|
ŚFiNiA ŚFiNiA - Światopoglądowe, Filozoficzne, Naukowe i Artystyczne forum - bez cenzury, regulamin promuje racjonalną i rzeczową dyskusję i ułatwia ucinanie demagogii. Forum założone przez Wuja Zbója.
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 35498
Przeczytał: 17 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Nie 10:59, 23 Sty 2011 Temat postu: Algebra Kubusia - podręcznik dla liceum v.Beta 1.0 |
|
|
… wszystko co chcecie, żeby ludzie wam czynili, wy też im podobnie czyńcie …
Ewangelia Mateusza 7:12
[link widoczny dla zalogowanych]
Algebra Kubusia
Podręcznik dla liceum
Autor: Kubuś - wirtualny Internetowy Miś
Naszym dzieciom dedykuję
Algebra Kubusia dla matematyków:
Nowa Teoria Implikacji (algebra Kubusia)
Algebra Kubusia w służbie lingwistyki
W pracach nad teorią implikacji bezcennej pomocy udzielili Kubusiowi przyjaciele:
Barycki (śfinia), Emde (sfinia), Fizyk (ateista.pl), Gavrila_Ardalionovitch (ateista.pl), HeHe (ateista.pl), Idiota (ateista.pl), Irbisol (sfinia), Krowa (śfinia), Makaron czterojajeczny (sfinia), Macjan (sfinia), Miki (sfinia), NoBody (ateista.pl), Rafał3006 (sfinia), Rexerex (ateista.pl), Rogal (matematyka.pl), Sogors (ateista.pl), Słupek (ateista.pl), tomektomek (ateista.pl), Uczy (wolny), Volrath (sfinia), Windziarz (ateista.pl), WujZbój (sfinia), Wyobraźnia (ateista.pl), zbigniewmiller (sfinia) i inni
Wielkie dzięki, Kubuś !
Szczególne podziękowania Wujowi Zbójowi za jego nieskończoną cierpliwość w dyskusjach z Kubusiem, Vorathowi za decydującą o wszystkim dyskusję, Fizykowi i Windziarzowi za inspirację do napisania końcowej wersji algebry Kubusia oraz Sogorsowi za postawienie kropki nad „i”.
Kim jest Kubuś ?
Kubuś - wirtualny Internetowy Miś, wysłannik obcej cywilizacji, którego zadaniem było przekazanie ludziom tajemnicy implikacji.
Spis treści:
1.0 Notacja
1.1 Implikacja i równoważność w kilku zdaniach
2.0 Twierdzenie ŚFINII
2.1 Rozstrzygnięcia o implikacji odwrotnej
2.2 Rozstrzygnięcia o implikacji prostej
2.3 Rozstrzygnięcia o równoważności
3.0 Operatory logiczne
3.1 Definicja implikacji prostej
3.2 Definicja implikacji odwrotnej
3.3 Prawa Kubusia, logika dodatnia i ujemna w implikacji
3.4 Równanie ogólne implikacji
3.5 Równoważność
4.0 Algebra Kubusia - OR i AND
4.1 Spójnik OR(+) i operator OR (+)
4.2 Spójnik AND(*) i operator AND(*)
4.3 Równanie ogólne dla operatorów OR i AND
5.0 Algebra Kubusia w służbie lingwistyki
5.1 Obietnica
5.2 Groźba
6.0 Dowody formalne
6.1 Podstawowe prawa algebry Boole’a
6.2 Dowody formalne praw de’Morgana
6.3 Dowody formalne praw Kubusia
6.4 Prawo braku przemienności argumentów w implikacji
6.5 Metody dowodzenia twierdzeń matematycznych
7.0 Algebra Kubusia w pigułce
Wstęp.
Algebra Kubusia jest jednocześnie trywialna, bo posługują się nią w praktyce wszyscy od 5-cio latka po starca i trudno zrozumiała jeśli patrzy się na nią poprzez pryzmat zer i jedynek.
W algebrze Kubusia występują zaledwie dwie cyferki o znaczeniu jak niżej:
1 = prawda
0 = fałsz
nie mające nic wspólnego z liczbami całkowitymi 0 i 1 które wszyscy doskonale znamy.
Człowiek podlega pod matematykę ścisłą, algebrę Kubusia, a nie ja tworzy. Gdyby mózg człowieka nie podlegał pod algebrę Kubusia, nie byłoby komputerów ... nie byłoby nas, nie byłoby naszego Wszechświata.
Wbrew powszechnemu wśród matematyków przekonaniu, to naturalna logika człowieka generuje tabele zero-jedynkowe odpowiednich operatorów logicznych. Z tego powodu podejdziemy do logiki z zupełnie innej strony, pokażemy jak naturalny język człowieka generuje tabele zero-jedynkowe operatorów logicznych, zapisując je na końcu w postaci tabel zero-jedynkowych.
Wykład algebry Kubusia zaczynamy od implikacji i równoważności. Dla ułatwienia pominiemy tu operatory AND(*) i OR(+) jako zbędne, mogące jedynie zaciemnić obraz trywialnej logiki 5-cio latka. W praktyce języka mówionego człowiek miesza wszystkie operatory, jednak w 95% w implikacji i równoważności nikt nie używa operatorów AND(*) i OR(+).
W drugiej części podręcznika zajmiemy się operatorami OR(+) i AND(*) (pkt.4.0) oraz zastosowaniem algebry Kubusia w obsłudze gróźb i obietnic (pkt.5.0).
Końcowa część podręcznika to dowody formalne w algebrze Kubusia (pkt.6.0), oraz cała algebra Kubusia w pigułce, czyli wszystkie najważniejsze definicje i prawa (pkt.7.0).
W algebrze Kubusia, po raz pierwszy w historii ludzkości zostały poprawnie zinterpretowane wszystkie możliwe definicje równoważności:
p<=>q = (p=>q)*(p~>q)
p<=>q = (p=>q)*(~p=>~q)
p<=>q = (p=>q)*(q=>p)
... a to oznacza, że algebra Kubusia jest kompletna, zupełna i niesprzeczna.
Algebra Kubusia to matematyka naszego Wszechświata, zarówno żywego jak i martwego.
W podręczniku będziemy używać zamiennie:
Algebra Kubusia = Nowa teoria implikacji
1.0 Notacja
1 = prawda
0 = fałsz
~ - symbol przeczenia NIE(~)
* - symbol iloczynu logicznego (AND), w mowie potocznej spójnik 'i'
+ - symbol sumy logicznej (OR), w mowie potocznej spójnik "lub"
~ - przeczenie, negacja (NOT), w mowie potocznej "NIE"
~(...) - w mowie potocznej "nie może się zdarzyć że ...", "nie prawdą jest że ..."
<=> - symbol równoważności
Twarda prawda/fałsz - zachodzi zawsze, bez żadnych wyjątków (warunek wystarczający =>)
Miękka prawda/fałsz - może zajść, ale nie musi (warunek konieczny ~>)
Kolejność wykonywania działań: nawiasy, AND(*), OR(+), =>, ~>
=> - spójnik „musi” między p i q, warunek wystarczający
~> - spójnik „może” między p i q ze spełnionym warunkiem koniecznym
~~> - naturalny spójnik „może” ~~>, wystarczy jedna prawda
# - różne w znaczeniu jak niżej
Fundament logiki:
1 = prawda
0 = fałsz
1# 0
prawda # fałsz
0 # 1
fałsz # prawda
A=~(~A) – prawo podwójnego przeczenia
Przykład:
Jestem uczciwy
U
Zaprzeczenie:
Nie jestem uczciwy
~U
Podwójne zaprzeczenie:
Nieprawdą jest, że jestem nieuczciwy = jestem uczciwy
~(~U) = U
1.1 Implikacja i równoważność w kilku zdaniach
Algebra Kubusia w pigułce – pkt.7.0
Symboliczna definicja implikacji prostej:
Kod: |
p=>q =1
p=>~q =0
~p~>~q=1
~p~~>q=1
|
Prawo Kubusia:
p=>q = ~p~>~q
Prawo Kubusia to definicja implikacji prostej p=>q w równaniu algebry Kubusia.
Symboliczna definicja implikacji odwrotnej:
Kod: |
p~>q =1
p~~>~q=1
~p=>~q=1
~p=>q =0
|
Prawo Kubusia:
p~>q = ~p=>~q
Prawo Kubusia to definicja implikacji odwrotnej p~>q w równaniu algebry Kubusia.
Symboliczna definicja równoważności:
Kod: |
p=>q =1
p=>~q =0
~p=>~q=1
~p=>q =0
|
Dziewicza definicja równoważności:
p<=>q = (p=>q)*(~p=>~q)
Prawa Kubusia zachodzą zarówno na poziomie spójników, jak i na poziomie operatorów logicznych.
Prawa Kubusia na poziomie spójników:
Prawo zamiany warunku wystarczającego => na warunek konieczny ~>
p=>q = ~p~>~q – prawo zamiany spójnika „musi” => na spójnik „może” ~>
Prawo zamiany warunku koniecznego ~> na warunek wystarczający =>
p~>q = ~p=>~q – prawo zamiany spójnika „może” ~> na spójnik „musi” =>
Prawa Kubusia na poziomie operatorów logicznych:
p=>q = ~p~>~q – prawo zamiany implikacji prostej => na równoważną implikację odwrotną ~>
p~>q = ~p=>~q – prawo zamiany implikacji odwrotnej ~> na równoważną implikację prostą =>
Definicja ogólna spójnika „Jeśli … to …”
Jeśli p to q
gdzie:
p – poprzednik
q – następnik
O tym czym jest wypowiedziane zdanie ujęte w spójnik „Jeśli…to…” decyduje zarówno użyty spójnik, jak i treść zawarta w spójniku.
Warunek wystarczający =>:
Warunek wystarczający między p i q zachodzi wtedy i tylko wtedy gdy dla każdego p zachodzi q
Definicja warunku wystarczającego to zaledwie dwie linie tabeli symbolicznej:
Definicja słowna:
Jeśli zajdzie p to na pewno => zajdzie q
p=>q
gdzie:
=> - spójnik „na pewno” między p i q
Jeśli dla każdego p zachodzi q
to zajście p i zajście ~q jest niemożliwe, co widać w powyższej tabeli.
Warunek wystarczający w logice dodatniej występuje wyłącznie w implikacji prostej i równoważności.
Twierdzenie ŚFINII
W zdaniu:
Jeśli zajdzie p to może zajść q
p~>q
warunek konieczny ~> między p i q zachodzi wtedy i tylko wtedy gdy z zanegowanego poprzednika wynika zanegowany następnik.
Gdzie:
~> - spójnik „może” między p i q ze spełnionym warunkiem koniecznym
Twierdzenie ŚFINII wynika z prawa Kubusia:
A.
P~>q = ~p=>~q
Prawo Kubusia mówi, że warunek konieczny w logice dodatniej p~>q (bo q niezanegowane) jest równoważny warunkowi wystarczającemu ~p=>~q w logice ujemnej (bo q zanegowane)
Warunek wystarczający w logice ujemnej to tylko i wyłącznie dwie linie tabeli symbolicznej:
Warunek ten występuje wyłącznie w implikacji odwrotnej ~> i równoważności <=>.
Z powyższego wynika, że zamiast badać warunek konieczny w logice dodatniej p~>q (bo q niezanegowane) możemy badać warunek wystarczający w logice ujemnej ~p=>~q (bo q zanegowane), co jest nieporównywalnie prostsze.
Jeśli udowodnimy warunek wystarczający w logice ujemnej ~p=>~q to automatycznie udowodnimy warunek konieczny w logice dodatniej p~>q.
Negujemy teraz wszystkie zmienne w równaniu A
B.
~p~>~q = p=>q
Z czego wynika, że warunek konieczny w logice ujemnej ~p~>~q (bo q zanegowane) jest równoważny warunkowi wystarczającemu w logice dodatniej p=>q (bo q niezanegowane)
czyli:
Zamiast badać warunek konieczny w logice ujemnej ~p~>~q możemy badać warunek wystarczający w logice dodatniej p=>q co jest nieporównywalnie prostsze.
Jeśli udowodnimy warunek wystarczający w logice dodatniej p=>q to automatycznie udowodnimy warunek konieczny w logice ujemnej ~p~>~q.
Oczywiście równanie A nie jest równoważne z B, bowiem wprowadziliśmy do zmiennych wyłącznie jedną negację.
p~>q = ~p=>~q ## ~p~>~q = p=>q
Gdzie:
## – różne na mocy definicji
Jeśli ponownie zanegujemy zmienne w równaniu B to musimy otrzymać A na mocy prawa podwójnego przeczenia:
A = ~(~A)
Negujemy zmienne w B i mamy:
C.
p~>q = ~p=>~q
czyli:
A=C
CND
Dziewicza definicja równoważności w równaniu algebry Kubusia wynikła z tabeli zero-jedynkowej:
p<=>q = (p=>q)*(~p=>~q)
Prawo Kubusia:
~p=>~q = p~>q
stąd:
p<=>q = (p=>q)*(p~>q)
… i poniższe definicje implikacji i równoważności, zgodne z intuicją człowieka.
Alternatywne definicje implikacji i równoważności w NTI
A.
Równoważność <=> to jednoczesne zachodzenie warunku koniecznego i wystarczającego między p i q
p=>q=1 – warunek wystarczający w kierunku p=>q zachodzi
p~>q=1 – warunek konieczny w kierunku p~>q zachodzi
p<=>q = (p~>q)*(p=>q)
B.
Implikacja prosta p=>q to zachodzenie wyłącznie warunku wystarczającego między p i q
p=>q=1 – warunek wystarczający w kierunku p=>q zachodzi
p~>q=0 – warunek konieczny w kierunku p~>q nie zachodzi
C.
Implikacja odwrotna p~>q to zachodzenie wyłącznie warunku koniecznego miedzy p i q
p~>q=1 – warunek konieczny w kierunku p~>q zachodzi
p=>q=0 – warunek wystarczający w kierunku p=>q nie zachodzi
Na mocy powyższych definicji mamy:
p=>q=1 ## p~>q=1
gdzie:
## - różne na mocy definicji
Powyższe definicje można wykorzystywać do rozstrzygnięć czy zdanie „Jeśli…to…” jest implikacją prostą =>, implikacją odwrotną ~> czy też równoważnością <=>.
2.0 Twierdzenie ŚFINII
Twierdzenie ŚFINII to najważniejsze twierdzenie w logice, fundament NTI.
