Forum ŚFiNiA Strona Główna ŚFiNiA
ŚFiNiA - Światopoglądowe, Filozoficzne, Naukowe i Artystyczne forum - bez cenzury, regulamin promuje racjonalną i rzeczową dyskusję i ułatwia ucinanie demagogii. Forum założone przez Wuja Zbója.
 
 FAQFAQ   SzukajSzukaj   UżytkownicyUżytkownicy   GrupyGrupy   GalerieGalerie   RejestracjaRejestracja 
 ProfilProfil   Zaloguj się, by sprawdzić wiadomościZaloguj się, by sprawdzić wiadomości   ZalogujZaloguj 

Algebra Kubusia - matematyka języka potocznego (2021-04-11)

 
Napisz nowy temat   Ten temat jest zablokowany bez możliwości zmiany postów lub pisania odpowiedzi    Forum ŚFiNiA Strona Główna -> Metodologia / Forum Kubusia
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 35963
Przeczytał: 15 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Nie 14:44, 11 Kwi 2021    Temat postu: Algebra Kubusia - matematyka języka potocznego (2021-04-11)

Algebra Kubusia - matematyka języka potocznego
Matematyczny Raj: 2021-04-11

Uwaga:
Wersja rozszerzona algebry Kubusia zakłada znajomość wersji podstawowej:
Algebra Kubusia - matematyka języka potocznego

Autor:
Kubuś ze 100-milowego lasu

Rozszyfrowali:
Rafal3006 i przyjaciele

Z dedykacją dla naszych wnuków, aby nikt, nigdy więcej, nie prał im mózgów gównem zwanym „implikacja materialna”

Dziękuję wszystkim, którzy dyskutując z Rafałem3006 przyczynili się do odkrycia algebry Kubusia:
Wuj Zbój, Miki (vel Lucek), Volrath, Macjan, Irbisol, Makaron czterojajeczny, Quebab, Windziarz, Fizyk, Idiota, Sogors (vel Dagger), Fiklit, Yorgin, Pan Barycki, Zbigniewmiller, Mar3x, Wookie, Prosiak, Andy72, Michał Dyszyński, Szaryobywatel, Jan Lewandowski, MaluśnaOwieczka i inni.

Kluczowi przyjaciele Kubusia, dzięki którym algebra Kubusia została rozszyfrowana to (cytuję w kolejności zaistnienia):
1.
Rafał3006
2.
Wuj Zbój - dzięki któremu Rafal3006 poznał istotę implikacji od strony czysto matematycznej.
3.
Fiklit - który poświęcił 8 lat życia na cierpliwe tłumaczenie Rafałowi3006 jak wygląda otaczający nas świat z punktu widzenia Klasycznego Rachunku Zdań
Bez Fiklita o rozszyfrowaniu algebry Kubusia moglibyśmy wyłącznie pomarzyć
4.
Irbisol - znakomity tester końcowej wersji algebry Kubusia, za wszelką cenę usiłujący ją obalić.
Czyż można sobie wymarzyć lepszego testera?
Finałowa dyskusja z Irbisolem!
5.
MaluśnaOwieczka - końcowy uczestnik dyskusji o algebrze Kubusia w trakcie której wiele definicji zostało doprecyzowanych.

Miejsce narodzin algebry Kubusia ze szczegółowo udokumentowaną historią jej odkrycia:
Algebra Kubusia - historia odkrycia 2006-2021
Niniejszy podręcznik jest końcowym efektem 15-letniej dyskusji na forach śfinia, ateista.pl i yrizona - to około 30 tys postów, średnio 5 postów dziennie wyłącznie na temat logiki matematycznej.



Algebra Kubusia - wykład rozszerzony:
1.0 Teoria rachunku zbiorów i zdarzeń
2.0 Implikacja prosta p|=>q
2.5 Diagram operatora implikacji prostej p||=>q w zbiorach
2.6 Operator implikacji prostej P||=>CH w zdarzeniach w przedszkolu
2.8 Operator implikacji prostej P||=>4L w zbiorach w przedszkolu
2.9 Operator implikacji prostej p||=>q w I klasie LO
3.0 Implikacja odwrotna p|~>q
3.5 Diagram operatora implikacji odwrotnej p||~>q w zbiorach
3.6 Operator implikacji odwrotnej CH||~>P w zdarzeniach w przedszkolu
3.8 Operator implikacji odwrotnej 4L|~>P w zbiorach w przedszkolu
3.9 Operator implikacji odwrotnej p||~>q w I klasie LO
4.0 Równoważność p<=>q
4.4 Równoważność TP<=>SK w zbiorach
4.5 Fizyczna realizacja równoważności A<=>S w zdarzeniach
5.0 Krótka historia wojny o algebrę Kubusia


Wstęp:

Wykład rozszerzony algebry Kubusia zawiera całą masę szczególików, poprawnych matematycznie, których żaden człowiek w praktyce języka potocznego nie używa.
Wszystko od strony matematycznej jest w algebrze Kubusia banałem, niestety nie znanym najwybitniejszym ziemskim matematykom.

Czego ziemscy matematycy nie wiedzą:
I.
Ziemscy matematycy nie wiedzą skąd biorą się tabele zero-jedynkowe spójników logicznych w tym tych kluczowych spójników implikacyjnych =>, ~>, i ~~> obsługujących zdania warunkowe „Jeśli p to q”:

1.
=> Warunek wystarczający

p=>q =1 wtedy i tylko wtedy gdy zajście p jest wystarczające => dla zajścia q
Inaczej:
p=>q =0

2.
~> - warunek konieczny

p~>q =1 wtedy i tylko wtedy gdy zajście p jest konieczne dla zajścia q
Inaczej:
p~>q =0

3.
~~> - element wspólny zbiorów ~~> w teorii zbiorów albo zdarzenie możliwe ~~> w teorii zdarzeń


Teoria zbiorów:
p~~>q=p*q =1 - wtedy i tylko wtedy gdy zbiór p ma element wspólny ze zbiorem q
Inaczej:
p~~>q = p*q =0 - zbiory p i q są rozłączne
Teoria zdarzeń:
p~~>q=p*q =1 - wtedy i tylko wtedy gdy możliwe jest jednoczesne zajście zdarzeń p i q
Inaczej:
p~~>q = p*q =0 - niemożliwe jest (=0) jednoczesna zajście zdarzeń p i q

II.
Ziemscy matematycy nie znają przejścia z definicji warunku wystarczającego => do spójników „i”(*) i „lub”(+).

Przykład:
Ojciec do syna:
A.
Jeśli zdasz egzamin to dostaniesz komputer.
Y = (E=>K) =1
Zdanie egzaminu jest warunkiem wystarczającym => dla dostanie komputera
Zdanie egzaminu daje nam gwarancję matematyczną => dostania komputera
Zachodzi tożsamość pojęć:
Warunek wystarczający => - Gwarancja matematyczna =>

Definicja obietnicy:
Jeśli dowolny warunek to nagroda
W=>N
Dowolna obietnica to warunek wystarczający W=>N wchodzący w skład implikacji prostej W|=>N

Doskonale widać, że obietnica A podlega pod definicję implikacji prostej W|=>K zatem wszystko mamy zdeterminowane, matematycznie nic a nic więcej nie musimy udowadniać.

Jak przejść z obietnicą A do jej opisu w spójnikach „i”(*) i „lub”(+)?
Najprostszy sposób jest taki.

Definicja warunku wystarczającego =>:
Y = (E=>K) = ~E+K - tą definicję zna każdy ziemski matematyk

Wprowadźmy dwa symbole Y i ~Y w znaczeniu:
Y - ojciec dotrzyma słowa
~Y - ojciec skłamie

Odpowiadamy na trywialne pytanie:
Kiedy ojciec skłamie?
Negujemy równanie A stronami i mamy odpowiedź:
~Y = ~(E=>K) = E*~K
Ojciec skłamie (~Y) wtedy i tylko wtedy gdy syn zda egzamin (E) i nie dostane komputera (~K)

Oczywistym jest, że w pozostałych możliwych przypadkach ojciec nie skłamie (=dotrzyma słowa).
Innymi słowy:
Ojciec nie skłamie (Y) wtedy i tylko wtedy gdy:
Ya = E*K =1*1 =1 - syn zda egzamin (E) i dostanie komputer (K)
lub
Yc = ~E*~K =1*1 =1 - syn nie zda egzaminu (~E) i nie dostanie komputera (~K)
lub
Yd = ~E*K =1*1 =1 - syn nie zda egzaminu (~E) i dostanie komputer (K)

Funkcja logiczna która opisuje wszystkie możliwe przypadki w których ojciec dotrzyma słowa to suma logiczna funkcji cząstkowych:
Y = Ya + Yc + Yd
Gdzie:
Ya, Yc, Yd - funkcje cząstkowe wchodzące w skład funkcji logicznej Y

Zobaczmy jak potwornie w tym temacie bredzą ziemscy matematycy.

Fragment książki "Logika dla opornych" dr hab. Krzysztofa A. Wieczorka

Krzysztf A. Wieczorek napisał:

Z tabelki dla implikacji możemy dowiedzieć się, że zdanie, którego głównym spójnikiem jest jeśli... to może być fałszywe tylko w jednym wypadku, mianowicie, gdy jego poprzednik jest prawdziwy, natomiast następnik fałszywy.
Jako przykładem ilustrującym tabelkę dla implikacji posłużymy się zdaniem wypowiedzianym przez ojca do dziecka: Jeśli zdasz egzamin, to dostaniesz komputer. Gdy następnie dziecko nie zdaje egzaminu i komputera nie dostaje (pierwszy wiersz tabeli – poprzednik i następnik implikacji fałszywe) lub gdy zdaje egzamin i dostaje komputer (ostatni wiersz tabeli – poprzednik i następnik implikacji prawdziwe), to nie powinno być wątpliwości, że obietnica ojca okazała się prawdziwa. Gdy natomiast dziecko zdaje egzamin, a jednak komputera nie dostaje (trzeci wiersz tabeli – poprzednik implikacji prawdziwy, a następnik fałszywy), należy wówczas uznać, że ojciec skłamał składając swoją obietnicę.
Pewne kontrowersje może budzić uznanie za prawdziwego zdania w przypadku, gdy poprzednik implikacji jest fałszywy, natomiast następnik prawdziwy (drugi wiersz tabeli), czyli w naszym przykładzie, gdy dziecko wprawdzie nie zdało egzaminu, a mimo to dostało komputer. Zauważmy jednak, że wbrew pozorom ojciec nie łamie wcale w takim przypadku obietnicy dania komputera po zdanym egzaminie – nie powiedział on bowiem, że jest to jedyny przypadek, gdy dziecko może otrzymać komputer. Powiedzenie, że jeśli zdasz egzamin, to dostaniesz komputer, nie wyklucza wcale, że dziecko może również dostać komputer z innej okazji, na przykład na urodziny.
Powyższe wytłumaczenie drugiego wiersza tabelki dla implikacji może się wydawać nieco naciągane, a jest tak dlatego, że w języku potocznym często wypowiadamy zdania typu jeśli... to rozumiejąc przez nie wtedy i tylko wtedy (którego to zwrotu nikt raczej nie używa).

To wytłuszczone zdanie to czysto matematyczna brednia, bowiem dostanie komputera za jakiś czas z powodu urodzin, będzie miało zero wspólnego z wypowiedzianą obietnicą ojca.
A.
Jeśli zdasz egzamin to dostaniesz komputer.
Y = (E=>K) =1
Zdanie egzaminu jest warunkiem wystarczającym => dla dostanie komputera

W praktyce języka potocznego absolutnie nikt, łącznie z najwybitniejszymi ziemskimi matematykami nie przechodzi ze zdania warunkowego A to spójników „i”(*) i „lub”(+) jak to poprawnie matematycznie przedstawiłem.

Dlaczego nie przechodzi?

Po pierwsze:
Trzeba znać w algebrze Boole’a definicję funkcji logicznej Y w logice dodatnie (bo Y) i ujemnej (bo ~Y) - a tego najwybitniejsi ziemscy matematycy nie kumają

Po drugie:
Przejście z obietnicą A do spójników „i”(*) i „lub”(+) z definicji zabija wszelkie warunki wystarczające => i konieczne ~> które będą się pojawiać w matematycznej obsłudze obietnicy A przy pomocy zdań warunkowych „Jeśli p to q” … doskonale znanej każdemu 5-cio latkowi co zobaczymy w rozdziale:
10.0 Obietnice i groźby

Innymi słowy:
Spójnikiem „i”(*) możemy co najwyżej stwierdzić spełnienie/ nie spełnienia istnienia elementu wspólnego zbiorów ~~>
~~> - element wspólny zbiorów ~~> w teorii zbiorów albo zdarzenie możliwe ~~> w teorii zdarzeń

Teoria zbiorów:
p~~>q=p*q =1 - wtedy i tylko wtedy gdy zbiór p ma element wspólny ze zbiorem q
Inaczej:
p~~>q = p*q =0 - zbiory p i q są rozłączne
Nie mamy najmniejszych szans aby spójnikami „i”(*) albo „lub”(+) opisać takie relacje w zbiorach jak podzbiór => czy też nadzbiór ~>

W algebrze Kubusia zachodzą tożsamości:
Relacja podzbioru => = warunek wystarczający =>
Relacja nadzbioru ~> = warunek konieczny ~>


Ostatnio zmieniony przez rafal3006 dnia Wto 15:44, 21 Cze 2022, w całości zmieniany 11 razy
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 35963
Przeczytał: 15 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Nie 14:49, 11 Kwi 2021    Temat postu:

Algebra Kubusia - wykład rozszerzony
1.0 Teoria rachunku zbiorów i zdarzeń

Spis treści
1.0 Teoria rachunku zbiorów i zdarzeń 1
1.1 Podstawowe spójniki implikacyjne w zbiorach 1
1.1.1 Definicja kontrprzykładu w zbiorach 2
1.1.2 Prawa Kobry dla zbiorów 3
1.2 Podstawowe spójniki implikacyjne w zdarzeniach 3
1.2.1 Definicja kontrprzykładu w zdarzeniach 4
1.2.2 Prawo Kobry dla zdarzeń 4
1.3 Rachunek zero-jedynkowy dla warunków wystarczających => i koniecznych ~> 4
1.4 Matematyczne związki warunków wystarczających => i koniecznych ~> 8
1.5 Porównanie implikacji prostej p|=>q i odwrotnej p|~>q 10
1.5.1 Dowód wewnętrznej sprzeczności ziemskiej algebry Boole’a 13
1.6 Prawo śfinii 15
1.7 Skrócone definicje operatorów implikacyjnych 15



1.0 Teoria rachunku zbiorów i zdarzeń

Rachunkiem zbiorów i rachunkiem zdarzeń rządzą identyczne prawa rachunku zero-jedynkowego.

W algebrze Kubusia w zbiorach zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

1.1 Podstawowe spójniki implikacyjne w zbiorach

Cała logika matematyczna w obsłudze zdań warunkowych „Jeśli p to q” stoi na zaledwie trzech znaczkach (~~>, =>, ~>) definiujących wzajemne relacje zbiorów p i q.

I.
Definicja elementu wspólnego ~~> zbiorów:

Jeśli p to q
p~~>q =p*q =1
Definicja elementu wspólnego zbiorów ~~> jest spełniona (=1) wtedy i tylko wtedy gdy zbiory p i q mają co najmniej jeden element wspólny
Inaczej:
p~~>q= p*q= [] =0 - zbiory p i q są rozłączne, nie mają (=0) elementu wspólnego ~~>

Decydujący w powyższej definicji jest znaczek elementu wspólnego zbiorów ~~>, dlatego dopuszczalny jest zapis skrócony p~~>q.
W operacji iloczynu logicznego zbiorów p*q poszukujemy jednego wspólnego elementu, nie wyznaczamy kompletnego zbioru p*q.
Jeśli zbiory p i q mają element wspólny ~~> to z reguły błyskawicznie go znajdujemy:
p~~>q=p*q =1
co na mocy definicji kontrprzykładu (poznamy za chwilkę) wymusza fałszywość warunku wystarczającego =>:
p=>~q =0 (i odwrotnie)
Zauważmy jednak, że jeśli badane zbiory p i q są rozłączne i nieskończone to nie unikniemy iterowania po dowolnym ze zbiorów nieskończonych, czyli próby wyznaczenia kompletnego zbioru wynikowego p*q, co jest fizycznie niewykonalne.

II.
Definicja warunku wystarczającego => w zbiorach:

Jeśli p to q
p=>q =1
Definicja warunku wystarczającego => jest spełniona (=1) wtedy i tylko wtedy gdy zbiór p jest podzbiorem => q
Inaczej:
p=>q =0 - definicja warunku wystarczającego => nie jest (=0) spełniona

Matematycznie zachodzi tożsamość:
Warunek wystarczający => = relacja podzbioru =>

Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
p=>q = ~p+q

III.
Definicja warunku koniecznego ~> w zbiorach:

Jeśli p to q
p=>q =1
Definicja warunku koniecznego ~> jest spełniona (=1) wtedy i tylko wtedy gdy zbiór p jest nadzbiorem ~> q
Inaczej:
p~>q =0 - definicja warunku koniecznego ~> nie jest (=0) spełniona

Matematycznie zachodzi tożsamość:
Warunek konieczny ~> = relacja nadzbioru ~>

Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
p~>q = p+~q

1.1.1 Definicja kontrprzykładu w zbiorach

Definicja kontrprzykładu w zbiorach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane elementem wspólnym zbiorów p~~>~q=p*~q

Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)

1.1.2 Prawa Kobry dla zbiorów

Prawo Kobry dla zbiorów:
Warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q” jest jego prawdziwość przy kodowaniu elementem wspólnym zbiorów ~~>.
Innymi słowy:
Jeśli prawdziwe jest zdanie kodowane warunkiem wystarczającym => lub koniecznym ~> to na 100% prawdziwe jest to samo zdanie kodowane elementem wspólnym zbiorów ~~> (odwrotnie nie zachodzi)

Wyjątkiem jest tu zbiór pusty [] który jest podzbiorem => samego siebie:
Stąd mamy:
[]~~>[] = []*[] =0
ALE!
[]=>[] =1
0=>0 =1
bo każdy zbiór jest podzbiorem => siebie samego, także zbiór pusty [].

Zbiór pusty jest zbiorem zewnętrznym w stosunku do dowolnego zbioru niepustego.
Wynika to z definicji zbioru pustego [] w algebrze Kubusia (pkt. 3.0)


1.2 Podstawowe spójniki implikacyjne w zdarzeniach

Cała logika matematyczna w obsłudze zdań warunkowych „Jeśli p to q” stoi na zaledwie trzech znaczkach (~~>, =>, ~>) definiujących wzajemne relacje zdarzeń p i q

I.
Definicja zdarzenia możliwego ~~>:

Jeśli zajdzie p to może ~~> zajść q
p~~>q =p*q =1
Definicja zdarzenia możliwego ~~> jest spełniona (=1) wtedy i tylko wtedy gdy możliwe jest jednoczesne zajście zdarzeń p i q.
Inaczej:
p~~>q=p*q =[] =0

Decydujący w powyższej definicji jest znaczek zdarzenia możliwego ~~>, dlatego dopuszczalny jest zapis skrócony p~~>q.
Uwaga:
Na mocy definicji zdarzenia możliwego ~~> badamy możliwość zajścia jednego zdarzenia, nie analizujemy tu czy między p i q zachodzi warunek wystarczający => czy też konieczny ~>.

II.
Definicja warunku wystarczającego => w zdarzeniach:

Jeśli zajdzie p to zajdzie q
p=>q =1
Definicja warunku wystarczającego => jest spełniona (=1) wtedy i tylko wtedy gdy zajście zdarzenia p jest wystarczające => dla zajścia zdarzenia q
Inaczej:
p=>q =0

Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
p=>q = ~p+q

III.
Definicja warunku koniecznego ~> w zdarzeniach:

Jeśli zajdzie p to zajdzie q
p~>q =1
Definicja warunku koniecznego ~> jest spełniona (=1) wtedy i tylko wtedy gdy zajście zdarzenia p jest konieczne ~> dla zajścia zdarzenia q
Inaczej:
p~>q =0

Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
p~>q = p+~q

1.2.1 Definicja kontrprzykładu w zdarzeniach

Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>~q=p*~q

Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1
(i odwrotnie)

1.2.2 Prawo Kobry dla zdarzeń

Prawo Kobry dla zdarzeń:
Warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q” jest jego prawdziwość przy kodowaniu zdarzeniem możliwym ~~>.
Innymi słowy:
Jeśli prawdziwe jest zdanie kodowane warunkiem wystarczającym => lub koniecznym ~> to na 100% prawdziwe jest to samo zdanie kodowane zdarzeniem możliwym ~~> (odwrotnie nie zachodzi)


1.3 Rachunek zero-jedynkowy dla warunków wystarczających => i koniecznych ~>

Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
A1: p=>q = ~p+q
##
Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
B1: p~>q = p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Definicja znaczka różne # dla funkcji logicznych:
Dwie funkcje logiczne są różne w znaczeniu znaczka # wtedy i tylko wtedy gdy jedna z nich jest zaprzeczeniem (~) drugiej
Przykład:
A1: Y=(p=>q)=~p*q # A1N: ~Y=~(p=>q)=p+~q

Definicja znaczka różne na mocy definicji ## dla funkcji logicznych:
Dwie funkcje logiczne są różne na mocy definicji ## wtedy i tylko wtedy gdy nie są tożsame i żadna z nich nie jest zaprzeczeniem drugiej (szczegóły w pkt. 2.1)

Weźmy nasze funkcje logiczne A1 i B1:
Kod:

A1:  Y= (p=>q)=~p+q  ##  B1:  Y= (p~>q)=p+~q 
     #                        #
A1N:~Y=~(p=>q)=p*~q  ##  B1N:~Y=~(p~>q)=~p*q
Gdzie:
# - różne w znaczeniu iż jedna strona # jest zaprzeczeniem drugiej strony
## - różne na mocy definicji funkcji logicznych
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
A1:  Y= (p=>q)=~p+q - funkcja logiczna A1 w logice dodatniej (bo Y)
A1N:~Y=~(p=>q)=p*~q - funkcja logiczna A1 w logice ujemnej (bo ~Y)

Doskonale widać, że definicje znaczków # i ## są tu spełnione.

Kod:

T1
Definicja warunku wystarczającego =>
        Y=
   p  q p=>q=~p+q
A: 1=>1  1
B: 1=>0  0
C: 0=>0  1
D: 0=>1  1
   1  2  3
Do łatwego zapamiętania:
p=>q=0 <=> p=1 i q=0
Inaczej:
p=>q=1
Definicja warunku wystarczającego => w spójniku „lub”(+):
p=>q =~p+q

##
Kod:

T2
Definicja warunku koniecznego ~>
        Y=
   p  q p~>q=p+~q
A: 1~>1  1
B: 1~>0  1
C: 0~>0  1
D: 0~>1  0
   1  2  3
Do łatwego zapamiętania:
p~>q=0 <=> p=0 i q=1
Inaczej:
p~>q=1
Definicja warunku koniecznego ~> w spójniku „lub”(+):
p~>q = p+~q

##
Kod:

T3
Definicja spójnika “lub”(+)
        Y=
   p  q p+q
A: 1+ 1  1
B: 1+ 0  1
C: 0+ 0  0
D: 0+ 1  1
   1  2  3
Do łatwego zapamiętania:
Definicja spójnika „lub”(+) w logice jedynek:
p+q=1 <=> p=1 lub q=1
inaczej:
p+q=0
Definicja spójnika „lub”(+) w logice zer:
p+q=0 <=> p=0 i q=0
Inaczej:
p+q=1
Przy wypełnianiu tabel zero-jedynkowych w rachunku zero-jedynkowym
nie ma znaczenia czy będziemy korzystali z logiki jedynek czy z logiki zer

##
Kod:

T4
Definicja spójnika “i”(*)
        Y=
   p  q p*q
A: 1* 1  1
B: 1* 0  0
C: 0* 0  0
D: 0* 1  0
   1  2  3
Do łatwego zapamiętania:
Definicja spójnika „i”(*) w logice jedynek:
p*q=1 <=> p=1 i q=1
inaczej:
p*q=0
Definicja spójnika „i”(*) w logice zer:
p*q=0 <=> p=0 lub q=0
Inaczej:
p*q=1
Przy wypełnianiu tabel zero-jedynkowych w rachunku zero-jedynkowym
nie ma znaczenia czy będziemy korzystali z logiki jedynek czy z logiki zer

Gdzie:
## - różne na mocy definicji

Definicja znaczka różne na mocy definicji ## dla funkcji logicznych:
Dwie funkcje logiczne są różne na mocy definicji ## wtedy i tylko wtedy gdy nie są tożsame i żadna z nich nie jest zaprzeczeniem drugiej

Dowód iż funkcje logiczne z tabel T1, T2, T3 i T4 spełniają definicję znaczka różne na mocy definicji ##.
Kod:

T1:  Y= (p=>q)=~p+q  ## T2:  Y =(p~>q)=p+~q ## T3:  Y= p+q  ## T4:  Y=p*q
     #                       #                      #               #
T1N:~Y=~(p=>q)= p*~q ## T2N:~Y=~(p~>q)=~p*q ## T3N:~Y=~p*~q ## T4N:~Y=~p+~q
Gdzie:
# - różne w znaczeniu iż jedna strona # jest zaprzeczeniem drugiej strony
## - różne na mocy definicji funkcji logicznych
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
T1:  Y= (p=>q)=~p+q - funkcja logiczna T1 w logice dodatniej (bo Y)
T1N:~Y=~(p=>q)=p*~q - funkcja logiczna T1 w logice ujemnej (bo ~Y)

Doskonale widać, że dowolna funkcja z jednej strony znaczka różne na mocy definicji ## nie jest tożsama z funkcją po przeciwnej stronie ani też nie jest jej zaprzeczeniem.

Wyprowadźmy w rachunku zero-jedynkowym matematyczne związki między warunkami wystarczającym => i koniecznym ~>
Kod:

Tabela A
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w rachunku zero-jedynkowym
              Y=    Y=        Y=    Y=        Y=        #  ~Y=
   p  q ~p ~q p=>q ~p~>~q [=] q~>p ~q=>~p [=] p=>q=~p+q # ~(p=>q)=p*~q
A: 1  1  0  0  =1    =1        =1    =1        =1       #    =0
B: 1  0  0  1  =0    =0        =0    =0        =0       #    =1
C: 0  0  1  1  =1    =1        =1    =1        =1       #    =0
D: 0  1  1  0  =1    =1        =1    =1        =1       #    =0
                1     2         3     4         5             6
Gdzie:
# - różne w znaczeniu iż jedna strona znaczka # jest negacją drugiej strony

Z tożsamości kolumn wynikowych odczytujemy.
Matematyczne związki warunku wystarczającego => z koniecznego ~>:
A: 1: p=>q = 2: ~p~>~q [=] 3: q~>p = 4: ~q=>~p [=] 5: ~p+q

##
Kod:

Tabela B
Matematyczne związki warunku koniecznego ~> i wystarczającego =>
w rachunku zero-jedynkowym
              Y=    Y=        Y=    Y=        Y=        #  ~Y=
   p  q ~p ~q p~>q ~p=>~q [=] q=>p ~q~>~p [=] p~>q=p+~q # ~(p~>q)=~p*q
A: 1  1  0  0  =1    =1        =1    =1        =1       #    =0
B: 1  0  0  1  =1    =1        =1    =1        =1       #    =0
C: 0  0  1  1  =1    =1        =1    =1        =1       #    =0
D: 0  1  1  0  =0    =0        =0    =0        =0       #    =1
                1     2         3     4         5
Gdzie:
# - różne w znaczeniu iż jedna strona znaczka # jest negacją drugiej strony

Z tożsamości kolumn wynikowych odczytujemy.
Matematyczne związki warunku koniecznego ~> i wystarczającego =>:
B: 1: p~>q = 2: ~p=>~q [=] 3: q=>p = 4: ~q~>~p [=] 5: p+~q

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
Y = (p=>q) = ~p+q ## Y=(p~>q) =p+~q

Znaczki „=” i [=] to tożsamości logiczne (zapisy tożsame).

Prawo Kubusia:
A1: p=>q = A2:~p~>~q

Definicja tożsamości logicznej „=”:
Prawdziwość dowolnej strony tożsamości logicznej „=” wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej „=” wymusza fałszywość drugiej strony

Innymi słowy:
Udowodnienie iż w zdaniu A1 spełniony jest warunek wystarczający =>:
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
jest tożsame z udowodnieniem iż w zdaniu A2 spełniony jest warunek konieczny ~>:
A2: ~p~>~q =1 - zajście ~p jest konieczne ~> dla zajścia ~q
(albo odwrotnie)

Przykład:
A1.
Jeśli jutro będzie padało (P) to na 100% => będzie pochmurno (CH)
P=>CH=1
Padanie (P) jest warunkiem wystarczającym => do tego aby było pochmurno (CH), bo zawsze gdy pada (P), jest pochmurno (CH)

Prawo Kubusia:
A1: P=>CH = A2: ~P~>~CH
Prawdziwość zdania A1 wymusza prawdziwość zdania A2, z czego wynika, że prawdziwości zdania A2 nie musimy dowodzić.
A2.
Jeśli jutro nie będzie padało (~P) to może ~> nie być pochmurno (~CH)
~P~>~CH =1
Brak opadów (~P) jest warunkiem koniecznym ~> do tego aby nie było pochmurno (~CH), bo jak pada (P) to na 100% => są chmury (CH)
Jak widzimy prawo Kubusia samo nam tu wyskoczyło:
A2: ~P~>~CH = A1: P=>CH

1.4 Matematyczne związki warunków wystarczających => i koniecznych ~>

Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
A1: p=>q = ~p+q
##
Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
B1: p~>q = p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Na mocy rachunku zero-jedynkowego mamy matematyczne związki warunków wystarczających => i koniecznych ~>.
Kod:

T0
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
      ##        ##           ##        ##            ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5:  p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


Na mocy powyższego zapisujemy:
1.
Prawa Kubusia:
A1: p=>q = A2: ~p~>~q
##
B1: p~>q = B2: ~p=>~q
Ogólne prawo Kubusia:
Negujemy zmienne i wymieniamy spójniki na przeciwne

2.
Prawa Tygryska:
A1: p=>q = A3: q~>p
##
B1: p~>q = B3: q=>p
Ogólne prawo Tygryska:
Zamieniamy miejscami zmienne i wymieniamy spójniki na przeciwne

3.
Prawa kontrapozycji:
A1: p=>q = A4: ~q=>~p - prawo kontrapozycji dla warunku wystarczającego =>
##
B1: p~>q = B4: ~q~>~p - prawo kontrapozycji dla warunku koniecznego ~>
Ogólne prawo kontrapozycji:
Negujemy zmienne zamieniając je miejscami bez zmiany spójnika logicznego

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Mutacje powyższych praw logiki matematycznej:

Pod p i q w powyższych prawach możemy podstawiać zanegowane zmienne w dowolnych konfiguracjach.

Przykład:
Prawo Kubusia:
p=>q = ~p~>~q
1.
Podstawiamy:
p:=~p - pod p podstaw := ~p
q:=~q - pod q podstaw := ~q
stąd mamy także poprawne prawo Kubusia:
~p=>~q = ~(~p)~>~(~q) = p~>q
2.
Podstawiamy:
p:=p
q:=~q
stąd mamy także poprawne prawo Kubusia:
p=>~q = ~p~>~(~q) = ~p~>q
3.
Podstawiamy:
p:=~p
q:=q
stąd mamy także poprawne prawo Kubusia:
~p=>q = ~(~p)~>~q = p~>~q

1.5 Porównanie implikacji prostej p|=>q i odwrotnej p|~>q

Poznajmy kluczowe definicje implikacji prostej p|=>q i odwrotnej p|~>q

Podstawowa definicja implikacji prostej p|=>q w logice dodatniej (bo q):
Implikacja prosta p|=>q w logice dodatniej (bo q) to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
stąd:
p|=>q = (A1: p=>q)*~(B1: p~>q) =1*~(0) = 1*1 =1

Podstawmy tą definicję do matematycznych związków warunku wystarczającego i koniecznego ~>:
Kod:

IP: Implikacja prosta p|=>q w logice dodatniej (bo q)
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji prostej p|=>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q=1 - zajście p jest (=1) wystarczające dla zajścia q
B1: p~>q=0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p =1 [=] 5:~p+q
      ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p =0 [=] 5: p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla udowodnienia, iż zdanie warunkowe „Jeśli p to q” wchodzi w skład implikacji prostej p|=>q potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Ax i fałszywość dowolnego zdania serii Bx.
Zauważmy, że nie ma znaczenia które zdanie będziemy brali pod uwagę, bowiem prawami logiki matematycznej (prawa Kubusia, prawa Tygryska i prawa kontrapozycji) zdanie to możemy zastąpić zdaniem logicznie tożsamym z kolumny A1B1.

Definicja warunku wystarczającego => w spójnikach „i”(*) i „lub”(+):[/b]
p=>q =~p+q
Definicja warunku koniecznego ~> w spójnikach „i”(*) i „lub”(+):[/b]
Y = (p~>q) =p+~q
stąd mamy:
Wyprowadzenie definicji implikacji prostej p|=>q w spójnikach „i”(*) i „lub”(+):
IP:
Kolumna A1B1:
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) = (~p+q)*~(p+~q) = (~p+q)*(~p*q) = ~p*q
A1B1: p|=>q = ~p*q

Porównajmy.

IP: Implikacja prosta p|=>q
Definicja warunku wystarczającego p=>q:
Y = (p=>q) =~p+q
##
Definicja implikacji prostej p|=>q:
Y = (p|=>q) = ~p*q
Gdzie:
## - różne na mocy definicji funkcji logicznych

Podstawowa definicja implikacji odwrotnej p|~>q w logice dodatniej (bo q):
Implikacja odwrotna p|~>q w logice dodatniej (bo q) to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
stąd:
p|~>q = ~(A1: p=>q)*(B1: p~>q) =~(0)*1 = 1*1 =1

Podstawmy tą definicję do matematycznych związków warunku wystarczającego i koniecznego ~>:
Kod:

IO: Implikacja odwrotna p|~>q w logice dodatniej (bo q)
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji odwrotnej p|~>q w logice dodatniej (bo q)
Kolumna A1B1 to punkt odniesienia:
A1: p=>q=0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q=1 - zajście p jest (=1) konieczne ~> dla zajścia q
A1B1: p|~>q=~(A1: p=>q)*(B1: p~>q)=~(0)*1=1*1=1
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p =0 [=] 5: ~p+q
      ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p =1 [=] 5: p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla udowodnienia, iż zdanie warunkowe „Jeśli p to q” wchodzi w skład implikacji odwrotnej p|~>q potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Bx i fałszywość dowolnego zdania serii Ax.
Zauważmy, że nie ma znaczenia które zdanie będziemy brali pod uwagę, bowiem prawami logiki matematycznej (prawa Kubusia, prawa Tygryska i prawa kontrapozycji) zdanie to możemy zastąpić zdaniem logicznie tożsamym z kolumny A1B1.

Definicja warunku wystarczającego => w spójnikach „i”(*) i „lub”(+):[/b]
p=>q =~p+q
Definicja warunku koniecznego ~> w spójnikach „i”(*) i „lub”(+):[/b]
Y = (p~>q) =p+~q
stąd mamy:

Wyprowadzenie definicji implikacji odwrotnej p|~>q w spójnikach „i”(*) i „lub”(+):
IO:
Kolumna A1B1:
A1B1: p|~>q=~(A1: p=>q)*(B1: p~>q) = ~(~p+q)*(p+~q) = (p*~q)*(p+~q) = p*~q
A1B1: p|~>q = p*~q

Porównajmy:

IO: Implikacja odwrotna p|~>q
Definicja warunku koniecznego p~>q:
Y = (p~>q) =p+~q
##
Definicja implikacji odwrotnej p|~>q:
Y = (p|~>q) = p*~q
Gdzie:
## - różne na mocy definicji funkcji logicznych

W tabelach IP (implikacja prosta) i IO (implikacja odwrotna) p i q muszą być tymi samymi p i q inaczej popełniamy błąd podstawienia.
Na mocy powyższego zapisujemy:

IP: Implikacja prosta p|=>q
Definicja warunku wystarczającego p=>q:
Y = (p=>q) =~p+q
##
Definicja implikacji prostej p|=>q:
Y = (p|=>q) = ~p*q

IO Implikacja odwrotna p|~>q
Definicja warunku koniecznego p~>q:
Y = (p~>q) =p+~q
##
Definicja implikacji odwrotnej p|~>q:
Y = (p|~>q) = p*~q

Doskonale widać, że między implikacją prostą IP a implikacją odwrotną IO zachodzi relacja matematyczna:
## - różne na mocy definicji funkcji logicznych

Dowód formalny:
Kod:

IPIO:
 WW:               IP:                WK:               IO:
 Y=(p=>q)=~p+q  ## Y=(p|=>q)=~p*q  ## Y=(p~>q)=p+~q  ## Y=(p|~>q)=p*~q
 #                 #                  #                 #
 WWN:              IPN:               WKN:              ION:
~Y=~(p=>q)=p*~q ##~Y=~(p|=>q)=p+~q ##~Y=~(p~>q)=~p*q ##~Y=~(p|~>q)=~p+q
Gdzie:
WW - warunek wystarczający (WWN - negacja WW)
IP - implikacja prosta (IPN - negacja IP)
WK - warunek konieczny (WKN - negacja WK)
IO - implikacja odwrotna (ION - negacja IO)
# - różne w znaczeniu iż jedna strona znaczka # jest negacją drugiej strony
## - różne na mocy definicji funkcji logicznych
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Definicja znaczka różne na mocy definicji ## dla funkcji logicznych:
Dwie funkcje logiczne są różne na mocy definicji ## wtedy i tylko wtedy gdy nie są tożsame i żadna z nich nie jest zaprzeczeniem drugiej

Doskonale widać, że definicja znaczka różna na mocy definicji ## dla funkcji logicznych w tabeli IPIO spełniona jest perfekcyjnie.

1.5.1 Dowód wewnętrznej sprzeczności ziemskiej algebry Boole’a

Biedni ziemscy matematycy nie odróżniają funkcji logicznej w logice dodatniej (bo Y) od funkcji logicznej w logice ujemnej (bo ~Y).
W algebra Boole’a ziemian wszystkie funkcje logiczne zapisywane są wyłącznie w logice dodatniej (bo Y).
Zapiszmy zatem w tabeli IPIO wszystkie funkcje w logice dodatniej (bo Y):
Kod:

IPIOZ: - matematyczna głupota ziemskich matematyków
 WW:               IP:                WK:               IO:
 Y=(p=>q)=~p+q  ## Y=(p|=>q)=~p*q  ## Y=(p~>q)=p+~q  ## Y=(p|~>q)=p*~q
 #                 #                  #                 #
 WWN:              IPN:               WKN:              ION:
 Y=~(p=>q)=p*~q ## Y=~(p|=>q)=p+~q ## Y=~(p~>q)=~p*q ## Y=~(p|~>q)=~p+q
Gdzie:
WW - warunek wystarczający (WWN - negacja WW)
IP - implikacja prosta (IPN - negacja IP)
WK - warunek konieczny (WKN - negacja WK)
IO - implikacja odwrotna (ION - negacja IO)
# - różne w znaczeniu iż jedna strona znaczka # jest negacją drugiej strony
## - różne na mocy definicji funkcji logicznych
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Jak widzimy, w tym momencie algebra Boole’a ziemskich matematyków leży, kwiczy i błaga o litość - jest wewnętrznie sprzeczna.

Dowód:
Bez logiki dodatniej (bo Y) i ujemnej (bo ~Y) nie jest spełniona definicja znaczka:
## - różne na mocy definicji dla funkcji logicznych

Przykład z tabeli IPIOZ:
WW: Y=(p=>q)=~p+q [=] ION: Y=~(p|~>q) =~p+q
Gdzie:
[=] - tożsamość logiczna
Funkcja logiczna WW jest (=1) tożsama [=] z funkcją logiczną ION

Gdy tymczasem w poprawnej algebrze Boole’a według tabeli IPIO powinno być:
WW: Y=(p=>q)=~p+q ## ION: ~Y=~(p|~>q) = ~p+q
Gdzie:
## - różne na mocy definicji funkcji logicznych
Funkcja logiczna WW nie jest (=0) tożsama z funkcją logiczną ION

Twierdzenie masakrujące ziemską algebrę Boole’a:
Poprawna algebra Boole’a musi widzieć funkcje logiczne zarówno w logice dodatniej (bo Y) jak i w logice ujemnej (bo ~Y), inaczej jest wewnętrznie sprzeczna.
Wniosek:
Ziemska algebra Boole’a, która nie widzi funkcji logicznych w logice ujemnej (bo ~Y) jest wewnętrznie sprzeczna
cnd

Uwagi:

I.
Ziemski matematyk który będzie twierdził iż funkcje logiczne algebry Boole’a to nie jest algebra Boole’a powinien spalić się ze wstydu … i wziąć zimny prysznic.
1: Y=p+q

II.
Ziemski matematyk który będzie twierdził, iż dowolnej funkcji logicznej nie wolno dwustronnie negować powinien spalić się ze wstydu … albo wziąć zimny prysznic (do wyboru)
1: Y=p+q
Negujemy dwustronnie:
2: ~Y=~(p+q)
2: ~Y=~p*~q - na mocy prawa De Morgana
To jest niewyobrażalne, jak ziemscy matematycy, mając 2500 lat czasu (od Sokratesa) zdołali uniknąć odkrycia logiki dodatniej (bo Y) i ujemnej (bo ~Y) jak na powyższym przykładzie znanym każdemu 5-cio latkowi, ekspertowi algebry Kubusia ( i Boole’a oczywiście).

Dowód:
Pani w przedszkolu:
Jutro pójdziemy do kina (K) lub do teatru (T)
Y=K+T
Zuzia do Jasia (oboje po 5 wiosenek):
Czy wiesz kiedy pani jutro skłamie?
Jaś:
Oczywiście że wiem, przechodzę do logiki ujemnej (bo ~Y) i mam odpowiedź:
~Y=~K*~T
Czytamy:
Pani skłamie (~Y) wtedy i tylko wtedy gdy jutro nie pójdziemy do kina (~K) i nie pójdziemy do teatru (~T)
~Y=~K*~T
Znaczenie symboli:
Y - pani dotrzyma słowa
~Y - pani nie dotrzyma słowa (= pani skłamie)

Niestety, o powyższych banałach, czyli logice dodatniej (bo Y) i ujemnej (bo ~Y) w banalnym zastosowaniu jak wyżej najwięksi ziemscy matematycy nie mają najmniejszego pojęcia.
Dowód:
Nie ma tego typu przykładów zastosowania logiki dodatniej (bo Y) i ujemnej (bo ~Y) w żadnym podręczniku matematyki, ani nawet w żadnym miejscu w Internecie … z wyjątkiem forum śfinia oczywiście.

1.6 Prawo śfinii

Prawo śfinii:
Dowolne zdanie warunkowe od którego zaczynamy analizę matematyczną jest domyślnym punktem odniesienia, gdzie po „Jeśli ..” zapisujemy zawsze p zaś po „to..” zapisujemy zawsze q.

Co jest celem prawa śfinii?
Celem prawa śfinii jest ustalenie wspólnego punktu odniesienia dla dyskutujących o logice matematycznej. Prawo śfinii to tarcza obronna przed popełnieniem trudnego do zauważenia (dla niewtajemniczonych) błędu podstawienia.

1.7 Skrócone definicje operatorów implikacyjnych

IP:
Definicja implikacji prostej p|=>q:

Implikacja prosta p|=>q to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku.
A1: p=>q =1 - p jest (=1) wystarczające => dla q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla q
p|=>q=(A1: p=>q)*~(B1: p~>q)
Kod:

IP: Tabela prawdy implikacji prostej p|=>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q =1 - p jest (=1) wystarczające => dla q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla q
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
       A1B1:         A2B2:        |     A3B3:         A4B4:
A:  1: p=>q  =1 = 2:~p~>~q=1     [=] 3: q~>p  =1 = 4:~q=>~p =1
A’: 1: p~~>~q=0 =                [=]             = 4:~q~~>p =0
       ##            ##           |     ##            ##
B:  1: p~>q  =0 = 2:~p=>~q=0     [=] 3: q=>p  =0 = 4:~q~>~p =0
B’:             = 2:~p~~>q=1     [=] 3: q~~>~p=1

Równanie operatora implikacji prostej p||=>q:
A1B1:                                                        A2B2:
p|=>q = (A1: p=>q)*~(B1: p~>q) = (A2:~p~>~q)*~(B2:~p=>~q) = ~p|~>~q

Operator implikacji prostej p||=>q to układ równań logicznych:
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p
A2B2:~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p

Układ równań logicznych jest przemienny, stąd mamy:
Operator implikacji odwrotnej ~p||~>~q to układ równań logicznych:
A2B2:~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


IO:
Definicja implikacji odwrotnej p|~>q:

Implikacja odwrotna p|~>q to zachodzenie wyłącznie warunku koniecznyego ~> między tymi samymi punktami i w tym samym kierunku
Kolumna A1B1:
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
stąd:
p|~>q = ~(A1: p=>q)*(B1: p~>q) =~(0)*1 = 1*1 =1
Kod:

IO: Tabela prawdy implikacji odwrotnej p|~>q
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji odwrotnej p|~>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
A1B1: p|~>q =~(A1: p=>q)*(B1: p~>q)=~(0)*1=1*1=1
       A1B1:         A2B2:        |     A3B3:         A4B4:
A:  1: p=>q  =0 = 2:~p~>~q=0     [=] 3: q~>p  =0 = 4:~q=>~p =0
A’: 1: p~~>~q=1 =                [=]             = 4:~q~~>p =1
       ##            ##           |     ##            ##
B:  1: p~>q  =1 = 2:~p=>~q=1     [=] 3: q=>p  =1 = 4:~q~>~p =1
B’:             = 2:~p~~>q=0     [=] 3: q~~>~p=0

Równanie operatora implikacji odwrotnej p||~>q:
A1B1:                                                        A2B2:
p|~>q = ~(A1: p=>q)*(B1: p~>q) = ~(A2:~p~>~q)*(B2:~p=>~q) = ~p|=>~q

Operator implikacji odwrotnej p||~>q to układ równań logicznych:
A1B1: p|~>q  =~(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p?
A2B2:~p|=>~q =~(A2:~p~>~q)*~(B2:~p=>~q)- co się stanie jeśli zajdzie ~p?

Układ równań logicznych jest przemienny, stąd mamy:
Operator implikacji prostej ~p||=>~q to układ równań logicznych:
A2B2:~p|=>~q =~(A2:~p~>~q)*~(B2:~p=>~q)- co się stanie jeśli zajdzie ~p?
A1B1: p|~>q   =~(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p?

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia



TR:
Definicja równoważności p<=>q:

Równoważność p<=>q to zachodzenie zarówno warunku wystarczającego => jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku.
Kolumna A1B1:
A1: p=>q =1 - p jest (=1) wystarczające => dla q
B1: p~>q =1 - p jest (=1) konieczne ~> dla q
p<=>q = (A1: p=>q)*(B2 p~>q)
Kod:

TR: Tabela prawdy równoważności p<=>q
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w równoważności p<=>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q =1 - p jest (=1) wystarczające => dla q
B1: p~>q =1 - p jest (=1) konieczne ~> dla q
p<=>q = (A1: p=>q)*(B1: p~>q) =1*1=1
       A1B1:         A2B2:        |     A3B3:         A4B4:
A:  1: p=>q  =1 = 2:~p~>~q=1     [=] 3: q~>p  =1 = 4:~q=>~p =1
A’: 1: p~~>~q=0 =                [=]             = 4:~q~~>p =0
       ##            ##           |     ##            ##
B:  1: p~>q  =1 = 2:~p=>~q=1     [=] 3: q=>p  =1 = 4:~q~>~p =1
B’:             = 2:~p~~>q=0     [=] 3: q~~>~p=0

Równanie operatora równoważności p|<=>q:
A1B1:                                                     A2B2:
p<=>q = (A1: p=>q)*(B2 p~>q) = (A2:~p~>~q)*(B2:~p=>~q) = ~p<=>~q

Operator równoważności p|<=>q to układ równań logicznych:
A1B1: p<=>q =(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p
A2B2:~p<=>~q=(A2:~p~>~q)*(B2:~p=>~q) - co się stanie jeśli zajdzie ~p

Układ równań logicznych jest przemienny, stąd mamy:
Operator równoważności ~p|<=>~q to układ równań logicznych:
A2B2:~p<=>~q=(A2:~p~>~q)*(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A1B1: p<=>q =(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
[/quote]

[b]CH:
Definicja chaosu p|~~>q:[/b]
Chaos p|~~>q to nie zachodzenie ani warunku wystarczającego => ani też warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
Kolumna A1B1:
A1: p=>q =0 - p nie jest (=0) wystraczające => dla q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla q
p|~~>q = ~(A1: p=>q)*~(B1: p~>q)
[code]
CH: Tabela prawdy chaosu p|~~>q
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w chaosie p|~~>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla q
A1B1: p|~~>q=~(A1: p=>q)*~(B1: p~>q)=~(0)*~(0)=1*1=1
       A1B1:         A2B2:        |     A3B3:         A4B4:
A:  1: p=>q  =0 = 2:~p~>~q =0    [=] 3: q~>p  =0 = 4:~q=>~p =0
A’: 1: p~~>~q=1 =                [=]             = 4:~q~~>p =1
A”: 1: p~~>q =1                  [=]               4:~q~~>~p=1
       ##            ##           |     ##            ##
B:  1: p~>q  =0 = 2:~p=>~q =0    [=] 3: q=>p  =0 = 4:~q~>~p =0
B’:             = 2:~p~~>q =1    [=] 3: q~~>~p=1
B”:               2:~p~~>~q=1    [=] 3: q~~>p =1
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
[/code]

Równanie operatora chaosu p||~~>q:
A1B1:                                                           A2B2
p|~~>q = ~(A1: p=>q)*~(B1: p~>q) = ~(B1:~p~>~q)*~(B2:~p=>~q) = ~p|~~>~q

Operator chaosu p||~~>q to układ równań logicznych:
A1B1: p|~~>q =~(A1: p=>q)* ~(B1: p~>q) - co się stanie jeśli zajdzie p
A2B2:~p|~~>~q=~(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p

Układ równań logicznych jest przemienny, stąd mamy:
Operator równoważności ~p||~~>~q to układ równań logicznych:
A2B2:~p|~~>~q=~(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A1B1: p|~~>q =~(A1: p=>q)* ~(B1: p~>q) - co się stanie jeśli zajdzie p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


Ostatnio zmieniony przez rafal3006 dnia Nie 14:52, 11 Kwi 2021, w całości zmieniany 1 raz
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 35963
Przeczytał: 15 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Nie 14:58, 11 Kwi 2021    Temat postu:

Algebra Kubusia - wykład rozszerzony
2.0 Implikacja prosta p|=>q

Wstęp:
Wykład rozszerzony algebry Kubusia zakłada znajomość wersji podstawowej AK.

Spis treści
2.0 Implikacja prosta p|=>q 1
2.1 Matematyczne związki warunków wystarczających => i koniecznych ~> 1
2.2 Definicja podstawowa implikacji prostej p|=>q 3
2.2.1 Implikacje tożsame dla punktu odniesienia p|=>q 6
2.3 Operator implikacji prostej p||=>q 8
2.3.1 Zero-jedynkowa definicja warunku wystarczającego p=>q 10
2.4 Opis tabeli zero-jedynkowej równaniami algebry Boole’a 14
2.4.1 Dziedzina matematyczna i fizyczna 15
2.4.2 Operator implikacji prostej p||=>q w zdarzeniach możliwych ~~> 17
2.4.3 Operator implikacji prostej p||=>q w elementach wspólnych zbiorów ~~> 19



2.0 Implikacja prosta p|=>q

Definicja operatora implikacyjnego:
Operator implikacyjny to operator wyrażony zdaniami warunkowymi „Jeśli p to q”

Fundamentem wszystkich operatorów implikacyjnych są matematyczne związki warunków wystarczających => i koniecznych ~> w rachunku zero-jedynkowym

2.1 Matematyczne związki warunków wystarczających => i koniecznych ~>

Matematyczne związki warunków wystarczających => i koniecznych ~> w rachunku zero-jedynkowym:
Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
A1: p=>q = ~p+q
##
Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
B1: p~>q = p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Na mocy rachunku zero-jedynkowego mamy matematyczne związki warunków wystarczających => i koniecznych ~>.
Kod:

T0
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
      ##        ##           ##        ##            ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5:  p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Na mocy powyższego zapisujemy:
1.
Prawa Kubusia:
A1: p=>q = A2: ~p~>~q
##
B1: p~>q = B2: ~p=>~q
Ogólne prawo Kubusia:
Negujemy zmienne i wymieniamy spójniki na przeciwne

2.
Prawa Tygryska:
A1: p=>q = A3: q~>p
##
B1: p~>q = B3: q=>p
Ogólne prawo Tygryska:
Zamieniamy miejscami zmienne i wymieniamy spójniki na przeciwne

3.
Prawa kontrapozycji:
A1: p=>q = A4: ~q=>~p - prawo kontrapozycji dla warunku wystarczającego =>
##
B1: p~>q = B4: ~q~>~p - prawo kontrapozycji dla warunku koniecznego ~>
Ogólne prawo kontrapozycji:
Negujemy zmienne zamieniając je miejscami bez zmiany spójnika logicznego

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Mutacje powyższych praw logiki matematycznej:

Pod p i q w powyższych prawach możemy podstawiać zanegowane zmienne w dowolnych konfiguracjach.

Przykład:
Prawo Kubusia:
p=>q = ~p~>~q
1.
Podstawiamy:
p:=~p - pod p podstaw := ~p
q:=~q - pod q podstaw := ~q
stąd mamy także poprawne prawo Kubusia:
~p=>~q = ~(~p)~>~(~q) = p~>q
2.
Podstawiamy:
p:=p
q:=~q
stąd mamy także poprawne prawo Kubusia:
p=>~q = ~p~>~(~q) = ~p~>q
3.
Podstawiamy:
p:=~p
q:=q
stąd mamy także poprawne prawo Kubusia:
~p=>q = ~(~p)~>~q = p~>~q

2.2 Definicja podstawowa implikacji prostej p|=>q

W algebrze Kubusia w zbiorach zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

Definicja podstawowa implikacji prostej p|=>q:
Implikacja prosta p|=>q to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
##
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
stąd:
p|=>q = (A1: p=>q)*~(B1: p~>q) =1*~(0) = 1*1 =1

Podstawmy tą definicję do matematycznych związków warunku wystarczającego => i koniecznego ~>:
Kod:

T1
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji prostej p|=>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p =1 [=] 5: ~p+q
      ##        ##           ##        ##               ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p =0 [=] 5:  p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla udowodnienia, iż zdanie warunkowe „Jeśli p to q” wchodzi w skład implikacji prostej p|=>q potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Ax i fałszywość dowolnego zdania serii Bx.
Zauważmy, że nie ma znaczenia które zdanie będziemy brali pod uwagę, bowiem prawami logiki matematycznej (prawa Kubusia, prawa Tygryska i prawa kontrapozycji) zdanie to możemy zastąpić zdaniem logicznie tożsamym z kolumny A1B1.

Kluczowym punktem zaczepienia w wprowadzeniu symbolicznej definicji implikacji prostej p|=>q jest definicja kontrprzykładu rodem z algebry Kubusia działająca wyłącznie w warunku wystarczającym =>.

Definicja kontrprzykładu w zbiorach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane elementem wspólnym zbiorów p~~>~q=p*~q

Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>~q=p*~q

Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)

Uzupełnijmy naszą tabelę wykorzystując powyższe rozstrzygnięcia działające wyłącznie w warunkach wystarczających =>.
Kod:

T2
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji prostej p|=>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
       A1B1:         A2B2:        |     A3B3:         A4B4:
A:  1: p=>q  =1 = 2:~p~>~q=1     [=] 3: q~>p  =1 = 4:~q=>~p =1
A’: 1: p~~>~q=0 =                [=]             = 4:~q~~>p =0                   
       ##            ##           |     ##            ##
B:  1: p~>q  =0 = 2:~p=>~q=0     [=] 3: q=>p  =0 = 4:~q~>~p =0
B’:             = 2:~p~~>q=1     [=] 3: q~~>~p=1
---------------------------------------------------------------
IP: p|=>q=~p*q  = ~p|~>~q=~p*q   [=]  q|~>p=q*~p = ~q|=>~p=q*~p
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
A1: p=>q=1 - prawdziwy A1 wymusza fałszywy kontrprzykład A1’ (i odwrotnie)
B2:~p=>~q=0 - fałszywy B2 wymusza prawdziwy kontrprzykład B2’ (i odwrotnie)
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Definicja podstawowa implikacji prostej p|=>q w logice dodatniej (bo q):
Kolumna A1B1:
Implikacja prosta p|=>q w logice dodatniej (bo q) to spełniony wyłącznie warunek wystarczający => między tymi samymi punktami i w tym samym kierunku.
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
stąd:
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) =1*~(0) = 1*1 =1

Definicja implikacji odwrotnej ~p|~>~q w logice ujemnej (bo ~q):
Kolumna A2B2:
Implikacja odwrotna ~p|~>~q w logice ujemnej (bo ~q) to spełniony wyłącznie warunek konieczny ~> między tymi samymi punktami i w tym samym kierunku
A2: ~p~>~q =1 - zajście ~p jest (=1) konieczne ~> dla zajścia ~q
B2:~p=>~q =0 - zajście ~p nie jest (=0) wystarczające => dla zajścia ~q
Stąd:
A2B2: ~p|~>~q = (A2: ~p~>~q)*~(B2:~p=>~q)=1*~(0)=1*1=1

Matematycznie zachodzi tożsamość logiczna:
A1B1: p|=>q = A2B2:~p|~>~q
Dowód:
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) = (A2: ~p~>~q)*~(B2: ~p=>~q) = A2B2: ~p|~>~q
bo prawa Kubusia:
A1: p=>q = A2: ~p~>~q
B1: p~>q = B2: ~p=>~q
cnd

Dowód matematycznie tożsamy.

Definicja warunku wystarczającego p=>q:
p=>q = ~p+q
##
Definicja warunku koniecznego p~>q:
p~>q = p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Stąd mamy:
A1B1:
Implikacja prosta p|=>q w logice dodatniej (bo q):
A1: p=>q =1
B1: p~>q =0
p|=>q = (A1: p=>q)*~(B1: p~>q) = (~p+q)*~(p+~q) = (~p+q)*(~p*q) = ~p*q
p|=>q = ~p*q

A2B2:
Implikacja odwrotna ~p|~>~q w logice ujemnej (bo ~q):
A2:~p~>~q =1
B2: ~p=>~q =0
~p|~>~q = (A2: ~p~>~q)*~(B2:~p=>~q)= (~p+q)*~(p+~q) = (~p+q)*(~p*q) = ~p*q
~p~>~q = ~p*q

Stąd mamy logiczną tożsamość:
p|=>q = ~p|~>~q = ~p*q

Definicja tożsamości logicznej „=”:
Prawdziwość dowolnej strony tożsamości logicznej „=” wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej „=” wymusza fałszywość drugiej strony

Innymi słowy:
Udowodnienie iż dany układ spełnia definicję implikacji prostej p|=>q w logice dodatniej (bo q) jest tożsame z udowodnieniem iż ten sam układ spełnia definicję implikacji odwrotnej ~p|~>~q w logice ujemnej (bo ~q) … (albo odwrotnie)

Warto zapamiętać różnicę:
Definicja warunku wystarczającego p=>q:
A1: p=>q = ~p+q
##
Definicja implikacji prostej p|=>q:
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) =~p*q
##
Definicja warunku koniecznego p~>q:
B1: p~>q = p+~q
Gdzie:
## - różne na mocy definicji ##

Definicja znaczka różne na mocy definicji ## dla funkcji logicznych:
Dwie funkcje logiczne są różne na mocy definicji ## wtedy i tylko wtedy gdy nie są tożsame i żadna z nich nie jest zaprzeczeniem drugiej

Weźmy nasze funkcje logiczne A1, A1B1 i B1:
Kod:

 A1:  Y= (p=>q)=~p+q  ##  A1B1:  Y=(p|=>q)=~p*q  ##  B1:  Y=(p~>q) =p+~q
      #                          #                         #
~A1: ~Y=~(p=>q)= p*~q ## ~A1B1: ~Y=~(p|=>q)=p+~q ## ~B1: ~Y=~(p~>q)=~p*q
Gdzie:
# - różne w znaczeniu iż jedna strona jest negacją drugiej strony
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Doskonale widać, że dowolna funkcja z jednej strony znaczka różne na mocy definicji ## nie jest tożsama z funkcją po przeciwnej stronie ani też nie jest jej zaprzeczeniem.

Zauważmy ciekawostkę:
Bez wprowadzenia do logiki matematycznej funkcji logicznej Y, mielibyśmy fałszywą tożsamość logiczną [=]:
A1B1: ~p*q [=] ~B1: ~p*q
Po wprowadzeniu do logiki matematycznej funkcji logicznej Y powyższa, fałszywa tożsamość logiczna [=] jest zabijana:
A1B1: Y=(p|=>q)=~p*q ## ~B1: ~Y=~(p~>q) =~p*q
Gdzie:
## - różne na mocy definicji
cnd

2.2.1 Implikacje tożsame dla punktu odniesienia p|=>q

Kod:

T2
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji prostej p|=>q
Kolumna A1B1 to punkt odniesienia:
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
       A1B1:         A2B2:        |     A3B3:         A4B4:
A:  1: p=>q  =1 = 2:~p~>~q=1     [=] 3: q~>p  =1 = 4:~q=>~p =1
A’: 1: p~~>~q=0 =                [=]             = 4:~q~~>p =0                   
       ##            ##           |     ##            ##
B:  1: p~>q  =0 = 2:~p=>~q=0     [=] 3: q=>p  =0 = 4:~q~>~p =0
B’:             = 2:~p~~>q=1     [=] 3: q~~>~p=1
---------------------------------------------------------------
IP: p|=>q=~p*q  = ~p|~>~q=~p*q   [=]  q|~>p=q*~p = ~q|=>~p=q*~p
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
A1: p=>q=1 - prawdziwy A1 wymusza fałszywy kontrprzykład A1’ (i odwrotnie)
B2:~p=>~q=0 - fałszywy B2 wymusza prawdziwy kontrprzykład B2’ (i odwrotnie)
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

W tabeli T2 możemy wyróżnić następujące implikacje:

A1B1:
Punkt odniesienia:
Implikacja prosta p|=>q w logice dodatniej (bo q):

Implikacja prosta p|=>q w logice dodatniej (bo q) to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 - zajście p jest (=1) warunkiem wystarczającym => dla zajścia q
B1: p~>q =0 - zajście p nie jest (=0) warunkiem koniecznym ~> dla zajścia q
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
Definicje znaczków => i ~> dla potrzeb rachunku zero-jedynkowego:
p=>q = ~p+q
p~>q = p+~q
stąd:
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) = (~p+q)*~(p+~q) = (~p+q)*(~p*q) = ~p*q
A1B1: p|=>q = ~p*q
Poniższe nazwy implikacji tożsamych odnoszą się do punktu odniesienia A1B1: p|=>q:

[=]

A2B2:
Implikacja odwrotna ~p|~>~q w logice ujemnej (bo ~q) w stosunku do A1B1:

Implikacja odwrotna ~p|~>~q w logice ujemnej (bo ~q) to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A2: ~p~>~q =1 - zajście ~p jest (=1) warunkiem koniecznym ~> dla zajścia ~q
B2: ~p=>~q =0 - zajście ~p nie jest (=0) warunkiem wystarczającym => dla zajścia ~q
A2B2: ~p|~>~q = (A2: ~p~>~q)*~(B2: ~p=>~q) =1*~(0)=1*1 =1
Definicje znaczków => i ~> dla potrzeb rachunku zero-jedynkowego:
p=>q = ~p+q
p~>q = p+~q
stąd:
A2B2: ~p|~>~q = (A2: ~p~>~q)*~(B2: ~p=>~q) = (~p+q)*~(p+~q) = (~p+q)*(~p*q)=~p*q
A2B2: ~p|~>~q = ~p*q

[=]

A3B3:
Implikacja odwrotna przeciwna q|~>p w logice dodatniej (bo p) w stosunku do A1B1:

Implikacja odwrotna przeciwna q|~>p w logice dodatniej (bo p) to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A3: q~>p =1 - zajście q jest (=1) konieczne ~> dla zajścia p
B3: q=>p =0 - zajście q nie jest (=0) wystarczające => dla zajścia p
A3B3: q|~>p = (A3: q~>p)*~(q=>p) = 1*~(0) =1*1 =1
Definicje znaczków => i ~> dla potrzeb rachunku zero-jedynkowego:
p=>q = ~p+q
p~>q = p+~q
stąd:
A3B3: q|~>p = (A3: q~>p)*~(B3: q=>p) = (q+~p)*~(~q+p) = (q+~p)*(q*~p) = q*~p
A3B3: q|~>p = q*~p

[=]

A4B4:
Implikacja prosta przeciwna ~q|=>~p w logice ujemnej (bo ~p) w stosunku do A1B1:

Implikacja prosta przeciwna ~q|=>~p w logice ujemnej (bo ~p) to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
A4: ~q=>~p =1 - zajście ~q jest (=1) wystarczające => dla zajścia ~p
B4: ~q~>~q =0 - zajście ~q nie jest (=0) konieczne ~> dla zajścia ~p
A4B4: ~q|=>~p = (A4: ~q=>~p)*~(B4: ~q~>~p) =1*~(0) =1*1 =1
Definicje znaczków => i ~> dla potrzeb rachunku zero-jedynkowego:
p=>q = ~p+q
p~>q = p+~q
stąd:
A4B4: ~q|=>~p = (A4: ~q=>~p)*~(B4: ~q~>~p) = (q+~p)*~(~q+p) = (q+~p)*(q*~p) = q*~p
A4B4: ~q|=>~p = q*~p

Na mocy tożsamości logicznych w wierszach w tabeli T2 zachodzą tożsamości logiczne [=] implikacji:
A1B1: p|=>q [=] A2B2: ~p|~>~q [=] A3B3: q|~>p [=] A4B4: ~q|=>~p
Gdzie:
[=] - tożsamość logiczna

Dokładnie to samo można udowodnić korzystając z definicji warunku wystarczającego => i koniecznego ~> wyrażonych spójnikami „i”(*) i „lub”(+) co wyżej zrobiono:
A1B1: p|=>q = A2B2: ~p|~>~q [=] A3B3: q|~>p = A4B4: ~q|=>~p = ~p*q

Warto zapamiętać różnicę między warunkiem wystarczającym p=>q:
A: p=>q = ~p+q
##
a implikacją prostą p|=>q:
A1B1: p|=>q = ~p*q
Gdzie:
## - różne na mocy definicji warunku wystarczającego p=>q i implikacji prostej p|=>q
p i q musi być wszędzie tymi samymi p i q.

