego ~~>, dlatego dopuszczalny jest zapis skrócony p~~>q.
Uwaga:
Na mocy definicji zdarzenia możliwego ~~> badamy możliwość zajścia jednego zdarzenia, nie analizujemy tu czy między p i q zachodzi warunek wystarczający => czy też konieczny ~>.
II.
Definicja warunku wystarczającego => w zdarzeniach:
Jeśli zajdzie p to zajdzie q
p=>q =1
Definicja warunku wystarczającego => jest spełniona (=1) wtedy i tylko wtedy gdy zajście zdarzenia p jest wystarczające => dla zajścia zdarzenia q
Inaczej:
p=>q =0
Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
p=>q = ~p+q
III.
Definicja warunku koniecznego ~> w zdarzeniach:
Jeśli zajdzie p to zajdzie q
p~>q =1
Definicja warunku koniecznego ~> jest spełniona (=1) wtedy i tylko wtedy gdy zajście zdarzenia p jest konieczne ~> dla zajścia zdarzenia q
Inaczej:
p~>q =0
Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
p~>q = p+~q
Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>~q=p*~q
Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)
3.9.2 Matematyczne związki warunków wystarczających => i koniecznych ~>
Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
A1: p=>q = ~p+q
##
Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
B1: p~>q = p+~q
Gdzie:
## - różne na mocy definicji
Na mocy rachunku zero-jedynkowego mamy matematyczne związki warunków wystarczających => i koniecznych ~>.
Kod: |
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
AB12: | AB34:
AB1: AB2: | AB3: AB4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5: p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Na mocy powyższego zapisujemy:
1.
Prawa Kubusia:
A1: p=>q = A2: ~p~>~q
##
B1: p~>q = B2: ~p=>~q
Ogólne prawo Kubusia:
Negujemy zmienne i wymieniamy spójniki na przeciwne
2.
Prawa Tygryska:
A1: p=>q = A3: q~>p
##
B1: p~>q = B3: q=>p
Ogólne prawo Tygryska:
Zamieniamy miejscami zmienne i wymieniamy spójniki na przeciwne
3.
Prawa kontrapozycji dla warunków wystarczających =>:
A1: p=>q = A4: ~q=>~p
##
B2: ~p=>~q = B3: q=>p
Ogólne prawo kontrapozycji:
Negujemy zmienne zamieniając je miejscami bez zmiany spójnika logicznego
4.
Prawa kontrapozycji dla warunków koniecznych ~>:
A2: ~p~>~q = A3: q~>p
##
B1: p~>q = B4: ~q~>~p
Ogólne prawo kontrapozycji:
Negujemy zmienne zamieniając je miejscami bez zmiany spójnika logicznego
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
3.9.3 Operator implikacji prostej P||=>CH w I klasie LO
Zadanie 1 (póki co w 100-milowym lesie):
Zbadaj w skład jakiego operatora logicznego wchodzi zdanie:
A1.
Jeśli jutro będzie padało to będzie pochmurno
Zdanie tożsame:
Jeśli jutro będzie padało to na 100% => będzie pochmurno
P=>CH =1
Padanie jest warunkiem wystarczającym => do tego aby było pochmurno, bo zawsze gdy pada, są chmury
Padanie daje nam gwarancję matematyczną => istnienia chmur
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>
Domyślny punkt odniesienia:
Zdanie wypowiedziane jako pierwsze jest domyślnym punktem odniesienia.
Prawo punktu odniesienia:
W dowolnym zdaniu warunkowym „Jeśli … to …” w zapisie aktualnym przyjętym za punkt odniesienia zawsze zapisujemy po „Jeśli …” poprzednik p, zaś po „to…” następnik q.
p=poprzednik
q=następnik
Uwaga:
Zdanie A1 przyjmujemy za punkt odniesienia, stąd:
p=P (pada)
q=CH (chmury)
To jest kluczowe posunięcie w matematyce języka potocznego o czym za chwilkę się przekonamy.
Dla zdania A1 dowodzimy prawdziwości/fałszywości warunku koniecznego ~> B1 między tymi samymi punktami i w tym samym kierunku.
B1.
Jeśli jutro będzie padało to na 100% ~> będzie pochmurno
P~>CH =0
Padanie nie jest (=0) warunkiem koniecznym ~> dla istnienia chmur, bo może nie padać, a mimo wszystko chmury mogą istnieć.