ŚFINIA, forum dyskusyjne Wuja Zbója, Ojczyzna Kubusia, to Hlefik w którym się urodził i gdzie od 5-ciu lat dokumentuje historię powstawania NTI krok po kroku.
Gdyby nie ŚFINIA algebra Kubusia nigdy by nie powstała, stąd najważniejsze twierdzenie nosi nazwę twierdzenia ŚFINII.
Pani do dzieci w przedszkolu:
A.
Jeśli jutro będzie pochmurno to może ~> padać
CH~>P=1
p~>q=1
Czy chmury są konieczne aby jutro padało ?
Jas (lat 5):
Tak proszę Pani.
Chmury są konieczne ~> aby jutro padało, bo jak nie będzie chmur to na pewno => nie będzie padać.
CH~>P = ~CH=>~P
W sposób naturalny odkryliśmy tu jedno z najważniejszych praw logiki, prawo Kubusia:
p~>q = ~p=>~q
gdzie:
~> - spójnik „może” ~> między p i q ze spełnionym warunkiem koniecznym, czyli spełnionym prawem Kubusia !
=> - spójnik „na pewno” => miedzy p i q
Stąd definicja warunku koniecznego każdego 5-cio latka:
Zabieramy p i musi zniknąć q, wtedy i tylko wtedy zachodzi warunek konieczny między p i q
Matematycznie oznacza to …
Twierdzenie ŚFINII:
W zdaniu:
Jeśli zajdzie p to może zajść q
p~>q
warunek konieczny ~> między p i q zachodzi wtedy i tylko wtedy gdy z zanegowanego poprzednika wynika zanegowany następnik.
Czyli:
p~>q = ~p=>~q – prawo Kubusia
Dowód twierdzenia ŚFINII w punkcie 7.0
Działanie twierdzenia ŚFINII pokażemy na przykładach:
A.
Jeśli jutro będzie pochmurno to może padać
CH~>P=1 – sytuacja możliwa
Warunek konieczny zachodzi wtedy i tylko wtedy gdy z zanegowanego poprzednika wynika zanegowany następnik czyli:
Jeśli jutro nie będzie pochmurno to na pewno => nie będzie padać
~CH=>~P=1
Oczywista prawda, zatem w zdani A zachodzi warunek konieczny.
B.
Jeśli jutro będzie pochmurno to może nie padać
CH~~>~P=1 – sytuacja możliwa
Z zanegowanego poprzednika musi wynikać zanegowany następnik czyli:
Jeśli jutro nie będzie pochmurno to na pewno będzie padać
~CH=>P=0
Oczywisty fałsz, stąd w zdaniu B nie zachodzi warunek konieczny:
CH~>~P=0
Zdanie B jest prawdziwe na mocy naturalnego spójnika „może” ~~>, wystarczy jedna prawda
C.
Jeśli liczba jest podzielna przez 2 to może być podzielna przez 8
P2~>P8=1 bo 8,16,24…
Z zanegowanego poprzednika musi wynikać zanegowany następnik, wtedy i tylko wtedy w zdaniu C zachodzi warunek konieczny, czyli:
Jeśli liczba nie jest podzielna przez 2 to na pewno nie jest podzielna przez 8
~P2=>~P8=1 bo 3,5,7…
Oczywista prawda, zatem w zdaniu C zachodzi warunek konieczny
D.
Jeśli liczba jest podzielna przez 2 to może nie być podzielna przez 8
P2~~>~P8=1 bo 2,4,6…
Warunek konieczny zachodzi gdy z zanegowanego poprzednika wynika zanegowany następnik, czyli:
Jeśli liczba nie jest podzielna przez 2 to na pewno jest podzielna przez 8
~P2=>P8=0 bo 3
Wniosek:
W zdaniu D nie zachodzi warunek konieczny między p i q:
P2~>~P8=0
Zdanie to jest prawdziwe na mocy naturalnego spójnika „może” ~~>, wystarczy jedna prawda
E.
Jeśli liczba nie jest podzielna przez 8 to może być podzielna przez 2
~P8~~>P2=1 bo 2,4,6…
Warunek konieczny zachodzi, gdy z zanegowanego poprzednika wynika zanegowany następnik, czyli:
Jeśli liczba jest podzielna przez 8 to na pewno nie jest podzielna przez 2
P8=>~P2=0 bo 8
Wniosek:
W zdaniu E nie zachodzi warunek konieczny
~P8~>P2=0
F.
Jeśli liczba nie jest podzielna przez 8 to może nie być podzielna przez 2
~P8~>~P2=1 bo 3,5,7…
Warunek konieczny zachodzi gdy z zanegowanego poprzednika wynika zanegowany następnik, czyli:
Jeśli liczba jest podzielna przez 8 to na pewno jest podzielna przez 2
P8=>P2=1 bo 8,16,24…
Wniosek:
W zdaniu F zachodzi warunek konieczny miedzy p i q
G.
Jeśli liczba jest podzielna przez 8 to może być podzielna przez 2
P8~~>P2=1 bo 8
Warunek konieczny zachodzi, gdy z zanegowanego poprzednika wynika zanegowany następnik, czyli:
Jeśli liczba nie jest podzielna przez 8 to na pewno nie jest podzielna przez 2
~P8=>~P2=0 bo 2
Wniosek:
W zdaniu G nie zachodzi warunek konieczny
P8~>P2=0
Zdanie G jest prawdziwe na mocy naturalnego spójnik „może” ~~>, wystarczy jeden przypadek prawdziwy.
H.
Jeśli liczba jest podzielna przez 3 to może być podzielna przez 8
P3~~>P8=1 bo 24
Warunek konieczny zachodzi, gdy z zanegowanego poprzednika wynika zanegowany następnik, czyli:
Jeśli liczba nie jest podzielna przez 3 to na pewno nie jest podzielna przez 8
~P3=>~P8=0 bo 8
Wniosek:
W zdaniu H nie zachodzi warunek konieczny:
P3~>P8=0
Zdanie G jest prawdziwe na mocy naturalnego spójnik „może” ~~>, wystarczy jeden przypadek prawdziwy.
Jak widzimy, twierdzenie ŚFINII, fundament NTI, działa doskonale.
2.1 Rozstrzygnięcia o implikacji odwrotnej
Definicja implikacji odwrotnej:
Implikacja odwrotna p~>q to zachodzenie wyłącznie warunku koniecznego miedzy p i q
p~>q=1 – warunek konieczny w kierunku p~>q zachodzi
p=>q=0 – warunek wystarczający w kierunku p=>q nie zachodzi
A.
Jeśli liczba jest podzielna przez 2 to może być podzielna przez 8
P2~>P8=1
Na mocy twierdzenia śfinii warunek konieczny zachodzi gdy z zanegowanego poprzednika wynika zanegowany następnik czyli:
A1.
Jeśli liczba nie jest podzielna przez 2 to na pewno nie jest podzielna przez 8
~P2=>~P8=1
Dla dowolnej liczby, jej niepodzielność przez 2 wystarcza dla niepodzielności przez 8
~P2 wystarcza dla ~P8
Zatem w zdaniu A warunek konieczny zachodzi.
Sprawdzamy teraz zachodzenie warunku p=>q dla zdania A:
Jeśli liczba jest podzielna przez 2 to na pewno => jest podzielna przez 8
P2=>P8=0 bo 2
Wniosek:
Zdanie A spełnia definicję implikacji odwrotnej bo:
P2~>P8=1
P2=>P8=0
CND
2.2 Rozstrzygnięcia o implikacji prostej
Definicja implikacji prostej:
Implikacja prosta p=>q to zachodzenie wyłącznie warunku wystarczającego między p i q
p=>q=1 – warunek wystarczający w kierunku p=>q zachodzi
p~>q=0 – warunek konieczny w kierunku p~>q nie zachodzi
A.
Jeśli liczba jest podzielna przez 8 to na pewno jest podzielna przez 2
P8=>P2=1
Dla dowolnej liczby podzielnej przez 8 na pewno zachodzi jej podzielność przez 2
Zatem P8 wystarcza dla P2
CND
Sprawdzamy czy zachodzi warunek konieczny w kierunku P8~>P2:
A1.
Jeśli liczba jest podzielna przez 8 to może być podzielna przez 2
P8~>P2
Na mocy twierdzenia śfinii warunek konieczny zachodzi gdy z zanegowanego poprzednika wynika zanegowany następnik czyli:
A2.
Jeśli liczba nie jest podzielna przez 8 to na pewno nie jest podzielna przez 2
~P8=>~P2 =0 bo 2
zatem w zdaniu A1 nie zachodzi warunek konieczny:
P8~>P2=0
Zdanie A1 jest prawdziwe na mocy naturalnego spójnika „może” ~~>, wystarczy jedna prawda
P8~~>P2=1 bo 8
Dla zdania A mamy zatem:
P8=>P2=1
P8~>P2=0
Wniosek:
Zdanie A spełnia definicje implikacji prostej.
2.3 Rozstrzygnięcia o równoważności
Definicja równoważności:
Równoważność <=> to jednoczesne zachodzenie warunku koniecznego i wystarczającego między p i q
p=>q=1 – warunek wystarczający w kierunku p=>q zachodzi
p~>q=1 – warunek konieczny w kierunku p~>q zachodzi
p<=>q = (p=>q)*(p~>q)
A.
Jeśli trójkąt jest równoboczny to na pewno ma kąty równe
TR=>KR=1
Oczywiście dla dowolnego trójkąta równobocznego na pewno zachodzą równe kąty
Zatem TR wystarcza dla KR
CND
Sprawdzamy teraz czy zachodzi warunek konieczny w kierunku TR~>KR:
A1
Jeśli trójkąt jest równoboczny to może mieć kąty równe
TR~>KR
Na mocy twierdzenia śfinii warunek konieczny zachodzi gdy z zanegowanego poprzednika wynika zanegowany następnik czyli:
Jeśli trójkąt nie jest równoboczny to na pewno nie ma katów równych
~TR=>~KR=1
Twarda prawda zatem warunek konieczny w kierunku TR~>KR zachodzi
Zatem dla zdania A mamy:
TR=>KR=1
TR~>KR=1
Wniosek:
Zdanie A spełnia definicję równoważności
Oczywiście zdanie A możemy tez wypowiedzieć w następujący sposób:
Trójkąt jest równoboczny wtedy i tylko wtedy gdy ma kąty równe
TR<=>KR = (TR=>KR)*(TR~>KR) = 1*1=1
gdzie:
TR=>KR=1 – spełniony warunek wystarczający w kierunku p=>q
TR~>KR=1 – spełniony warunek konieczny w kierunku p~>q
3.0 Operatory logiczne
Matematycy od około 150 lat znają zero-jedynkowo definicje wszystkich możliwych operatorów logicznych. Niestety, aktualna interpretacja tych operatorów jest błędna z punktu odniesienia człowieka.
Człowiek to nie komputer
Pełna lista dwuargumentowych operatorów logicznych.
Kod: |
p q OR NOR AND NAND <=> XOR => N(=>) ~> N(~>) FILL NOP P NP Q NQ
0 0 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1
0 1 1 0 0 1 0 1 1 0 0 1 1 0 0 1 1 0
1 0 1 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
|
Powyższą tabelę należy traktować jako ciekawostkę. bowiem to człowiek w swojej naturalnej logice generuje powyższe tabele zero-jedynkowe, nie będąc tego świadomym. Nigdy odwrotnie, czyli nie jest tak, że człowiek wypowiada dowolne śmieci dopasowując do nich tabele zero-jedynkowe.
3.1 Definicja implikacji prostej
Twierdzenie ŚFINII pozwala łatwo rozstrzygnąć czy dowolne zdanie jest implikacja prostą, odwrotną, czy tez równoważnością.
Definicja implikacji prostej:
Implikacja prosta p=>q to zachodzenie wyłącznie warunku wystarczającego między p i q
p=>q=1 – warunek wystarczający w kierunku p=>q zachodzi
p~>q=0 – warunek konieczny w kierunku p~>q nie zachodzi
Równoważne definicje zero-jedynkowe uzyskamy analizując w sposób uporządkowany dowolną implikacje prostą lub odwrotną znalezioną na mocy twierdzenia ŚFINII, przez wszystkie możliwe przeczenia p i q.
Zdanie wypowiedziane:
A.
Jeśli jutro będzie padać to na pewno będzie pochmurno
P=>CH=1 – twarda prawda
Padanie deszczu wystarcza dla istnienia chmur, warunek wystarczający w kierunku p=>q zachodzi.
Sprawdzamy zachodzenie warunku koniecznego w kierunku P~>CH:
A1:
Jeśli jutro będzie padać to może będzie pochmurno
P~>CH
Na mocy twierdzenia ŚFINII warunek konieczny zachodzi wtedy i tylko wtedy gdy z zanegowanego poprzednika wynika zanegowany następnik czyli:
A2.
Jeśli jutro nie będzie padać to na pewno => nie będzie pochmurno
~P=>~CH=0
Brak deszczu nie wymusza braku chmur, zatem warunek konieczny w zdaniu A1 nie zachodzi:
A1: P~>CH=0
Zdanie A1 jest prawdziwe na mocy naturalnego spójnika „może” ~~>, wystarczy jeden przypadek prawdziwy.
A1: P~~>CH=1 – przypadek możliwy
Wniosek:
Zdanie wypowiedziane A jest implikacja prostą na mocy definicji:
Implikacja prosta P=>CH to zachodzenie wyłącznie warunku wystarczającego między P i CH
P=>CH=1 – warunek wystarczający w kierunku P=>CH zachodzi
P~>CH=0 – warunek konieczny w kierunku p~>CH nie zachodzi
Uporządkowana analiza zdania wypowiedzianego A przez wszystkie możliwe przeczenia p i q wygląda następująco.
Analiza I
A.
Jeśli jutro będzie padać to na pewno => będzie pochmurno
P=>CH=1 – twarda prawda, gwarancja matematyczna
1 1 =1
stąd:
B.
Jeśli jutro będzie padać to na pewno => nie będzie pochmurno
P=>~CH=0
1 0 =0
… a jeśli nie będzie padać ?
Prawo Kubusia:
P=>CH = ~P~>~CH
czyli:
C.
Jeśli jutro nie będzie padać to może ~> nie być pochmurno
~P~>~CH=1 – sytuacja możliwa
0 0 =1
LUB
D.