2.3 Operator implikacji prostej p||=>q

W algebrze Kubusia w zbiorach zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>
Kod:

T2
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji prostej p|=>q
Kolumna A1B1 to punkt odniesienia:
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
       A1B1:         A2B2:        |     A3B3:         A4B4:
A:  1: p=>q  =1 = 2:~p~>~q=1     [=] 3: q~>p  =1 = 4:~q=>~p =1
A’: 1: p~~>~q=0 =                [=]             = 4:~q~~>p =0                   
       ##            ##           |     ##            ##
B:  1: p~>q  =0 = 2:~p=>~q=0     [=] 3: q=>p  =0 = 4:~q~>~p =0
B’:             = 2:~p~~>q=1     [=] 3: q~~>~p=1
---------------------------------------------------------------
IP: p|=>q=~p*q  = ~p|~>~q=~p*q   [=]  q|~>p=q*~p = ~q|=>~p=q*~p
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
A1: p=>q=1 - prawdziwy A1 wymusza fałszywy kontrprzykład A1’ (i odwrotnie)
B2:~p=>~q=0 - fałszywy B2 wymusza prawdziwy kontrprzykład B2’ (i odwrotnie)
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla udowodnienia, iż zdanie warunkowe „Jeśli p to q” wchodzi w skład implikacji prostej p|=>q potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Ax i fałszywość dowolnego zdania serii Bx.
Zauważmy, że nie ma znaczenia które zdanie będziemy brali pod uwagę, bowiem prawami logiki matematycznej (prawa Kubusia, prawa Tygryska i prawa kontrapozycji) zdanie to możemy zastąpić zdaniem logicznie tożsamym z kolumny A1B1.

Definicja operatora implikacji prostej p||=>q:
Definicja operatora implikacji prostej p||=>q to złożenie implikacji prostej p|=>q w logice dodatniej (bo q) zdefiniowanej w kolumnie A1B1 oraz implikacji odwrotnej ~p|~>~q w logice ujemnej (bo ~q) zdefiniowanej w kolumnie A2B2.

Innymi słowy:
Operator implikacji prostej p||=>q to odpowiedź na dwa pytania 1 i 2:

1.
Co może się wydarzyć jeśli zajdzie p (p=1)?

Odpowiedź mamy w kolumnie A1B1:
Jeśli zajdzie p (p=1) to mamy gwarancję matematyczną => iż zajdzie q (q=1) - mówi o tym zdanie A1
A1.
Jeśli zajdzie p (p=1) to na 100% => zajdzie q (q=1)
p=>q =1
co w logice jedynek oznacza:
(p=1)=>(q=1)=1
Czytamy:
p=1 - prawdą jest (=1) że zajdzie p
q=1 - prawdą jest (=1) że zajdzie q
Zajście p jest (=1) wystarczające => dla zajścia q
Zajście p daje nam (=1) gwarancję matematyczną => zajścia q
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>
Prawdziwy warunek wystarczający A1 wymusza fałszywość kontrprzykładu A1’ (i odwrotnie)
A1’.
Jeśli zajdzie p (p=1) to może ~~> zajść ~q (~q=1)
p~~>~q = p*~q=0
co w logice jedynek oznacza:
(p=1)~~>(~q=1)=(p=1)*(~q=1)=0
Czytamy:
p=1 = prawdą jest (=1) że zajdzie p
~q=1 - prawdą jest (=1), że zajdzie ~q
Zdarzenia:
Niemożliwe jest (=0) zdarzenie ~~>: zajdzie p i zajdzie ~q
Zbiory:
Nie istnieje (=0) element wspólny zbiorów ~~>: p i ~q

1.
Co może się wydarzyć jeśli zajdzie ~p (~p=1)?

Odpowiedź mamy w kolumnie A2B2:
Jeśli zajdzie ~p to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” - mówią o tym zdania A2 i B2’
Prawo Kubusia:
A1: p=>q = A2: ~p~>~q
Po udowodnieniu prawdziwości A1 nie musimy dowodzić prawdziwości A2, gwarantuje nam to prawo Kubusia.
A2.
Jeśli zajdzie ~p (~p=1) to może ~> zajść ~q (~q=1)
~p~>~q =1
co w logice jedynek oznacza:
~p=1 - prawdą jest (=1) że zajdzie ~p
~q=1 - prawdą jest (=1) że zajdzie ~q
Zajście ~p jest konieczne ~> dla zajścia ~q, bo jak zajdzie p to na 100% => zajdzie q
Prawo Kubusia samo nam tu wyskoczyło:
A2: ~p~>~q = A1: p=>q

LUB

Kontrprzykład B2’ dla fałszywego warunku wystarczającego B2 musi być prawdą:
B2’.
Jeśli zajdzie ~p (~p=1) to może ~~> zajść q (q=1)
~p~~>q = ~p*q =1
co w logice jedynek oznacza:
(~p=1)~~>(q=1) = (~p=1)*(q=1) =0
Czytamy:
~p=1 - prawdą jest (=1) że zajdzie ~p
q=1 - prawdą jest (=1) że zajdzie q
Zdarzenia:
Możliwe jest (=1) zdarzenie ~~>: zajdzie ~p i zajdzie q
Zbiory:
Istnieje (=1) element wspólny zbiorów ~~>: ~p i q

2.3.1 Zero-jedynkowa definicja warunku wystarczającego p=>q

Zapiszmy skróconą tabelę prawdy operatora implikacji prostej p||=>q przedstawioną wyżej:
Kod:

T3:
Analiza symboliczna                              |Co w logice
operatora implikacji prostej p||=>q              |jedynek oznacza
A1:  p=> q =1 - zajście p wystarcza => dla q     |( p=1)=> ( q=1)=1
A1’: p~~>~q=0 - kontrprzykład dla A1 musi być 0  |( p=1)~~>(~q=1)=0
A2: ~p~>~q =1 - ~p jest konieczne ~> dla ~q      |(~p=1)~> (~q=1)=1
B2’:~p~~>q =1 - kontrprzykład dla B2 musi być 1  |(~p=1)~~>( q=1)=1
     a   b  c                                       d        e    f

Definicja implikacji prostej p|=>q w logice dodatniej (bo q):[/b]
Kolumna A1B1:
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
p|=>q = (A1: p=>q)*~(B1: p~>q) =1*~(0)=1*1 =1
W definicji implikacji prostej p|=>q mamy prawdziwy wyłącznie warunek wystarczający A1: p=>q, zatem tylko ten warunek możemy tu przyjąć za punkt odniesienia.

Innymi słowy:
Z tabeli T3 możemy wyprowadzić zero-jedynkową definicję warunku wystarczającego A1: p=>q kodując analizę symboliczną względem linii A1.
Przyjmijmy za punkt odniesienia warunek wystarczający => widoczny w linii A1:
A1: p=>q =1
Jedyne prawo Prosiaczka jakie będzie nam potrzebne do wygenerowania zero-jedynkowej definicji warunku wystarczającego to:
(~x=1)=(x=0)
bo zgodnie z przyjętym punktem odniesienia A1 wszystkie sygnały musimy sprowadzić do postaci niezanegowanej (bo x).
Kod:

T4:
Definicja zero-jedynkowa warunku wystarczającego A1: p=>q
w logice dodatniej (bo q)
Analiza       |Co w logice       |Kodowanie dla     |Zero-jedynkowa
symboliczna   |jedynek oznacza   |A1: p=>q =1       |definicja =>
              |                  |                  | p  q  A1: p=>q
A1:  p=> q =1 |( p=1)=> ( q=1)=1 |( p=1)=> ( q=1)=1 | 1=>1       =1
A1’: p~~>~q=0 |( p=1)~~>(~q=1)=0 |( p=1)~~>( q=0)=0 | 1=>0       =0
A2: ~p~>~q =1 |(~p=1)~> (~q=1)=1 |( p=0)~> ( q=0)=1 | 0=>0       =1
B2’:~p~~>q =1 |(~p=1)~~>( q=1)=1 |( p=0)~~>( q=1)=1 | 0=>1       =1
     a   b  c    d        e    f    g        h    i   1  2        3
                                 |Prawa Prosiaczka  |
                                 |(~p=1)=( p=0)     |
                                 |(~q=1)=( q=0)     |

Nagłówek A1: p=>q w kolumnie wynikowej 3 w tabeli zero-jedynkowej 123 wskazuje linię A1: w tabeli symbolicznej abc względem której dokonano kodowania zero-jedynkowego.
Tabela zero-jedynkowa 123 nosi nazwę zero-jedynkowej definicji warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego.

Definicja implikacji odwrotnej ~p|~>~q w logice ujemnej (bo ~q):[/b]
Kolumna A2B2:
A2: ~p~>~q =1 - zajście ~p jest (=1) konieczne ~> dla zajścia ~q
B2: ~p=>~q =0 - zajście ~p nie jest (=0) wystarczające => dla zajścia ~q
~p|~>~q = (A2: ~p~>~q)*~(B2: ~p=>~q)=1*~(0)=1*1 =1
W definicji implikacji odwrotnej ~p|~>~q mamy prawdziwy wyłącznie warunek konieczny A2: ~p~>~q, zatem tylko ten warunek możemy tu przyjąć za punkt odniesienia.

Innymi słowy:
Przyjmijmy za punkt odniesienia linię A2 i wygenerujmy tabelę zero-jedynkową warunku koniecznego ~>:
A2:~p~>~q =1
Jedyne prawo Prosiaczka jakie będzie tu nam potrzebne to:
(x=1)=(~x=0)
bo zgodnie z przyjętym punktem odniesienia A2 wszystkie sygnały musimy sprowadzić do postaci zanegowanej (bo ~x).
Kod:

T5:
Definicja zero-jedynkowa warunku koniecznego A2:~p~>~q
w logice ujemnej (bo ~q)
Analiza       |Co w logice       |Kodowanie dla     |Zero-jedynkowa
symboliczna   |jedynek oznacza   |A2:~p~>~q =1      |definicja ~>
              |                  |                  |~p ~q A2:~p~>~q
A1:  p=> q =1 |( p=1)=> ( q=1)=1 |(~p=0)=> (~q=0)=1 | 0~>0      =1
A1’: p~~>~q=0 |( p=1)~~>(~q=1)=0 |(~p=0)~~>(~q=1)=0 | 0~>1      =0
A2: ~p~>~q =1 |(~p=1)~> (~q=1)=1 |(~p=1)~> (~q=1)=1 | 1~>1      =1
B2’:~p~~>q =1 |(~p=1)~~>( q=1)=1 |(~p=1)~~>(~q=0)=1 | 1~>0      =1
     a   b  c    d        e    f    g        h    i   1  2       3
                                 |Prawa Prosiaczka  |
                                 |( p=1)=(~p=0)     |
                                 |( q=1)=(~q=0)     |

Nagłówek A2:~p~>~q w kolumnie wynikowej 3 w tabeli zero-jedynkowej 123 wskazuje linię A2: w tabeli symbolicznej abc względem której dokonano kodowania zero-jedynkowego.
Tabela zero-jedynkowa 123 nosi nazwę zero-jedynkowej definicji warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego.

Zauważmy, że analiza symboliczna (abc) w tabelach T4 i T5 jest identyczna, dzięki czemu z tożsamości kolumn wynikowych 3 w tabelach T4 i T5 wnioskujemy o zachodzącym prawie Kubusia.
Prawo Kubusia:
T4: p=>q = T5: ~p~>~q

Dokładnie ten sam dowód możemy wykonać w rachunku zero-jedynkowym korzystając z zero-jedynkowej definicji warunku wystarczającego => (T4: 123) i koniecznego ~> (T5: 123).
Oto on:
Kod:

Zero-jedynkowa definicja warunku wystarczającego =>
   p  q  p=>q
A: 1=>1  =1
B: 1=>0  =0
C: 0=>0  =1
D: 0=>1  =1

Kod:

Zero-jedynkowa definicja warunku koniecznego ~>
   p  q  p~>q
A: 1~>1  =1
B: 1~>0  =1
C: 0~>0  =1
D: 0~>1  =0

Stąd mamy:
Kod:

T6
Dowód prawa Kubusia w rachunku zero-jedynkowym:
p=>q = ~p~>~q
     p  q  p=>q ~p ~q ~p~>~q
A1:  1=>1  =1    0~>0   =1
A1’: 1=>0  =0    0~>1   =0
A2:  0=>0  =1    1~>1   =1
B2’: 0=>1  =1    1~>0   =1
     1  2   3    4  5    6

Tożsamość kolumn wynikowych 3=6 jest dowodem formalnym prawa Kubusia.
Prawo Kubusia:
p=>q = ~p~>~q
Uwaga:
Warunkiem koniecznym wnioskowania o tożsamości kolumn wynikowych 3=6 jest identyczna matryca zero-jedynkowa na wejściach p i q.
Matematycznie wiersze 456 można dowolnie przestawiać względem wierszy 123, ale wtedy wnioskowanie o zachodzącym prawie Kubusia będzie dużo trudniejsze - udowodnił to Makaron Czterojajeczny w początkach rozszyfrowywania algebry Kubusia.
Problem można tu porównać do tabliczki mnożenia do 100. Porządna tablica spotykana w literaturze jest zawsze ładnie uporządkowana. Dowcipny uczeń może jednak zapisać poprawną tabliczkę mnożenia do 100 w sposób losowy, byleby zawierała wszystkie przypadki. Pani matematyczka, od strony czysto matematycznej nie ma prawa zarzucić uczniowi iż nie zna się na matematyce, wręcz przeciwnie, doskonale wie o co tu chodzi a dowodem tego jest jego bałaganiarski dowcip.

Prawo Kubusia:
p=>q = ~p~>~q
Prawo Kubusia można też dowieść przy pomocy definicji warunku wystarczającego => i koniecznego ~> w spójnikach „i”(*) i „lub”(+)

Definicja warunku wystarczającego p=>q w spójnikach „i”(*) i „lub”(+):
p=>q = ~p+q
Definicja warunku koniecznego p~>q w spójnikach „i”(*) i „lub”(+):
p~>q = p+~q

Stąd mamy:
~p~>~q = ~p+~(~q) = ~p+q = p=>q
cnd

Prawo Kubusia to tożsamość logiczna „=”:
p=>q = ~p~>~q

Definicja tożsamości logicznej „=”:
Prawdziwość dowolnej strony tożsamości logicznej „=”wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej „=” wymusza fałszywość drugiej strony

Z powyższego wynika, że definicja tożsamości logicznej „=” jest tożsama ze spójnikiem równoważności „wtedy i tylko wtedy” <=>

Wniosek:
Tożsamość logiczna „=” jest de facto spójnikiem równoważności p<=>q o definicji:
Kod:

Zero-jedynkowa definicja równoważności <=>
   p   q p<=>q
A: 1<=>1  =1
B: 1<=>0  =0
C: 0<=>0  =1
D: 0<=>1  =0

Fakt ten możemy wykorzystać w naszym zero-jedynkowym dowodzie prawa Kubusia wyżej w następujący sposób.
Kod:

Dowód zero-jedynkowy prawa Kubusia:
p=>q = ~p~>~q
     p  q  p=>q ~p ~q ~p~>~q (p=>q)<=>(~p~>~q)
A1:  1=>1  =1    0~>0   =1          =1
A1’: 1=>0  =0    0~>1   =0          =1
A2:  0=>0  =1    1~>1   =1          =1
B2’: 0=>1  =1    1~>0   =1          =1
     1  2   3    4  5    6           7

Same jedynki w kolumnie 7 również są dowodem formalnym poprawności prawa Kubusia:
p=>q = ~p~>~q

2.4 Opis tabeli zero-jedynkowej równaniami algebry Boole’a

Algebra Boole’a akceptuje wyłącznie pięć znaczków: {0, 1, „nie”(~), „i”(*), „lub”(+)}

Weźmy wyprowadzoną wyżej zero-jedynkową definicję warunku wystarczającego p=>q
Kod:

Zero-jedynkowa definicja warunku wystarczającego =>
   p  q Y=(p=>q)
A: 1=>1  =1
B: 1=>0  =0
C: 0=>0  =1
D: 0=>1  =1

Przypomnijmy sobie punkt 2.2.

Definicja pełnej tabeli zero-jedynkowej:
Pełna tabela zero-jedynkowa układu logicznego (bramka logiczna) to zero-jedynkowy zapis wszystkich sygnałów wejściowych w postaci niezanegowanej (p, q, r..) i zanegowanej (~p, ~q, ~r..) oraz zapis wyjścia Y również w postaci niezanegowanej (Y) i zanegowanej (~Y).

Algorytm przejścia z dowolnej tabeli zero-jedynkowej do jej opisu w spójnikach „i”(*) i „lub”(+):
1.
Zapisujemy wszelkie zmienne po stronie wejścia p i q w postaci niezanegowanej i zanegowanej.
Do wyjścia Y również dopisujemy postać zanegowaną ~Y
2.
W powstałej tabeli tworzymy równania cząstkowe dla wszystkich linii.
2A.
W logice jedynek opisujemy wyłącznie jedynki gdzie w poziomie używamy spójnika „i”(*) zaś w pionie spójnika „lub”(+)
Logika jedynek prowadzi do równań alternatywno-koniunkcyjnych zgodnych z naturalną logika matematyczną człowieka, co oznacza, że będą one rozumiane w języku potocznym przez wszystkich ludzi, od 5-cio latka poczynając.
2B.
W logice zer opisujemy wyłącznie zera gdzie w poziomie używamy spójnika „lub”(+) zaś w pionie spójnika „i”(*)
Logika zer prowadzi do równań koniunkcyjno-alternatywnych totalnie niezrozumiałych w języku potocznym. Z tego względu logiką zer nie będziemy się zajmowali.

2.4.1 Dziedzina matematyczna i fizyczna

Kod:

Zero-jedynkowa definicja warunku wystarczającego =>
   p  q Y=(p=>q)
A: 1  1  =1
B: 1  0  =0
C: 0  0  =1
D: 0  1  =1


Definicja pełnej tabeli zero-jedynkowej:
Pełna tabela zero-jedynkowa układu logicznego (bramka logiczna) to zero-jedynkowy zapis wszystkich sygnałów wejściowych w postaci niezanegowanej (p, q, r..) i zanegowanej (~p, ~q, ~r..) oraz zapis wyjścia Y również w postaci niezanegowanej (Y) i zanegowanej (~Y).

Opis dowolnej tabeli zero-jedynkowej równaniami algebry Boole’a:
W logice jedynek w pełnej tabeli zero-jedynkowej opisujemy wyłącznie jedynki gdzie w poziomie używamy spójnika „i”(*) zaś w pionie spójnika „lub”(+)
Logika jedynek prowadzi do równań alternatywno-koniunkcyjnych zgodnych z naturalną logika matematyczną człowieka, co oznacza, że będą one rozumiane w języku potocznym przez wszystkich ludzi, od 5-cio latka poczynając.

Zastosujmy logikę jedynek do naszej tabeli warunku wystarczającego Y = (p=>q):
Kod:

T2
Wyprowadzenie równań algebry Boole’a dla funkcji logicznych Y i ~Y
Gdzie:
Y = (p=>q) - zero-jedynkowa definicja warunku wystarczającego =>
Pełna definicja     |Co w logice jedynek |Równania
zero-jedynkowa Y    |oznacza             |cząstkowe
                    |                    |
   p  q ~p ~q  Y ~Y |                    |
A: 1  1  0  0 =1 =0 | Ya=1<=> p=1 i  q=1 | Ya= p~~> q= p* q
B: 1  0  0  1 =0 =1 |~Yb=1<=> p=1 i ~q=1 |~Yb= p~~>~q= p*~q
C: 0  0  1  1 =1 =0 | Yc=1<=>~p=1 i ~q=1 | Yc=~p~~>~q=~p*~q
D: 0  1  1  0 =1 =0 | Yd=1<=>~p=1 i  q=1 | Yd=~p~~> q=~p* q
   1  2  3  4  5  6   a       b      c     d   e    f  g  h

Definicja dziedziny matematycznej D:
Dziedzina matematyczna to suma logiczna wszystkich możliwych funkcji cząstkowych
D = Y+~Y
Gdzie:
Y = Ya+Yc+Yd
Y = A: p*q + C:~p*~q + D:~p*q
Zaś:
~Y=~Yb
~Y = B: p*~q
Stąd suma logiczna wszystkich możliwych funkcji cząstkowych to:
D = Y+~Y = Ya+~Yb+Yc+Yd
D = A: p*q + B: p*~q + C: ~p*~q + D: ~p*q
Minimalizujemy:
Y = p*q + p*~q + ~p*~q + ~p*q
Y = p*(q+~q)+~p*(~q+q)
Y = p+~p=1

Zauważmy, że jeśli znamy dowolną funkcję logiczną Y to automatycznie znamy zaprzeczenie tej funkcji ~Y (albo odwrotnie).
W każdym przypadku otrzymamy równanie dziedziny matematycznej D:
D = Y+~Y =1

W ogólnym przypadku w definicji dziedziny matematycznej D interesuje nas która część dziedziny matematycznej należy do funkcji logicznej Y a która do ~Y.
Matematycznie dla dwóch zmiennych p i q otrzymamy 16 różnych funkcji logicznych Y, definiujących 16 różnych definicji spójników logicznych.
Definicje tych spójników i ich szczegółowy zapis znajdziemy w punkcie 2.11.

Właściwości dziedziny matematycznej:
D = A: p*q + B: p*~q + C: ~p*~q + D: ~p*q
Wszystkie funkcje cząstkowe A, B, C i D dziedziny matematycznej D są wzajemnie rozłączne i uzupełniają się do dziedziny
1.
Wszystkie funkcje logiczne cząstkowe A, B, C i D są wzajemnie rozłączne.
Dowód:
A*B = (p*q)*(p*~q) =[] =0
A*C= (p*q)*(~p*~q) =[] =0
A*D=(p*q)*(~p*q) =[] =0
B*C=(p*~q)*(~p*~q) =[] =0
B*D = (p*~q)*(~p*q) =[] =0
C*D = (~p*~q)*(~p*q) =[] =0
cnd
2.
Funkcje cząstkowe A, B, C i D uzupełniają się wzajemnie do dziedziny matematycznej D:
D = A: p*q + B: p*~q + C: ~p*~q + D: ~p*q
Minimalizujemy:
Y = p*q + p*~q + ~p*~q + ~p*q
Y = p*(q+~q)+~p*(~q+q)
Y = p+~p=1
cnd

Definicja dziedziny fizycznej DF:
Dziedzina fizyczna DF to część dziedziny matematycznej D opisana funkcją logiczną Y.

Nasz przykład:
Y = (p=>q)
Y = Ya+Yc+Yd
Y= A: p*q + C: ~p*~q + D: ~p*q
co w logice jedynek oznacza:
Y=1 <=> A: p=1 i q=1 lub C: ~p=1 i ~q=1 lub D: ~p=1 i q=1
Po minimalizacji mamy:
Y = (p=>q) = ~p+q

Oczywiście znając funkcję logiczną Y znamy też funkcję logiczną ~Y która powstaje przez dwustronną negację funkcji Y:
~Y=~(p=>q)
~Y = ~(~p+q) = p*~q - na mocy prawa De Morgana
czyli:
~Y = B: p*~q
co w logice jedynek oznacza:
~Y=1 <=> B: p=1 i ~q=1

Domyślny punkt odniesienia w dziedzinie fizycznej DF w teorii zdarzeń:
W logice matematycznej w świecie martwym, domyślnym punktem odniesienia jest funkcja logiczna Y definiująca zdarzenia możliwe ~~> uzupełniające się wzajemnie do dziedziny fizycznej DF.

Domyślny punkt odniesienia w dziedzinie fizycznej DF w teorii zbiorów:
W logice matematycznej w świecie martwym, domyślnym punktem odniesienia jest funkcja logiczna Y definiująca zbiory niepuste i rozłączne uzupełniające się wzajemnie do dziedziny fizycznej DF.

2.4.2 Operator implikacji prostej p||=>q w zdarzeniach możliwych ~~>

Kod:

Zero-jedynkowa definicja warunku wystarczającego =>
   p  q Y=(p=>q)
A: 1  1  =1
B: 1  0  =0
C: 0  0  =1
D: 0  1  =1

Definicja pełnej tabeli zero-jedynkowej:
Pełna tabela zero-jedynkowa układu logicznego (bramka logiczna) to zero-jedynkowy zapis wszystkich sygnałów wejściowych w postaci niezanegowanej (p, q, r..) i zanegowanej (~p, ~q, ~r..) oraz zapis wyjścia Y również w postaci niezanegowanej (Y) i zanegowanej (~Y).

Opis dowolnej tabeli zero-jedynkowej równaniami algebry Boole’a:
W logice jedynek w pełnej tabeli zero-jedynkowej opisujemy wyłącznie jedynki gdzie w poziomie używamy spójnika „i”(*) zaś w pionie spójnika „lub”(+)
Logika jedynek prowadzi do równań alternatywno-koniunkcyjnych zgodnych z naturalną logika matematyczną człowieka, co oznacza, że będą one rozumiane w języku potocznym przez wszystkich ludzi, od 5-cio latka poczynając.

Zastosujmy logikę jedynek do naszej tabeli warunku wystarczającego Y = (p=>q):
Kod:

T2
Wyprowadzenie równań algebry Boole’a dla funkcji logicznych Y i ~Y
Gdzie:
Y = (p=>q) - zero-jedynkowa definicja warunku wystarczającego =>
Pełna definicja     |Co w logice jedynek |Równania
zero-jedynkowa Y    |oznacza             |cząstkowe
                    |                    |
   p  q ~p ~q  Y ~Y |                    |
A: 1  1  0  0 =1 =0 | Ya=1<=> p=1 i  q=1 | Ya= p~~> q= p* q
B: 1  0  0  1 =0 =1 |~Yb=1<=> p=1 i ~q=1 |~Yb= p~~>~q= p*~q
C: 0  0  1  1 =1 =0 | Yc=1<=>~p=1 i ~q=1 | Yc=~p~~>~q=~p*~q
D: 0  1  1  0 =1 =0 | Yd=1<=>~p=1 i  q=1 | Yd=~p~~> q=~p* q
   1  2  3  4  5  6   a       b      c     d   e    f  g  h

W teorii zdarzeń spójnik „i”(*) definiuje zdarzenia możliwe ~~>:
p~~>q=p*q =1 - wtedy i tylko wtedy gdy możliwe jest jednoczesne zajście zdarzeń p i q
Inaczej:
p~~>q=p*q=0
Nic więcej spójnik „i”(*) nie może definiować na mocy jego definicji, jak wyżej.

Z tabeli równań cząstkowych odczytujemy:
Y = Ya+Yc+Yd
Po rozwinięciu mamy funkcję logiczną Y definiującą sumę logiczną zdarzeń rozłącznych uzupełniających się do dziedziny fizycznej DF.
1.
Kiedy zajdzie Y (Y=1)?
Y = A: p*q + C: ~p*~q + D: ~p*q
co w logice jedynek oznacza:
Y=1 <=> A: p=1 i q=1 lub C: ~p=1 i ~q=1 lub D: ~p=1 i q=1

Z tabeli równań cząstkowych odczytujemy:
~Y=~Yb
Po rozwinięciu mamy funkcję logiczną ~Y definiującą zdarzenie niemożliwe (~Y=1).
2.
Kiedy zajdzie ~Y (~Y=1)?
~Y = B: p*~q
co w logice jedynek oznacza:
~Y=1 <=> B: p=1 i ~q=1

Jak widzimy, logika jedynek prowadzi do równań alternatywno-koniunkcyjnych (tu Y) lub do postaci koniunkcyjnej (tu ~Y) doskonale rozumianych przez człowieka, od 5-cio latka poczynając.

Definicja operatora implikacji prostej p||=>q wyrażona spójnikami „i”(*) i „lub”(+) to odpowiedź na dwa pytania 1 i 2:

1.
Które zdarzenia w funkcji logicznej Y=(p=>q) są możliwe ~~> (Y=1)?
Innymi słowy:
Kiedy warunek wystarczający p=>q będzie spełniony (p=>q)=1?


Z tabeli równań cząstkowych odczytujemy:
Y = Ya+Yc+Yd
Po rozwinięciu mamy funkcję logiczną Y definiującą sumę logiczną możliwych zdarzeń rozłącznych uzupełniających się wzajemnie do dziedziny fizycznej DF.
Y = A: p*q + C: ~p*~q + D: ~p*q
co w logice jedynek oznacza:
Y=1 <=> A: p=1 i q=1 lub C: ~p=1 i ~q=1 lub D: ~p=1 i q=1

Czytamy:
Zdarzenia możliwe (Y=1) to:
Ya=A: p*q =1*1=1 - możliwe jest (Ya=1) zdarzenie: zajdzie p (p=1) i zajdzie q (q=1)
LUB
Yc=C: ~p*~q=1*1=1 - możliwe jest (Yc=1) zdarzenie: zajdzie ~p (~p=1) i zajdzie ~q (~q=1)
LUB
Yd = D: ~p*q =1*1=1 - możliwe jest (Yd=1) zdarzenie: zajdzie ~p (~p=1) i zajdzie q (q=1)
Gdzie:
Funkcja logiczna Y jest sumą logiczną funkcji cząstkowych:
Y = Ya+Yc+Yd

2.
Które zdarzenia w funkcji logicznej Y=(p=>q) nie są możliwe ~~> (~Y=1)?
Innymi słowy:
Kiedy warunek wystarczający p=>q nie będzie spełniony ~(p=>q)=1?


Z tabeli równań cząstkowych odczytujemy:
~Y=~Yb
Po rozwinięciu mamy funkcję logiczną ~Y definiującą zdarzenie niemożliwe (~Y=1):
~Y = B: p*~q
co w logice jedynek oznacza:
~Y=1 <=> B: p=1 i ~q=1

Czytamy:
Zdarzenia niemożliwe (~Y=1) to:
~Y = B: p*~q =1*1 =1 - niemożliwe jest (~Y=1) zdarzenie: zajdzie p (p=1) i nie zajdzie q (~q=1)
Innymi słowy:
Prawdą jest (=1), że nie jest możliwe (~Y) zdarzenie: zajdzie p (p=1) i nie zajdzie q (~q=1)

Prawo Prosiaczka:
(~Y=1) = (Y=0)
stąd mamy zdanie tożsame:
Y=0 <=> B: p=1 i ~q=1
Czytamy:
Fałszem jest (=0) że możliwe jest zdarzenie (Y): zajdzie p (p=1) i nie zajdzie q (~q=1)

Zapis tożsamy w algebrze Kubusia:
Y= B: p*~q =1*1 =0
Czytamy:
Fałszem jest (=0) że możliwe jest zdarzenie (Y): zajdzie p (p=1) i nie zajdzie q (~q=1)

Znaczenie symboli:
Y - jest możliwe
~Y - nie jest (~) możliwe

2.4.3 Operator implikacji prostej p||=>q w elementach wspólnych zbiorów ~~>

Kod:

Zero-jedynkowa definicja warunku wystarczającego =>
   p  q Y=(p=>q)
A: 1  1  =1
B: 1  0  =0
C: 0  0  =1
D: 0  1  =1

Definicja pełnej tabeli zero-jedynkowej:
Pełna tabela zero-jedynkowa układu logicznego (bramka logiczna) to zero-jedynkowy zapis wszystkich sygnałów wejściowych w postaci niezanegowanej (p, q, r..) i zanegowanej (~p, ~q, ~r..) oraz zapis wyjścia Y również w postaci niezanegowanej (Y) i zanegowanej (~Y).

Opis dowolnej tabeli zero-jedynkowej równaniami algebry Boole’a:
W logice jedynek w pełnej tabeli zero-jedynkowej opisujemy wyłącznie jedynki gdzie w poziomie używamy spójnika „i”(*) zaś w pionie spójnika „lub”(+)
Logika jedynek prowadzi do równań alternatywno-koniunkcyjnych zgodnych z naturalną logika matematyczną człowieka, co oznacza, że będą one rozumiane w języku potocznym przez wszystkich ludzi, od 5-cio latka poczynając.

Zastosujmy logikę jedynek do naszej tabeli warunku wystarczającego Y = (p=>q):
Kod:

T2
Wyprowadzenie równań algebry Boole’a dla funkcji logicznych Y i ~Y
Gdzie:
Y = (p=>q) - zero-jedynkowa definicja warunku wystarczającego =>
Pełna definicja     |Co w logice jedynek |Równania
zero-jedynkowa Y    |oznacza             |cząstkowe
                    |                    |
   p  q ~p ~q  Y ~Y |                    |
A: 1  1  0  0 =1 =0 | Ya=1<=> p=1 i  q=1 | Ya= p~~> q= p* q
B: 1  0  0  1 =0 =1 |~Yb=1<=> p=1 i ~q=1 |~Yb= p~~>~q= p*~q
C: 0  0  1  1 =1 =0 | Yc=1<=>~p=1 i ~q=1 | Yc=~p~~>~q=~p*~q
D: 0  1  1  0 =1 =0 | Yd=1<=>~p=1 i  q=1 | Yd=~p~~> q=~p* q
   1  2  3  4  5  6   a       b      c     d   e    f  g  h

W algebrze Kubusia zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

W teorii zbiorów spójnik „i”(*) definiuje element wspólny zbiorów ~~>:
p~~>q = p*q=1 - wtedy i tylko wtedy gdy istnieje element wspólny zbiorów p i q
Inaczej:
p~~>q = p*q =0
Nic więcej spójnik „i”(*) nie może definiować na mocy jego definicji, jak wyżej.

Uwaga:
Spójniki logiczne „i”(*) i „lub”(+) z definicji nie są w stanie definiować takich pojęć jak podzbiór => czy nadzbiór ~>. Spójnik „i”(*) w zbiorach może co najwyżej definiować istnienie, bądź nie istnienie elementu wspólnego zbiorów ~~>.

Z tabeli równań cząstkowych odczytujemy:
Y = Ya+Yc+Yd
Po rozwinięciu mamy funkcję logiczną Y definiującą sumę logiczną zbiorów niepustych i rozłącznych uzupełniających się wzajemnie do dziedziny fizycznej D:
Y = A: p*q + C: ~p*~q + D: ~p*q
co w logice jedynek oznacza:
Y=1 <=> A: p=1 i q=1 lub C: ~p=1 i ~q=1 lub D: ~p=1 i q=1

Kiedy zajdzie ~Y?
Z tabeli równań cząstkowych odczytujemy:
~Y=~Yb
Po rozwinięciu mamy funkcję logiczną ~Y definiującą zbiór pusty (~Y=1):
~Y = B: p*~q
co w logice jedynek oznacza:
~Y=1 <=> B: p=1 i ~q=1
Prawo Prosiaczka:
(~Y=1) = (Y=0)
stąd zapis tożsamy:
Y=0 <=> B: p=1 i ~q=1

Jak widzimy, logika jedynek prowadzi do równań alternatywno-koniunkcyjnych (tu Y) lub postaci koniunkcyjnej (tu ~Y) doskonale rozumianych przez człowieka, od 5-cio latka poczynając.

Operator implikacji prostej p||=>q w elementach wspólnych zbiorów ~~> to odpowiedź na dwa pytania 1 i 2:

1.
Które zbiory w funkcji logicznej Y=(p=>q) są mają element wspólny ~~> (Y=1)?

Odpowiedź:
Y = A: p*q + C: ~p*~q + D: ~p*q
co w logice jedynek oznacza:
Y=1 <=> A: p=1 i q=1 lub C: ~p=1 i ~q=1 lub D: ~p=1 i q=1
Czytamy:
Zbiory mające element wspólny ~~> (Y=1) to:
Ya=A: p*q =1*1=1 - istnieje (Ya=1) element wspólny ~~> zbiorów: p (p=1) i q (q=1)
LUB
Yc=C: ~p*~q=1*1=1 - istnieje (Yc=1) element wspólny ~~> zbiorów: ~p (p=1) i ~q (~q=1)
LUB
Yd = D: ~p*q =1*1=1 - Istnieje (Yd=1) element wspólny ~~> zbiorów: ~p (~p=1) i q (q=1)

Gdzie:
Funkcja logiczna Y jest sumą logiczną funkcji cząstkowych:
Y = Ya+Yb+Yc

2.
Które zbiory w funkcji logicznej Y=(p=>q) są nie mają elementu wspólnego ~~> (~Y=1)?

Odpowiedź:
~Y = B: p*~q
co w logice jedynek oznacza:
~Y=1 <=> B: p=1 i ~q=1
Czytamy:
Zbiory nie mające elementu wspólnego ~~> ~Y (~Y=1) to:
~Y = B: p*~q =1*1 =1 - nie mają elementu wspólnego ~~> (~Yb=1) zbiory: p (p=1) i ~q (~q=1)
Innymi słowy:
Prawdą jest (=1), że nie mają elementu wspólnego (~Y) zbiory: p (p=1) i ~q (~q=1)

Prawo Prosiaczka:
(~Y=1) = (Y=0)
stąd mamy zdanie tożsame:
Y=0 <=> B: p=1 i ~q=1
Czytamy:
Fałszem jest (=0) że mają element wspólny (Y) zbiory: p (p=1) i ~q (~q=1)

Zapis tożsamy w algebrze Kubusia:
Y= B: p*~q =1*1 =0
Czytamy:
Fałszem jest (=0) że mają element wspólny (Y) zbiory: p (p=1) i ~q (~q=1)

Znaczenie symboli:
Y - zbiory mają element wspólny ~~>
~Y - zbiory nie mają (~) elementu wspólnego ~~>
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 35963
Przeczytał: 15 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Nie 15:00, 11 Kwi 2021    Temat postu:

Algebra Kubusia - wykład rozszerzony
2.5 Diagram operatora implikacji prostej p||=>q w zbiorach

Spis treści
2.5 Diagram operatora implikacji prostej p||=>q w zbiorach 1
2.5.1 Odtworzenie definicji operatora implikacji prostej p||=>q z definicji ~~> 3
2.5.2 Najmniejsza możliwa liczba elementów w operatorze p||=>q 9



2.5 Diagram operatora implikacji prostej p||=>q w zbiorach

W algebrze Kubusia w zbiorach zachodzi:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

Definicja implikacji prostej p|=>q w zbiorach:
Zbiór p jest podzbiorem => zbioru q i nie jest tożsamy ze zbiorem q
Dziedzina musi być szersza do sumy logicznej zbiorów p+q bowiem wtedy i tylko wtedy wszystkie pojęcia p, ~p, q i ~q będą rozpoznawalne.
A1: p=>q =1 - zbiór p jest (=1) podzbiorem => zbioru q (z definicji)
B1: p~>q =0 - zbiór p nie (=0) jest nadzbiorem ~> zbioru q (z definicji)
p|=>q = (A1: p=>q)*~(B1: p~>q) =1*~(0) = 1*1 =1

Dlaczego dziedzina musi być szersza od sumy logicznej zbiorów p i q?
Zobaczmy to na przykładzie:
A1.
Jeśli dowolna liczba jest podzielna przez 8 to na 100% => jest podzielna przez 2
P8=>P2 =1
Podzielność dowolnej liczby przez 8 jest (=1) warunkiem wystarczającym => dla jej podzielności przez 2 wtedy i tylko wtedy gdy zbiór P8=[8,16,24..] jest podzbiorem => zbioru P2=[2,4,6,8..]
Zbiór P8=[8,16,24..] to podzbiór => zbioru wszystkich liczb parzystych P2=[2,4,6,8..], stąd prawdziwość zdania A1.
W zdaniu A1 poprzednik p mówi o zbiorze P8, zaś następnik q o zbiorze P2
P8=[8,16,24..] - zbiór liczb podzielnych przez 8
P2=[2,4,6,8..] - zbiór liczb podzielnych przez 2 (zbiór wszystkich liczb parzystych)
Przyjmijmy dziedzinę minimalną:
LN=[1,2,3,4,5,6,7,8,9..]
Stąd wyznaczamy zbiory zaprzeczone rozumiane jako uzupełnienia do dziedziny:
~P8=[LN-P8]=[1,2,3,4,5,6,7..9..] - zbiór liczb niepodzielnych przez 8
~P2=[LN-P2]=[1,3,5,7,9..] - zbiór liczb niepodzielnych przez 2 (zbiór wszystkich liczb nieparzystych)
Definicja dziedziny dla P8 i ~P8:
P8+~P8 =LN =1 - zbiór ~P8 jest uzupełnieniem do dziedziny dla zbioru P8
P8*~P8=[] =0 - zbiory rozłączne
Definicja dziedziny dla P2 i ~P2:
P2+~P2=LN =1 - zbiór ~P2 jest uzupełnieniem do dziedziny dla zbioru P2
P2*~P2 =[] =0 - zbiory rozłączne

Wnioski:
1.
W dowolnym zdaniu warunkowym „Jeśli p to q” dziedzina musi być wspólna dla p i q
2.
Dziedzina musi być szersza od sumy zbiorów p+q
Nasz przykład:
p+q = P8+P2 = P2 - bo P8=[8,16,24..] jest podzbiorem => zbioru P2=[2,4,6,8..]
Przyjęta dziedzina:
LN=[1,2,3,4,5,6,7,8,9..]
Jest szersza od sumy logicznej zbiorów:
P8+P2=P2=[2,4,6,8..]
zatem przyjęta dziedzina jest matematycznie poprawna.
3.
Zobaczmy co się stanie jak dla naszego zdania A1 przyjmiemy za dziedzinę zbiór tożsamy z sumą zbiorów P8+P2=P2:
D=P2=[2,4,6,8..]
Wyznaczamy zbiór ~P2:
~P2 = [D-P2] = [P2-P2]=[] =0
Jak widzimy pojęcie ~P2 jest nierozpoznawalne, dlatego dla zdania A1 musimy przyjąć dziedzinę szerszą od sumy zbiorów P8+P2=P2, inaczej popełniamy błąd nierozpoznawalności analizowanego pojęcia (tu ~P2)

Kod:

D1
Diagram operatora implikacji prostej p||=>q w zbiorach

----------------------------------------------------------------------
|     p                     |                    ~p                  |
|---------------------------|----------------------------------------|
|     q                                      |   ~q                  |
|--------------------------------------------|-----------------------|
|                           |~p~~>q = ~p*q   | p~~>~q = p*~q =[]     |
----------------------------------------------------------------------
| Dziedzina: D =p*q+~p*~q+~p*q (suma logiczna zbiorów niepustych)    |
|--------------------------------------------------------------------|

Operator implikacji prostej p||=>q w zapisach formalnych (ogólnych)
----------------------------------------------------------------------
Analiza        |Po zamianie    |Komentarz do analizy podstawowej
podstawowa     |p i q          |na podstawie diagramu D1
A1:  p=> q =1  |A3:  q~> p =1  |A1   p=> q =1 - p jest podzbiorem => q 
A1’: p~~>~q=0  |A1’:~q~~>p =0  |A1’: p~~>~q=0 - p*~q=[]=0 zbiory rozłączne
A2: ~p~>~q =1  |A4: ~q=>~p =1  |A2: ~p~>~q =1 - ~p jest nadzbiorem ~> ~q
B2’:~p~~>q =1  |B2’: q~~>~p=1  |B2’ ~p~~>q =1 - ~p*q=1 zbiór niepusty
|
B1:  p~> q =0  |B3:  q=> p =0  |B1:  p~> q =0 - p nie jest nadzbiorem ~> q
A1’  p~~>~q=0  |A1’:~q~~>p =0  |A1’: p~~>~q=0 - p*~q=[]=0 zbiory rozłączne
B2: ~p=>~q =0  |B4: ~q~>~p =0  |B2: ~p=>~q =0 - ~p nie jest podzbiorem ~q
B2’:~p~~>q =1  |B2’: q~~>~p=1  |B2’:~p~~>q =1 - ~p*q=1 zbiór niepusty
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
Spójnik p~~>q=p*q jest przemienny.

Operator implikacji prostej p||=>q to odpowiedź na dwa pytania 1 i 2:

1.
Co może się wydarzyć jeśli zajdzie p (p=1)?

Odpowiedź:
Jeśli zajdzie p to mamy gwarancję matematyczną => iż zajdzie q - mówi o tym zdanie A1

Z diagramu D1 odczytujemy:
A1.
Jeśli zajdzie p (p=1) to na 100% => zajdzie q (q=1)
p=>q =1
Zajście p jest wystarczające => dla zajścia q bo zbiór p jest podzbiorem => zbioru q
Doskonale to widać na diagramie D1
A1’.
Jeśli zajdzie p (p=1) to może ~~> zajść ~q (~q=1)
p~~>~q = p*~q = [] =0
Definicja elementu wspólnego zbiorów ~~> nie jest spełniona bo zbiory p i ~q są rozłączne, co również widać na diagramie D1

1.
Co może się wydarzyć jeśli zajdzie ~p (~p=1)?

Prawo Kubusia:
A1: p=>q = A2: ~p~>~q

Z diagramu D1 odczytujemy:
Jeśli zajdzie ~p to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” o czym mówią zdania A2 i B2’

A2.
Jeśli zajdzie ~p (~p=1) to może ~> zajść ~q (~q=1)
~p~>~q =1
Zajście ~p jest konieczne ~> dla zajścia ~q bo zbiór ~p jest nadzbiorem ~> zbioru ~q
Wyśmienicie to widać na diagramie D1

LUB

B2’.
Jeśli zajdzie ~p (~p=1) to może ~~> zajść q (q=1)
~p~~>q = ~p*q =1
Definicja elementu wspólnego zbiorów ~p i q jest spełniona, co doskonale widać na diagramie D1.

2.5.1 Odtworzenie definicji operatora implikacji prostej p||=>q z definicji ~~>

Weźmy diagram implikacji prostej w zbiorach p||=>q wyżej zapisany.
Kod:

D1
Diagram operatora implikacji prostej p||=>q w zbiorach

----------------------------------------------------------------------
|     p                     |                    ~p                  |
|---------------------------|----------------------------------------|
|     q                                      |   ~q                  |
|--------------------------------------------|-----------------------|
|                           |~p~~>q = ~p*q   | p~~>~q = p*~q =[]     |
----------------------------------------------------------------------
| Dziedzina: D =p*q+~p*~q+~p*q (suma logiczna zbiorów niepustych)    |
|--------------------------------------------------------------------|
|                                                                    |
|Operator implikacji prostej p||=>q w spójnikach „i”(*) i „lub”(+)   |
----------------------------------------------------------------------
|    Ya=p~~>q=p*q           | Yd=~p~~>q=~p*q | Yc=~p~~>~q=~p*~q      |
----------------------------------------------------------------------
|                            ~Yb=p~~>~q=p*~q (zbiór pusty!)          |
----------------------------------------------------------------------

Spójniki iloczynu logicznego zbiorów „i”(*) oraz sumy logicznej zbiorów „lub”(+) z definicji nie są w stanie opisać relacji podzbioru => czy też nadzbioru ~> między dowolnymi dwoma zbiorami p i q.

Wniosek:
W opisie dowolnego diagramu w zbiorach wyrażonego spójnikami „i”(*) i „lub”(+) chodzi tylko i wyłącznie o spełnienie lub nie spełnienie definicji elementu wspólnego zbiorów ~~>.

Definicja elementu wspólnego ~~> zbiorów:
Jeśli p to q
p~~>q =p*q =1
Definicja elementu wspólnego zbiorów ~~> jest spełniona (=1) wtedy i tylko wtedy gdy zbiory p i q mają co najmniej jeden element wspólny
Inaczej:
p~~>q= p*q= [] =0 - zbiory p i q są rozłączne, nie mają (=0) elementu wspólnego ~~>

Decydujący w powyższej definicji jest znaczek elementu wspólnego zbiorów ~~>, dlatego dopuszczalny jest zapis skrócony p~~>q.
W operacji iloczynu logicznego zbiorów p*q poszukujemy tu jednego wspólnego elementu, nie wyznaczamy kompletnego zbioru p*q.

Stąd mamy tabelę prawdy operatora implikacji prostej p||=>q definiowaną elementami wspólnymi zbiorów ~~>:
Kod:

T1.
Operator p||=>q       |
w spójnikach          |Co w logice
elementu wspólnego ~~>|jedynek oznacza
                 Y ~Y |                 Y   Z diagramu D1 odczytujemy:
A: p~~>q = p* q =1  0 |( p=1)~~>( q=1) =1 - istnieje el. wspólny p i q
B: p~~>~q= p*~q =0  1 |( p=1)~~>(~q=1) =0 - nie istnieje el. wspólny p i ~q
C:~p~~>~q=~p*~q =1  0 |(~p=1)~~>(~q=1) =1 - istnieje el. wspólny ~p i ~q
D:~p~~> q=~p* q =1  0 |(~p=1)~~>( q=1) =1 - istnieje el. wspólny ~p i q

Między funkcjami logicznymi Y i ~Y zachodzi relacja spójnika „albo”($).
Dowód:
Definicja spójnika „albo”($)
p$q =p*~q + ~p*q
Podstawmy:
p=Y
q=~Y
stąd:
Y$~Y = Y*~(~Y) + ~Y*(~Y) = Y*Y + ~Y*~Y =Y+~Y =1

Oczywiście relacja równoważności p<=>q definiująca tożsamość zbiorów/pojęć p=q musi tu być fałszem.
Dowód:
Definicja równoważności p<=>q wyrażona spójnikami „i”(*) i „lub”(+):
p<=>q = p*q + ~p*~q
Podstawmy:
p=Y
q=~Y
stąd:
Y<=>~Y = Y*(~Y) + ~Y*~(~Y) = Y*~Y + ~Y*Y = []+[] =0
cnd

Zapiszmy powyższą tabelę wyłącznie w spójnikach elementu wspólnego zbiorów ~~> zmieniając indeksowanie linii do postaci zgodnej z teorią wykładaną w algebrze Kubusia - matematycznie ten ruch jest bez znaczenia.
Kod:

T1.
Operator implikacji prostej p||=>q
definiowany elementem wspólnym zbiorów ~~>
             Y   Analiza dla punktu odniesienia Y
A1:  p~~>q  =1 - istnieje (=1) el. wspólny zbiorów p i q
A1’: p~~>~q =0 - nie istnieje (=0) el. wspólny zbiorów p i ~q
A2: ~p~~>~q =1 - istnieje (=1) el. wspólny zbiorów ~p i ~q
B2’:~p~~> q =1 - istnieje (=1) el. wspólny zbiorów ~p i q

Kluczowym punktem zaczepienia do przejścia z tabelą T1 do tabeli tożsamej T2 opisującej operator implikacji prostej p||=>q w warunkach wystarczających => i koniecznych ~> będzie definicja kontrprzykładu w zbiorach działająca wyłącznie w obszarze warunku wystarczającego =>.

Dodatkowo potrzebne nam będą prawa Kubusia:
A1: p=>q = A2: ~p~>~q
##
B1: p~>q = B2: ~p=>~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
A1: p=>q=~p+q ## B1: p~>q=p+~q

Znaczenie tożsamości logicznej „=” na przykładzie prawa Kubusia:
A1: p=>q = A2: ~p~>~q
Prawdziwość dowolnej strony tożsamości logicznej „=” wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej „=” wymusza fałszywość drugiej strony.

Z powyższego wynika, że mając udowodnioną prawdziwość warunku wystarczającego => A1:
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
nie musimy udowadniać prawdziwości warunku koniecznego ~> A2:
A2: ~p~>~q =1 - zajście ~p jest (=1) konieczne dla zajścia ~q
bowiem gwarantuje nam to prawo Kubusia, prawo rachunku zero-jedynkowego:
A1: p=>q = A2: ~p~>~q

W algebrze Kubusia zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

Definicja kontrprzykładu w zbiorach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane elementem wspólnym zbiorów p~~>~q=p*~q

Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)

Analiza tabeli prawdy T1 - część I
1.
Fałszywość kontrprzykładu A1’:
A1’: p~~>~q=0
wymusza prawdziwość warunku wystarczającego => A1 (i odwrotnie):
A1: p=>q =1 - zbiór p jest podzbiorem => zbioru q
2.
Prawo Kubusia:
A1: p=>q = A2:~p~>~q
Stąd:
Prawdziwość warunku wystarczającego A1:
A1: p=>q =1
wymusza prawdziwość warunku koniecznego ~> A2 (i odwrotnie):
A2: ~p~>~q =1 - zbiór ~p jest nadzbiorem ~> zbioru ~q

Nanieśmy naszą analizę do tabeli T2.
Kod:

T2.
Operator implikacji prostej p||=>q
w warunkach wystarczających => i koniecznych ~>
             Y   Analiza dla punktu odniesienia Y
A1:  p=> q  =1 - zbiór p jest podzbiorem => q
A1’: p~~>~q =0 - kontrprzykład dla A1 musi być fałszem
A2: ~p~>~q  =1 - zbiór ~p jest nadzbiorem ~> ~q
B2’:~p~~> q =1 - istnieje (=1) element wspólny zbiorów ~p i q

Analiza tabeli prawdy T1 - część II
3.
Prawdziwość kontrprzykładu B2’:
B2’: ~p~~>q =1
wymusza fałszywość warunku wystarczającego B2 (i odwrotnie):
B2: ~p=>~q =0
4.
Prawo Kubusia:
B2: ~p=>~q = B1: p~>q
stąd:
Fałszywość warunku wystarczającego B2:
B2: ~p=>~q =0
wymusza fałszywość warunku koniecznego B1 (i odwrotnie):
B1: p~>q =0

Nanieśmy naszą analizę do tabeli T2
Kod:

T3.
Operator implikacji prostej p||=>q
w warunkach wystarczających => i koniecznych ~>
A1:  p=> q  =1 | B1: p~>q=0
A1’: p~~>~q =0
A2: ~p~>~q  =1 | B2:~p=>~q=0
B2’:~p~~> q =1

Stąd mamy:
Linia A1B1:
Podstawowa definicja implikacji prostej p|=>q w zbiorach:
Implikacja prosta p|=>q to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q
B1: p~>q =0 - zajście p nie jest (=0) konieczne dla zajścia q
wtedy i tylko wtedy gdy zbiór p nie jest nadzbiorem ~> zbioru q
Stąd:
p|=>q = (A1: p=>q)*~(B1: p~>q) =1*~(0) =1*1 =1

Uwaga:
W implikacji prostej p|=>q zbiory p i q nie mogą być tożsame bo …

Definicja tożsamości zbiorów:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy zbiór p jest jednocześnie podzbiorem => i nadzbiorem ~> dla zbioru q
p=q <=> (A1: p=>q)*(B1: p~>q) =1*1 =1
Dowód:
Dla zbiorów tożsamych p=q mamy:
A1: p=>q =1 - każdy zbiór jest podzbiorem => siebie samego
B1: p~>q =1 - każdy zbiór jest nadzbiorem ~> siebie samego
Czyli:
Dla zbiorów tożsamych p=q jest:
B1: p~>q =1
co jest sprzeczne z definicją implikacji prostej p|=>q gdzie musi być spełnione:
B1: p~>q =0 - zbiór p nie jest (=0) nadzbiorem ~> zbioru q
cnd

Stąd mamy:
Podstawowa definicja implikacji prostej p|=>q w zbiorach:
Zbiór p jest podzbiorem => zbioru q i nie jest tożsamy ze zbiorem q
A1: p=>q =1 - zbiór p jest podzbiorem => zbioru q
B1: p~>q =0 - zbiór p nie jest nadzbiorem ~> zbioru q (prawdziwe dla p##q)
p|=>q = (A1: p=>q)*~(B1: p~>q) =1*~(0) =1*1 =1
Gdzie:
p##q - zbiory p i q różne ## na mocy definicji

Dodatkowy warunek jaki musi tu być spełniony brzmi:
Dziedzina D musi być szersza od sumy zbiorów p+q
Dowód:
A1: p=>q =1 - zbiór p jest podzbiorem => zbioru q

Przyjmijmy za dziedzinę zbiór q
D=q
Obliczamy zbiór ~q rozumiany jako uzupełnienie do dziedziny D dla zbiory q:
~q=[D-q] = [q-q] =[] =0
Wniosek:
Dziedzina musi być szersza od sumy zbiorów p+q inaczej zbiór wejściowy ~q jest nierozpoznawalny, jest zbiorem pustym. Nie możemy operować na czymkolwiek czego definicji nie znamy.
cnd

Definicja zbioru pustego [] w algebrze Kubusia - punkt 3.0:
Zbiór pusty [] to zbiór zawierający zero pojęć zrozumiałych dla człowieka
Czyli:
[] = [agstd, sdked …] - wyłącznie pojęcia niezrozumiałe dla człowieka (jeszcze niezdefiniowane)

Zdefiniowawszy implikację prostą p|=>q w zbiorach jako:
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - zajście p nie jest (=0) konieczne dla zajścia q
możemy ją podstawić matematycznych związków warunku wystarczającego => i koniecznego ~> w implikacji prostej p|=>q.
Kod:

T2
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji prostej p|=>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q=1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q=1 - zajście p nie jest (=0) konieczne ~> dla zajścia q
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
       A1B1:         A2B2:        |     A3B3:         A4B4:
A:  1: p=>q  =1 = 2:~p~>~q=1     [=] 3: q~>p  =1 = 4:~q=>~p =1
A’: 1: p~~>~q=0 =                [=]             = 4:~q~~>p =0                   
       ##            ##           |     ##            ##
B:  1: p~>q  =0 = 2:~p=>~q=0     [=] 3: q=>p  =0 = 4:~q~>~p =0
B’:             = 2:~p~~>q=1     [=] 3: q~~>~p=1
---------------------------------------------------------------
IP: p|=>q=~p*q  = ~p|~>~q=~p*q   [=]  q|~>p=q*~p = ~q|=>~p=q*~p
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
A1: p=>q=1 - prawdziwy A1 wymusza fałszywy kontrprzykład A1’ (i odwrotnie)
B2:~p=>~q=0 - fałszywy B2 wymusza prawdziwy kontrprzykład B2’ (i odwrotnie)
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Stąd mamy to, co już doskonale znamy.

Definicja operatora implikacji prostej p||=>q:
Operator implikacji prostej p||=>q to odpowiedź na dwa pytania 1 i 2:

1.
Co może się wydarzyć jeśli zajdzie p?

Odpowiedź na to pytanie mamy w kolumnie A1B1:
Jeśli zajdzie p to mamy gwarancję matematyczną => iż zajdzie q - mówi o tym zdanie A1

A1.
Jeśli zajdzie p (p=1) to na 100% => zajdzie q (q=1)
p=>q =1
Zajście p jest warunkiem wystarczającym => dla zajścia q wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>
Na mocy prawa śfinii zdanie A1 musimy przyjąć za punkt odniesienia, bo do tego zdania odnoszą się wszystkie dalsze rozważania.

Z prawdziwości warunku wystarczającego => A1 wynika fałszywość kontrprzykładu A1’ (i odwrotnie)
A1’
Jeśli zajdzie p (p=1) to może ~~> zajść ~q (~q=1)
p~~>~q = p*~q =0
Nie istnieje (=0) wspólny element ~~> zbiorów p i ~q

2.
Co może się wydarzyć jeśli zajdzie ~p?

Prawo Kubusia:
A1: p=>q = A2:~p~>~q
Odpowiedź na to pytanie mamy w kolumnie A2B2:
Jeśli zajdzie ~p to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” - mówią o tym zdania A2 i B2’

A2.
Jeśli zajdzie ~p (~p=1) to może ~> zajść ~q (~q=1)
~p~>~q =1
Zajście ~p jest warunkiem koniecznym ~> dla zajścia ~q wtedy i tylko wtedy gdy zbiór ~p jest nadzbiorem ~> zbioru ~q

LUB

Kontrprzykład B2’ dla fałszywego warunku wystarczającego => B2 musi być prawdą, stąd:
B2’.
Jeśli zajdzie ~p (~p=1) to może ~~> zajść q (q=1)
~p~~>q = ~p*q =1
Istnieje (=1) wspólny element ~~> zbiorów ~p i q


2.5.2 Najmniejsza możliwa liczba elementów w operatorze p||=>q

Definicja implikacji prostej p|=>q w zbiorach:
Zbiór p jest podzbiorem => zbioru q i nie jest tożsamy ze zbiorem q
Dziedzina musi być szersza do sumy logicznej zbiorów p+q bowiem wtedy i tylko wtedy wszystkie pojęcia p, ~p, q i ~q będą rozpoznawalne.
A1: p=>q =1 - zbiór p jest (=1) podzbiorem => zbioru q (z definicji)
B1: p~>q =0 - zbiór p nie (=0) jest nadzbiorem ~> zbioru q (z definicji)
p|=>q = (A1: p=>q)*~(B1: p~>q) =1*~(0) = 1*1 =1

Z definicji implikacji prostej p|=>q w zbiorach wynika, że najmniejsza liczba elementów potrzebnych do zbudowania operatora implikacji prostej p||=>q to trzy elementy.
Zdefiniujmy trzy, różne na mocy definicji elementy których będziemy używać.
K - Kubuś
T - Tygrysek
P - Prosiaczek
Zbudujmy zbiory p i q spełniające definicję implikacji prostej w zbiorach:
p=[K]
q=[K,T]
Dziedzina:
D=[K+T+P]
stąd mamy niepuste przeczenia zbiorów rozumiane jako ich uzupełnienia do wspólnej dziedziny D:
~p=[D-p]=[K+T+P-K]=[T+P]
~q=[D-q]=[K+T+P-[K+T]=[P]
Podsumujmy:
p=[K], ~p=[T+P]
q=[K,T], ~q=[P]
Zapiszmy diagram operatora implikacji p||=>q dla powyższych elementów.
Kod:

D2
Diagram operatora implikacji prostej p||=>q w zbiorach
-----------------------------------------------------------------------
|  p=[K],   ~p=[T+P]                                                  |
|  q=[K,T], ~q=[P]                                                    |
-----------------------------------------------------------------------
|     p=[K]                 |                     ~p=[T+P]            |
|---------------------------|-----------------------------------------|
|     q=[K+T]                                -|   ~q=[P]              |
|---------------------------------------------|-----------------------|
|                           |~p~~>q=~p*q=[T]  | p~~>~q = p*~q =[]     |
-----------------------------------------------------------------------
| Dziedzina fizyczna: DF =p*q+~p*~q+~p*q (suma zbiorów niepustych)    |
-----------------------------------------------------------------------

Doskonale widać, że w diagramie D2 spełniona jest definicji implikacji prostej p|=>q, a tym samym definicja operatora implikacji prostej p||=>q.

Zapiszmy pełny diagram implikacji prostej p|=>q:
Kod:

T2
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji prostej p|=>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q=1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q=1 - zajście p nie jest (=0) konieczne ~> dla zajścia q
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
       A1B1:         A2B2:        |     A3B3:         A4B4:
A:  1: p=>q  =1 = 2:~p~>~q=1     [=] 3: q~>p  =1 = 4:~q=>~p =1
A’: 1: p~~>~q=0 =                [=]             = 4:~q~~>p =0                   
       ##            ##           |     ##            ##
B:  1: p~>q  =0 = 2:~p=>~q=0     [=] 3: q=>p  =0 = 4:~q~>~p =0
B’:             = 2:~p~~>q=1     [=] 3: q~~>~p=1
---------------------------------------------------------------
IP: p|=>q=~p*q  = ~p|~>~q=~p*q   [=]  q|~>p=q*~p = ~q|=>~p=q*~p
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
A1: p=>q=1 - prawdziwy A1 wymusza fałszywy kontrprzykład A1’ (i odwrotnie)
B2:~p=>~q=0 - fałszywy B2 wymusza prawdziwy kontrprzykład B2’ (i odwrotnie)
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Nasze zbiory na których operujemy to:
p=[K], ~p=[T+P]
q=[K,T], ~q=[P]

Definicja operatora implikacji prostej p||=>q:
Operator implikacji prostej p||=>q to odpowiedź na dwa pytania 1 i 2:

1.
Co może się wydarzyć jeśli zajdzie p?

Odpowiedź na to pytanie mamy w kolumnie A1B1:
Jeśli zajdzie p to mamy gwarancję matematyczną => iż zajdzie q - mówi o tym zdanie A1

A1.
Jeśli zajdzie p (p=1) to na 100% => zajdzie q (q=1)
p=>q =1
Zajście p jest warunkiem wystarczającym => dla zajścia q wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q
Sprawdzamy:
p=[K] => q=[K+T]
Definicja warunku wystarczającego => spełniona bo zbiór p=[K] jest podzbiorem => zbioru q=[K+T}
cnd

Z prawdziwości warunku wystarczającego => A1 wynika fałszywość kontrprzykładu A1’ (i odwrotnie)
A1’
Jeśli zajdzie p (p=1) to może ~~> zajść ~q (~q=1)
p~~>~q = p*~q =0
Nie istnieje (=0) wspólny element ~~> zbiorów p i ~q
Sprawdzamy:
p=[K] ~~> ~q=[P] = [K]*[P] =[] =0
Zbiory jednoelementowe Kubuś (K) i Prosiaczek (P) są rozłączne
cnd

2.
Co może się wydarzyć jeśli zajdzie ~p?

Prawo Kubusia:
A1: p=>q = A2:~p~>~q
Odpowiedź na to pytanie mamy w kolumnie A2B2:
Jeśli zajdzie ~p to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” - mówią o tym zdania A2 i B2’

A2.
Jeśli zajdzie ~p (~p=1) to może ~> zajść ~q (~q=1)
~p~>~q =1
Zajście ~p jest warunkiem koniecznym ~> dla zajścia ~q wtedy i tylko wtedy gdy zbiór ~p jest nadzbiorem ~> zbioru ~q
Sprawdzenie:
~p=[T+P] ~> ~q=[P] =1
Definicja warunku koniecznego ~> jest spełniona bo zbiór ~p=[T+P] jest nadzbiorem ~> zbioru ~q=[P]

LUB

Kontrprzykład B2’ dla fałszywego warunku wystarczającego => B2 musi być prawdą, stąd:
B2’.
Jeśli zajdzie ~p (~p=1) to może ~~> zajść q (q=1)
~p~~>q = ~p*q =1
Istnieje (=1) wspólny element ~~> zbiorów ~p i q
Sprawdzenie:
~p=[T+P]~~>q=[K+T] = [T+K]*[K+T] =[T] =1
Istnieje element wspólny zbiorów ~p=[T+P] i q=[K+T] - to Tygrysek (T)

Doskonale tu widać, że w zdaniu B2’ nie jest spełniony ani warunek wystarczający => ani też konieczny ~>.
Dowód:
~p=[T+P] => q=[K+T] =0 - bo zbiór ~p=[T+P] nie jest (=0) podzbiorem => q=[K+T]
~p=[T+P} ~> q=[K+T] =0 - bo zbiór ~p=[T+P] nie jest (=0) nadzbiorem ~> q=[K+T]

Jak widzimy wszystko tu pięknie gra i buczy, a zabawę z implikacją prostą p|=>q można zacząć w przedszkolu dysponując trzema pluszowymi zabawkami:
K - Kubuś
T - Tygrysek
P - Prosiaczek
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 35963
Przeczytał: 15 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Nie 15:03, 11 Kwi 2021    Temat postu:

Algebra Kubusia - wykład rozszerzony
2.6 Operator implikacji prostej P||=>CH w zdarzeniach w przedszkolu


Spis treści
2.6 Operator implikacji prostej P||=>CH w zdarzeniach w przedszkolu 1
2.6.1 Operator implikacji prostej P||=>CH w zdarzeniach możliwych ~~> 6
2.6.2 Prawo śfinii - najbardziej zakamuflowane prawo logiki matematycznej 9
2.6.3 Definicja minimalna warunku wystarczającego Y=(P=>CH) 11
2.6.4 Definicja obietnicy w spójnikach „i”(*) i „lub”(+) 13
2.7 Matematyczne fundamenty teorii zdarzeń dla 5-cio latków 14
2.7.1 Od teorii zdarzeń do operatora implikacji prostej P||=>CH 16
2.7.2 Czarodziejska siła definicji kontrprzykładu i praw Kubusia 18



2.6 Operator implikacji prostej P||=>CH w zdarzeniach w przedszkolu

Zadanie matematyczne w I klasie LO w 100-milowym lesie:
Zbadaj w skład jakiego operatora logicznego wchodzi zdanie:
Jeśli jutro będzie padało to będzie pochmurno
Zapisz analizę szczegółową zlokalizowanego operatora logicznego.