Zauważmy, że zdania A1 i B1 brzmią identycznie z dokładnością do każdej literki i każdego przecinka, a mimo to nie są to zdania tożsame:
A1.
Jeśli jutro będzie padało to na 100% => będzie pochmurno
P=>CH =1
Padanie jest (=1) warunkiem wystarczającym => do tego aby było pochmurno, bo zawsze gdy pada, są chmury
##
B1.
Jeśli jutro będzie padało to na 100% ~> będzie pochmurno
P~>CH =0
Padanie nie jest (=0) warunkiem koniecznym ~> dla istnienia chmur, bo może nie padać, a mimo wszystko chmury mogą istnieć.
Gdzie:
## - różne na mocy definicji warunków wystarczających => i koniecznych ~>
Stąd mamy wyprowadzone prawo Kameleona.
Prawo Kameleona:
Dwa zdania brzmiące identycznie z dokładnością do każdej literki i każdego przecinka nie muszą być matematycznie tożsame.
Definicje znaczków => i ~>:
p=>q = ~p+q
p~>q = p+~q
stąd:
Dowód na naszym przykładzie:
A1: P=>CH = ~P+CH ## B1: P~>CH = P+~CH
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
Różność zdań A1 i B1 rozpoznajemy po znaczkach warunku wystarczającego => i koniecznego ~> wbudowanych w treść zdań.
Definicja implikacji prostej P|=>CH:
Implikacja prosta P|=>CH to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku.
A1: P=>CH =1 - padanie jest (=1) warunkiem wystarczającym => dla istnienia chmur
B1: P~>CH =0 - padanie nie jest (=0) warunkiem koniecznym ~> dla istnienia chmur
Stąd mamy:
P|=>CH = (A1: P=>CH)*~(B1: P~>CH) = 1* ~(0) =1*1 =1
Teraz kluczowy manewr:
Tabelę związków warunków wystarczających => i koniecznych ~> w implikacji prostej P|=>CH tworzymy ze zdań startowych A1 i B1 (punkt odniesienia) z wykorzystaniem praw logiki matematycznej.
Prawa Kubusia:
A1: P=>CH = A2: ~P~>~CH =1
B1: P~>CH = B2: ~P=>~CH =0
Prawa Tygryska zastosowane do punktu odniesienia, czyli do zdań A1 i B1:
A1: P=>CH = A3: CH~>P =1
B1: P~>CH = B3: CH=>P =0
Prawa kontrapozycji zastosowane do punktu odniesienia, czyli zdań A1 i B1:
A1: P=>CH = A4: ~CH=>~P =1
B1: P~>CH = B4: ~CH~>~P =0
Tożsame dojście do zdań A4 i B4 to zastosowanie praw Kubusia do zdań A3 i B3:
A3: CH~>P = A4: ~CH=>~P =1
B3: CH=>P = B4: ~CH~>~P =0
Zapiszmy naszą analizę w tabeli prawdy warunków wystarczających => i koniecznych ~> dla punktu odniesienia:
p=P (pada)
q=CH (chmury)
Kod: |
T1
Związki warunku wystarczającego => i koniecznego ~> w implikacji P|=>CH
Punkt odniesienia to zawsze pierwsza kolumna A1B1:
P|=>CH = (A1: P=>CH)*~(B1: P~>CH) = 1* ~(0) =1*1 =1
p=P (pada)
q=CH (chmury)
A1B1 A2B2 A3B3 A4B4
A: 1: P=>CH =1 = 2: ~P~>~CH =1 [=] 3: CH~>P =1 = 4: ~CH=>~P =1
##
B: 1: P~>CH =0 = 2: ~P=>~CH =0 [=] 3: CH=>P =0 = 4: ~CH~>~P =0
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
|
Operator implikacji prostej P||=>CH w logice dodatniej (bo CH) to odpowiedź na dwa pytania 1 i 2:
1.
Co może się wydarzyć jeśli jutro będzie padało (P=1)?
Odpowiedź mamy w kolumnie A1B1 która definiuje implikację prostą P|=>CH:
Implikacja prosta P|=>CH to zachodzenie wyłącznie warunku wystarczającego => miedzy tymi samymi punktami i w tym samym kierunku
A1: P=>CH =1 - padanie jest (=1) warunkiem wystarczającym => dla istnienia chmur
B1: P~>CH =0 - padanie nie jest (=0) warunkiem koniecznym ~> dla istnienia chmur
P|=>CH = (A1: P=>CH)*~(B1: P~>CH) = 1* ~(0) =1*1 =1
Uwaga:
Prawdziwy warunek wystarczający A1 wymusza fałszywość kontrprzykładu A1’:
A1’: p~~>~CH = P*~CH =0
Stąd mamy odpowiedź na pytanie 1:
Jeśli jutro nie będzie padało to mamy gwarancję matematyczną => że będzie pochmurno - mówi o tym zdanie A1.