Jeśli jutro nie będzie padać to może ~~> być pochmurno
~P~~>CH=1 – sytuacja możliwa
0 1 =1
Doskonale widać zero-jedynkowa definicje implikacji prostej => dla kodowania zgodnego ze zdaniem wypowiedzianym 1 1 =1 czyli:
P=1, ~P=0
CH=1, ~CH=0
Definicja zero-jedynkowa implikacji prostej:
Kod: |
p q p=>q
1 1 =1
1 0 =0
0 0 =1
0 1 =1
|
Na bazie powyższego przykładu zapisujemy symboliczną definicję implikacji prostej:
Kod: |
p=>q =1
1 1 =1
p=>~q=0
1 0 =0
… a jeśli zajdzie ~p ?
Prawo Kubusia:
p=>q = ~p~>~q
czyli:
~p~>~q =1
0 0 =1
~p~~>q =1
0 1 =1
|
Wnioski:
1.
Prawo Kubusia to zero-jedynkowa definicja implikacji prostej =>, zapisana w równaniu algebry Kubusia.
p=>q = ~p~>~q
2.
Operator implikacji prostej => (kompletna tabela wyżej) to fundamentalnie co innego niż spójnik „musi” => definiowany wyłącznie dwoma pierwszymi liniami powyższej tabeli.
Definicja spójnika „musi” =>, warunku wystarczającego:
Kod: |
p=>q =1
1 1 =1
p=>~q =0
1 0 =0
|
Definicja słowna warunku wystarczającego:
p=>q=1
Jeśli zajdzie p to musi zajść q
stąd:
p musi być wystarczające dla q
Z powyższego wynika że druga linia w definicji musi być twardym fałszem:
p=>~q=0
Rozstrzygnięcie o warunku wystarczającym na mocy definicji warunku wystarczającego nie rozstrzyga czym jest wypowiedziane zdanie w znaczeniu operatorowym, bowiem identyczny warunek wystarczający występuje w równoważności.
Jednoznaczne rozstrzygnięcie iż zdanie jest implikacją prostą uzyskamy analizując zdanie przez wszystkie możliwe przeczenia p i q jak w przykładzie wyżej, albo udowadniając brak zachodzenia warunku koniecznego w kierunku p~>q przy pomocy twierdzenia śfinii.
Z prawa Kubusia wynika że zdania:
P=>CH = ~P~>~CH
są matematycznie tożsame, czyli lewa strona znaczy dokładnie to samo co prawa strona.
O co tu chodzi, jak udowodnić tą tożsamość ?
Bardzo prosto …
Zdanie wypowiedziane:
C.
Jeśli jutro nie będzie padać to może ~> nie być pochmurno
~P~>~CH=1 – sytuacja możliwa
Sprawdzamy czy zdanie wypowiedziane jest implikacja odwrotną.
Na mocy twierdzenia ŚFINII w zdaniu zachodzi warunek konieczny wtedy i tylko wtedy gdy z zanegowanego poprzednika wynika zanegowany następnik, czyli:
C1.
Jeśli jutro będzie padać to na pewno => będzie pochmurno
P=>CH=1
Oczywista twarda prawda, zatem w zdaniu C zachodzi warunek konieczny.
Sprawdzamy czy w zdaniu C między p i q zachodzi warunek wystarczający.
C2.
Jeśli jutro nie będzie padać to na pewno nie będzie pochmurno
~P=>~CH=0 – oczywisty fałsz
Mamy zatem:
~P~>~CH=1
~P=>~CH=0
Na mocy definicji zdanie C jest implikacją odwrotna prawdziwą, spełniony jest wyłącznie warunek konieczny w kierunku p~>q.
Szczegółowa analiza matematyczna.
Analiza II
C.
Jeśli jutro nie będzie padać to może ~> nie być pochmurno
~P~>~CH=1 – sytuacja możliwa
1 1 =1
LUB
D.
Jeśli jutro nie będzie padać to może ~~> być pochmurno
~P~~>CH=1 – sytuacja możliwa
1 0 =1
… a jeśli będzie padało ?
Prawo Kubusia:
~P~>~CH = P=>CH
czyli:
A.
Jeśli jutro będzie padać to na pewno => będzie pochmurno
P=>CH=1 – twarda prawda, gwarancja matematyczna
0 0 =1
stąd:
B.
Jeśli jutro będzie padać to na pewno => nie będzie pochmurno
P=>~CH=0
0 1 =0
Doskonale widać definicję zero-jedynkową implikacji odwrotnej dla kodowania zgodnego ze zdaniem wypowiedzianym 1 1 =1 czyli:
~P=1, P=0
~CH=1, CH=0
Doskonale widać, że zdania w analizie matematycznej I i II przez wszystkie możliwe przeczenia p i q są identyczne z dokładnością do każdej literki i każdego przecinka co jest dowodem tożsamości Kubusia:
P=>CH = ~P~>~CH
Przestawieniu uległy wyłącznie linie A-B i C-D co w algebrze Kubusia jest bez znaczenia. Analizowane linie możemy dowolnie przestawiać. Co więcej, możemy wymówić dowolną linię i na podstawie twierdzenia ŚFINII łatwo rozstrzygnąć czym jest wypowiedziane zdanie.
Zauważmy, że symbol => nie jest 100% jednoznaczny, oznacza albo spójnik „musi” p=>q (pierwsze dwie linie z analizy), albo też operator implikacji prostej p=>q (wszystkie cztery linie).
Nie ma tu problemu ponieważ w naturalnym języku mówionym symbol => oznacza zawsze spójnik „musi” p=>q, warunek wystarczający.
O tym czy wypowiedziane zdanie jest dodatkowo operatorem implikacji prostej decyduje dopiero analiza matematyczna. Jeśli udowodnimy że zdanie spełnia definicje implikacji prostej => to możemy dodatkowo powiedzieć, że zdanie p=>q jest implikacją prostą =>.
3.2 Definicja implikacji odwrotnej
Definicja implikacji odwrotnej:
Implikacja odwrotna p~>q to zachodzenie wyłącznie warunku koniecznego miedzy p i q
p~>q=1 – warunek konieczny w kierunku p~>q zachodzi
p=>q=0 – warunek wystarczający w kierunku p=>q nie zachodzi
Równoważną definicję zero-jedynkową implikacji odwrotnej uzyskamy analizując zdanie przez wszystkie możliwe przeczenia.
Zdanie wypowiedziane:
A
Jeśli jutro będzie pochmurno to może padać
CH~>P =1
Na mocy twierdzenie ŚFINII w zdaniu A warunek konieczny zachodzi wtedy i tylko wtedy gdy z zanegowanego poprzednika wynika zanegowany następnik czyli:
A1.
Jeśli jutro nie będzie pochmurno to na pewno => nie będzie padać
~CH=>~P =1 – twarda prawda
Zatem w zdaniu A spełniony jest warunek konieczny.
Sprawdzamy czy zdanie A spełnia warunek wystarczający:
A2.
Jeśli jutro będzie pochmurno to na pewno => będzie padać
CH=>P =0
Fałsz, bo może być pochmurno i nie musi padać
Mamy zatem:
CH~>P=1
CH=>P=0
Na mocy definicji zdanie A jest implikacja odwrotną prawdziwą, spełniony wyłącznie warunek konieczny w kierunku p~>q.
Równoważną odpowiedź daje tu analiza zdania CH~>P przez wszystkie możliwe przeczenia p i q.
Analiza matematyczna I:
A.
Jeśli jutro będzie pochmurno to może ~> padać
CH~>P =1 – sytuacja możliwa
1 1 =1
LUB
B.
Jeśli jutro będzie pochmurno to może ~~> nie padać
CH~~>~P=1 – sytuacja możliwa
1 0 =1
… a jeśli jutro nie będzie pochmurno ?
Prawo Kubusia:
CH~>P = ~CH=>~P
czyli:
C.
Jeśli jutro nie będzie pochmurno to na pewno => nie będzie padać
~CH=>~P=1 – twarda prawda, gwarancja matematyczna
0 0 =1
stąd:
D.
Jeśli jutro nie będzie pochmurno to na pewno => będzie padać
~CH=>P=0 – sytuacja niemożliwa
0 1 =0
Doskonale widać tabele ze4ro-jedynkową operatora implikacji odwrotnej ~> dla kodowania zgodnego ze zdaniem wypowiedzianym 1 1 =1 czyli:
CH=1, ~CH=0
P=1, ~P=0
Dodatkowe znaczenie symboli => i ~> widać tu jak na dłoni.
I.
Spójnik „może” ~> ze spełnionym warunkiem koniecznym:
~> - miękka prawda, może zajść ale nie musi
Jeśli jutro będzie pochmurno to możemy sobie rzucać monetą:
orzełek = będzie padało
reszka = nie będzie padało
czyli „wiem że nic nie wiem”, 100% losowość, matematyczna „wolna wola” człowieka we wszelkich obietnicach i groźbach, co zobaczymy w przyszłości.
II.
Spójnik „musi” =>:
=> - twarda prawda, zachodzi zawsze bez żadnych wyjątków, 100% matematyczna pewność
Jeśli jutro nie będzie pochmurno to na pewno => nie będzie padało
~CH=>~P=1 – twarda prawda, zachodzi zawsze bez żadnych wyjątków
Definicja zero-jedynkowa implikacji odwrotnej:
Kod: |
p q p~>q
1 1 =1
1 0 =1
0 0 =1
0 1 =0
|
Na podstawie powyższego przykładu możemy zapisać symboliczną definicję implikacji odwrotnej z podkładem zero-jedynkowym.
Kod: |
p~>q =1
1 1 =1
LUB
p~~>~q=1
1 0 =1
… a jeśli zajdzie ~p ?
Prawo Kubusia:
p~>q = ~p=>~q
czyli:
~p=>~q=1
0 0 =1
~p=>q=0
0 1 =0
|
Kodowanie zero-jedynkowe zgodnie ze zdaniem wypowiedzianym p=>q czyli:
p=1, ~p=0
q=1, ~q=0
Wnioski:
1.
Prawo Kubusia to zero-jedynkowa definicja implikacji odwrotnej ~>, zapisana w równaniu algebry Kubusia.
p~>q = ~p=>~q
2.
Proste rozumowanie logiczne:
Jeśli p jest konieczne dla q to zajście ~p wymusza zajście ~q czyli:
p~>q = ~p=>~q – prawo Kubusia
Prawo Kubusia mówi, że warunek konieczny p~>q w logice dodatniej (bo q niezanegowane) jest równoważny warunkowi wystarczającemu ~p=>~q w logice ujemnej (bo q zanegowane).
Wynika z tego, że zamiast badać warunek konieczny p~>q możemy badać warunek wystarczający ~p=>~q.
Ustalenie warunku wystarczającego w kierunku ~p=>~q nie wystarcza do rozstrzygnięcia iż zdanie jest implikacją odwrotną, bowiem identyczny warunek ~p=>~q występuje w równoważności.
Zawsze rozstrzygająca jest analiza zdania przez wszystkie możliwe przeczenia p i q jak w przykładzie wyżej. Uzyskana w ten sposób tabela zero-jedynkowa jednoznacznie rozstrzyga czym jest wypowiedziane zdanie.
Warunek wystarczający w logice ujemnej to tylko i wyłącznie dwie linie tabeli zero-jedynkowej:
Kod: |
~p=>~~q=1
0 0 =1
~p=>q=0
0 1 =0
|
Warunek ten występuje wyłącznie w implikacji odwrotnej ~> i równoważności <=> (pkt.7.0).
Dla kompletu definicja symboliczna naturalnego spójnika „może” ~~> wystarczy jedna prawda:
Kod: |
p~~>q=1
1 1 =1
Dalsza cześć tabeli zero-jedynkowej bez znaczenia.
Może być cokolwiek.
|
Na mocy prawa Kubusia dla zdania wypowiedzianego A mamy:
CH~>P = ~CH=>~P
Udowodnijmy powyższą tożsamość matematyczną, analizując zdanie z prawej strony tożsamości.
Zdanie wypowiedziane:
C.
Jeśli jutro nie będzie pochmurno to na pewno => nie będzie padać
~CH=>~P=1 – twarda prawda, gwarancja matematyczna
Warunek wystarczający ~CH=>~P spełniony
Na mocy definicji zdanie p=>q jest implikacją prosta wtedy i tylko wtedy gdy zdanie p~>q jest implikacją odwrotną fałszywą czyli:
C1:
Jeśli jutro nie będzie pochmurno to może nie będzie padać
~CH~>~P
Na mocy twierdzenia SFINII w zdaniu ze spójnikiem „może” ~> spełniony jest warunek konieczny wtedy i tylko wtedy gdy z zanegowanego poprzednika wynika zanegowany poprzednik czyli:
C2
Jeśli jutro będzie pochmurno to na pewno => będzie padać
CH=>P=0
oczywisty fałsz, zatem w zdaniu C1 nie zachodzi warunek konieczny czyli:
~CH=>~P=1 – warunek wystarczający spełniony
CH~>P=0 – warunek konieczny nie spełniony
Zatem na mocy definicji zdanie C jest implikacja prosta prawdziwą.
To samo musimy uzyskać analizując zdanie wypowiedziane C przez wszystkie możliwe przeczenia p i q.
Analiza matematyczna II:
C.
Jeśli jutro nie będzie pochmurno to na pewno => nie będzie padać
~CH=>~P=1 – twarda prawda, gwarancja matematyczna
1 1 =1
stąd:
D.
Jeśli jutro nie będzie pochmurno to na pewno => będzie padać
~CH=>P=0 – sytuacja niemożliwa
1 0 =0
… a jeśli jutro będzie pochmurno ?
Prawo Kubusia:
~CH=>~P = CH~>P
czyli:
A.
Jeśli jutro będzie pochmurno to może ~> padać
CH~>P =1 – sytuacja możliwa
0 0 =1
LUB
B.
Jeśli jutro będzie pochmurno to może ~~> nie padać
CH~~>~P=1 – sytuacja możliwa
0 1 =1
Doskonale widać tabelę zero-jedynkową implikacji prostej dla kodowania zgodnego ze zdaniem wypowiedzianym 1 1 =1 czyli:
~CH=1, CH=0
~P=1, P=0
Zauważmy, że analizy matematyczne I i II generują identyczne zdania A,B,C i D z dokładnością do każdej literki i każdego przecinka co dowodzi poprawności prawa Kubusia:
CH~>P = ~CH=>~P
3.3 Prawa Kubusia, logika dodatnia i ujemna w implikacji
Prawa Kubusia zachodzą zarówno na poziomie spójników, jak i na poziomie operatorów logicznych.