Warunek wystarczający => jest w logice matematycznej domyślny, stąd zdanie tożsame:
A1.
Jeśli jutro będzie padało (P=1) to na 100% => będzie pochmurno (CH=1)
P=>CH =1
Padanie jest warunkiem wystarczającym => aby było pochmurno, bo zawsze gdy pada, są chmury
Padanie daje nam gwarancję matematyczną => istnienia chmur.
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>

Ciekawostka:
Zauważmy, że de facto teorię zdarzeń możemy sprowadzić to teorii zbiorów.
Zauważmy bowiem że:
W zdaniu A1 po stronie poprzednika p mamy tylko jedno zdarzenie możliwe ~~>:
P~~>CH = P*CH =1 - możliwe jest zdarzenie: pada (P=1) i są chmury (CH=1)
bo zdarzenie pada (P=1) i nie ma chmur (~CH=1) jest fałszem.
Natomiast po stronie następnika q mamy dwa możliwe zdarzenia:
CH~~>P = CH*P =1 - możliwe jest zdarzenie: są chmury (CH=1) i pada (P=1)
LUB
CH~~>~P =CH*~P =1 - możliwe jest zdarzenie: są chmury (CH=1) i nie pada (~P=1)
Stąd mamy:
A1: (P*CH) => (CH*P + CH*~P)
Iloczyn logiczny jest przemienny stąd:
A1: (P*CH) => (P*CH + ~P*CH) =1
Stąd:
Definicja warunku wystarczającego => w zdaniu A1 jest spełniona bo zdarzenie:
(P*CH)
jest podzbiorem => zdarzenia:
(P*CH + ~P*CH)
cnd

Prawo śfinii:
Domyślny punkt odniesienia w zdaniach warunkowych „Jeśli p to q”:

W dowolnym zdaniu warunkowym „Jeśli a to b” zapisanym w zmiennych aktualnych a i b (mających związek z językiem potocznym człowieka), domyślnie zawsze po „Jeśli..” zapisujemy formalny poprzednik p zaś po „to” zapisujemy formalny następnik q.
Zamieniać p i q w dowolnym zdaniu warunkowym można tylko względem ustalonego wcześniej punktu odniesienia „Jeśli p to q” na przykład prawem Tygryska lub kontrapozycji.

Na mocy prawa śfinii zapis formalny zdania A1 to:
A1: p=>q =1
p=P (pada)
q=CH (chmury)
A1: P=>CH =1

Matematyczne związki warunków wystarczających => i koniecznych ~> są następujące:
Kod:

T0
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      A1B1:     A2B2:    |     A3B3:     A4B4:
A: 1: p=>q  = 2:~p~>~q  [=] 3: q~>p  = 4:~q=>~p  =1  [=] 5: ~p+q
A: 1: P=>CH = 2:~P~>~CH [=] 3: CH~>P = 4:~CH=>~P =1  [=] 5: ~P+CH
##
B: 1: p~>q  = 2:~p=>~q  [=] 3: q=>p  = 4:~q~>~p  =?  [=] 5: p+~q
B: 1: P~>CH = 2:~P=>~CH [=] 3: CH=>P = 4:~CH~>~P =?  [=] 5: P+~CH
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Udowodniliśmy wyżej prawdziwość warunku wystarczającego A1:
A1: P=>CH =1 - padanie jest (=1) warunkiem wystarczającym => dla istnienia chmur
co pociąga za sobą prawdziwość wszystkich zdań serii Ax.

Aby rozstrzygnąć w skład jakiego operatora logicznego wchodzi zdanie A1 musimy udowodnić prawdziwość/fałszywość dowolnego zdania serii Bx.
Najprostszy warunek wystarczający => zawsze dowodzi się najprościej ze względu na definicję kontrprzykładu związaną wyłącznie z warunkiem wystarczającym.
Wybieramy zatem zdanie B3 gdyż jest to najprostszy warunek wystarczający.
B3.
Jeśli jutro będzie pochmurno to na 100% => będzie padało
B3: CH=>P =0
to samo w zapisie formalnym:
B3: q=>p =0
Chmury nie są (=0) warunkiem wystarczającym => dla padania bo nie zawsze gdy są chmury, pada.

Matematycznie zachodzi tożsamość logiczna:
B3: q=>p = B1: p~>q - prawo Tygryska w zapisie formalnym
B3: CH=>P = B1: P~>CH - prawo Tygryska w zapisie aktualnym
Wypowiedzmy zdanie B1:
B1.
Jeśli jutro będzie padało (P=1) to na 100% ~> będzie pochmurno (CH=1)
P~>CH =0
to samo w zapisie formalnym:
p~>q =0
Padanie nie jest (=0) warunkiem koniecznym ~> dla istnienia chmur, bo może nie padać, a chmury mogą istnieć.
##
Przypomnijmy zdanie wypowiedziane A1 (punkt odniesienia):
A1.
Jeśli jutro będzie padało (P=1) to na 100% => będzie pochmurno (CH=1)
P=>CH =1
to samo w zapisie formalnym:
p=>q =1
Padanie jest warunkiem wystarczającym => aby było pochmurno, bo zawsze gdy pada, są chmury
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
A1: p=>q = ~p+q ## B1: p~>q = p+~q
To samo w zapisie aktualnym:
A1: P=>CH = ~P+CH ## B1: P~>CH = P+~CH

Zauważmy, że zdania A1 i B1 brzmią identycznie z dokładnością do każdej literki i każdego przecinka, a mimo to nie są to zdania tożsame. Stąd mamy wyprowadzone prawo Kameleona.

Prawa Kameleona:
Dwa zdania brzmiące identycznie z dokładnością do każdej literki i każdego przecinka nie muszą być matematycznie tożsame

Różność ## zdań A1 i B1 rozpoznajemy po znaczkach warunku wystarczającego => i koniecznego ~> wbudowanych w treść zdań.

Stąd cała seria zdań Bx jest fałszywa (=0), nanieśmy to do tabeli T0.
Kod:

T1
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji prostej p|=>q
Kolumna A1B1 to punkt odniesienia:
p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1 - formalny punkt odniesienia
P|=>CH=(A1: P=>CH)*~(B1: P~>CH)=1*~(0)=1*1=1 - aktualny punkt odniesienia
p=P (pada)
q=CH (chmury)
      A1B1:      A2B2:   |     A3B3:      A4B4:
A: 1: p=>q  = 2:~p~>~q  [=] 3: q~>p  = 4:~q=>~p  =1  [=] 5: ~p+q
A: 1: P=>CH = 2:~P~>~CH [=] 3: CH~>P = 4:~CH=>~P =1  [=] 5: ~P+CH
##
B: 1: p~>q  = 2:~p=>~q  [=] 3: q=>p  = 4:~q~>~p  =0  [=] 5: p+~q
B: 1: P~>CH = 2:~P=>~CH [=] 3: CH=>P = 4:~CH~>~P =0  [=] 5: P+~CH
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Stąd:
W kolumnie A1B1 spełniona jest podstawowa definicja implikacji prostej P|=>CH:
Implikacja prosta P|=>CH to zachodzący wyłącznie warunek wystarczający => między tymi samymi punktami i w tym samym kierunku
A1: P=>CH =1 - padanie jest (=1) warunkiem wystarczającym => dla istnienia chmur
B1: P~>CH =0 - padanie nie jest (=0) konieczne ~> dla istnienia chmur, bo może nie padać, a chmury mogą istnieć.
Stąd:
P|=>CH = (A1: P=>CH)*~(B1: P~>CH) =1*~(0)=1*1 =1
to samo w zapisie formalnym:
p|=>q = (A1: p=>q)*~(B1: p~>q) = 1*~(0)=1*1 =1

Dla precyzyjnej wizualizacji w skład jakiego operatora logicznego wchodzi zdanie A1 skorzystajmy dla tabeli T1 z definicji kontrprzykładu dla zdarzeń, obowiązującej wyłącznie w warunkach wystarczających =>

Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>~q=p*~q

Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)

Uzupełnijmy naszą tabelę wykorzystując powyższe rozstrzygnięcia działające wyłącznie w warunkach wystarczających =>.
Kod:

T2
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji prostej p|=>q
Kolumna A1B1 to punkt odniesienia:
p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1 - formalny punkt odniesienia
P|=>CH=(A1: P=>CH)*~(B1: P~>CH)=1*~(0)=1*1=1 - aktualny punkt odniesienia
Punkt odniesienia:
p=P (pada)
q=CH (chmury)
       A1B1:         A2B2:        |      A3B3:          A4B4:
A:  1: p=>q   =1 = 2:~p~>~q =1    [=] 3: q~>p   =1 = 4:~q=>~p  =1
A:  1: P=>CH  =1 = 2:~P~>~CH=1    [=] 3: CH~>P  =1 = 4:~CH=>~P =1
A’: 1: p~~>~q =0 =                [=]              = 4:~q~~>p  =0                   
A’: 1: P~~>~CH=0 =                [=]              = 4:~CH~~>P =0                   
       ##             ##           |     ##            ##
B:  1: p~>q   =0 = 2:~p=>~q =0    [=] 3: q=>p   =0 = 4:~q~>~p  =0
B:  1: P~>CH  =0 = 2:~P=>~CH=0    [=] 3: CH=>P  =0 = 4:~CH~>~P =0
B’:              = 2:~p~~>q =1    [=] 3: q~~>~p =1
B’:              = 2:~P~~>CH=1    [=] 3: CH~~>~P=1
---------------------------------------------------------------
IP: p|=>q =~p*q  = ~p|~>~q =~p*q  [=] q|~>p =q*~p  = ~q|=>~p =q*~p
IP: P|=>CH=~P*CH = ~P|~>~CH=~P*CH [=] CH|~>P=CH*~P = ~CH|=>~P=CH*~P
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
A1: P=>CH=1 - prawdziwy A1 wymusza fałszywy kontrprzykład A1’ (i odwrotnie)
B2:~P=>~CH=0 - fałszywy B2 wymusza prawdziwy kontrprzykład B2’(i odwrotnie)
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Prawo śfinii:
Domyślny punkt odniesienia w zdaniach warunkowych „Jeśli p to q”:

W dowolnym zdaniu warunkowym „Jeśli a to b” zapisanym w zmiennych aktualnych a i b (mających związek z językiem potocznym człowieka), domyślnie zawsze po „Jeśli..” zapisujemy formalny poprzednik p zaś po „to” zapisujemy formalny następnik q.
Zamieniać p i q w dowolnym zdaniu warunkowym można tylko względem ustalonego wcześniej punktu odniesienia „Jeśli p to q” na przykład prawem Tygryska lub kontrapozycji.

Definicja operatora implikacji prostej P||=>CH:
Operator implikacji prostej P||=>CH to odpowiedź na dwa pytania 1 i 2:

1.
Co może się wydarzyć jeśli jutro będzie padało (P=1)?

Odpowiedź na to pytanie mamy w kolumnie A1B1:
Jeśli jutro będzie padało (P=1) to mamy gwarancję matematyczną => iż będzie pochmurno (CH=1) - mówi o tym zdanie A1
A1.
Jeśli jutro będzie padało (P=1) to na 100% => będzie pochmurno (CH=1)
P=>CH =1
to samo w zapisie formalnym:
p=>q =1
p=P (pada)
q=CH (chmury)
Padanie jest warunkiem wystarczającym => dla istnienia chmur, bo zawsze gdy pada, są chmury
Padanie daje nam gwarancję matematyczną => istnienia chmur
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>
Na mocy prawa śfinii zdanie A1 musimy przyjąć za punkt odniesienia bowiem wszystkie następne zdania odnoszą się do zdania A1.
Punkt odniesienia dla dalszej analizy:
A1: p=>q =1
p=P (pada)
q=CH (chmury)

Z prawdziwości warunku wystarczającego => A1 wynika fałszywość kontrprzykładu A1’ (i odwrotnie)
A1’
Jeśli jutro będzie padało (P=1) to może ~~> nie być pochmurno (~CH=1)
P~~>~CH = P*~CH =0
to samo w zapisie formalnym:
p~~>~q = p*~q =1
Niemożliwe jest (=0) zdarzenie: pada (P=1) i nie ma chmur (~CH=1)

2.
Co może się wydarzyć jeśli jutro nie będzie padało (~P=1)?

Prawo Kubusia:
A1: P=>CH = A2:~P~>~CH
Prawdziwość zdania A1 mamy udowodnioną, zatem na mocy prawa Kubusia prawdziwość zdania A2 mamy gwarantowaną.

Odpowiedź na to pytanie mamy w kolumnie A2B2:
Jeśli jutro nie będzie padało (~P=1) to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” - mówią o tym zdania A2 i B2’

A2.
Jeśli jutro nie będzie padało (~P=1) to może ~> nie być pochmurno (~CH=1)
~P~>~CH =1
to samo w zapisie formalnym:
~p~>~q =1
Brak opadów (~P=1) jest warunkiem koniecznym ~> do tego aby nie było pochmurno (~CH=1) bo jak pada (P=1) to na 100% => są chmury (CH=1)
Prawo Kubusia samo nam tu wyskoczyło:
A2: ~P~>~CH = A1: P=>CH

LUB

Kontrprzykład B2’ dla fałszywego warunku wystarczającego => B2 musi być prawdą, stąd:
B2’.
Jeśli jutro nie będzie padało (~P=1) to może ~~> być pochmurno (CH=1)
~P~~>CH = ~P*CH =1
to samo w zapisie formalnym:
~p~~>q = ~p*q =1
Możliwe jest (=1) zdarzenie: nie pada (~P=1) i jest pochmurno (CH=1)

Podsumowanie:
Istotą operatora implikacji prostej P||=>CH jest gwarancja matematyczna po stronie P (pada) i najzwyklejsze „rzucanie monetą” w rozumieniu „na dwoje babka wróżyła” po stronie ~P (nie pada).

Dowód:
Zauważmy, że jeśli jutro będzie padało (P=1) to mamy gwarancję matematyczną => iż na 100% => będzie pochmurno (CH=1) - mówi o tym zdanie A1
A1.
Jeśli jutro będzie padało (P=1) to na 100% => będzie pochmurno (CH=1)
P=>CH =1

Natomiast jeśli jutro nie będzie padało (~P=1) to mamy najzwyklejsze „rzucanie monetą” w rozumieniu „na dwoje babka wróżyła” - mówią o tym zdania A2 i B2’
A2.
Jeśli jutro nie będzie padało (~P=1) to może ~> nie być pochmurno (~CH=1)
~P~>~CH =1
LUB
B2’.
Jeśli jutro nie będzie padało (~P=1) to może ~~> być pochmurno (CH=1)
~P~~>CH = ~P*CH =1

2.6.1 Operator implikacji prostej P||=>CH w zdarzeniach możliwych ~~>

Nasz przykład:
A1.
Jeśli jutro będzie padało to na 100% => będzie pochmurno
P=>CH =1
Padanie jest (=1) warunkiem wystarczającym => do tego aby było pochmurno, bo zawsze gdy pada, są chmury.
Badamy warunek konieczny ~> między tymi samymi punktami:
B1.
Jeśli jutro będzie padało to na 100% ~> będzie pochmurno
P~>CH =0
Padanie nie jest (=0) warunkiem koniecznym ~> dla istnienia chmur bo może nie padać i być pochmurno
Stąd mamy dowód iż warunek wystarczający A1 jest częścią implikacji prostej P|=>CH:
Implikacja prosta P|=>CH to zachodzący wyłącznie warunek wystarczający => między tymi samymi punktami i w tym samym kierunku
A1: P=>CH=1 - padanie jest (=1) wystarczające => dla istnienia chmur
B1: P~>CH=1 - padanie nie jest (=0) konieczne ~> dla istnienia chmur
P|=>CH = (A1: P=>CH)*~(B1: P~>CH) = 1*~(0) =1*1 =1

Stąd wyprowadziliśmy w części teoretycznej definicję warunku wystarczającego =>.
Kod:

Zero-jedynkowa definicja warunku wystarczającego =>
   p  q  Y=(P=>CH)
A: 1  1  =1
B: 1  0  =0
C: 0  0  =1
D: 0  1  =1

Opiszmy tą tabelę równaniami Y i ~Y w algebrze Boole’a, czyli przy pomocy spójników „i”(*) i „lub”(+).

Definicja pełnej tabeli zero-jedynkowej:
Pełna tabela zero-jedynkowa układu logicznego (bramka logiczna) to zero-jedynkowy zapis wszystkich sygnałów wejściowych w postaci niezanegowanej (p, q, r..) i zanegowanej (~p, ~q, ~r..) oraz zapis wyjścia Y również w postaci niezanegowanej (Y) i zanegowanej (~Y).

Opis dowolnej tabeli zero-jedynkowej równaniami algebry Boole’a:
W logice jedynek w pełnej tabeli zero-jedynkowej opisujemy wyłącznie jedynki gdzie w poziomie używamy spójnika „i”(*) zaś w pionie spójnika „lub”(+)
Logika jedynek prowadzi do równań alternatywno-koniunkcyjnych zgodnych z naturalną logika matematyczną człowieka, co oznacza, że będą one rozumiane w języku potocznym przez wszystkich ludzi, od 5-cio latka poczynając.

Zastosujmy logikę jedynek do zero-jedynkowej definicji warunku wystarczającego Y = (P=>CH):
Kod:

T2
Wyprowadzenie równań algebry Boole’a dla funkcji logicznych Y i ~Y
Gdzie:
Y = (P=>CH) - zero-jedynkowa definicja warunku wystarczającego =>
Pełna definicja       |Co w logice jedynek  |Równania
zero-jedynkowa Y      |oznacza              |cząstkowe
                      |                     |
   P CH ~P ~CH   Y ~Y |                     |
A: 1  1  0   0  =1 =0 | Ya=1<=> P=1 i  CH=1 | Ya= P~~> CH= P* CH
B: 1  0  0   1  =0 =1 |~Yb=1<=> P=1 i ~CH=1 |~Yb= P~~>~CH= P*~CH
C: 0  0  1   1  =1 =0 | Yc=1<=>~P=1 i ~CH=1 | Yc=~P~~>~CH=~P*~CH
D: 0  1  1   0  =1 =0 | Yd=1<=>~P=1 i  CH=1 | Yd=~P~~> CH=~P* CH
   1  2  3   4   5  6   a       b      c      d   e    f   g  h

W teorii zdarzeń spójnik „i”(*) definiuje zdarzenia możliwe ~~>:
P~~>CH=P*CH =1 - wtedy i tylko wtedy gdy możliwe jest jednoczesne zajście zdarzeń P i CH
Inaczej:
P~~>CH=P*CH=0
Nic więcej spójnik „i”(*) nie może definiować na mocy jego definicji, jak wyżej.

Definicja operatora implikacji prostej P||=>CH wyrażona spójnikami „i”(*) i „lub”(+) to odpowiedź na dwa pytania 1 i 2:

1.
Które zdarzenia w funkcji logicznej Y=(P=>CH) są możliwe ~~> (Y=1)?


Z tabeli równań cząstkowych odczytujemy:
Y = Ya+Yc+Yd
Po rozwinięciu mamy funkcję logiczną Y definiującą sumę logiczną możliwych zdarzeń rozłącznych uzupełniających się wzajemnie do dziedziny fizycznej DF.
Y = (P=>CH) = A: P*CH + C: ~P*~CH + D: ~P*CH
co w logice jedynek oznacza:
Y=1 <=> A: P=1 i CH=1 lub C: ~P=1 i ~CH=1 lub D: ~P=1 i CH=1

To samo w logice formalnej:
Y = (p=>q) = A: p*q + C: ~p*~q + D: ~p*q
co w logice jedynek oznacza:
Y=1 <=> A: p=1 i q=1 lub C: ~p=1 i ~q=1 lub D: ~p=1 i q=1
Kluczowy tu punkt odniesienia dla warunku wystarczającego p=>q to:
p=P (pada)
q=CH (chmury)


Czytamy:
Zdarzenia możliwe (Y=1) to:
Ya=A: P*CH =1*1=1 - pada (P=1) i są chmury (CH=1)
LUB
Yc=C: ~P*~CH=1*1=1 - nie pada (~P=1) i nie ma chmur (~CH=1)
LUB
Yd = D: ~P*CH =1*1=1 - nie pada (~P=1) i są chmury (CH=1)
Gdzie:
Funkcja logiczna Y jest sumą logiczną funkcji cząstkowych:
Y = Ya+Yc+Yd

2.
Które zdarzenia w funkcji logicznej Y=(P=>CH) nie są możliwe ~~> (~Y=1)?


Z tabeli równań cząstkowych odczytujemy:
~Y=~Yb
Po rozwinięciu mamy funkcję logiczną ~Y definiującą zdarzenie niemożliwe (~Y=1):
~Y =~(P=>CH) = B: P*~CH
co w logice jedynek oznacza:
~Y=1 <=> B: P=1 i ~CH=1

To samo w logice formalnej:
~Y = ~(p=>q) = B: p*~q
co w logice jedynek oznacza:
~Y=1 <=> p=1 i ~q=1
Kluczowy tu punkt odniesienia dla warunku wystarczającego p=>q to:
p= P (pada)
q=CH (chmury)


Czytamy:
Niemożliwe jest (~Y=1) zdarzenie: pada (P=1) i nie ma chmur (~CH=1)
Innymi słowy:
Prawdą jest (=1), że nie jest możliwe (~Y) zdarzenie: pada (P=1) i nie ma chmur (~CH=1)

Prawo Prosiaczka:
(~Y=1) = (Y=0)
stąd mamy zdanie tożsame:
Y=0 <=> B: P=1 i ~CH=1
Czytamy:
Fałszem jest (=0) że możliwe jest zdarzenie (Y): pada (P=1) i nie ma chmur (~CH=1)

Zapis tożsamy w algebrze Kubusia:
Y= B: P*~CH =1*1 =0
Czytamy:
Fałszem jest (=0) że możliwe jest zdarzenie (Y): pada (P=1) i nie ma chmur (~CH=1)

Znaczenie symboli:
Y - jest możliwe
~Y - nie jest (~) możliwe

Jak widzimy definicja operatora implikacji prostej P||=>CH wyrażona spójnikami „i”(*) i „lub”(+) jest zrozumiała dla każdego 5-cio latka.

2.6.2 Prawo śfinii - najbardziej zakamuflowane prawo logiki matematycznej

W punkcie 2.6.1 celowo zapisano pochyłym i wytłuszczonym drukiem obowiązujący w operatorze implikacji prostej P||=>CH punkt odniesienia.
Także w bliźniaczym punkcie 11.6.1 zapisano pochyłym i wytłuszczonym drukiem obowiązujący w operatorze implikacji odwrotnej CH||~>P punkt odniesienia.

Zapiszmy istotę problemu śfinii:

Istotny fragment punktu 2.6.1
1IP:
Y = (P=>CH) = A: P*CH + C: ~P*~CH + D: ~P*CH = ~P+CH - zdarzenia rozłączne {A,C,D}
Y = (p=>q) = A: p*q + C: ~p*~q + D: ~p*q = ~p+q - to samo w zapisie formalnym
Punkt odniesienia:
p=P (pada)
q=CH (chmury)

Istotny fragment punktu 11.6.1
1IO:
Y = (CH~>P) = A: CH*P + B: CH*~P + C: ~CH*~P = CH+~P - zdarzenia rozłączne {A,B,C}
Y = (p~>q) = A: p*q + B: p*~q + C: ~p*~q = p+~q - to samo w zapisie formalnym
Punkt odniesienia:
p=CH (chmury)
q=P (pada)

Prawo śfinii - najbardziej zakamuflowane prawo logiki matematycznej:

Zobaczmy w tabeli prawdy istotę problemu śfinii:
Kod:

T3
Zapis formalny:
 1IP: Y= (p=>q) = ~p+q  ## 1IO: Y= (p~>q) = p+~q
Zapis aktualny:
 1IP: Y= (P=>CH)= ~P+CH ## 1IO: Y= (CH~>P)= CH+~P
Punkt odniesienia:       | Punkt odniesienia:
p=P (pada)              ## p=CH(chmury)
q=CH (chmury)           ## q=P (pada)
      #                         #
Zapis formalny:
~1IP:~Y=~(p=>q) =  p*~q  ##~1IO:~Y=~(p~>q) = ~p*q
Zapis aktualny:
~1IP:~Y=~(P=>CH) = P*~CH ##~1IO:~Y=~(CH~>P)= ~CH*P
Punkt odniesienia:        | Punkt odniesienia:
p=P (pada)               ## p=P (pada)
q=CH (chmury)            ## q=CH (chmury)

Definicje znaczków:
# - różne w znaczeniu iż dowolna strona znaczka # jest negacją drugiej
## różne na mocy definicji warunku wystarczającego p=>q i koniecznego p~>q

Definicja znaczka różne na mocy definicji ##:
Dwie funkcje logiczne są różne na mocy definicji wtedy i tylko wtedy gdy nie są tożsame i żadna z nich nie jest zaprzeczeniem drugiej.

W tabeli prawdy widać, że z zapisach formalnych definicja znaczka różne na mocy definicji ## jest spełniona.
Pozorną kolizję (sprzeczność) mamy wyłącznie w zapisie aktualnym:
Kod:

T3
1IP: Y= (P=>CH)= ~P+CH [=] 1IO: Y= (CH~>P)= CH+~P
Punkt odniesienia:       | Punkt odniesienia:
p=P (pada)              ## p=CH(chmury)
q=CH (chmury)           ## q=P (pada)
      #                         #
Zapis formalny:
~1IP:~Y=~(P=>CH)= P*~CH [=]~1IO:~Y=~(CH~>P)= ~CH*P
Punkt odniesienia:        | Punkt odniesienia:
p=P (pada)               ## p=P (pada)
q=CH (chmury)            ## q=CH (chmury)
Definicje znaczków:
# - różne w znaczeniu iż dowolna strona znaczka # jest negację drugiej strony
## różne na mocy definicji warunku wystarczającego p=>q i koniecznego p~>q

Zarówno spójnik „i”(*) jak i spójnik „lub”(+) są przemienne, zatem definicja znaczka różne na mocy definicji ### pozornie załamuje się na zapisie aktualnym.
W rzeczywistości nic się nie załamuje, bowiem między 1IP i 1IO nie mamy zgodności punktów odniesienia.

Podsumowując:
Kod:

T3
1IP: Y= (P=>CH)=~P+CH  [=] 1IO: Y= (CH~>P)=CH+~P
Punkt odniesienia:       | Punkt odniesienia:
p=P (pada)              ## p=CH(chmury)
q=CH (chmury)           ## q=P (pada)
## różne na mocy definicji warunku wystarczającego p=>q i koniecznego p~>q

Każdy kto twierdzi iż zachodzi powyższa tożsamość logiczna [=] bo suma logiczna jest przemienna popełnia trywialny błąd podstawienia.
W logice matematycznej jeśli cokolwiek porównujemy to musimy na to patrzeć ze wspólnego punktu odniesienia, co w powyższej pseudo-tożsamości nie jest spełnione.

Jak temu zaradzić?

Prawo śfinii:
Domyślny punkt odniesienia w zdaniach warunkowych „Jeśli p to q”:

W dowolnym zdaniu warunkowym „Jeśli a to b” zapisanym w zmiennych aktualnych a i b (mających związek z językiem potocznym człowieka), zawsze po „Jeśli..” zapisujemy formalny poprzednik p zaś po „to” zapisujemy formalny następnik q.
Zamieniać p i q w dowolnym zdaniu warunkowym z ustalonym wyżej domyślnym punktem odniesienia wolno nam tylko i wyłącznie na podstawie prawa Tygryska lub prawa kontrapozycji.

… i po problemie.

2.6.3 Definicja minimalna warunku wystarczającego Y=(P=>CH)

Weźmy opis zero-jedynkowej definicji warunku wystarczającego P=>CH równaniami algebry Boole’a znającej zaledwie 5 znaczków {0, 1, (~), „i”(*), „lub”(+)}
Kod:

T2
Wyprowadzenie równań algebry Boole’a dla funkcji logicznych Y i ~Y
Gdzie:
Y = (P=>CH) - zero-jedynkowa definicja warunku wystarczającego =>
Pełna definicja       |Co w logice jedynek  |Równania
zero-jedynkowa Y      |oznacza              |cząstkowe
                      |                     |
   P CH ~P ~CH   Y ~Y |                     |
A: 1  1  0   0  =1 =0 | Ya=1<=> P=1 i  CH=1 | Ya= P~~> CH= P* CH
B: 1  0  0   1  =0 =1 |~Yb=1<=> P=1 i ~CH=1 |~Yb= P~~>~CH= P*~CH
C: 0  0  1   1  =1 =0 | Yc=1<=>~P=1 i ~CH=1 | Yc=~P~~>~CH=~P*~CH
D: 0  1  1   0  =1 =0 | Yd=1<=>~P=1 i  CH=1 | Yd=~P~~> CH=~P* CH
   1  2  3   4   5  6   a       b      c      d   e    f   g  h

Z tabeli równań cząstkowych odczytujemy:
Y = Ya+Yc+Yd
Po rozwinięciu mamy funkcję logiczną Y definiującą sumę logiczną możliwych zdarzeń rozłącznych uzupełniających się wzajemnie do dziedziny fizycznej DF.
Y = (P=>CH) = A: P*CH + C: ~P*~CH + D: ~P*CH
co w logice jedynek oznacza:
Y=1 <=> A: P=1 i CH=1 lub C: ~P=1 i ~CH=1 lub D: ~P=1 i CH=1

Przejdźmy na zapis formalny podstawiając:
p=P (pada)
q=CH (chmury)
1.
Y = (p=>q) = A: p*q + C: ~p*~q + D: ~p*q
co w logice jedynek oznacza:
Y=1 <=> A: p=1 i q=1 lub C: ~p=1 i ~q=1 lub D: ~p=1 i q=1
Minimalizujemy:
Y = p*q+~p*~q+~p*q
Y = p*q + ~p*(~q+q)
Y = ~p+(p*q)
Przejście do logiki ujemnej (bo ~Y) poprzez negację zmiennych i wymianę spójników:
~Y=p*(~p+~q)
~Y=p*~p+p*~q
~Y = p*~q
Powrót do logiki dodatniej poprzez negację zmiennych i wymianę spójników:
2.
Y= (p=>q) = ~p+q
Zachodzi oczywiście tożsamość funkcji logicznych 2: Y= 1: Y
Y = (p=>q) = ~p+q = A: p*q + C: ~p*~q + D: ~p*q

Przejdźmy na zapis aktualny odtwarzając podstawienie:
Y = (P=>CH) = ~P+CH
co w logice jedynek oznacza:
Y=1 <=> ~P=1 lub CH=1

Mamy nasze kluczowe pytanie:
1.
Które zdarzenia w funkcji logicznej Y=(P=>CH) są możliwe ~~> (Y=1)?


Na mocy zminimalizowanej funkcji logicznej odpowiadamy:
Y = (P=>CH) = ~P+CH
co w logice jedynek oznacza:
Y=1 <=>~P=1 lub CH=1
Czytamy:
Jak widzimy ostatniego zdania normalny człowiek nie zrozumie bo nie chodzi tu o jedno zdarzenie lecz o trzy rozłączne zdarzenia uzupełniające się do dziedziny fizycznej DF (DF=zdarzenie możliwe) których nie widać bezpośrednio w powyższym zapisie.

Jak sobie z tym poradzić na poziomie 5-cio latka?

1.
Najpierw odpowiadamy na pytanie o zdarzenia niemożliwe (~Y=1) w następujący sposób:
Y = (P=>CH) = ~P+CH - funkcja logiczna Y opisująca zdarzenia możliwe (Y=1)
Przejście do logiki ujemnej (bo ~Y) poprzez negację zmiennych i wymianę spójników:
~Y=P*~CH
co w logice jedynek oznacza:
~Y=1 <=> P=1 i ~CH=1
Czytamy:
Zdarzenie niemożliwe (~Y=1) to: pada (P=1) i nie ma chmur (~CH=1)

2.
Oczywistym jest że pozostałe zdarzenia muszą być możliwe (Y=1).
Te pozostałe zdarzenia możliwe to:
Ya=P*CH =1*1 =1 - pada (P=1) i jest pochmurno (CH=1)
lub
Yc=~P*~CH=1*1=1 - nie pada (~P=1) i nie ma chmur (~CH=1)
lub
Yd=~P*CH=1*1 =1 - nie pada (~P=1) i są chmury (CH=1)

Oczywiście matematycznie zachodzi:
Y = Ya+Yc+Yd
Po podstawieniu funkcji cząstkowych mamy:
Y = (P=>CH) = A: P*CH + C:~P*~CH + D: ~P*CH
co w logice jedynek oznacza:
Y=1 <=> A: P=1 i CH=1 lub C: ~P=1 i ~CH=1 lub ~P=1 i CH=1

Jak widzimy tym banalnie prostym algorytmem uzyskaliśmy poprawne odpowiedzi na pytania o funkcje logiczne Y i ~Y w sposób zrozumiały dla każdego 5-cio latka.

Wniosek:
Nie zawsze funkcja minimalna (tu Y=~P+CH) jest zrozumiała dla człowieka

2.6.4 Definicja obietnicy w spójnikach „i”(*) i „lub”(+)

Definicja obietnicy:
Jeśli dowolny warunek to nagroda
W=>N
Dowolna obietnica to warunek wystarczający W=>N wchodzący w skład implikacji prostej W|=>N.

Jak widzimy, w dowolnej obietnicy jedyne co mamy do roboty to rozstrzygnięcie, czy w następniku zdania warunkowego „Jeśli p to q” mamy nagrodę.
Poza tym wszystko mamy zdeterminowane, nic a nic nie musimy dodatkowo udowadniać.

Weźmy klasykę obietnicy:
A1.
Jeśli zdasz egzamin dostaniesz komputer
E=>K =1
Na mocy definicji obietnicy zdanie egzaminu jest warunkiem wystarczającym => dla dostania komputera.
Na mocy definicji warunek wystarczający A1: E=>K jest częścią implikacji prostej E|=>K o definicji:
A1: E=>K =1 - zdanie egzaminu jest (=1) warunkiem wystarczającym => dla dostania komputera
B1: E~>K =0 - zdanie egzaminu nie jest (=0) warunkiem koniecznym ~> dla dostania komputera
E|=>K = (A1: E=>K)*~(B1: E~>K) = 1*~(0) =1*1 =1

Definicja minimalna warunku wystarczającego => w spójnikach „i”(*) i „lub”(+) wchodzącego w skład implikacji prostej E|=>K:
Y = (E=>K) =~E+K
co w logice jedynek oznacza:
Y=1 <=> ~E=1 lub K=1
Czytamy:
Ojciec dotrzyma słowa (Y=1) wtedy i tylko wtedy gdy syn nie zda egzaminu (~E=1) lub dostanie komputer (K=1)
Oczywiście żaden normalny człowiek tego nie zrozumie.

Jak do tego podejść w sposób zrozumiały dla 5-cio latka?

1.
Najpierw odpowiadamy na pytanie:
Kiedy ojciec skłamie (~Y=1)?
w następujący sposób:
Y = ~E+K - funkcja logiczna Y odpowiadająca na pytanie ‘Kiedy ojciec dotrzyma słowa (Y=1)?”
Przejście do logiki ujemnej (bo ~Y) poprzez negację zmiennych i wymianę spójników:
~Y=E*~K
co w logice jedynek oznacza:
~Y=1 <=> E=1 i ~K=1
Czytamy:
Ojciec skłamie (~Y=1) wtedy i tylko wtedy gdy: syn zda egzamin (E=1) i nie dostanie komputera (~K=1)

2.
Oczywistym jest że w pozostałych przypadkach ojciec dotrzyma słowa (Y=1).
Te pozostałe przypadki to:
Ya=E*K =1*1 =1 - syn zdaje egzamin (E=1) i dostaje komputer (K=1)
lub
Yc=~E*~K=1*1=1 - syn nie zdaje egzaminu (~E=1) i nie dostaje komputera (~K=1)
lub
Yd=~E*K=1*1 =1 - syn nie zdaje egzaminu (~E=1) i dostaje komputer (K=1)

Ostatni przypadek to piękny akt miłości, czyli wręczenie nagrody (tu komputera) mimo iż syn nie spełnił warunku nagrody (nie zdał egzaminu)

Jak widzimy tym banalnie prostym algorytmem uzyskaliśmy poprawne odpowiedzi na pytania o funkcje logiczne Y i ~Y w sposób zrozumiały dla każdego 5-cio latka.


2.7 Matematyczne fundamenty teorii zdarzeń dla 5-cio latków

Cała logika matematyczna w obsłudze zdań warunkowych „Jeśli p to q” stoi na zaledwie trzech znaczkach (~~>, =>, ~>) definiujących wzajemne relacje zdarzeń p i q

I.
Definicja zdarzenia możliwego ~~>:

Jeśli zajdzie p to może ~~> zajść q
p~~>q =p*q =1
Definicja zdarzenia możliwego ~~> jest spełniona (=1) wtedy i tylko wtedy gdy możliwe jest jednoczesne zajście zdarzeń p i q.
Inaczej:
p~~>q=p*q =[] =0

Decydujący w powyższej definicji jest znaczek zdarzenia możliwego ~~>, dlatego dopuszczalny jest zapis skrócony p~~>q.
Uwaga:
Na mocy definicji zdarzenia możliwego ~~> badamy możliwość zajścia jednego zdarzenia, nie analizujemy tu czy między p i q zachodzi warunek wystarczający => czy też konieczny ~>.

II.
Definicja warunku wystarczającego => w zdarzeniach:

Jeśli zajdzie p to zajdzie q
p=>q =1
Definicja warunku wystarczającego => jest spełniona (=1) wtedy i tylko wtedy gdy zajście zdarzenia p jest wystarczające => dla zajścia zdarzenia q
Inaczej:
p=>q =0

Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
p=>q = ~p+q

III.
Definicja warunku koniecznego ~> w zdarzeniach:

Jeśli zajdzie p to zajdzie q
p~>q =1
Definicja warunku koniecznego ~> jest spełniona (=1) wtedy i tylko wtedy gdy zajście zdarzenia p jest konieczne ~> dla zajścia zdarzenia q
Inaczej:
p~>q =0

Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
p~>q = p+~q

Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>~q=p*~q

Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)

Matematyczne związki warunków wystarczających => i koniecznych ~>

Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
A1: p=>q = ~p+q
##
Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
B1: p~>q = p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Na mocy rachunku zero-jedynkowego mamy matematyczne związki warunków wystarczających => i koniecznych ~>.
Kod:

T0
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5: p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


Na mocy powyższego zapisujemy:
1.
Prawa Kubusia:
A1: p=>q = A2: ~p~>~q
##
B1: p~>q = B2: ~p=>~q
Ogólne prawo Kubusia:
Negujemy zmienne i wymieniamy spójniki na przeciwne

2.
Prawa Tygryska:
A1: p=>q = A3: q~>p
##
B1: p~>q = B3: q=>p
Ogólne prawo Tygryska:
Zamieniamy miejscami zmienne i wymieniamy spójniki na przeciwne

3.
Prawa kontrapozycji:
A1: p=>q = A4: ~q=>~p - prawo kontrapozycji dla warunku wystarczającego =>
##
B1: p~>q = B4: ~q~>~p - prawo kontrapozycji dla warunku koniecznego ~>
Ogólne prawo kontrapozycji:
Negujemy zmienne zamieniając je miejscami bez zmiany spójnika logicznego

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p=>q = ~p+q ## p~>q = p+~q

2.7.1 Od teorii zdarzeń do operatora implikacji prostej P||=>CH

Z algebrą Kubusia jest identycznie jak z gramatyką języka mówionego.
Czy trzeba znać gramatykę by posługiwać się językiem ojczystym?
Czy 5-cio latek musi znać gramatykę języka by posługiwać się językiem ojczystym?
Odpowiedź jest jednoznaczna:
NIE!
Fundamentem języka mówionego jest algebra Kubusia, nigdy jakaś tam gramatyka, której osobiście nigdy nie znałem tzn. do dzisiaj nie wiem co to jest jakiś tam podmiot, orzeczenie, przysłówek, dupówek etc.
Algebra Kubusia to logika matematyczna rządząca naszym Wszechświatem, zarówno żywym, jak i martwym z matematyką włącznie. Wszyscy perfekcyjnie znamy algebrę Kubusia od momentu narodzin do śmierci i nie mamy żadnych szans, aby się od niej uwolnić.
Dowód tego faktu będzie w niniejszym punkcie.

Udajmy się do przedszkola.
A1.
Pani:
Powiedźcie mi dzieci:
Czy może się jutro zdarzyć, że będzie padało i będzie pochmurno?
Jaś (lat 5)
TAK - zdarzenie możliwe (=1)
Stąd mamy prawdziwe zdanie warunkowe:
A1.
Jeśli jutro będzie padało (P=1) to może ~~~> być pochmurno (CH=1)
P~~>CH = P*CH =1
Możliwe jest (=1) zdarzenie: pada (P=1) i są chmury (CH=1)
O czym każdy 5-cio latek wie.
Na mocy definicji zdarzenia możliwego ~~> interesuje nas jeden taki przypadek, nie badamy tu czy zawsze gdy pada, jest pochmurno.

A1’
Pani:
Czy może się zdarzyć, że jutro będzie padało i nie będzie pochmurno?
Jaś (lat 5).
NIE - zdarzenie niemożliwe (=0)
Stąd mamy fałszywe zdanie warunkowe:
A1’
Jeśli jutro będzie padało to może ~~> nie być pochmurno
P~~>~CH = P*~CH =0
Nie może się zdarzyć (=0), że juro będzie padało (P=1) i nie będzie pochmurno (~CH=1)
O czym każdy 5-cio latek wie.

A2.
Pani:
Czy może się zdarzyć, że jutro nie będzie padało i nie będzie pochmurno?
Jaś (lat 5).
TAK - zdarzenie możliwe (=1)
Stąd mamy prawdziwe zdanie warunkowe:
A2.
Jeśli jutro nie będzie padało (~P=1) to może ~~> nie być pochmurno (~CH=1)
~P~~>~CH =~P*~CH=1
Może się zdarzyć (=1), że jutro nie będzie padało (~P=1) i nie będzie pochmurno (~CH=1)
O czym każdy 5-cio latek wie.

B2’
Pani:
Czy może się zdarzyć, że jutro nie będzie padało (~P=1) i będzie pochmurno (CH=1)?
Jaś (lat 5):
TAK - zdarzenie możliwe (=1)
Stąd mamy prawdziwe zdanie warunkowe:
B2’
Jeśli jutro nie będzie padało (~P=1) to może ~~> być pochmurno (CH=1)
~P~~>CH = ~P*CH =1
Możliwe jest zdarzenie (=1): nie pada (~P=1) i jest pochmurno (CH=1)
O czym każdy 5-cio latek wie.

2.7.2 Czarodziejska siła definicji kontrprzykładu i praw Kubusia

Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>~q=p*~q

Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)

Prawa Kubusia:
A1: p=>q = A2: ~p~>~q
##
B1: p~>q = B2: ~p=>~q
Ogólne prawo Kubusia:
Negujemy zmienne i wymieniamy spójniki na przeciwne
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p=>q = ~p+q ## p~>q = p+~q

Zapiszmy dialog pani przedszkolanki z Jasiem w tabeli prawdy:
Kod:

T1.
                    Y  Analiza z punktu odniesienia funkcji logicznej Y
A1:  P~~> CH= P* CH=1 -możliwe jest (=1) zdarzenie: pada i są chmury
A1’: P~~>~CH= P*~CH=0 -niemożliwe jest (=0) zdarzenie: pada i nie ma chmur
A2: ~P~~>~CH=~P*~CH=1 -możliwe jest (=1) zdarzenie: nie pada i nie ma chmur
B2’:~P~~> CH=~P* CH=1 -możliwe jest (=1) zdarzenia: nie pada i są chmury

W zdarzeniach możliwych kluczowy jest znaczek zdarzenia możliwego ~~>.
Uprośćmy zatem tabelę wyżej:
Kod:

T1.
             Y  Analiza z punktu odniesienia funkcji logicznej Y
A1:  P~~> CH=1 -możliwe jest (=1) zdarzenie: pada i są chmury
A1’: P~~>~CH=0 -niemożliwe jest (=0) zdarzenie: pada i nie ma chmur
A2: ~P~~>~CH=1 -możliwe jest (=1) zdarzenie: nie pada i nie ma chmur
B2’:~P~~> CH=1 -możliwe jest (=1) zdarzenia: nie pada i są chmury

W czym tkwi czarodziejska siła kontrprzykładu w zdarzeniach możliwych ~~>?
Analizujemy tabelę T1 korzystając wyłącznie z definicji kontrprzykładu i praw Kubusia.

Analiza tabeli T1 - część I
1.
Z fałszywości kontrprzykładu A1’:
A1’: P~~>~CH=0
wynika prawdziwość warunku wystarczającego => A1 (i odwrotnie):
A1: P=>CH =1 -padanie jest (=1) wystarczające => dla istnienia chmur, bo zawsze gdy pada, są chmury
O czym każdy 5-cio latek wie
2.
Prawo Kubusia:
A1: P=>CH = A2: ~P~>~CH =1
Stąd mamy:
Z prawdziwości warunku wystarczającego => A1:
A1: P=>CH=1
wynika prawdziwość warunku koniecznego A2 (i odwrotnie):
A2: ~P~>~CH=1 - brak opadów (~P=1) jest (=1) warunkiem koniecznym ~> dla braku chmur (~CH=1)
bo jak pada (P=1) to na 100% => są chmury (CH=1)
O czym każdy 5-cio latek wie.
Prawo Kubusia samo nam tu wyskoczyło:
A2: ~P~>~CH = A1: P=>CH

Nanieśmy naszą analizę do tabeli prawdy T1.
Kod:

T2.
A1:  P=> CH =1 -padanie jest (=1) wystarczające => dla istnienia chmur
A1’: P~~>~CH=0 -kontrprzykład A1’ dla prawdziwego A1 musi być fałszem
A2: ~P~> ~CH=1 -brak opadów (~P=1) jest konieczny~> dla braku chmur (~CH=1)
B2’:~P~~> CH=1 -możliwe jest (=1) zdarzenia: nie pada i są chmury

Analiza tabeli T1 - część II
3.
Z prawdziwości kontrprzykładu B2’:
B2’: ~P~~>CH =1
wynika fałszywość warunku wystarczającego => B2 (i odwrotnie):
B2: ~P=>~CH =0 - nie jest prawdą (=0), że zawsze gdy nie pada (~P=1), nie ma chmur (~CH=1)
O czym każdy 5-cio latek wie
4.
Prawo Kubusia:
B2: ~P=>~CH = B1: P~>CH =0
stąd mamy:
Fałszywy warunek wystarczający B2:
B2:~P=>~CH=0
wymusza fałszywy warunek Konieczny ~> B1 (i odwrotnie):
B1: P~>CH =0 - padanie nie jest konieczne ~> dla istnienia chmur bo może nie padać, a chmury mogą istnieć.
O czym każdy 5-cio latek wie.

Nanieśmy część II analizy do tabeli prawdy T2.
Kod:

T3.
A1:  P=> CH =1 | B1: P~>CH =0
A1’: P~~>~CH=0
A2: ~P~> ~CH=1 | B2:~P=>~CH =0
B2’:~P~~> CH=1

Uwaga 1:
Zauważmy, że w linii A1 zapisaną mamy implikację prostą P|=>CH w logice dodatniej (bo CH):
Implikacja prosta P|=>CH to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
A1: P=>CH=1 - padanie jest (=1) wystarczające => dla istnienia chmur, bo zawsze gdy pada, są chmury
B1: P~>CH=0 - padnie nie jest (=0) konieczne ~> dla istnienia chmur, bo chmury mogą istnieć i nie musi padać.
Stąd:
P|=>CH = (A1: P=>CH)*~(B1: P~>CH) =1*~(0) =1*1 =1

Uwaga 2:
Zauważmy, że w linii A2 mamy zapisaną implikację odwrotną ~P|~>~CH w logice ujemnej (bo ~CH):
Implikacja odwrotna ~P|~>~CH to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A2: ~P~>~CH =1 - brak padania (~P=1) jest (=1) warunkiem koniecznym ~> dla nie istnienia chmur (~CH=1), bo jak pada (P=1) to na 100% => są chmury (CH=1)
B2: ~P=>~CH =0 - brak padania (~P=1) nie jest (=0) warunkiem wystarczającym => dla nie istnienia chmur, bo nie zawsze gdy nie pada, nie ma chmur
~P|~>~CH = (A2: ~P~>~CH)*~(B2: ~P=>~CH) =1*~(0) =1*1 =1

Uwagi 1 i 2 możemy zapisać w tożsamej tabeli prawdy:
Kod:

T4.
Definicja implikacji prostej P|=>CH dla punktu odniesienia w kolumnie A1B1:
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
A1B1: P|=>CH=(A1: P=>CH)*~(B1: P~>CH) =1*~(0)=1*1=1
Punkt odniesienia:
p=P (pada)
q=CH (chmury)
      A1B1            A2B2
Zapis formalny:
A: 1: p=> q =1 [=] 2: ~p~>~q =1 - prawo Kubusia
Zapis aktualny:
A: 1: P=>CH =1 [=] 2: ~P~>~CH=1
      ##               ##
Zapis formalny:
B: 1: p~> q =0 [=] 2: ~p=>~q =0 - prawo Kubusia
Zapis aktualny:
B: 1: P~>CH =0 [=] 2: ~P=>~CH=0
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla tabeli T4 skorzystajmy po raz kolejny z definicji kontrprzykładu, działającej wyłącznie w warunkach wystarczających.

Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>~q=p*~q

Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)

Stąd mamy tożsamą tabelę T5:
Kod:

T5.
Definicja implikacji prostej P|=>CH dla punktu odniesienia w kolumnie A1B1:
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
A1B1: P|=>CH=(A1: P=>CH)*~(B1: P~>CH) =1*~(0)=1*1=1
Punkt odniesienia:
p=P (pada)
q=CH (chmury)
      A1B1               A2B2
Zapis formalny:
A:  1: p=> q =1  [=] 2: ~p~>~q =1 - prawo Kubusia
A’: 1: p~~>~q=0
Zapis aktualny:
A:  1: P=>CH =1  [=] 2: ~P~>~CH=1
A’: 1: P~~>~CH=0
      ##               ##
Zapis formalny:
B:  1: p~> q =0  [=] 2: ~p=>~q =0 - prawo Kubusia
B’:                  2: ~p~~>q =1
Zapis aktualny:
B:  1: P~>CH =0  [=] 2: ~P=>~CH=0
B’:                  2: ~P~~>CH=1
Komentarz:
A1: P=>CH=1 - prawdziwy warunek wystarczający A1 wymusza fałszywy A1’
B2:~P=>~CH=0 - fałszywy warunek wystarczający B2 wymusza prawdziwy B2’
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Doskonale widać, że w kolumnie A1B1 mamy opis tego co może się wydarzyć jeśli jutro będzie padało (P=1), natomiast w kolumnie A2B2 opis wszystkich możliwych przypadków gdy nie będzie padało (~P=1).

W tym momencie możemy tylko powtórzyć to co już poznaliśmy wcześniej, do czego doszliśmy na bazie teorii algebry Kubusia od strony przeciwnej tzn. nie od zdarzeń możliwych ~~> jak w tym przypadku, lecz od strony definicji warunku wystarczającego => i koniecznego ~>.

Prawo śfinii:
Domyślny punkt odniesienia w zdaniach warunkowych „Jeśli p to q”:

W dowolnym zdaniu warunkowym „Jeśli a to b” zapisanym w zmiennych aktualnych a i b (mających związek z językiem potocznym człowieka), zawsze po „Jeśli..” zapisujemy formalny poprzednik p zaś po „to” zapisujemy formalny następnik q.
Zamieniać p i q w dowolnym zdaniu warunkowym z ustalonym wyżej domyślnym punktem odniesienia wolno nam tylko i wyłącznie na podstawie prawa Tygryska lub prawa kontrapozycji.

Definicja operatora implikacji prostej P||=>CH:
Operator implikacji prostej P||=>CH to odpowiedź na dwa pytania 1 i 2:

1.
Co może się wydarzyć jeśli jutro będzie padało (P=1)?

Odpowiedź na to pytanie mamy w kolumnie A1B1:
Jeśli jutro będzie padało (P=1) to mamy gwarancję matematyczną => iż będzie pochmurno (CH=1) - mówi o tym zdanie A1
A1.
Jeśli jutro będzie padało (P=1) to na 100% => będzie pochmurno (CH=1)
P=>CH =1
to samo w zapisie formalnym:
p=>q =1
p=P (pada)
q=CH (chmury)
Padanie jest warunkiem wystarczającym => dla istnienia chmur, bo zawsze gdy pada, są chmury
Padanie daje nam gwarancję matematyczną => istnienia chmur
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>
Na mocy prawa śfinii zdanie A1 musimy przyjąć za punkt odniesienia bowiem wszystkie następne zdania odnoszą się do zdania A1.
Punkt odniesienia dla dalszej analizy:
A1: p=>q =1
p=P (pada)
q=CH (chmury)

Z prawdziwości warunku wystarczającego => A1 wynika fałszywość kontrprzykładu A1’ (i odwrotnie)
A1’
Jeśli jutro będzie padało (P=1) to może ~~> nie być pochmurno (~CH=1)
P~~>~CH = P*~CH =0
to samo w zapisie formalnym:
p~~>~q = p*~q =1
Niemożliwe jest (=0) zdarzenie: pada (P=1) i nie ma chmur (~CH=1)

2.
Co może się wydarzyć jeśli jutro nie będzie padało (~P=1)?

Prawo Kubusia:
A1: P=>CH = A2:~P~>~CH
Prawdziwość zdania A1 mamy udowodnioną, zatem na mocy prawa Kubusia prawdziwość zdania A2 mamy gwarantowaną.

Odpowiedź na to pytanie mamy w kolumnie A2B2:
Jeśli jutro nie będzie padało (~P=1) to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” - mówią o tym zdania A2 i B2’

A2.
Jeśli jutro nie będzie padało (~P=1) to może ~> nie być pochmurno (~CH=1)
~P~>~CH =1
to samo w zapisie formalnym:
~p~>~q =1
Brak opadów (~P=1) jest warunkiem koniecznym ~> do tego aby nie było pochmurno (~CH=1) bo jak pada (P=1) to na 100% => są chmury (CH=1)
Prawo Kubusia samo nam tu wyskoczyło:
A2: ~P~>~CH = A1: P=>CH

LUB

Kontrprzykład B2’ dla fałszywego warunku wystarczającego => B2 musi być prawdą, stąd:
B2’.
Jeśli jutro nie będzie padało (~P=1) to może ~~> być pochmurno (CH=1)
~P~~>CH = ~P*CH =1
to samo w zapisie formalnym:
~p~~>q = ~p*q =1
Możliwe jest (=1) zdarzenie: nie pada (~P=1) i jest pochmurno (CH=1)

Podsumowanie:
Istotą operatora implikacji prostej P||=>CH jest gwarancja matematyczna po stronie P i najzwyklejsze „rzucanie monetą” w rozumieniu „na dwoje babka wróżyła” po stronie ~P

Dowód:
Zauważmy, że jeśli jutro będzie padało (P=1) to mamy gwarancję matematyczną => iż na 100% => będzie pochmurno (CH=1) - mówi o tym zdanie A1
A1.
Jeśli jutro będzie padało (P=1) to na 100% => będzie pochmurno (CH=1)
P=>CH =1

Natomiast jeśli jutro nie będzie padało (~P=1) to mamy najzwyklejsze „rzucanie monetą” w rozumieniu „na dwoje babka wróżyła” - mówią o tym zdania A2 i B2’
A2.
Jeśli jutro nie będzie padało (~P=1) to może ~> nie być pochmurno (~CH=1)
~P~>~CH =1
LUB
B2’.
Jeśli jutro nie będzie padało (~P=1) to może ~~> być pochmurno (CH=1)
~P~~>CH = ~P*CH =1
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 35963
Przeczytał: 15 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Nie 15:05, 11 Kwi 2021    Temat postu:

Algebra Kubusia - wykład rozszerzony
2.8 Operator implikacji prostej P||=>4L w zbiorach w przedszkolu

Spis treści
2.8 Operator implikacji prostej P||=>4L w zbiorach w przedszkolu 1
2.8.1 Alternatywne dojście do operatora implikacji prostej P||=>4L w zbiorach 5
2.8.2 Diagram operatora implikacji prostej P||=>4L w zbiorach 11



2.8 Operator implikacji prostej P||=>4L w zbiorach w przedszkolu

W algebrze Kubusia w zbiorach zachodzi:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

Zadanie matematyczne w 100-milowym lesie:
Zbadaj w skład jakiego operatora logicznego wchodzi zdanie:
Każdy pies ma cztery łapy
Dokonaj analizy matematycznej tego operatora

Zdanie matematycznie tożsame brzmi:
A1.
Jeśli zwierzę jest psem (P=1) to na 100% => ma cztery łapy (4L=1)
P=>4L =1
Definicja warunku wystarczającego => jest tu spełniona (=1) bo zbiór jednoelementowy P=[pies] jest podzbiorem => zbioru zwierząt z czterema łapami 4L=[pies, słoń ..]
Bycie psem jest warunkiem wystarczającym => do tego aby mieć cztery łapy
Bycie psem daje nam gwarancję matematyczną => posiadania czterech łap
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>

Uwaga:
W logice matematycznej za psa przyjmujemy zwierzę zdrowe z czterema łapami.
Pies z trzema łapami to też pies, jednak z logiki matematycznej musimy usunąć psy kalekie bowiem wówczas warunek wystarczający A1 leży w gruzach, gdyż będzie tu istniał kontrprzykład w postaci psa z trzema łapami. Jeśli uwzględnimy psy kalekie to wylądujemy w operatorze chaosu P|~~>4L bez żadnej gwarancji matematycznej =>.

Prawo śfinii:
Domyślny punkt odniesienia w zdaniach warunkowych „Jeśli p to q”:

W dowolnym zdaniu warunkowym „Jeśli a to b” zapisanym w zmiennych aktualnych a i b (mających związek z językiem potocznym człowieka), zawsze po „Jeśli..” zapisujemy formalny poprzednik p zaś po „to” zapisujemy formalny następnik q.
Zamieniać p i q w dowolnym zdaniu warunkowym z ustalonym wyżej domyślnym punktem odniesienia wolno nam tylko i wyłącznie na podstawie prawa Tygryska lub prawa kontrapozycji.

Na mocy prawa śfinii zapis formalny zdania A1 to:
A1: p=>q =1
p=P=[pies] - jednoelementowy zbiór pies
q=4L=[pies, słoń ..] - zbiór zwierząt z czterema łapami.
A1: P=>4L =1

Aby udowodnić w skład jakiego operatora logicznego wchodzi warunek wystarczający A1: P=>4L musimy zbadać prawdziwość/fałszywość warunku koniecznego ~> B1: P~>4L między tymi samymi punktami i w tym samym kierunku.

Warunek wystarczający A1 definiuje nam dwa zbiory:
Poprzednik p:
p=P=[pies] - zbiór jednoelementowy pies
Następnik q:
q=4L=[pies, słoń ..] - zbiór zwierząt z czterema łapami.

Przyjmijmy dziedzinę minimalną:
ZWZ - zbiór wszystkich zwierząt
Stąd mamy zaprzeczenia zbiorów rozumiane jako ich uzupełnia do wspólnej dziedziny ZWZ:
~P=[ZWZ-P] =[słoń, kura ..] =1 - zbiór wszystkich zwierząt z wykluczeniem psa
~4L=[ZWZ-4L] = [kura ..] =1 - zbiór wszystkich zwierząt z wykluczeniem zwierząt z czterema łapami
Gdzie:
[słoń] - jest przedstawicielem zwierząt nie będących psami które mają cztery łapy
[kura] - jest przedstawicielem zwierząt nie mających czterech łap

Badamy teraz czy spełniony jest warunek konieczny P~>4L=?
B1.
Jeśli zwierzę jest psem (P=1) to na 100% ~> ma cztery łapy (4L=1)
P~>4L =0
W zapisie formalnym:
p~>q =0
Definicja warunku koniecznego ~> nie jest spełniona (=0) bo zbiór P=[pies] nie jest nadzbiorem ~> zbioru zwierząt z czterema łapami 4L=[pies, słoń ..]
… o czym każdy 5-cio latek wie.

Zauważmy, że zdania A1 i B1 brzmią identycznie z dokładnością do każdej literki i każdego przecinka a mimo to nie są to zdania tożsame:
A1.
Jeśli zwierzę jest psem (P=1) to na 100% => ma cztery łapy (4L=1)
P=>4L =1
Definicja warunku wystarczającego => jest tu spełniona (=1) bo zbiór jednoelementowy P=[pies] jest podzbiorem => zbioru zwierząt z czterema łapami 4L=[pies, słoń ..]
##
B1.
Jeśli zwierzę jest psem (P=1) to na 100% ~> ma cztery łapy (4L=1)
P~>4L =0
Definicja warunku koniecznego ~> nie jest spełniona bo zbiór P=[pies] nie jest nadzbiorem ~> zbioru zwierząt z czterema łapami 4L=[pies, słoń ..]
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Różność ## zdań A1 i B1 rozpoznajemy po znaczkach warunku wystarczającego => i koniecznego ~> wbudowanych w treść zdań.

Podsumowując:
W zapisie aktualnym mamy:
A1: P=>4L=~P+4L ## B1: P~>4L = P+~4L
To samo w zapisie formalnym:
A1: p=>q = ~p+q ## B1: p~>q = p+~q
gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>.
p i q muszą być tymi samymi p i q inaczej błąd podstawienia

Stąd mamy:
Prawo Kameleona:
Dwa zdania brzmiące identycznie z dokładnością do każdej literki i każdego przecinka nie muszą być matematycznie tożsame.

Stąd mamy rozstrzygnięcie iż zdanie A1: P=>4L jest częścią implikacji prostej P|=>4L.

Definicja implikacji prostej P|=>4L
Implikacja prosta P=>4L to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku:
A1: P=>4L =1 - bycie psem jest (=1) wystarczające => do tego aby mieć cztery łapy
bo każdy pies ma cztery łapy
B1: P~>4L =0 - bycie psem nie jest (=0) warunkiem koniecznym ~> do tego by mieć cztery łapy
Słoń nie jest psem a mimo to ma cztery łapy.
Stąd:
P|=>4L = (A1: P=>4L)*~(B1: P~>4L) = 1*~(0)=1*1=1

Podstawmy nasze zdania A1: P=>4L=1 i B1: P~>4L=0 do matematycznych związków warunków wystarczających => i koniecznych ~> w implikacji prostej P|=>4L.
Kod:

T2
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji prostej p|=>q
Kolumna A1B1 to punkt odniesienia:
p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1 - formalny punkt odniesienia
P|=>4L=(A1: P=>4L)*~(B1: P~>4L)=1*~(0)=1*1=1 - aktualny punkt odniesienia
Punkt odniesienia:
p=P=[pies] - jednoelementowy zbiór pies
q=4L=[pies, słoń ..] - zbiór zwierząt mających cztery łapy
       A1B1:          A2B2:       |      A3B3:           A4B4:
A:  1: p=>q   =1 = 2:~p~>~q =1    [=] 3: q~>p   =1  = 4:~q=>~p  =1
A:  1: P=>4L  =1 = 2:~P~>~4L=1    [=] 3: 4L~>P  =1  = 4:~4L=>~P =1
A’: 1: p~~>~q =0 =                [=]               = 4:~q~~>p  =0                   
A’: 1: P~~>~4L=0 =                [=]               = 4:~4L~~>P =0                   
       ##            ##            |     ##            ##
B:  1: p~>q   =0 = 2:~p=>~q =0    [=] 3: q=>p   =0  = 4:~q~>~p  =0
B:  1: P~>4L  =0 = 2:~P=>~4L=0    [=] 3: 4L=>P  =0  = 4:~4L~>~P =0
B’:              = 2:~p~~>q=1     [=] 3: q~~>~p =1
B’:              = 2:~P~~>4L=1    [=] 3: 4L~~>~P=1
---------------------------------------------------------------
  p|=>q=~p*q     = ~p|~>~q=~p*q   [=]  q|~>p=q*~p  = ~q|=>~p=q*~p
  P|=>4L=~P*4L   = ~P|~>~4L=~P*4L [=] 4L|~>P=4L*~P = ~4L|=>~P=4L*~P
Gdzie:
p=>q=~p+q ## p~>q=p+~q
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
A1: P=>4L=1 - prawdziwy A1 wymusza fałszywy kontrprzykład A1’ (i odwrotnie)
B2:~P=>~4L=0 -fałszywy B2 wymusza prawdziwy kontrprzykład B2’ (i odwrotnie)
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


Operator implikacji prostej P||=>4L to odpowiedź na dwa pytania 1 i 2:

1.
Co może się wydarzyć, jeśli ze zbioru wszystkich zwierząt ZWZ wylosujemy psa (P=1)?

Odpowiedź mamy w kolumnie A1B1:
Jeśli ze zbioru wszystkich zwierząt (ZWZ) wylosujemy psa to mamy gwarancję matematyczną => iż będzie on miał cztery łapy - mówi o tym zdanie A1.

A1.
Jeśli zwierzę jest psem (P=1) to na 100% => ma cztery łapy (4L=1)
P=>4L =1
to samo w zapisie formalnym:
p=>q =1
Definicja warunku wystarczającego => spełniona bo zbiór P=[pies] jest podzbiorem => zbioru zwierząt z czterema łapami 4L=[pies słoń ..]
Wylosowanie ze zbioru wszystkich zwierząt (ZWT) psa, daje nam gwarancję matematyczną => iż będzie on miał cztery łapy
Zachodzi tożsamość matematyczna pojęć:
Warunek wystarczający => = relacja podzbioru => = gwarancja matematyczna =>

Prawdziwość warunku wystarczającego => A1 wymusza fałszywość kontrprzykładu A1’ (i odwrotnie).
A1’.
Jeśli zwierzę jest psem (P=1) to może ~~> nie mieć czterech łap (~4L=1)
P~~>~4L = P*~4L =0
to samo w zapisie formalnym:
p~~>~q = p*~q =0
Definicja elementu wspólnego zbiorów ~~> nie jest spełniona bo zbiory P=[pies] i ~4L=[kura ..] są rozłączne.

2.
Co może się wydarzyć, jeśli ze zbioru wszystkich zwierząt ZWZ wylosujemy zwierzę nie będące psem (~P=1)?

Prawo Kubusia:
A1: P=>4L = A2:~P~>~4L
Odpowiedź mamy w kolumnie A2B2:
Jeśli ze zbioru wszystkich zwierząt (ZWZ) wylosujemy zwierzę nie będące psem to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła”, o czym mówią zdania prawdziwe A2 i B2’

A2.
Jeśli zwierzę nie jest psem (~P=1) to może ~> nie mieć czterech łap (~4L=1)
~P~>~4L =1
to samo w zapisie formalnym:
~p~>~q =1
Definicja warunku koniecznego ~> jest tu spełniona bo zbiór ~P=[słoń, kura ..] jest nadzbiorem ~> zbioru ~4L=[kura ..]
Zauważmy, że po udowodnieniu prawdziwości zdania A1: P=>4L nie musimy dowodzić wprost prawdziwości zdania A2 bo prawo Kubusia:
A1: P=>4L = A2: ~P~>~4L

LUB

Kontrprzykład B2’ dla fałszywego warunku wystarczającego B2: P=>~4L=0 musi być prawdą
Prawdziwości zdania B2’ nie musimy zatem dowodzić wprost, ale możemy dowodzić.
B2’.
Jeśli zwierzę nie jest psem (~P=1) to może ~> mieć cztery łapy (4L=1)
~P~~>4L = ~P*4L =1
to samo w zapisie formalnym:
~p~~>q = ~p*q =1
Definicja elementu wspólnego ~~> zbiorów ~P=[słoń, kura ..] i 4L=[pies, słoń ..] jest spełniona bo np. słoń.
Zauważmy, że między zbiorami ~P=[słoń, kura ..] i 4L=[pies, słoń ..] nie zachodzi ani warunek wystarczający => ani też konieczny ~> w obie strony:
~P=[słoń, kura ..] => 4L=[pies, słoń ..] =0 - bo zbiór ~P nie jest podzbiorem => zbioru 4L (bo kura)
~P=[słoń, kura ..] ~> 4L=[pies, słoń ..] =0 - bo zbiór ~P nie jest nadzbiorem ~> zbioru 4L (bo kura)
cnd

Podsumowanie:
1.
Doskonale widać, że jeśli ze zbioru wszystkich zwierząt ZWZ wylosujemy psa P=[pies] to mamy gwarancję matematyczną => iż ma on cztery łapy - mówi o tym zdanie A1.
A1.
Jeśli zwierzę jest psem (P=1) to na 100% => ma cztery łapy (4L=1)
P=>4L =1
2.
Jeśli natomiast ze zbioru wszystkich zwierząt ZWZ wylosujemy zwierzę nie będące psem ~P=[słoń, kura ..] to w temacie ilości łap mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” - mówią o tym zdania A2 i B2’.
A2.
Jeśli zwierzę nie jest psem (~P=1) to może ~> nie mieć czterech łap (~4L=1)
~P~>~4L =1 bo kura
LUB
B2’.
Jeśli zwierzę nie jest psem (~P=1) to może ~> mieć cztery łapy (4L=1)
~P~~>4L = ~P*4L =1 - bo słoń


2.8.1 Alternatywne dojście do operatora implikacji prostej P||=>4L w zbiorach

Udajmy się do przedszkola, do naszych ekspertów logiki matematycznej, algebry Kubusia.