A1.
Jeśli jutro będzie padało (P=1) to na 100% => będzie pochmurno (CH=1)
P=>CH =1
Padanie jest (=1) warunkiem wystarczającym => do tego aby było pochmurno, bo zawsze gdy pada, są chmury
Kontrprzykład A1’ dla prawdziwego warunku wystarczającego A1 musi być fałszem:
A1’.
Jeśli jutro będzie padało (P=1) to może ~~> nie być pochmurno (~CH=1)
P~~>~CH = P*~CH =0
Niemożliwe jest (=0) zdarzenie: pada (P=1) i nie ma chmur
2.
Co może się wydarzyć jeśli jutro nie będzie padało (~P=1)?
Odpowiedź mamy w kolumnie A2B2 która definiuje implikację odwrotną ~P|~>~CH w logice ujemnej (bo ~CH)
Definicja implikacji odwrotnej ~P|~>~CH:
Implikacja odwrotna ~P|~>~CH to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku.
A2: ~P~>~CH =1 - brak opadów jest (=1) warunkiem koniecznym ~> dla braku chmur
bo jak pada to na 100% => są chmury
B2: ~P=>~CH =0 - brak opadów nie jest (=0) warunkiem wystarczającym => dla braku chmur
bo nie zawsze gdy nie pada, nie ma chmur
~P|~>~CH = (A2: ~P~>~CH)*~(B2: ~P=>~CH) =1*~(0) =1*1 =1
Uwaga:
Fałszywy warunek wystarczający => B2 wymusza prawdziwość kontrprzykładu B2’:
B2’: ~P~~>CH = ~P*CH =1
Stąd mamy odpowiedź na pytanie 2:
Jeśli jutro nie będzie padało to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” - mówią o tym zdania A2 i B2’.
A2.
Jeśli jutro nie będzie padało (~P=1) to może ~> nie być pochmurno (~CH=1)
~P~>~CH =1
Brak opadów (~P=1) jest warunkiem koniecznym ~> do tego aby nie było pochmurno (~CH=1), bo jak pada (P=1) to na 100% => jest pochmurno (CH=1)
Prawo Kubusia samo nam tu wyskoczyło:
A2:~P~>~CH = A1: P=>CH
LUB
B2’
Jeśli jutro będzie nie będzie padało (~P=1) to może ~~> być pochmurno (CH=1)
~P~~>CH = ~P*CH =1
Możliwe jest (=1) zdarzenie: nie pada (~P=1) i są chmury (CH=1)
Stąd mamy odpowiedź na pytanie postawione w zadaniu 1:
Zdanie A1 jest częścią operatora implikacji prostej P||=>CH
cnd
3.9.4 Operator implikacji prostej ~CH||=>~P w I klasie LO
Zadanie 2 (póki co w 100-milowym lesie):
Zbadaj w skład jakiego operatora logicznego wchodzi zdanie:
A1.
Jeśli jutro nie będzie pochmurno to nie będzie padało
Zdanie tożsame:
Jeśli jutro nie będzie pochmurno to na 100% => nie będzie padało
~CH=>~P =1
Brak chmur jest warunkiem wystarczającym => do tego aby nie padało
Brak chmur daje nam gwarancję matematyczną => braku opadów
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>
Domyślny punkt odniesienia:
Zdanie wypowiedziane jako pierwsze jest domyślnym punktem odniesienia.
Prawo punktu odniesienia:
W dowolnym zdaniu warunkowym „Jeśli … to …” w zapisie aktualnym przyjętym za punkt odniesienia zawsze zapisujemy po „Jeśli …” poprzednik p, zaś po „to…” następnik q.
p=poprzednik
q=następnik
Uwaga:
Zdanie A1 przyjmujemy za punkt odniesienia, stąd:
p=CH (chmury)
q=P (pada)
To jest kluczowe posunięcie w matematyce języka potocznego o czym za chwilkę się przekonamy.