Prawa Kubusia na poziomie spójników:
Prawo zamiany warunku wystarczającego => na warunek konieczny ~>
p=>q = ~p~>~q – prawo zamiany spójnika „musi” => na spójnik „może” ~>
Prawo zamiany warunku koniecznego ~> na warunek wystarczający =>
p~>q = ~p=>~q – prawo zamiany spójnika „może” ~> na spójnik „musi” =>
Prawa Kubusia na poziomie operatorów logicznych:
p=>q = ~p~>~q – prawo zamiany implikacji prostej => na równoważną implikację odwrotną ~>
p~>q = ~p=>~q – prawo zamiany implikacji odwrotnej ~> na równoważną implikację prostą =>
Definicja:
Implikacja jest w logice dodatniej, jeśli następnik q nie jest zanegowany. (q)
Implikacja jest w logice ujemnej, jeśli następnik q jest zanegowany (~q)
Z prawa Kubusia wynika, że implikacja prosta w logice dodatniej jest równoważna implikacji odwrotnej w logice ujemnej
p=>q = ~p~>~q
oraz:
Implikacja odwrotna w logice dodatniej jest równoważna implikacji prostej w logice ujemnej
p~>q = ~p=>~q
3.4 Równanie ogólne implikacji
Definicje implikacji prostej i odwrotnej:
B.
Implikacja prosta p=>q to zachodzenie wyłącznie warunku wystarczającego między p i q
p=>q=1 – warunek wystarczający w kierunku p=>q zachodzi
p~>q=0 – warunek konieczny w kierunku p~>q nie zachodzi
Na mocy prawa Kubusia dla implikacji prostej możemy zapisać:
p=>q = ~p~>~q =1
C.
Implikacja odwrotna p~>q to zachodzenie wyłącznie warunku koniecznego miedzy p i q
p~>q=1 – warunek konieczny w kierunku p~>q zachodzi
p=>q=0 – warunek wystarczający w kierunku p=>q nie zachodzi
Na mocy prawa Kubusia dla implikacji odwrotnej możemy zapisać:
p~>q = ~p=>~q =1
Na mocy definicji otrzymujemy równanie ogólne dla implikacji:
p=>q = ~p~>~q =1 ## p~>q = ~p=>~q =1
Dla naszego przykładu równanie ogólne implikacji przyjmie postać:
P=>CH = ~P~>~CH =1 ## CH~>P = ~CH=>~P =1
Po lewej i prawej stronie symbolu ## mamy dwa niezależne układy implikacyjne pomiędzy którymi nie zachodzą żadne związki matematyczne. Pod parametry formalne p i q po obu stronach znaku ## możemy podstawiać cokolwiek, w szczególności nasz przykład jak wyżej.
Oczywiście na mocy definicji dla naszego przykładu mamy.
Implikacja prosta:
P=>CH=1
P~>CH=0
Implikacja odwrotna:
CH~>P=1
CH=>P=0
stąd:
P=>CH=1 ## CH~>P=1
3.5 Równoważność
Definicja równoważności:
Równoważność <=> to jednoczesne zachodzenie warunku koniecznego i wystarczającego między p i q
p=>q=1 – warunek wystarczający w kierunku p=>q zachodzi
p~>q=1 – warunek konieczny w kierunku p~>q zachodzi
p<=>q = (p~>q)*(p=>q)
Przykład równoważności:
A.
Jeśli trójkąt ma boki równe to jest równoboczny
BR=>TR=1
Oczywiście trzy odcinki o równych długościach są wystarczające dla zbudowania trójkąta równobocznego
Wniosek:
Warunek wystarczający spełniony
Jeśli zamienimy jeden z trzech odcinków na odcinek o innej długości to zbudowania trójkąta równobocznego nie będzie możliwe.
Wniosek:
Trzy równe odcinki są warunkiem koniecznym dla trójkąta równobocznego
To samo możemy uzyskać na drodze czysto matematycznej.
Badamy czy w zdaniu A zachodzi warunek konieczny w kierunku p~>q:
A1.
Jeśli trójkąt ma boki równe to może być równoboczny
BR~>TR
W zdaniu A1 ze spójnikiem „może” warunek konieczny zachodzi wtedy i tylko wtedy gdy z zanegowanego poprzednika wynika zanegowany następnik, czyli:
A2.
Jeśli trójkąt nie ma boków równych to na pewno => nie jest równoboczny
~BR=>~TR=1
Oczywista twarda prawda, zatem w zdaniu A1 zachodzi warunek konieczny:
BR~>TR=1
Dla zdania A zachodzi zatem:
BR=>TR=1 – warunek wystarczający spełniony
BR~>TR=1 – warunek konieczny spełniony
Zdanie wypowiedziane A spełnia zatem definicje równoważności, czyli jest równoważnością.
Oczywiście powyższą równoważność można wyrazić słownie w taki sposób:
Trójkąt ma boki równe wtedy i tylko wtedy gdy jest równoboczny
BR<=>TR = (BR=>TR)* (BR~>TR)
p<=>q = (p=>q)*(p~>q)
Na mocy prawa Kubusia możemy zapisać:
p~>q = ~p=>~q
Stąd otrzymujemy dziewicza definicje równoważności wynikającą bezpośrednio z tabeli zero-jedynkowej równoważności:
p<=>q = (p=>q)*(~p=>~q)
gdzie:
p=>q, ~p=>~q to tylko i wyłącznie warunki wystarczające między p i q o definicji:
W równoważności (i tylko tu) poprawne jest prawo kontrapozycji w tej formie:
~p=>~q = q=>p
stąd mamy odprysk definicji równoważności uwielbiany przez matematyków:
p<=>q = (p=>q)*(q=>p)
Równoważność, to warunki wystarczające zachodzące w stronę p=>q i q=>p
Twierdzenie Rexerexa:
Jeśli równoważność p<=>q jest udowodniona to zachodzi wszystko co tylko możliwe:
p=>q = p<=>q = (p=>q)*(~p=>~q) = ~p<=>~q = ~p=>~q = (p=>q)*(q=>p) = q=>p itd
Przykład:
Jeśli trójkąt jest równoboczny to ma kąty równe
TR=>KR=1
p=>q=1
Po zamianie poprzednika z następnikiem mamy:
Jeśli trójkąt ma kąty równe to jest równoboczny
KR=>TR=1
q=>p=1
Zatem na mocy definicji równoważności mamy:
Trójkąt jest równoboczny wtedy i tylko wtedy gdy ma kąty równe
TR<=>KR = (TR=>KR)*(KR=>TR) = 1*1 =1
p<=>q = (p=>q)*(q=>p) = 1*1 =1
Na mocy definicji równoważności o zdaniu:
A.
Jeśli trójkąt jest równoboczny to ma kąty równe
TR=>KR
Możemy powiedzieć że:
1.
TR=>KR – to tylko warunek wystarczający o definicji jak wyżej (tu nie wiemy lub nie deklarujemy co zachodzi w kierunku q=>p)
2.
TR=>KR – to tylko warunek wystarczający wchodzący w skład definicji równoważności (precyzyjnie)
3.
TR=>KR – to równoważność
W tym przypadku deklarujemy domyślną pewność zachodzenia warunku wystarczającego w kierunku q=>p (KR=>TR=1)
O zdaniu A absolutnie nie możemy powiedzieć, ze jest to implikacja prosta, bo to zdanie nie spełnia prawa Kubusia – definicji implikacji prostej.
Dziewicza definicja równoważności:
p<=>q = (p=>q)*(~p=>~q)
Przeanalizujmy przykładowa równoważność przez dziewiczą definicje równoważności:
A.
Trójkąt jest równoboczny wtedy i tylko wtedy gdy ma kąty równe
TR<=>KR = (TR=>KR)*(~TR=>~KR) =1*1=1
Analiza matematyczna:
TR<=>KR = (TR=>KR)*(~TR=>~KR)
Rozpisujemy prawą stronę:
A.
Jeśli trójkąt jest równoboczny to na pewno => ma kąty równe
TR=>KR=1 – twarda prawda, gwarancja matematyczna
1 1 =1
stąd:
B.
Jeśli trójkąt jest równoboczny to na pewno => nie ma katów równych
TR=>~KR=0
1 0 =0
… a jeśli trójkąt nie jest równoboczny ?
~TR<=>~KR = (~TR=>~KR)*(TR=>KR)
czyli:
C.
Jeśli trójkąt nie jest równoboczny to na pewno => nie ma kątów równych
~TR=>~KR=1 – twarda prawda, gwarancja matematyczna
0 0 =1
stąd:
D.
Jeśli trójkąt nie jest równoboczny to na pewno => ma kąty równe
~TR=>KR=0
0 1 =0
Doskonale widać tabele zero-jedynkową równoważności dla kodowania zgodnego ze zdaniem A czyli:
TR=1, ~TR=0
KR=1, ~KR=0
Stąd mamy definicje zero-jedynkowa równoważności:
Kod: |
p q p<=>q=(p=>q)*(~p=>~q)
1 1 =1
1 0 =0
0 0 =1
0 1 =0
|
Na zakończenie definicja symboliczna równoważności, na podstawie powyższego przykładu:
Kod: |
p<=>q = (p=>q)*(~p=>~q)
Warunek wystarczający w kierunku p=>q
p=>q =1
1 1 =1
p=>~q=0
1 0 =0
… a jeśli zajdzie ~p ?
~p<=>~q = (~p=>~q)
stąd:
Warunek wystarczający w logice ujemnej (bo ~q)
~p=>~q=1
0 0 =1
~p=>q=0
0 1 =0
|
4.0 Algebra Kubusia - OR i AND
Matematyczne fundamenty algebry Kubusia w spójnikach AND(*) i OR(+).
+ - spójnik “lub” z naturalnego języka mówionego (ang. OR)
* - spójnik “I” z naturalnego języka mówionego (ang. AND)
~- przeczenie NIE
Kolejność wykonywania działań w algebrze Kubusia:
Nawiasy, AND, OR
Zmienna binarna
Zmienna binarna to zmienna, mogąca przyjmować w osi czasu wyłącznie dwie wartości logiczne 0 albo 1.
Nazwa zmiennej binarnej to dowolny symbol (litera alfabetu lub słowo) z wyjątkiem litery Y zwyczajowo zarezerwowanej dla funkcji logicznej.
Funkcja logiczna
Funkcja logiczna Y to funkcja n-zmiennych binarnych połączonych spójnikami „lub” i „i”
Przykład:
Y = A*(B+C)
Definicja spójnika OR(+) (pol. „lub”)
Suma logiczna OR jest równa 1 wtedy i tylko wtedy gdy którakolwiek zmienna jest równa 1
Y=A+B+C …
Y=1 <=> A=1 lub B=1 lub C=1 …
Definicja spójnika AND(*) (pol. „i”)
Iloczyn logiczny AND(*) jest równy 1 wtedy i tylko wtedy gdy wszystkie zmienne są równe 1
Y=A*B*C …
Y=1 <=> A=1 i B=1 i C=1 …
Symboliczna definicja negacji:
Y=~A
gdzie:
A - zmienna binarna
Y - funkcja logiczna
Prawo podwójnego przeczenia
A=~(~A)
Prawo podwójnego przeczenia to jedno z najważniejszych praw w logice.
Przykład:
Jestem uczciwy = Nieprawda jest, że jestem nieuczciwy
U = ~(~U)
Definicja logiki dodatniej i ujemnej dla spójników OR(+) i AND(*):
Logika dodatnia (Y) to odpowiedź na pytanie kiedy dotrzymam słowa (wystąpi prawda), zaś logika ujemna (~Y) to odpowiedź na pytanie kiedy skłamię (wystąpi fałsz).
Związek logiki dodatniej z logiką ujemną opisuje równanie:
Y = ~(~Y) - prawo podwójnego przeczenia
Prawo przedszkolaka:
W dowolnej funkcji logicznej Y algebry Boole’a ze spójnikami AND i OR przejście do logiki przeciwnej uzyskujemy poprzez negację zmiennych i wymianę spójników na przeciwne.
Przykład:
A.
Jutro pójdę do kina lub do teatru
Y=K+T
Matematycznie oznacza to:
Dotrzymam słowa (Y=1) wtedy i tylko wtedy gdy jutro pójdę do kina (K=1) lub do teatru (T=1)
Y=1 <=> K=1 lub T=1
… a kiedy skłamię ?
Przejście ze zdaniem A do logiki przeciwnej metoda przedszkolaka poprzez negację zmiennych i wymianę operatorów na przeciwne.
~Y=~K*~T
Skłamię (~Y=1) wtedy i tylko wtedy gdy jutro nie pójdę do kina (~K=1) i nie pójdę do teatru (~T=1)
~Y=1 <=> ~K=1 i ~T=1
Świętość algebry Kubusia:
1=prawda
0 = fałsz
zawsze i wszędzie
Na mocy tej świętości jedyne poprawne kodowanie zdań z języka naturalnego jest następujące:
A.
Wczoraj byłem w kinie
Y=K
Prawdą jest (Y=1) że wczoraj byłem w kinie (K=1)
B.
Wczoraj nie byłem w kinie
Y=~K
Prawdą jest (Y=1), że wczoraj nie byłem w kinie (~K=1)
Zauważmy, że kodowanie zdania B w postaci:
B.
Wczoraj nie byłem w kinie
Y=K
czyli matematycznie:
Prawdą jest (Y=1) że wczoraj nie byłem w kinie (K=0)
Jest błędne z wielu powodów:
I.
W tym przypadku mamy:
K=0 – nie byłem w kinie, prawda
Świętość algebry Kubusia leży w gruzach bo mamy K=0 (0=prawda).
II.
Sprzeczność kodowania ze zdaniem A
III.
Brak zgodności z naturalnym językiem mówionym (maskowanie przeczenia NIE)
IV.
Brak możliwości poprawnego zapisywania równań algebry Kubusia (także algebry Boole’a !)
W dowolnym równaniu algebry Kubusia (także algebry Boole’a !) wszystkie zmienne sprowadzone są do jedynek.
Przykładowa funkcja logiczna:
A.
Y=A*(~B+C)
Matematycznie oznacza to:
Y=1 <=> A=1 i (~B=1 lub C=1)
Przejście do logiki ujemnej poprzez negacje zmiennych i wymianę operatorów na przeciwne:
B.