Pani w przedszkolu:
Czy może się zdarzyć, że ze zbioru wszystkich zwierząt ZWZ wylosujemy psa (P=1) i będzie on miał cztery lapy (4L=1)?
Jaś (lat 5): TAK, np. pies
Stąd:
A1.
Jeśli zwierzę jest psem (P=1) to może ~~> mieć cztery łapy (4L=1)
P~~>4L = P*4L =1
Definicja elementu wspólnego ~~> zbiorów P=[pies] i 4L=[pies, słoń ..] jest spełniona (bo pies).
Dla udowodnienia prawdziwości zdania A1 kodowanego elementem wspólnym zbiorów ~~> wystarczy pokazać jednego pieska który ma cztery łapy. Nie trzeba tu badać, czy wszystkie psy mają cztery łapy jak to ma miejsce w warunku wystarczającym P=>4L=1.

Pani:
Czy może się zdarzyć, że ze zbioru wszystkich zwierząt ZWZ wylosujemy psa (P=1) i nie będzie on miał czterech lap (~4L=1)?
Jaś: NIE, bo wszystkie psy mają cztery łapy.
Stąd:
A1’.
Jeśli zwierzę jest psem (P=1) to może ~~> nie mieć czterech łap (~4L=1)
P~~>~4L= P*~4L =0
Definicja elementu wspólnego zbiorów ~~> nie jest spełniona bo zbiory P=[pies] i ~4L=[kura..] są rozłączne.

Pani:
Czy może się zdarzyć, że ze zbioru wszystkich zwierząt ZWZ wylosujemy zwierzę nie będące psem (~P=1) i to zwierzę nie będzie miało czterech lap (~4L=1)?
Jaś: TAK np. kura
Stąd:
A2.
Jeśli zwierzę nie jest psem (~P=1) to może ~~> nie mieć czterech łap (~4L=1)
~P~~>~4L = ~P*~4L =1
Definicja elementu wspólnego zbiorów ~~> jest spełniona bo zbiory ~P=[słoń, kura..] i ~4L=[kura..] mają co najmniej jeden element wspólny np. kurę.

Pani:
Czy może się zdarzyć, że ze zbioru wszystkich zwierząt ZWZ wylosujemy zwierzę nie będące psem (~P=1) i to zwierzę będzie miało cztery lapy (4L=1)?
Jaś: TAK np. słoń
stąd:
B2’.
Jeśli zwierzę nie jest psem (~P=1) to może ~~> mieć cztery łapy (4L=1)
~P~~>4L = ~P*4L =1
Definicja elementu wspólnego zbiorów ~~> jest spełniona bo zbiory ~P=[słoń, kura..] i 4L=[pies, słoń..] mają co najmniej jeden element wspólny np. słoń

Zapiszmy dialog pani z Jasiem w tabeli prawdy:
Kod:

T1           Y ~Y   Odpowiedzi dla Y:
A1:  P~~> 4L=1  0 - zbiory P=[pies] i 4L=[pies, słoń ..] mają el. wspólny
A1’: P~~>~4L=0  1 - zbiory P=[pies] i ~4L=[kura..] są rozłączne
A2: ~P~~>~4L=1  0 - zbiory ~P=[słoń, kura..] i ~4L=[kura] mają el. wspólny
B2’:~P~~> 4L=1  0 - ~P=[słoń, kura..] i 4L=[pies, słoń..] mają el. wspólny

Kluczową definicją umożliwiającą przejście z dialogu pani przedszkolanki do definicji operatora implikacji prostej P||=>4L jest definicja kontrprzykładu w zbiorach.

Definicja kontrprzykładu w zbiorach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane elementem wspólnym ~~> zbiorów: p~~>~q=p*~q
Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)

Analiza matematyczna tabeli T1 - część I:

W zbiorach zachodzą tożsamości pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

Na mocy definicji kontrprzykładu w zbiorach mamy:
1.
Z fałszywości kontrprzykładu A1’:
A1’: P~~>~4L=0
wynika prawdziwość warunku wystarczającego => A1 (i odwrotnie):
A1: P=>4L =1 - bycie psem jest warunkiem wystarczającym => do tego, by mieć cztery łapy.
Definicja warunku wystarczającego => jest spełniona (=1) bo zbiór P=[pies] jest podzbiorem => zbioru 4L=[pies, słoń ..]
2.
Prawo Kubusia:
A1: P=>4L = A2: ~P~>~4L
stąd:
Z prawdziwości warunku wystarczającego => A1:
A1: P=>4L =1
wynika prawdziwość warunku koniecznego ~> A2 (i odwrotnie):
A2: ~P~>~4L =1
Stąd nasza tabela T1 przybiera postać:
Kod:

T2
A1:  P=> 4L =1 - bo P=[pies] jest podzbiorem => 4L=[pies, słoń..]
A1’: P~~>~4L=0 - zbiory P=[pies] i ~4L=[kura..] są rozłączne
A2: ~P~> ~4L=1 - bo ~P=[słoń, kura..] jest nadzbiorem ~> ~4L=[kura..]
B2’:~P~~> 4L=1 - ~P=[słoń, kura..] i 4L=[pies, słoń..] mają element wspólny


Analiza matematyczna tabeli T1 - część II:

Na mocy definicji kontrprzykładu w zbiorach mamy:
3.
Z prawdziwości kontrprzykładu B2’:
B2’: ~P~~>4L =1
wynika fałszywość warunku wystarczającego => B2 (i odwrotnie):
B2: ~P=>~4L =0
Uwaga:
Z fałszywości warunku wystarczającego B2: ~P=>~4L=0 wynika prawdziwość kontrprzykładu B2’:
B2’: ~P~~>4L = ~P*4L =1 - bo np. słoń nie jest psem (~P=1) i ma cztery łapy (4L=1)
4.
Prawo Kubusia:
B2: ~P=>~4L = B1: P~>4L
stąd:
Z fałszywości warunku wystarczającego => B2:
B2: ~P=>~4L =0
wynika fałszywość warunku koniecznego ~> B1 (i odwrotnie):
B1: P~>4L =0
Nanieśmy kompletną analizę do tabeli T3.
Kod:

T3
A1:  P=> 4L =1 |B1: P~> 4L =0
A1’: P~~>~4L=0
A2: ~P~>~4L =1 |B2:~P=>~4L =0
B2’:~P~~>4L =1

Uwaga 1:
Zauważmy, że w linii A1 zapisaną mamy implikację prostą P|=>4L w logice dodatniej (bo 4L):
Implikacja prosta P|=>4L to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
A1: P=>4L =1 - bycie psem jest (=1) warunkiem wystarczającym => do tego, aby mieć cztery łapy
B1: P~>4L =0 - bycie psem nie jest (=0) warunkiem koniecznym ~> aby mieć cztery łapy
bo. np. słoń ma cztery łapy, a nie jest psem
Stąd mamy:
P|=>4L = (A1: P=>4L)*~(B1: P~>4L) = 1*~(0)=1*1 =1

Uwaga 2:
Zauważmy, że w linii A2 mamy zapisaną implikację odwrotną ~P|~>~4L w logice ujemnej (bo ~4L):
Implikacja odwrotna ~P|~>~4L to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A2: ~P~>~4L =1 - nie bycie psem (~P=1) jest (=1) warunkiem koniecznym ~> dla nie posiadania czterech łap (~4L=1), bo jak się jest psem (P=1) to na 100% => ma się cztery łapy (4L=1)
Prawo Kubusia samo nam tu wyskoczyło:
A2: ~4L~>~P = A1: 4L=>P
B2: ~P=>~4L =0 - nie bycie psem (~P=1) nie jest (=0) warunkiem wystarczającym => dla nie posiadania czterech łap (~4L=1) bo zbiór ~P=[słoń, kura..] nie jest podzbiorem => zbioru ~4L=[kura..]
stąd:
~P|~>~4L = (A2: ~P~>~4L)*~(B2: ~P=>~4L) =1*~(0) =1*1 =1

Uwagi 1 i 2 możemy zapisać w tożsamej tabeli prawdy:
Kod:

T4.
Definicja implikacji prostej P|=>4L dla punktu odniesienia w kolumnie A1B1:
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
A1B1: P|=>4L=(A1: P=>4L)*~(B1: P~>4L) =1*~(0)=1*1=1
Punkt odniesienia:
p=P (pies)
q=4L (cztery łapy)
      A1B1            A2B2
Zapis formalny:
A: 1: p=> q =1 [=] 2: ~p~>~q =1 - prawo Kubusia
Zapis aktualny:
A: 1: P=>4L =1 [=] 2: ~P~>~4L=1
      ##               ##
Zapis formalny:
B: 1: p~> q =0 [=] 2: ~p=>~q =0 - prawo Kubusia
Zapis aktualny:
B: 1: P~>4L =0 [=] 2: ~P=>~4L=0
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla tabeli T4 skorzystajmy po raz kolejny z definicji kontrprzykładu, działającej wyłącznie w warunkach wystarczających.

Definicja kontrprzykładu w zbiorach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane elementem wspólnym zbiorów ~~>: p~~>~q=p*~q

Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)

Stąd mamy tożsamą tabelę T5:
Kod:

T5.
Definicja implikacji prostej P|=>4L dla punktu odniesienia w kolumnie A1B1:
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
A1B1: P|=>4L=(A1: P=>4L)*~(B1: P~>4L) =1*~(0)=1*1=1
Punkt odniesienia:
p=P (pies)
q=4L (cztery łapy)
      A1B1               A2B2
Zapis formalny:
A:  1: p=> q =1  [=] 2: ~p~>~q =1 - prawo Kubusia
A’: 1: p~~>~q=0
Zapis aktualny:
A:  1: P=>4L =1  [=] 2: ~P~>~4L=1
A’: 1: P~~>~4L=0
      ##               ##
Zapis formalny:
B:  1: p~> q =0  [=] 2: ~p=>~q =0 - prawo Kubusia
B’:                  2: ~p~~>q =1
Zapis aktualny:
B:  1: P~>4L =0  [=] 2: ~P=>~4L=0
B’:                  2: ~P~~>4L=1
Komentarz:
A1: P=>4L=1 - prawdziwy warunek wystarczający A1 wymusza fałszywy A1’
B2:~P=>~4L=0 - fałszywy warunek wystarczający B2 wymusza prawdziwy B2’
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Doskonale widać, że w kolumnie A1B1 mamy opis tego co może się wydarzyć jeśli ze zbioru wszystkich zwierząt (ZWZ) wylosujemy psa (P=1), natomiast w kolumnie A2B2 opis wszystkich możliwych przypadków gdy ze zbioru ZWZ wylosujemy zwierzę nie będące psem (~P=1).

W tym momencie możemy tylko powtórzyć to co już poznaliśmy wcześniej, do czego doszliśmy na bazie teorii algebry Kubusia od strony przeciwnej tzn. nie od zdarzeń możliwych ~~> jak w tym przypadku, lecz od strony definicji warunku wystarczającego => i koniecznego ~>.

Prawo śfinii:
Domyślny punkt odniesienia w zdaniach warunkowych „Jeśli p to q”:

W dowolnym zdaniu warunkowym „Jeśli a to b” zapisanym w zmiennych aktualnych a i b (mających związek z językiem potocznym człowieka), zawsze po „Jeśli..” zapisujemy formalny poprzednik p zaś po „to” zapisujemy formalny następnik q.
Zamieniać p i q w dowolnym zdaniu warunkowym z ustalonym wyżej domyślnym punktem odniesienia wolno nam tylko i wyłącznie na podstawie prawa Tygryska lub prawa kontrapozycji.

Operator implikacji prostej P||=>4L to odpowiedź na dwa pytania 1 i 2:

1.
Co może się wydarzyć, jeśli ze zbioru wszystkich zwierząt ZWZ wylosujemy psa (P=1)?

Odpowiedź mamy w kolumnie A1B1:
Jeśli ze zbioru wszystkich zwierząt (ZWZ) wylosujemy psa to mamy gwarancję matematyczną => iż będzie on miał cztery łapy - mówi o tym zdanie A1.

A1.
Jeśli zwierzę jest psem (P=1) to na 100% => ma cztery łapy (4L=1)
P=>4L =1
to samo w zapisie formalnym:
p=>q =1
Definicja warunku wystarczającego => spełniona bo zbiór P=[pies] jest podzbiorem => zbioru zwierząt z czterema łapami 4L=[pies słoń ..]
Wylosowanie ze zbioru wszystkich zwierząt (ZWT) psa, daje nam gwarancję matematyczną => iż będzie on miał cztery łapy
Zachodzi tożsamość matematyczna pojęć:
Warunek wystarczający => = relacja podzbioru => = gwarancja matematyczna =>

Prawdziwość warunku wystarczającego => A1 wymusza fałszywość kontrprzykładu A1’ (i odwrotnie).
A1’.
Jeśli zwierzę jest psem (P=1) to może ~~> nie mieć czterech łap (~4L=1)
P~~>~4L = P*~4L =0
to samo w zapisie formalnym:
p~~>~q = p*~q =0
Definicja elementu wspólnego zbiorów ~~> nie jest spełniona bo zbiory P=[pies] i ~4L=[kura ..] są rozłączne.

2.
Co może się wydarzyć, jeśli ze zbioru wszystkich zwierząt ZWZ wylosujemy zwierzę nie będące psem (~P=1)?

Prawo Kubusia:
A1: P=>4L = A2:~P~>~4L
Odpowiedź mamy w kolumnie A2B2:
Jeśli ze zbioru wszystkich zwierząt (ZWZ) wylosujemy zwierzę nie będące psem to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła”, o czym mówią zdania prawdziwe A2 i B2’

A2.
Jeśli zwierzę nie jest psem (~P=1) to może ~> nie mieć czterech łap (~4L=1)
~P~>~4L =1
to samo w zapisie formalnym:
~p~>~q =1
Definicja warunku koniecznego ~> jest tu spełniona bo zbiór ~P=[słoń, kura ..] jest nadzbiorem ~> zbioru ~4L=[kura ..]
Zauważmy, że po udowodnieniu prawdziwości zdania A1: P=>4L nie musimy dowodzić wprost prawdziwości zdania A2 bo prawo Kubusia:
A1: P=>4L = A2: ~P~>~4L

LUB

Kontrprzykład B2’ dla fałszywego warunku wystarczającego B2: P=>~4L=0 musi być prawdą
Prawdziwości zdania B2’ nie musimy zatem dowodzić wprost, ale możemy dowodzić.
B2’.
Jeśli zwierzę nie jest psem (~P=1) to może ~> mieć cztery łapy (4L=1)
~P~~>4L = ~P*4L =1
to samo w zapisie formalnym:
~p~~>q = ~p*q =1
Definicja elementu wspólnego ~~> zbiorów ~P=[słoń, kura ..] i 4L=[pies, słoń ..] jest spełniona bo np. słoń.
Zauważmy, że między zbiorami ~P=[słoń, kura ..] i 4L=[pies, słoń ..] nie zachodzi ani warunek wystarczający => ani też konieczny ~> w obie strony:
~P=[słoń, kura ..] => 4L=[pies, słoń ..] =0 - bo zbiór ~P nie jest podzbiorem => zbioru 4L (bo kura)
~P=[słoń, kura ..] ~> 4L=[pies, słoń ..] =0 - bo zbiór ~P nie jest nadzbiorem ~> zbioru 4L (bo kura)
cnd

2.8.2 Diagram operatora implikacji prostej P||=>4L w zbiorach

Definicja implikacji prostej p|=>q w zbiorach:
Zbiór p jest podzbiorem => zbioru q i nie jest tożsamy ze zbiorem q
Dziedzina musi być szersza do sumy logicznej zbiorów p+q bowiem wtedy i tylko wtedy wszystkie pojęcia p, ~p, q, ~q będą rozpoznawalne.
A1: p=>q =1 - zbiór p jest (=1) podzbiorem => zbioru q i nie jest tożsamy ze zbiorem q
B1: p~>q =0 - zbiór p nie jest (=0) nadzbiorem ~> zbioru q
p|=>q = (A1: p=>q)*~(B1: p~>q) =1*~(0) = 1*1 =1

Zadanie ze 100-milowego lasu:
Zbadaj w skład jakiego operatora logicznego wchodzi poniższe zdanie:
A1.
Jeśli zwierzę jest psem (P=1) to na 100% => ma cztery łapy (4L=1)
P=>4L =1
Definicja warunku wystarczającego => jest tu spełniona (=1) bo zbiór jednoelementowy P=[pies] jest podzbiorem => zbioru zwierząt z czterema łapami 4L=[pies, słoń ..]

Prawo śfinii:
Domyślny punkt odniesienia w zdaniach warunkowych „Jeśli p to q”:

W dowolnym zdaniu warunkowym „Jeśli a to b” zapisanym w zmiennych aktualnych a i b (mających związek z językiem potocznym człowieka), zawsze po „Jeśli..” zapisujemy formalny poprzednik p zaś po „to” zapisujemy formalny następnik q.
Zamieniać p i q w dowolnym zdaniu warunkowym z ustalonym wyżej domyślnym punktem odniesienia wolno nam tylko i wyłącznie na podstawie prawa Tygryska lub prawa kontrapozycji.

Zdanie A1 przyjmujemy za punkt odniesienia dla dalszej analizy matematycznej:
p=P=[pies] - jednoelementowy zbiór pies
q=4L=[pies, słoń ..] - zbiór zwierząt z czterema łapami.

Warunek wystarczający A1 definiuje nam dwa zbiory:
Poprzednik p:
p=P=[pies] - zbiór jednoelementowy pies
Następnik q:
q=4L=[pies, słoń ..] - zbiór zwierząt z czterema łapami.

Przyjmijmy dziedzinę minimalną:
ZWZ - zbiór wszystkich zwierząt
Stąd mamy zaprzeczenia zbiorów rozumiane jako ich uzupełnia do wspólnej dziedziny ZWZ:
~P=[ZWZ-P] =[słoń, kura ..] =1 - zbiór wszystkich zwierząt z wykluczeniem psa
~4L=[ZWZ-4L] = [kura ..] =1 - zbiór wszystkich zwierząt z wykluczeniem zwierząt z czterema łapami
Gdzie:
[słoń] - jest przedstawicielem zwierząt nie będących psami które mają cztery łapy
[kura] - jest przedstawicielem zwierząt nie mających czterech łap

Zauważmy, że jeśli za dziedzinę przyjęlibyśmy zbiór zwierząt mających cztery łapy:
D=4L=[pies, słoń …]
To zbiór zwierząt nie mających czterech łap (~4L) byłby zbiorem nierozpoznawalnym.
Dowód:
~4L = [D-4L] = [4L-4L] =[] =0
Wniosek:
Dla dowolnej implikacji prostej p|=>q w definiowanej w zbiorach musimy zastrzec, iż dziedzina musi być szersza do sumy zbiorów p+q, bowiem wtedy i tylko wtedy wszystkie pojęcia p, ~p, q, ~q będą rozpoznawalne.

Definicja implikacji prostej P|=>4L w zbiorach:
Zbiór P=[pies] jest podzbiorem => zbioru 4L=[pies, słoń ..] i nie jest tożsamy ze zbiorem 4L=[pies, słoń ..]
Dziedzina musi być szersza do sumy logicznej zbiorów P+4L bowiem wtedy i tylko wtedy wszystkie pojęcia P, ~P, 4L i ~4L będą rozpoznawalne.
A1: P=>4L =1 - zbiór P=[pies] jest (=1) podzbiorem => zbioru 4L=[pies, słoń ..]
B1: P~>4L =0 - zbiór P=[pies] nie jest (=0) nadzbiorem ~> zbioru 4L=[pies, słoń ..]
P|=>4L = (A1: P=>4L)*~(B1: P~>4L) =1*~(0) = 1*1 =1

W algebrze Kubusia w zbiorach zachodzi:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

Nanieśmy rozszyfrowaną relację między zbiorami p=P=[pies] i q=4L=[pies, słoń ..] na diagram zbiorów:
Kod:

D1
Diagram operatora implikacji prostej P||=>4L w zbiorach
Punkt odniesienia:
p=P=[pies] - zbiór jednoelementowy „pies”
q=4L=[pies, słoń ..] - zbiór zwierząt z czterema łapami.

----------------------------------------------------------------------
|     p=P=[pies]            |         ~p=~P=[słoń, kura ..]          |
|---------------------------|----------------------------------------|
|     q=4L=[pies, słoń..]                    |  ~q=~4L=[kura..]      |
|--------------------------------------------|-----------------------|
|                           |~p*q =[słoń..]  | p*~q=[]               |
|                           |~P*4L=[słoń..]  | P*~4L=[]              |
----------------------------------------------------------------------
|                  ZWZ=[pies, słoń, kura ..]                         |
|--------------------------------------------------------------------|

Z powyższego diagramu odczytujemy:
Analiza p||=>q w zapisach      |Analiza podstawowa P||=>4L
formalnych (ogólnych)          |w zapisach aktualnych
Analiza        |Po zamianie    |
podstawowa     |p i q          |
-------------------------------|--------------------------------------
A1:  p=> q =1  |A3:  q~> p =1  |A1:  P=> 4L =1 - P jest podzbiorem => 4L 
A1’: p~~>~q=0  |A1’:~q~~>p =0  |A1’: P~~>~4L=0 - P i ~4L zbiory rozłączne
A2: ~p~>~q =1  |A4: ~q=>~p =1  |A2: ~P~>~4L =1 - ~P jest nadzbiorem ~> ~4L
B2’:~p~~>q =1  |B2’: q~~>~p=1  |B2’ ~P~~>4L =1 - ~P*4L=1 - np. słoń
|
B1:  p~> q =0  |B3:  q=> p =0  |B1:  P~> 4L =0 - P nie jest nadzbiorem~> 4L
A1’  p~~>~q=0  |A1’:~q~~>p =0  |A1’: P~~>~4L=0 - P i ~4L zbiory rozłączne
B2: ~p=>~q =0  |B4: ~q~>~p =0  |B2: ~P=>~4L =0 - ~P nie jest podzbiorem ~4L
B2’:~p~~>q =1  |B2’: q~~>~p=1  |B2’:~P~~>4L =1 - ~P*4L=1 - np. słoń
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
Spójnik p~~>q=p*q jest przemienny

Operator implikacji prostej P||=>4L to odpowiedź na dwa pytania 1 i 2:

1.
Co może się wydarzyć, jeśli ze zbioru wszystkich zwierząt ZWZ wylosujemy psa (P=1)?

A1.
Jeśli zwierzę jest psem (P=1) to na 100% => ma cztery łapy (4L=1)
P=>4L =1
Definicja warunku wystarczającego => spełniona bo zbiór P=[pies] jest podzbiorem => zbioru zwierząt z czterema łapami 4L=[pies słoń ..]
Doskonale to widać na diagramie.

Prawdziwość warunku wystarczającego => A1 wymusza fałszywość kontrprzykładu A1’ (i odwrotnie).
A1’.
Jeśli zwierzę jest psem (P=1) to może ~~> nie mieć czterech łap (~4L=1)
P~~>~4L = P*~4L =0
Definicja elementu wspólnego zbiorów ~~> nie jest spełniona bo zbiory P=[pies] i ~4L=[kura ..] są rozłączne.
To również bez problemu odczytujemy z diagramu.

2.
Co może się wydarzyć, jeśli ze zbioru wszystkich zwierząt ZWZ wylosujemy zwierzę nie będące psem (~P=1)?


A2.
Jeśli zwierzę nie jest psem (~P=1) to może ~> nie mieć czterech łap (~4L=1)
~P~>~4L =1
Definicja warunku koniecznego ~> jest tu spełniona bo zbiór ~P=[słoń, kura ..] jest nadzbiorem ~> zbioru ~4L=[kura ..]
Wyśmienicie to widać na diagramie.

LUB

Kontrprzykład B2’ dla fałszywego warunku wystarczającego B2: P=>~4L=0 musi być prawdą
B2’.
Jeśli zwierzę nie jest psem (~P=1) to może ~> mieć cztery łapy (4L=1)
~P~~>4L = ~P*4L =1
Definicja elementu wspólnego ~~> zbiorów ~P=[słoń, kura ..] i 4L=[pies, słoń ..] jest spełniona bo np. słoń.
… co widać na diagramie.
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 35963
Przeczytał: 15 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Nie 15:07, 11 Kwi 2021    Temat postu:

Algebra Kubusia - wykład rozszerzony
2.9 Operator implikacji prostej p||=>q w I klasie LO



Spis treści
2.9 Operator implikacji prostej A||=>S w zdarzeniach dla I klasy LO 1
2.10 Operator implikacji prostej P8||=>P2 w zbiorach dla I klasy LO 8



2.9 Operator implikacji prostej A||=>S w zdarzeniach dla I klasy LO

Sterowanie żarówką S przez różne zespoły przycisków to najprostszy sposób by zrozumieć algebrę Kubusia na poziomie I klasy LO.

Niech będzie dany schemat elektryczny:
Kod:

S1 Schemat 1
                             W
                           ______
                      -----o    o-----
             S        |      A       |
       -------------  |    ______    |
  -----| Żarówka   |-------o    o-----
  |    -------------                 |
  |                                  |
______                               |
 ___    U (źródło napięcia)          |
  |                                  |
  |                                  |
  ------------------------------------

Zadajmy sobie dwa podstawowe pytania:
A1.
Czy wciśnięcie przycisku A jest wystarczające => dla świecenia żarówki S?

Odpowiedź:
Tak, stan przycisku W jest tu nieistotny, może być W=x gdzie x=[1,0]
Zauważmy, że pytanie A1 nie dotyczy przycisku W.
Przycisk W tu jest zmienną wolną którą możemy zastać w dowolnej pozycji W=x gdzie x=[1,0]
Stąd mamy:
A1.
Jeśli przycisk A jest wciśnięty (A=1) to żarówka na 100% => świeci się (S=1)
A=>S =1
Wciśnięcie przycisku A jest (=1) warunkiem wystarczającym => do tego, aby żarówka świeciła się
Wciśnięcie przycisku A daje nam gwarancję matematyczną => świecenia się żarówki S
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>
Zauważmy, że stan przycisku W jest bez znaczenia W=x gdzie x={0,1}

B1.
Czy wciśnięcie przycisku A jest konieczne ~> dla świecenia żarówki S?

Odpowiedź:
Nie.
Przycisk A może nie być wciśnięty (A=0), a mimo to żarówka może się świecić, gdy zmienna wolna W będzie ustawiona na W=1.
Stąd mamy:
B1.
Jeśli przycisk A jest wciśnięty (A=1) to żarówka na 100% ~> świeci się (S=1)
A~>S =0
Wciśnięcie przycisku A (A=1) nie jest (=0) konieczne ~> dla świecenia się żarówki S (S=1), bowiem może być sytuacja A=0 i W=1 i żarówka będzie się świecić
cnd

Jak widzimy na dzień dobry wyskoczyło nam prawo Kameleona.

Prawo Kameleona:
Dwa zdania brzmiące identycznie z dokładnością do każdej literki i każdego przecinka nie muszą być matematycznie tożsame

Popatrzmy:
A1.
Jeśli przycisk A jest wciśnięty (A=1) to żarówka na 100% => świeci się (S=1)
A=>S =1
##
B1.
Jeśli przycisk A jest wciśnięty (A=1) to żarówka na 100% ~> świeci się (S=1)
A~>S =0
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Definicja warunku wystarczającego p=>q dla potrzeb rachunku zero-jedynkowego:
p=>q = ~p+q
##
Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
p~>q = p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Doskonale widać, że zdania A1 i B1 brzmią identycznie z dokładnością do każdej literki i każdego przecinka a mimo to, są to zdania różne ## na mocy definicji warunku wystarczającego => i koniecznego ~>. Różność tych zdań, a tym samym ich prawdziwość/fałszywość rozpoznajemy po znaczkach => i ~> wbudowanych w treść zdań.

Definicja podstawowa implikacji prostej p|=>q:
Implikacja prosta p|=>q to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
##
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
stąd:
p|=>q = (A1: p=>q)*~(B1: p~>q) =1*~(0) = 1*1 =1

Doskonale widać, że układ ze schematu S1 spełnia definicję implikacji prostej A|=>S.

Definicja podstawowa implikacji prostej A|=>S:
Implikacja prosta A|=>S to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
A1: A=>S =1 - wciśnięcie przycisku A jest (=1) wystarczające => dla świecenia się żarówki S
##
B1: A~>S =0 - wciśnięcie przycisku A nie jest (=0) konieczne ~> dla świecenia żarówki S
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
stąd:
A|=>S = (A1: A=>S)*~(B1: A~>S) =1*~(0) = 1*1 =1

Podstawmy to do matematycznych związków warunku wystarczającego i koniecznego ~>:
Kod:

T1
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji prostej p|=>q
Kolumna A1B1 to punkt odniesienia:
p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1 - formalny punkt odniesienia
A|=>S=(A1: A=>S)*~(B1: A~>S)=1*~(0)=1*1=1 - aktualny punkt odniesienia
Punkt odniesienia:
p=A - przycisk A (wejście)
q=S - żarówka S (wyjście)
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p =1 [=] 5: ~p+q
A: 1: A=>S = 2:~A~>~S [=] 3: S~>A = 4:~S=>~A =1 [=] 5: ~A+S
##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p =0 [=] 5: p+~q
B: 1: A~>S = 2:~A=>~S [=] 3: S=>A = 4:~S~>~A =0 [=] 5: A+~S
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Jak widzimy, w tabeli T1 mamy matematyczny opis układu S1 widzianego z punktu odniesienia implikacji prostej A|=>S.
Cechą charakterystyczną układu S1 jest występowanie przycisku W którego nie ma w opisie matematycznym prezentowanym w tabeli T1. W układzie S1 opisanym tabelą T1 przycisk W jest zmienną wolną która może być ustawiana poza świadomością człowieka.

Stąd mamy:
Podstawowy schemat układu realizującego implikację prostą A|=>S w zdarzeniach zrealizowany przy pomocy zespołu przycisków (wejście) i żarówki (wyjście).
Kod:

S1 Schemat 1
Fizyczny układ minimalny implikacji prostej A|=>S w zdarzeniach:
A1B1: A|=>S=(A1: A=>S)*~(B1: A~>S)=1*~(0)=1*1=1 - zapis aktualny
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1 - zapis formalny
Punkt odniesienia:
p=A - przycisk A (wejście)
q=S - żarówka S (wyjście)
                             W
                           ______
                      -----o    o-----
             S        |      A       |
       -------------  |    ______    |
  -----| Żarówka   |-------o    o-----
  |    -------------                 |
  |                                  |
______                               |
 ___    U (źródło napięcia)          |
  |                                  |
  |                                  |
  ------------------------------------
Punkt odniesienia: A1B1: p|=>q = A|=>S
Zmienne związane definicją: A, S
Zmienna wolna: W
Istotą implikacji prostej A|=>S jest istnienie zmiennej wolnej W
podłączonej równolegle do przycisku A

Definicja zmiennej związanej:
Zmienna związana to zmienna występujące w układzie uwzględniona w opisie matematycznym układu.
Zmienna związana z definicji jest ustawiana na 0 albo 1 przez człowieka.

Definicja zmiennej wolnej:
Zmienna wolna to zmienna występująca w układzie, ale nie uwzględniona w opisie matematycznym układu.
Zmienna wolna z definicji może być ustawiana na 0 albo 1 poza kontrolą człowieka.

Fizyczna interpretacja zmiennej wolnej W:
Wyobraźmy sobie dwa pokoje A i B.
W pokoju A siedzi Jaś mając do dyspozycji wyłącznie przycisk A, zaś w pokoju B siedzi Zuzia mając do dyspozycji wyłączne przycisk W. Oboje widzą dokładnie tą samą żarówkę S. Jaś nie widzi Zuzi, ani Zuzia nie widzi Jasia, ale oboje wiedzą o swoim wzajemnym istnieniu.
Zarówno Jaś jak i Zuzia dostają do ręki schemat S1, czyli są świadomi, że przycisk którego nie widzą istnieje w układzie S1, tylko nie mają do niego dostępu (zmienna wolna). Oboje są świadomi, że jako istoty żywe mają wolną wolę i mogą wciskać swój przycisk ile dusza zapragnie.
Punktem odniesienia na schemacie S1 jest Jaś siedzący w pokoju A, bowiem w równaniu opisującym układ występuje wyłącznie przycisk A - Jaś nie widzi przycisku W.

Matematycznie jest kompletnie bez znaczenia czy zmienna wolna W będzie pojedynczym przyciskiem, czy też dowolną funkcją logiczną f(w) zbudowaną z n przycisków, byleby dało się ustawić:
f(w) =1
oraz
f(w)=0
bowiem z definicji funkcja logiczna f(w) musi być układem zastępczym pojedynczego przycisku W, gdzie daje się ustawić zarówno W=1 jak i W=0.
Przykład:
f(w) = C+D*(E+~F)
Gdzie:
C, D, E - przyciski normalnie rozwarte
~F - przycisk normalnie zwarty

Także zmienna związana A nie musi być pojedynczym przyciskiem, może być zespołem n przycisków realizujących funkcję logiczną f(a) byleby dało się ustawić:
f(a) =1
oraz
f(a)=0
bowiem z definicji funkcja logiczna f(a) musi być układem zastępczym pojedynczego przycisku A, gdzie daje się ustawić zarówno A=1 jak i A=0.
Przykład:
f(a) = K+~L*~M
Gdzie:
K - przycisk normalnie rozwarty
~L, ~M - przyciski normalnie zwarte

Dokładnie z powyższego powodu w stosunku do układu S1 możemy powiedzieć, iż jest to fizyczny układ minimalny implikacji prostej A|=>S.

Kluczowym punktem zaczepienia w wprowadzeniu pełnej, symbolicznej definicji implikacji prostej p|=>q jest definicja kontrprzykładu rodem z algebry Kubusia działająca wyłącznie w warunku wystarczającym =>.

Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>~q=p*~q

Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)

Uzupełnijmy naszą tabelę wykorzystując powyższe rozstrzygnięcia działające wyłącznie w warunkach wystarczających =>.
Kod:

T2
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji prostej p|=>q
Kolumna A1B1 to punkt odniesienia:
p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1 - formalny punkt odniesienia
A|=>S=(A1: A=>S)*~(B1: A~>S)=1*~(0)=1*1=1 - aktualny punkt odniesienia
p=A - przycisk A (wejście)
q=S - żarówka S (wyjście)
       A1B1:         A2B2:        |     A3B3:         A4B4:
A:  1: p=>q  =1 = 2:~p~>~q=1     [=] 3: q~>p  =1 = 4:~q=>~p =1
A:  1: A=>S  =1 = 2:~A~>~S=1     [=] 3: S~>A  =1 = 4:~S=>~A =1
A’: 1: p~~>~q=0 =                [=]             = 4:~q~~>p =0
A’: 1: A~~>~S=0 =                [=]             = 4:~S~~>A =0                   
       ##            ##           |     ##            ##
B:  1: p~>q  =0 = 2:~p=>~q=0     [=] 3: q=>p  =0 = 4:~q~>~p =0
B:  1: A~>S  =0 = 2:~A=>~S=0     [=] 3: S=>A  =0 = 4:~S~>~A =0
B’:             = 2:~p~~>q=1     [=] 3: q~~>~p=1
B’:             = 2:~A~~>S=1     [=] 3: S~~>~A=1
---------------------------------------------------------------
IP: p|=>q=~p*q  = ~p|~>~q=~p*q   [=]  q|~>p=q*~p = ~q|=>~p=q*~p
IP: A|=>S=~A*S  = ~A|~>~S=~A*S   [=]  S|~>A=S*~A = ~S|=>~A=S*~A
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
A1: A=>S=1 - prawdziwy A1 wymusza fałszywy kontrprzykład A1’ (i odwrotnie)
B2:~A=>~S=0 - fałszywy B2 wymusza prawdziwy kontrprzykład B2’ (i odwrotnie)
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla udowodnienia, iż zdanie warunkowe „Jeśli p to q” wchodzi w skład implikacji prostej p|=>q potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Ax i fałszywość dowolnego zdania serii Bx.
Zauważmy, że nie ma znaczenia które zdanie będziemy brali pod uwagę, bowiem prawami logiki matematycznej (prawa Kubusia, prawa Tygryska i prawa kontrapozycji) zdanie to możemy zastąpić zdaniem logicznie tożsamym z kolumny A1B1.

Komentarz:
1.
Zdania serii Ax są różne na mocy definicji ## od zdań serii Bx:
Definicja warunku wystarczającego p=>q w spójnikach „i”(*) i „lub”(+):
A1: p=>q = ~p+q
##
Definicja warunku koniecznego p~>q w spójnikach „i”(*) i „lub”(+):
B1: p~>q = p+~q
Gdzie:
## - różne na mocy definicji
2.
Wiersze IO wypełniono na mocy definicji implikacji prostej p|=>q i odwrotnej p|~>q w spójnikach „i”(*) i „lub”(+):
Definicja implikacji prostej p|=>q w spójnikach „i”(*) i „lub”(+):
p|=>q = ~p*q
##
Definicja implikacji odwrotnej p|~>q w spójnikach „i”(*) i „lub”(+):
p|~>q = p*~q
Gdzie:
## - różne na mocy definicji

Prawo śfinii:
Domyślny punkt odniesienia w zdaniach warunkowych „Jeśli p to q”:

W dowolnym zdaniu warunkowym „Jeśli a to b” zapisanym w zmiennych aktualnych a i b (mających związek z językiem potocznym człowieka), zawsze po „Jeśli..” zapisujemy formalny poprzednik p zaś po „to” zapisujemy formalny następnik q.
Zamieniać p i q w dowolnym zdaniu warunkowym z ustalonym wyżej domyślnym punktem odniesienia wolno nam tylko i wyłącznie na podstawie prawa Tygryska lub prawa kontrapozycji.

Definicja operatora implikacji prostej A||=>S:
Operator implikacji prostej A||=>S to odpowiedź na dwa pytania 1 i 2:

1.
Co może się wydarzyć jeśli przycisk A będzie wciśnięty (A=1)?

Odpowiedź na to pytanie mamy w kolumnie A1B1:
Jeśli przycisk A będzie wciśnięty (A=1) to mamy gwarancję matematyczną => iż żarówka będzie się świecić (S=1) - mówi o tym zdanie A1
A1.
Jeśli przycisk A jest wciśnięty (A=1) to żarówka na 100% => świeci się (S=1)
A=>S =1
Wciśnięcie przycisku A jest (=1) warunkiem wystarczającym => do tego, aby żarówka świeciła się
Wciśnięcie przycisku A daje nam gwarancję matematyczną => świecenia się żarówki S
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>
Zauważmy, że stan przycisku W jest bez znaczenia W=x gdzie x={0,1}

Na mocy prawa śfinii zapis formalny zdania A1 to:
A1: p=>q =1
p=A - przycisk A (wejście)
q=S - żarówka S (wyjście)
A1: A=>S =1
Dalsza analiza matematyczna związana będzie z przyjętym na mocy prawa śfinii punktem odniesienia, zdaniem A1.

Z prawdziwości warunku wystarczającego => A1 wynika fałszywość kontrprzykładu A1’ (i odwrotnie)
A1’
Jeśli przycisk A będzie wciśnięty (A=1) to żarówka może ~~> się nie świecić (~S=1)
A~~>~S=A*~S=0
to samo w zapisie formalnym:
p~~>~q = p*~q =1
Niemożliwe jest (=0) zdarzenie: przycisk A jest wciśnięty (A=1) i żarówka nie świeci się (~S=1).

2.
Co może się wydarzyć jeśli przycisk A nie będzie wciśnięty (~A=1)?

Prawo Kubusia:
A1: A=>S = A2:~A~>~S
Prawdziwość zdania A1 mamy udowodnioną, zatem na mocy prawa Kubusia prawdziwość zdania A2 mamy gwarantowaną.

Odpowiedź na to pytanie mamy w kolumnie A2B2:
Jeśli przycisk A nie będzie wciśnięty (~A=1) to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” - mówią o tym zdania A2 i B2’

A2.
Jeśli przycisk A nie będzie wciśnięty (~A=1) to żarówka może ~> się nie świecić (~S=1)
~A~>~S =1
to samo w zapisie formalnym:
~p~>~q =1
Brak wciśnięcia przycisku A (~A=1) jest warunkiem koniecznym ~> dla nie świecenia się żarówki S (~S=1) bo jak przycisk A jest wciśnięty (A=1) to żarówka na 100% => świeci się (S=1)
Prawo Kubusia samo nam tu wyskoczyło:
A2:~A~>~S = A1: A=>S

LUB

Kontrprzykład B2’ dla fałszywego warunku wystarczającego => B2 musi być prawdą, stąd:
B2’.
Jeśli przycisk A nie będzie wciśnięty (~A=1) to żarówka może ~> się świecić (S=1)
~A~~>S = ~A*S =1
to samo w zapisie formalnym:
~p~~>q = ~p*q =1
Możliwe jest (=1) zdarzenie: przycisk A nie jest wciśnięty (~A=1) i żarówka świeci się (S=1)
Gdy zmienna wolna W ustawiona jest na W=1.

Podsumowanie:
Istotą operatora implikacji prostej A||=>S jest gwarancja matematyczna => po stronie A i najzwyklejsze „rzucanie monetą” w rozumieniu „na dwoje babka wróżyła” po stronie ~A

Dowód:
Zauważmy, że jeśli klawisz A będzie wciśnięty (A=1) to mamy gwarancję matematyczną => iż żarówka będzie się świecić (S=1) - mówi o tym zdanie A1.
A1.
Jeśli przycisk A jest wciśnięty (A=1) to żarówka na 100% => świeci się (S=1)
A=>S =1

Natomiast jeśli przycisk A nie będzie wciśnięty (~A=1) to mamy najzwyklejsze „rzucanie monetą” w rozumieniu „na dwoje babka wróżyła” - mówią o tym zdania A2 i B2’
A2.
Jeśli przycisk A nie będzie wciśnięty (~A=1) to żarówka może ~> się nie świecić (~S=1)
~A~>~S =1
LUB
B2’.
Jeśli przycisk A nie będzie wciśnięty (~A=1) to żarówka może ~> się świecić (S=1)
~A~~>S = ~A*S =1

2.10 Operator implikacji prostej P8||=>P2 w zbiorach dla I klasy LO

Zadanie matematyczne w I klasie LO:
Zbadaj w skład jakiego operatora logicznego wchodzi poniższe zdanie:
Jeśli dowolna liczba jest podzielna przez 8 to jest podzielna przez 2
Dokonaj szczegółowej analizy tego operatora

Rozwiązanie:
W algebrze Kubusia w zbiorach zachodzi:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

Na wejściu naszych rozważań mamy dane twierdzenie proste p=>q:
A1.
Jeśli dowolna liczba jest podzielna przez 8 (P8=1) to na 100% => jest podzielna przez 2 (P2=1)
P8=>P2 =1
Podzielność dowolnej liczby przez 8 jest warunkiem wystarczającym => dla jej podzielności przez 2 bo zbiór P8=[8,16,24..] jest podzbiorem => zbioru P2=[2,4,6,8..]
Dowód:
Oba zbiory to zbiory liczb parzystych.
Zbiór P2 zawiera wszystkie możliwe liczby parzyste, to jest definicja liczby parzystej opisana elementami zbioru.
Zbiór P8 nie zawiera wszystkich możliwych liczb parzystych, z czego wnioskujemy iż zbiór P8 jest podzbiorem => zbioru P2.
cnd

Prawo śfinii:
Domyślny punkt odniesienia w zdaniach warunkowych „Jeśli p to q”:

W dowolnym zdaniu warunkowym „Jeśli a to b” zapisanym w zmiennych aktualnych a i b (mających związek z językiem potocznym człowieka), zawsze po „Jeśli..” zapisujemy formalny poprzednik p zaś po „to” zapisujemy formalny następnik q.
Zamieniać p i q w dowolnym zdaniu warunkowym z ustalonym wyżej domyślnym punktem odniesienia wolno nam tylko i wyłącznie na podstawie prawa Tygryska lub prawa kontrapozycji.

Na mocy prawa śfinii zapis formalny zdania A1 to:
A1: p=>q =1
p=P8
q=P2
A1: P8=>P2 =1
Dalsza analiza matematyczna związana będzie z przyjętym na mocy prawa śfinii punktem odniesienia, zdaniem A1.

Wyznaczmy wszystkie możliwe zbiory i ich zaprzeczenia dla twierdzenia A1.
W poprzedniku p mamy zbiór liczb podzielnych przez 8:
p = P8=[8,16,24..] - zbiór liczb podzielnych przez 8
W następniku q mamy zbiór liczb podzielnych przez 2:
q = P2=[2,4,6,8..] - zbiór wszystkich liczb podzielnych przez 2
Przyjmijmy dziedziną minimalną wspólną dla p i q:
LN=[1,2,3,4,5,6,7,8,9..] - zbiór liczb naturalnych
Stąd mamy przeczenia zbiorów definiowane jako uzupełnienia do dziedziny:
~P8 = [LN-P8] = [1,2,3,4,5,6,7..9..] - zbiór liczb niepodzielnych przez 8
~P2 = [LN-P2]=[1,3,5,7,9..] - zbiór wszystkich liczb niepodzielnych przez 2

Zapiszmy to w skrócie:
P8=[8,16,24..]
P2=[2,4,6,8..]
~P8 = [LN-P8] = [1,2,3,4,5,6,7..9..]
~P2 = [LN-P2]=[1,3,5,7,9..]

Badamy prawdziwość/fałszywość twierdzenia odwrotnego q=>p.
B3.
Jeśli dowolna liczba jest podzielna przez 2 (P2=1) to na 100% => jest podzielna przez 8 (P8=1)
P2=>P8 =0
to samo w zapisach formalnych:
q=>p =0
Podzielność dowolnej liczby przez 2 nie jest (=0) warunkiem wystarczającym => dla jej podzielności przez 8 bo zbiór P2=[2,4,6,8..] nie jest podzbiorem => zbioru P8=[8,16,24..]
Dla udowodnienia fałszywości twierdzenia odwrotnego q=>p wystarczy pokazać jeden element należący do zbioru P2 i nie należący do zbioru P8 (np. 2), co kończy dowód.
cnd

Dla twierdzenia B3 skorzystajmy z prawa Tygryska.
Prawo Tygryska:
B3: q=>p = B1: p~>q =0
Nasz przykład:
B3: P2=>P8 = B1: P8~>P2 =0

Definicja tożsamości logicznej:
Prawdziwość zdania po dowolnej stronie tożsamości logicznej „=” wymusza jego prawdziwość po drugiej stronie
Fałszywość zdania po dowolnej stronie tożsamości logicznej „=” wymusza jego fałszywość po drugiej stronie

Stąd mamy zdanie B1 logicznie tożsame z twierdzeniem odwrotnym B3.
B1.
Jeśli dowolna liczba jest podzielna przez 8 (P8=1) to na 100% ~> jest podzielna przez 2 (P2=1)
P8~>P2 =0
Definicja warunku koniecznego ~> nie jest spełniona (=0) bo zbiór P8=[8,16,24..] nie jest (=0) nadzbiorem ~> zbioru P2=[2,4,6,8..]
Fałszywości tego twierdzenia nie musimy dowodzić, bowiem jest ono fałszywe na mocy prawa Tygryska.

Zauważmy, że po raz n-ty kłania nam się prawo Kameleona w postaci zdań A1 i B1.

Prawo Kameleona:
Dwa zdania brzmiące identycznie z dokładnością do każdej literki i każdego przecinka nie muszą być matematycznie tożsame.

Prawdziwość/fałszywość zdań A1 i B1 rozpoznajemy po znaczkach warunku wystarczającego => i koniecznego ~> wbudowanych w treść zdań.

Stąd mamy dowód iż badane zdanie A1 jest częścią podstawowej definicji implikacji prostej P8|=>P2.

Definicja podstawowa implikacji prostej p|=>q:
Implikacja prosta p|=>q to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
##
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
stąd:
p|=>q = (A1: p=>q)*~(B1: p~>q) =1*~(0) = 1*1 =1

Nasz przykład:
Definicja podstawowa implikacji prostej P8|=>P2:
Implikacja prosta P8|=>P2 to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
A1: P8=>P2 =1 - podzielność dowolnej liczby przez 8 jest (=1) wystarczająca => dla jej podzielności przez 8
##
B1: P8~>P2=0 - podzielność dowolnej liczby przez 8 nie jest (=0) konieczna ~> dla jej podzielności przez 2
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
stąd:
P8|=>P2 = (A1: P8=>P2)*~(B1: P8~>P2)=1*~(0)=1*1=1 - zapis aktualny
p|=>q = (A1: p=>q)*~(B1: p~>q) =1*~(0) = 1*1 =1 - zapis formalny

W algebrze Kubusia w zbiorach zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

Podstawmy tą definicję do matematycznych związków warunku wystarczającego i koniecznego ~>:
Kod:

T1
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji prostej p|=>q
Kolumna A1B1 to punkt odniesienia:
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1 - zapis formalny
A1B1: P8|=>P2=(A1: P8=>P2)*~(B1: P8~>P2)=1*~(0)=1*1=1 - zapis aktualny
Punkt odniesienia:
p=P8
q=P2
      A1B1:      A2B2:     |     A3B3:       A4B4:
A: 1: p=>q   = 2:~p~>~q   [=] 3: q~>p   = 4:~q=>~p   =1 [=] 5: ~p+q
A: 1: P8=>P2 = 2:~P8~>~P2 [=] 3: P2~>P8 = 4:~P2=>~P8 =1 [=] 5: ~P8+P2
##
B: 1: p~>q   = 2:~p=>~q   [=] 3: q=>p   = 4:~q~>~p   =0 [=] 5: p+~q
B: 1: P8~>P2 = 2:~P8=>~P2 [=] 3: P2=>P8 = 4:~P2~>~P8 =0 [=] 5: P8+~P2
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla udowodnienia, iż zdanie warunkowe „Jeśli p to q” wchodzi w skład implikacji prostej p|=>q potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Ax i fałszywość dowolnego zdania serii Bx.
Zauważmy, że nie ma znaczenia które zdanie będziemy brali pod uwagę, bowiem prawami logiki matematycznej (prawa Kubusia, prawa Tygryska i prawa kontrapozycji) zdanie to możemy zastąpić zdaniem logicznie tożsamym z kolumny A1B1.

Wyżej udowodniliśmy prawdziwość twierdzenia prostego A1: P8=>P2=1 z linii Ax oraz fałszywość twierdzenie odwrotnego B3: P2=>P8=0 z linii Bx, zatem nic więcej nie musimy udowadniać, obowiązuje nas tabela prawdy T1.

Kluczowym punktem zaczepienia w wprowadzeniu symbolicznej definicji implikacji prostej p|=>q jest definicja kontrprzykładu rodem z algebry Kubusia działająca wyłącznie w warunku wystarczającym =>.

Definicja kontrprzykładu w zbiorach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane elementem wspólnym zbiorów p~~>~q=p*~q

Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)

Uzupełnijmy naszą tabelę wykorzystując powyższe rozstrzygnięcia działające wyłącznie w warunkach wystarczających =>.
Kod:

T2
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji prostej p|=>q
Kolumna A1B1 to punkt odniesienia:
p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1 - zapis formalny
P8|=>P2=(A1: P8=>P2)*~(B1: P8~>P2)=1*~(0)=1*1=1 - zapis aktualny
Punkt odniesienia:
p=P8=[8,16,24..] - zbiór liczb podzielnych przez 8
q=P2=[2,4,6,8..] - zbiór liczb podzielnych przez 2
       A1B1:          A2B2:          |     A3B3:           A4B4:
A:  1: p=>q    =1 = 2:~p~>~q  =1    [=] 3: q~>p    =1  = 4:~q=>~p   =1
A:  1: P8=>P2  =1 = 2:~P8~>~P2=1    [=] 3: P2~>P8  =1  = 4:~P2=>~P8 =1
A’: 1: p~~>~q  =0 =                 [=]                = 4:~q~~>p   =0                   
A’: 1: P8~~>~P2=0 =                 [=]                = 4:~P2~~>P8 =0                   
       ##            ##              |     ##             ##
B:  1: p~>q    =0 = 2:~p=>~q  =0    [=] 3: q=>p    =0   = 4:~q~>~p  =0
B:  1: P8~>P2  =0 = 2:~P8=>~P2=0    [=] 3: P2=>P8  =0   = 4:~P2~>~P8=0
B’:               = 2:~p~~>q  =1    [=] 3: q~~>~p  =1
B’:               = 2:~P8~~>P2=1    [=] 3: P2~~>~P8=1
---------------------------------------------------------------
IP p|=>q=~p*q     = ~p|~>~q=~p*q     [=]  q|~>p=q*~p    = ~q|=>~p=q*~p
IP P8|=>P2=~P8*P2 = ~P8|~>~P2=~P8*P2 [=] P2|~>P8=P2*~P8 = ~P2|=>~P8=P2*~P8
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
A1: P8=>P2=1 - prawdziwy A1 wymusza fałszywy kontrprzykład A1’ i odwrotnie
B2:~P8=>~P2=0 -fałszywy B2 wymusza prawdziwy kontrprzykład B2’ i odwrotnie
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Komentarz:
1.
Zdania serii Ax są różne na mocy definicji ## od zdań serii Bx:
Definicja warunku wystarczającego p=>q w spójnikach „i”(*) i „lub”(+):
A1: p=>q = ~p+q
##
Definicja warunku koniecznego p~>q w spójnikach „i”(*) i „lub”(+):
B1: p~>q = p+~q
Gdzie:
## - różne na mocy definicji
2.
Wiersze IO wypełniono na mocy definicji implikacji prostej p|=>q i odwrotnej p|~>q w spójnikach „i”(*) i „lub”(+):
Definicja implikacji prostej p|=>q w spójnikach „i”(*) i „lub”(+):
p|=>q = ~p*q
##
Definicja implikacji odwrotnej p|~>q w spójnikach „i”(*) i „lub”(+):
p|~>q = p*~q
Gdzie:
## - różne na mocy definicji

W algebrze Kubusia w zbiorach zachodzi:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

Prawo śfinii:
Domyślny punkt odniesienia w zdaniach warunkowych „Jeśli p to q”:

W dowolnym zdaniu warunkowym „Jeśli a to b” zapisanym w zmiennych aktualnych a i b (mających związek z językiem potocznym człowieka), zawsze po „Jeśli..” zapisujemy formalny poprzednik p zaś po „to” zapisujemy formalny następnik q.
Zamieniać p i q w dowolnym zdaniu warunkowym z ustalonym wyżej domyślnym punktem odniesienia wolno nam tylko i wyłącznie na podstawie prawa Tygryska lub prawa kontrapozycji.

Zdanie analizowane - punkt odniesienia:
A1.
Jeśli dowolna liczba jest podzielna przez 8 (P8=1) to na 100% => jest podzielna przez 2 (P2=1)
P8=>P2 =1
Podzielność dowolnej liczby przez 8 jest warunkiem wystarczającym => dla jej podzielności przez 2 bo zbiór P8=[8,16,24..] jest podzbiorem => zbioru P2=[2,4,6,8..]
Wyznaczamy wszystkie możliwe zbiory P8, ~P8, P2 i ~P2 które będą potrzebne w dalszej analizie.
P8=[8,16,24..] - zbiór liczb podzielnych przez 8
P2=[2,4,6,8..] - zbiór wszystkich liczb podzielnych przez 2
Przyjmijmy dziedziną minimalną wspólną dla p i q:
LN=[1,2,3,4,5,6,7,8,9..] - zbiór liczb naturalnych
Stąd mamy przeczenia zbiorów definiowane jako uzupełnienia do dziedziny:
~P8 = [LN-P8] = [1,2,3,4,5,6,7..9..] - zbiór liczb niepodzielnych przez 8
~P2 = [LN-P2]=[1,3,5,7,9..] - zbiór wszystkich liczb niepodzielnych przez 2

Operator implikacji prostej P8||=>P2 to odpowiedź na dwa pytania 1 i 2:

1.
Co może się wydarzyć, jeśli ze zbioru liczb naturalnych LN wylosujemy liczbę podzielną przez 8 (P8=1)?

Odpowiedź mamy w kolumnie A1B1:
Jeśli ze zbioru liczb naturalnych wylosujemy liczbą podzielną przez 8 to mamy gwarancję matematyczną => iż ta liczba będzie podzielna przez 2 - mówi o tym zdanie A1.
A1.
Jeśli dowolna liczba jest podzielna przez 8 (P8=1) to na 100% => jest podzielna przez 2 (P2=1)
P8=>P2 =1
to samo w zapisie formalnym:
p=>q =1
Na mocy prawa śfinii zdanie A1 jest punktem odniesienia:
p=P8
q=P2
Podzielność dowolnej liczby przez 8 jest warunkiem wystarczającym => dla jej podzielności przez 2 bo zbiór P8=[8,16,24..] jest podzbiorem => zbioru P2=[2,4,6,8..]

Prawdziwość warunku wystarczającego => A1 wymusza fałszywość kontrprzykładu A1’ (i odwrotnie).
A1’.
Jeśli dowolna liczba jest podzielna przez 8 (P8=1) to może ~~> nie być podzielna przez 2 (~P2=1)
P8~~>~P2=P8*~P2 =[] =0
to samo w zapisie formalnym:
p~~>~q = p*~q =0
Definicja elementu wspólnego zbiorów ~~> nie jest (=0) spełniona bo zbiory P8=[8,16,24..] i ~P2=[1,3,5,7,9..] są rozłączne.
Tego faktu nie musimy udowadniać, bo wymusza go prawdziwość warunku wystarczającego A1.

2.
Co może się wydarzyć, jeśli ze zbioru liczb naturalnych LN wylosujemy liczbę niepodzielną przez 8 (~P8=1)?

Prawo Kubusia:
A1: P8=>P2 = A2: ~P8~>~P2

Odpowiedź mamy w kolumnie A2B2:
Jeśli ze zbioru liczb naturalnych wylosujemy liczbę niepodzielna przez 8 to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła”, o czym mówią zdania prawdziwe A2 i B2’

A2.
Jeśli dowolna liczba nie jest podzielna przez 8 (~P8=1) to może ~> nie być podzielna przez 2 (~P2=1)
~P8~>~P2=1
to samo w zapisie formalnym:
~p~>~q =1
Definicja warunku koniecznego ~> jest tu spełniona bo zbiór ~P8=[1,2,3,4,5,6,7..9..] jest nadzbiorem ~> zbioru ~P2=[1,3,5,7,9..]
Tego faktu nie musimy udowadniać, gwarantuje nam to prawo Kubusia:
A2:~P8~>~P2 = A1: P8=>P2
Prawdziwość zdania A1 udowodniliśmy na samym początku.

LUB

Kontrprzykład B2’ dla fałszywego warunku wystarczającego B2: ~P8=>~P2 =0 musi być prawdą
Prawdziwości kontrprzykładu B2’ nie musimy zatem dowodzić wprost, ale możemy dowodzić.
B2’.
Jeśli dowolna liczba nie jest podzielna przez 8 (~P8=1) to może ~~> być podzielna przez 2 (P2=1)
~P8~~>P2 = ~P8*P2 =1
to samo w zapisie formalnym:
~p~~>q = ~p*q =1
Definicja elementu wspólnego ~~> zbiorów ~P8=[1,2,3,4,5,6,7..9..] i P2=[2,4,6,8..] jest spełniona bo np. 2

Podsumowanie:
1.
Doskonale widać, że jeśli ze zbioru liczb naturalnych wylosujemy liczbę podzielną przez 8 (P8) to mamy gwarancję matematyczną => iż ta liczba będzie podzielna przez 2 - mówi o tym zdanie A1.
A1.
Jeśli dowolna liczba jest podzielna przez 8 (P8=1) to na 100% => jest podzielna przez 2 (P2=1)
P8=>P2 =1

2.
Jeśli natomiast ze zbioru liczb naturalnych LN wylosujemy liczbę niepodzielną przez 8 (~P8) to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” - mówią o tym zdania A2 i B2’.
A2.
Jeśli dowolna liczba nie jest podzielna przez 8 (~P8=1) to może ~> nie być podzielna przez 2 (~P2=1)
~P8~>~P2=1
LUB
B2’.
Jeśli dowolna liczba nie jest podzielna przez 8 (~P8=1) to może ~~> być podzielna przez 2 (P2=1)
~P8~~>P2 = ~P8*P2 =1
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 35963
Przeczytał: 15 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Nie 15:10, 11 Kwi 2021    Temat postu:

Algebra Kubusia - wykład rozszerzony
3.0 Implikacja odwrotna p|~>q

Wstęp:
Wykład rozszerzony algebry Kubusia zakłada znajomość wersji podstawowej AK.


Spis treści
3.0 Implikacja odwrotna p|~>q 1
3.1 Matematyczne związki warunków wystarczających => i koniecznych ~> 1
3.2 Definicja podstawowa implikacji odwrotnej p|~>q 3
3.2.1 Implikacje tożsame dla punktu odniesienia p|~>q 6
3.3 Operator implikacji odwrotnej p||~>q 9
3.3.1 Zero-jedynkowa definicja warunku koniecznego ~> 11
3.4 Opis tabeli zero-jedynkowej równaniami algebry Boole’a 14
3.4.1 Dziedzina matematyczna i fizyczna 15
3.4.2 Operator implikacji odwrotnej p||~>q w zdarzeniach możliwych ~~> 17
3.4.3 Operator implikacji odwrotnej p||~>q w elementach wspólnych zbiorów ~~> 20




3.0 Implikacja odwrotna p|~>q

Definicja operatora implikacyjnego:
Operator implikacyjny to operator wyrażony zdaniami warunkowymi „Jeśli p to q”

Fundamentem wszystkich operatorów implikacyjnych są matematyczne związki warunków wystarczających => i koniecznych ~> w rachunku zero-jedynkowym

3.1 Matematyczne związki warunków wystarczających => i koniecznych ~>

Matematyczne związki warunków wystarczających => i koniecznych ~> w rachunku zero-jedynkowym:
Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
A1: p=>q = ~p+q
##
Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
B1: p~>q = p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Na mocy rachunku zero-jedynkowego mamy matematyczne związki warunków wystarczających => i koniecznych ~>.
Kod:

T0
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5: p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Na mocy powyższego zapisujemy:
1.
Prawa Kubusia:
A1: p=>q = A2: ~p~>~q
##
B1: p~>q = B2: ~p=>~q
Ogólne prawo Kubusia:
Negujemy zmienne i wymieniamy spójniki na przeciwne

2.
Prawa Tygryska:
A1: p=>q = A3: q~>p
##
B1: p~>q = B3: q=>p
Ogólne prawo Tygryska:
Zamieniamy miejscami zmienne i wymieniamy spójniki na przeciwne

3.
Prawa kontrapozycji:
A1: p=>q = A4: ~q=>~p - prawo kontrapozycji dla warunku wystarczającego =>
##
B1: p~>q = B4: ~q~>~p - prawo kontrapozycji dla warunku koniecznego ~>
Ogólne prawo kontrapozycji:
Negujemy zmienne zamieniając je miejscami bez zmiany spójnika logicznego

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Mutacje powyższych praw logiki matematycznej:

Pod p i q w powyższych prawach możemy podstawiać zanegowane zmienne w dowolnych konfiguracjach.

Przykład:
Prawo Kubusia:
p=>q = ~p~>~q
1.
Podstawiamy:
p:=~p - pod p podstaw := ~p
q:=~q - pod q podstaw := ~q
stąd mamy także poprawne prawo Kubusia:
~p=>~q = ~(~p)~>~(~q) = p~>q
2.
Podstawiamy:
p:=p
q:=~q
stąd mamy także poprawne prawo Kubusia:
p=>~q = ~p~>~(~q) = ~p~>q
3.
Podstawiamy:
p:=~p
q:=q
stąd mamy także poprawne prawo Kubusia:
~p=>q = ~(~p)~>~q = p~>~q

3.2 Definicja podstawowa implikacji odwrotnej p|~>q

W algebrze Kubusia w zbiorach zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

Definicja podstawowa implikacji odwrotnej p|~>q:
Implikacja odwrotna p|~>q to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
##
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
stąd:
p|~>q = ~(A1: p=>q)*(B1: p~>q) =~(0)*1 = 1*1 =1

Podstawmy tą definicję do matematycznych związków warunku wystarczającego => i koniecznego ~>:
Kod:

T1
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji odwrotnej p|~>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
A1B1: p|~>q=~(A1: p=>q)*(B1: p~>q)=~(0)*1=1*1=1
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p =0 [=] 5: ~p+q
##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p =1 [=] 5: p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla udowodnienia, iż zdanie warunkowe „Jeśli p to q” wchodzi w skład implikacji odwrotnej p|~>q potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Bx i fałszywość dowolnego zdania serii Ax.
Zauważmy, że nie ma znaczenia które zdanie będziemy brali pod uwagę, bowiem prawami logiki matematycznej (prawa Kubusia, prawa Tygryska i prawa kontrapozycji) zdanie to możemy zastąpić zdaniem logicznie tożsamym z kolumny A1B1.

Kluczowym punktem zaczepienia w wprowadzeniu symbolicznej definicji implikacji odwrotnej p|~>q jest definicja kontrprzykładu rodem z algebry Kubusia działająca wyłącznie w warunku wystarczającym =>.