Badamy warunek konieczny ~> między tymi samymi punktami i w tym samym kierunku.
B1.
Jeśli jutro nie będzie pochmurno to na 100% ~> nie będzie padało
~CH~>~P =?
W stosunku do zdania B1 wolno nam korzystać z dowolnych praw logiki matematycznej.
Skorzystajmy z prawa Kubusia bo prosty warunek wystarczający => zawsze dowodzi się najprościej.
Chodzi tu przede wszystkim o trywialny dowód fałszywości warunku wystarczającego => poprzez podanie kontrprzykładu, dostępny wyłącznie w warunkach wystarczających.
Prawo Kubusia:
B1: ~CH~>~P = B2: CH=>P
Stąd mamy do udowodnienia:
B2.
Jeśli jutro będzie pochmurno to na 100% => będzie padać
CH=>P =0
Definicja warunku wystarczającego => nie jest (=0) spełniona bo nie zawsze gdy są chmury, pada.
stąd mamy:
Prawo Kubusia:
B2: CH=>P = B1: ~CH~>~P =0
Stąd mamy dowód fałszywości warunku koniecznego ~> B1 metodą nie wprost, z wykorzystaniem prawa Kubusia.
Stąd mamy:
B1.
Jeśli jutro nie będzie pochmurno to na 100% ~> nie będzie padało
~CH~>~P =0
Brak chmur nie jest (=0) warunkiem koniecznym ~> by nie padało, bo mogą być chmury i nie musi padać.
Zauważmy, że zdania A1 i B1 brzmią identycznie z dokładnością do każdej literki i każdego przecinka, a mimo to nie są to zdania tożsame:
A1.
Jeśli jutro nie będzie pochmurno to na 100% => nie będzie padało
~CH=>~P =1
Brak chmur jest warunkiem wystarczającym => do tego aby nie padało
##
B1.
Jeśli jutro nie będzie pochmurno to na 100% ~> nie będzie padało
~CH~>~P =0
Brak chmur nie jest (=0) warunkiem koniecznym ~> by nie padało, bo mogą być chmury i nie musi padać.
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
Prawo Kameleona:
Dwa zdania brzmiące identycznie z dokładnością do każdej literki i każdego przecinka nie muszą być matematycznie tożsame.
Definicje znaczków => i ~>:
p=>q = ~p+q
p~>q = p+~q
stąd:
Dowód na naszym przykładzie:
A1: ~CH=>~P = CH+~P ## B1: ~CH~>~P ~CH+P
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
Różność zdań A1 i B1 rozpoznajemy po znaczkach warunku wystarczającego => i koniecznego ~> wbudowanych w treść zdań.
Definicja implikacji prostej ~CH|=>~P w logice ujemnej (bo ~P):
Implikacja prosta ~CH|=>~P to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku.
A1: ~CH=>~P =1 - brak chmur (~CH=1) jest (=1) wystarczający => by nie padało (~P=1)
B1: ~CH~>~P =0 - brak chmur (~CH=1) nie jest (=0) konieczny ~> by nie padało (~P=1)
Stąd mamy:
~CH|=>~P = (A1: ~CH=>~P)*~(B1: ~CH~>~P) = 1*~(0) =1*1 =1
Teraz kluczowy manewr:
Tabelę związków warunków wystarczających => i koniecznych ~> w implikacji prostej ~CH|=>~P tworzymy ze zdań startowych A1 i B1 (punkt odniesienia) z wykorzystaniem praw logiki matematycznej.
Prawa Kubusia:
A1: ~CH=>~P = A2: CH~>P =1
B1: ~CH~>~P = B2: CH=>P =0
Prawa Tygryska zastosowane do punktu odniesienia, czyli do zdań A1 i B1:
A1: ~CH=>~P = A3: ~P~>~CH =1
B1: ~CH~>~P = B3: ~P=>~CH =0
Prawa kontrapozycji zastosowane do punktu odniesienia, czyli zdań A1 i B1:
A1: ~CH=>~P = A4: P=>CH =1
B1: ~CH~>~P = B4: P~>CH =0
Tożsame dojście do zdań A4 i B4 to zastosowanie praw Kubusia do zdań A3 i B3:
A3: ~P~>~CH = A4: P=>CH =1
B3: ~P=>~CH = B4: P~>CH =0
Zapiszmy naszą analizę w tabeli prawdy warunków wystarczających => i koniecznych ~> dla punktu odniesienia:
p=CH (chmury)
q=P (pada)
Kod: |
T2
Związki warunku wystarczającego => i koniecznego ~> w implikacji ~CH|=>~P
Punkt odniesienia to zawsze pierwsza kolumna A1B1:
~CH|=>~P = (A1: ~CH=>~P)*~(B1: ~CH~>~P) = 1*~(0) =1*1 =1
p=CH (chmury)
q=P (pada)
A1B1 A2B2 A3B3 A4B4
A: 1: ~CH=>~P =1 = 2: CH~>P =1 [=] 3: ~P~>~CH =1 = 4: P=>CH =1
##
B: 1: ~CH~>~P =0 = 2: CH=>P =0 [=] 3: ~P=>~CH =0 = 4: P~>CH =0
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
|
Operator implikacji prostej ~CH||=>~P w logice ujemnej (bo ~P) to odpowiedź na dwa pytania 1 i 2:
1.