~Y = ~A+(B*~C)
co matematycznie oznacza:
~Y=1 <=> ~A=1 lub (B=1 i ~C=1)
Związek logiki dodatniej i ujemnej:
Y = ~(~Y) – prawo podwójnego przeczenia
Podstawiając A i B mamy prawo de’Morgana:
A*(~B+C) = ~[~A+(B*~C)]
4.1 Spójnik OR(+) i operator OR (+)
Udajmy się do ekspertów algebry Kubusia, do przedszkola.
Pani:
A.
Jutro pójdziemy do kina lub do teatru
Y=K+T
Dzieci czy wiecie kiedy czy wiecie kiedy dotrzymam słowa ?
Jaś (lat 5):
Pani dotrzyma słowa (Y=1), kiedy jutro pójdziemy do kina (K=1) lub do teatru (T=1)
Y=K+T
Matematycznie:
Y=1 <=> K=1 lub T=1
Pani:
Dobrze Jasiu, a czy mógłbyś szczegółowo odpowiedzieć kiedy dotrzymam słowa ?
Dzielny Jaś:
Pani dotrzyma słowa jeśli:
K*T=1 – jutro pójdziemy do kina (K=1) i do teatru (T=1)
Matematycznie oznacza to::
(K=1)*(T=1)=1
lub
K*~T=1 – jutro pójdziemy do kina (K=1) i nie pójdziemy do teatru (~T=1)
Matematycznie oznacza to:
(K=1)*~T=1)=1
lub
~K*T=1 – jutro nie pójdziemy do kina (~K=1) i pójdziemy do teatru (T=1)
Matematycznie oznacza to:
(~K=1)*(~T=1)=1
Pani;
Doskonale Jasiu, jak jeszcze odpowiesz na pytanie kiedy skłamię dostaniesz pluszowego Misia:
Jaś:
… to proste proszę Pani.
B.
Pani skłamie (~Y=1), jeśli jutro nie pójdziemy do kina (~K=1) i nie pójdziemy do teatru (~T=1)
~Y=~K*~T
Matematycznie:
~Y=1 <=> ~K=1 i ~T=1
Pani:
Wspaniale Jasiu, w nagrodę otrzymujesz Misia i samochodzik.
Zuzia:
… a czy może się zdarzyć, że jutro nie pójdziemy do kina i nie pójdziemy do teatru ?
Związek logiki dodatniej i ujemnej:
Y=~(~Y)
Podstawiając A i B mamy prawo de’Morgana:
Y = K+T = ~(~K*~T)
Jaś:
C.
Nie może się zdarzyć ~(…), że jutro nie pójdziemy do kina ~K=1 i nie pójdziemy do teatru (~T=1)
Y=~(~K*~T)
Oczywiście każdy człowiek mając do wyboru dwa równoważne matematycznie zdania A i C wybierze A bo jest zdecydowanie prostsze, stąd w praktyce języka mówionego bardzo rzadko korzystamy z prawa de’Morgana.
Pani:
Za zadanie ciekawego pytania Zuzia otrzymuje lalkę Barbi.
Matematykę pod rozmowę Pani z Jasiem i Zuzią podłożył Kubuś.
Podsumujmy:
A.
Pani dotrzyma słowa (Y=1) wtedy i tylko wtedy gdy jutro pójdziemy do kina (K=1) lub do teatru (T=1)
Y=K+T = K*T+K*~T+~K*T
Matematycznie oznacza to:
Y=1 <=> K=1 lub T=1
lub zapis matematycznie równoważny:
Y=1 <=> (K*T=1) lub (K*~T=1) lub (~K*T=1)
B.
Pani skłamie skłamie (~Y=1) wtedy i tylko wtedy gdy jutro nie pójdziemy do kina (~K=1) i nie pójdziemy do teatru (~T=1)
~Y=~K*~T
Matematycznie oznacza to:
~Y=1 <=> ~K=1 i ~T=1
Zapiszmy to w postaci tabeli:
Kod: |
Spójnik „lub” w logice dodatniej bo Y
Dotrzymam słowa (Y):
Y=K+T = K*T+K*~T+~K*T
K*T =Y
K*~T=Y
~K*T=Y
… a kiedy skłamię ?
Spójnik „i” w logice ujemnej bo ~Y
Skłamię (~Y):
~K*~T=~Y
|
Kodując powyższą tabelę zgodnie ze zdaniem wypowiedzianym czyli:
K=1, ~K=0
T=1, ~T=0
Y=1, ~Y=0
Otrzymujemy tabelę zero-jedynkową operatora logicznego OR:
Kod: |
K T Y=K+T=K*T+K*~T+~K*T
1 1 =1
1 0 =1
0 1 =1
0 0 =0
|
Przechodzimy teraz na zapis ogólny otrzymując symboliczną definicję operatora OR.
Dodatkowo dołożymy podkład zero-jedynkowy.
Kod: |
Spójnik „lub” w logice dodatniej (bo Y).
Dotrzymam słowa (Y):
Y=p+q = p*q+p*~q+~p*q
p*q =Y
1 1 =1
p*~q=Y
1 0 =1
~p*q=Y
0 1 =1
… a kiedy skłamię ?
Spójnik „i” w logice ujemnej (bo ~Y)
Skłamię (~Y):
~p*~q=~Y
0 0 =1
|
Wnioski:
1.
Prawo de’Morgana zachodzi w obrębie jednej i tej samej definicji zero-jedynkowej operatora OR
Mamy:
A.
Y=p+q
… a kiedy skłamię ?
Przejście do logiki ujemnej poprzez negacje zmiennych i wymianę operatorów na przeciwne:
B.
~Y=~p*~q
Związek logiki dodatniej i ujemnej:
Y=~(~Y)
Podstawiając A i B mamy prawo de’Morgana:
p+q = ~(~p*~q)
2.
Operator logiczny OR to złożenie spójnika „lub” w logice dodatniej ze spójnikiem „i” w logice ujemnej, zatem operator OR to fundamentalnie co innego niż spójnik OR(+) (pol. „lub”). Wypowiadając zdanie mamy dostęp wyłącznie do spójników. O tym czy zdanie spełnia definicję operatora OR decyduje analiza matematyczna.
W świecie niezdeterminowanym jak wyżej, zdanie zawsze spełnia definicję operatora OR.
W świecie zdeterminowanym nigdy jej nie spełnia.
Definicja:
Świat niezdeterminowany – wartości logiczne parametrów nie są z góry znane
Świat zdeterminowany – wartości logiczne wszystkich parametrów są z góry znane
Przykład:
A.
Każdy człowiek jest mężczyzną lub kobietą
Y=M+K = M*K+M*~K+K*~M
Co matematycznie oznacza:
Prawda jest (Y=1), że każdy człowiek jest mężczyzna (M=1) lub kobietą (K=1)
Y=M+K = M*K+M*~K+K*~M
czyli:
Y=1 <=>M=1+K=1 = M*K=0+M*~K=1+~K*M=1
Oczywiście nie można być jednocześnie mężczyzną i kobietą, stąd po minimalizacji dla naszego przykładu mamy:
Y=M+K = M*~K+~K*M
czyli to zdanie nie spełnia definicji operatora OR.
Kiedy zdanie A będzie fałszywe ?
Przechodzimy do logiki ujemnej poprzez negację zmiennych i wymianę operatorów na przeciwne.
~Y=~M*~K
Zdanie będzie fałszywe (~Y=1) gdy powiemy:
Każdy człowiek nie jest mężczyzną (~M=1) i nie jest kobietą (~K=1)
~Y=~M*~K
~Y=1 <=> (~M=1) i (~K=1)
4.2 Spójnik AND(*) i operator AND(*)
Oczywiście matematyczna symetria do omówionego wyżej operatora OR jest absolutna.
Udajmy się do ekspertów algebry Kubusia, do przedszkola.
Pani:
A.
Jutro pójdziemy do kina i do teatru
Y=K*T
Matematycznie:
Pani dotrzyma słowa (Y=1) wtedy i tylko wtedy gdy jutro pójdziemy do kina (K=1) i pójdziemy do teatru (T=1)
Y=1 <=> K=1 i T=1
… a kiedy Pani skłamie ?
Przechodzimy do logiki ujemnej negując zmienne i wymieniając operatory na przeciwne:
~Y=~K+~T
B.
Panie skłamie (~Y=1) wtedy i tylko wtedy gdy jutro nie pójdziemy do kina (~K=1) lub nie pójdziemy do teatru (~T=1)
~Y=~K+~T
czyli:
~Y=1 <=> ~K=1 lub ~T=1
Zuzia:
… a czy może się zdarzyć, że jutro nie pójdziemy do kina lub nie pójdziemy do teatru ?
Związek logiki dodatniej i ujemnej:
Y=~(~Y)
Podstawiając A i B mamy prawo de’Morgana:
Y = K*T = ~(~K+~T)
Jaś:
C.
Nie może się zdarzyć ~(…), że jutro nie pójdziemy do kina ~K=1 lub nie pójdziemy do teatru (~T=1)
Y=~(~K+~T)
Oczywiście każdy człowiek mając do wyboru dwa równoważne matematycznie zdania A i C wybierze A bo jest zdecydowanie prostsze, stąd w praktyce języka mówionego bardzo rzadko korzystamy z prawa de’Morgana.
Definicja spójnika „lub” w logice dodatniej
Y=p+q = p*q + p*~q + ~p*q
Definicje spójnika „lub” w logice ujemnej otrzymamy negując wszystkie zmienne bez zmiany operatorów:
~Y=~p+~q = ~p*~q+~p*q+p*~q
Stad powyższe zdanie możemy rozpisać szczegółowo.
Pani skłamie gdy:
~Y=~p*~q = ~K*~T – Pani skłamie gdy jutro nie pójdziemy do kina i nie pójdziemy do teatru
lub
~Y=~p*q = ~K*T – Pani skłamie gdy jutro nie pójdziemy do kina i pójdziemy do teatru
lub
~Y=p*~q = K*~T – Pani skłamie gdy jutro pójdziemy do kina i nie pójdziemy do teatru
Porządkując to w tabeli, otrzymujemy symboliczną definicję operatora AND.
Kod: |
Spójnik „i” w logice dodatniej (bo Y)
Pani dotrzyma słowa (Y) gdy:
Y=K*T
K*T = Y
1 1 =1
Spójnik „lub” w logice ujemnej (bo ~Y).
Pani skłamie (~Y) gdy:
~Y=~K+~T=~K*~T+~K*T+K*~T
~K*~T=~Y
0 0 =0
~K*T=~Y
0 1 =0
K*~T=~Y
1 0 =0
|
Doskonale widać tabele zero-jedynkową operatora AND dla kodowania zgodnego ze zdaniem wypowiedzianym:
K=1, ~K=0
T=1, ~T=0
Y=1, ~Y=0
Stąd mamy definicje operatora AND w zapisie ogólnym:
Kod: |
Spójnik „i” w logice dodatniej (bo Y)
Dotrzymam słowa (Y):
Y=p*q
p*q =Y
1 1 =1
… a kiedy skłamię ?
Spójnik „lub” w logice ujemnej (bo ~Y):
~Y=~p+~q=~p*~q+~p*q+p*~q
~p*~q =~Y
0 0 =0
~p*q=~Y
0 1 =0
p*~q=~Y
1 0 =0
|
Tabele zero-jedynkową uzyskano dla kodowania zgodnego ze zdaniem wypowiedzianym:
p=1, ~p=0
q=1, ~q=0
Y=1, ~Y=0
Wnioski:
1.
Prawo de’Morgana zachodzi w obrębie jednej i tej samej definicji zero-jedynkowej.
A.
Y=p*q
… a kiedy skłamię ?
Przejście do logiki ujemnej poprzez negację zmiennych i wymianę operatorów:
B.
~Y=~p+~q
Związek logiki dodatniej i ujemnej:
Y=~(~Y)
Podstawiając A i B otrzymujemy prawo de’Morgana:
p*q = ~(~p+~q)
2.
Operator logiczny AND (wszystkie cztery linie) to fundamentalnie co innego niż spójnik AND (Pol.„i”)
4.3 Równanie ogólne dla operatorów OR i AND
Mamy tu sytuację identyczną jak w operatorach implikacji prostej => i odwrotnej ~>.
Na mocy definicji zachodzi:
p+q = ~(~p*~q)=1 ## p*q = ~(~p+~q) =1
Po lewej stronie mamy definicję operatora OR zapisana w równaniu algebry Kubusia.
Po prawej stronie mamy definicję operatora AND zapisaną w równaniu algebry Kubusia
To dwa rozłączne układy logiczne pomiędzy którymi nie zachodzą żadne związki matematyczna.
Ostatnio zmieniony przez rafal3006 dnia Nie 11:38, 23 Sty 2011, w całości zmieniany 1 raz
|
|
Powrót do góry |
|
|
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 35498
Przeczytał: 17 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Nie 11:01, 23 Sty 2011 Temat postu: |
|
|
5.0 Algebra Kubusia w służbie lingwistyki
Żaden matematyk nie zakwestionuje poniższej definicji obietnicy:
Obietnica = implikacja prosta => - to jest w każdym podręczniku matematyki do I klasy LO
To wystarczy, dalej w banalny sposób można udowodnić że:
Groźba = implikacji odwrotna ~>
Dowód na przykładzie …
5.1 Obietnica
Typowa obietnica:
A.
Jeśli będziesz grzeczny dostaniesz czekoladę
G=>C =1
1 1 =1 - zdanie wypowiedziane
Obietnica, zatem implikacja prosta, tu wszyscy się zgadzamy.
Skoro to implikacja prosta to:
B.
Jeśli będziesz grzeczny to na pewno => nie dostaniesz czekolady
G=>~C =0
1 0 =0
… a jak będę niegrzeczny ?
Prawo Kubusia:
G=>C = ~G~>~C
Mama:
C.
Jeśli będziesz niegrzeczny to nie dostaniesz czekolady
~G~>~C
W groźbach (zdanie C) spójnik „może” ~> jest z reguły pomijany. Nie ma to znaczenia gdyż spójnik ten jest gwarantowany przez absolutna świętość algebry Boole’a, prawo Kubusia.
Z prawa Kubusia wynika tu coś fundamentalnego:
Wszelkie groźby (zdanie C) musimy kodować operatorem implikacji odwrotnej, inaczej algebra Boole’a leży w gruzach.
Matematyczne znaczenie zdania C jest oczywiście takie:
C.
Jeśli będziesz niegrzeczny to możesz ~> nie dostać czekolady
~G~>~C =1
0 0 =1
LUB
D.