Definicja kontrprzykładu w zbiorach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane elementem wspólnym zbiorów p~~>~q=p*~q

Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>~q=p*~q

Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)

Uzupełnijmy naszą tabelę wykorzystując powyższe rozstrzygnięcia działające wyłącznie w warunkach wystarczających =>.
Kod:

T2
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji odwrotnej p|~>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
A1B1: p|~>q=~(A1: p=>q)*(B1: p~>q)=~(0)*1=1*1=1
       A1B1:         A2B2:        |     A3B3:         A4B4:
A:  1: p=>q  =0 = 2:~p~>~q=0     [=] 3: q~>p  =0 = 4:~q=>~p =0
A’: 1: p~~>~q=1 =                [=]             = 4:~q~~>p =1                   
       ##            ##           |     ##            ##
B:  1: p~>q  =1 = 2:~p=>~q=1     [=] 3: q=>p  =1 = 4:~q~>~p =1
B’:             = 2:~p~~>q=0     [=] 3: q~~>~p=0
---------------------------------------------------------------
IP: p|~>q=p*~q  = ~p|=>~q=p*~q   [=]  q|=>p=~q*p = ~q|~>~p=~q*p
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
A1: p=>q=0 - fałszywy A1 wymusza prawdziwy kontrprzykład A1’ (i odwrotnie)
B2:~p=>~q=1 - prawdziwy B2 wymusza fałszywy kontrprzykład B2’ (i odwrotnie)
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Definicja podstawowa implikacji odwrotnej p|~>q w logice dodatniej (bo q):
Kolumna A1B1:
Implikacja odwrotna p|~>q w logice dodatniej (bo q) to spełniony wyłącznie warunku konieczny ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
stąd:
A1B1: p|~>q = ~(A1: p=>q)*(B1: p~>q) =~(0)*1 = 1*1 =1

Definicja implikacji prostej ~p|=>~q w logice ujemnej (bo ~q):
Kolumna A2B2:
Implikacja prosta ~p=>~q w logice ujemnej (bo ~q) to spełniony wyłącznie warunek wystarczający => między tymi samymi punktami i w tym samym kierunku
A2: ~p~>~q =0 - zajście ~p nie jest (=0) konieczne ~> dla zajścia ~q
B2:~p=>~q =1 - zajście ~p jest (=1) wystarczające => dla zajścia ~q
Stąd:
A2B2: ~p|=>~q = ~(A2: ~p~>~q)*(B2:~p=>~q)=~(0)*1=1*1=1

Matematycznie zachodzi tożsamość logiczna:
A1B1: p|~>q = A2B2:~p|=>~q
Dowód:
A1B1: p|~>q = ~(A1: p=>q)*(B1: p~>q) = ~(A2: ~p~>~q)*(B2: ~p=>~q) = ~p|=>~q
bo prawa Kubusia:
A1: p=>q = A2: ~p~>~q
B1: p~>q = B2: ~p=>~q
cnd

Dowód matematycznie tożsamy.

Definicja warunku wystarczającego p=>q:
p=>q = ~p+q
##
Definicja warunku koniecznego p~>q:
p~>q = p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Stąd mamy:
A1B1:
Implikacja odwrotna p|~>q w logice dodatniej (bo q):
A1: p=>q =0
B1: p~>q =1
p|~>q = ~(A1: p=>q)*(B1: p~>q) = ~(~p+q)*(p+~q) = (p*~q)*(p+~q) = p*~q
p|~>q = p*~q

A2B2:
Implikacja prosta ~p|=>~q w logice ujemnej (bo ~q):
A2:~p~>~q =0
B2: ~p=>~q =1
~p|=>~q = ~(A2: ~p~>~q)*(B2:~p=>~q)= ~(~p+q)*(p+~q) = (p*~q)*(p+~q) = p*~q
~p~>~q = ~p*q

Stąd mamy logiczną tożsamość:
p|~>q = ~p|=>~q = p*~q

Definicja tożsamości logicznej „=”:
Prawdziwość dowolnej strony tożsamości logicznej „=” wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej „=” wymusza fałszywość drugiej strony

Innymi słowy:
Udowodnienie iż dany układ spełnia definicję implikacji odwrotnej p|~>q w logice dodatniej (bo q) jest tożsame z udowodnieniem iż ten sam układ spełnia definicję implikacji prostej ~p|=>~q w logice ujemnej (bo ~q) … (albo odwrotnie)

Warto zapamiętać różnicę:
Definicja warunku koniecznego p~>q:
B1: p~>q = p+~q
##
Definicja implikacji odwrotnej p|~>q:
A1B1: p|~>q = ~(A1: p=>q)*(B1: p~>q) =p*~q
##
Definicja warunku wystarczającego p=>q:
A1: p=>q = ~p+q
Gdzie:
## - różne na mocy definicji ##

Definicja znaczka różne na mocy definicji ## dla funkcji logicznych:
Dwie funkcje logiczne są różne na mocy definicji ## wtedy i tylko wtedy gdy nie są tożsame i żadna z nich nie jest zaprzeczeniem drugiej

Weźmy nasze funkcje logiczne B1, A1B1 i A1:
Kod:

 B1:  Y= (p~>q)=p+~q ##  A1B1:  Y=(p|~>q) =p*~q  ##  A1:  Y=(p=>q) =~p+q
      #                         #                         #
~B1: ~Y=~(p~>q)=~p*q ## ~A1B1: ~Y=~(p|~>q)=~p+q  ## ~A1: ~Y=~(p=>q)=p*~q
Gdzie:
# - różne w znaczeniu iż jedna strona jest negacją drugiej strony
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Doskonale widać, że dowolna funkcja z jednej strony znaczka różne na mocy definicji ## nie jest tożsama z funkcją po przeciwnej stronie ani też nie jest jej zaprzeczeniem.

Zauważmy ciekawostkę:
Bez wprowadzenia do logiki matematycznej funkcji logicznej Y, mielibyśmy fałszywą tożsamość logiczną [=]:
A1B1: p*~q [=] ~A1: p*~q
Po wprowadzeniu do logiki matematycznej funkcji logicznej Y powyższa, fałszywa tożsamość logiczna [=] jest zabijana:
A1B1: Y=(p|~>q)=p*~q ## ~A1: ~Y=~(p=>q) =p*~q
Gdzie:
## - różne na mocy definicji
cnd

3.2.1 Implikacje tożsame dla punktu odniesienia p|~>q

Kod:

T2
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji odwrotnej p|~>q
Kolumna A1B1 to punkt odniesienia:
A1B1: p|~>q=~(A1: p=>q)*(B1: p~>q)=~(0)*1=1*1=1
       A1B1:         A2B2:        |     A3B3:         A4B4:
A:  1: p=>q  =0 = 2:~p~>~q=0     [=] 3: q~>p  =0 = 4:~q=>~p =0
A’: 1: p~~>~q=1 =                [=]             = 4:~q~~>p =1                   
       ##            ##           |     ##            ##
B:  1: p~>q  =1 = 2:~p=>~q=1     [=] 3: q=>p  =1 = 4:~q~>~p =1
B’:             = 2:~p~~>q=0     [=] 3: q~~>~p=0
---------------------------------------------------------------
IP: p|~>q=p*~q  = ~p|=>~q=p*~q   [=]  q|=>p=~q*p = ~q|~>~p=~q*p
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
A1: p=>q=0 - fałszywy A1 wymusza prawdziwy kontrprzykład A1’ (i odwrotnie)
A1’: p~~>~q=p*~q=1 - prawdziwy kontrprzykład A1’ wymusza fałszywy A1
B2:~p=>~q=1 - prawdziwy B2 wymusza fałszywy kontrprzykład B2’ (i odwrotnie)
B2’:~p~~>q =~p*q=0 - fałszywy kontrprzykład B2’ wymusza prawdziwy B2
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

W tabeli T2 zachodzi tożsamość logiczna „=” warunków wystarczających => i koniecznych ~> w linii Ax.
W tabeli T2 zachodzi tożsamość logiczna „=” warunków wystarczających => i koniecznych ~> w linii Bx.

Zachodzi tożsamość znaczków:
„=” = „[=]”
Znaczek [=] sygnalizuje tylko zamianę p i q w A3B3 i A4B4 względem A1B1 i A2B2.

Definicja warunku wystarczającego p=>q dla potrzeb rachunku zero-jedynkowego:
p=>q = ~p+q
##
Definicja warunku koniecznego p~>q dla potrzeb rachunku zero-jedynkowego:
p~>q = p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

W tabeli T2 możemy wyróżnić następujące implikacje:

A1B1:
Punkt odniesienia:
Implikacja odwrotna p|~>q w logice dodatniej (bo q):

Implikacja odwrotna p|~>q to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
A1B1: p|~>q = ~(A1: p=>q)*(B1: p~>q) =~(0)*1 = 1*1 =1
Definicje znaczków => i ~> dla potrzeb rachunku zero-jedynkowego:
p=>q = ~p+q
p~>q = p+~q
Stąd mamy:
A1B1: p|~>q = ~(A1: p=>q)*(B1: p~>q) =~(~p+q)*(p+~q) = (p*~q)*(p+~q) = p*~q
A1B1: p|~>q = p*~q
Poniższe nazwy implikacji odnoszą się do punktu odniesienia A1B1: p|~>q:

[=]

A2B2:
Implikacja prosta ~p|=>~q w logice ujemnej (bo ~q) w stosunku do A1B1:

Implikacja prosta ~p|=>~q w logice ujemnej (bo ~q) to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
A2: ~p~>~q =0 - zajście ~p nie jest (=0) warunkiem koniecznym ~> dla zajścia ~q
B2: ~p=>~q =1 - zajście ~p jest (=1) warunkiem wystarczającym => dla zajścia ~q
A2B2: ~p|=>~q = ~(A2: ~p~>~q)*(B2: ~p=>~q) =~(0)*1=1*1 =1
Definicje znaczków => i ~> dla potrzeb rachunku zero-jedynkowego:
p=>q = ~p+q
p~>q = p+~q
stąd:
A2B2: ~p|=>~q = ~(A2: ~p~>~q)*(B2: ~p=>~q) = ~(~p+q)*(p+~q) = (p*~q)*(p+~q) = p*~q
A2B2: ~p|=>~q = p*~q

[=]

A3B3:
Implikacja prosta przeciwna q|=>p w logice dodatniej (bo p) w stosunku do A1B1:

Implikacja prosta przeciwna q|=>p w logice dodatniej (bo p) to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
A3: q~>p =0 - zajście q nie jest (=0) konieczne ~> dla zajścia p
B3: q=>p =1 - zajście q jest (=1) wystarczające => dla zajścia p
A3B3: q|=>p = ~(A3: q~>p)*(q=>p) = ~(0)*1 =1*1 =1
Definicje znaczków => i ~> dla potrzeb rachunku zero-jedynkowego:
p=>q = ~p+q
p~>q = p+~q
stąd:
A3B3: q|=>p = ~(A3: q~>p)*(q=>p) = ~(q+~p)*(~q+p)=(~q*p)*(~q+p) = ~q*p
A3B3: q|=>p = ~q*p
[=]

A4B4:
Implikacja odwrotna przeciwna ~q|~>~p w logice ujemnej (bo ~p) w stosunku do A1B1:

Implikacja odwrotna przeciwna ~q|~>~p w logice ujemnej (bo ~p) to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A4: ~q=>~p =0 - zajście ~q nie jest (=0) wystarczające => dla zajścia ~p
B4: ~q~>~p =1 - zajście ~q jest (=1) konieczne ~> dla zajścia ~p
A4B4: ~q|~>~p = ~(A4: ~q=>~p)*(B4: ~q~>~p) =~(0)*1 =1*1 =1
Definicje znaczków => I ~>:
p=>q = ~p+q
p~>q = p+~q
stąd:
A4B4: ~q|~>~p = ~(A4: ~q=>~p)*(B4: ~q~>~p) = ~(q+~p)*(~q+p) = (~q*p)*(~q+p)=~q*p
A4B4: ~q|~>~p = ~q*p

Na mocy tożsamości logicznych w wierszach w tabeli T2 zachodzą tożsamości logiczne [=] implikacji:
A1B1: p|~>q [=] A2B2: ~p|=>~q [=] A3B3: q|=>p [=] A4B4: ~q|~>~p
Gdzie:
[=] - tożsamość logiczna

Dokładnie to samo można udowodnić korzystając z definicji podstawowych implikacji prostej p|=>q i odwrotnej p|~>q wyrażonych spójnikami „i’(*) i „lub”(+), co pokazano wyżej.
A1B1: p|~>q=p*~q [=] A2B2: ~p|=>~q=p*~q [=] A3B3: q|=>p=~q*p [=] A4B4: ~q|~>~p=~q*p
Gdzie:
[=] - tożsamość logiczna, bo prawe strony są identyczne (iloczyn logiczny „*” jest przemienny)
cnd

Warto zapamiętać różnicę między warunkiem koniecznym p~>q:
A: p~>q = p+~q
##
a implikacją odwrotną p|~>q:
A1B1: p|~>q = p*~q
Gdzie:
## - różne na mocy definicji warunku koniecznego ~> i implikacji odwrotnej p|~>q
p i q musi być wszędzie tymi samymi p i q.


3.3 Operator implikacji odwrotnej p||~>q

W algebrze Kubusia w zbiorach zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>
Kod:

T2
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji odwrotnej p|~>q
Kolumna A1B1 to punkt odniesienia:
A1B1: p|=>q=~(A1: p=>q)*(B1: p~>q)=~(0)*1=1*1=1
       A1B1:         A2B2:        |     A3B3:         A4B4:
A:  1: p=>q  =0 = 2:~p~>~q=0     [=] 3: q~>p  =0 = 4:~q=>~p =0
A’: 1: p~~>~q=1 =                [=]             = 4:~q~~>p =1                   
       ##            ##           |     ##            ##
B:  1: p~>q  =1 = 2:~p=>~q=1     [=] 3: q=>p  =1 = 4:~q~>~p =1
B’:             = 2:~p~~>q=0     [=] 3: q~~>~p=0
---------------------------------------------------------------
IP: p|~>q=p*~q  = ~p|=>~q=p*~q   [=]  q|=>p=~q*p = ~q|~>~p=~q*p
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
A1: p=>q=0 - fałszywy A1 wymusza prawdziwy kontrprzykład A1’ (i odwrotnie)
B2:~p=>~q=1 - prawdziwy B2 wymusza fałszywy kontrprzykład B2’ (i odwrotnie)
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla udowodnienia, iż zdanie warunkowe „Jeśli p to q” wchodzi w skład implikacji odwrotnej p|~>q potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Bx i fałszywość dowolnego zdania serii Ax.
Zauważmy, że nie ma znaczenia które zdanie będziemy brali pod uwagę, bowiem prawami logiki matematycznej (prawa Kubusia, prawa Tygryska i prawa kontrapozycji) zdanie to możemy zastąpić zdaniem logicznie tożsamym z kolumny A1B1.

Definicja operatora implikacji odwrotnej p||~>q:
Operator implikacji odwrotnej p||~>q to złożenie implikacji odwrotnej p|~>q w logice dodatniej (bo q) zdefiniowanej w kolumnie A1B1 oraz implikacji prostej ~p|=>~q w logice ujemnej (bo ~q) zdefiniowanej w kolumnie A2B2.

Innymi słowy:
Operator implikacji odwrotnej p||~>q to odpowiedź na dwa pytania 1 i 2:

1.
Co może się wydarzyć jeśli zajdzie p (p=1)?

Odpowiedź mamy w kolumnie A1B1:
Jeśli zajdzie p (p=1) to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” - mówią o tym zdania B1 i A1’
B1.
Jeśli zajdzie p (p=1) to może ~> zajść q (q=1)
p~>q =1
Co w logice jedynek oznacza:
(p=1)~>(q=1) =1
Czytamy:
p=1 - prawdą jest (=1) że zajdzie p
q=1 - prawdą jest (=1) że zajdzie q
Zajście p jest konieczne ~> dla zajścia q, bo jak zajdzie ~p to na 100% => zajdzie ~q
Prawo Kubusia samo nam tu wyskoczyło:
B1: p~>q = B2:~p=>~q

LUB

Kolumna A1B1:
A1: p=>q =0
Kontrprzykład A1’ dla fałszywego warunku wystarczającego A1 musi być prawdą
A1’.
Jeśli zajdzie p (p=1) to może ~~> zajść ~q (~q=1)
p~~>~q = p*~q =1
Co w logice jedynek oznacza:
(p=1)~~>(~q=1) = (p=1)*(~q=1) =1
Czytamy;
p=1 - prawdą jest (=1) że zajdzie p
~q=1 - prawdą jest (=1) że zajdzie ~q
Zdarzenia:
Możliwe jest (=1) zdarzenie ~~>: zajdzie p i zajdzie ~q
Zbiory:
Istnieje (=1) element wspólny zbiorów ~~>: p i ~q

2.
Co może się wydarzyć jeśli zajdzie ~p (~p=1)?

Odpowiedź mamy w kolumnie A2B2:
Jeśli zajdzie ~p (~p=1) to mamy gwarancję matematyczną => iż zajdzie ~q (~q=1) - mówi o tym zdanie B2
B2.
Jeśli zajdzie ~p (~p=1) to na 100% => zajdzie ~q (~q=1)
~p=>~q =1
Co w logie jedynek oznacza:
(~p=1)=>(~q=1) =1
Czytamy:
~p=1 - prawdą jest (=1) że zajdzie ~p
~q=1 - prawdą jest (=1) że zajdzie ~q
Zajście ~p jest (=1) wystarczające => dla zajścia ~q
Zajście ~p daje nam (=1) gwarancję matematyczną => zajścia ~q
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>
Prawdziwy warunek wystarczający B2 wymusza fałszywość kontrprzykładu B2’ (i odwrotnie)
B2’.
Jeśli zajdzie ~p (~p=1) to może ~~> zajść q (q=1)
~p~~>q = ~p*q=0
co w logice jedynek oznacza:
(~p=1)~~>(q=1) = (~p=1)*(q=1) =0
Czytamy:
~p=1 - prawdą jest (=1) że zajdzie ~p
q=1 - prawda jest (=1) że zajdzie q
Zdarzenia:
Niemożliwe jest (=0) zdarzenie ~~>: zajdzie ~p i zajdzie q
Zbiory:
Nie istnieje (=0) element wspólny zbiorów ~~>: ~p i q

3.3.1 Zero-jedynkowa definicja warunku koniecznego ~>

Zapiszmy skróconą tabelę prawdy operatora implikacji odwrotnej p||~>q przedstawioną wyżej:
Kod:

T3:
Analiza symboliczna                              |Co w logice
operatora implikacji odwrotnej p||~>q            |jedynek oznacza
B1:  p~> q =1 - p jest konieczne ~> dla q        |( p=1)~> ( q=1)=1
A1’: p~~>~q=1 - kontrprzykład dla A1 musi być 1  |( p=1)~~>(~q=1)=1
B2: ~p=>~q =1 - zajście ~p wystarcza => dla ~q   |(~p=1)=> (~q=1)=1
B2’:~p~~>q =0 - kontrprzykład dla B2 musi być 0  |(~p=1)~~>( q=1)=0
     a   b  c                                       d        e    f

Definicja implikacji odwrotnej p|~>q w logice dodatniej (bo q):
Kolumna A1B1:
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne => dla zajścia q
p|~>q = ~(A1: p=>q)*(B1: p~>q) =(0)*1=1*1 =1
W definicji implikacji odwrotnej p|~>q mamy prawdziwy wyłącznie warunek konieczny B1: p~>q, zatem tylko ten warunek możemy tu przyjąć za punkt odniesienia.

Innymi słowy:
Z tabeli T3 możemy wyprowadzić zero-jedynkową definicję warunku koniecznego B1: p~>q kodując analizę symboliczną względem linii B1.
Przyjmijmy za punkt odniesienia warunek konieczny ~> widoczny w linii B1:
B1: p~>q =1
Jedyne prawo Prosiaczka jakie będzie nam potrzebne do wygenerowania zero-jedynkowej definicji warunku wystarczającego to:
(~x=1)=(x=0)
bo zgodnie z przyjętym punktem odniesienia B1 wszystkie sygnały musimy sprowadzić do postaci niezanegowanej (bo x).
Kod:

T4:
Definicja zero-jedynkowa warunku koniecznego B1: p~>q
w logice dodatniej (bo q)
Analiza       |Co w logice       |Kodowanie dla     |Zero-jedynkowa
symboliczna   |jedynek oznacza   |B1: p~>q          |definicja ~>
              |                  |                  | p  q  B1: p~>q
B1:  p~> q =1 |( p=1)~> ( q=1)=1 |( p=1)~> ( q=1)=1 | 1~>1      =1
A1’: p~~>~q=1 |( p=1)~~>(~q=1)=1 |( p=1)~~>( q=0)=1 | 1~>0      =1
B2: ~p=>~q =1 |(~p=1)=> (~q=1)=1 |( p=0)=> ( q=0)=1 | 0~>0      =1
B2’:~p~~>q =0 |(~p=1)~~>( q=1)=0 |( p=0)~~>( q=1)=0 | 0~>1      =0
     a   b  c    d        e    f    g        h    i   1  2       3
                                 |Prawa Prosiaczka  |
                                 |(~p=1)=( p=0)     |
                                 |(~q=1)=( q=0)     |

Nagłówek B1: p~>q w kolumnie wynikowej 3 w tabeli zero-jedynkowej 123 wskazuje linię B1: p~>q w tabeli symbolicznej abc względem której dokonano kodowania zero-jedynkowego.
Tabela zero-jedynkowa 123 nosi nazwę zero-jedynkowej definicji warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego.

Definicja implikacji prostej ~p|=>~q w logice ujemnej (bo ~q):
Kolumna A2B2:
A2: ~p~>~q =0 - zajście ~p nie jest (=0) konieczne ~> dla zajścia ~q
B2: ~p=>~q =1 - zajście ~p jest (=1) wystarczające => dla zajścia ~q
~p|=>~q = ~(A1: ~p~>~q)*(B1: ~p=>~q)=~(0)*1=1*1 =1
W definicji implikacji prostej ~p|=>~q mamy prawdziwy wyłącznie warunek wystarczający B2: ~p=>~q, zatem tylko ten warunek możemy tu przyjąć za punkt odniesienia.

Innymi słowy:
Przyjmijmy za punkt odniesienia linię B2 i wygenerujmy tabelę zero-jedynkową warunku wystarczającego =>:
B2:~p=>~q =1
Jedyne prawo Prosiaczka jakie będzie tu nam potrzebne to:
(x=1)=(~x=0)
bo zgodnie z przyjętym punktem odniesienia B2 wszystkie sygnały musimy sprowadzić do postaci zanegowanej (bo ~x).
Kod:

T5:
Definicja zero-jedynkowa warunku wystarczającego B2:~p=>~q
w logice ujemnej (bo ~q)
Analiza       |Co w logice       |Kodowanie dla     |Zero-jedynkowa
symboliczna   |jedynek oznacza   |B2:~p=>~q         |definicja =>
              |                  |                  |~p ~q B2: ~p=>~q
B1:  p~> q =1 |( p=1)~> ( q=1)=1 |(~p=0)~> (~q=0)=1 | 0=>0      =1
A1’: p~~>~q=1 |( p=1)~~>(~q=1)=1 |(~p=0)~~>(~q=1)=1 | 0=>1      =1
B2: ~p=>~q =1 |(~p=1)=> (~q=1)=1 |(~p=1)=> (~q=1)=1 | 1=>1      =1
B2’:~p~~>q =0 |(~p=1)~~>( q=1)=0 |(~p=1)~~>(~q=0)=0 | 1=>0      =0
     a   b  c    d        e    f    g        h    i   1  2       3
                                 |Prawa Prosiaczka  |
                                 |( p=1)=(~p=0)     |
                                 |( q=1)=(~q=0)     |

Nagłówek B2: ~p=>~q w kolumnie wynikowej 3 w tabeli zero-jedynkowej 123 wskazuje linię B2 w tabeli symbolicznej abc względem której dokonano kodowania zero-jedynkowego.
Tabela zero-jedynkowa 123 nosi nazwę zero-jedynkowej definicji warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego.

Zauważmy, że analiza symboliczna (abc) w tabelach T4 i T5 jest identyczna, dzięki czemu z tożsamości kolumn wynikowych 3 w tabelach T4 i T5 wnioskujemy o zachodzącym prawie Kubusia.
Prawo Kubusia:
T4: p~>q = T5: ~p=>~q

Dokładnie ten sam dowód możemy wykonać w rachunku zero-jedynkowym korzystając z zero-jedynkowej definicji warunku koniecznego ~> (T4: 123) i wystarczającego => (T5: 123).
Oto on:
Kod:

Zero-jedynkowa definicja warunku koniecznego ~>
   p  q  p~>q
A: 1~>1  =1
B: 1~>0  =1
C: 0~>0  =1
D: 0~>1  =0

Kod:

Zero-jedynkowa definicja warunku wystarczającego =>
   p  q  p=>q
A: 1=>1  =1
B: 1=>0  =0
C: 0=>0  =1
D: 0=>1  =1

Stąd mamy:
Kod:

T6
Dowód prawa Kubusia w rachunku zero-jedynkowym:
p~>q = ~p=>~q
     p  q  p~>q ~p ~q ~p=>~q
B1:  1~>1  =1    0=>0   =1
A1’: 1~>0  =1    0=>1   =1
B2:  0~>0  =1    1=>1   =1
B2’: 0~>1  =0    1=>0   =0
     1  2   3    4  5    6

Tożsamość kolumn wynikowych 3=6 jest dowodem formalnym prawa Kubusia.
Prawo Kubusia:
p~>q = ~p=>~q
Uwaga:
Warunkiem koniecznym wnioskowania o tożsamości kolumn wynikowych 3=6 jest identyczna matryca zero-jedynkowa na wejściach p i q.

Prawo Kubusia:
p~>q = ~p=>~q
Prawo Kubusia można też dowieść przy pomocy definicji warunku wystarczającego => i koniecznego ~> w spójnikach „i”(*) i „lub”(+)

Definicja warunku wystarczającego p=>q w spójnikach „i”(*) i „lub”(+):
p=>q = ~p+q
Definicja warunku koniecznego p~>q w spójnikach „i”(*) i „lub”(+):
p~>q = p+~q

Stąd mamy:
~p=>~q = ~(~p)+~q = p+~q = p~>q
cnd

Prawo Kubusia to tożsamość logiczna „=”:
p~>q = ~p=>~q

Definicja tożsamości logicznej „=”:
Prawdziwość dowolnej strony tożsamości logicznej „=”wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej „=” wymusza fałszywość drugiej strony

Z powyższego wynika, że definicja tożsamości logicznej „=” jest tożsama ze spójnikiem równoważności „wtedy i tylko wtedy” <=>

Wniosek:
Tożsamość logiczna „=” jest de facto spójnikiem równoważności p<=>q o definicji:
Kod:

Zero-jedynkowa definicja równoważności <=>
   p   q p<=>q
A: 1<=>1  =1
B: 1<=>0  =0
C: 0<=>0  =1
D: 0<=>1  =0

Fakt ten możemy wykorzystać w naszym zero-jedynkowym dowodzie prawa Kubusia wyżej w następujący sposób.
Kod:

Dowód zero-jedynkowy prawa Kubusia:
p~>q <=> ~p=>~q
     p  q  p~>q ~p ~q ~p=>~q (p~>q)<=>(~p=>~q)
B1:  1~>1  =1    0=>0   =1          1
A1’: 1~>0  =1    0=>1   =1          1
B2:  0~>0  =1    1=>1   =1          1
B2’: 0~>1  =0    1=>0   =0          1
     1  2   3    4  5    6          7

Same jedynki w kolumnie 7 również są dowodem formalnym poprawności prawa Kubusia:
p~>q = ~p=>~q

3.4 Opis tabeli zero-jedynkowej równaniami algebry Boole’a

Algebra Boole’a akceptuje wyłącznie pięć znaczków: {0, 1, „nie”(~), „i”(*), „lub”(+)}

Weźmy wyprowadzoną wyżej zero-jedynkową definicję warunku koniecznego ~>:
Kod:

Zero-jedynkowa definicja warunku koniecznego ~>
   p  q Y=(p~>q)
A: 1~>1  =1
B: 1~>0  =1
C: 0~>0  =1
D: 0~>1  =0

Przypomnijmy sobie punkt 2.10.

Definicja pełnej tabeli zero-jedynkowej:
Pełna tabela zero-jedynkowa układu logicznego (bramka logiczna) to zero-jedynkowy zapis wszystkich sygnałów wejściowych w postaci niezanegowanej (p, q, r..) i zanegowanej (~p, ~q, ~r..) oraz zapis wyjścia Y również w postaci niezanegowanej (Y) i zanegowanej (~Y).

Algorytm przejścia z dowolnej tabeli zero-jedynkowej do jej opisu w spójnikach „i”(*) i „lub”(+):
1.
Zapisujemy wszelkie zmienne po stronie wejścia p i q w postaci niezanegowanej i zanegowanej.
Do wyjścia Y również dopisujemy postać zanegowaną ~Y
2.
W powstałej tabeli tworzymy równania cząstkowe dla wszystkich linii.
2A.
W logice jedynek opisujemy wyłącznie jedynki gdzie w poziomie używamy spójnika „i”(*) zaś w pionie spójnika „lub”(+)
Logika jedynek prowadzi do równań alternatywno-koniunkcyjnych zgodnych z naturalną logika matematyczną człowieka, co oznacza, że będą one rozumiane w języku potocznym przez wszystkich ludzi, od 5-cio latka poczynając.
2B.
W logice zer opisujemy wyłącznie zera gdzie w poziomie używamy spójnika „lub”(+) zaś w pionie spójnika „i”(*)
Logika zer prowadzi do równań koniunkcyjno-alternatywnych totalnie niezrozumiałych w języku potocznym. Z tego względu logiką zer nie będziemy się zajmowali.

3.4.1 Dziedzina matematyczna i fizyczna

Kod:

Zero-jedynkowa definicja warunku koniecznego ~>
   p  q Y=(p~>q)
A: 1~>1  =1
B: 1~>0  =1
C: 0~>0  =1
D: 0~>1  =0

Definicja pełnej tabeli zero-jedynkowej:
Pełna tabela zero-jedynkowa układu logicznego (bramka logiczna) to zero-jedynkowy zapis wszystkich sygnałów wejściowych w postaci niezanegowanej (p, q, r..) i zanegowanej (~p, ~q, ~r..) oraz zapis wyjścia Y również w postaci niezanegowanej (Y) i zanegowanej (~Y).

Opis dowolnej tabeli zero-jedynkowej równaniami algebry Boole’a:
W logice jedynek w pełnej tabeli zero-jedynkowej opisujemy wyłącznie jedynki gdzie w poziomie używamy spójnika „i”(*) zaś w pionie spójnika „lub”(+)
Logika jedynek prowadzi do równań alternatywno-koniunkcyjnych zgodnych z naturalną logika matematyczną człowieka, co oznacza, że będą one rozumiane w języku potocznym przez wszystkich ludzi, od 5-cio latka poczynając.

Zastosujmy logikę jedynek do naszej tabeli warunku koniecznego Y = (p~>q):
Kod:

T2
Wyprowadzenie równań algebry Boole’a dla funkcji logicznych Y i ~Y
Gdzie:
Y = p~>q - zero-jedynkowa definicja warunku koniecznego ~>
Pełna definicja     |Co w logice jedynek |Równania
zero-jedynkowa Y    |oznacza             |cząstkowe
                    |                    |
   p  q ~p ~q  Y ~Y |                    |
A: 1  1  0  0 =1 =0 | Ya=1<=> p=1 i  q=1 | Ya= p~~> q= p* q
B: 1  0  0  1 =1 =0 | Yb=1<=> p=1 i ~q=1 | Yb= p~~>~q= p*~q
C: 0  0  1  1 =1 =0 | Yc=1<=>~p=1 i ~q=1 | Yc=~p~~>~q=~p*~q
D: 0  1  1  0 =0 =1 |~Yd=1<=>~p=1 i  q=1 |~Yd=~p~~> q=~p* q
   1  2  3  4  5  6   a       b      c     d   e    f  g  h


Definicja dziedziny matematycznej D:
Dziedzina matematyczna to suma logiczna wszystkich możliwych funkcji cząstkowych
D = Y+~Y
Gdzie:
Y = Ya+Yb+Yc
Y = A: p*q + B: p*~q + C:~p*~q
Zaś:
~Y=~Yd
~Y = D: ~p*q
Stąd suma logiczna wszystkich możliwych funkcji cząstkowych to:
D = Y+~Y = Ya+~Yb+Yc+Yd
D = A: p*q + B: p*~q + C: ~p*~q + D: ~p*q
Minimalizujemy:
Y = p*q + p*~q + ~p*~q + ~p*q
Y = p*(q+~q)+~p*(~q+q)
Y = p+~p=1

Zauważmy, że jeśli znamy dowolną funkcję logiczną Y to automatycznie znamy zaprzeczenie tej funkcji ~Y (albo odwrotnie).
W każdym przypadku otrzymamy równanie dziedziny matematycznej D:
D = Y+~Y =1

W ogólnym przypadku w definicji dziedziny matematycznej D interesuje nas która część dziedziny matematycznej należy do funkcji logicznej Y a która do ~Y.
Matematycznie dla dwóch zmiennych p i q otrzymamy 16 różnych funkcji logicznych Y, definiujących 16 różnych definicji spójników logicznych.
Definicje tych spójników i ich szczegółowy zapis znajdziemy w punkcie 2.11.

Właściwości dziedziny matematycznej D:
D = A: p*q + B: p*~q + C: ~p*~q + D: ~p*q
Wszystkie funkcje cząstkowe A, B, C i D dziedziny matematycznej D są wzajemnie rozłączne i uzupełniają się do dziedziny
1.
Wszystkie funkcje logiczne cząstkowe A, B, C i D są wzajemnie rozłączne.
Dowód:
A*B = (p*q)*(p*~q) =[] =0
A*C= (p*q)*(~p*~q) =[] =0
A*D=(p*q)*(~p*q) =[] =0
B*C=(p*~q)*(~p*~q) =[] =0
B*D = (p*~q)*(~p*q) =[] =0
C*D = (~p*~q)*(~p*q) =[] =0
cnd
2.
Funkcje cząstkowe A, B, C i D uzupełniają się wzajemnie do dziedziny matematycznej D:
D = A: p*q + B: p*~q + C: ~p*~q + D: ~p*q
Minimalizujemy:
Y = p*q + p*~q + ~p*~q + ~p*q
Y = p*(q+~q)+~p*(~q+q)
Y = p+~p=1
cnd

Definicja dziedziny fizycznej DF:
Dziedzina fizyczna DF to część dziedziny matematycznej D opisana funkcją logiczną Y.

Nasz przykład:
Y = (p~>q)
Y = Ya+Yb+Yc
Y = A: p*q + B: p*~q + C: ~p*~q
co w logice jedynek oznacza:
Y=1 <=> A: p=1 i q=1 lub B: p=1 i ~q=1 lub C: ~p=1 i ~q=1
Po minimalizacji mamy:
Y = (p~>q) = p+~q

Oczywiście znając funkcję logiczną Y znamy też funkcję logiczną ~Y która powstaje przez dwustronną negację funkcji Y:
~Y=~(p~>q)
~Y = ~(p+~q) = ~p*q - na mocy prawa De Morgana
czyli:
~Y = D: ~p*q
co w logice jedynek oznacza:
~Y=1 <=> D: ~p=1 i q=1

Domyślny punkt odniesienia w dziedzinie fizycznej DF w teorii zdarzeń:
W logice matematycznej w świecie martwym, domyślnym punktem odniesienia jest funkcja logiczna Y definiująca zdarzenia możliwe ~~> uzupełniające się wzajemnie do dziedziny fizycznej DF.

Domyślny punkt odniesienia w dziedzinie fizycznej DF w teorii zbiorów:
W logice matematycznej w świecie martwym, domyślnym punktem odniesienia jest funkcja logiczna Y definiująca zbiory niepuste i rozłączne uzupełniające się wzajemnie do dziedziny fizycznej DF.

3.4.2 Operator implikacji odwrotnej p||~>q w zdarzeniach możliwych ~~>

Zacznijmy od:
Kod:

Zero-jedynkowa definicja warunku koniecznego ~>
   p  q Y=(p~>q)
A: 1~>1  =1
B: 1~>0  =1
C: 0~>0  =1
D: 0~>1  =0


Definicja pełnej tabeli zero-jedynkowej:
Pełna tabela zero-jedynkowa układu logicznego (bramka logiczna) to zero-jedynkowy zapis wszystkich sygnałów wejściowych w postaci niezanegowanej (p, q, r..) i zanegowanej (~p, ~q, ~r..) oraz zapis wyjścia Y również w postaci niezanegowanej (Y) i zanegowanej (~Y).

Opis dowolnej tabeli zero-jedynkowej równaniami algebry Boole’a:
W logice jedynek w pełnej tabeli zero-jedynkowej opisujemy wyłącznie jedynki gdzie w poziomie używamy spójnika „i”(*) zaś w pionie spójnika „lub”(+)
Logika jedynek prowadzi do równań alternatywno-koniunkcyjnych zgodnych z naturalną logika matematyczną człowieka, co oznacza, że będą one rozumiane w języku potocznym przez wszystkich ludzi, od 5-cio latka poczynając.

Zastosujmy logikę jedynek do naszej tabeli warunku koniecznego Y = (p~>q):
Kod:

T2
Wyprowadzenie równań algebry Boole’a dla funkcji logicznych Y i ~Y
Gdzie:
Y = (p~>q) - zero-jedynkowa definicja warunku koniecznego ~>
Pełna definicja     |Co w logice jedynek |Równania
zero-jedynkowa Y    |oznacza             |cząstkowe
                    |                    |
   p  q ~p ~q  Y ~Y |                    |
A: 1  1  0  0 =1 =0 | Ya=1<=> p=1 i  q=1 | Ya= p~~> q= p* q
B: 1  0  0  1 =1 =0 | Yb=1<=> p=1 i ~q=1 | Yb= p~~>~q= p*~q
C: 0  0  1  1 =1 =0 | Yc=1<=>~p=1 i ~q=1 | Yc=~p~~>~q=~p*~q
D: 0  1  1  0 =0 =1 |~Yd=1<=>~p=1 i  q=1 |~Yd=~p~~> q=~p* q
   1  2  3  4  5  6   a       b      c     d   e    f  g  h

W teorii zdarzeń spójnik „i”(*) definiuje zdarzenia możliwe ~~>:
p~~>q=p*q =1 - wtedy i tylko wtedy gdy możliwe jest jednoczesne zajście zdarzeń p i q
Inaczej:
p~~>q=p*q=0
Nic więcej spójnik „i”(*) nie może definiować na mocy jego definicji, jak wyżej.

Z tabeli równań cząstkowych odczytujemy:
Y = Ya+Yb+Yc
Po rozwinięciu mamy funkcję logiczną Y definiującą sumę logiczną zdarzeń rozłącznych uzupełniających się do dziedziny fizycznej DF:
1.
Kiedy zajdzie Y (Y=1)?
Y = A: p*q + B: p*~q + C: ~p*~q
co w logice jedynek oznacza:
Y=1 <=> A: p=1 i q=1 lub B: p=1 i ~q=1 lub C: ~p=1 i ~q=1

Kiedy zajdzie ~Y?
Z tabeli równań cząstkowych odczytujemy:
~Y=~Yd
Po rozwinięciu mamy funkcję logiczną ~Y definiującą zdarzenie niemożliwe (~Y=1):
2.
Kiedy zajdzie ~Y
~Y = D: ~p*q
co w logice jedynek oznacza:
~Y=1 <=> D: ~p=1 i q=1

Jak widzimy, logika jedynek prowadzi do równań alternatywno-koniunkcyjnych (tu Y) lub postaci koniunkcyjnej (tu ~Y) doskonale rozumianych przez człowieka, od 5-cio latka poczynając.

Definicja operatora implikacji odwrotnej p||~>q wyrażona spójnikami „i”(*) i „lub”(+) to odpowiedź na dwa pytania 1 i 2:

1.
Które zdarzenia w funkcji logicznej Y=(p~>q) są możliwe ~~> (Y=1)?
Innymi słowy:
Kiedy warunek konieczny p~>q będzie spełniony (p~>q)=1


Z tabeli równań cząstkowych odczytujemy:
Y = Ya+Yb+Yc
Po rozwinięciu mamy funkcję logiczną Y definiującą sumę logiczną zdarzeń rozłącznych uzupełniających się do dziedziny fizycznej DF:
Y = A: p*q + B: p*~q + C: ~p*~q
co w logice jedynek oznacza:
Y=1 <=> A: p=1 i q=1 lub B: p=1 i ~q=1 lub C: ~p=1 i ~q=1

Czytamy:
Zdarzenia możliwe (Y=1) to:
Ya=A: p*q =1*1=1 - możliwe jest (Ya=1) zdarzenie: zajdzie p (p=1) i zajdzie q (q=1)
LUB
Yb=B: p*~q =1*1 =1 - możliwe jest (Yb=1) zdarzenie: zajdzie p (p=1) i zajdzie ~q (~q=1)
LUB
Yc=C: ~p*~q=1*1=1 - możliwe jest (Yc=1) zdarzenie: zajdzie ~p (~p=1) i zajdzie ~q (~q=1)
Gdzie:
Funkcja logiczna Y jest sumą logiczną funkcji cząstkowych:
Y = Ya+Yb+Yc

2.
Które zdarzenia w funkcji logicznej Y=(p~>q) nie są możliwe ~~> (~Y=1)?
Innymi słowy:
Kiedy warunek konieczny p~>q nie będzie spełniony ~(p~>q)=1


Z tabeli równań cząstkowych odczytujemy:
~Y=~Yd
Po rozwinięciu mamy funkcję logiczną ~Y definiującą zdarzenie niemożliwe (~Y=1):
~Y = D: ~p*q
co w logice jedynek oznacza:
~Y=1 <=> D: ~p=1 i q=1

Czytamy:
Zdarzenia niemożliwe (~Y=1) to:
~Y = D: ~p*q =1*1 =1 - niemożliwe jest (~Y=1) zdarzenie: zajdzie ~p (~p=1) i zajdzie q (q=1)
Innymi słowy:
Prawdą jest (=1), że nie jest możliwe (~Y) zdarzenie: zajdzie ~p (~p=1) i zajdzie q (q=1)

Prawo Prosiaczka:
(~Y=1) = (Y=0)
stąd mamy zdanie tożsame:
Y=0 <=> D: ~p=1 i q=1
Czytamy:
Fałszem jest (=0) że możliwe jest zdarzenie (Y): zajdzie ~p (~p=1) i zajdzie q (q=1)

Znaczenie symboli:
Y - jest możliwe
~Y - nie jest (~) możliwe

3.4.3 Operator implikacji odwrotnej p||~>q w elementach wspólnych zbiorów ~~>

Kod:

Zero-jedynkowa definicja warunku koniecznego ~>
   p  q Y=(p~>q)
A: 1~>1  =1
B: 1~>0  =1
C: 0~>0  =1
D: 0~>1  =0

Definicja pełnej tabeli zero-jedynkowej:
Pełna tabela zero-jedynkowa układu logicznego (bramka logiczna) to zero-jedynkowy zapis wszystkich sygnałów wejściowych w postaci niezanegowanej (p, q, r..) i zanegowanej (~p, ~q, ~r..) oraz zapis wyjścia Y również w postaci niezanegowanej (Y) i zanegowanej (~Y).

Opis dowolnej tabeli zero-jedynkowej równaniami algebry Boole’a:
W logice jedynek w pełnej tabeli zero-jedynkowej opisujemy wyłącznie jedynki gdzie w poziomie używamy spójnika „i”(*) zaś w pionie spójnika „lub”(+)
Logika jedynek prowadzi do równań alternatywno-koniunkcyjnych zgodnych z naturalną logika matematyczną człowieka, co oznacza, że będą one rozumiane w języku potocznym przez wszystkich ludzi, od 5-cio latka poczynając.

Zastosujmy logikę jedynek do naszej tabeli warunku koniecznego Y = (p~>q):
Kod:

T2
Wyprowadzenie równań algebry Boole’a dla funkcji logicznych Y i ~Y
Gdzie:
Y = (p~>q) - zero-jedynkowa definicja warunku koniecznego ~>
Pełna definicja     |Co w logice jedynek |Równania
zero-jedynkowa Y    |oznacza             |cząstkowe
                    |                    |
   p  q ~p ~q  Y ~Y |                    |
A: 1  1  0  0 =1 =0 | Ya=1<=> p=1 i  q=1 | Ya= p~~> q= p* q
B: 1  0  0  1 =1 =0 | Yb=1<=> p=1 i ~q=1 | Yb= p~~>~q= p*~q
C: 0  0  1  1 =1 =0 | Yc=1<=>~p=1 i ~q=1 | Yc=~p~~>~q=~p*~q
D: 0  1  1  0 =0 =1 |~Yd=1<=>~p=1 i  q=1 |~Yd=~p~~> q=~p* q
   1  2  3  4  5  6   a       b      c     d   e    f  g  h

W algebrze Kubusia zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

W teorii zbiorów spójnik „i”(*) definiuje element wspólny zbiorów ~~>:
p~~>q = p*q=1 - wtedy i tylko wtedy gdy istnieje element wspólny zbiorów p i q
Inaczej:
p~~>q = p*q =0
Nic więcej spójnik „i”(*) nie może definiować na mocy jego definicji, jak wyżej.

Uwaga:
Spójniki logiczne „i”(*) i „lub”(+) z definicji nie są w stanie definiować takich pojęć jak podzbiór => czy nadzbiór ~>. Spójnik „i”(*) w zbiorach może co najwyżej definiować istnienie, bądź nie istnienie elementu wspólnego zbiorów ~~>.

Z tabeli równań cząstkowych odczytujemy:
Y = Ya+Yb+Yc
Po rozwinięciu mamy funkcję logiczną Y definiującą sumę logiczną zbiorów niepustych i rozłącznych uzupełniających się wzajemnie do dziedziny fizycznej D:
Y = A: p*q + B: p*~q + C: ~p*~q
co w logice jedynek oznacza:
Y=1 <=> A: p=1 i q=1 lub B: p=1 i ~q=1 lub C: ~p=1 i ~q=1

Kiedy zajdzie ~Y?
Z tabeli równań cząstkowych odczytujemy:
~Y=~Yd
Po rozwinięciu mamy funkcję logiczną ~Y definiującą zdarzenie niemożliwe (~Y=1):
~Y = D: ~p*q
co w logice jedynek oznacza:
~Y=1 <=> D: ~p=1 i q=1
Prawo Prosiaczka:
(~Y=1) = (Y=0)
stąd zapis tożsamy:
Y=0 <=> B: p=1 i ~q=1

Jak widzimy, logika jedynek prowadzi do równań alternatywno-koniunkcyjnych (tu Y) lub postaci koniunkcyjnej (tu ~Y) doskonale rozumianych przez człowieka, od 5-cio latka poczynając.

Operator implikacji odwrotnej p||~>q w elementach wspólnych zbiorów ~~> to odpowiedź na dwa pytania 1 i 2:

1.
Które zbiory w funkcji logicznej Y=(p~>q) są mają element wspólny ~~> (Y=1)?

Odpowiedź:
Y = A: p*q + B: p*~q + C: ~p*~q
co w logice jedynek oznacza:
Y=1 <=> A: p=1 i q=1 lub B: p=1 i ~q=1 lub C: ~p=1 i ~q=1
Czytamy:
Zbiory mające element wspólny ~~> (Y=1) to:
Ya = A: p*q =1*1=1 - istnieje (Ya=1) element wspólny ~~> zbiorów: p (p=1) i q (q=1)
LUB
Yb = B: p*~q =1*1 =1 - istnieje (Yb=1) element wspólny ~~> zbiorów: p (p=1) i ~q (~q=1)
LUB
Yc=C: ~p*~q=1*1=1 - istnieje (Yc=1) element wspólny ~~> zbiorów: ~p (p=1) i ~q (~q=1)
Gdzie:
Funkcja logiczna Y jest sumą logiczną funkcji cząstkowych:
Y = Ya+Yb+Yc

2.
Które zbiory w funkcji logicznej Y=(p~>q) są nie mają elementu wspólnego ~~> (~Y=1)?

Odpowiedź:
~Y = D: ~p*q
co w logice jedynek oznacza:
~Y=1 <=> D: ~p=1 i q=1
Czytamy:
Zbiory nie mające elementu wspólnego ~~> (~Y=1) to:
~Y = D: ~p*q =1*1=1 - nie Istnieje (~Y=1) element wspólny ~~> zbiorów: ~p (~p=1) i q (q=1)
Innymi słowy:
Prawdą jest (=1), że nie mają elementu wspólnego (~Y) zbiory: ~p (~p=1) i q (q=1)

Prawo Prosiaczka:
(~Y=1) = (Y=0)
stąd mamy zdanie tożsame:
Y=0 <=> D: ~p=1 i q=1
Czytamy:
Fałszem jest (=0) że mają element wspólny (Y) zbiory: ~p (~p=1) i q (q=1)

Znaczenie symboli:
Y - zbiory mają element wspólny ~~>
~Y - zbiory nie mają (~) elementu wspólnego ~~>
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 35963
Przeczytał: 15 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Nie 15:12, 11 Kwi 2021    Temat postu:

Algebra Kubusia - wykład rozszerzony
3.5 Diagram operatora implikacji odwrotnej p||~>q w zbiorach


Spis treści
3.5 Diagram operatora implikacji odwrotnej p||~>q w zbiorach 1
3.5.1 Odtworzenie definicji operatora implikacji odwrotnej p||~>q z definicji ~~> 3
3.5.2 Najmniejsza możliwa liczba elementów w operatorze p||~>q 9



3.5 Diagram operatora implikacji odwrotnej p||~>q w zbiorach

W algebrze Kubusia w zbiorach zachodzi:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

Definicja implikacji odwrotnej p|~>q w zbiorach:
Zbiór p jest nadzbiorem ~> zbioru q i nie jest tożsamy ze zbiorem q
Dziedzina musi być szersza do sumy logicznej zbiorów p+q bowiem wtedy i tylko wtedy wszystkie pojęcia p, ~p, q i ~q będą rozpoznawalne.
A1: p=>q =0 - zbiór p nie jest (=0) podzbiorem => zbioru q (z definicji)
B1: p~>q =1 - zbiór p jest nadzbiorem ~> zbioru q (z definicji)
p|~>q = ~(A1: p=>q)*(B1: p~>q) = ~(0)*1 = 1*1 =1

Dlaczego dziedzina musi być szersza od sumy logicznej zbiorów p i q?
Zobaczmy to na przykładzie:
B1.
Jeśli dowolna liczba jest podzielna przez 2 to może ~> być podzielna przez 8
P2~>P8 =1
Podzielność dowolnej liczby przez 2 jest (=1) warunkiem koniecznym ~> dla jej podzielności przez 8 wtedy i tylko wtedy gdy zbiór P2=[2,4,6,8..] jest nadzbiorem ~> zbioru P8=[8,16,24..]
Zbiór wszystkich liczb parzystych P2=[2,4,6,8..] to nadzbiór ~> zbioru P8=[8,16,24], stąd prawdziwość zdania B1.
W zdaniu B1 poprzednik p mówi o zbiorze P2, zaś następnik q o zbiorze P8
P2=[2,4,6,8..] - zbiór wszystkich liczb parzystych
P8=[8,16,24..] - zbiór liczb podzielnych przez 8
Przyjmijmy dziedzinę minimalną:
LN=[1,2,3,4,5,6,7,8,9..]
Stąd wyznaczamy zbiory zaprzeczone rozumiane jako uzupełnienia do dziedziny:
~P2=[LN-P2]=[1,3,5,7,9..] - zbiór liczb niepodzielnych przez 2 (zbiór wszystkich liczb nieparzystych)
~P8=[LN-P8]=[1,2,3,4,5,6,7..9..] - zbiór liczb niepodzielnych przez 8
Definicja dziedziny dla P2 i ~P2:
P2+~P2=LN =1 - zbiór ~P2 jest uzupełnieniem do dziedziny dla zbioru P2
P2*~P2 =[] =0 - zbiory rozłączne
Definicja dziedziny dla P8 i ~P8:
P8+~P8 =LN =1 - zbiór ~P8 jest uzupełnieniem do dziedziny dla zbioru P8
P8*~P8=[] =0 - zbiory rozłączne

Wnioski:
1.
W dowolnym zdaniu warunkowym „Jeśli p to q” dziedzina musi być wspólna dla p i q
2.
Dziedzina musi być szersza od sumy zbiorów p+q
Nasz przykład:
p+q = P2+P8 = P2 - bo P2=[2,4,6,8..] jest nadzbiorem ~> zbioru P8=[8,16,24..]
Przyjęta dziedzina:
LN=[1,2,3,4,5,6,7,8,9..]
Jest szersza od sumy logicznej zbiorów:
P2+P8=P2=[2,4,6,8..]
zatem przyjęta dziedzina jest matematycznie poprawna.
3.
Zobaczmy co się stanie jak dla naszego zdania B1 przyjmiemy za dziedzinę zbiór tożsamy z sumą zbiorów P2+P8=P2:
D=P2=[2,4,6,8..]
Wyznaczamy zbiór ~P2:
~P2 = [D-P2] = P2-P2]=[] =0
Jak widzimy pojęcie ~P2 jest nierozpoznawalne, dlatego dla zdania B1 musimy przyjąć dziedzinę szerszą od sumy zbiorów P2+P8=P2, inaczej popełniamy błąd nierozpoznawalności analizowanego pojęcia (tu ~P2)
Kod:

D2
Diagram operatora implikacji odwrotnej p||~>q w zbiorach

----------------------------------------------------------------------
|     q                     |                    ~q                  |
|---------------------------|----------------------------------------|
|     p                                      |   ~p                  |
|--------------------------------------------|-----------------------|
|                           | p~~>~q = p*~q  | ~p~~>q = ~p*q =[]     |
----------------------------------------------------------------------
| Dziedzina: D =p*q+p*~q+~p*~q (suma logiczna zbiorów niepustych)    |
|--------------------------------------------------------------------|

Operator implikacji odwrotnej p||~>q w zapisach formalnych (ogólnych)
----------------------------------------------------------------------
Analiza        |Po zamianie    |Komentarz do analizy podstawowej
podstawowa     |p i q          |na podstawie diagramu D2
A1:  p=> q =0  |A3:  q~> p =0  |A1   p=> q =0 - p nie jest podzbiorem => q 
A1’: p~~>~q=1  |A1’:~q~~>p =1  |A1’: p~~>~q=1 - p*~q zbiór niepusty
A2: ~p~>~q =0  |A4: ~q=>~p =0  |A2: ~p~>~q =0 - ~p nie jest nadzbiorem~> ~q
B2’:~p~~>q =0  |B2’: q~~>~p=0  |B2’ ~p~~>q =0 - ~p i q zbiory rozłączne
|
B1:  p~> q =1  |B3:  q=> p =1  |B1:  p~> q =1 - p jest nadzbiorem~> q
A1’  p~~>~q=1  |A1’:~q~~>p =1  |A1’: p~~>~q=1 - p*~q zbiór rozłączny
B2: ~p=>~q =1  |B4: ~q~>~p =1  |B2: ~p=>~q =1 - ~p jest podzbiorem => ~q
B2’:~p~~>q =0  |B2’: q~~>~p=0  |B2’:~p~~>q =0 - ~p i q zbiory rozłączne
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
Spójnik p~~>q=p*q jest przemienny.

Operator implikacji odwrotnej p||~>q to odpowiedź na dwa pytania 1 i 2:

1.
Co może się wydarzyć jeśli zajdzie p?

Z diagramu D2 odczytujemy::
Jeśli zajdzie p to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” - mówią o tym zdania B1 i A1’

B1.
Jeśli zajdzie p (p=1) to może ~> zajść q (q=1)
p~>q =1
Zbiory:
Zajście p jest warunkiem koniecznym ~> dla zajścia q wtedy i tylko wtedy gdy zbiór p jest nadzbiorem ~> zbioru q, co widać na diagramie D2.

LUB

Kontrprzykład A1’ dla fałszywego warunku wystarczającego => A1 musi być prawdą, stąd:
A1’.
Jeśli zajdzie p (p=1) to może ~~> zajść ~q (~q=1)
p~~>~q = p*~q =1
Zbiory:
Istnieje (=1) wspólny element ~~> zbiorów p i ~q
Widać to doskonale na diagramie D2

2.
Co może się wydarzyć jeśli zajdzie ~p?

Prawo Kubusia:
B1: p~>q = B2:~p=>~q

Z diagramu D2 odczytujemy:
Jeśli zajdzie ~p to mamy gwarancję matematyczną => iż zajdzie ~q - mówi o tym zdanie B2

B2.
Jeśli zajdzie ~p (~p=1) to na 100% => zajdzie ~q (~q=1)
~p=>~q =1
Zbiory:
Zajście ~p jest warunkiem wystarczającym => dla zajścia ~q wtedy i tylko wtedy gdy zbiór ~p jest podzbiorem => zbioru ~q, co widać na diagramie D2

Z prawdziwości warunku wystarczającego => B2 wynika fałszywość kontrprzykładu B2’ (i odwrotnie)
B2’
Jeśli zajdzie ~p (~p=1) to może ~~> zajść q (q=1)
p~~>~q = p*~q =0
Zbiory:
Nie istnieje (=0) wspólny element ~~> zbiorów ~p i q
Potwierdza to diagram D2.

3.5.1 Odtworzenie definicji operatora implikacji odwrotnej p||~>q z definicji ~~>

Weźmy diagram implikacji prostej w odwrotnej p||~>q w zbiorach wyżej zapisany.
Kod:

D2
Diagram operatora implikacji odwrotnej p||~>q w zbiorach

----------------------------------------------------------------------
|     q                     |                    ~q                  |
|---------------------------|----------------------------------------|
|     p                                      |   ~p                  |
|--------------------------------------------|-----------------------|
|                           | p~~>~q = p*~q  | ~p~~>q = ~p*q =[]     |
----------------------------------------------------------------------
| Dziedzina: D =p*q+p*~q+~p*~q (suma logiczna zbiorów niepustych)    |
|--------------------------------------------------------------------|
|                                                                    |
|Operator implikacji odwrotnej p||~>q w spójnikach „i”(*) i „lub”(+) |
----------------------------------------------------------------------
|    Ya=p~~>q=p*q           | Yb=p~~>~q=p*~q | Yc=~p~~>~q=~p*~q      |
----------------------------------------------------------------------
|                            ~Yd=~p~~>q=~p*q (zbiór pusty!)          |
----------------------------------------------------------------------

Spójniki iloczynu logicznego zbiorów „i”(*) oraz sumy logicznej zbiorów „lub”(+) z definicji nie są w stanie opisać relacji podzbioru => czy też nadzbioru ~> między dowolnymi dwoma zbiorami p i q.

Wniosek:
W opisie dowolnego diagramu w zbiorach wyrażonego spójnikami „i”(*) i „lub”(+) chodzi tylko i wyłącznie o spełnienie lub nie spełnienie definicji elementu wspólnego zbiorów ~~>.

Definicja elementu wspólnego ~~> zbiorów:
Jeśli p to q
p~~>q =p*q =1
Definicja elementu wspólnego zbiorów ~~> jest spełniona (=1) wtedy i tylko wtedy gdy zbiory p i q mają co najmniej jeden element wspólny
Inaczej:
p~~>q= p*q= [] =0 - zbiory p i q są rozłączne, nie mają (=0) elementu wspólnego ~~>

Decydujący w powyższej definicji jest znaczek elementu wspólnego zbiorów ~~>, dlatego dopuszczalny jest zapis skrócony p~~>q.
W operacji iloczynu logicznego zbiorów p*q poszukujemy tu jednego wspólnego elementu, nie wyznaczamy kompletnego zbioru p*q.

Stąd mamy tabelę prawdy operatora implikacji odwrotnej p||~>q definiowaną elementami wspólnymi zbiorów ~~>:
Kod:

T1.
Operator p||~>q       |
w spójnikach          |Co w logice
elementu wspólnego ~~>|jedynek oznacza
                 Y ~Y |                 Y   Z diagramu D1 odczytujemy:
A: p~~>q = p* q =1  0 |( p=1)~~>( q=1) =1 - istnieje el. wspólny p i q
B: p~~>~q= p*~q =1  0 |( p=1)~~>(~q=1) =1 - istnieje el. wspólny p i ~q
C:~p~~>~q=~p*~q =1  0 |(~p=1)~~>(~q=1) =1 - istnieje el. wspólny ~p i ~q
D:~p~~> q=~p* q =0  1 |(~p=1)~~>( q=1) =0 - nie istnieje el. wspólny ~p i q

Między funkcjami logicznymi Y i ~Y zachodzi relacja spójnika „albo”($).
Dowód:
Definicja spójnika „albo”($)
p$q =p*~q + ~p*q
Podstawmy:
p=Y
q=~Y
stąd:
Y$~Y = Y*~(~Y) + ~Y*(~Y) = Y*Y + ~Y*~Y =Y+~Y =1

Oczywiście relacja równoważności p<=>q definiująca tożsamość zbiorów/pojęć p=q musi tu być fałszem.
Dowód:
Definicja równoważności p<=>q wyrażona spójnikami „i”(*) i „lub”(+):
p<=>q = p*q + ~p*~q
Podstawmy:
p=Y
q=~Y
stąd:
Y<=>~Y = Y*(~Y) + ~Y*~(~Y) = Y*~Y + ~Y*Y = []+[] =0
cnd

Zapiszmy powyższą tabelę wyłącznie w spójnikach elementu wspólnego zbiorów ~~> zmieniając indeksowanie linii do postaci zgodnej z teorią wykładaną w algebrze Kubusia - matematycznie ten ruch jest bez znaczenia.
Kod:

T1.
Operator implikacji odwrotnej p||~>q
definiowany elementem wspólnym zbiorów ~~>
             Y   Analiza dla punktu odniesienia Y
B1:  p~~>q  =1 - istnieje (=1) el. wspólny zbiorów p i q
A1’: p~~>~q =1 - istnieje (=0) el. wspólny zbiorów p i ~q
B2: ~p~~>~q =1 - istnieje (=1) el. wspólny zbiorów ~p i ~q
A2’:~p~~> q =0 - nie istnieje (=1) el. wspólny zbiorów ~p i q

Kluczowym punktem zaczepienia do przejścia z tabelą T1 do tabeli tożsamej T2 opisującej operator implikacji odwrotnej p||~>q w warunkach wystarczających => i koniecznych ~> będzie definicja kontrprzykładu w zbiorach działająca wyłącznie w obszarze warunku wystarczającego =>.

Dodatkowo potrzebne nam będą prawa Kubusia:
B1: p~>q = B2: ~p=>~q
##
A1: p=>q = A2: ~p~>~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
A1: p=>q=~p+q ## B1: p~>q=p+~q

Znaczenie tożsamości logicznej „=” na przykładzie prawa Kubusia:
B1: p~>q = B2: ~p=>~q
Prawdziwość dowolnej strony tożsamości logicznej „=” wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej „=” wymusza fałszywość drugiej strony.

Z powyższego wynika, że mając udowodnioną prawdziwość warunku koniecznego ~> B1:
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
nie musimy udowadniać prawdziwości warunku wystarczającego => B2:
B2: ~p=>~q =1 - zajście ~p jest (=1) wystarczające => dla zajścia ~q
bowiem gwarantuje nam to prawo Kubusia, prawo rachunku zero-jedynkowego:
B1: p~>q = B2: ~p=>~q

W algebrze Kubusia zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

Definicja kontrprzykładu w zbiorach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane elementem wspólnym zbiorów p~~>~q=p*~q

Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)

Analiza tabeli prawdy T1 - część I
1.
Fałszywość kontrprzykładu B2’:
B2’: ~p~~>q=0
wymusza prawdziwość warunku wystarczającego => B2 (i odwrotnie):
B2: ~p=>~q =1 - zbiór ~p jest podzbiorem => zbioru ~q
2.
Prawo Kubusia:
B2: ~p=>~q = B1: p~>q
Stąd:
Prawdziwość warunku wystarczającego B2:
B2: ~p=>~q =1
wymusza prawdziwość warunku koniecznego ~> B1 (i odwrotnie):
B1: p~>q =1 - zbiór p jest nadzbiorem ~> zbioru q

Nanieśmy naszą analizę do tabeli T2.
Kod:

T2.
Operator implikacji odwrotnej p||~>q
w warunkach wystarczających => i koniecznych ~>
             Y   Analiza dla punktu odniesienia Y
B1:  p~>q   =1 - zbiór p jest (=1) nadzbiorem ~> q
A1’: p~~>~q =1 - istnieje (=0) el. wspólny zbiorów p i ~q
B2: ~p=>~q  =1 - zbiór ~p jest (=1) podzbiorem => zbioru ~q
B2’:~p~~> q =0 - kontrprzykład dla B2’ musi być fałszem

Analiza tabeli prawdy T1 - część II
3.
Prawdziwość kontrprzykładu A1’:
A1’: p~~>~q =1
wymusza fałszywość warunku wystarczającego A1 (i odwrotnie):
A1: p=>q =0
4.
Prawo Kubusia:
A1: p=>q = A2: ~p~>~q
stąd:
Fałszywość warunku wystarczającego A1:
A1: p=>q =0
wymusza fałszywość warunku koniecznego ~> A2 (i odwrotnie):
A2: ~p~>~q =0

Nanieśmy naszą analizę do tabeli T2
Kod:

T3.
Operator implikacji odwrotnej p||~>q
w warunkach wystarczających => i koniecznych ~>
B1:  p~>q   =1 | A1: p=>q =0
A1’: p~~>~q =1
B2: ~p=>~q  =1 | A2:~p~>~q =0
B2’:~p~~> q =0

Stąd mamy:
Linia B1A1:
Podstawowa definicja implikacji odwrotnej p||~>q w zbiorach:
Zbiór p jest nadzbiorem ~> zbioru q i nie jest tożsamy ze zbiorem q
Dziedzina musi być szersza do sumy logicznej zbiorów p+q bowiem wtedy i tylko wtedy wszystkie pojęcia p, ~p, q i ~q będą rozpoznawalne.
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia w
wtedy i tylko wtedy gdy zbiór p nie jest podzbiorem => zbioru q
B1: p~>q =1 - zbiór p jest (=1) konieczne ~> dla zajścia q
wtedy i tylko wtedy gdy zbiór p jest nadzbiorem ~> zbioru q
Stąd:
p|~>q = ~(A1: p=>q)*(B1: p~>q) = ~(0)*1 = 1*1 =1

Uwaga:
W implikacji odwrotnej p|~>q zbiory p i q nie mogą być tożsame bo …

Definicja tożsamości zbiorów:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy zbiór p jest jednocześnie podzbiorem => i nadzbiorem ~> dla zbioru q
p=q <=> (A1: p=>q)*(B1: p~>q) =1*1 =1
Dowód:
Dla zbiorów tożsamych p=q mamy:
A1: p=>q =1 - każdy zbiór jest podzbiorem => siebie samego
B1: p~>q =1 - każdy zbiór jest nadzbiorem ~> siebie samego
Czyli:
Dla zbiorów tożsamych p=q jest:
A1: p=>q =1
co jest sprzeczne z definicją implikacji odwrotnej p|~>q gdzie musi być spełnione:
A1: p=>q =0 - zbiór p nie jest (=0) podzbiorem => zbioru q
cnd

Stąd mamy:
Podstawowa definicja implikacji odwrotnej p|~>q w zbiorach:
Zbiór p jest nadzbiorem ~> zbioru q i nie jest tożsamy ze zbiorem q
A1: p=>q =0 - zbiór p jest nie jest (=0) podzbiorem => zbioru q (prawdziwe dla p##q)
B1: p~>q =1 - zbiór p jest (=1) nadzbiorem ~> zbioru q
p|~>q = ~(A1: p=>q)*(B1: p~>q) = ~(0)*1 = 1*1 =1
Gdzie:
p##q - zbiory p i q różne ## na mocy definicji

Dodatkowy warunek jaki musi tu być spełniony brzmi:
Dziedzina D musi być szersza od sumy zbiorów p+q
Dowód:
B1: p~>q =1 - zbiór p jest (=1) nadzbiorem ~> zbioru q

Przyjmijmy za dziedzinę zbiór p
D=p
Obliczamy zbiór ~p rozumiany jako uzupełnienie do dziedziny D dla zbioru p:
~p=[D-p] = [p-p} =[] =0
Wniosek:
Dziedzina musi być szersza od sumy zbiorów p+q inaczej zbiór wejściowy ~p jest nierozpoznawalny, jest zbiorem pustym. Nie możemy operować na czymkolwiek czego definicji nie znamy.
cnd

Definicja zbioru pustego [] w algebrze Kubusia - punkt 3.0:
Zbiór pusty [] to zbiór zawierający zero pojęć zrozumiałych dla człowieka
Czyli:
[] = [agstd, sdked …] - wyłącznie pojęcia niezrozumiałe dla człowieka (jeszcze niezdefiniowane)

Zdefiniowawszy implikację odwrotną p|~>q w zbiorach jako:
A1: p=>q =0 - zbiór p jest nie jest (=0) podzbiorem => zbioru q (prawdziwe dla p##q)
B1: p~>q =1 - zbiór p jest (=1) nadzbiorem ~> zbioru q
możemy ją podstawić matematycznych związków warunku wystarczającego => i koniecznego ~> w implikacji odwrotnej p|~>q.
Kod:

T2
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji odwrotnej p|~>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q=0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q=1 - zajście p jest (=1) konieczne ~> dla zajścia q
A1B1: p|~>q=~(A1: p=>q)*(B1: p~>q)=~(0)*1=1*1=1
       A1B1:         A2B2:        |     A3B3:         A4B4:
A:  1: p=>q  =0 = 2:~p~>~q=0     [=] 3: q~>p  =0 = 4:~q=>~p =0
A’: 1: p~~>~q=1 =                [=]             = 4:~q~~>p =1                   
       ##            ##           |     ##            ##
B:  1: p~>q  =1 = 2:~p=>~q=1     [=] 3: q=>p  =1 = 4:~q~>~p =1
B’:             = 2:~p~~>q=0     [=] 3: q~~>~p=0
---------------------------------------------------------------
IP: p|~>q=p*~q  = ~p|=>~q=p*~q   [=]  q|=>p=~q*p = ~q|~>~p=~q*p
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
A1: p=>q=0 - fałszywy A1 wymusza prawdziwy kontrprzykład A1’ (i odwrotnie)
B2:~p=>~q=1 - prawdziwy B2 wymusza fałszywy kontrprzykład B2’ (i odwrotnie)
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Stąd mamy to, co już doskonale znamy.