Co może się wydarzyć jeśli jutro nie będzie pochmurno (~CH=1)?
Odpowiedź mamy w kolumnie A1B1 która definiuje implikację prostą ~CH|=>~P w logice ujemnej (bo ~P).
Definicja implikacji prostej ~CH|=>~P:
Implikacja prosta ~CH|=>~P to zachodzenie wyłącznie warunku wystarczającego => miedzy tymi samymi punktami i w tym samym kierunku
A1: ~CH=>~P =1 - brak chmur (~CH=1) jest (=1) wystarczający aby nie padało (~P=1)
B1: ~CH~>~P =0 - brak chmur (~CH1) nie jest (=0) konieczny ~> aby nie padało
~CH|=>~P = (A1: ~CH=>~P)*~(B1: ~CH~>~P) = 1*~(0) =1*1 =1
Uwaga:
Prawdziwy warunek wystarczający A1 wymusza fałszywość kontrprzykładu A1’:
A1’: ~CH~~>P = ~CH*P =0
Stąd mamy odpowiedź na pytanie 1:
Jeśli jutro nie będzie pochmurno to mamy gwarancję matematyczną => że nie będzie padało - mówi o tym zdanie A1.
A1.
Jeśli jutro nie będzie pochmurno (~CH=1) to na 100% => nie będzie padało (~P=1)
~CH=>~P =1
Brak chmur jest warunkiem wystarczającym => do tego aby nie padało
Kontrprzykład A1’ dla prawdziwego warunku wystarczającego A1 musi być fałszem:
A1’.
Jeśli jutro nie będzie pochmurno (~CH=1) to może ~~> padać (P=1)
~CH~~>P = ~CH*P =0
Niemożliwe jest (=0) zdarzenie: nie ma chmur (~CH=1) i pada (P=1)
2.
Co może się wydarzyć jeśli jutro będzie pochmurno (CH=1)?
Odpowiedź mamy w kolumnie A2B2 która definiuje implikację odwrotną CH|~>P w logice dodatniej (bo CH)
Definicja implikacji odwrotnej CH|~>P:
Implikacja odwrotna CH|~>P to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku.
A2: CH~>P =1 - chmury są (=1) warunkiem koniecznym ~> dla padania
B2: CH=>P =0 - chmury nie są (=0) warunkiem wystarczającym => dla padania,
bo nie zawsze gdy są chmury, pada
CH|~>P = (A2: CH~>P)*~(B2: CH=>P) = 1*~(0) =1*1 =1
Uwaga:
Fałszywy warunek wystarczający => B2 wymusza prawdziwość kontrprzykładu B2’:
B2’: CH~~>~P=CH*~P =1
Stąd mamy odpowiedź na pytanie 2:
Jeśli jutro będzie pochmurno to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” - mówią o tym zdania A2 i B2’.
A2.
Jeśli jutro będzie pochmurno to może ~> padać
CH~>P =1
Chmury (CH=1) są warunkiem koniecznym ~> dla padania (P=1), bo jak nie ma chmur (~CH=1) to na 100% => nie pada (~P=1)
Prawo Kubusia samo nam tu wyskoczyło:
A2: CH~>P = A1: ~CH=>~P
LUB
B2’
Jeśli jutro będzie pochmurno to może ~~> nie padać
CH~~>~P = CH*~P =1
Możliwe jest (=1) zdarzenie: są chmury (CH=1) i nie pada (~P=1)
3.9.5 Rozwiązanie problemu wielkiego prawa Kameleona
Wielkie prawo Kameleona:
Dwa zdania brzmiące identycznie z dokładnością do każdej literki i każdego przecinka nie musza być matematycznie tożsame, nawet gdy kodowanie w zapisach aktualnych tych zdań jest identyczne.