Jeśli będziesz niegrzeczny to możesz ~~> dostać czekoladę
~G~~>C =1
0 1 =1 - akt miłości
gdzie:
~~> - naturalne "może", wystarczy jedna prawda, nie jest to operator implikacji odwrotnej ~>, zatem warunek konieczny tu nie zachodzi.
Doskonale tu widać tabelę zero-jedynkową implikacji prostej dla kodowania zgodnego ze zdaniem wypowiedzianym 1 1 =1 czyli:
G=1, ~G=0
C=1, ~C=0
Oczywiście z powyższej analizy matematycznej wynika, że wszelkie groźby muszą być kodowane implikacją odwrotną:
Jeśli ubrudzisz spodnie dostaniesz lanie
B~>L - implikacja odwrotna bo groźba
Z powyższego mamy definicję obietnicy i groźby …
Definicja obietnicy:
Jeśli dowolny warunek to nagroda
W=>N =1 - twarda prawda
Implikacja prosta bo dobrowolnych obietnic musimy dotrzymywać
Spełnienie warunku nagrody jest warunkiem wystarczającym dla otrzymania nagrody
Prawo Kubusia:
W=>N = ~W~>~N
Gwarancja w implikacji jest zawsze operator implikacji prostej:
W=>N
Jeśli spełnię warunek nagrody to na pewno => dostanę nagrodę z powodu że spełniłem warunek nagrody … poza tym wszystko może się zdarzyć.
W obietnicy nadawca ma nadzieję (marzenie), że odbiorca spełni warunek nagrody i będzie mógł wręczyć nagrodę. Jeśli odbiorca nie spełni warunku nagrody to nadawca może dać nagrodę lub nie zgodnie ze swoim „widzi mi się”, czyli wolną wolą.
Po stronie odbiorcy występuje nadzieja (marzenie), że nawet jeśli nie spełni warunku nagrody to może otrzymać nagrodę (akt miłości). Odbiorca może zwolnić nadawcę z obietnicy np. w przypadkach losowych.
5.2 Groźba
Definicja groźby:
Jeśli dowolny warunek to kara
W~>K =1
Implikacja odwrotna bo nadawca może ukarać, ale nie musi.
Spełnienie warunku kary jest warunkiem koniecznym ukarania z powodu spełnienia warunku kary. O tym czy będzie to warunek konieczny i wystarczający decyduje nadawca.
Gwarancja w groźbie wynika z prawa Kubusia:
W~>K = ~W => ~K
Stąd gwarancja:
~W => ~K
Jeśli nie spełnię warunku kary to na pewno => nie zostanę ukarany z powodu nie spełnienia warunku kary. Poza tym wszystko może sie zdarzyć.
W groźbie nadawca ma nadzieję (marzenie), że odbiorca nie spełni warunku kary i nie będzie musiał karać. Jeśli odbiorca spełni warunek kary to nadawca może wykonać karę lub ją darować zgodnie ze swoim „widzi mi się”, czyli wolną wolą.
Po stronie odbiorcy również występuje nadzieja (marzenie), że nawet jeśli spełni warunek kary to nadawca nie wykona kary (akt łaski). W groźbie decyzję o darowaniu kary podejmuje wyłącznie nadawca, odbiorca nie ma tu nic do powiedzenia.
Przykład:
Jeśli ubrudzisz spodnie dostaniesz lanie
B~>L - implikacja odwrotna bo groźba
Brudne spodnie są warunkiem koniecznym lania z powodu brudnych spodni, zatem implikacja odwrotna prawdziwa. O tym czy będzie to warunek konieczny i wystarczający decyduje nadawca.
W groźbach naturalny spójnik implikacji odwrotnej „może” ~> jest z reguły pomijany bo osłabiałby groźbę. Nie prowadzi to do niejednoznaczności, gdyż definicje groźby i obietnicy są bardzo proste i precyzyjne.
Analiza:
A:
Jeśli ubrudzisz spodnie to możesz ~> dostać lanie
B~>L =1
1 1 =1
LUB
B:
Jeśli ubrudzisz spodnie to możesz nie dostać lania
B ~~> ~L =1 - prawo do darowania kary (akt łaski)
1 0 =1
Zdanie prawdziwe na mocy naturalnego spójnika „może” ~~>, nie jest to implikacja odwrotna.
Nadawca ma prawo do darowania dowolnej kary (akt łaski)
… a jeśli nie ubrudzę spodni ?
B~>L = ~B => ~L - prawo Kubusia
czyli:
C:
Jeśli nie ubrudzisz spodni to na pewno => nie dostaniesz lania
~B => ~L =1 - twarda prawda (gwarancja)
0 0 =1
Na mocy definicji operatora implikacji prostej => mamy:
Jeśli nie ubrudzisz spodni to na pewno => nie dostaniesz lania z powodu czystych spodni. Poza tym wszystko może się zdarzyć. Tylko tyle i aż tyle gwarantuje operator implikacji prostej =>.
stąd:
D:
Jeśli nie ubrudzisz spodni to na pewno => dostaniesz lanie
~B => L =0 - twardy fałsz, zakaz karania niewinnego z powodu czystych spodni
0 1 =1
Doskonale widać tabelę zero-jedynkową implikacji odwrotnej dla kodowania zgodnego ze zdaniem wypowiedzianym 1 1 =1 czyli:
B=1, ~B=0
L=1, ~L=0
Dlaczego zdanie B nie może być implikacja odwrotną ?
Dowód nie wprost:
Załóżmy że zdanie B: B~>~L jest implikacja odwrotną.
Obowiązuje wówczas prawo Kubusia:
B: B~>~L = D: ~B=>L
Zdanie D: jest oczywistym fałszem, zatem zdanie B nie może być implikacją odwrotną prawdziwą.
Prawdziwość zdania B: określa wzór:
(B~~>~L)+(B~>~L) = 1+0 =1
gdzie:
~~> - naturalny spójnik może, wystarczy jedna prawda, nie jest to operator implikacji odwrotnej zatem warunek koniczny tu nie zachodzi.
Jedyne sensowne przejście z operatora implikacji odwrotnej do implikacyjnych AND(*) i OR(+) to odpowiedź na pytanie dziecka „kiedy wystąpi kłamstwo”:
Jeśli ubrudzisz spodnie dostaniesz lanie
Y=B~>L
Jaś:
… tata, a kiedy skłamiesz ?
Y=B~>L = B+~L = ~(~B*L) - dotrzymam słowa
Negujemy dwustronnie:
~Y=~(B~>L) = ~B*L - skłamię
Skłamię (~Y=1), jeśli przyjdziesz w czystych spodniach (~B) i dostaniesz lanie (z powodu czystych spodni !)
~Y=~B*L
Jaś:
… a czy może się zdarzyć że przyjdę w czystych spodniach i dostanę lanie ?
Y=~(~Y) - prawo podwójnego przeczenia, stąd:
Y=~(~B*L)
Nie może się zdarzyć że przyjdziesz w czystych spodniach (~B) i dostaniesz lanie (z powodu czystych spodni)
Y=~(~B*L)
Zauważmy, że ostatnie pytanie Jasia jest mało prawdopodobne bo odpowiedź dostał wcześniej.
W obietnicach i groźbach bardzo dobrze widać sens logiki dodatniej i ujemnej w operatorach implikacji prostej => i odwrotnej ~>.
Definicja logiki dodatniej i ujemnej w operatorach => i ~>:
Implikacja wypowiedziana jest w logice dodatniej jeśli po stronie q nie występuje negacja, inaczej mamy do czynienia z logiką ujemną.
Obietnica:
W=>N = ~W~>~N - prawo zamiany obietnicy => na równoważną groźbę ~>
Obietnica => w logice dodatniej (N) jest równoważna groźbie ~> w logice ujemnej (~N)
Groźba:
W~>K = ~W=>~K - prawo zamiany groźby ~> na równoważną obietnicę =>
Groźba ~> w logice dodatniej (K) jest równoważna obietnicy => w logice ujemnej (~K)
Piękna jest też następująca interpretacja obietnicy i groźby.
Kod: |
p q p~>q p<=q
1 1 =1 =1
1 0 =1 =1
0 0 =1 =1
0 1 =0 =0
|
gdzie:
~> - operator implikacji odwrotnej, spójnik „może” ze spełnionym warunkiem koniecznym
Z tabeli widzimy że:
~> = <= - pod warunkiem że symbol <= będziemy czytać przeciwnie do strzałki jako spójnik „może” z warunkiem koniecznym (operator implikacji odwrotnej)
Obietnica:
W=>N - ja tego chcę, biegnę do nagrody
=> czytane zgodnie ze strzałką jako spójnik „musi” z warunkiem wystarczającym
Groźba:
W~>K = W<=K - ja tego nie chcę, uciekam od kary
gdzie:
<= - czytane przeciwnie do strzałki jako spójnik „może” z warunkiem koniecznym
Odróżnianie nagrody od kary to fundament wszelkiego życia. Zwierzątka które tego nie odróżniają, czyli wszystko co się rusza traktują jako nagrodę (ja tego chcę) skazane są na zagładę.
W Australii żyje sobie żółw błotny który na języku ma wyrostek imitujący żywego robaka, ryba która nabierze się na ten podstęp musi zginąć.
6.0 Dowody formalne
Dowody formalne w algebrze Kubusia są identyczne jak w algebrze Boole’a, tożsamość kolumn wynikowych świadczy o zachodzeniu danego prawa.
Czytelnicy których matematyka mało interesuje mogą ten rozdział pominąć, gdyż wszelkie prawa dowodzone tu formalnie już znamy !
6.1 Podstawowe prawa algebry Boole’a
Klasyczna, zero-jedynkowa algebra Boole’a to w dniu dzisiejszym zabytek klasy zerowej. Algebra ta jest co prawda fundamentem działania wszelkich komputerów (i całego naszego Wszechświata) ale człowiek myślał w zerach i jedynkach zaledwie przez mgnienie oka. Natychmiast wynalazł język symboliczny zwany asemblerem izolując się od kodu maszynowego … czyli skopiował działanie własnego mózgu.
W technice bramek logicznych znane jest pojęcie logiki dodatniej i ujemnej w algebrze Boole’a, jednak problem sprowadzony jest tu do banału „zgodności sygnałów logicznych”.
Jeśli sygnały cyfrowe w dowolnym układzie logicznym są przeciwnych logikach to używamy banalnego negatora aby doprowadzić do zgodności sygnałów.
W naszym Wszechświecie oraz naturalnym języku mówionym człowieka króluje logika dodatnia i ujemna w algebrze Boole’a uzyskiwana w inny, równoważny sposób.
Dana jest funkcja logiczna
A.
Y=A*B
Logika dodatnia bo Y (brak negacji funkcji logicznej)
B.
Przejście do logiki ujemnej w świecie techniki.
Negujemy dwustronnie powyższe równanie:
~Y=~(A*B)
Logika ujemna bo ~Y (jest negacja funkcji logicznej)
W tym przypadku wystarczy prosty negator bez ingerencji w budowę układu logicznego
C.
Równoważne przejście do logiki ujemnej, powszechne w naszym Wszechświecie.
W równaniu A negujemy sygnały i wymieniamy operatory na przeciwne:
~Y=~A+~B
W świecie techniki ten sposób przejścia do logiki ujemnej jest bezsensem bo wymaga totalnej przebudowy całego układu logicznego.
Prawa wynikające z definicji iloczynu logicznego
Definicja iloczynu logicznego w logice dodatniej:
Iloczyn logiczny n-zmiennych binarnych jest równy jeden wtedy i tylko wtedy gdy wszystkie zmienne są równe jeden.
Y=A*B
Y=1 <=> A=1 i B=1
Definicja równoważna w logice ujemnej:
Iloczyn logiczny jest równy zeru gdy którakolwiek zmienna jest równa zeru.
Y=A*B
Y=0 <=> A=0 lub B=0
Zauważmy, że mamy tu niezgodność z naturalną logiką człowieka. W zapisie matematycznym mamy spójnik „i”(*) a w rozwinięciu szczegółowym używamy spójnika „lub” – dlatego to jest logika ujemna.
Prawa wynikające bezpośrednio z definicji:
1*0=0
1*1=1
A*0=0
A*1=A
A*A=A
A*~A=0
W języku mówionym powyższe prawa nie są używane, przydają się jedynie w technice cyfrowej.
Prawa wynikające z definicji sumy logicznej
Definicja sumy logicznej w logice dodatniej:
Suma logiczna n-zmiennych binarnych jest równa jeden gdy którakolwiek zmienna jest równa 1
Y=A+B
Y=1 <=> A=1 lub B=1
Definicja równoważna w logice ujemnej:
Suma logiczna n-zminnych binarnych jest równa zeru wtedy i tylko wtedy gdy wszystkie zmienne są równe zeru.
Y=A+B
Y=0 <=> A=0 i B=0
Zauważmy, że mamy tu niezgodność z naturalną logiką człowieka. W zapisie matematycznym mamy spójnik „lub”(+) a w rozwinięciu szczegółowym używamy spójnika „i” – dlatego to jest logika ujemna.
Prawa wynikające bezpośrednio z definicji:
1+0=1
0+0=0
A+1=1
A+0=A
A+A=A
A+~A=1
W języku mówionym powyższe prawa nie są używane, przydają się jedynie w technice cyfrowej.
Najważniejsze prawa algebry Boole’a
W języku mówionym prawa łączności i przemienności to oczywistość, natomiast absorpcja, rozdzielność i pochłanianie są przydatne jedynie w technice cyfrowej.
Łączność:
A+(B+C) = (A+B)+C
A*(B*C)=(A*B)*C
Przemienność:
A+B=B+C
A*B=B*C
Absorbcja:
A+(A*B)=A
Dowód:
Jeśli A=1 to A+(A*B)=1+(A*B)=1
Jeśli A=0 to A+(A*B)=0+(0*B)=0+0=0
niezależnie od wartości B
CND
A*(A+B)=A
Dowód:
Jeśli A=1 to A*(A+B)= 1*(1+B)=1*1=1
Jeśli A=0 to A*(A+B)=0*(A+B)=0
niezależnie od wartości B.
CND
Rozdzielność:
A+(B*C) = (A+B)*(A+C)
A*(B+C)=(A*B)+(B*C)
Pochłanianie:
A*~A=0
A+~A=1
6.2 Dowody formalne praw de’Morgana
Definicja ogólna sumy logicznej:
Suma logiczna jest równa 1 wtedy i tylko wtedy gdy którakolwiek zmienna jest równa 1
Y=p+q
Zapis równoważny:
Y=p*q+p*~q+~p*q
Definicja ogólna iloczynu logicznego:
Iloczyn logiczny jest równy 1 wtedy i tylko wtedy gdy wszystkie zmienne są równe 1
Y=p*q
Stąd poniższe tabele zero-jedynkowe.