Definicja operatora implikacji odwrotnej p||~>q:
Operator implikacji odwrotnej p||~>q to odpowiedź na dwa pytania 1 i 2:

1.
Co może się wydarzyć jeśli zajdzie p?

Odpowiedź na to pytanie mamy w kolumnie A1B1:
Jeśli zajdzie p to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” - mówią o tym zdania B1 i A1’

B1
Jeśli zajdzie p (p=1) to może ~> zajść q (q=1)
p~>q =1
Zajście p jest warunkiem koniecznym ~> dla zajścia q wtedy i tylko wtedy gdy zbiór p jest nadzbiorem ~> zbioru q
Na mocy prawa śfinii zdanie B1 musimy przyjąć za punkt odniesienia, bo do tego zdania odnoszą się wszystkie dalsze rozważania.

LUB

Kontrprzykład A1’ dla fałszywego warunku wystarczającego => A1 musi być prawdą, stąd:
A1’.
Jeśli zajdzie p (p=1) to może ~~> zajść ~q (~q=1)
p~~>~q = p*~q =1
Istnieje (=1) wspólny element ~~> zbiorów p i ~q

2.
Co może się wydarzyć jeśli zajdzie ~p?

Prawo Kubusia:
B1: p~>q = B2:~p=>~q

Odpowiedź na to pytanie mamy w kolumnie A2B2:
Jeśli zajdzie ~p to mamy gwarancję matematyczną => iż zajdzie ~q - mówi o tym zdanie B2

B2.
Jeśli zajdzie ~p (~p=1) to na 100% => zajdzie ~q (~q=1)
~p=>~q =1
Zajście ~p jest warunkiem wystarczającym => dla zajścia ~q wtedy i tylko wtedy gdy zbiór ~p jest podzbiorem => zbioru ~q
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>

Z prawdziwości warunku wystarczającego => B2 wynika fałszywość kontrprzykładu B2’ (i odwrotnie)
B2’
Jeśli zajdzie ~p (~p=1) to może ~~> zajść q (q=1)
~p~~>q = ~p*q =0
Nie istnieje (=0) wspólny element ~~> zbiorów ~p i q


3.5.2 Najmniejsza możliwa liczba elementów w operatorze p||~>q

Definicja implikacji odwrotnej p|~>q w zbiorach:
Zbiór p jest nadzbiorem ~> zbioru q i nie jest tożsamy ze zbiorem q
Dziedzina musi być szersza do sumy logicznej zbiorów p+q bowiem wtedy i tylko wtedy wszystkie pojęcia p, ~p, q i ~q będą rozpoznawalne.
A1: p=>q =0 - zbiór p nie jest (=0) podzbiorem => zbioru q (z definicji)
B1: p~>q =1 - zbiór p jest nadzbiorem ~> zbioru q (z definicji)
p|~>q = ~(A1: p=>q)*(B1: p~>q) = ~(0)*1 = 1*1 =1

Z definicji implikacji odwrotnej p|~>q w zbiorach wynika, że najmniejsza liczba elementów potrzebnych do zbudowania operatora implikacji prostej p||=>q to trzy elementy.
Zdefiniujmy trzy, różne na mocy definicji elementy których będziemy używać.
K - Kubuś
T - Tygrysek
P - Prosiaczek
Zbudujmy zbiory p i q spełniające definicję implikacji odwrotnej p|~>q w zbiorach:
p=[K,T]
q=[K]
Dziedzina:
D=[K+T+P]
stąd mamy niepuste przeczenia zbiorów rozumiane jako ich uzupełnienia do wspólnej dziedziny D:
~p=[D-p]=[K+T+P-[K+T]]=[P]
~q=[D-q]=[K+T+P-K]=[T+P]
Podsumujmy:
p=[K+T], ~p=[P]
q=[K], ~q=[T+P]
Zapiszmy diagram operatora implikacji odwrotnej p|~>q dla powyższych elementów.
Kod:

D2
Diagram operatora implikacji odwrotnej p||~>q w zbiorach
-----------------------------------------------------------------------
|  p=[K,T], ~p=[P]                                                    |
|  q=[K],   ~q=[T+P]                                                  |
-----------------------------------------------------------------------
|     q=[K]                 |                     ~q=[T+P]            |
|---------------------------|-----------------------------------------|
|     p=[K+T]                                 |   ~p=[P]              |
|---------------------------------------------|-----------------------|
|                           |p~~>~q=p*~q=[T]  | ~p~~>q = ~p*q =[]     |
-----------------------------------------------------------------------
| Dziedzina fizyczna: DF =p*q+~p*~q+p*~q (suma zbiorów niepustych)    |
-----------------------------------------------------------------------

Doskonale widać, że w diagramie D2 spełniona jest definicji implikacji prostej p|~>q, a tym samym definicja operatora implikacji odwrotnej p||~>q.

Zapiszmy pełny diagram implikacji odwrotnej p|~>q:
Kod:

T2
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji odwrotnej p|~>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q=0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q=1 - zajście p jest (=1) konieczne ~> dla zajścia q
A1B1: p|~>q=~(A1: p=>q)*(B1: p~>q)=~(0)*1=1*1=1
       A1B1:         A2B2:        |     A3B3:         A4B4:
A:  1: p=>q  =0 = 2:~p~>~q=0     [=] 3: q~>p  =0 = 4:~q=>~p =0
A’: 1: p~~>~q=1 =                [=]             = 4:~q~~>p =1                   
       ##            ##           |     ##            ##
B:  1: p~>q  =1 = 2:~p=>~q=1     [=] 3: q=>p  =1 = 4:~q~>~p =1
B’:             = 2:~p~~>q=0     [=] 3: q~~>~p=0
---------------------------------------------------------------
IP: p|~>q=p*~q  = ~p|=>~q=p*~q   [=]  q|=>p=~q*p = ~q|~>~p=~q*p
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
A1: p=>q=0 - fałszywy A1 wymusza prawdziwy kontrprzykład A1’ (i odwrotnie)
B2:~p=>~q=1 - prawdziwy B2 wymusza fałszywy kontrprzykład B2’ (i odwrotnie)
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Nasze zbiory na których operujemy to:
p=[K+T], ~p=[P]
q=[K], ~q=[T+P]

Definicja operatora implikacji odwrotnej p|~>q:
Operator implikacji odwrotnej p||~>q to odpowiedź na dwa pytania 1 i 2:


1.
Co może się wydarzyć jeśli zajdzie p?

Odpowiedź na to pytanie mamy w kolumnie A1B1:
Jeśli zajdzie p to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” - mówią o tym zdania B1 i A1’

B1.
Jeśli zajdzie p (p=1) to może ~> zajść q (q=1)
p~>q =1
Zajście p jest warunkiem koniecznym ~> dla zajścia q wtedy i tylko wtedy gdy zbiór p jest nadzbiorem ~> zbioru q
Sprawdzamy:
p=[K+T] ~> q=[K] =1
Definicja warunku koniecznego ~> jest spełniona (=1) bo zbiór p=[K+T] jest nadzbiorem ~> zbioru q=[K]
cnd

LUB

Kontrprzykład A1’ dla fałszywego warunku wystarczającego => A1 musi być prawdą, stąd:
A1’.
Jeśli zajdzie p (p=1) to może ~~> zajść ~q (~q=1)
p~~>~q = p*~q =1
Istnieje (=1) wspólny element ~~> zbiorów p i ~q
Sprawdzenie:
p=[K+T] ~~> ~q=[T+P] = [K+T]*[T+P] =[T]=1
Istnieje element wspólny zbiorów p i ~q, to Tygrysek (T)
Zauważmy, że miedzy p i ~q nie zachodzi ani warunek wystarczający => ani też konieczny ~>
Dowód:
p=[K+T] => ~q=[T+P] =0 - zbiór p=[K+T] nie jest (=0) podzbiorem => zbioru ~q=[T+P]
cnd
p=[K+T] ~> ~q=[T+P] =0 - zbiór p=[K+T] nie jest (=0) nadzbiorem ~> zbioru ~q=[T+P]
cnd

2.
Co może się wydarzyć jeśli zajdzie ~p?

Prawo Kubusia:
B1: p~>q = B2:~p=>~q

Odpowiedź na to pytanie mamy w kolumnie A2B2:
Jeśli zajdzie ~p to mamy gwarancję matematyczną => iż zajdzie ~q - mówi o tym zdanie B2

B2.
Jeśli zajdzie ~p (~p=1) to na 100% => zajdzie ~q (~q=1)
~p=>~q =1
Zajście ~p jest warunkiem wystarczającym => dla zajścia ~q wtedy i tylko wtedy gdy zbiór ~p jest podzbiorem => zbioru ~q
Sprawdzenie:
~p=[P] => ~q=[T+P] =1
Definicja warunku wystarczającego => jest spełniona (=1) bo zbiór ~p=[P] jest podzbiorem => zbioru ~q=[T+P]

Z prawdziwości warunku wystarczającego => B2 wynika fałszywość kontrprzykładu B2’ (i odwrotnie)
B2’
Jeśli zajdzie ~p (~p=1) to może ~~> zajść q (q=1)
~p~~>q = ~p*q =0
Nie istnieje (=0) wspólny element ~~> zbiorów ~p i q
Sprawdzenie:
~p=[P] ~~> q=[K] = [P]*[K] =[] =0
Zbiór jednoelementowy Prosiaczek (P) jest rozłączny ze zbiorem jednoelementowym Kubuś (K)
cnd

Jak widzimy wszystko tu pięknie gra i buczy, a zabawę z implikacją odwrotną p|~>q można zacząć w przedszkolu dysponując trzema pluszowymi zabawkami:
K - Kubuś
T - Tygrysek
P - Prosiaczek
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 35963
Przeczytał: 15 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Nie 15:16, 11 Kwi 2021    Temat postu:

Algebra Kubusia - wykład rozszerzony
3.6 Operator implikacji odwrotnej CH||~>P w zdarzeniach w przedszkolu


Spis treści
3.6 Operator implikacji odwrotnej CH||~>P w zdarzeniach w przedszkolu 1
3.6.1 Operator implikacji odwrotnej CH|~>P w zdarzeniach możliwych ~~> 6
3.6.2 Prawo śfinii - najbardziej zakamuflowane prawo logiki matematycznej 9
3.6.3 Definicja minimalna warunku koniecznego Y=(CH~>P) 11
3.6.4 Definicja groźby w spójnikach „i”(*) i „lub”(+) 13
3.7 Matematyczne fundamenty teorii zdarzeń dla 5-cio latków 14
3.7.1 Od teorii zdarzeń do operatora implikacji odwrotnej CH||~>P 16
3.7.2 Czarodziejska siła definicji kontrprzykładu i praw Kubusia 18



3.6 Operator implikacji odwrotnej CH||~>P w zdarzeniach w przedszkolu

Zadanie matematyczne w 100-milowym lesie (poziom przedszkola):
Zbadaj w skład jakiego operatora logicznego wchodzi zdanie:
Jeśli jutro będzie pochmurno to może padać
Zapisz analizę szczegółową zlokalizowanego operatora logicznego.

Analiza wstępna:
1.
Jeśli jutro będzie pochmurno to może ~~> padać
CH~~>P =CH*P =1
Definicja zdarzenia możliwego ~~> jest (=1) tu spełniona bo możliwe jest zdarzenie: są chmury (CH=1) i pada (P=1)
2.
Zbadajmy czy warunek wystarczający => jest tu spełniony
Jeśli jutro będzie pochmurno to na 100% => będzie padać
CH=>P =0
Definicja warunku wystarczającego => nie jest (=0) spełniona bo nie zawsze, gdy są chmury (CH=1), pada (P=1)
3.
Ostatnia możliwość jaka nam pozostała to zbadanie czy w naszym zdaniu zachodzi warunek konieczny ~>.
B1.
Jeśli jutro będzie pochmurno to może ~> padać
CH~>P =1
Chmury (CH=1) są konieczne ~> dla padania (P=1) bo jak nie ma chmur (~CH=1) to na 100% => nie pada (~P=1)
Prawo Kubusia samo nam tu wyskoczyło:
B1: CH~>P = B2: ~CH=>~P

Prawo śfinii:
Domyślny punkt odniesienia w zdaniach warunkowych „Jeśli p to q”:

W dowolnym zdaniu warunkowym „Jeśli a to b” zapisanym w zmiennych aktualnych a i b (mających związek z językiem potocznym człowieka), zawsze po „Jeśli..” zapisujemy formalny poprzednik p zaś po „to” zapisujemy formalny następnik q.
Zamieniać p i q w dowolnym zdaniu warunkowym z ustalonym wyżej domyślnym punktem odniesienia wolno nam tylko i wyłącznie na podstawie prawa Tygryska lub prawa kontrapozycji.

Na mocy prawa śfinii zapis formalny zdania prawdziwego B1 to:
B1: p~>q =1
p=CH (chmury)
q=P (pada)
B1: CH~>P =1

Matematyczne związki warunku koniecznego ~> i wystarczającego => są tu następujące:
Kod:

T0
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      A1B1:     A2B2:    |     A3B3:     A4B4:
A: 1: p=>q  = 2:~p~>~q  [=] 3: q~>p  = 4:~q=>~p  =?  [=] 5: ~p+q
A: 1: P=>CH = 2:~P~>~CH [=] 3: CH~>P = 4:~CH=>~P =?  [=] 5: ~P+CH
##
B: 1: p~>q  = 2:~p=>~q  [=] 3: q=>p  = 4:~q~>~p  =1  [=] 5: p+~q
B: 1: P~>CH = 2:~P=>~CH [=] 3: CH=>P = 4:~CH~>~P =1  [=] 5: P+~CH
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Rozstrzygającym dowodem w skład jakiego operatora logicznego wchodzi zdanie B1: CH~>P jest zbadanie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku.
Stąd:
A1.
Jeśli jutro będzie pochmurno to na 100% => będzie padać
CH=>P =0
Chmury nie są (=0) warunkiem wystarczającym => dla padania, bo nie zawsze gdy są chmury, pada.

Dopiero w tym momencie mamy pewność, że badane zdanie B1 należy do operatora implikacji odwrotnej CH||~>P.

Definicja podstawowa implikacji odwrotnej p|~>q:
Implikacja odwrotna p|~>q to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
##
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
stąd:
p|~>q = ~(A1: p=>q)*(B1: p~>q) =~(0)*1 = 1*1 =1

Nasz przykład:
Implikacja odwrotna CH||~>P to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: CH=>P =0 - chmury nie są (=0) wystarczające => dla padania, bo nie zawsze gdy są chmury, pada
B1: CH~>P =1 - chmury są konieczne ~> (=1) dla padania, bo jak nie ma chmur, to nie pada.

Podstawmy tą definicję do matematycznych związków warunku wystarczającego => i koniecznego ~>:
Kod:

T1
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji odwrotnej p|~>q
Kolumna A1B1 to punkt odniesienia:
A1B1: p|~>q=~(A1: p=>q)*(B1: p~>q)=~(0)*1=1*1=1 -formalny punkt odniesienia
A1B1: CH|~>P=~(A1: CH=>P)*(B1: CH~>P)=~(0)*1=1 -aktualny punkt odniesienia
Punkt odniesienia:
p=CH (chmury)
q=P (pada)
      A1B1:      A2B2:  |      A3B3:      A4B4:
A: 1: p=>q  = 2:~p~>~q  [=] 3: q~>p  = 4:~q=>~p  =0 [=] 5: ~p+q
A: 1: CH=>P = 2:~CH~>~P [=] 3: P~>CH = 4:~P=>~CH =0 [=] 5: ~CH+P
##
B: 1: p~>q  = 2:~p=>~q  [=] 3: q=>p  = 4:~q~>~p  =1 [=] 5: p+~q
B: 1: CH~>P = 2:~CH=>~P [=] 3: P=>CH = 4:~P~>~CH =1 [=] 5: CH+~P
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Stąd:
W kolumnie A1B1 spełniona jest podstawowa definicja implikacji odwrotnej CH|~>P:
Implikacja odwrotna CH|~>P to zachodzący wyłącznie warunek konieczny ~> między tymi samymi punktami i w tym samym kierunku
A1: CH=>P =0 - chmury nie są (=0) wystarczające => dla padania, bo nie zawsze gdy są chmury, pada
B1: CH~>P =1 - chmury są konieczne ~> (=1) dla padania, bo jak nie ma chmur, to nie pada.
Stąd:
CH|~>P=~(A1: CH=>P)*(B1: CH~>P)=~(0)*1=1
to samo w zapisie formalnym:
p|=>q = (A1: p=>q)*~(B1: p~>q) = 1*~(0)=1*1 =1

Dla precyzyjnej wizualizacji w skład jakiego operatora logicznego wchodzi zdanie A1 skorzystajmy dla tabeli T1 z definicji kontrprzykładu dla zdarzeń, obowiązującej wyłącznie w warunkach wystarczających =>

Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>~q=p*~q

Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)

Uzupełnijmy naszą tabelę wykorzystując powyższe rozstrzygnięcia działające wyłącznie w warunkach wystarczających =>.
Kod:

T2
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji odwrotnej p|~>q
Kolumna A1B1 to punkt odniesienia:
A1B1: p|~>q=~(A1: p=>q)*(B1: p~>q)=~(0)*1=1*1=1 -formalny punkt odniesienia
A1B1: CH|~>P=~(A1: CH=>P)*(B1: CH~>P)=~(0)*1=1 -aktualny punkt odniesienia
Punkt odniesienia:
p=CH (chmury)
q=P (pada)
       A1B1:          A2B2:        |     A3B3:           A4B4:
A:  1: p=>q   =0 = 2:~p~>~q  =0   [=] 3: q~>p   =0  = 4:~q=>~p  =0
A:  1: CH=>P  =0 = 2:~CH~>~P =0   [=] 3: P~>CH  =0  = 4:~P=>~CH =0
A’: 1: p~~>~q =1 =                [=]               = 4:~q~~>p  =1                   
A’: 1: CH~~>~P=1 =                [=]               = 4:~P~~>CH =1                   
       ##            ##            |     ##            ##
B:  1: p~> q  =1 = 2:~p=>~q  =1   [=] 3: q=>p   =1  = 4:~q~>~p  =1
B:  1: CH~>P  =1 = 2:~CH=>~P =1   [=] 3: P=>CH  =1  = 4:~P~>~CH =1
B’:              = 2:~p~~>q  =0   [=] 3: q~~>~p =0
B’:              = 2:~CH~~>P =0   [=] 3: P~~>~CH=0
---------------------------------------------------------------
IO: p|~>q=p*~q   = ~p|=>~q=p*~q   [=]  q|=>p=~q*p   = ~q|~>~p=~q*p
IO: CH|~>P=CH*~P = ~CH|=>~P=CH*~P [=]  P|=>CH=~P*CH = ~P|~>~CH=~P*CH
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
A1: CH=>P=0 - fałszywy A1 wymusza prawdziwy kontrprzykład A1’ (i odwrotnie)
B2:~CH=>~P=1 -prawdziwy B2 wymusza fałszywy kontrprzykład B2’ (i odwrotnie)
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Prawo śfinii:
Domyślny punkt odniesienia w zdaniach warunkowych „Jeśli p to q”:

W dowolnym zdaniu warunkowym „Jeśli a to b” zapisanym w zmiennych aktualnych a i b (mających związek z językiem potocznym człowieka), zawsze po „Jeśli..” zapisujemy formalny poprzednik p zaś po „to” zapisujemy formalny następnik q.
Zamieniać p i q w dowolnym zdaniu warunkowym z ustalonym wyżej domyślnym punktem odniesienia wolno nam tylko i wyłącznie na podstawie prawa Tygryska lub prawa kontrapozycji.

Definicja operatora implikacji odwrotnej CH||~>P:
Operator implikacji odwrotnej CH||~>P to odpowiedź na dwa pytania 1 i 2:

1.
Co może się wydarzyć jeśli jutro będzie pochmurno (CH=1)?

Odpowiedź na to pytanie mamy w kolumnie A1B1:
Jeśli jutro nie będzie pochmurno (CH=1) to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” - mówią o tym zdania B1 i A1’

B1.
Jeśli jutro będzie pochmurno (CH=1) to może ~> padać (P=1)
CH~>P =1
to samo w zapisie formalnym:
p~>q =1
Zdanie B1 to zdanie bazowe do którego odnoszą się pozostałe zdania w analizie niżej, zatem na mocy prawa śfinii musimy tu przyjąć punkt odniesienia:
p=CH (chmury)
q=P (pada)
Chmury (CH=1) są konieczne ~> dla padania (P=1) bo jak nie ma chmur (~CH=1) to na 100% => nie pada (~P=1)
Prawo Kubusia samo nam tu wyskoczyło:
B1: CH~>P = B2: ~CH=>~P

LUB

A1’.
Jeśli jutro będzie pochmurno (CH=1) to może ~~> nie padać (~P=1)
CH~~>~P = CH*~P =1
to samo w zapisie formalnym:
p~~>~q = p*~q =1
Możliwe jest (=1) zdarzenie: są chmury (CH=1) i nie pada (~P=1)

2.
Co może się wydarzyć jeśli jutro nie będzie pochmurno (~CH=1)?

Prawo Kubusia:
B1: CH~>P = B2: ~CH=>~P
Prawdziwość zdania B1 mamy udowodnioną, zatem na mocy prawa Kubusia prawdziwość zdania B2 mamy gwarantowaną (albo odwrotnie)

Odpowiedź na to pytanie mamy w kolumnie A2B2:
Jeśli jutro nie będzie pochmurno (~CH=1) to mamy gwarancję matematyczną => iż nie będzie padało (~P=1) - mówi o tym zdanie B2.

B2.
Jeśli jutro nie będzie pochmurno (~CH=1) to na 100% => nie będzie padało (~P=1)
~CH=>~P=1
to samo w zapisie formalnym:
~p=>~q =1
Brak chmur (~CH=1) jest warunkiem wystarczającym => do tego, aby jutro nie padało (~P=1) bo zawsze gdy nie ma chmur, nie pada.
Brak chmur (~CH=1) daje nam gwarancję matematyczną => iż jutro nie będzie padało (~P=1)
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>

Prawdziwość warunku wystarczającego B2 wymusza fałszywość kontrprzykładu B2’ (i odwrotnie)
B2’
Jeśli jutro nie będzie pochmurno (~CH=1) to może ~~> padać (P=1)
~CH~~>P = ~CH*P =0
to samo w zapisie formalnym:
~p~~>q = ~p*q =0
Niemożliwe jest (=0) zdarzenie: nie ma chmur (~CH=1) i pada (P=1)

Podsumowanie:
Istotą operatora implikacji odwrotnej CH||~>P jest najzwyklejsze „rzucanie monetą” w rozumieniu „na dwoje babka wróżyła” po stronie CH i gwarancja matematyczna po stronie ~CH

Dowód:
Zauważmy, że jeśli jutro będzie pochmurno to mamy najzwyklejsze „rzucanie monetą” w rozumieniu „na dwoje babka wróżyła” - mówią o tym zdania B1 i A1’:
B1.
Jeśli jutro będzie pochmurno (CH=1) to może ~~> padać (P=1)
CH~>P =1
LUB
Kontrprzykład dla fałszywego warunku wystarczającego => A1 musi być prawdą:
A1’.
Jeśli jutro będzie pochmurno (CH=1) to może ~> nie padać (~P=1)
CH~~>~P = CH*~P =1

Natomiast jeśli jutro nie będzie pochmurno (~CH=1) to mamy gwarancję matematyczną => iż nie będzie padało (~P=1) - mówi o tym zdanie B2
B2.
Jeśli jutro nie będzie pochmurno (~CH=1) to na 100% => nie będzie padało (~P=1)
~CH=>~P=1

3.6.1 Operator implikacji odwrotnej CH|~>P w zdarzeniach możliwych ~~>

Nasz przykład:
B1.
Jeśli jutro będzie pochmurno (CH=1) to może ~> padać (P=1)
CH~>P =1
Chmury (CH=1) są konieczne ~> dla padania (P=1) bo jak nie ma chmur (~CH=1) to na 100% => nie pada (~P=1)
Badamy warunek wystarczający => między tymi samym punktami i w tym samym kierunku:
A1.
Jeśli jutro będzie pochmurno to na 100% => będzie padać
CH=>P=0
Chmury nie są warunkiem wystarczającym => dla padania bo nie zawsze gdy jest pochmurno, pada
Stąd mamy dowód, iż warunek konieczny A1 jest częścią implikacji odwrotnej CH|~>P:
Implikacja odwrotna CH|~>P to zachodzący wyłącznie warunek konieczny między tymi samymi punktami i w tym samym kierunku
A1: CH=>P=0 - chmury nie są (=0) warunkiem wystarczającym => dla padania
B1: CH~>P=1 - chmury są (=1) konieczne ~> konieczne dla padania
CH|~>P = ~(A1: CH=>P)*(B1: CH~>P)=~(0)*1=1*1=1

Stąd wyprowadziliśmy w części teoretycznej definicję warunku koniecznego ~>.
Kod:

Zero-jedynkowa definicja warunku koniecznego ~>
   p  q Y=(CH~>P)
A: 1  1  =1
B: 1  0  =1
C: 0  0  =1
D: 0  1  =0

Opiszmy tą tabelę równaniami Y i ~Y w algebrze Boole’a, czyli przy pomocy spójników „i”(*) i „lub”(+).

Definicja pełnej tabeli zero-jedynkowej:
Pełna tabela zero-jedynkowa układu logicznego (bramka logiczna) to zero-jedynkowy zapis wszystkich sygnałów wejściowych w postaci niezanegowanej (p, q, r..) i zanegowanej (~p, ~q, ~r..) oraz zapis wyjścia Y również w postaci niezanegowanej (Y) i zanegowanej (~Y).

Opis dowolnej tabeli zero-jedynkowej równaniami algebry Boole’a:
W logice jedynek w pełnej tabeli zero-jedynkowej opisujemy wyłącznie jedynki gdzie w poziomie używamy spójnika „i”(*) zaś w pionie spójnika „lub”(+)
Logika jedynek prowadzi do równań alternatywno-koniunkcyjnych zgodnych z naturalną logika matematyczną człowieka, co oznacza, że będą one rozumiane w języku potocznym przez wszystkich ludzi, od 5-cio latka poczynając.

Zastosujmy logikę jedynek do definicji zero-jedynkowej warunku koniecznego Y=(CH~>P):
Kod:

T2
Wyprowadzenie równań algebry Boole’a dla funkcji logicznych Y i ~Y
Gdzie:
Y = (CH~>P) - zero-jedynkowa definicja warunku koniecznego ~>
Pełna definicja      |Co w logice jedynek  |Równania
zero-jedynkowa Y     |oznacza              |cząstkowe
                     |                     |
   CH P ~CH ~P  Y ~Y |                     |
A: 1  1   0  0 =1 =0 | Ya=1<=> CH=1 i  P=1 | Ya= CH~~> P= CH* P
B: 1  0   0  1 =1 =0 | Yb=1<=> CH=1 i ~P=1 | Yb= CH~~>~P= CH*~P
C: 0  0   1  1 =1 =0 | Yc=1<=>~CH=1 i ~P=1 | Yc=~CH~~>~P=~CH*~P
D: 0  1   1  0 =0 =1 |~Yd=1<=>~CH=1 i  P=1 |~Yd=~CH~~> P=~CH* P
   1  2   3  4  5  6   a        b      c     d    e    f   g  h

W teorii zdarzeń spójnik „i”(*) definiuje zdarzenia możliwe ~~>:
CH~~>P=CH*P =1 - wtedy i tylko wtedy gdy możliwe jest jednoczesne zajście zdarzeń CH i P
Inaczej:
CH~~>P=CH*P=0
Nic więcej spójnik „i”(*) nie może definiować na mocy jego definicji, jak wyżej.

Definicja operatora implikacji odwrotnej CH||~>P wyrażona spójnikami „i”(*) i „lub”(+) to odpowiedź na dwa pytania 1 i 2:

1.
Które zdarzenia w funkcji logicznej Y=(CH~>P) są możliwe ~~> (Y=1)?


Z tabeli równań cząstkowych odczytujemy:
Y = Ya+Yb+Yc
Po rozwinięciu mamy funkcję logiczną Y definiującą sumę logiczną zdarzeń rozłącznych uzupełniających się do dziedziny fizycznej DF:
Y = (CH~>P) = A: CH*P + B: CH*~P + C: ~CH*~P
co w logice jedynek oznacza:
Y=1 <=> A: CH=1 i P=1 lub B: CH=1 i ~P=1 lub C: ~CH=1 i ~P=1

To samo w logice formalnej:
Y = (p~>q) = A: p*q + B: p*~q + C: ~p*~q
co w logice jedynek oznacza:
Y=1 <=> A: p=1 i q=1 lub B: p=1 i ~q=1 lub C: ~p=1 i ~q=1
Kluczowy tu punkt odniesienia dla warunku koniecznego p~>q to:
p=CH (chmury)
q=P (pada)


Czytamy:
Te możliwe (Y=1) to:
Ya=CH*P =1*1 =1 - jest pochmurno (CH=1) i pada (P=1)
lub
Yb=CH*~P =1*1 =1 - jest pochmurno (CH=1) i nie pada (~P=1)
lub
Yc=~CH*~P =1*1=1 - nie ma chmur (~CH=1) i nie pada (~P=1)

Oczywiście matematycznie zachodzi:
Y = Ya+Yb+Yc
Po podstawieniu funkcji cząstkowych mamy:
Y = (CH~>P) = A: CH*P + B: CH*~P + C: ~CH*~P
co w logice jedynek oznacza:
Y=1 <=> A: CH=1 i P=1 lub B: CH=1 i ~P=1 lub C: ~CH=1 i ~P=1

Dokładnie to samo w zapisie formalnym:
Y = (p~>q) = A: p*q + B: p*~q + C: ~p*~q
co w logice jedynek oznacza:
Y=1 <=> A: p=1 i q=1 lub B: p=1 i ~q=1 lub C: ~p=1 i ~q=1

Kluczowy tu punkt odniesienia dla warunku koniecznego p~>q to:
p=CH (chmury)
q=P (pada)


1.
Które zdarzenia w funkcji logicznej Y=(CH~>P) nie są możliwe ~~> (~Y=1)?


Z tabeli równań cząstkowych odczytujemy:
~Y=~Yd
Po rozwinięciu mamy funkcję logiczną ~Y definiującą zdarzenie niemożliwe (~Y=1):
~Y =~(CH~>P) = D: ~CH*P
co w logice jedynek oznacza:
~Y=1 <=> D: ~CH=1 i P=1

To samo w logice formalnej:
~Y = ~(p=>q) = D: ~q*p
co w logice jedynek oznacza:
~Y=1 <=> ~q=1 i p=1
Kluczowy tu punkt odniesienia dla warunku koniecznego p~>q to:
p=CH (chmury)
q=P (pada)


Czytamy:
Niemożliwe jest (~Y=1) zdarzenie: nie ma chmur (~CH=1) i pada (P=1)
Innymi słowy:
Prawdą jest (=1), że nie jest możliwe (~Y) zdarzenie: nie ma chmur (~CH=1) i pada (P=1)

Prawo Prosiaczka:
(~Y=1) = (Y=0)
stąd mamy zdanie tożsame:
Y=0 <=> D: ~CH=1 i P=1
Czytamy:
Fałszem jest (=0) że możliwe jest zdarzenie (Y): nie ma chmur (~CH=1) i pada (P=1)

Zapis tożsamy w algebrze Kubusia:
Y= D: ~CH*P =1*1 =0
Czytamy:
Fałszem jest (=0) że możliwe jest zdarzenie (Y): nie ma chmur (~CH=1) i pada

Znaczenie symboli:
Y - jest możliwe
~Y - nie jest (~) możliwe

Jak widzimy definicja operatora implikacji prostej P||=>CH wyrażona spójnikami „i”(*) i „lub”(+) jest zrozumiała dla każdego 5-cio latka.


3.6.2 Prawo śfinii - najbardziej zakamuflowane prawo logiki matematycznej

W punkcie 3.6.1 celowo zapisano pochyłym i wytłuszczonym drukiem obowiązujący w operatorze implikacji odwrotnej CH||~>P punkt odniesienia.
Także w bliźniaczym punkcie 3.6.1 zapisano pochyłym i wytłuszczonym drukiem obowiązujący w operatorze implikacji prostej P||=>CH punkt odniesienia.

Zapiszmy istotę problemu śfinii:

Istotny fragment punktu 10.6.1
1IP:
Y = (P=>CH) = A: P*CH + C: ~P*~CH + D: ~P*CH = ~P+CH - zdarzenia rozłączne {A,C,D}
Y = (p=>q) = A: p*q + C: ~p*~q + D: ~p*q = ~p+q - to samo w zapisie formalnym
Punkt odniesienia:
p=P (pada)
q=CH (chmury)

Istotny fragment punktu 3.6.1
1IO:
Y = (CH~>P) = A: CH*P + B: CH*~P + C: ~CH*~P = CH+~P - zdarzenia rozłączne {A,B,C}
Y = (p~>q) = A: p*q + B: p*~q + C: ~p*~q = p+~q - to samo w zapisie formalnym
Punkt odniesienia:
p=CH (chmury)
q=P (pada)

Prawo śfinii - najbardziej zakamuflowane prawo logiki matematycznej:

Zobaczmy w tabeli prawdy istotę problemu śfinii:
Kod:

T3
Zapis formalny:
 1IP: Y= (p=>q) = ~p+q  ## 1IO: Y= (p~>q) = p+~q
Zapis aktualny:
 1IP: Y= (P=>CH)= ~P+CH ## 1IO: Y= (CH~>P)= CH+~P
Punkt odniesienia:       | Punkt odniesienia:
p=P (pada)              ## p=CH(chmury)
q=CH (chmury)           ## q=P (pada)
      #                         #
Zapis formalny:
~1IP:~Y=~(p=>q) =  p*~q  ##~1IO:~Y=~(p~>q) = ~p*q
Zapis aktualny:
~1IP:~Y=~(P=>CH) = P*~CH ##~1IO:~Y=~(CH~>P)= ~CH*P
Punkt odniesienia:        | Punkt odniesienia:
p=P (pada)               ## p=P (pada)
q=CH (chmury)            ## q=CH (chmury)

Definicje znaczków:
# - różne w znaczeniu iż dowolna strona znaczka # jest negacją drugiej
## różne na mocy definicji warunku wystarczającego p=>q i koniecznego p~>q

Definicja znaczka różne na mocy definicji ##:
Dwie funkcje logiczne są różne na mocy definicji wtedy i tylko wtedy gdy nie są tożsame i żadna z nich nie jest zaprzeczeniem drugiej.

W tabeli prawdy widać, że z zapisach formalnych definicja znaczka różne na mocy definicji ## jest spełniona.
Pozorną kolizję (sprzeczność) mamy wyłącznie w zapisie aktualnym:
Kod:

T3
1IP: Y= (P=>CH)= ~P+CH [=] 1IO: Y= (CH~>P)= CH+~P
Punkt odniesienia:       | Punkt odniesienia:
p=P (pada)              ## p=CH(chmury)
q=CH (chmury)           ## q=P (pada)
      #                         #
Zapis formalny:
~1IP:~Y=~(P=>CH)= P*~CH [=]~1IO:~Y=~(CH~>P)= ~CH*P
Punkt odniesienia:        | Punkt odniesienia:
p=P (pada)               ## p=P (pada)
q=CH (chmury)            ## q=CH (chmury)
Definicje znaczków:
# - różne w znaczeniu iż dowolna strona znaczka # jest negację drugiej strony
## różne na mocy definicji warunku wystarczającego p=>q i koniecznego p~>q

Zarówno spójnik „i”(*) jak i spójnik „lub”(+) są przemienne, zatem definicja znaczka różne na mocy definicji ### pozornie załamuje się na zapisie aktualnym.
W rzeczywistości nic się nie załamuje, bowiem między 1IP i 1IO nie mamy zgodności punktów odniesienia.

Podsumowując:
Kod:

T3
1IP: Y= (P=>CH)=~P+CH  [=] 1IO: Y= (CH~>P)=CH+~P
Punkt odniesienia:       | Punkt odniesienia:
p=P (pada)              ## p=CH(chmury)
q=CH (chmury)           ## q=P (pada)
## różne na mocy definicji warunku wystarczającego p=>q i koniecznego p~>q

Każdy kto twierdzi iż zachodzi powyższa tożsamość logiczna [=] bo suma logiczna jest przemienna popełnia trywialny błąd podstawienia.
W logice matematycznej jeśli cokolwiek porównujemy to musimy na to patrzeć ze wspólnego punktu odniesienia, co w powyższej pseudo-tożsamości nie jest spełnione.

Jak temu zaradzić?

Prawo śfinii:
Domyślny punkt odniesienia w zdaniach warunkowych „Jeśli p to q”:

W dowolnym zdaniu warunkowym „Jeśli a to b” zapisanym w zmiennych aktualnych a i b (mających związek z językiem potocznym człowieka), zawsze po „Jeśli..” zapisujemy formalny poprzednik p zaś po „to” zapisujemy formalny następnik q.
Zamieniać p i q w dowolnym zdaniu warunkowym z ustalonym wyżej domyślnym punktem odniesienia wolno nam tylko i wyłącznie na podstawie prawa Tygryska lub prawa kontrapozycji.

… i po problemie.

3.6.3 Definicja minimalna warunku koniecznego Y=(CH~>P)

Weźmy opis zero-jedynkowej definicji warunku koniecznego CH~>P równaniami algebry Boole’a znającej zaledwie 5 znaczków {0, 1, (~), „i”(*), „lub”(+)}
Kod:

T2
Wyprowadzenie równań algebry Boole’a dla funkcji logicznych Y i ~Y
Gdzie:
Y = (CH~>P) - zero-jedynkowa definicja warunku koniecznego ~>
Pełna definicja      |Co w logice jedynek  |Równania
zero-jedynkowa Y     |oznacza              |cząstkowe
                     |                     |
   CH P ~CH ~P  Y ~Y |                     |
A: 1  1   0  0 =1 =0 | Ya=1<=> CH=1 i  P=1 | Ya= CH~~> P= CH* P
B: 1  0   0  1 =1 =0 | Yb=1<=> CH=1 i ~P=1 | Yb= CH~~>~P= CH*~P
C: 0  0   1  1 =1 =0 | Yc=1<=>~CH=1 i ~P=1 | Yc=~CH~~>~P=~CH*~P
D: 0  1   1  0 =0 =1 |~Yd=1<=>~CH=1 i  P=1 |~Yd=~CH~~> P=~CH* P
   1  2   3  4  5  6   a        b      c     d    e    f   g  h

Z tabeli równań cząstkowych odczytujemy:
Y = Ya+Yb+Yc
Po rozwinięciu mamy funkcję logiczną Y definiującą sumę logiczną zdarzeń rozłącznych uzupełniających się do dziedziny fizycznej DF:
Y = (CH~>P) = A: CH*P + B: CH*~P + C: ~CH*~P
co w logice jedynek oznacza:
Y=1 <=> A: CH=1 i P=1 lub B: CH=1 i ~P=1 lub C: ~CH=1 i ~P=1

Przejdźmy na zapis formalny podstawiając:
p=CH (chmury)
q=P (pada)
1.
Y = (p~>q) = A: p*q + B: p*~q + C: ~p*~q
co w logice jedynek oznacza:
Y=1 <=> A: p=1 i q=1 lub B: p=1 i ~q=1 lub C: ~p=1 i ~q=1
Minimalizujemy:
Y = p*q + p*~q + ~p*~q
Y = p*(q+~q) + ~p*~q
Y = p + (~p*~q)
Przejście do logiki ujemnej (bo ~Y) poprzez negację zmiennych i wymianę spójników:
~Y = ~p*(p+q)
~Y=~p*p + ~p*q
~Y = ~p*q
Powrót do logiki dodatniej poprzez negację zmiennych i wymianę spójników:
2.
Y = (p~>q) = p+~q
Zachodzi oczywiście tożsamość funkcji logicznych 2: Y= 1: Y
Y = (p~>q) = p+~q = A: p*q + B: p*~q + C: ~p*~q

Przejdźmy na zapis aktualny odtwarzając podstawienie:
Y = (CH~>P) = CH+~P
co w logice jedynek oznacza:
Y=1 <=> CH=1 lub ~P=1

Mamy nasze kluczowe pytanie:
1.
Które zdarzenia w funkcji logicznej Y=(CH~>P) są możliwe ~~> (Y=1)?


Na mocy zminimalizowanej funkcji logicznej odpowiadamy:
Y = (CH~>P) = CH + ~P
co w logice jedynek oznacza:
Y=1 <=> CH=1 lub ~P=1
Czytamy:
Możliwe jest (Y=1) zdarzenie: jest pochmurno (CH=1) lub nie pada (~P=1)
Jak widzimy ostatniego zdania normalny człowiek nie zrozumie bo nie chodzi tu o jedno zdarzenie lecz o trzy rozłączne zdarzenia uzupełniające się do dziedziny fizycznej DF (DF=zdarzenia możliwe) których nie widać bezpośrednio w powyższym zapisie.

Jak sobie z tym poradzić na poziomie 5-cio latka?

1.
Najpierw odpowiadamy na pytanie o zdarzenia niemożliwe (~Y=1) w następujący sposób:
Y = (CH~>P) = CH+~P - funkcja logiczna Y opisująca zdarzenia możliwe (Y=1)
Przejście do logiki ujemnej (bo ~Y) poprzez negację zmiennych i wymianę spójników:
~Y = ~CH*P
co w logice jedynek oznacza:
~Y=1 <=> ~CH=1 i P=1
Czytamy:
Zdarzenie niemożliwe (~Y=1) to: nie ma chmur (~CH=1) i pada (P=1)

2.
Oczywistym jest że pozostałe zdarzenia muszą być możliwe (Y=1).
Te pozostałe zdarzenia możliwe to:
Ya=CH*P =1*1 =1 - jest pochmurno (CH=1) i pada (P=1)
lub
Yb=CH*~P =1*1 =1 - jest pochmurno (CH=1) i nie pada (~P=1)
lub
Yc=~CH*~P =1*1=1 - nie ma chmur (~CH=1) i nie pada (~P=1)

Oczywiście matematycznie zachodzi:
Y = Ya+Yb+Yc
Po podstawieniu funkcji cząstkowych mamy:
Y = (CH~>P) = A: CH*P + B: CH*~P + C: ~CH*~P
co w logice jedynek oznacza:
Y=1 <=> A: CH=1 i P=1 lub B: CH=1 i ~P=1 lub C: ~CH=1 i ~P=1

Jak widzimy tym banalnie prostym algorytmem uzyskaliśmy poprawne odpowiedzi na pytania o funkcje logiczne Y i ~Y w sposób zrozumiały dla każdego 5-cio latka.

Wniosek:
Nie zawsze funkcja minimalna (tu Y=~P+CH) jest zrozumiała dla człowieka

3.6.4 Definicja groźby w spójnikach „i”(*) i „lub”(+)

Definicja groźby:
Jeśli dowolny warunek to kara
W~>K
Dowolna groźba to warunek konieczny W~>K wchodzący w skład implikacji odwrotnej W|~>K.

Jak widzimy, w dowolnej groźbie jedyne co mamy do roboty to rozstrzygnięcie, czy w następniku zdania warunkowego „Jeśli p to q” mamy karę.
Poza tym wszystko mamy zdeterminowane, nic a nic nie musimy dodatkowo udowadniać.

Weźmy klasykę groźby:
B1.
Jeśli ubrudzisz spodnie to na 100% ~> dostaniesz lanie
B~>L =1
Zdanie tożsame:
B1A.
Jeśli ubrudzisz spodnie to możesz ~~> dostać lanie
B~>L =1
Brudne spodnie (B=1) są warunkiem koniecznym ~> dostania lania (L=1) bo jak nie ubrudzę spodni (~B=1) to na 100% => nie dostanę lania (~L=1) … z powodu czystych spodni (~B=1).
Tylko tyle i aż tyle gwarantuje nam operator implikacji odwrotnej B||~>L, lanie z innego powodu niż czyste spodnie jest oczywiście możliwe, ale będzie ono miało zero związku z wypowiedzianą groźbą B1.
Prawo Kubusia samo nam tu wyskoczyło:
B1: B~>L = B2:~B=>~L
Tożsamość zdań:
B1: B~>L = B1A: B~>L
zachodzi na mody definicji groźby tzn. jeśli w następniku zdania warunkowego „Jeśli p to q” stwierdzimy karę to takie zdanie musimy kodować warunkiem koniecznym B~>L wchodzącym w skład implikacji odwrotnej B|~>L.

Definicja implikacji odwrotnej B|~>L:
Implikacja odwrotna B|~>L to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: B=>L =0 - brudne spodnie nie są (=0) warunkiem wystarczającym => dostania lania
B1: B~>L =1 - brudne spodnie są (=1) warunkiem koniecznym ~> dostania lania
B|~>L = ~(A1: B=>L)*(B1: B~>L) = ~(0)*1=1*1=1

Definicja minimalna warunku koniecznego ~> w spójnikach „i”(*) i „lub”(+) wchodzącego w skład implikacji odwrotnej B|~>L:
Y = (B~>L) = B+~L
co w logice jedynek oznacza:
Y=1 <=> B=1 lub ~L=1
Czytamy:
Ojciec dotrzyma słowa (Y=1) wtedy i tylko wtedy gdy syn przyjdzie w brudnych spodniach (B=1) lub nie dostanie lania (~L=1)
Oczywiście żaden normalny człowiek tego nie zrozumie.

Jak do tego podejść w sposób zrozumiały dla 5-cio latka?
1.
Najpierw odpowiadamy na pytanie:
Kiedy ojciec skłamie (~Y=1)?
w następujący sposób:
Y = B+~L - funkcja logiczna Y odpowiadająca na pytanie ‘Kiedy ojciec dotrzyma słowa (Y=1)?”
Przejście do logiki ujemnej (bo ~Y) poprzez negację zmiennych i wymianę spójników:
~Y=~B*L
co w logice jedynek oznacza:
~Y=1 <=> ~B=1 i L=1
Czytamy:
Ojciec skłamie (~Y=1) wtedy i tylko wtedy gdy: syn przyjdzie w czystych spodniach (~B=1) i dostanie lanie (L=1).

2.
Oczywistym jest że w pozostałych przypadkach ojciec dotrzyma słowa (Y=1).
Te pozostałe przypadki to:
Ya=B*L =1*1 =1 - syn przyjdzie w brudnych spodniach (B=1) i dostanie lanie (L=1)
lub
Yb=B*~L=1*1=1 - syn przyjdzie w brudnych spodniach (B=1) i nie dostanie lania (~L=1)
lub
Yc=~B*~L=1*1=1 - syn przyjdzie w czystych spodniach (~B=1) i nie dostanie lania (~L=1)

Zdanie Yb to powszechnie znane w przyrodzie (także w świecie zwierząt) prawo do darowania dowolnej kary zależnej od nadawcy (akt łaski), czyli odbiorca spełnia warunek kary (tu przychodzi w brudnych spodniach) a mimo to nie zostaje ukarany (brak lania).
Zaprawdę, powiadam ci, jeszcze dziś będziesz ze Mną w raju. (Łk 23, 43);

Jak widzimy tym banalnie prostym algorytmem uzyskaliśmy poprawne odpowiedzi na pytania o funkcje logiczne Y i ~Y w sposób zrozumiały dla każdego 5-cio latka.

3.7 Matematyczne fundamenty teorii zdarzeń dla 5-cio latków

Cała logika matematyczna w obsłudze zdań warunkowych „Jeśli p to q” stoi na zaledwie trzech znaczkach (~~>, =>, ~>) definiujących wzajemne relacje zdarzeń p i q

I.
Definicja zdarzenia możliwego ~~>:

Jeśli zajdzie p to może ~~> zajść q
p~~>q =p*q =1
Definicja zdarzenia możliwego ~~> jest spełniona (=1) wtedy i tylko wtedy gdy możliwe jest jednoczesne zajście zdarzeń p i q.
Inaczej:
p~~>q=p*q =[] =0

Decydujący w powyższej definicji jest znaczek zdarzenia możliwego ~~>, dlatego dopuszczalny jest zapis skrócony p~~>q.
Uwaga:
Na mocy definicji zdarzenia możliwego ~~> badamy możliwość zajścia jednego zdarzenia, nie analizujemy tu czy między p i q zachodzi warunek wystarczający => czy też konieczny ~>.

II.
Definicja warunku wystarczającego => w zdarzeniach:

Jeśli zajdzie p to zajdzie q
p=>q =1
Definicja warunku wystarczającego => jest spełniona (=1) wtedy i tylko wtedy gdy zajście zdarzenia p jest wystarczające => dla zajścia zdarzenia q
Inaczej:
p=>q =0

Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
p=>q = ~p+q

III.
Definicja warunku koniecznego ~> w zdarzeniach:

Jeśli zajdzie p to zajdzie q
p~>q =1
Definicja warunku koniecznego ~> jest spełniona (=1) wtedy i tylko wtedy gdy zajście zdarzenia p jest konieczne ~> dla zajścia zdarzenia q
Inaczej:
p~>q =0

Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
p~>q = p+~q

Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>~q=p*~q

Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)

Matematyczne związki warunków wystarczających => i koniecznych ~>

Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
A1: p=>q = ~p+q
##
Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
B1: p~>q = p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Na mocy rachunku zero-jedynkowego mamy matematyczne związki warunków wystarczających => i koniecznych ~>.
Kod:

T0
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5: p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


Na mocy powyższego zapisujemy:
1.
Prawa Kubusia:
A1: p=>q = A2: ~p~>~q
##
B1: p~>q = B2: ~p=>~q
Ogólne prawo Kubusia:
Negujemy zmienne i wymieniamy spójniki na przeciwne

2.
Prawa Tygryska:
A1: p=>q = A3: q~>p
##
B1: p~>q = B3: q=>p
Ogólne prawo Tygryska:
Zamieniamy miejscami zmienne i wymieniamy spójniki na przeciwne

3.
Prawa kontrapozycji:
A1: p=>q = A4: ~q=>~p - prawo kontrapozycji dla warunku wystarczającego =>
##
B1: p~>q = B4: ~q~>~p - prawo kontrapozycji dla warunku koniecznego ~>
Ogólne prawo kontrapozycji:
Negujemy zmienne zamieniając je miejscami bez zmiany spójnika logicznego

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p=>q = ~p+q ## p~>q = p+~q

3.7.1 Od teorii zdarzeń do operatora implikacji odwrotnej CH||~>P

Z algebrą Kubusia jest identycznie jak z gramatyką języka mówionego.
Czy trzeba znać gramatykę by posługiwać się językiem ojczystym?
Czy 5-cio latek musi znać gramatykę języka by posługiwać się językiem ojczystym?
Odpowiedź jest jednoznaczna:
NIE!
Fundamentem języka mówionego jest algebra Kubusia, nigdy jakaś tam gramatyka, której osobiście nigdy nie znałem tzn. do dzisiaj nie wiem co to jest jakiś tam podmiot, orzeczenie, przysłówek, dupówek etc.
Algebra Kubusia to logika matematyczna rządząca naszym Wszechświatem, zarówno żywym, jak i martwym z matematyką włącznie. Wszyscy perfekcyjnie znamy algebrę Kubusia od momentu narodzin do śmierci i nie mamy żadnych szans, aby się od niej uwolnić.
Dowód tego faktu będzie w niniejszym punkcie.

Udajmy się do przedszkola.
B1.
Pani:
Powiedźcie mi dzieci:
Czy może się jutro zdarzyć, że będzie pochmurno i będzie padało?
Jaś (lat 5)
TAK - zdarzenie możliwe (=1)
Stąd mamy prawdziwe zdanie warunkowe:
A1.
Jeśli jutro będzie pochmurno (CH=1) to może ~~> padać (P=1)
CH~~>P = CH*~=1
Możliwe jest (=1) zdarzenie: są chmury (CH=1) i pada (P=1)
O czym każdy 5-cio latek wie.
Na mocy definicji zdarzenia możliwego ~~> interesuje nas jeden taki przypadek, nie badamy tu czy chmury są warunkiem koniecznym ~> dla padania.

B1’
Pani:
Czy może się zdarzyć, że jutro będzie pochmurno i nie będzie padało
Jaś (lat 5).
TAK - zdarzenie możliwe (=1)
Stąd mamy prawdziwe zdanie warunkowe:
B1’.
Jeśli jutro będzie pochmurno (CH=1) to może ~~> nie padać (~P=1)
CH~~>~P = CH*~P =1
Możliwe jest zdarzenie: są chmury (CH=1) i nie pada (~P=1)
Oczywistość dla każdego 5-cio latka.

B2.
Pani:
Czy może się zdarzyć, że jutro nie będzie pochmurno i nie będzie padało?
Jaś (lat 5).
TAK - zdarzenie możliwe (=1)
Stąd mamy prawdziwe zdanie warunkowe:
B2.
Jeśli jutro nie będzie pochmurno (~CH=1) to na 100% => nie będzie padało (~P=1)
~CH~~>~P = ~CH*~P =1
Może się zdarzyć (=1), że jutro nie będzie pochmurno (~CH=1) i nie będzie padało (~P=1)
O czym każdy 5-cio latek wie.

B2’
Pani:
Czy może się zdarzyć, że jutro nie będzie pochmurno (~CH=1) i będzie padało (P=1)?
Jaś (lat 5):
TAK - zdarzenie niemożliwe (=0)
Stąd mamy prawdziwe zdanie warunkowe:
B2’
Jeśli jutro nie będzie pochmurno (~CH=1) to może ~~> padać (P=1)
~CH~~>P = ~CH*P =0
Niemożliwe jest zdarzenie (=0): nie ma chmur (~CH=1) i pada (P=1)
O czym każdy 5-cio latek wie.

3.7.2 Czarodziejska siła definicji kontrprzykładu i praw Kubusia

Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>~q=p*~q

Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)

Prawa Kubusia:
A1: p=>q = A2: ~p~>~q
##
B1: p~>q = B2: ~p=>~q
Ogólne prawo Kubusia:
Negujemy zmienne i wymieniamy spójniki na przeciwne
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p=>q = ~p+q ## p~>q = p+~q

Zapiszmy dialog pani przedszkolanki z Jasiem w tabeli prawdy:
Kod:

T1.
                    Y  Analiza z punktu odniesienia funkcji logicznej Y
B1:  CH~~> P= CH* P=1 - możliwe jest (=1) zdarzenie: są chmury i pada
A1’: CH~~>~P= CH*~P=1 - możliwe jest (=1) zdarzenie: są chmury i nie pada
B2: ~CH~~>~P=~CH*~P=1 - możliwe jest zdarzenie: nie ma chmur i nie pada
B2’:~CH~~> P=~CH* P=0 - niemożliwe jest (=0) zdarzenie: nie ma chmur i pada

W zdarzeniach możliwych kluczowy jest znaczek zdarzenia możliwego ~~>.
Uprośćmy zatem tabelę wyżej:
Kod:

T1.
             Y  Analiza z punktu odniesienia funkcji logicznej Y
B1:  CH~~> P=1 - możliwe jest (=1) zdarzenie: są chmury i pada
A1’: CH~~>~P=1 - możliwe jest (=1) zdarzenie: są chmury i nie pada
B2: ~CH~~>~P=1 - możliwe jest zdarzenie: nie ma chmur i nie pada
B2’:~CH~~> P=0 - niemożliwe jest (=0) zdarzenie: nie ma chmur i pada

W czym tkwi czarodziejska siła kontrprzykładu w zdarzeniach możliwych ~~>?
Analizujemy tabelę T1 korzystając wyłącznie z definicji kontrprzykładu i praw Kubusia.

Analiza tabeli T1 - część I
1.
Z fałszywości kontrprzykładu B2’:
B2’:~CH~~>P=0
wynika prawdziwość warunku wystarczającego => B2 (i odwrotnie):
B2: ~CH=>~P =1 - brak chmur jest (=1) wystarczający => dla nie padania, bo zawsze gdy nie ma chmur, nie pada.
O czym każdy 5-cio latek wie.
2.
Prawo Kubusia:
B2:~CH=>~P = B1: CH~>P =1
Stąd mamy:
Z prawdziwości warunku wystarczającego => B2:
B2: ~CH=>~P =1
wynika prawdziwość warunku koniecznego B1 (i odwrotnie):
B1: CH~>P =1 - chmury (CH=1) są warunkiem koniecznym ~> dla padania (P=1),
bo jak nie ma chmur (~CH=1) to na 100% => nie pada (~P=1)
O czym każdy 5-cio latek wie.
Prawo Kubusia samo nam tu wyskoczyło:
B1: CH~>P = B2:~CH=>~P

Nanieśmy naszą analizę do tabeli prawdy T1.
Kod:

T2.
B1:  CH~> P =1 - chmury (CH=1) są konieczne ~> dla padania (P=1)
A1’: CH~~>~P=1 - możliwe jest (=1) zdarzenie: są chmury i nie pada
B2: ~CH=>~P =1 - brak chmur (~CH=1) jest wystarczający => dla nie padania
B2’:~CH~~> P=0 - kontrprzykład B2’ dla prawdziwego B2 musi być fałszem

Analiza tabeli T1 - część II
3.
Z prawdziwości kontrprzykładu A1’:
A1’: CH~~>~P =1
wynika fałszywość warunku wystarczającego => A1 (i odwrotnie):
A1: CH=>P =0 - nie jest prawdą (=0), że zawsze gdy są chmury (CH=1), pada (P=1)
O czym każdy 5-cio latek wie
4.
Prawo Kubusia:
A1: CH=>P = A2:~CH~>~P
stąd mamy:
Fałszywy warunek wystarczający A1:
A1: CH=>P =0
wymusza fałszywy warunek Konieczny ~> A2 (i odwrotnie):
A2: ~CH~>~P =0 - brak chmur (~CH=1) nie jest (=0) warunkiem koniecznym ~> dla nie padania (~P=0)
Na mocy prawa Kubusia nie musimy dowodzić fałszywości zdania A2 w sposób bezpośredni, wystarczy że mamy dowód fałszywości zdania A1.

Nanieśmy część II analizy do tabeli prawdy T2.
Kod:

T3.
B1:  CH~> P =1 | A1: CH=>P =0
A1’: CH~~>~P=1
B2: ~CH=>~P =1 | A2:~CH~>~P =0
B2’:~CH~~> P=0

Uwaga 1:
Zauważmy, że w linii B1 zapisaną mamy implikację odwrotną CH|~>P w logice dodatniej (bo P):
Implikacja odwrotna CH|~>P to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: CH=>P =0 - chmury nie są (=0) wystarczające => dla padania, bo nie zawsze gdy są chmury, pada
B1: CH~>P =1 - chmury (CH=1) są (=1) konieczne ~> dla padania (P=1)
Stąd:
CH|~>P = ~(A1: CH=>P)*(B1: CH~>P) =~(0)*1 =1*1 =1

Uwaga 2:
Zauważmy, że w linii B2 mamy zapisaną implikację prostą ~CH|=>~P w logice ujemnej (bo ~P):
Implikacja prosta ~CH|=>~P to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
A2: ~CH~>~P =0 - brak chmur (~CH=1) nie jest (=1) warunkiem koniecznym ~> dla nie padania (~P=1)
B2:~CH=>~P =1 - brak chmur (~CH=1) jest (=1) warunkiem wystarczającym => dla nie padania (~P=1)
bo zawsze gdy nie ma chmur, nie pada
stąd:
~CH|=>~P = ~(A2:~CH~>~P)*(B2: ~CH=>~P) = ~(0)*1 =1*1 =1

Uwagi 1 i 2 możemy zapisać w tożsamej tabeli prawdy:
Kod:

T4.
Definicja implikacji odwrotnej CH|~>P dla punktu odniesienia w kolumnie A1B1:
A1B1: p|~>q=~(A1: p=>q)*(B1: p~>q)=~(0)*1=1*1=1
A1B1: CH|~>P=~(A1: CH=>P)*(B1: CH~>P) =~(0)*1=1*1=1
Punkt odniesienia:
p=CH (chmury)
q=P (pada)
      A1B1            A2B2
Zapis formalny:
A: 1: p=> q =0 [=] 2: ~p~>~q =0 - prawo Kubusia
Zapis aktualny:
A: 1: CH=>P =0 [=] 2: ~CH~>~P=0
      ##               ##
Zapis formalny:
B: 1: p~> q =1 [=] 2: ~p=>~q =1 - prawo Kubusia
Zapis aktualny:
B: 1: CH~>P =1 [=] 2: ~CH=>~P=1
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla tabeli T4 skorzystajmy po raz kolejny z definicji kontrprzykładu, działającej wyłącznie w warunkach wystarczających.

Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>~q=p*~q

Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)

Stąd mamy tożsamą tabelę T5:
Kod:

T5.
Definicja implikacji odwrotnej CH|~>P dla punktu odniesienia w kolumnie A1B1:
A1B1: p|~>q=~(A1: p=>q)*(B1: p~>q)=~(0)*1=1*1=1
A1B1: CH|~>P=~(A1: CH=>P)*(B1: CH~>P) =~(0)*1=1*1=1
Punkt odniesienia:
p=CH (chmury)
q=P (pada)
      A1B1            A2B2
Zapis formalny:
A:  1: p=> q  =0 [=] 2: ~p~>~q =0 - prawo Kubusia
A’: 1: p~~>~q =1
Zapis aktualny:
A:  1: CH=>P  =0 [=] 2: ~CH~>~P=0
A’: 1: CH~~>~P=0
      ##               ##
Zapis formalny:
B:  1: p~> q  =1 [=] 2: ~p=>~q =1 - prawo Kubusia
B’:                  2: ~p~~>q =0
Zapis aktualny:
B:  1: CH~>P  =1 [=] 2: ~CH=>~P=1
B’:                  2: ~CH~~>P=0
Komentarz:
A1: CH=>P=0 - fałszywy warunek wystarczający A1 wymusza prawdziwy A1’
B2:~CH=>~P=1 - prawdziwy warunek wystarczający B2 wymusza fałszywy B2’
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Doskonale widać, że w kolumnie A1B1 mamy opis tego co może się wydarzyć jeśli jutro będzie pochmurno (CH=1), natomiast w kolumnie A2B2 opis wszystkich możliwych przypadków gdy nie będzie pochmurno (~CH=1).

W tym momencie możemy tylko powtórzyć to co już poznaliśmy wcześniej, do czego doszliśmy na bazie teorii algebry Kubusia od strony przeciwnej tzn. nie od zdarzeń możliwych ~~> jak w tym przypadku, lecz od strony definicji warunku wystarczającego => i koniecznego ~>.

Prawo śfinii:
Domyślny punkt odniesienia w zdaniach warunkowych „Jeśli p to q”:

W dowolnym zdaniu warunkowym „Jeśli a to b” zapisanym w zmiennych aktualnych a i b (mających związek z językiem potocznym człowieka), zawsze po „Jeśli..” zapisujemy formalny poprzednik p zaś po „to” zapisujemy formalny następnik q.
Zamieniać p i q w dowolnym zdaniu warunkowym z ustalonym wyżej domyślnym punktem odniesienia wolno nam tylko i wyłącznie na podstawie prawa Tygryska lub prawa kontrapozycji.

Definicja operatora implikacji odwrotnej CH|~>P:
Operator implikacji odwrotnej CH|~>P to odpowiedź na dwa pytania 1 i 2:

1.
Co może się wydarzyć jeśli jutro będzie pochmurno (CH=1)?

Odpowiedź na to pytanie mamy w kolumnie A1B1:
Jeśli jutro nie będzie pochmurno (CH=1) to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” - mówią o tym zdania B1 i A1’

B1.
Jeśli jutro będzie pochmurno (CH=1) to może ~> padać (P=1)
CH~>P =1
to samo w zapisie formalnym:
p~>q =1
Zdanie B1 to zdanie bazowe do którego odnoszą się pozostałe zdania w analizie niżej, zatem na mocy prawa śfinii musimy tu przyjąć punkt odniesienia:
p=CH (chmury)
q=P (pada)
Chmury (CH=1) są konieczne ~> dla padania (P=1) bo jak nie ma chmur (~CH=1) to na 100% => nie pada (~P=1)
Prawo Kubusia samo nam tu wyskoczyło:
B1: CH~>P = B2: ~CH=>~P

LUB

A1’.
Jeśli jutro będzie pochmurno (CH=1) to może ~~> nie padać (~P=1)
CH~~>~P = CH*~P =1
to samo w zapisie formalnym:
p~~>~q = p*~q =1
Możliwe jest (=1) zdarzenie: są chmury (CH=1) i nie pada (~P=1)

2.
Co może się wydarzyć jeśli jutro nie będzie pochmurno (~CH=1)?

Prawo Kubusia:
B1: CH~>P = B2: ~CH=>~P
Prawdziwość zdania B1 mamy udowodnioną, zatem na mocy prawa Kubusia prawdziwość zdania B2 mamy gwarantowaną.

Odpowiedź na to pytanie mamy w kolumnie A2B2:
Jeśli jutro nie będzie pochmurno (~CH=1) to mamy gwarancję matematyczną => iż nie będzie padało (~P=1) - mówi o tym zdanie B2.