Definicja zapisu aktualnego zdania:
Zapis aktualny zdania to zapis bezpośrednio w języku potocznym, z pominięciem zmiennych formalnych (ogólnych)
Zauważmy, że algorytm podejścia do rozwiązania zadań 1 i 2 w I klasie LO skutecznie eliminuje wielkie prawo Kameleona.
Dowód:
Zadanie 1 (póki co w 100-milowym lesie):
Zbadaj w skład jakiego operatora logicznego wchodzi zdanie:
A1.
Jeśli jutro będzie padało to będzie pochmurno
Zdanie tożsame:
Jeśli jutro będzie padało to na 100% => będzie pochmurno
P=>CH =1
Padanie jest warunkiem wystarczającym => do tego aby było pochmurno, bo zawsze gdy pada, są chmury
Tabela prawdy warunków wystarczających i koniecznych ~> dla zdania A1:
Kod: |
T1
Związki warunku wystarczającego => i koniecznego ~> w implikacji P|=>CH
Punkt odniesienia to zawsze pierwsza kolumna A1B1:
P|=>CH = (A1: P=>CH)*~(B1: P~>CH) = 1* ~(0) =1*1 =1
p=P (pada)
q=CH (chmury)
A1B1 A2B2 A3B3 A4B4
A: 1: P=>CH =1 = 2: ~P~>~CH =1 [=] 3: CH~>P =1 = 4: ~CH=>~P =1
##
B: 1: P~>CH =0 = 2: ~P=>~CH =0 [=] 3: CH=>P =0 = 4: ~CH~>~P =0
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
|
Zadanie 2 (póki co w 100-milowym lesie):
Zbadaj w skład jakiego operatora logicznego wchodzi zdanie:
A1.
Jeśli jutro nie będzie pochmurno to na 100% => nie będzie padało
~CH=>~P =1
Brak chmur jest warunkiem wystarczającym => do tego aby nie padało
Tabela prawdy warunków wystarczających i koniecznych ~> dla zdania A1:
Kod: |
T2
Związki warunku wystarczającego => i koniecznego ~> w implikacji ~CH|=>~P
Punkt odniesienia to zawsze pierwsza kolumna A1B1:
~CH|=>~P = (A1: ~CH=>~P)*~(B1: ~CH~>~P) = 1*~(0) =1*1 =1
p=CH (chmury)
q=P (pada)
A1B1 A2B2 A3B3 A4B4
A: 1: ~CH=>~P =1 = 2: CH~>P =1 [=] 3: ~P~>~CH =1 = 4: P=>CH =1
##
B: 1: ~CH~>~P =0 = 2: CH=>P =0 [=] 3: ~P=>~CH =0 = 4: P~>CH =0
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
|
Zauważmy że w języku potocznym zachodzi dla tabel T1 i T2 zachodzi:
Kod: |
T1_A1: P=>CH ### T2_A4: P=>CH
Punkt odniesienia: ### Punkt odniesienia:
p=P (pada) ### p=CH (chmury)
q=CH (chmury) ### q=P (pada)
Gdzie:
### - różne z powodu błędu podstawienia
|
Jak widzimy zdania prawdziwe:
T1_A1: P=>CH =1
oraz
T2_A4: P=>CH =1
brzmią identycznie z dokładnością do każdej literki i każdego przecinka, matematyczne kodowanie tych zdań warunkiem wystarczającym => również jest identyczne - jednak zdania te nie są tożsame z powodu błędu podstawienia ### który dzięki zastosowaniu odpowiedniego algorytmu wychwyciliśmy w sposób naturalny, unikając analizy tych zdań w zapisach formalnych (aktualnych)
Ostatnio zmieniony przez rafal3006 dnia Śro 20:44, 06 Sty 2021, w całości zmieniany 1 raz
|
|
Powrót do góry |
|
|
|
|
Nie możesz pisać nowych tematów Nie możesz odpowiadać w tematach Nie możesz zmieniać swoich postów Nie możesz usuwać swoich postów Nie możesz głosować w ankietach
|
fora.pl - załóż własne forum dyskusyjne za darmo
Powered by phpBB © 2001, 2005 phpBB Group
|