Definicja zero-jedynkowa sumy logicznej:
Kod: |
p q Y=p+q
1 1 =1
1 0 =1
0 1 =1
0 0 =0
|
Definicja zero-jedynkowa iloczynu logicznego:
Kod: |
p q Y=p*q
1 1 =1
1 0 =0
0 1 =0
0 0 =0
|
Dowód zero-jedynkowy prawa przemienności i prawa de’Morgana dla OR(+)
Kod: |
p q Y=p+q Y=q+p ~Y=~(p+q)=~p*~q ~p ~q ~Y=~p*~q Y=~(~p*~q)=p+q
1 1 =1 =1 =0 0 0 =0 =1
1 0 =1 =1 =0 0 1 =0 =1
0 1 =1 =1 =0 1 0 =0 =1
0 0 =0 =0 =1 1 1 =1 =0
|
Trzecia kolumna to definicja zero-jedynkowa operatora OR.
Zauważmy, że w powyższej tabeli po stronie p i q wyczerpaliśmy wszystkie możliwe przypadki czyli wszystkie możliwe kombinacje zer i jedynek.
Dowodem zachodzenia prawa logicznego jest tożsamość kolumn wynikowych.
Kolumna wynikowa to wartość funkcji logicznej Y (lub ~Y) ustawianej na 1 albo 0 przez zmienne wejściowe p i q. Zauważmy, że kolumny wynikowe mogą występować w logice dodatniej (Y) albo ujemnej (~Y).
Dowodem istnienia logiki dodatniej i ujemnej w algebrze Boole’a są kolumny 5 i 8. W kolumnie 5 musieliśmy zapisać ~Y (nie ma innego wyjścia) co wymusza zapis ~Y w kolumnie 8 bo kolumny wynikowe 5 i 8 są identyczne.
CND
Najważniejsze prawa logiczne wynikające z powyższej tabeli:
1.
W sumie logicznej argumenty są przemienne dla dowolnych p i q
p+q = q+p
Trzecia i czwarta kolumna.
2.
Prawo de’Morgana w logice dodatniej:
Y = p+q = ~(~p*~q) – ostatnia kolumna
Prawo de’Morgana w logice ujemnej:
~Y=~(p+q) = ~p*~q – piąta kolumna
Dowód zero-jedynkowy prawa przemienności i prawa de’Morgana dla AND(*):
Kod: |
p q Y=p*q Y=q*p ~Y=~(p*q)=~p+~q ~p ~q ~Y=~p+~q Y=~(~p+~q)=p*q
1 1 =1 =1 =0 0 0 =0 =1
1 0 =0 =0 =1 0 1 =1 =0
0 1 =0 =0 =1 1 0 =1 =0
0 0 =0 =0 =1 1 1 =1 =0
|
Trzecia kolumna to definicja zero-jedynkowa operatora AND.
Najważniejsze prawa logiczne wynikające z powyższej tabeli:
1.
W iloczynie logicznym argumenty są przemienne dla dowolnych p i q
p*q = q*p
Trzecia i czwarta kolumna.
2.
Prawo de’Morgana w logice dodatniej:
Y = p*q = ~(~p+~q) – ostatnia kolumna
Prawo de’Morgana w logice ujemnej:
~Y=~(p*q) = ~p+~q – piąta kolumna
6.3 Dowód formalny praw Kubusia
Aksjomatyczna definicja implikacji prostej:
Kod: |
p q p=>q
1 1 =1
1 0 =0
0 0 =1
0 1 =1
|
Jak widzimy wyłącznie dla sekwencji p=1 i q=0 wynik p=>q=0.
Aksjomatyczna definicje implikacji odwrotnej:
Kod: |
p q p~>q
1 1 =1
1 0 =1
0 0 =1
0 1 =0
|
Jak widzimy wyłącznie dla sekwencji p=0 i q=1 wynik p~>q=0.
Oczywiście matematycznie zachodzi:
p=>q ## p~>q
bo to dwie różne definicje zero-jedynkowe.
Dowód formalny praw Kubusia:
Kod: |
p q p=>q p~>q ~p ~q ~p~>~q ~p=>~q
1 1 =1 =1 0 0 =1 =1
1 0 =0 =1 0 1 =0 =1
0 0 =1 =1 1 1 =1 =1
0 1 =1 =0 1 0 =1 =0
|
Kolumny od 1 do 4 to definicje implikacji prostej => (3) i odwrotnej ~> (4).
Matematycznie zachodzi równanie ogólne implikacji:
p=>q = ~p~>~q ## p~>q = ~p=>~q
Analogicznie jak w operatorach OR i AND zachodzi:
p+q = ~(~p*~q) ## p*q = ~(~p+~q)
Cała tabela to matematyczny dowód praw Kubusia:
Identyczność kolumn 3 i 7 jest dowodem poprawności prawa Kubusia dla operatora p=>q:
p=>q = ~p~>~q – prawo zamiany operatora implikacji prostej => na implikacje odwrotną ~>
Identyczność kolumn 4 i 8 jest dowodem poprawności prawa Kubusia dla operatora p~>q:
p~>q = ~p=>~q – prawo zamiany operatora implikacji odwrotnej ~> na implikacje prostą =>
6.4 Prawo braku przemienności argumentów w implikacji
Dowód formalny braku przemienności argumentów w implikacji:
Kod: |
| Punkt | Punkt
| odniesienia | odniesienia
| p=>q | p~>q
| |
p q | p=>q q=>p | p~>q q~>p
1 1 | =1 =1 | =1 =1
1 0 | =0 =1 | =1 =0
0 0 | =1 =1 | =1 =1
0 1 | =1 =0 | =0 =1
|
Argumenty w operatorach implikacji nie są przemienne czyli:
p=>q # q=>p
Przykład:
Jeśli liczba jest podzielna przez 8 to na pewno => jest podzielna przez 2
P8=>P2=1
P8=>P2=1 # P2=>P8=0 bo 2
p~>q # q~>p
Przykład:
Jeśli liczba jest podzielna przez 2 to może ~> być podzielna przez 8
P2~>P8=1
P2~>P8=1 # P8~>P2=0
Dowód iż P8~>P2=0 jest banalny.
Wyrocznia implikacji, prawo Kubusia:
P8~>P2 = ~P8=>~P2=0 bo 2
Prawa strona jest fałszem, zatem lewa strona nie może być implikacja odwrotną prawdziwą.
Zauważmy, że na mocy definicji zachodzi:
A.
p=>q ## p~>q
P8=>P2 ## P2~>P8
Wszelkie prawa logiczne formułowane są dla prawdy, czyli mamy:
B.
p=>q=1 ## p~>q=1
P8=>P2=1 ## P2~>P8=1
gdzie:
## - różne na mocy definicji
jeśli w B zachodzi:
p=>q=1
P8=>P2=1
to na pewno zachodzi
C.
q=>p=0
P2=>P8=0
Na mocy braku przemienności argumentów w implikacji.
Na mocy równania B mamy:
D.
Definicja implikacji odwrotnej.
p~>q=1
P2~>P8=1
Jak widzimy równość kolumn wynikowych:
q=>p = p~>q
jest pozorna, bowiem w rzeczywistości zachodzi:
q=>p=0 # p~>q=1
P2=>P8=0 # P2~>P8=1
Ten banalny błąd, popełniany przez współczesną logikę, jest przyczyną jej klęski w matematycznym opisie otaczającego nas świata rzeczywistego, z językiem mówionym na czele.
6.5 Metody dowodzenia twierdzeń matematycznych
Rozważmy wzorcową implikacje prostą:
A.
Jeśli liczba jest podzielna przez 8 to na pewno jest podzielna przez 2
P8=>P2=1
Ustalamy sztywno:
p=P8
q=P2
Implikacja odwrotna do powyższej przyjmie zatem postać:
B.
Jeśli liczba jest podzielna przez 2 to może być podzielna przez 8
P2~>P8=1
q~>p=1 – dla sztywnego punktu odniesienia ustawionego wyżej
Równanie ogólne implikacji dla sztywnego punktu odniesienia p=>q przybierze postać:
p=>q = ~p~>~q =1 ## q~>p = ~q=>~p =1
Dla naszego przykładu:
P8=>P2 = ~P8~>~P2 =1 ## P2~>P8 = ~P2=>~P8
gdzie:
## - różne na mocy definicji
Zapiszmy szczegółowe analizy lewej i prawej strony równania ogólnego implikacji w postaci kwadratu logicznego.
Kwadrat logiczny implikacji:
Kod: |
A1. B1
p=>q =1 – gwarancja q~>p=1
P8=>P2=1 bo 8,16.. P2~>P8=1 bo 8
A2. B2.
p=>~q=0 - fałsz q~~>~p=1
P8=>~P2=0 – nie ma P2~~>~P8=1 bo 2
Prawo Kubusia Prawo Kubusia
p=>q = ~p~>~q q~>p = ~q=>~p
A3. B3.
~p~>~q=1 ~q=>~p=1 - gwarancja
~P8~>~P2=1 bo 3 ~P2=>~P8=1 bo 3,5 ..
A4. B4.
~p~~>q=1 ~q=>p=0 - fałsz
~P8~~>P2=1 bo 2 ~P2=>P8=0 – nie ma
|
Weźmy teraz wzorcową równoważność:
A10.
Jeśli trójkąt jest równoboczny to na pewno ma kąty równe
TR=>KR
Również ustalamy sztywno:
p=TR
q=KR
Zdanie odwrotne q=>p przybierze postać:
B10.
Jeśli trójkąt ma kąty równe to na pewno jest równoboczny
KR=>TR
q=>p
Równani ogólne dla równoważności:
(p=>q = ~p=>~q =1) = (q=>p = ~q=>~p=1)
(TR=>KR = ~TR=>~KR=1) = (KR=>TR = ~KR=>~TR=1)
Zauważmy, że w przeciwieństwie do implikacji stawiamy tu znak tożsamości „=” zamiast „##”.
We wszystkich zapisach wyżej mamy do czynienia z warunkami wystarczającymi prawdziwymi, to nie są implikacje proste.
Kwadrat logiczny równoważności:
Kod: |
A10. B10.
p=>q=1 q=>p=1
TR=>KR=1 KR=>TR=1
A20. B20.
p=>~q=0 q=>~p=0
TR=>~KR=0 KR=>~TR=0
A30. B30.
~p=>~q=1 ~q=>~p=1
~TR=>~KR=1 ~KR=>~TR=1
A40. B40.
~p=>q=0 ~q=>p=0
~TR=>KR=0 ~KR=>TR=0
|
Katy powyższego kwadratu logicznego równoważności to po prostu definicje warunków wystarczających.
Dowód dowolnego twierdzenia matematycznego rozpoczynamy od udowodnienia warunku wystarczającego w dowolnym rogu kwadratu.
Załóżmy że udowodniliśmy warunek wystarczający w kierunku p=>q czyli:
A10: TR=>KR=1 – dla równoważności
A1: P8=>P2=1 – dla implikacji
Znane matematykom prawo kontrapozycji totalnie nic nie daje bo:
A10: TR=>KR=1 = B30: ~KR=~TR=1 – dla równoważności
A1: P8=>P2=1 ## B3: ~P2=>~P8=1 – dla implikacji
Zauważmy, że równie dobrze mogliśmy wystartować od udowodnienia warunku wystarczającego w rogach B3 lub B30 na mocy faktu, że możemy badać warunki wystarczające w dowolnych rogach kwadratu logicznego równoważności, zatem prawo kontrapozycji jest matematycznie bezużyteczne.
Kluczową sprawą jest tu zauważenie, że nawet udowodnienie dwóch niezależnych warunków wystarczających po przekątnych kwadratu nic nam nie daje, bo tymi dowodami nie rozstrzygniemy rzeczy kluczowej:
Równoważność to czy implikacja
Oczywiście jednoznaczne rozstrzygnięcie, że dowodzone twierdzenie jest równoważnością uzyskamy wtedy i tylko wtedy gdy uzyskamy dowody warunków wystarczających wzdłuż dowolnego boku kwadratu logicznego równoważności.
Dowolny warunek wystarczający możemy udowodnić dwoma sposobami.
Sposób I.
Zakładamy, że mamy do czynienia z warunkiem wystarczającym.
Definicja warunku wystarczającego:
Kod: |
A10.
p=>q=1
A11.
p=>~q=0
|
Definicja słowna:
A10.
p=>q
Jeśli zajdzie p to musi => zajść q
czyli:
Dowodzimy że dla każdego p zachodzi q
z czego wynika że zajście:
A20.
p=>~q=0
Jest niemożliwe o czym mówi druga linia definicji.
Sposób II.
A10.
Szukamy jednego przypadku spełniającego A10:
p~~>q=1
~~> - naturalny spójnik „może”, wystarczy jeden przypadek prawdziwy
A20.
Szukamy jednego przypadku spełniającego A20:
p~~>~q=1
czyli szukamy kontrprzykładu dla A20.
Znalezienie takiego kontrprzykładu wyklucza istnienie warunku wystarczającego w rogu A10: p=>q.
Badane twierdzenie może być co najwyżej implikacją prostą, na równoważność nie mamy już szans.
Metody dowodzenia twierdzeń matematycznych
Założenie 1
Udowodniliśmy warunek wystarczający w rogach A10 lub B30 – to bez znaczenia.
Dowodzimy 1.
Dowodzimy warunku wystarczającego w rogach B10 lub A30 – to bez znaczenia
Wnioski:
A.
Jeśli udowodnimy warunek wystarczający w rogu B10 lub A30 to całe twierdzenie jest równoważnością
B.
Jeśli stwierdzimy brak warunku wystarczającego w rogach B10 lub A30, na przykład poprzez znalezienie kontrprzykładu, to całe twierdzenie jest implikacją.
Założenie 2
W rogach A10 lub B30 znaleźliśmy kontrprzykład, czyli wykluczyliśmy warunek wystarczający
Dowodzimy 2.
Dowodzimy warunku wystarczającego w rogach B10 lub A30 – to bez znaczenia
Wnioski:
A.
Jeśli udowodnimy warunek wystarczający w rogach B10 lub A30 to całe twierdzenie jest implikacją
B.