B2.
Jeśli jutro nie będzie pochmurno (~CH=1) to na 100% => nie będzie padało (~P=1)
~CH=>~P=1
to samo w zapisie formalnym:
~p=>~q =1
Brak chmur (~CH=1) jest warunkiem wystarczającym => do tego, aby jutro nie padało (~P=1) bo zawsze gdy nie ma chmur, nie pada.
Brak chmur (~CH=1) daje nam gwarancję matematyczną => iż jutro nie będzie padało (~P=1)
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>

Prawdziwość warunku wystarczającego B2 wymusza fałszywość kontrprzykładu B2’ (i odwrotnie)
B2’
Jeśli jutro nie będzie pochmurno (~CH=1) to może ~~> padać (P=1)
~CH~~>P = ~CH*P =0
to samo w zapisie formalnym:
~p~~>q = ~p*q =0
Niemożliwe jest (=0) zdarzenie: nie ma chmur (~CH=1) i pada (P=1)

Podsumowanie:
Istotą operatora implikacji odwrotnej CH||~>P jest najzwyklejsze „rzucanie monetą” w rozumieniu „na dwoje babka wróżyła” po stronie CH i gwarancja matematyczna po stronie ~CH

Dowód:
1,
Zauważmy, że jeśli jutro będzie pochmurno to mamy najzwyklejsze „rzucanie monetą” w rozumieniu „na dwoje babka wróżyła” - mówią o tym zdania B1 i A1’:
B1.
Jeśli jutro będzie pochmurno (CH=1) to może ~~> padać (P=1)
CH~>P =1
LUB
A1’.
Jeśli jutro będzie pochmurno (CH=1) to może ~> nie padać (~P=1)
CH~~>~P = CH*~P =1

2.
Natomiast jeśli jutro nie będzie pochmurno (~CH=1) to mamy gwarancję matematyczną => iż nie będzie padało (~P=1) - mówi o tym zdanie B2
B2.
Jeśli jutro nie będzie pochmurno (~CH=1) to na 100% => nie będzie padało (~P=1)
~CH=>~P=1
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 35963
Przeczytał: 15 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Nie 15:18, 11 Kwi 2021    Temat postu:

Algebra Kubusia - wykład rozszerzony
3.8 Operator implikacji odwrotnej 4L|~>P w zbiorach w przedszkolu


Spis treści
3.8 Operator implikacji odwrotnej 4L||~>P w zbiorach w przedszkolu 1
3.8.1 Alternatywne dojście do operatora implikacji odwrotnej 4L||~>P w zbiorach 5
3.8.2 Diagram operatora implikacji odwrotnej 4L||~>P w zbiorach 12



3.8 Operator implikacji odwrotnej 4L||~>P w zbiorach w przedszkolu

W algebrze Kubusia w zbiorach zachodzi:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

Zadanie matematyczne w 100-milowym lesie:
Zbadaj w skład jakiego operatora logicznego wchodzi zdanie:
Jeśli zwierzę ma cztery łapy to może być psem
Zapisz szczegółową analizę tego operatora

Rozwiązanie:

Dane jest zdanie wejściowe:
B1.
Jeśli zwierzę ma cztery łapy (4L=1) to może ~> być psem (P=1)
4L~>P =1
to samo w zapisie formalnym:
p~>q =1
Bycie zwierzęciem z czterema łapami (4L=1) jest (=1) warunkiem koniecznym ~> do tego aby być psem (P=1), bo jak się nie ma czterech łap (~4L=1) to na 100% => nie jest się psem (~P=1)
Prawo Kubusia samo nam tu wyskoczyło:
B1: 4L~>P = B2:~4L=>~P

Prawo śfinii:
Domyślny punkt odniesienia w zdaniach warunkowych „Jeśli p to q”:

W dowolnym zdaniu warunkowym „Jeśli a to b” zapisanym w zmiennych aktualnych a i b (mających związek z językiem potocznym człowieka), zawsze po „Jeśli..” zapisujemy formalny poprzednik p zaś po „to” zapisujemy formalny następnik q.
Zamieniać p i q w dowolnym zdaniu warunkowym z ustalonym wyżej domyślnym punktem odniesienia wolno nam tylko i wyłącznie na podstawie prawa Tygryska lub prawa kontrapozycji.

Na mocy prawa śfinii zapis formalny zdania B1 to:
B1: p~>q =1
p=4L=[pies, słoń ..] - zbiór zwierząt z czterema łapami.
q=P=[pies] - jednoelementowy zbiór pies
B1: 4L~>P =1

Aby udowodnić w skład jakiego operatora logicznego wchodzi warunek konieczny B1: 4L~>P musimy zbadać prawdziwość/fałszywość warunku wystarczającego A1: 4L=>P między tymi samymi punktami i w tym samym kierunku.

Warunek konieczny B1 definiuje nam dwa zbiory:
Poprzednik p:
p=4L=[pies, słoń ..] - zbiór zwierząt z czterema łapami.
Następnik q:
q=P=[pies] - zbiór jednoelementowy pies

Przyjmijmy dziedzinę minimalną:
ZWZ - zbiór wszystkich zwierząt
Stąd mamy zaprzeczenia zbiorów rozumiane jako ich uzupełnia do wspólnej dziedziny ZWZ:
~4L=[ZWZ-4L] = [kura ..] =1 - zbiór wszystkich zwierząt z wykluczeniem zwierząt z czterema łapami
~P=[ZWZ-P] =[słoń, kura ..] =1 - zbiór wszystkich zwierząt z wykluczeniem psa
Gdzie:
[słoń] - jest przedstawicielem zwierząt nie będących psami które mają cztery łapy
[kura] - jest przedstawicielem zwierząt nie mających czterech łap

Badamy teraz czy spełniony jest warunek wystarczający A1: 4L=>P=?
A1.
Jeśli zwierzę ma cztery łapy (4L=1) to na 100% => jest psem (P=1)
4L=>P =0
to samo w zapisie formalnym:
p=>q =0
Bycie zwierzęciem z czterema łapami (4L=1) nie jest (=0) warunkiem wystarczającym => do tego aby być psem (P=1) bo zbiór 4L=[pies, słoń..] nie jest podzbiorem => zbioru jednoelementowego P=[pies].

Dopiero w tym momencie, po udowodnieniu prawdziwości zdania B1: 4L~>P=1 i fałszywości A1: 4L=>P=0 mamy rozstrzygnięcie iż oba te zdania należą do implikacji odwrotnej 4L|~>P

Definicja podstawowa implikacji odwrotnej p|~>q:
Implikacja odwrotna p|~>q to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
##
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
stąd:
p|~>q = ~(A1: p=>q)*(B1: p~>q) =~(0)*1 = 1*1 =1

Nasz przykład:
Definicja implikacji odwrotnej 4L|~>P
Implikacja odwrotna 4L|~>P to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku:
A1: 4L=>P =0 - bycie zwierzęciem z czterema łapami nie jest (=0) warunkiem wystarczającym =>
do tego by być psem, bo nie wszystkie zwierzęta mające cztery łapy, są psami
B1: 4L~>P =1 - bycie zwierzęciem z czterema łapami (4L=1) jest warunkiem koniecznym ~> do tego,
aby być psem (P=1), bo jak się nie ma czterech łap (~4L=1) to na 100% =>
nie jest się psem (~P=1).
Stąd:
4L|~>P = ~(A1: 4L=>P)*(B1: 4L~>P) =~(0)*1 =1*1 =1

Podstawmy nasze zdania A1: 4L=>P=0 i B1: 4L~>P=1 do matematycznych związków warunków wystarczających => i koniecznych ~> w implikacji odwrotnej p|~>q.
Kod:

T2
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji odwrotnej p|~>q
Kolumna A1B1 to punkt odniesienia:
p|~>q=~(A1: p=>q)*(B1: p~>q)=~(0)*1=1*1=1 - formalny punkt odniesienia
4L|~>P=~(A1: 4L=>P)*(B1: 4L~>P)=~(0)*1=1*1=1 - aktualny punkt odniesienia
Punkt odniesienia:
p=4L=[pies, słoń ..] - zbiór zwierząt mających cztery łapy
q=P=[pies] - jednoelementowy zbiór pies
       A1B1:          A2B2:       |      A3B3:           A4B4:
A:  1: p=>q   =0 = 2:~p~>~q =0    [=] 3: q~>p   =0  = 4:~q=>~p  =0
A:  1: 4L=>P  =0 = 2:~4L~>~P=1    [=] 3: P~>4L  =0  = 4:~P=>~4L =0
A’: 1: p~~>~q =1 =                [=]               = 4:~q~~>p  =1                   
A’: 1: 4L~~>~P=1 =                [=]               = 4:~P~~>4L =1                   
       ##            ##            |     ##            ##
B:  1: p~>q   =1 = 2:~p=>~q =1    [=] 3: q=>p   =1  = 4:~q~>~p  =1
B:  1: 4L~>P  =1 = 2:~4L=>~P=1    [=] 3: P=>4L  =1  = 4:~P~>~4L =1
B’:              = 2:~p~~>q =0    [=] 3: q~~>~p =0
B’:              = 2:~4L~~>P=0    [=] 3: P~~>~4L=0
---------------------------------------------------------------
  p|~>q=p*~q     = ~p|=>~q=p*~q   [=]  q|=>p=~q*p   = ~q|~>~p=~q*p
  4L|~>P=4L*~P   = ~4L|=>~P=4L*~P [=]  P|=>4L=~P*4L = ~P|~>~4L=~P*4L
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
A1: 4L=>P=0 - fałszywy A1 wymusza prawdziwy kontrprzykład A1’ (i odwrotnie)
B2:~4L=>~P=1 -prawdziwy B2 wymusza fałszywy kontrprzykład B2’ (i odwrotnie)
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


Operator implikacji odwrotnej 4L||~>P to odpowiedź na dwa pytania 1 i 2:

1.
Co może się wydarzyć, jeśli ze zbioru wszystkich zwierząt ZWZ wylosujemy zwierzę mające cztery łapy (4L=1)?

Odpowiedź mamy w kolumnie A1B1:
Jeśli ze zbioru wszystkich zwierząt (ZWZ) wylosujemy zwierzę mające cztery łapy (4L=1) to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła”, o czym mówią zdania prawdziwe B1 i A1’

B1.
Jeśli zwierzę ma cztery lapy (4L=1) to może ~> być psem (P=1)
4L~>P =1
to samo w zapisie formalnym:
p~>q =1
Na mocy prawa śfinii zdanie B1 musimy przyjąć za punkt odniesienia, bowiem cała dalsza analiza odnosi się do tego zdania.
Punkt odniesienia:
p=4L
q=P
Posiadanie czterech łap (4L=1) jest warunkiem koniecznym ~> aby być psem (P=1) bo jak się nie ma czterech łap (~4L=1) to na 100% => nie jest się psem (~P=1)
Prawo Kubusia samo nam tu wyskoczyło:
B1: 4L~>P = B2: ~4L=>~P

Warunek konieczny ~> B1 definiuje nam dwa zbiory:
p=4L=[pies, słoń ..] - zbiór zwierząt z czterema łapami.
q=P=[pies] - zbiór jednoelementowy pies
Przyjmijmy dziedzinę minimalną:
ZWZ - zbiór wszystkich zwierząt
Stąd mamy zaprzeczenia zbiorów rozumiane jako ich uzupełnia do wspólnej dziedziny ZWZ:
~4L=[ZWZ-4L] = [kura ..] =1 - zbiór wszystkich zwierząt z wykluczeniem zwierząt z czterema łapami
~P=[ZWZ-P] =[słoń, kura ..] =1 - zbiór wszystkich zwierząt z wykluczeniem psa
Gdzie:
[słoń] - jest przedstawicielem zwierząt nie będących psami które mają cztery łapy
[kura] - jest przedstawicielem zwierząt nie mających czterech łap

LUB

Kontrprzykład A1’: 4L~~>~P dla fałszywego warunku wystarczającego A1: 4L=>P musi być prawdą.
Sprawdzamy:
A1’.
Jeśli zwierzę ma cztery łapy (4L=1) to może ~~> nie być psem (~P=1)
4L~~>~P = 4L*~P =1
to samo w zapisie formalnym:
p~~>~q = p*~q =1
Istnieje (=1) element wspólny zbiorów: 4L=[pies, słoń ..] i ~P=[słoń, kura..] np. słoń

2.
Co może się wydarzyć, jeśli ze zbioru wszystkich zwierząt ZWZ wylosujemy zwierzę nie mające czterech łap (~4L=1)?

Prawo Kubusia:
B1: 4L~>P = B2:~4L=>~P
Odpowiedź mamy w kolumnie A2B2:
Jeśli ze zbioru wszystkich zwierząt (ZWZ) wylosujemy zwierzę nie mające czterech łap (~4L=1) to mamy gwarancję matematyczną => iż wylosowane zwierzę nie będzie psem (~P=1) - mówi o tym zdanie B2.

B2.
Jeśli zwierzę nie ma czterech łap (~4L=1) to na 100% => nie jest psem (~P=1)
~4L=>~P =1
to samo w zapisie formalnym:
~p=>~q =1
U dowolnego zwierzęcia brak czterech łap (~4L=1) jest warunkiem wystarczającym => dla wnioskowania iż nie jest to pies (~P=1), bo zbiór zwierząt nie mających czterech łap ~4L=[kura..] jest podzbiorem zbioru „nie pies” ~P=[słoń, kura..]
U dowolnego zwierzęcia brak czterech łap (~4L=1) daje nam gwarancję matematyczną => iż nie jest to pies (~P=1)
Zachodzi tożsamość matematyczna pojęć:
Warunek wystarczający => = relacja podzbioru => = gwarancja matematyczna =>
Zauważmy, że prawdziwości zdania B2 nie musimy dowodzić bo wynika ona z prawa Kubusia:
B2:~4L=>~P = B1: 4L~>P

Kontrprzykład B2’ dla prawdziwego warunku wystarczającego B2 musi być fałszem.
Sprawdzenie:
B2’.
Jeśli zwierzę nie ma czterech łap (~4L=1) to może ~~> być psem (P=1)
~4L~~>P = ~4L*P =0
to samo w zapisie formalnym:
~p~~>q = ~p*q =0
Nie istnieje (=0) element wspólny ~~> zbiorów: ~4L=[kura..] i P=[pies], bo zbiory te są rozłączne.

Podsumowanie:
1.
Doskonale widać, że jeśli ze zbioru wszystkich zwierząt ZWZ wylosujemy zwierzę mające cztery łapy to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” - mówią o tym zdania B1 i A1’
B1.
Jeśli zwierzę ma cztery lapy (4L=1) to może ~> być psem (P=1)
4L~>P =1 - posiadanie czterech łap (4L=1) jest (=1) warunkiem koniecznym ~> aby być psem (P=1)
LUB
A1’.
Jeśli zwierzę ma cztery łapy (4L=1) to może ~~> nie być psem (~P=1)
4L~~>~P = 4L*~P =1 bo słoń
Istnieje (=1) element wspólny zbiorów: 4L=[pies, słoń ..] i ~P=[słoń, kura..] np. słoń

2.
Jeśli natomiast ze zbioru wszystkich zwierząt ZWZ wylosujemy zwierzę nie mające czterech łap (~4L=1) to mamy gwarancję matematyczną => iż to zwierzę nie będzie psem (~P=1) - mówi o tym zdanie B2.
Jeśli zwierzę nie ma czterech łap (~4L=1) to na 100% => nie jest psem (~P=1)
~4L=>~P =1
Brak czterech łap (~4L=1) jest warunkiem wystarczającym => do tego, aby nie być psem (~P=1)


3.8.1 Alternatywne dojście do operatora implikacji odwrotnej 4L||~>P w zbiorach

Udajmy się do przedszkola, do naszych ekspertów logiki matematycznej, algebry Kubusia.

Pani w przedszkolu:
Czy może się zdarzyć, że ze zbioru wszystkich zwierząt ZWZ wylosujemy zwierzę które ma cztery łapy (4L=1) i będzie to pies (P=1)?
Jaś (lat 5): TAK, bo pies
Stąd:
B1.
Jeśli zwierzę ma cztery łapy (4L=1) to może ~~> być psem (P=1)
4L~~>P = 4L*P =1
Definicja elementu wspólnego ~~> zbiorów 4L=[pies, słoń ..] i P=[pies] jest spełniona (bo pies).
Dla udowodnienia prawdziwości zdania A1 kodowanego elementem wspólnym zbiorów ~~> wystarczy pokazać jednego pieska który ma cztery łapy.

Pani:
Czy może się zdarzyć, że ze zbioru wszystkich zwierząt ZWZ wylosujemy zwierzę które ma cztery łapy (4L=1) i nie będzie to pies (~P=1)?
Jaś: TAK, np. słoń
Stąd:
A1’.
Jeśli zwierzę ma cztery łapy (4L=1) to może ~~> nie być psem (~P=1)
4L~~>~P = 4L*~P =1
Dla udowodnienia prawdziwości zdania kodowanego elementem wspólnym zbiorów ~~> wystarczy pokazać jedno dowolne zwierzę które ma cztery łapy (4L=1) i nie jest psem (~P=1) np. słoń

Pani:
Czy może się zdarzyć, że ze zbioru wszystkich zwierząt ZWZ wylosujemy zwierzę które nie ma czterech łap (~4L=1) i nie będzie to pies (~P=1)?
Jaś: TAK np. kura
Stąd:
B2.
Jeśli zwierzę nie ma czterech łap (~4L=1) to może ~~> nie być psem (~P=1)
~4L~~>~P = ~4L*~P =1
Istnieje zwierzę (=1) które nie ma czterech łap (~4L=1) i nie jest psem (~P=1).
Dla udowodnienia prawdziwości zdania A2 wystarczy pokazać jedno zwierzę które nie ma czterech łap (~4L=1) i nie jest psem (~P=1) np. kurę
Definicja elementu wspólnego zbiorów ~~> jest spełniona bo zbiory ~4L=[kura..] i ~P=[słoń, kura ..] mają co najmniej jeden element wspólny np. kurę.

Pani:
Czy może się zdarzyć, że ze zbioru wszystkich zwierząt ZWZ wylosujemy zwierzę które nie ma czterech łap (~4L=1) i będzie to pies (P=1)?
Jaś: NIE, bo wszystkie psy mają cztery łapy
stąd:
A2’.
Jeśli zwierzę nie ma czterech łap (~4L=1) to może ~~> być psem (P=1)
~4L~~>P = ~4L*P =[] =0
Definicja elementu wspólnego zbiorów ~~> nie jest (=0) spełniona bo zbiory ~4L=[kura ..] i zbiór jednoelementowy P=[pies] są rozłączne, zatem nie mają elementu wspólnego.

Zapiszmy dialog pani z Jasiem w tabeli prawdy:
Kod:

T1           Y ~Y   Odpowiedzi dla Y:
B1:  4L~~>P =1  0 - zbiory 4L=[pies, słoń.] i P=[pies] mają el. wspólny
A1’: 4L~~>~P=1  0 - 4L=[pies, słoń.] i ~P=[słoń, kura.] mają el. wspólny
B2: ~4L~~>~P=1  0 - ~4L=[kura..] i ~P=[słoń, kura..] mają el. wspólny
B2’:~4L~~>P =0  1 - ~4L=[kura..] i P=[pies] nie mają (=0) el. wspólnego

Kluczową definicją umożliwiającą przejście z dialogu pani przedszkolanki do definicji operatora implikacji odwrotnej 4L|~>P jest definicja kontrprzykładu w zbiorach.

Definicja kontrprzykładu w zbiorach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane elementem wspólnym ~~> zbiorów: p~~>~q=p*~q
Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)

W zbiorach zachodzą tożsamości pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

Analiza tabeli T1 - część I
1.
Z fałszywości kontrprzykładu B2’:
B2’:~4L~~>P=0
wynika prawdziwość warunku wystarczającego => B2 (i odwrotnie):
B2: ~4L=>~P =1 - brak czterech łap jest (=1) warunkiem wystarczającym => by nie być psem, bo wszystkie psy mają cztery łapy.
O czym każdy 5-cio latek wie.
2.
Prawo Kubusia:
B2:~4L=>~P = B1: 4L~>P =1
Stąd mamy:
Z prawdziwości warunku wystarczającego => B2:
B2: ~4L=>~P =1
wynika prawdziwość warunku koniecznego B1 (i odwrotnie):
B1: 4L~>P =1 - posiadanie czterech łap (4L=1) jest warunkiem koniecznym ~> by być psem (P=1)
bo jak się nie ma czterech łap (~4L=1) to na 100% => nie jest się psem (~P=1)
O czym każdy 5-cio latek wie.
Prawo Kubusia samo nam tu wyskoczyło:
B1: 4L~>P = B2:~4L=>~P

Nanieśmy naszą analizę do tabeli prawdy T1.
Kod:

T2.
B1:  4L~> P =1 - cztery łapy (4L=1) są konieczne ~> by być psem (P=1)
A1’: 4L~~>~P=1 - 4L=[pies, słoń ..] i ~P=[słoń, kura..] mają el. wspólny
B2: ~4L=>~P =1 - brak czterech łap jest wystarczający => by nie być psem
B2’:~4L~~> P=0 - kontrprzykład B2’ dla prawdziwego B2 musi być fałszem

Analiza tabeli T1 - część II
3.
Z prawdziwości kontrprzykładu A1’:
A1’: 4L~~>~P =1
wynika fałszywość warunku wystarczającego => A1 (i odwrotnie):
A1: 4L=>P =0 - zbiór 4L=[pies, słoń ..] nie jest (=0) podzbiorem => zbioru P=[pies]
O czym każdy 5-cio latek wie
4.
Prawo Kubusia:
A1: 4L=>P = A2:~4L~>~P
stąd mamy:
Fałszywy warunek wystarczający A1:
A1: 4L=>P =0
wymusza fałszywy warunek konieczny ~> A2 (i odwrotnie):
A2: ~4L~>~P =0 - brak czterech łap nie jest (=0) warunkiem koniecznym ~> dla nie bycia psem
bo zbiór ~4L=[kura..] nie jest nadzbiorem ~> ~P=[słoń, kura..]
Na mocy prawa Kubusia nie musimy dowodzić fałszywości zdania A2 w sposób bezpośredni, wystarczy że mamy dowód fałszywości zdania A1.

Nanieśmy część II analizy do tabeli prawdy T2.
Kod:

T3.
B1:  4L~> P =1 | A1: 4L=>P =0
A1’: 4L~~>~P=1
B2: ~4L=>~P =1 | A2:~4L~>~P =0
B2’:~4L~~> P=0

Uwaga 1:
Zauważmy, że w linii B1 zapisaną mamy implikację odwrotną 4L|~>P w logice dodatniej (bo P):
Implikacja odwrotna 4L|~>P to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: 4L=>P =0 - cztery łapy nie są (=0) wystarczające => by być psem,
bo można mieć cztery łapy i nie być psem np. słoń
B1: 4L~>P =1 - cztery łapy (4L=1) są (=1) konieczne ~> by być psem (P=1),
bo jak się nie ma czterech łap (~4L=1) to na 100% => nie jest się psem (~P=1)
Stąd:
4L|~>P = ~(A1: 4L=>P)*(B1: 4L~>P) =~(0)*1 =1*1 =1

Uwaga 2:
Zauważmy, że w linii B2 mamy zapisaną implikację prostą ~4L|=>~P w logice ujemnej (bo ~P):
Implikacja prosta ~4L|=>~P to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
A2: ~4L~>~P =0 - brak czterech łap (~4L=1) nie jest (=0) warunkiem koniecznym ~> dla nie bycia psem (~P=1)
B2:~4L=>~P =1 - brak czterech łap (~4L=1) jest (=1) warunkiem wystarczającym => dla nie bycia psem (~P=1)
stąd:
~4L|=>~P = ~(A2:~4L~>~P)*(B2: ~4L=>~P) = ~(0)*1 =1*1 =1

Uwagi 1 i 2 możemy zapisać w tożsamej tabeli prawdy:
Kod:

T4.
Definicja implikacji odwrotnej 4L|~>P dla punktu odniesienia w kolumnie A1B1:
A1B1: p|~>q=~(A1: p=>q)*(B1: p~>q)=~(0)*1=1*1=1
A1B1: 4L|~>P=~(A1: 4L=>P)*(B1: 4L~>P) =~(0)*1=1*1=1
Punkt odniesienia:
p=4L (chmury)
q=P (pada)
      A1B1            A2B2
Zapis formalny:
A: 1: p=> q =0 [=] 2: ~p~>~q =0 - prawo Kubusia
Zapis aktualny:
A: 1: 4L=>P =0 [=] 2: ~4L~>~P=0
      ##               ##
Zapis formalny:
B: 1: p~> q =1 [=] 2: ~p=>~q =1 - prawo Kubusia
Zapis aktualny:
B: 1: 4L~>P =1 [=] 2: ~4L=>~P=1
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla tabeli T4 skorzystajmy po raz kolejny z definicji kontrprzykładu, działającej wyłącznie w warunkach wystarczających.

Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>~q=p*~q

Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)

Stąd mamy tożsamą tabelę T5:
Kod:

T5.
Definicja implikacji odwrotnej 4L|~>P dla punktu odniesienia w kolumnie A1B1:
A1B1: p|~>q=~(A1: p=>q)*(B1: p~>q)=~(0)*1=1*1=1
A1B1: 4L|~>P=~(A1: 4L=>P)*(B1: 4L~>P) =~(0)*1=1*1=1
Punkt odniesienia:
p=4L (chmury)
q=P (pada)
      A1B1            A2B2
Zapis formalny:
A:  1: p=> q  =0 [=] 2: ~p~>~q =0 - prawo Kubusia
A’: 1: p~~>~q =1
Zapis aktualny:
A:  1: 4L=>P  =0 [=] 2: ~4L~>~P=0
A’: 1: 4L~~>~P=0
      ##               ##
Zapis formalny:
B:  1: p~> q  =1 [=] 2: ~p=>~q =1 - prawo Kubusia
B’:                  2: ~p~~>q =0
Zapis aktualny:
B:  1: 4L~>P  =1 [=] 2: ~4L=>~P=1
B’:                  2: ~4L~~>P=0
Komentarz:
A1: 4L=>P=0 - fałszywy warunek wystarczający A1 wymusza prawdziwy A1’
B2:~4L=>~P=1 - prawdziwy warunek wystarczający B2 wymusza fałszywy B2’
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Doskonale widać, że w kolumnie A1B1 mamy opis tego co może się wydarzyć jeśli ze zbioru wszystkich zwierząt (ZWZ) wylosujemy zwierzę mające cztery łapy, natomiast w kolumnie A2B2 opis wszystkich możliwych przypadków gdy wylosowane zwierzę nie będzie miało czterech łap (~4L=1).

W tym momencie możemy tylko powtórzyć to co już poznaliśmy wcześniej, do czego doszliśmy na bazie teorii algebry Kubusia od strony przeciwnej tzn. nie od zdarzeń możliwych ~~> jak w tym przypadku, lecz od strony definicji warunku wystarczającego => i koniecznego ~>.

Prawo śfinii:
Domyślny punkt odniesienia w zdaniach warunkowych „Jeśli p to q”:

W dowolnym zdaniu warunkowym „Jeśli a to b” zapisanym w zmiennych aktualnych a i b (mających związek z językiem potocznym człowieka), zawsze po „Jeśli..” zapisujemy formalny poprzednik p zaś po „to” zapisujemy formalny następnik q.
Zamieniać p i q w dowolnym zdaniu warunkowym z ustalonym wyżej domyślnym punktem odniesienia wolno nam tylko i wyłącznie na podstawie prawa Tygryska lub prawa kontrapozycji.

Operator implikacji odwrotnej 4L||~>P to odpowiedź na dwa pytania 1 i 2:

1.
Co może się wydarzyć, jeśli ze zbioru wszystkich zwierząt ZWZ wylosujemy zwierzę mające cztery łapy (4L=1)?

Odpowiedź mamy w kolumnie A1B1:
Jeśli ze zbioru wszystkich zwierząt (ZWZ) wylosujemy zwierzę mające cztery łapy (4L=1) to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła”, o czym mówią zdania prawdziwe B1 i A1’

B1.
Jeśli zwierzę ma cztery lapy (4L=1) to może ~> być psem (P=1)
4L~>P =1
to samo w zapisie formalnym:
p~>q =1
Na mocy prawa śfinii zdanie B1 musimy przyjąć za punkt odniesienia, bowiem cała dalsza analiza odnosi się do tego zdania.
Punkt odniesienia:
p=4L
q=P
Posiadanie czterech łap (4L=1) jest warunkiem koniecznym ~> aby być psem (P=1) bo jak się nie ma czterech łap (~4L=1) to na 100% => nie jest się psem (~P=1)
Prawo Kubusia samo nam tu wyskoczyło:
B1: 4L~>P = B2: ~4L=>~P

Warunek konieczny ~> B1 definiuje nam dwa zbiory:
p=4L=[pies, słoń ..] - zbiór zwierząt z czterema łapami.
q=P=[pies] - zbiór jednoelementowy pies
Przyjmijmy dziedzinę minimalną:
ZWZ - zbiór wszystkich zwierząt
Stąd mamy zaprzeczenia zbiorów rozumiane jako ich uzupełnia do wspólnej dziedziny ZWZ:
~4L=[ZWZ-4L] = [kura ..] =1 - zbiór wszystkich zwierząt z wykluczeniem zwierząt z czterema łapami
~P=[ZWZ-P] =[słoń, kura ..] =1 - zbiór wszystkich zwierząt z wykluczeniem psa
Gdzie:
[słoń] - jest przedstawicielem zwierząt nie będących psami które mają cztery łapy
[kura] - jest przedstawicielem zwierząt nie mających czterech łap

LUB

Kontrprzykład A1’: 4L~~>~P dla fałszywego warunku wystarczającego A1: 4L=>P musi być prawdą.
Sprawdzamy:
A1’.
Jeśli zwierzę ma cztery łapy (4L=1) to może ~~> nie być psem (~P=1)
4L~~>~P = 4L*~P =1
to samo w zapisie formalnym:
p~~>~q = p*~q =1
Istnieje (=1) element wspólny zbiorów: 4L=[pies, słoń ..] i ~P=[słoń, kura..] np. słoń

2.
Co może się wydarzyć, jeśli ze zbioru wszystkich zwierząt ZWZ wylosujemy zwierzę nie mające czterech łap (~4L=1)?

Prawo Kubusia:
B1: 4L~>P = B2:~4L=>~P
Odpowiedź mamy w kolumnie A2B2:
Jeśli ze zbioru wszystkich zwierząt (ZWZ) wylosujemy zwierzę nie mające czterech łap (~4L=1) to mamy gwarancję matematyczną => iż wylosowane zwierzę nie będzie psem (~P=1) - mówi o tym zdanie B2.

B2.
Jeśli zwierzę nie ma czterech łap (~4L=1) to na 100% => nie jest psem (~P=1)
~4L=>~P =1
to samo w zapisie formalnym:
~p=>~q =1
U dowolnego zwierzęcia brak czterech łap (~4L=1) jest warunkiem wystarczającym => dla wnioskowania iż nie jest to pies (~P=1), bo zbiór zwierząt nie mających czterech łap ~4L=[kura..] jest podzbiorem zbioru „nie pies” ~P=[słoń, kura..]
U dowolnego zwierzęcia brak czterech łap (~4L=1) daje nam gwarancję matematyczną => iż nie jest to pies (~P=1)
Zachodzi tożsamość matematyczna pojęć:
Warunek wystarczający => = relacja podzbioru => = gwarancja matematyczna =>
Zauważmy, że prawdziwości zdania B2 nie musimy dowodzić bo wynika ona z prawa Kubusia:
B2:~4L=>~P = B1: 4L~>P

Kontrprzykład B2’ dla prawdziwego warunku wystarczającego B2 musi być fałszem.
Sprawdzenie:
B2’.
Jeśli zwierzę nie ma czterech łap (~4L=1) to może ~~> być psem (P=1)
~4L~~>P = ~4L*P =0
to samo w zapisie formalnym:
~p~~>q = ~p*q =0
Nie istnieje (=0) element wspólny ~~> zbiorów: ~4L=[kura..] i P=[pies], bo zbiory te są rozłączne.

Podsumowanie:
1.
Doskonale widać, że jeśli ze zbioru wszystkich zwierząt ZWZ wylosujemy zwierzę mające cztery łapy to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” - mówią o tym zdania B1 i A1’
B1.
Jeśli zwierzę ma cztery lapy (4L=1) to może ~> być psem (P=1)
4L~>P =1 - posiadanie czterech łap (4L=1) jest (=1) warunkiem koniecznym ~> aby być psem (P=1)
LUB
A1’.
Jeśli zwierzę ma cztery łapy (4L=1) to może ~~> nie być psem (~P=1)
4L~~>~P = 4L*~P =1 bo słoń
Istnieje (=1) element wspólny zbiorów: 4L=[pies, słoń ..] i ~P=[słoń, kura..] np. słoń

2.
Jeśli natomiast ze zbioru wszystkich zwierząt ZWZ wylosujemy zwierzę nie mające czterech łap (~4L=1) to mamy gwarancję matematyczną => iż to zwierzę nie będzie psem (~P=1) - mówi o tym zdanie B2.
Jeśli zwierzę nie ma czterech łap (~4L=1) to na 100% => nie jest psem (~P=1)
~4L=>~P =1
Brak czterech łap (~4L=1) jest warunkiem wystarczającym => do tego, aby nie być psem (~P=1)

3.8.2 Diagram operatora implikacji odwrotnej 4L||~>P w zbiorach

Definicja implikacji odwrotnej p|~>q w zbiorach:
Zbiór p jest nadzbiorem ~> zbioru q i nie jest tożsamy ze zbiorem q
Dziedzina musi być szersza do sumy logicznej zbiorów p+q bowiem wtedy i tylko wtedy wszystkie pojęcia p, ~p, q, ~q będą rozpoznawalne.
A1: p=>q =0 - zbiór p nie jest (=0) podzbiorem => zbioru q
B1: p~>q =1 - zbiór p jest (=1) nadzbiorem ~> zbioru q
Stąd mamy:
p|~>q = ~(A1: p=>q)*(B1: p~>q) = ~(0)*1 = 1*1 =1

Przykład:
B1.
Jeśli zwierzę ma cztery (4L=1) łapy to może ~> być psem (P=1)
4L~>P=1
Definicja warunku koniecznego ~> spełniona bo zbiór zwierząt mających cztery łapy 4L=[pies, słoń ..] jest nadzbiorem ~> zbioru jednoelementowego P=[pies]

Na mocy prawa śfinii, zdanie B1 przyjmujemy za punkt odniesienia dla dalszej analizy matematycznej:
p=4L=[pies, słoń ..] - zbiór zwierząt z czterema łapami.
q=P=[pies] - jednoelementowy zbiór pies
stąd:
Kodowanie w zapisie formalnym:
B1: p~>q =1

Zbiory 4L=[pies, słoń ..] i P=[pies] nie są tożsame, zatem spełniona jest definicja implikacji odwrotnej 4L|~>P.

Definicja implikacji odwrotnej 4L|~>P w zbiorach:
Zbiór 4L=[pies, słoń..] jest nadzbiorem ~> zbioru P=[pies] i nie jest tożsamy ze zbiorem P=[pies]
Dziedzina musi być szersza do sumy logicznej zbiorów 4L+P bowiem wtedy i tylko wtedy wszystkie pojęcia P, ~P, 4L i ~4L będą rozpoznawalne.
A1: 4L=>P =0 - zbiór 4L=[pies, słoń ..] nie jest (=0) podzbiorem => zbioru P=[pies]
B1: 4L~>P =1 - zbiór 4L=[pies, słoń..] jest (=1) nadzbiorem ~> zbioru P=[pies]
Stąd mamy:
4L|~>P = ~(A1: 4L=>P)*(B1: 4L~>P) = ~(0)*1 = 1*1 =1

W algebrze Kubusia w zbiorach zachodzi:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

Warunek konieczny B1 definiuje nam dwa zbiory:
Poprzednik p:
p=4L=[pies, słoń ..] - zbiór zwierząt z czterema łapami.
Następnik q:
q=P=[pies] - jednoelementowy zbiór „pies”

Przyjmijmy dziedzinę minimalną:
ZWZ - zbiór wszystkich zwierząt
Stąd mamy zaprzeczenia zbiorów rozumiane jako ich uzupełnia do wspólnej dziedziny ZWZ:
~p=~4L=[ZWZ-4L] = [kura ..] =1 - zbiór wszystkich zwierząt z wykluczeniem zwierząt z czterema łapami
~q=~P=[ZWZ-P] =[słoń, kura ..] =1 - zbiór wszystkich zwierząt z wykluczeniem psa
Gdzie:
[kura] - jest przedstawicielem zwierząt nie mających czterech łap
[słoń] - jest przedstawicielem zwierząt nie będących psami które mają cztery łapy

Nanieśmy rozszyfrowaną relację między zbiorami p=4L=[pies, słoń ..] i q=P=[pies] na diagram zbiorów:
Kod:

D2
Diagram operatora implikacji odwrotnej 4L||~>P w zbiorach
Punkt odniesienia:
p=4L=[pies, słoń ..] - zbiór zwierząt z czterema łapami.
q=P=[pies] - jednoelementowy zbiór pies

----------------------------------------------------------------------
|     q=P=[pies]            |         ~q=~P=[słoń, kura ..]          |
|---------------------------|----------------------------------------|
|     p=4L=[pies, słoń..]                    |  ~p=~4L=[kura..]      |
|--------------------------------------------|-----------------------|
|                           |p*~q=[słoń..]   | ~p*q=[]               |
----------------------------------------------------------------------
|                  ZWZ=[pies, słoń, kura ..]                         |
|--------------------------------------------------------------------|

Z powyższego diagramu odczytujemy:
Analiza p||~>q w zapisach      |Analiza 4L||~>P z zapisach
formalnych (ogólnych)          |aktualnych
A1:  p=> q =0                  |A1:  4L=> P =0
-------------------------------|--------------------------------------
A1:  p=> q =0  |A3:  q~> p =0  |A1:  4L=> P =0 - 4L nie jest podzbiorem=> P 
A1’: p~~>~q=1  |A1’:~q~~>p =1  |A1’: 4L~~>~P=1 - np. słoń
A2: ~p~>~q =0  |A4: ~q=>~p =0  |A2: ~4L~>~P =0 - ~4L nie jest nadzbiorem ~P
B2’:~p~~>q =0  |B2’: q~~>~p=0  |B2’ ~4L~~>P =0 - ~4L i P zbiory rozłączne
|
B1:  p~> q =1  |B3:  q=> p =1  |B1:  4L~> P =1 - 4L jest nadzbiorem ~> P
A1’  p~~>~q=1  |A1’:~q~~>p =1  |A1’: 4L~~>~P=1 - np. słoń
B2: ~p=>~q =1  |B4: ~q~>~p =1  |B2: ~4L=>~P =1 - ~4L jest podzbiorem => ~P
B2’:~p~~>q =0  |B2’: q~~>~p=0  |B2’:~4L~~>P =0 - ~4L i P zbiory rozłączne
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Operator implikacji odwrotnej 4L||~>P to odpowiedź na dwa pytania 1 i 2:

1.
Co może się wydarzyć, jeśli ze zbioru wszystkich zwierząt ZWZ wylosujemy zwierzę mające cztery łapy (4L=1)?

Odpowiedź mamy w diagramie D2.

B1.
Jeśli zwierzę ma cztery lapy (4L=1) to może ~> być psem (P=1)
4L~>P =1
Posiadanie czterech łap (4L=1) jest warunkiem koniecznym ~> aby być psem (P=1) bo jak się nie ma czterech łap (~4L=1) to na 100% => nie jest się psem (~P=1)
Prawo Kubusia samo nam tu wyskoczyło:
B1: 4L~>P = B2: ~4L=>~P
Doskonale to widać w diagramie D2
LUB
Kontrprzykład A1’: 4L~~>~P dla fałszywego warunku wystarczającego A1: 4L=>P= musi być prawdą.
Sprawdzamy:
A1’.
Jeśli zwierzę ma cztery łapy (4L=1) to może ~~> nie być psem (~P=1)
4L~~>~P = 4L*~P =1
Istnieje (=1) element wspólny ~~> zbiorów: 4L=[pies, słoń ..] i ~P=[słoń, kura..] np. słoń
Co widać w diagramie D2

2.
Co może się wydarzyć, jeśli ze zbioru wszystkich zwierząt ZWZ wylosujemy zwierzę nie mające czterech łap (~4L=1)?

Odpowiedź mamy w diagramie D2.
B2.
Jeśli zwierzę nie ma czterech łap (~4L=1) to na 100% => nie jest psem (~P=1)
~4L=>~P =1
U dowolnego zwierzęcia brak czterech łap (~4L=1) jest warunkiem wystarczającym => dla wnioskowania iż nie jest to pies (~P=1), bo zbiór zwierząt nie mających czterech łap ~4L=[kura..] jest podzbiorem => zbioru „nie pies” ~P=[słoń, kura..]
Prawo Kubusia samo nam tu wyskoczyło, co widać w diagramie D2:
B2:~4L=>~P = B1: 4L~>P

Kontrprzykład B2’ dla prawdziwego warunku wystarczającego B2 musi być fałszem.
B2’.
Jeśli zwierzę nie ma czterech łap (~4L=1) to może ~~> być psem (P=1)
~4L~~>P = ~4L*P =0
to samo w zapisie formalnym:
~p~~>q = ~p*q =0
Nie istnieje (=0) element wspólny zbiorów ~4L=[kura..] i P=[pies], bo zbiory te są rozłączne.
Wyśmienicie to widać na diagramie D2
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 35963
Przeczytał: 15 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Nie 15:20, 11 Kwi 2021    Temat postu:

Algebra Kubusia - wykład rozszerzony
3.9 Operator implikacji odwrotnej p||~>q w I klasie LO



Spis treści
3.9 Operator implikacji odwrotnej A||~>S w zdarzeniach dla I klasy LO 1
3.10 Operator implikacji odwrotnej P2||=>P8 w zbiorach dla I klasy LO 7



3.9 Operator implikacji odwrotnej A||~>S w zdarzeniach dla I klasy LO

Sterowanie żarówką S przez różne zespoły przycisków to najprostszy sposób by zrozumieć algebrę Kubusia na poziomie I klasy LO.

Niech będzie dany schemat elektryczny:
Kod:

S2 Schemat 2
             S               W            A
       -------------       ______       ______
  -----| Żarówka   |-------o    o-------o    o------
  |    -------------                               |
  |                                                |
______                                             |
 ___    U (źródło napięcia)                        |
  |                                                |
  |                                                |
  --------------------------------------------------


Zadajmy sobie dwa podstawowe pytania:
A1.
Czy wciśnięcie przycisku A jest wystarczające => dla świecenia żarówki S?

Odpowiedź:
Nie, bo nie zawsze gdy wciśniemy przycisk A żarówka zaświeci się.
Żarówka zaświeci się wtedy i tylko wtedy gdy dodatkowo przycisk W będzie wciśnięty.
Zauważmy, że pytanie A1 nie dotyczy przycisku W.
Przycisk W tu jest zmienną wolną którą możemy zastać w dowolnej pozycji W=x gdzie x={0,1}
Stąd mamy:
A1.
Jeśli przycisk A jest wciśnięty (A=1) to żarówka na 100% => świeci się (S=1)
A=>S =0
Wciśnięcie przycisku A nie jest (=0) warunkiem wystarczającym => do tego, aby żarówka świeciła się
Wciśnięcie przycisku A nie daje nam (=0) gwarancji matematycznej => świecenia się żarówki S
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>

B1.
Czy wciśnięcie przycisku A jest konieczne ~> dla świecenia żarówki S?

Odpowiedź:
Tak
Konieczne dlatego, że dodatkowo zmienna wolna W musi być ustawiona na W=1 (przycisk wciśnięty).
Stąd mamy:
B1.
Jeśli przycisk A jest wciśnięty (A=1) to żarówka może ~> się świecić (S=1)
A~>S =1
Wciśnięcie przycisku A (A=1) jest (=1) konieczne ~> dla świecenia się żarówki S (S=1).
Konieczne dlatego, że dodatkowo zmienna wolna W musi być ustawiona na W=1
cnd

Definicja podstawowa implikacji odwrotnej p|~>q:
Implikacja odwrotna p|~>q to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
##
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
stąd:
p|~>q = ~(A1: p=>q)*(B1: p~>q) =~(0)*1 = 1*1 =1

Doskonale widać, że układ ze schematu S2 spełnia definicję implikacji odwrotnej A|~>S.

Definicja podstawowa implikacji odwrotnej A|~>S:
Implikacja odwrotna A|~>S to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: A=>S =0 - wciśnięcie przycisku A nie jest (=0) wystarczające => dla świecenia się żarówki S
##
B1: A~>S =1 - wciśnięcie przycisku A jest (=1) konieczne ~> dla świecenia żarówki S
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
stąd:
A|~>S = ~(A1: A=>S)*(B1: A~>S) =~(0)*1 = 1*1 =1

Podstawmy to do matematycznych związków warunku wystarczającego i koniecznego ~>:
Kod:

T1
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji odwrotnej p|~>q
Kolumna A1B1 to punkt odniesienia:
p|~>q=~(A1: p=>q)*(B1: p~>q)=~(0)*1=1*1=1 - formalny punkt odniesienia
A|~>S=~(A1: A=>S)*(B1: A~>S)=~(0)*1=1*1=1 - aktualny punkt odniesienia
Punkt odniesienia:
p=A - przycisk A (wejście)
q=S - żarówka S (wyjście)
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p =0 [=] 5: ~p+q
A: 1: A=>S = 2:~A~>~S [=] 3: S~>A = 4:~S=>~A =0 [=] 5: ~A+S
##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p =1 [=] 5: p+~q
B: 1: A~>S = 2:~A=>~S [=] 3: S=>A = 4:~S~>~A =1 [=] 5: A+~S
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Jak widzimy, w tabeli T1 mamy matematyczny opis układu S2 widzianego z punktu odniesienia implikacji odwrotnej A|~>S.
Cechą charakterystyczną układu S2 jest występowanie przycisku W którego nie ma w opisie matematycznym prezentowanym w tabeli T1. W układzie S2 opisanym tabelą T1 przycisk W jest zmienną wolną która może być ustawiana poza świadomością człowieka.

Stąd mamy:
Podstawowy schemat układu realizującego implikację prostą odwrotną A|~>S w zdarzeniach zrealizowany przy pomocy zespołu przycisków (wejście) i żarówki (wyjście).
Kod:

S2 Schemat 2
Fizyczny układ minimalny implikacji odwrotnej A|~>S w zdarzeniach:
A|~>S=~(A1: A=>S)*(B1: A~>S)=~(0)*1=1*1=1
             S               A            W
       -------------       ______       ______
  -----| Żarówka   |-------o    o-------o    o------
  |    -------------                               |
  |                                                |
______                                             |
 ___    U (źródło napięcia)                        |
  |                                                |
  |                                                |
  --------------------------------------------------
Punkt odniesienia: przycisk A
Zmienne związane definicją: A, S
Zmienna wolna: W
Istotą implikacji odwrotnej A|~>S jest istnienie zmiennej wolnej W
podłączonej szeregowo z przyciskiem A

Definicja zmiennej związanej:
Zmienna związana to zmienna występujące w układzie uwzględniona w opisie matematycznym układu.
Zmienna związana z definicji jest ustawiana na 0 albo 1 przez człowieka.

Definicja zmiennej wolnej:
Zmienna wolna to zmienna występująca w układzie, ale nie uwzględniona w opisie matematycznym układu.
Zmienna wolna z definicji może być ustawiana na 0 albo 1 poza kontrolą człowieka.

Fizyczna interpretacja zmiennej wolnej W:
Wyobraźmy sobie dwa pokoje A i B.
W pokoju A siedzi Jaś mając do dyspozycji wyłącznie przycisk A, zaś w pokoju B siedzi Zuzia mając do dyspozycji wyłączne przycisk W. Oboje widzą dokładnie tą samą żarówkę S. Jaś nie widzi Zuzi, ani Zuzia nie widzi Jasia, ale oboje wiedzą o swoim wzajemnym istnieniu.
Zarówno Jaś jak i Zuzia dostają do ręki schemat S2, czyli są świadomi, że przycisk którego nie widzą istnieje w układzie S2, tylko nie mają do niego dostępu (zmienna wolna). Oboje są świadomi, że jako istoty żywe mają wolną wolę i mogą wciskać swój przycisk ile dusza zapragnie.
Punktem odniesienia na schemacie S2 jest Jaś siedzący w pokoju A, bowiem w równaniu opisującym układ występuje wyłącznie przycisk A - Jaś nie widzi przycisku W.

Matematycznie jest kompletnie bez znaczenia czy zmienna wolna W będzie pojedynczym przyciskiem, czy też dowolną funkcją logiczną f(w) zbudowaną z n przycisków, byleby dało się ustawić:
f(w) =1
oraz
f(w)=0
bowiem z definicji funkcja logiczna f(w) musi być układem zastępczym pojedynczego przycisku W, gdzie daje się ustawić zarówno W=1 jak i W=0.
Przykład:
f(w) = C+D*(E+~F)
Gdzie:
C, D, E - przyciski normalnie rozwarte
~F - przycisk normalnie zwarty

Także zmienna związana A nie musi być pojedynczym przyciskiem, może być zespołem n przycisków realizujących funkcję logiczną f(a) byleby dało się ustawić:
f(a) =1
oraz
f(a)=0
bowiem z definicji funkcja logiczna f(a) musi być układem zastępczym pojedynczego przycisku A, gdzie daje się ustawić zarówno A=1 jak i A=0.
Przykład:
f(a) = K+~L*~M
Gdzie:
K - przycisk normalnie rozwarty
~L, ~M - przyciski normalnie zwarte

Dokładnie z powyższego powodu w stosunku do układu S2 możemy powiedzieć, iż jest to fizyczny układ minimalny implikacji odwrotnej A|~>S
Warunkiem koniecznym, aby układ S2 był fizyczną, minimalną realizacją implikacji odwrotnej A|~>S jest przyjęcie punktu odniesienia ustawionego na przycisku A.

Kluczowym punktem zaczepienia w wprowadzeniu pełnej, symbolicznej definicji implikacji odwrotnej p|~>q jest definicja kontrprzykładu rodem z algebry Kubusia działająca wyłącznie w warunku wystarczającym =>.

Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>~q=p*~q

Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)

Uzupełnijmy naszą tabelę wykorzystując powyższe rozstrzygnięcia działające wyłącznie w warunkach wystarczających =>.
Kod:

T2
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji odwrotnej p|~>q
Kolumna A1B1 to punkt odniesienia:
p|~>q=~(A1: p=>q)*(B1: p~>q)=~(0)*1=1*1=1 - formalny punkt odniesienia
A|~>S=~(A1: A=>S)*(B1: A~>S)=~(0)*1=1*1=1 - aktualny punkt odniesienia
p=A - przycisk A (wejście)
q=S - żarówka S (wyjście)
       A1B1:         A2B2:        |     A3B3:         A4B4:
A:  1: p=>q  =0 = 2:~p~>~q=0     [=] 3: q~>p  =0 = 4:~q=>~p =0
A:  1: A=>S  =0 = 2:~A~>~S=0     [=] 3: S~>A  =0 = 4:~S=>~A =0
A’: 1: p~~>~q=1 =                [=]             = 4:~q~~>p =1
A’: 1: A~~>~S=1 =                [=]             = 4:~S~~>A =1                   
       ##            ##           |     ##            ##
B:  1: p~>q  =1 = 2:~p=>~q=1     [=] 3: q=>p  =1 = 4:~q~>~p =1
B:  1: A~>S  =1 = 2:~A=>~S=1     [=] 3: S=>A  =1 = 4:~S~>~A =1
B’:             = 2:~p~~>q=0     [=] 3: q~~>~p=0
B’:             = 2:~A~~>S=0     [=] 3: S~~>~A=0
---------------------------------------------------------------
IO: p|~>q=p*~q  = ~p|=>~q=p*~q   [=]  q|=>p=~q*p = ~q|~>~p=~q*p
IO: A|~>S=A*~S  = ~A|=>~S=A*~S   [=]  S|=>A=~S*A = ~S|~>~A=~S*A
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
A1: A=>S=0 - fałszywy A1 wymusza prawdziwy kontrprzykład A1’ (i odwrotnie)
B2:~A=>~S=1 - prawdziwy B2 wymusza fałszywy kontrprzykład B2’ (i odwrotnie)
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla udowodnienia, iż zdanie warunkowe „Jeśli p to q” wchodzi w skład implikacji odwrotnej p|~>q potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Bx i fałszywość dowolnego zdania serii Ax.
Zauważmy, że nie ma znaczenia które zdanie będziemy brali pod uwagę, bowiem prawami logiki matematycznej (prawa Kubusia, prawa Tygryska i prawa kontrapozycji) zdanie to możemy zastąpić zdaniem logicznie tożsamym z kolumny A1B1.

Komentarz:
1.
Zdania serii Ax są różne na mocy definicji ## od zdań serii Bx:
Definicja warunku wystarczającego p=>q w spójnikach „i”(*) i „lub”(+):
A1: p=>q = ~p+q
##
Definicja warunku koniecznego p~>q w spójnikach „i”(*) i „lub”(+):
B1: p~>q = p+~q
Gdzie:
## - różne na mocy definicji
2.
Wiersze IO wypełniono na mocy definicji implikacji prostej p|=>q i odwrotnej p|~>q w spójnikach „i”(*) i „lub”(+):
Definicja implikacji prostej p|=>q w spójnikach „i”(*) i „lub”(+):
p|=>q = ~p*q
##
Definicja implikacji odwrotnej p|~>q w spójnikach „i”(*) i „lub”(+):
p|~>q = p*~q
Gdzie:
## - różne na mocy definicji

Prawo śfinii:
Domyślny punkt odniesienia w zdaniach warunkowych „Jeśli p to q”:

W dowolnym zdaniu warunkowym „Jeśli a to b” zapisanym w zmiennych aktualnych a i b (mających związek z językiem potocznym człowieka), zawsze po „Jeśli..” zapisujemy formalny poprzednik p zaś po „to” zapisujemy formalny następnik q.
Zamieniać p i q w dowolnym zdaniu warunkowym z ustalonym wyżej domyślnym punktem odniesienia wolno nam tylko i wyłącznie na podstawie prawa Tygryska lub prawa kontrapozycji.

Definicja operatora implikacji odwrotnej A||~>S:
Operator implikacji odwrotnej A||~>S to odpowiedź na dwa pytania 1 i 2:

1.
Co może się wydarzyć jeśli przycisk A będzie wciśnięty (A=1)?

Odpowiedź na to pytanie mamy w kolumnie A1B1:
Jeśli przycisk A będzie wciśnięty (A=1) to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” - mówią o tym zdania B1 i A1’

B1.
Jeśli przycisk A będzie wciśnięty (A=1) to żarówka może ~> się nie świecić (S=1)
A~>S =1
Wciśnięcie przycisku A (A=1) jest warunkiem koniecznym ~> dla świecenia się żarówki S (S=1) bo jak przycisk A nie jest wciśnięty (~A=1) to żarówka na 100% => nie świeci się (~S=1)
Prawo Kubusia samo nam tu wyskoczyło:
B1: A~>S = B2: ~A=>~S

Na mocy prawa śfinii zapis formalny zdania B1 to:
B1: p~>q =1
p=A - przycisk A (wejście)
q=S - żarówka S (wyjście)
B1: A~>S =1
Dalsza analiza matematyczna związana będzie z przyjętym na mocy prawa śfinii punktem odniesienia, zdaniem B1.

LUB

Kontrprzykład A1’ dla fałszywego warunku wystarczającego => A1 musi być prawdą, stąd:
A1’.
Jeśli przycisk A będzie wciśnięty (A=1) to żarówka może ~> się nie świecić (~S=1)
A~~>~S = A*~S =1
to samo w zapisie formalnym:
~p~~>q = ~p*q =1
Możliwe jest (=1) zdarzenie: przycisk A nie jest wciśnięty (~A=1) i żarówka świeci się (S=1)
Gdy zmienna wolna W ustawiona jest na W=1.

2.
Co może się wydarzyć jeśli przycisk A nie będzie wciśnięty (~A=1)?

Odpowiedź mamy w kolumnie A2B2:
Jeśli przycisk A nie będzie wciśnięty (~A=1) to mamy gwarancję matematyczną => iż żarówka nie będzie się świecić - mówi o tym zdanie B2.

B2.
Jeśli przycisk A nie będzie wciśnięty (~A=1) to na 100% => żarówka nie będzie się świecić (~S=1)
~A=>~S =1
Brak wciśnięcie przycisku A (~A=1) daje nam gwarancję matematyczną => iż żarówka nie będzie się świecić (~S=1), bo przyciski A i W połączone są szeregowo.
Stan przycisku W jest tu bez znaczenia W=x gdzie: x={0,1}
Zachodzi tożsamość pojęć:
Gwarancja matematyczna => = Warunek wystarczający =>
Prawdziwość warunku wystarczającego => B2 wymusza fałszywość kontrprzykładu B2’ (i odwrotnie).

B2’.
Jeśli przycisk A nie będzie wciśnięty (~A=1) to żarówka może ~~> się świecić (S=1)
~A~~>S = ~A*S =0
Zauważmy, że przyciski A i W połączone są szeregowo, z czego wynika że:
Niemożliwe jest (=0) zdarzenie: przycisk A nie jest wciśnięty (~A=1) i żarówka świeci się (S=1)
Stan zmiennej wolnej W jest tu bez znaczenia: W=x gdzie: x={0,1}

Podsumowanie:
Istotą operatora implikacji odwrotnej A||~>S jest najzwyklejsze „rzucanie monetą” w rozumieniu „na dwoje babka wróżyła” po stronie wciśniętego przycisku A (A=1), oraz gwarancja matematyczna po stronie nie wciśniętego przycisku A (~A=1).

Dowód:
Zauważmy, że jeśli przycisk A będzie wciśnięty (A=1) to mamy najzwyklejsze „rzucanie monetą” w rozumieniu „na dwoje babka wróżyła” - mówią o tym zdania B1 i A1’
B1.
Jeśli przycisk A będzie wciśnięty (A=1) to żarówka może ~> się nie świecić (S=1)
A~>S =1
Wciśnięcie przycisku A (A=1) jest warunkiem koniecznym ~> dla świecenia się żarówki S (S=1)
LUB
A1’.
Jeśli przycisk A będzie wciśnięty (A=1) to żarówka może ~> się nie świecić (~S=1)
A~~>~S = A*~S =1
Możliwe jest (=1) zdarzenie: przycisk A nie jest wciśnięty (~A=1) i żarówka świeci się (S=1)

Natomiast:
Jeśli klawisz A nie będzie wciśnięty (~A=1) to mamy gwarancję matematyczną => iż żarówka będzie nie będzie się świecić (S=1) - mówi o tym zdanie B2.
B2.
Jeśli przycisk A nie będzie wciśnięty (~A=1) to na 100% => żarówka nie będzie się świecić (~S=1)
~A=>~S =1
Brak wciśnięcie przycisku A (~A=1) daje nam gwarancję matematyczną => iż żarówka nie będzie się świecić (~S=1)

3.10 Operator implikacji odwrotnej P2||=>P8 w zbiorach dla I klasy LO

Zadanie matematyczne w I klasie LO:
Zbadaj w skład jakiego operatora logicznego wchodzi poniższe zdanie:
Jeśli dowolna liczba jest podzielna przez 2 to może być podzielna przez 8
Dokonaj szczegółowej analizy tego operatora

Rozwiązanie:
W algebrze Kubusia w zbiorach zachodzi:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

Zdanie do analizy:
B0:
Jeśli dowolna liczba jest podzielna przez 2 to może być podzielna przez 8
P2~~>P8 = P2*P8 =?
Na początek zbadajmy czy zbiory P2 i P8 mają element wspólny ~~>.

Poprzednik p definiuje nam tu zbiór liczb podzielnych przez 2:
p = P2 =[2,4,6,8..] - zbiór liczb podzielnych przez 2
##
Następnik q definiuje nam zbiór liczb podzielnych przez 8:
q = P8 =[8,16,24..]
Gdzie:
## - zbiory różne na mocy definicji.

Z faktu iż zbiory P2 i P8 są różne na mocy definicji wynika, że wykluczona jest tu równoważność definiująca tożsamość zbiorów p=q.

Definicja tożsamości zbiorów p=q:
Zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q i zbiór q jest podzbiorem => zbioru p
p=q <=> (A1: p=>q)*(B3: q=>p) = p<=>q

Podstawmy:
p = P2
q = P8
Stąd nasze zdanie B0:
P2<=>P8 = (A1: P2=>P8)*(B3: P8=>P2) = 0*1 =0

Dowód prawdziwości/fałszywości zdań składowych:
A1.
Jeśli dowolna liczba jest podzielna przez 2 to na 100% => jest podzielna przez 8
P2=>P8 =0 - zbiór P2=[2,4,6,8..] nie jest (=0) podzbiorem => zbioru P8=[8,16,24..] - oczywistość
to samo w zapisie formalnym:
p=>q =0 - zbiór p nie jest (=0) podzbiorem => zbioru q

B3.
Jeśli dowolna liczba jest podzielna przez 8 to na 100% => jest podzielna przez 2
P8=>P2 =1 - zbiór P8=[8,16,24..] jest (=1) podzbiorem => zbioru P2=[2,4,6,8..]
Dowód prawdziwości B3:
Zbiór P2 to zbiór wszystkich liczb parzystych.
Zbiór P8 to zbiór liczb parzystych podzielnych przez 8, czyli zbiór będący częścią zbioru P2.
Wynika z tego że zbiór P8=[8,16,24..] jest podzbiorem => zbioru P2=[2,4,6,8..].
cnd

Dla zdania B3 skorzystajmy z prawa Tygryska:
B3: q=>p = B1: p~>q
Nasz przykład:
B3: P8=>P2 = B1: P2~>P8 =1
Na mocy prawa Tygryska prawdziwość warunku wystarczającego => B3 wymusza prawdziwość warunku koniecznego B1 (i odwrotnie)

Stąd mamy:
B1.
Jeśli dowolna liczba jest podzielna przez 2 to może ~> być podzielna przez 8
P2~>P8 =1
Podzielność dowolnej liczby przez 2 jest warunkiem koniecznym ~> jej podzielności przez 8, bo zbiór P2=[2,4,6,8..] jest nadzbiorem ~> zbioru P8=[8,16,24..]
Oczywistość na mocy dowodu prawdziwości zdania B3 i prawa Tygryska.
cnd

Stąd mamy rozstrzygnięcie iż zdania A1 i B1 wchodzą w skład podstawowej definicji implikacji odwrotnej P2|~>P8.
Implikacja odwrotna P2|~>P8 to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: P2=>P8 =0 - podzielność dowolnej liczby przez 2 nie jest (=0) wystarczająca => dla jej podzielności
przez 8 bo zbiór P2=[2,4,6,8..] nie jest podzbiorem => P8=[8,16,24..]
B1: P2~>P8 =1 - podzielność dowolnej liczby przez 2 jest (=1) warunkiem koniecznym ~>
dla jej podzielności przez 8, bo zbiór P2=[2,4,6,8..] jest nadzbiorem ~> P8=[8,16,24..]
Stąd mamy:
P2|~>P8 = ~(A1: P2=>P8)*(B1: P2~>P8) = ~(0)*1 =1*1 =1

Podstawmy wyprowadzoną wyżej definicję implikacji odwrotnej P2|~>P8 do matematycznych związków warunku wystarczającego => i koniecznego ~>
Kod:

T1
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji odwrotnej p|~>q
Kolumna A1B1 to punkt odniesienia:
p|~>q=~(A1: p=>q)*(B1: p~>q)=~(0)*1=1*1=1 - formalny punkt odniesienia
P2|~>P8=~(A1: P2=>P8)*(B1: P2~>P8)=~(0)*1=1*1=1 -aktualny punkt odniesienia
Punkt odniesienia:
p=P2=[2,4,6,8..] - zbiór liczb podzielnych przez 2
p=P8=[8,16,24..] - zbiór liczb podzielnych przez 8
      A1B1:      A2B2:     |     A3B3:       A4B4:
A: 1: p=>q   = 2:~p~>~q   [=] 3: q~>p   = 4:~q=>~p   =0 [=] 5: ~p+q
A: 1: P2=>P8 = 2:~P2~>~P8 [=] 3: P8~>P2 = 4:~P8=>~P2 =0 [=] 5: ~P2+P8
      ##          ##             ##          ##                 ##
B: 1: p~>q   = 2:~p=>~q   [=] 3: q=>p   = 4:~q~>~p   =1 [=] 5:  p+~q
B: 1: P2~>P8 = 2:~P2=>~P8 [=] 3: P8=>P2 = 4:~P8~>~P2 =1 [=] 5:  P2+~P8
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla udowodnienia, iż zdanie warunkowe „Jeśli p to q” wchodzi w skład implikacji odwrotnej p|~>q potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Bx i fałszywość dowolnego zdania serii Ax.
Zauważmy, że nie ma znaczenia które zdanie będziemy brali pod uwagę, bowiem prawami logiki matematycznej (prawa Kubusia, prawa Tygryska i prawa kontrapozycji) zdanie to możemy zastąpić zdaniem logicznie tożsamym z kolumny A1B1.

Wyżej udowodniliśmy prawdziwość twierdzenia odwrotnego B3: q=>p z linii Bx:
B3: q=>p =1
B3: P8=>P2=1
Prawo Tygryska:
B3: q=>p = B1: p~>q =1
B3: P8=>P2 = B1: P2~>~P* =1
oraz fałszywość twierdzenie prostego A1: P8=>P2=0 z linii Ax, zatem nic więcej nie musimy udowadniać, obowiązuje nas tabela prawdy T1.

Kluczowym punktem zaczepienia w wprowadzeniu symbolicznej definicji implikacji prostej p|=>q jest definicja kontrprzykładu rodem z algebry Kubusia działająca wyłącznie w warunku wystarczającym =>.

Definicja kontrprzykładu w zbiorach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane elementem wspólnym zbiorów p~~>~q=p*~q

Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)

Uzupełnijmy naszą tabelę wykorzystując powyższe rozstrzygnięcia działające wyłącznie w warunkach wystarczających =>.
Kod:

T2
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji odwrotnej p|~>q
Kolumna A1B1 to punkt odniesienia:
p|~>q=~(A1: p=>q)*(B1: p~>q)=~(0)*1=1*1=1 - formalny punkt odniesienia
P2|~>P8=~(A1: P2=>P8)*(B1: P2~>P8)=~(0)*1=1*1=1 -aktualny punkt odniesienia
Punkt odniesienia:
p=P2=[2,4,6,8..] - zbiór liczb podzielnych przez 2
p=P8=[8,16,24..] - zbiór liczb podzielnych przez 8
       A1B1:          A2B2:          |     A3B3:           A4B4:
A:  1: p=>q    =0 = 2:~p~>~q  =0    [=] 3: q~>p    =0  = 4:~q=>~p   =0
A:  1: P2=>P8  =0 = 2:~P2~>~P8=0    [=] 3: P8~>P2  =0  = 4:~P8=>~P2 =0
A’: 1: p~~>~q  =1 =                 [=]                = 4:~q~~>p   =1                   
A’: 1: P2~~>~P8=1 =                 [=]                = 4:~P8~~>P2 =1                   
       ##            ##              |     ##             ##
B:  1: p~>q    =1 = 2:~p=>~q  =1    [=] 3: q=>p    =1   = 4:~q~>~p  =1
B:  1: P2~>P8  =1 = 2:~P2=>~P8=1    [=] 3: P8=>P2  =1   = 4:~P8~>~P2=1
B’:               = 2:~p~~>q  =0    [=] 3: q~~>~p  =0
B’:               = 2:~P2~~>P8=0    [=] 3: P8~~>~P2=0
---------------------------------------------------------------
IO p|~>q=p*~q     = ~p|=>~q=p*~q     [=]  q|=>p=~q*p    = ~q|~>~p=~q*p
IO P2|~>P8=P2*~P8 = ~P2|=>~P8=P2*~P8 [=] P8|=>P2=~P8*P2 = ~P8|~>~P2=~P8*P2
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
A1: P2=>P8=0 -fałszywy A1 wymusza prawdziwy kontrprzykład A1’ (i odwrotnie)
B2:~P2=>~P8=1 -prawdziwy B2 wymusza fałszywy kontrprzykład B2’(i odwrotnie)
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Komentarz:
1.
Zdania serii Ax są różne na mocy definicji ## od zdań serii Bx:
Definicja warunku wystarczającego p=>q w spójnikach „i”(*) i „lub”(+):
A1: p=>q = ~p+q
##
Definicja warunku koniecznego p~>q w spójnikach „i”(*) i „lub”(+):
B1: p~>q = p+~q
Gdzie:
## - różne na mocy definicji
2.
Wiersze IO wypełniono na mocy definicji implikacji prostej p|=>q i odwrotnej p|~>q w spójnikach „i”(*) i „lub”(+):
Definicja implikacji prostej p|=>q w spójnikach „i”(*) i „lub”(+):
p|=>q = ~p*q
##
Definicja implikacji odwrotnej p|~>q w spójnikach „i”(*) i „lub”(+):
p|~>q = p*~q
Gdzie:
## - różne na mocy definicji

W algebrze Kubusia w zbiorach zachodzi:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

Prawo śfinii:
Domyślny punkt odniesienia w zdaniach warunkowych „Jeśli p to q”:

W dowolnym zdaniu warunkowym „Jeśli a to b” zapisanym w zmiennych aktualnych a i b (mających związek z językiem potocznym człowieka), zawsze po „Jeśli..” zapisujemy formalny poprzednik p zaś po „to” zapisujemy formalny następnik q.
Zamieniać p i q w dowolnym zdaniu warunkowym z ustalonym wyżej domyślnym punktem odniesienia wolno nam tylko i wyłącznie na podstawie prawa Tygryska lub prawa kontrapozycji.