Jeśli stwierdzimy brak warunku wystarczającego w rogach B10 lub A30, na przykład poprzez znalezienie kontrprzykładu, to całe twierdzenie jest śmieciem, ani to implikacja, ani równoważność.
Wniosek końcowy:
Prawo kontrapozycji znane matematykom:
p=>q ## ~q=>~p – zapis poprawny w NTI
jest bezużyteczne, bo kompletnie nic nie daje, nie da się przy jego pomocy rozstrzygnąć rzeczy kluczowej:
Równoważność to czy implikacja
7.0 Algebra Kubusia w pigułce
Symboliczna definicja implikacji prostej:
Kod: |
Punkt Punkt
odniesienia odniesienia
p=>q ~p~>~q
p=>q =1 /1 1 =1 /0 0 =1
p=>~q =0 /1 0 =0 /0 1 =0
~p~>~q=1 /0 0 =1 /1 1 =1
~p~~>q=1 /0 1 =1 /1 0 =1
|
Prawo Kubusia:
p=>q = ~p~>~q
Punkt odniesienia = zdanie wypowiedziane
Dla punktu odniesienia p=>q mamy:
p=1, ~p=1
q=1, ~q=0
Dla punktu odniesienia ~p~>~q mamy:
~p=1, p=0
~q=1, q=0
Doskonale widać, że mózg człowieka traktuje zdania p=>q i ~p~>~q jako zdania nowo wypowiedziane, zero-jedynkowo zawsze w logice dodatniej, czyli zgodnie ze zdaniem wypowiedzianym 1 1 =1.
Kod: |
Punkt odniesienia p=>q
p=>q=1
1 1 =1
p=>~q=0
1 0 =0
|
Kod: |
Punkt odniesienia ~p~>~q
~p~>~q =1
1 1 =1
~p~~>q=1
1 0 =1
|
Tylko i wyłącznie taki punkt widzenia jest zgodny z teorią bramek logicznych, czyli tak działa nasz mózg. Zdania p=>q i ~p~>~q traktuje jako zdania nowo wypowiedziane 1 1 =1.
Symboliczna definicja implikacji odwrotnej:
Kod: |
Punkt Punkt
odniesienia odniesienia
p~>q ~p=>~q
p~>q =1 /1 1 =1 /0 0 =1
p~~>~q=1 /1 0 =1 /0 1 =1
~p=>~q=1 /0 0 =1 /1 1 =1
~p=>q =0 /0 1 =0 /1 0 =0
|
Prawo Kubusia:
p~>q = ~p=>~q
Punkt odniesienia = zdanie wypowiedziane
Dla punktu odniesienia p~>q mamy:
p=1, ~p=1
q=1, ~q=0
Dla punktu odniesienia ~p=>~q mamy:
~p=1, p=0
~q=1, q=0
Doskonale widać, że mózg człowieka traktuje zdania p~>q i ~p=>~q jako zdania nowo wypowiedziane, zero-jedynkowo zawsze w logice dodatniej, czyli zgodnie ze zdaniem wypowiedzianym 1 1 =1.
Kod: |
Punkt odniesienia p~>q
p~>q=1
1 1 =1
p~~>~q=1
1 0 =1
|
Kod: |
Punkt odniesienia ~p=>~q
~p=>~q =1
1 1 =1
~p=>q=0
1 0 =0
|
Tylko i wyłącznie taki punkt widzenia jest zgodny z teorią bramek logicznych, czyli tak działa nasz mózg. Zdania p~>q i ~p=>~q traktuje jako zdania nowo wypowiedziane 1 1 =1.
Symboliczna definicja równoważności:
Kod: |
Punkt Punkt
odniesienia odniesienia
p=>q ~p=>~q
p<=>q ~p<=>~q
p=>q =1 /1 1 =1 /0 0 =1
p=>~q =0 /1 0 =0 /0 1 =0
~p=>~q=1 /0 0 =1 /1 1 =1
~p=>q =0 /0 1 =0 /1 0 =0
|
Dziewicza definicja równoważności:
p<=>q = (p=>q)*(~p=>~q)
Punkt odniesienia = zdanie wypowiedziane
Dla punktu odniesienia p=>q mamy:
p=1, ~p=1
q=1, ~q=0
Dla punktu odniesienia ~p=>~q mamy:
~p=1, p=0
~q=1, q=0
Doskonale widać, że mózg człowieka traktuje zdania p=>q i ~p=>~q jako zdania nowo wypowiedziane, zero-jedynkowo zawsze w logice dodatniej, czyli zgodnie ze zdaniem wypowiedzianym 1 1 =1.
Kod: |
Punkt odniesienia p=>q
p=>q=1
1 1 =1
p=>~q=0
1 0 =0
|
Kod: |
Punkt odniesienia ~p=>~q
~p=>~q =1
1 1 =1
~p=>q=0
1 0 =0
|
Tylko i wyłącznie taki punkt widzenia jest zgodny z teorią bramek logicznych, czyli tak działa nasz mózg. Zdania p=>q i ~p=>~q traktuje jako zdania nowo wypowiedziane 1 1 =1
Prawa Kubusia zachodzą zarówno na poziomie spójników, jak i na poziomie operatorów logicznych.
Prawa Kubusia na poziomie spójników:
Prawo zamiany warunku wystarczającego => na warunek konieczny ~>
p=>q = ~p~>~q – prawo zamiany spójnika „musi” => na spójnik „może” ~>
Prawo zamiany warunku koniecznego ~> na warunek wystarczający =>
p~>q = ~p=>~q – prawo zamiany spójnika „może” ~> na spójnik „musi” =>
Prawa Kubusia na poziomie operatorów logicznych:
p=>q = ~p~>~q – prawo zamiany implikacji prostej => na równoważną implikację odwrotną ~>
p~>q = ~p=>~q – prawo zamiany implikacji odwrotnej ~> na równoważną implikację prostą =>
Definicja ogólna spójnika „Jeśli … to …”
Jeśli p to q
gdzie:
p – poprzednik
q – następnik
O tym czym jest wypowiedziane zdanie ujęte w spójnik „Jeśli…to…” decyduje zarówno użyty spójnik, jak i treść zawarta w spójniku.
Warunek wystarczający:
Warunek wystarczający => między p i q zachodzi wtedy i tylko wtedy gdy dla każdego p zachodzi q
Definicja warunku wystarczającego to zaledwie dwie linie tabeli zero-jedynkowej:
Definicja słowna:
Jeśli zajdzie p to na pewno => zajdzie q
p=>q
gdzie:
=> - spójnik „na pewno” między p i q
Jeśli dla każdego p zachodzi q
to zajście p i zajście ~q jest niemożliwe, co widać w powyższej tabeli.
Warunek wystarczający w logice dodatniej występuje wyłącznie w implikacji prostej i równoważności.
Twierdzenie ŚFINII
W zdaniu:
Jeśli zajdzie p to może zajść q
p~>q
warunek konieczny ~> między p i q zachodzi wtedy i tylko wtedy gdy z zanegowanego poprzednika wynika zanegowany następnik.
Gdzie:
~> - spójnik „może” między p i q ze spełnionym warunkiem koniecznym
Twierdzenie ŚFINII wynika z prawa Kubusia:
A.
P~>q = ~p=>~q
Prawo Kubusia mówi, że warunek konieczny w logice dodatniej p~>q (bo q niezanegowane) jest równoważny warunkowi wystarczającemu ~p=>~q w logice ujemnej (bo q zanegowane)
Warunek wystarczający w logice ujemnej to tylko i wyłącznie dwie linie tabeli zero-jedynkowej:
Warunek ten występuje wyłącznie w implikacji odwrotnej ~> i równoważności <=>.
Z powyższego wynika, że zamiast badać warunek konieczny w logice dodatniej p~>q (bo q niezanegowane) możemy badać warunek wystarczający w logice ujemnej ~p=>~q (bo q zanegowane), co jest nieporównywalnie prostsze.
Jeśli udowodnimy warunek wystarczający w logice ujemnej ~p=>~q to automatycznie udowodnimy warunek konieczny w logice dodatniej p~>q.
Negujemy teraz wszystkie zmienne w równaniu A
B.
~p~>~q = p=>q
Z czego wynika, że warunek konieczny w logice ujemnej ~p~>~q (bo q zanegowane) jest równoważny warunkowi wystarczającemu w logice dodatniej p=>q (bo q niezanegowane)
czyli:
Zamiast badać warunek konieczny w logice ujemnej ~p~>~q możemy badać warunek wystarczający w logice dodatniej p=>q co jest nieporównywalnie prostsze.
Jeśli udowodnimy warunek wystarczający w logice dodatniej p=>q to automatycznie udowodnimy warunek konieczny w logice ujemnej ~p~>~q.
Oczywiście równanie A nie jest równoważne z B, bowiem wprowadziliśmy do zmiennych wyłącznie jedną negację.
p~>q = ~p=>~q ## ~p~>~q = p=>q
Gdzie:
## – różne na mocy definicji
Jeśli ponownie zanegujemy zmienne w równaniu B to musimy otrzymać A na mocy prawa podwójnego przeczenia:
A = ~(~A)
Negujemy zmienne w B i mamy:
C.
p~>q = ~p=>~q
czyli:
A=C
CND
Dziewicza definicja równoważności w równaniu algebry Kubusia wynikła z tabeli zero-jedynkowej:
p<=>q = (p=>q)*(~p=>~q)
Prawo Kubusia:
~p=>~q = p~>q
stąd:
p<=>q = (p=>q)*(p~>q)
… i poniższe definicje implikacji i równoważności, zgodne z intuicją człowieka.
Alternatywne definicje implikacji i równoważności w NTI
A.
Równoważność <=> to jednoczesne zachodzenie warunku koniecznego i wystarczającego między p i q
p=>q=1 – warunek wystarczający w kierunku p=>q zachodzi
p~>q=1 – warunek konieczny w kierunku p~>q zachodzi
p<=>q = (p~>q)*(p=>q)
B.
Implikacja prosta p=>q to zachodzenie wyłącznie warunku wystarczającego między p i q
p=>q=1 – warunek wystarczający w kierunku p=>q zachodzi
p~>q=0 – warunek konieczny w kierunku p~>q nie zachodzi
C.
Implikacja odwrotna p~>q to zachodzenie wyłącznie warunku koniecznego miedzy p i q
p~>q=1 – warunek konieczny w kierunku p~>q zachodzi
p=>q=0 – warunek wystarczający w kierunku p=>q nie zachodzi
Na mocy powyższych definicji mamy:
p=>q=1 ## p~>q=1
gdzie:
## - różne na mocy definicji
Powyższe definicje można wykorzystywać do rozstrzygnięć czy zdanie „Jeśli…to…” jest implikacją prostą =>, implikacją odwrotną ~> czy też równoważnością <=>.
Definicja operatora implikacji odwrotnej:
Kod: |
p~>q=1
1 1 =1
lub
p~~>~q=1
1 0 =1
… a jeśli zajdzie ~p ?
Prawo Kubusia:
p~>q = ~p=>~q
stąd:
~p=>~q=1
0 0 =1
~p=>q=0
0 1 =0
|
Definicja implikacji odwrotnej w równaniu algebry Kubusia:
p~>q = ~p=>~q
gdzie:
1.
~> - spójnik „może” między p i q ze spełnionym warunkiem koniecznym
Proste rozumowanie:
Jeśli p jest konieczne dla q to zajście ~p wymusza zajście ~q
czyli w sposób naturalny odkryliśmy prawo Kubusia:
p~>q = ~p=>~q
Wynika z tego że warunek konieczny nie może istnieć samodzielnie czyli:
warunek konieczny = definicja implikacji odwrotnej
2.
~~> - naturalny spójnik „może”, wystarczy jeden przypadek prawdziwy
Definicja naturalnego „może” ~~>:
Kod: |
p~~>q=1
1 1 =1
Dalsza cześć tabeli zero-jedynkowej bez znaczenia
Może być cokolwiek
|
Definicja operatora implikacji prostej:
Kod: |
p=>q =1
1 1 =1
p=~>~q=0
1 0 =0
… a jeśli zajdzie ~p ?
Prawo Kubusia:
p=>q = ~p~>~q
czyli:
~p~>~q=1
0 0 =1
lub
~p~~>q=1
0 1 =1
|
Definicja implikacji prostej w równaniu algebry Kubusia:
p=>q = ~p~>~q
Dziewicza definicja równoważności:
p<=>q = (p=>q)*(~p=>~q)
Prawo Kubusia:
p~>q = ~p=>~q
stąd równoważna definicja równoważności:
p<=>q = (p=>q)*(p~>q)
Prawo kontrapozycji poprawne w równoważności:
~p=>~q = q=>p
stąd definicja równoważności uwielbiana przez matematyków:
p<=>q = (p=>q)*(q=>p)
Dziewicza definicja równoważności w tabeli zero-jedynkowej:
Kod: |
p<=>q = (p=>q)*(~p=>~q)
Warunek wystarczający w kierunku p=>q
p=>q =1
1 1 =1
p=>~q=0
1 0 =0
… a jeśli zajdzie ~p ?
~p<=>~q = (~p=>~q)
stąd:
Warunek wystarczający w logice ujemnej (bo ~q)
~p=>~q=1
0 0 =1
~p=>q=0
0 1 =0
|
Definicja operatora OR:
Kod: |
Spójnik „lub” w logice ujemnej.
Dotrzymam słowa (Y):
Y=p+q = p*q+p*~q+~p*q
p*q =Y
1 1 =1
p*~q=Y
1 0 =1
~p*q=Y
0 1 =1
… a kiedy skłamię ?
Spójnik „i” w logice ujemnej.
Skłamię (~Y=1):
~p*~q=~Y
0 0 =1
|
Definicja operatora AND:
Kod: |
Spójnik „i” w logice dodatnie.
Dotrzymam słowa (Y):
Y=p*q
p*q =Y
1 1 =1
… a kiedy skłamię ?
Spójnik „lub” w logice ujemnej (~Y):
~Y=~p+~q=~p*~q+~p*q+p*~q
~p*~q =~Y
0 0 =0
~p*q=~Y
0 1 =0
p*~q=~Y
1 0 =0
|
Raj, 2011-01-19
|
|
Powrót do góry |
|
|
|
|
Nie możesz pisać nowych tematów Nie możesz odpowiadać w tematach Nie możesz zmieniać swoich postów Nie możesz usuwać swoich postów Nie możesz głosować w ankietach
|
fora.pl - załóż własne forum dyskusyjne za darmo
Powered by phpBB © 2001, 2005 phpBB Group
|