Zdanie analizowane - punkt odniesienia:
B1.
Jeśli dowolna liczba jest podzielna przez 2 to może ~> być podzielna przez 8
P2~>P8 =1
Podzielność dowolnej liczby przez 2 jest (=1) warunkiem koniecznym ~> jej podzielności przez 8, bo zbiór P2=[2,4,6,8..] jest (=1) nadzbiorem ~> zbioru P8=[8,16,24..]

Wyznaczamy wszystkie możliwe zbiory P2, ~P2, P8 i ~P8 które będą potrzebne w dalszej analizie.
P2=[2,4,6,8..] - zbiór wszystkich liczb podzielnych przez 2
P8=[8,16,24..] - zbiór liczb podzielnych przez 8
Przyjmijmy dziedziną minimalną wspólną dla p i q:
LN=[1,2,3,4,5,6,7,8,9..] - zbiór liczb naturalnych
Stąd mamy przeczenia zbiorów definiowane jako uzupełnienia do dziedziny:
~P2 = [LN-P2]=[1,3,5,7,9..] - zbiór wszystkich liczb niepodzielnych przez 2
~P8 = [LN-P8] = [1,2,3,4,5,6,7..9..] - zbiór liczb niepodzielnych przez 8

Definicja operatora implikacji odwrotnej P2||~>P8:
Operator implikacji odwrotnej P2||~>P8 to odpowiedź na dwa pytania 1 i 2:

1.
Co może się wydarzyć, jeśli ze zbioru liczb naturalnych LN wylosujemy liczbę podzielną przez 2 (P2=1)?

Odpowiedź mamy w kolumnie A1B1:
Jeśli ze zbioru liczb naturalnych wylosujemy liczbę podzielną przez 2 to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła”, o czym mówią zdania prawdziwe B1 i A1’

B1.
Jeśli dowolna liczba jest podzielna przez 2 (P2=1) to może ~> być podzielna przez 8 (P8=1)
P2~>P8 =1
to samo w zapisie formalnym:
p~>q =1
Na mocy prawa śfinii zdanie B1 jest punktem odniesienia:
p=P2
q=P8
Definicja warunku koniecznego ~> jest tu spełniona bo zbiór P2=[2,4,6,8..] jest nadzbiorem ~> zbioru P8=[8,16,24..]

LUB

Kontrprzykład A1’ dla fałszywego warunku wystarczającego A1: P2=>P8 =0 musi być prawdą
Prawdziwości kontrprzykładu A1’ nie musimy zatem dowodzić wprost, ale możemy dowodzić.
A1’.
Jeśli dowolna liczba jest podzielna przez 2 (P2=1) to może ~~> nie być podzielna przez 8 (~P8=1)
P2~~>~P8 = P2*~P8 =1
to samo w zapisie formalnym:
p~~>~q = p*~q =1
Definicja elementu wspólnego ~~> zbiorów P2=[2,4,6,8..] i ~P8=[1,2,3,4,5,6,7..9..] jest spełniona bo np. 2

2.
Co może się wydarzyć, jeśli ze zbioru liczb naturalnych LN wylosujemy liczbę niepodzielną przez 2 (~P2=1)?

Prawo Kubusia:
B1: P2~>P8 = B2:~P2=>~P8

Odpowiedź na to pytanie mamy w kolumnie A2B2:
Jeśli ze zbioru liczb naturalnych wylosujemy liczbą niepodzielną przez 2 (~P2=1) to mamy gwarancję matematyczną => iż ta liczba nie będzie podzielna przez 8 - mówi o tym zdanie B2.

B2.
Jeśli dowolna liczba nie jest podzielna przez 2 (~P2=1) to na 100% => nie jest podzielna przez 8 (~P8=1)
~P2=>~P8 =1
to samo w zapisie formalnym:
~p=>~q =1
Brak podzielności dowolnej liczby przez 2 (~P2=1) jest warunkiem wystarczającym => dla jej niepodzielności przez 8 (~P8=1), bo zbiór ~P2=[1,3,5,7,9..] jest nadzbiorem ~> zbioru ~P8=[1,2,3,4,5,6,7..9..]
Tego faktu nie musimy udowadniać wprost bowiem wynika on z udowodnionego wyżej warunku koniecznego ~>:
B1: P2~>P8 =1
oraz z prawa Kubusia:
B1: P2~>P8 = B2:~P2=>~P8
Matematyka to matematyka, tu nie ma dyskusji.
Jeśli prawdziwe jest zdanie B1 to musi być prawdziwe zdanie B2.
cnd

Z prawdziwości warunku wystarczającego => B2 wynika fałszywość kontrprzykładu B2’ (i odwrotnie).
B2’.
Jeśli dowolna liczba nie jest podzielna przez 2 (~P2=1) to może ~~> być podzielna przez 8 (P8=1)
~P2~~>P8 = ~P2*P8 =0
to samo w zapisie formalnym:
~p~~>q = ~p*q =0
Definicja elementu wspólnego zbiorów ~~> nie jest (=0) spełniona bo zbiory ~P2=[1,3,5,7,9..] i P8=[8,16,24..] nie mają elementu wspólnego zbiorów.
Tego faktu nie musimy udowadniać wprost, bo wynika on z prawdziwości warunku wystarczającego => B2.
Dowód wprost jest tu prosty:
Zbiór ~P2=[1,3,5,7,9..] to zbiór wszystkich liczb nieparzystych.
Zbiór P8=[8,16,24..] - to zbiór liczb parzystych.
Na mocy definicji dowolny zbiór liczb nieparzystych jest rozłączny z dowolnym zbiorem liczb parzystych.
cnd

Podsumowanie:
1.
Doskonale widać, że:
Jeśli ze zbioru liczb naturalnych LN wylosujemy liczbę podzielną przez 2 (P2=1) to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” - mówią o tym zdania B1 i A1’.
B1.
Jeśli dowolna liczba jest podzielna przez 2 (P2=1) to może ~> być podzielna przez 8 (P8=1)
P2~>P8 =1
Definicja warunku koniecznego ~> jest tu spełniona bo zbiór P2=[2,4,6,8..] jest nadzbiorem ~> zbioru P8=[8,16,24..]
LUB
A1’.
Jeśli dowolna liczba jest podzielna przez 2 (P2=1) to może ~~> nie być podzielna przez 8 (~P8=1)
P2~~>~P8 = P2*~P8 =1
Definicja elementu wspólnego ~~> zbiorów P2=[2,4,6,8..] i ~P8=[1,2,3,4,5,6,7..9..] jest spełniona bo np. 2

2.
Natomiast:
Jeśli ze zbioru liczb naturalnych LN wylosujemy liczbę niepodzielną przez 2 (~P2=1) to mamy gwarancję matematyczną => iż liczba ta nie będzie podzielna przez 8 - mówi o tym zdanie B2.
B2.
Jeśli dowolna liczba nie jest podzielna przez 2 (~P2=1) to na 100% => nie jest podzielna przez 8 (~P8=1)
~P2=>~P8 =1
Brak podzielności dowolnej liczby przez 2 (~P2=1) jest warunkiem wystarczającym => dla jej niepodzielności przez 8 (~P8=1), bo zbiór ~P2=[1,3,5,7,9..] jest nadzbiorem ~> zbioru ~P8=[1,2,3,4,5,6,7..9..]
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 35963
Przeczytał: 15 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Nie 15:25, 11 Kwi 2021    Temat postu:

Algebra Kubusia - wykład rozszerzony
4.0 Równoważność p<=>q

Spis treści
4.0 Równoważność p<=>q 1
4.1 Definicja podstawowa równoważności p<=>q 1
4.1.1 Równoważność w logice dodatniej p<=>q i ujemnej ~p<=>~q 3
4.1.2 Definicja operatora równoważności p|<=>q 7
4.2 Równoważność p<=>q jako tożsamość zbiorów/pojęć 8
4.3 Analiza podstawowa równoważności p<=>q 10
4.3.1 Zero-jedynkowa definicja równoważności p<=>q 12


4.0 Równoważność p<=>q

Definicja operatora implikacyjnego:
Operator implikacyjny to operator wyrażony zdaniami warunkowymi „Jeśli p to q”

Fundamentem wszystkich operatorów implikacyjnych są matematyczne związki warunków wystarczających => i koniecznych ~> w rachunku zero-jedynkowym

W algebrze Kubusia w zbiorach zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

4.1 Definicja podstawowa równoważności p<=>q

Definicja podstawowa równoważności p<=>q:
Równoważność p<=>q to jednoczesne zachodzenie zarówno warunku wystarczającego =>, jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
##
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
stąd:
p<=>q = (A1: p=>q)*(B1: p~>q) = 1*1 =1

Podstawmy tą definicję do matematycznych związków warunku wystarczającego => i koniecznego ~>:
Kod:

T1
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w równoważności p<=>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
A1B1: p<=>q=(A1: p=>q)*(B1: p~>q)=1*1=1
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p =1 [=] 5: ~p+q
      ##        ##           ##        ##               ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p =1 [=] 5:  p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla udowodnienia, iż zdanie warunkowe „Jeśli p to q” wchodzi w skład równoważności p<=>q potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Ax oraz prawdziwość dowolnego zdania serii Bx.
Zauważmy, że nie ma znaczenia które zdanie będziemy brali pod uwagę, bowiem prawami logiki matematycznej (prawa Kubusia, prawa Tygryska i prawa kontrapozycji) zdanie to możemy zastąpić zdaniem logicznie tożsamym z kolumny A1B1.

Kluczowym punktem zaczepienia w wprowadzeniu symbolicznej definicji równoważności p<=>q jest definicja kontrprzykładu rodem z algebry Kubusia działająca wyłącznie w warunku wystarczającym =>.

Definicja kontrprzykładu w zbiorach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane elementem wspólnym zbiorów p~~>~q=p*~q

Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>~q=p*~q

Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)

Uzupełnijmy naszą tabelę wykorzystując powyższe rozstrzygnięcia działające wyłącznie w warunkach wystarczających =>.
Kod:

T2
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w równoważności p<=>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
A1B1: p<=>q=(A1: p=>q)*(B1: p~>q)=1*1=1
       A1B1:           A2B2:          |     A3B3:            A4B4:
A:  1: p=>q  =1   = 2:~p~>~q=1       [=] 3: q~>p  =1    = 4:~q=>~p =1
A’: 1: p~~>~q=0   =                  [=]                = 4:~q~~>p =0
       ##              ##             |     ##               ##
B:  1: p~>q  =1   = 2:~p=>~q=1       [=] 3: q=>p  =1    = 4:~q~>~p =1
B’:               = 2:~p~~>q=0       [=] 3: q~~>~p=0
--------------------------------------------------------------------------
R: p<=>q=p*q+~p*~q ~p<=>~q=p*q+~p*~q [=] q<=>p=p*q+~p*~q ~q<=>~p=p*q+~p*~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
A1: p=>q=1 - prawdziwy A1 wymusza fałszywy kontrprzykład A1’ (i odwrotnie)
B2:~p=>~q=1 - prawdziwy B2 wymusza fałszywy kontrprzykład B2’ (i odwrotnie)
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


4.1.1 Równoważność w logice dodatniej p<=>q i ujemnej ~p<=>~q

Kod:

T2
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w równoważności p<=>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
A1B1: p<=>q=(A1: p=>q)*(B1: p~>q)=1*1=1
       A1B1:           A2B2:          |     A3B3:            A4B4:
A:  1: p=>q  =1   = 2:~p~>~q=1       [=] 3: q~>p  =1    = 4:~q=>~p =1
A’: 1: p~~>~q=0   =                  [=]                = 4:~q~~>p =0
       ##              ##             |     ##               ##
B:  1: p~>q  =1   = 2:~p=>~q=1       [=] 3: q=>p  =1    = 4:~q~>~p =1
B’:               = 2:~p~~>q=0       [=] 3: q~~>~p=0
--------------------------------------------------------------------------
R: p<=>q=p*q+~p*~q ~p<=>~q=p*q+~p*~q [=] q<=>p=p*q+~p*~q ~q<=>~p=p*q+~p*~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
A1: p=>q=1 - prawdziwy A1 wymusza fałszywy kontrprzykład A1’ (i odwrotnie)
B2:~p=>~q=1 - prawdziwy B2 wymusza fałszywy kontrprzykład B2’ (i odwrotnie)
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Definicja podstawowa równoważności p<=>q w logice dodatniej (bo q):
Kolumna A1B1:
Równoważność p<=>q w logice dodatniej (bo q) to spełnienie zarówno warunku wystarczającego =>, jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
stąd:
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) = 1*1 =1
Prawą stronę czytamy:
Zajście p jest konieczne ~> i wystarczające => dla zajścia q
Innymi słowy:
Zajście p jest potrzebne ~> i wystarczające => dla zajścia q
Innymi słowy (lewą stronę czytamy):
Zajdzie p wtedy i tylko wtedy gdy zajdzie q
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) = 1*1 =1

Definicja podstawowa równoważności p<=>q jest w praktyce doskonale znana każdemu człowiekowi (nie tylko matematykom).
Dowód:
Klikamy na googlach:
„konieczne i wystarczające”
Wyników: 14 500
„koniecznym i wystarczającym”
Wyników: 12 400
„potrzebne i wystarczające”
wyników: 1 850
„potrzeba i wystarcza”
Wyników: 15 500
Zachodzi matematyczna tożsamość pojęć:
konieczne ~> = potrzebne ~>

Definicja równoważności ~p<=>~q w logice ujemnej (bo ~q):
Kolumna A2B2:
Równoważność ~p<=>~q w logice ujemnej (bo ~q) to jednoczesne spełnienie zarówno warunku wystarczającego =>, jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A2: ~p~>~q =1 - zajście ~p jest (=1) konieczne ~> dla zajścia ~q
B2: ~p=>~q =1 - zajście ~p jest (=1) wystarczające => dla zajścia ~q
Stąd:
A2B2: ~p<=>~q = (A2: ~p~>~q)*(B2:~p=>~q)=1*1=1
Prawą stronę czytamy:
Zajście ~p jest konieczne ~> i wystarczające => dla zajścia ~q
Innymi słowy:
Zajście ~p jest potrzebne ~> i wystarczające => dla zajścia ~q
Innymi słowy (lewą stronę czytamy):
Zajdzie ~p wtedy i tylko wtedy gdy zajdzie ~q
A2B2: ~p<=>~q = (A2: ~p~>~q)*(B2:~p=>~q)=1*1=1

Matematycznie zachodzi tożsamość logiczna:
p<=>q = ~p<=>~q
Dowód:
p<=>q = (A1: p=>q)*(B1: p~>q) = (A2: ~p~>~q)*(B2: ~p=>~q) = ~p<=>~q
bo prawa Kubusia:
A1: p=>q = A2: ~p~>~q
B1: p~>q = B2: ~p=>~q
cnd

Dowód matematycznie tożsamy:

Definicja warunku wystarczającego p=>q:
p=>q = ~p+q
##
Definicja warunku koniecznego p~>q:
p~>q = p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Stąd mamy:
A1B1:
Równoważność p<=>q w logice dodatniej (bo q):
A1: p=>q =1
B1: p~>q =1
p<=>q = (A1: p=>q)*(B1: p~>q) = (~p+q)*(p+~q) = ~p*p + ~p*~q + q*p + q*~q = p*q+~p*~q
p<=>q = p*q + ~p*~q

A2B2:
Równoważność ~p<=>~q w logice ujemnej (bo ~q):
A2: ~p~>~q =1
B2: ~p=>~q =1
~p<=>~q = (A2: ~p~>~q)*(B2:~p=>~q)= (~p+q)*(p+~q) = ~p*p + ~p*~q + q*p + q*~q = p*q+~p*~q
~p<=>~q = p*q+~p*~q

Stąd mamy logiczną tożsamość:
p<=>q = ~p<=>~q = p*q + ~p*~q

Definicja tożsamości logicznej „=”:
p<=>q = ~p<=>~q - prawo rachunku zero-jedynkowego
Prawdziwość dowolnej strony tożsamości logicznej „=” wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej „=” wymusza fałszywość drugiej strony

Innymi słowy:
Udowodnienie iż dany układ spełnia definicję równoważności p<=>q w logice dodatniej (bo q) jest tożsame z udowodnieniem iż ten sam układ spełnia definicję równoważności ~p<=>~q w logice ujemnej (bo ~q), albo odwrotnie.

Warto zapamiętać różnice:

Definicja warunku wystarczającego p=>q:
A1: p=>q = ~p+q
##
Definicja implikacji prostej IP: p|=>q w logice dodatniej (bo q):
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
stąd:
Definicja implikacji prostej IP: p|=>q w równaniu logicznym:
IP: p|=>q = (A1: p=>q)*~(B1: p~>q) = ~p*q
##
Definicja warunku koniecznego p~>q
B1: p~>q = p+~q
##
Definicja implikacji odwrotnej IO: p|~>q w logice dodatniej (bo q):
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
stąd:
Definicja implikacji odwrotnej IO: p|~>q w równaniu logicznym:
IO: p|~>q = ~(A1: p=>q)*(B1: p=>q) = p*~q
##
Definicja równoważności p<=>q w logice dodatniej (bo q):
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
stąd:
Definicja równoważności R: p<=>q w równaniu logicznym:
R: p<=>q = (A1: p=>q)*(B1: p~>q) = p*q+~p*~q
Gdzie:
## - różne na mocy definicji ##

Definicja znaczka różne na mocy definicji ## dla funkcji logicznych:
Dwie funkcje logiczne są różne na mocy definicji ## wtedy i tylko wtedy gdy nie są tożsame i żadna z nich nie jest zaprzeczeniem drugiej

Weźmy nasze funkcje logiczne IP, IO, R:
Kod:

 IP: Y= (p|=>q)=~p*q ##  IO: Y=(p|~>q)=p*~q  ##  R: Y=(p<=>q) =p*q+~p*~q
     #                       #                      #
~IP:~Y=~(p|=>q)=p+~q ## ~IO:~Y=~(p|~>q)=~p+q ## ~R:~Y=~(p<=>q)=p*~q+~p*q
Gdzie:
# - różne w znaczeniu iż jedna strona jest negacją drugiej strony
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Doskonale widać, że dowolna funkcja z jednej strony znaczka różne na mocy definicji ## nie jest tożsama z funkcją po przeciwnej stronie ani też nie jest jej zaprzeczeniem.

Porównajmy jeszcze implikacje prostą IP i odwrotną IO z warunkiem wystarczającym WW.
Kod:

 IP: Y= (p|=>q)=~p*q ##  IO: Y=(p|~>q)=p*~q  ## WW: Y= (p=>q)=~p+q
     #                       #                      #
~IP:~Y=~(p|=>q)=p+~q ## ~IO:~Y=~(p|~>q)=~p+q ##~WW:~Y=~(p=>q)= p*~q
Gdzie:
# - różne w znaczeniu iż jedna strona jest negacją drugiej strony
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Tu również doskonale widać, że dowolna funkcja z jednej strony znaczka różne na mocy definicji ## nie jest tożsama z funkcją po przeciwnej stronie ani też nie jest jej zaprzeczeniem.

Uwaga!
Bez wprowadzenia do logiki matematycznej pojęcia funkcji logicznej w logice dodatniej (bo Y) oraz funkcji logicznej w logice ujemnej (bo ~Y) logika matematyczna jest niejednoznaczna, czyli jest do bani.

Popatrzmy:

Z funkcją logiczną Y definicja znaczka różne na mocy definicji ## jest spełniona:
Dowód:
Definicja implikacji odwrotnej p|~>q w spójnikach „i”(*) i „lub”(+):
p|~>q = p*~q
stąd:
WW: Y=(p=>q)=~p+q ## ~IO: ~Y=~(p|~>q)= ~(p*~q) = ~p+q
W powyższym zapisie uwzględniającym Y i ~Y definicja znaczka różne na mocy definicji ## jest spełniona!
cnd

Bez funkcji logicznej Y definicja znaczka różne na mocy definicji ## nie jest spełniona:
Dowód:
Definicja implikacji odwrotnej p|~>q w spójnikach „i”(*) i „lub”(+):
p|~>q = p*~q
stąd:
WW: (p=>q)=~p+q [=] ~IO: ~(p|~>q)=~(p*~q) = ~p+q
W powyższym zapisie gdzie nie ma funkcji logicznych Y i ~Y zachodzi fałszywa tożsamość logiczna - logika matematyczna leży, kwiczy i błaga o litość.
cnd

4.1.2 Definicja operatora równoważności p|<=>q
Kod:

T2
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w równoważności p<=>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
A1B1: p<=>q=(A1: p=>q)*(B1: p~>q)=1*1=1
       A1B1:           A2B2:          |     A3B3:            A4B4:
A:  1: p=>q  =1   = 2:~p~>~q=1       [=] 3: q~>p  =1    = 4:~q=>~p =1
A’: 1: p~~>~q=0   =                  [=]                = 4:~q~~>p =0
       ##              ##             |     ##               ##
B:  1: p~>q  =1   = 2:~p=>~q=1       [=] 3: q=>p  =1    = 4:~q~>~p =1
B’:               = 2:~p~~>q=0       [=] 3: q~~>~p=0
--------------------------------------------------------------------------
R: p<=>q=p*q+~p*~q ~p<=>~q=p*q+~p*~q [=] q<=>p=p*q+~p*~q ~q<=>~p=p*q+~p*~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
A1: p=>q=1 - prawdziwy A1 wymusza fałszywy kontrprzykład A1’ (i odwrotnie)
B2:~p=>~q=1 - prawdziwy B2 wymusza fałszywy kontrprzykład B2’ (i odwrotnie)
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


Definicja operatora równoważności p|<=>q:
Operator równoważności p|<=>q to złożenie równoważności p<=>q w logice dodatniej (bo q) zdefiniowanej w kolumnie A1B1 oraz równoważności ~p<=>~q w logice ujemnej (bo ~q) zdefiniowanej w kolumnie A2B2.

Innymi słowy:
Operator równoważności p|<=>q to odpowiedź na dwa pytania 1 i 2:

1.
Co może się wydarzyć jeśli zajdzie p (p)?

Odpowiedź mamy w kolumnie A1B1:
Równoważność p<=>q w logice dodatniej (bo q) to spełnienie zarówno warunku wystarczającego =>, jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
stąd:
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) = 1*1 =1
Prawą stronę czytamy:
Zajście p jest konieczne ~> i wystarczające => dla zajścia q
Innymi słowy (lewą stronę czytamy):
Zajdzie p wtedy i tylko wtedy gdy zajdzie q
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) = 1*1 =1

W rozpisce na warunek wystarczający => mamy:
A1.
Jeśli zajdzie p (p=1) to na 100% => zajdzie q (q=1)
p=>q =1
Zajście p jest (=1) wystarczające => dla zajścia q
Zajście p daje nam (=1) gwarancję matematyczną => zajścia q
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>
Kontrprzykład A1’ dla prawdziwego warunku wystarczającego => A1 musi być fałszem.
A1’.
Jeśli zajdzie p (p=1) to może ~~> zajść ~q (~q=1)
p~~>~q = p*~q =0
Zdarzenia:
Nie jest możliwe (=0) jednoczesne zajście zdarzeń ~~>: p i ~q
Zbiory:
Nie istnieje (=0) element wspólny zbiorów ~~>: p i ~q

2.
Co może się wydarzyć jeśli zajdzie ~p?

Odpowiedź mamy w kolumnie A2B2:
Równoważność ~p<=>~q w logice ujemnej (bo ~q) to spełnienie zarówno warunku wystarczającego =>, jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A2: ~p~>~q =1 - zajście ~p jest (=1) konieczne ~> dla zajścia ~q
B2: ~p=>~q =1 - zajście ~p jest (=1) wystarczające => dla zajścia ~q
Stąd:
A2B2: ~p<=>~q = (A2: ~p~>~q)*(B2:~p=>~q)=1*1=1
Prawą stronę czytamy:
Zajście ~p jest konieczne ~> i wystarczające => dla zajścia ~q
Innymi słowy (lewą stronę czytamy):
Zajdzie ~p wtedy i tylko wtedy gdy zajdzie ~q
A2B2: ~p<=>~q = (A2: ~p~>~q)*(B2:~p=>~q)=1*1=1

W rozpisce na warunek wystarczający => mamy:
B2.
Jeśli zajdzie ~p (~p=1) to na 100% => zajdzie ~q (~q=1)
~p=>~q =1
Zajście ~p jest (=1) wystarczające => dla zajścia ~q
Zajście ~p daje nam (=1) gwarancję matematyczną => zajścia ~q
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>
Kontrprzykład B2’ dla prawdziwego warunku wystarczającego => B2 musi być fałszem.
B2’.
Jeśli zajdzie ~p (~p=1) to może ~~> zajść q (q=1)
~p~~>q = ~p*q =0
Zdarzenia:
Nie jest możliwe (=0) jednoczesne zajście zdarzeń ~~>: ~p i q
Zbiory:
Nie istnieje (=0) element wspólny zbiorów ~~>: ~p i q

4.2 Równoważność p<=>q jako tożsamość zbiorów/pojęć

Przyjrzyjmy się tabeli prawdy dla równoważności p<=>q:
Kod:

T2
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w równoważności p<=>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
A1B1: p<=>q=(A1: p=>q)*(B1: p~>q)=1*1=1
       A1B1:           A2B2:          |     A3B3:            A4B4:
A:  1: p=>q  =1   = 2:~p~>~q=1       [=] 3: q~>p  =1    = 4:~q=>~p =1
A’: 1: p~~>~q=0   =                  [=]                = 4:~q~~>p =0
       ##              ##             |     ##               ##
B:  1: p~>q  =1   = 2:~p=>~q=1       [=] 3: q=>p  =1    = 4:~q~>~p =1
B’:               = 2:~p~~>q=0       [=] 3: q~~>~p=0
--------------------------------------------------------------------------
R: p<=>q=p*q+~p*~q ~p<=>~q=p*q+~p*~q [=] q<=>p=p*q+~p*~q ~q<=>~p=p*q+~p*~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
A1: p=>q=1 - prawdziwy A1 wymusza fałszywy kontrprzykład A1’ (i odwrotnie)
B2:~p=>~q=1 - prawdziwy B2 wymusza fałszywy kontrprzykład B2’ (i odwrotnie)
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Zauważmy że:
Dla udowodnienia, iż zdanie warunkowe „Jeśli p to q” wchodzi w skład równoważności p<=>q potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Ax oraz prawdziwość dowolnego zdania serii Bx.
Zauważmy, że nie ma znaczenia które zdanie będziemy brali pod uwagę, bowiem prawami logiki matematycznej (prawa Kubusia, prawa Tygryska i prawa kontrapozycji) zdanie to możemy zastąpić zdaniem logicznie tożsamym z kolumny A1B1.

W algebrze Kubusia w zbiorach zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

Z tabeli T2 odczytujemy matematyczną definicję równoważności.

Matematyczna definicja równoważności p<=>q:
Matematyczna definicja równoważności to relacja podzbioru => zachodząca w dwie strony.
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B3: q=>p =1 - zajście q jest (=1) wystarczające => dla zajścia p
Zajdzie p wtedy i tylko wtedy gdy zajdzie q
p<=>q = (A1: p=>q)*(B3: q=>p)=1*1=1

W algebrze Kubusia w zbiorach zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

Stąd mamy wyprowadzoną definicję tożsamości zbiorów p=q znaną każdemu ziemskiemu matematykowi.

Definicja tożsamości zbiorów p=q:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy zbiór p jest (=1) podzbiorem => zbioru q i jednocześnie zbiór q jest (=1) podzbiorem => zbioru p
p=q <=> (A1: p=>q)*(B3: q=>p) = p<=>q

Dla B3 skorzystajmy z prawa Tygryska:
B3: q=>p = B1: p~>q

Stąd mamy tożsamą definicję tożsamości zbiorów p=q.

Definicja tożsamości zbiorów p=q:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy zbiór p jest (=1) podzbiorem => zbioru q i jednocześnie zbiór p jest (=1) nadzbiorem ~> zbioru q
p=q <=> (A1: p=>q)*(B1: p~>q) = p<=>q

Analogicznie mamy:

Definicja tożsamości dwóch zdarzeń p i q (p=q):
Dwa zdarzenia p i q są logicznie tożsame p=q wtedy i tylko wtedy gdy znajdują się w relacji równoważności p<=>q
p=q <=> (A1: p=>q)*(B1: p~>q) = p<=>q

4.3 Analiza podstawowa równoważności p<=>q

Weźmy jeszcze raz tabelę prawdy równoważności w warunkach wystarczających => i koniecznych ~>
Kod:

T2
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w równoważności p<=>q
Przyjmijmy punkt odniesienia A1B2:
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B2:~p=>~q=1 - zajście ~p jest (=1) wystarczające => dla zajścia ~q
A1B2: p<=>q=(A1: p=>q)*(B2:~p=>~q)=1*1=1
       AB12                           | AB34
A1B2: p<=>q=(A1: p=>q)*(B2:~p=>~q)    |
       A1B1:           A2B2:          |     A3B3:            A4B4:
A:  1: p=>q  =1   = 2:~p~>~q=1       [=] 3: q~>p  =1    = 4:~q=>~p =1
A’: 1: p~~>~q=0   =                  [=]                = 4:~q~~>p =0
       ##              ##             |     ##               ##
B2A1: ~p=>~q=(B2:~p=>~q)*(A1: p=>q)   |
B:  1: p~>q  =1   = 2:~p=>~q=1       [=] 3: q=>p  =1    = 4:~q~>~p =1
B’:               = 2:~p~~>q=0       [=] 3: q~~>~p=0
--------------------------------------------------------------------------
R: p<=>q=p*q+~p*~q ~p<=>~q=p*q+~p*~q [=] q<=>p=p*q+~p*~q ~q<=>~p=p*q+~p*~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


Definicja operatora równoważności p|<=>q:
Operator równoważności p|<=>q to odpowiedź w spójnikach równoważności p<=>q i ~p<=>~q na dwa pytania 1 i 2:

1.
Kiedy zajdzie p?

Odpowiedź mamy w kolumnie A1B1:
Definicja spójnika równoważności p<=>q dla p:
Równoważność p<=>q to zachodzenie zarówno warunku koniecznego ~> jak i wystarczającego => między tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 - zajście p jest wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest konieczne ~> dla zajścia q
p<=>q = (A1: p=>q)*(B1: p~>q)=1*1=1
Innymi słowy:
Zajdzie p wtedy i tylko wtedy gdy zajdzie q
p<=>q = (A1: p=>q)*(B1: p~>q)=1*1=1

Odpowiedź na pytanie 1 mamy w łatwiejszym dowodzie prawdziwości warunku wystarczającego =>:
A1: p=>q =1
Kolumna A1B1:
p<=>q = (A1: p=>q)*(B1: p~>q)
A1.
Jeśli zajdzie p (p=1) to na 100% => zajdzie q (q=1)
p=>q =1
Zajście p jest (=1) wystarczające => dla zajścia q
Zbiory:
zajście p jest (=1) wystarczające => dla zajścia q wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q
Zdarzenia:
Zajście p jest (=1) wystarczające => dla zajścia q wtedy i tylko wtedy gdy zawsze gdy zajdzie p, zajdzie też q

Kontrprzykład A1’ dla prawdziwego warunku wystarczającego A1 musi być fałszem.
A1’
Jeśli zajdzie p (p=1) to może ~~> zajść ~q (~q=1)
p~~>~q =p*~q =0
W zbiorach:
Zbiory:
Nie istnieje (=0) wspólny element zbiorów p i ~q
Zdarzenia:
Nie jest możliwe (=0) jednoczesne zajście zdarzeń p i ~q

2.
Kiedy zajdzie ~p?

Odpowiedź mamy w kolumnie A2B2
Definicja spójnika równoważności ~p<=>~q dla ~p:
Równoważność ~p<=>~q to zachodzenie zarówno warunku koniecznego ~> jak i wystarczającego => między tymi samymi punktami i w tym samym kierunku
A2: ~p~>~q =1 - zajście ~p jest wystarczające => dla zajścia ~q
B2: ~p=>~q =1 - zajście ~p jest konieczne ~> dla zajścia ~q
p<=>q = (A1: p=>q)*(B1: p~>q)=1*1=1
Zajdzie ~p (~p=1) wtedy i tylko wtedy gdy zajdzie ~q (~q=1)
~p<=>~q = (A2: ~p~>~q)*(B2: ~p=>~q) =1*1=1
Zauważmy, że w tym momencie dowodzenie prawdziwości:
A2: ~p~>~q =1
nic nam nie da bo zachodzący tu warunek konieczny ~> udowodniliśmy w punkcie 1 na mocy prawa Kubusia:
A1: p=>q = A2:~p~>~q
Wniosek:
W kolumnie A2B2 musimy udowodnić prawdziwość warunku wystarczającego =>:
B2: ~p=>~q =1

Kolumna A2B2:
~p<=>~q = (A2: ~p~>~q)*(B2: ~p=>~q)
stąd:
B2.
Jeśli zajdzie ~p (~p=1) to na 100% => zajdzie ~q (~q=1)
~p=>~q =1
Zajście ~p jest (=1) wystarczające => dla zajścia ~q
Zbiory:
Zajście ~p jest (=1) wystarczające => dla zajścia ~q wtedy i tylko wtedy gdy zbiór ~p jest podzbiorem => zbioru ~q
Zdarzenia:
Zajście ~p jest (=1) wystarczające => dla zajścia ~q wtedy i tylko wtedy gdy zawsze gdy zajdzie ~p, zajdzie ~q

Kontrprzykład B2’ dla prawdziwego warunku wystarczającego B2 musi być fałszem.
B2’
Jeśli zajdzie ~p (~p=1) to może ~~> zajść q (q=1)
~p~~>q = ~p*q =0
Zbiory:
Nie istnieje (=0) wspólny element zbioru ~p i q
Zdarzenia:
Nie jest możliwe (=0) jednoczesne zajście zdarzeń ~p i q

Cecha charakterystyczna równoważności:
Równoważność p<=>q to jedyny spójnik logiczny gdzie mamy gwarancję matematyczną => (warunek wystarczający =>) zarówno po stronie p, jak i po stronie ~p.

4.3.1 Zero-jedynkowa definicja równoważności p<=>q

Zapiszmy powyższą analizę w tabeli prawdy:
Kod:

T2
Definicja symboliczna                |Co w logice jedynek
                                     |oznacza
A1B1: p<=>q=(A1: p=>q)*(B1: p~>q)    |
A1:  p=> q =1                        |( p=1)=> ( q=1)=1
A1’: p~~>~q=0                        |( p=1)~~>(~q=1)=0
A2B2:~p<=>~q=(A2:~p~>~q)*(B2:~p=>~q) |
B2: ~p=>~q =1                        |(~p=1)=> (~q=1)=1
B2’:~p~~>q =0                        |(~p=1)~~>( q=1)=0


Zauważmy, że zero-jedynkowo tabelę T2 możemy kodować wyłącznie w odniesieniu do równoważności A1B1: p<=>q albo w odniesieniu do równoważności A2B2:~p<=>~q
Dlaczego tabeli T2 nie możemy kodować z punktem odniesienia ustawionym na warunku wystarczającym A1: p=>q?
Odpowiedź:
A1B1: p<=>q=(A1: p=>q)*(B1: p~>q)=1*1=1
Warunek wystarczający A1: p=>q nie jest jedynym członem prawdziwym w równoważności p<=>q.

Zakodujmy powyższą analizę zero-jedynkowo z punktem odniesienia ustawionym na równoważności:
A1B1: p<=>q

Prawa Prosiaczka:
(p=1)=(~p=0)
(~p=1)=(p=0)

Prawa Prosiaczka możemy stosować wybiórczo do dowolnych zmiennych binarnych.
Dla wygenerowania zero-jedynkowej definicji równoważności p<=>q jest potrzebne i wystarczające jedno z praw Prosiaczka pozwalające na eliminację przeczeń w zapisach symbolicznych, bowiem w punkcie odniesienie A1B1: p<=>q mamy sygnały p i q bez przeczeń.

Potrzebne nam prawo Prosiaczka to:
(~p=1)=(p=0)
(~q=1)=(q=0)

Zakodujmy nasza tabelę T2 zero-jedynkowo:
Kod:

T3.
Definicja      |Co w logice       |Punkt odniesienia |Tabela tożsama
symboliczna    |Jedynek oznacza   |RA1: p<=>q        |
A1B1: p<=>q    |                  |                  | p   q  p<=>q
A1:  p=> q =1  |( p=1)=> ( q=1)=1 |( p=1)=> ( q=1)=1 | 1<=>1   =1
A1’: p~~>~q=0  |( p=1)~~>(~q=1)=0 |( p=1)~~>( q=0)=0 | 1<=>0   =0
A2B2:~p<=>~q   |                  |                  |
B2: ~p=>~q =1  |(~p=1)=> (~q=1)=1 |( p=0)=> ( q=0)=1 | 0<=>0   =1
B2’:~p~~>q =0  |(~p=1)~~>( q=1)=0 |( p=0)~~>( q=1)=0 | 0<=>1   =0
     a   b  c     d        e    f    g        h    i   1   2    3
                                  | Prawa Prosiaczka |
                                  | (~p=1)=(p=0)     |
                                  | (~q=1)=(q=0)     |

Tabela 123 to zero-jedynkowa definicja spójnika równoważności p<=>q w logice dodatniej (bo q), zwanego krótko równoważnością p<=>q

Zakodujmy zero-jedynkowo tabelę T2 z punktem odniesienia ustawionym na równoważności:
A2B2: ~p<=>~q
Prawo Kubusia z którego tu należy skorzystać to:
(p=1)=(~p=0)
(q=1)=(~q=0)
Uzasadnienie:
Wszystkie zmienne musimy sprowadzić do postaci zanegowanej ~p i ~q bowiem w punkcie odniesienia:
A2B2: ~p<=>~q
obie zmienne mamy zanegowane.
Kod:

T4.
Definicja     |Co w logice       |Punkt odniesienia |Tabela tożsama
symboliczna   |Jedynek oznacza   |RB2: ~p<=>~q      |
A1B1: p<=>q   |                  |                  |~p  ~q ~p<=>~q
A1:  p=> q =1 |( p=1)=> ( q=1)=1 |(~p=0)=> (~q=0)=1 | 0<=>0   =1
A1’: p~~>~q=0 |( p=1)~~>(~q=1)=0 |(~p=0)~~>(~q=1)=0 | 0<=>1   =0
A2B2:~p<=>~q  |                  |                  |
B2: ~p=>~q =1 |(~p=1)=> (~q=1)=1 |(~p=1)=> (~q=1)=1 | 1<=>1   =1
B2’:~p~~>q =0 |(~p=1)~~>( q=1)=0 |(~p=1)~~>(~q=0)=0 | 1<=>0   =0
    a    b  c    d        e    f    g        h    i   1   2    3
                                 | Prawa Prosiaczka |
                                 | (p=1)=(~p=0)     |
                                 | (q=1)=(~q=0)     |

Tabela 123 to zero-jedynkowa definicja spójnika równoważności ~p<=>~q w logice ujemnej (bo ~q), zwanego krótko równoważnością ~p<=>~q

Zauważmy, że w tabelach T3 i T4 wejściowa definicja symboliczna równoważności abc jest identyczna, stąd tożsamość kolumn wynikowych 3 w tabelach zero-jedynkowych 123 jest dowodem formalnym poprawności prawa rachunku zero-jedynkowego:
T3: p<=>q = T4: ~p<=>~q

Dowód powyższego prawa bezpośrednio w rachunku zero-jedynkowym jest następujący:
Kod:

Definicja równoważności p<=>q
     p   q p<=>q
A1:  1<=>1  =1
A1’: 1<=>0  =0
B2:  0<=>0  =1
B2’: 0<=>1  =0

Prawo rachunku zero-jedynkowego:
p<=>q = ~p<=>~q
Dowód:
Kod:

Prawo rachunku zero-jedynkowego do udowodnienia:
p<=>q = ~p<=>~q
     p   q p<=>q  ~p  ~q ~p<=>~q
A1:  1<=>1  =1     0<=>0   =1
A1’: 1<=>0  =0     0<=>1   =0
B2:  0<=>0  =1     1<=>1   =1
B2’: 0<=>1  =0     1<=>0   =0
     1   2   3     4   5    6

Tożsamość kolumn wynikowych 3=6 jest dowodem formalnym prawa rachunku zero-jedynkowego:
p<=>q = ~p<=>~q

Definicja tożsamości logicznej „=”:
p<=>q = ~p<=>~q
Prawdziwość dowolnej strony tożsamości logicznej „=” wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej „=” wymusza fałszywość drugiej strony

Z powyższego wynika, że definicja tożsamości logicznej „=” jest tożsama ze spójnikiem równoważności „wtedy i tylko wtedy” <=>

Wniosek:
Tożsamość logiczna „=” jest de facto spójnikiem równoważności p<=>q o definicji:
Kod:

Zero-jedynkowa definicja równoważności <=>
   p   q p<=>q
A: 1<=>1  =1
B: 1<=>0  =0
C: 0<=>0  =1
D: 0<=>1  =0

Fakt ten możemy wykorzystać w naszym zero-jedynkowym dowodzie prawa rachunku zero-jedynkowego:
p<=>q = ~p<=>~q
Kod:

Prawo rachunku zero-jedynkowego do udowodnienia:
p<=>q = ~p<=>~q
     p   q p<=>q  ~p  ~q ~p<=>~q  p<=>q <=> ~p<=>~q
A1:  1<=>1  =1     0<=>0   =1            1
A1’: 1<=>0  =0     0<=>1   =0            1
B2:  0<=>0  =1     1<=>1   =1            1
B2’: 0<=>1  =0     1<=>0   =0            1
     1   2   3     4   5    6            7

Same jedynki w kolumnie wynikowej 7 również są dowodem formalnym prawa rachunku zero-jedynkowego:
p<=>q = ~p<=>~q

Prawo rachunku zero-jedynkowego:
p<=>q = ~p<=>~q
można łatwo udowodnić bez tabel zero-jedynkowych.

Dowód tożsamy:
p<=>q = (A1: p=>q)*(B1: p~>q) = (A2:~p~>~q)*(B2:~p=>~q) = ~p<=>~q
bo prawa Kubusia:
A1: p=>q = A2: ~p~>~q
B1: p~>q = B2: ~p=>~q
cnd

Kolejny dowód tożsamy to skorzystanie z definicji spójników warunku wystarczającego => i koniecznego ~> wyrażonych spójniami „i”(*) i „lub”(+).

Definicja warunku wystarczającego =>:
p=>q = ~p+q
Definicja warunku koniecznego ~>:
p~>q = p+~q
Mamy do udowodnienia tożsamość logiczną:
p<=>q = ~p<=>~q

Obliczamy lewą stronę:
L: p<=>q = (A1: p=>q)*(B1: p~>q) = (~p+q)*(p+~q)=~p*p + ~p*~q + q*p + q*~q = p*q+~p*~q
L: p<=>q = p*q+~p*~q

Obliczamy prawą stronę:
P: ~p<=>~q = (A2:~p~>~q)*(B2:~p=>~q) = (~p+q)*(p+~q) = ~p*p + ~p*~q + q*p + q*~q = p*q+~p*~q
P: ~p<=>~q =p*q + ~p*~q

Stąd mamy:
L: p<=>q = P:~p<=>~q = p*q+~p*~q
cnd
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 35963
Przeczytał: 15 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Nie 15:27, 11 Kwi 2021    Temat postu:

Algebra Kubusia - wykład rozszerzony
4.4 Równoważność TP<=>SK w zbiorach

Spis treści
4.4 Równoważność TP<=>SK w zbiorach 1
4.4.1 Operator równoważności TP|<=>SK w zbiorach 6
4.4.2 Operator równoważności SK|<=>TP w zbiorach 9

4.4 Równoważność TP<=>SK w zbiorach

W algebrze Kubusia w zbiorach zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

Prawo śfinii:
Domyślny punkt odniesienia w zdaniach warunkowych „Jeśli p to q”:

W dowolnym zdaniu warunkowym „Jeśli a to b” zapisanym w zmiennych aktualnych a i b (mających związek z językiem potocznym człowieka), domyślnie zawsze po „Jeśli..” zapisujemy formalny poprzednik p zaś po „to” zapisujemy formalny następnik q.
Zamieniać p i q w dowolnym zdaniu warunkowym można tylko względem ustalonego wcześniej punktu odniesienia „Jeśli p to q” na przykład prawem Tygryska lub kontrapozycji.

Przykład:
Zbadaj w skład jakiego spójnika logicznego wchodzi twierdzenie proste Pitagorasa:
A1.
Jeśli trójkąt jest prostokątny (TP=1) to na 100% => zachodzi w nim suma kwadratów (SK=1)
A1: TP=>SK =1
to samo w zapisie formalnym
A1: p=>q =1
Stąd na mocy prawa śfinii mamy punkt odniesienia (twierdzenie proste p=>q):
p=TP (zbiór trójkątów prostokątnych)
q=SK (zbiór trójkątów ze spełnioną sumą kwadratów)
Twierdzenie proste TP=>SK Pitagorasa udowodniono wieki temu.
Ten dowód oznacza że:
Bycie trójkątem prostokątnym (TP=1) jest (=1) warunkiem wystarczającym => do tego aby zachodziła w nim suma kwadratów (SK=1) bo zbiór trójkątów prostokątnych (TP=1) jest podzbiorem => zbioru trójkątów w których spełniona jest suma kwadratów (SK=1)

Zauważmy, że w twierdzeniu prostym Pitagorasa z góry narzuciliśmy iż to jest twierdzenie proste A1.
A1: p=>q =1 - zapis formalny twierdzenia prostego p=>q
A1: TP=>SK =1 - zapis aktualny
Punkt odniesienia to:
p=TP
q=SK
Tylko i wyłącznie dlatego wiemy co oznacza i jak badać twierdzenie odwrotne Pitagorasa B1:
B1: q=>p =1 - zapis formalny twierdzenie odwrotnego q=>p
B1: SK=>TP =1 - zapis aktualny twierdzenia odwrotnego Pitagorasa
Punkt odniesienia:
q=SK
p=TP
Punkt odniesienia nie może się zmienić bo popełnimy błąd podstawienia.

W świecie matematyki domyślnym twierdzeniem Pitagorasa jest twierdzenie proste Pitagorasa (A1: p=>q), zatem możemy mówić „twierdzenie Pitagorasa” bez słówka „proste”.
Oczywiście jeśli chcemy zaznaczyć, ż chodzi nam o twierdzenie odwrotne Pitagorasa to musimy to jawnie zapisać jako „twierdzenie odwrotne Pitagorasa” (B3: q=>p)

Badamy twierdzenie odwrotne Pitagorasa:
B3.
Jeśli w trójkącie zachodzi suma kwadratów (SK=1) to na 100% => trójkąt ten jest prostokątny (TP=1)
B3: SK=>TP =1
to samo w zapisie formalnym
B3: q=>p =1
Twierdzenie odwrotne q=>p Pitagorasa udowodniono wieki temu.
Ten dowód oznacza że:
Bycie trójkątem w którym spełniona jest (=1) suma kwadratów (SK=1) jest warunkiem wystarczającym => do tego aby ten trójkąt był prostokątny (TP=1) bo zbiór trójkątów ze spełnioną sumą kwadratów (SK=1) jest podzbiorem => zbioru trójkątów prostokątnych (TP=1)

Wniosek:
Twierdzenie proste Pitagorasa i twierdzenie odwrotne Pitagorasa są częścią definicji równoważności dla trójkątów prostokątnych TP<=>SK.

Definicja równoważności matematycznej p<=>q:
Równoważność matematyczna p<=>q to warunek wystarczający => zachodzący w dwie strony
p<=>q = (A1: p=>q)*(B3: q=>p) =1*1 =1

Prawo Tygryska:
B3: q=>p = B1: p~>q

stąd mamy:
Definicja równoważności podstawowej p<=>q:
Równoważność podstawowa p<=>q to jednocześnie spełniony warunek konieczny ~> i wystarczający => między tymi samymi punktami i w tym samym kierunku.
p<=>q = (A1: p=>q)*(B1: p~>q) =1*1 =1

Równoważność podstawowa Pitagorasa dla trójkątów prostokątnych:
Trójkąt jest prostokątny (TP=1) wtedy i tylko wtedy gdy zachodzi w nim suma kwadratów (SK=1)
TP<=>SK = (A1: TP=>SK)*(B3: SK=>TP) =1*1 =1
To samo w zapisie formalnym:
p<=>q = (A1: p=>q)*(B3: q=>p) =1*1 =1

Nanieśmy nasz przykład do matematycznych związków warunku wystarczającego => i koniecznego ~> w równoważności p<=>q
Kod:

T3
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w równoważności p<=>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
A1B1: p<=>q=(A1: p=>q)*(B1: p~>q)=1*1=1
To samo w zapisach aktualnych dla punktu odniesienia:
p=TP, q=SK
A1: TP=>SK =1 - zajście TP jest (=1) wystarczające => dla zajścia SK
B1: TP~>SK =1 - zajście TP jest (=1) konieczne ~> dla zajścia SK
A1B1: TP<=>SK=(A1: TP=>SK)*(B1: TP~>SK)=1*1=1
       A1B1:           A2B2:       |     A3B3:            A4B4:
A:  1: p=>q    =1 = 2:~p~>~q  =1  [=] 3: q~>p    =1  = 4:~q=>~p   =1
A:  1: TP=>SK  =1 = 2:~TP~>~SK=1  [=] 3: SK~>TP  =1  = 4:~SK=>~TP =1
A’: 1: p~~>~q  =0 =               [=]                = 4:~q~~>p   =0
A’: 1: TP~~>~SK=0 =               [=]                = 4:~SK~~>TP =0
       ##              ##          |     ##               ##
B:  1: p~>q    =1 = 2:~p=>~q  =1  [=] 3: q=>p    =1  = 4:~q~>~p   =1
B:  1: TP~>SK  =1 = 2:~TP=>~SK=1  [=] 3: SK=>TP  =1  = 4:~SK~>~TP =1
B’:               = 2:~p~~>q  =0  [=] 3: q~~>~p  =0
B’:               = 2:~TP~~>SK=0  [=] 3: SK~~>~TP=0
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
A1: TP=>SK=1 - prawdziwy A1 wymusza fałszywy kontrprzykład A1’ i odwrotnie
B2:~TP=>~SK=1 - prawdziwy B2 wymusza fałszywy kontrprzykład B2’ i odwrotnie
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Definicja tożsamości zbiorów:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q i zbiór q jest podzbiorem => zbioru p
p=q <=> (A1: p=>q)*(B3: q=>p)=1*1=1

Nasz przykład to dowód tożsamości zbiorów TP=SK:
Zbiory TP i SK są tożsame TP=SK wtedy i tylko wtedy gdy zbiór TP jest podzbiorem => zbioru SK i zbiór SK jest podzbiorem => zbioru TP
TP=SK <=> (A1: TP=>SK)*(B3: SK=>TP)=TP<=>SK
to samo w zapisie formalnym:
p=q <=> (A1: p=>q)*(B3: q=>p) = p<=>q

Dla B3 zastosujmy prawo Tygryska:
B3: p=>q = B1: p~>q

Stąd mamy:
Tożsama definicja tożsamości zbiorów p=q:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q i jednocześnie zbiór p jest nadzbiorem~> zbioru q
p=q <=> (A1: p=>q)*(B1: p~>q)=1*1=1
Ostatni zapis to definicja podstawowa równoważności p<=>q.

Definicja podstawowa równoważności p<=>q:
Równoważność p<=>q to zachodzenie zarówno warunku wystarczającego => jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku.
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
##
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
stąd:
p<=>q = (p=>q)*(p~>q) =1*1 =1

Stąd mamy dowód iż twierdzenie proste Pitagorasa jest częścią równoważności Pitagorasa dla trójkątów prostokątnych.

Równoważność Pitagorasa dla trójkątów prostokątnych:
Kolumna A1B1:
Bycie trójkątem prostokątnym (TP=1) jest konieczne ~> i wystarczające => do tego, aby zachodziła w nim suma kwadratów (SK=1)
Innymi słowy:
Dowolny trójkąt jest prostokątny wtedy i tylko wtedy gdy zachodzi w nim suma kwadratów
TP<=>SK = (A1: TP=>SK)*(B1: TP~>SK)=1*1 =1
To samo w zapisie formalnym:
p<=>q = (A1: p=>q)*(B1: p~>q)=1*1=1
Powyższa równoważność definiuje tożsamość zbiorów:
TP=SK
to samo w zapisie formalnym:
p=q

Dla A1 i B1 zastosujmy prawa Kubusia:
A1: p=>q = A2:~p=>~q
B1: p~>q = B2: ~p~>~q
Stąd mamy:
p<=>q = (A2: ~p=>~q)*(B2: ~p~>~q) = ~p<=>~q

Prawo rachunku zero-jedynkowego:
p<=>q = ~p<=>~q

Nasz przykład:
A1: TP=>SK = A2: ~TP~>~SK
B1: TP~>SK = B2: ~TP=>~SK
Stąd mamy logicznie tożsamą definicję równoważności Pitagorasa dla trójkątów nieprostokątnych.

Równoważność Pitagorasa dla trójkątów nieprostokątnych:
Kolumna A2B2:
Do tego aby być trójkątem nieprostokątnym (~TP=1) potrzeba ~> i wystarcza => aby nie zachodziła w nim suma kwadratów (~SK=1)
Innymi słowy:
Dowolny trójkąt jest nieprostokątny (~TP=1) wtedy i tylko wtedy gdy nie zachodzi w nim suma kwadratów (~SK=1)
~TP<=>~SK = (A2: ~TP~>~SK)*(B2:~TP=>~SK) =1*1 =1
to samo w zapisie formalnym:
~p<=>~q = (A2: ~p~>~q)*(B2: ~p=>~q)=1*1=1
Powyższa równoważność definiuje tożsamość zbiorów:
~TP=~SK
To samo w zapisie formalnym:
~p=~q

Definicja tożsamości logicznej:
TP<=>SK = ~TP<=>~SK
Prawdziwość dowolnej strony tożsamości logicznej „=” wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej „=” wymusza fałszywość drugiej strony

Wniosek:
Mając udowodnioną równoważność Pitagorasa dla trójkątów prostokątnych:
TP<=>SK = (A1: TP=>SK)*(B1: TP~>SK)=1*1 =1
nie musimy dowodzić równoważności Pitagorasa dla trójkątów nieprostokątnych:
~TP<=>~SK = (A2: ~TP~>~SK)*(B2:~TP=>~SK) =1*1 =1
bowiem prawdziwość równoważności ~TP<=>~SK gwarantuje nam prawo rachunku zero-jedynkowego:
TP<=>SK = ~TP<=>~SK

Graficznie równoważności Pitagorasa możemy przedstawić tak
Kod:

Równoważność Pitagorasa              | Równoważność Pitagorasa
dla trójkątów prostokątnych (TP)     | dla trójkątów nieprostokątnych (~TP)
TP<=>SK = (A1: TP=>SK)*(B1: TP~>SK) [=] ~TP<=>~SK = (A2: ~TP~>~SK)*(B2:~TP=>~SK)
Definiuje tożsamość zbiorów:         |  Definiuje tożsamość zbiorów:
TP=SK                                #  ~TP=~SK
TP=~(~TP)                            | ~TP=~(TP)
SK=~(~SK)                            | ~SK=~(SK)
Gdzie:
# - różne w znaczeniu iż jedna strona jest negacją drugiej strony
[=] - tożsamość logiczna o definicji wyżej

Przyjmijmy dziedzinę minimalną dla twierdzenia Pitagorasa:
ZWT - zbiór wszystkich trójkątów
Matematycznie dla dziedziny ZWT zachodzi definicja dziedziny:
TP+~TP = ZWT =1 - zbiór ~TP jest uzupełnieniem do dziedziny dla zbioru TP
TP*~TP =[] =0 - zbiory TP i ~TP są rozłączne
To samo dla SK:
SK+~SK = ZWT =1 - zbiór ~SK jest uzupełnieniem do dziedziny dla zbioru SK
SK*~SK =[] =0 - zbiory SK i ~SK są rozłączne

Stąd mamy przeczenia zbiorów rozumiane jako uzupełnienia do dziedziny:
~TP = [ZWT-TP]
~SK = [ZWT-SK]

Matematycznie w dziedzinie ZWZ zachodzi prawo podwójnego przeczenia:
Zbiór trójkątów prostokątnych TP jest zaprzeczeniem zbioru trójkątów nieprostokątnych ~TP
TP=~(~TP)
#
Zbiór trójkątów nieprostokątnych ~TP jest zaprzeczeniem zbioru trójkątów prostokątnych TP
~TP = ~(TP)

Definicja znaczka różne #:
Dwa pojęcia/zbiory p i q są różne w znaczeniu znaczka # wtedy i tylko wtedy jedno jest zaprzeczeniem drugiego
TP#~TP =1
bo:
TP+~TP=1 - zbiór ~TP jest uzupełnieniem do dziedziny ZWZ dla zboru TP
TP*~TP=0 - zbiory TP i ~TP są rozłączne

To samo możemy powtórzyć dla zbioru trójkątów ze spełnioną suma kwadratów SK, bo zachodzą tożsamości zbiorów:
TP=SK
~TP=~SK

Pojęcia/zbiory spełniające definicję znaczka różne # spełniają definicję spójnika „albo”($).
Dowód:
Definicja spójnika „albo”($):
p$q = p*~q + ~p*q
dla q=~p mamy:
p$~p = p*~(~p) + ~p*(~p) = p+~p=1
cnd
Nasz przykład:
Dowolny trójkąt może być tylko i wyłącznie prostokątny (TP=1) „albo”($) nieprostokątny (~TP=1)
TP$~TP = TP*~(~TP)+~TP*(~TP) = TP+~TP =1
Trzeciej możliwości brak.

Oczywiście równoważność między pojęciami (zbiorami) spełniającymi definicje znaczka różne # musi być fałszem.
Sprawdzenie:
Definicja równoważności w spójnikach „i”(*) i „lub”(+):
p<=>q = p*q + ~p*~q
podstawmy:
q=~p
stąd mamy:
p<=>~p = p*~p + ~p*~(~p) = p*~p + ~p*p =[]+[] =0
cnd

4.4.1 Operator równoważności TP|<=>SK w zbiorach

Dla równoważności Pitagorasa przyjmujemy wspólną dziedzinę minimalną ZWZ:
ZWZ=[zbiór wszystkich trójkątów]
Stąd mamy na mocy definicji dziedziny:
TP+~TP =1 = ZWZ - zbiór ~TP jest uzupełnieniem do dziedziny ZWZ dla zbioru TP
TP*~TP =[] =0 - zbiory TP i ~TP są rozłączne
Stąd mamy:
~TP=[ZWZ-TP]
To samo dla SK:
SK+~SK =1 = ZWZ - zbiór ~SK jest uzupełnieniem do dziedziny ZWZ dla zbioru SK
SK*~SK =[] =0 - zbiory SK i ~SK są rozłączne
Stąd mamy:
~SK=[ZWZ-SK]

Zapiszmy ponownie równoważności Pitagorasa w tabeli prawdy:
Kod:

T3
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w równoważności p<=>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
A1B1: p<=>q=(A1: p=>q)*(B1: p~>q)=1*1=1
To samo w zapisach aktualnych dla punktu odniesienia:
p=TP, q=SK
A1: TP=>SK =1 - zajście TP jest (=1) wystarczające => dla zajścia SK
B1: TP~>SK =1 - zajście TP jest (=1) konieczne ~> dla zajścia SK
A1B1: TP<=>SK=(A1: TP=>SK)*(B1: TP~>SK)=1*1=1
       A1B1:           A2B2:       |     A3B3:            A4B4:
A:  1: p=>q    =1 = 2:~p~>~q  =1  [=] 3: q~>p    =1  = 4:~q=>~p   =1
A:  1: TP=>SK  =1 = 2:~TP~>~SK=1  [=] 3: SK~>TP  =1  = 4:~SK=>~TP =1
A’: 1: p~~>~q  =0 =               [=]                = 4:~q~~>p   =0
A’: 1: TP~~>~SK=0 =               [=]                = 4:~SK~~>TP =0
       ##              ##          |     ##               ##
B:  1: p~>q    =1 = 2:~p=>~q  =1  [=] 3: q=>p    =1  = 4:~q~>~p   =1
B:  1: TP~>SK  =1 = 2:~TP=>~SK=1  [=] 3: SK=>TP  =1  = 4:~SK~>~TP =1
B’:               = 2:~p~~>q  =0  [=] 3: q~~>~p  =0
B’:               = 2:~TP~~>SK=0  [=] 3: SK~~>~TP=0
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
A1: TP=>SK=1 - prawdziwy A1 wymusza fałszywy kontrprzykład A1’ i odwrotnie
B2:~TP=>~SK=1 - prawdziwy B2 wymusza fałszywy kontrprzykład B2’ i odwrotnie
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Definicja operatora równoważności p|<=>q w zapisie formalnym:
Operator równoważności p|<=>q to złożenie równoważności p<=>q w logice dodatniej (bo q) zdefiniowanej w kolumnie A1B1 oraz równoważności ~p<=>~q w logice ujemnej (bo ~q) zdefiniowanej w kolumnie A2B2.

Definicja operatora równoważności TP|<=>SK w zapisie aktualnym:
Operator równoważności TP|<=>SK to złożenie równoważności TP<=>SK w logice dodatniej (bo SK) zdefiniowanej w kolumnie A1B1 oraz równoważności ~TP<=>~SK w logice ujemnej (bo ~SK) zdefiniowanej w kolumnie A2B2.

Innymi słowy:
Operator równoważności TP|<=>SK to odpowiedź na dwa pytania 1 i 2:

1.
Co może się wydarzyć jeśli ze zbioru wszystkich trójkątów (ZWT) wylosujemy trójkąt prostokątny (TP=1)?

Odpowiedź mamy w kolumnie A1B1:
Równoważność Pitagorasa TP<=>SK w logice dodatniej (bo SK) to spełnienie zarówno warunku wystarczającego =>, jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: TP=>SK =1 - wylosowanie TP jest (=1) wystarczające => dla zajścia sumy kwadratów SK
B1: TP~>SK =1 - wylosowanie TP jest (=1) konieczne ~> dla zajścia sumy kwadratów SK
stąd:
A1B1: TP<=>SK = (A1: TP=>SK)*(B1: TP~>SK) = 1*1 =1
Prawą stronę czytamy:
Wylosowanie z ze zbioru wszystkich trójkątów (ZWT) trójkąta prostokątnego (TP=1) jest konieczne ~> i wystarczające => aby w tym trójkącie zachodziła suma kwadratów (SK=1)
Innymi słowy (lewą stronę czytamy) :
Dowolny trójkąt jest prostokątny (TP=1) wtedy i tylko wtedy gdy zachodzi w nim suma kwadratów (SK=1)
A1B1: TP<=>SK = (A1: TP=>SK)*(B1: TP~>SK) = 1*1 =1

W rozpisce na warunek wystarczający => mamy:
A1.
Jeśli ze zbioru wszystkich trójkątów (ZWT) wylosujemy trójkąt prostokątny (TP=1) to na 100% => w trójkącie tym będzie zachodziła suma kwadratów (SK=1)
TP=>SK =1
Wylosowanie trójkąta prostokątnego (TP=1) jest (=1) wystarczające => dla zachodzenia w nim sumy kwadratów (SK=1)
Wylosowanie trójkąta prostokątnego (TP=1) daje nam (=1) gwarancję matematyczną => iż w tym trójkącie zachodzi suma kwadratów (SK=1).
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>
Kontrprzykład A1’ dla prawdziwego warunku wystarczającego => A1 musi być fałszem.
A1’.
Jeśli ze zbioru wszystkich trójkątów (ZWT) wylosujemy trójkąt prostokątny (TP=1) to może ~~> w nim nie zachodzić suma kwadratów (~SK=1)
TP~~>~SK = TP*~SK =[] =0
Czytamy:
Nie istnieje (=0) element wspólny zbiorów ~~>: TP i ~SK
Innymi słowy:
Zbiór trójkątów prostokątnych (TP=1) jest rozłączny ze zbiorem trójkątów z niespełnioną sumą kwadratów (~SK=1)
Dowód:
Zachodzą tożsamości zbiorów:
SK=TP
~SK=~TP
stąd mamy:
TP~~>~TP = TP*~TP =[] =0
cnd

2.
Co może się wydarzyć jeśli ze zbioru wszystkich trójkątów (ZWT) wylosujemy trójkąt nieprostokątny (~TP=1)?

Odpowiedź mamy w kolumnie A2B2:
Równoważność Pitagorasa ~TP<=>~SK w logice ujemnej (bo ~SK) to spełnienie zarówno warunku wystarczającego =>, jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A2: ~TP~>~SK =1 - wylosowanie ~TP jest (=1) wystarczające => dla nie zajścia sumy kwadratów ~SK
B2: ~TP=>~SK =1 - wylosowanie ~TP jest (=1) konieczne ~> dla nie zajścia sumy kwadratów ~SK
Stąd:
A2B2: ~TP<=>~SK = (A2: ~TP~>~SK)*(B2:~TP=>~SK)=1*1=1
Prawą stronę czytamy:
Wylosowanie z ze zbioru wszystkich trójkątów (ZWT) trójkąta nieprostokątnego (~TP=1) jest konieczne ~> i wystarczające => aby w tym trójkącie nie zachodziła suma kwadratów (~SK=1)
Innymi słowy (lewą stronę czytamy) :
Dowolny trójkąt nie jest prostokątny (~TP=1) wtedy i tylko wtedy gdy nie zachodzi w nim suma kwadratów (~SK=1)
A2B2: ~TP<=>~SK = (A2: ~TP~>~SK)*(B2:~TP=>~SK)=1*1=1

W rozpisce na warunek wystarczający => mamy:
B2.
Jeśli ze zbioru wszystkich trójkątów (ZWT) wylosujemy trójkąt nieprostokątny (~TP=1) to na 100% => w trójkącie tym nie będzie zachodziła suma kwadratów (~SK=1)
~TP=>~SK =1
Wylosowanie trójkąt nieprostokątnego (~TP=1) jest (=1) wystarczające => dla nie zachodzenia w nim sumy kwadratów (~SK=1)
Wylosowanie trójkąta nieprostokątnego (~TP=1) daje nam (=1) gwarancję matematyczną => iż w tym trójkącie nie zachodzi suma kwadratów (~SK=1).
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>
Kontrprzykład B2’ dla prawdziwego warunku wystarczającego => B2 musi być fałszem.
B2’.
Jeśli ze zbioru wszystkich trójkątów (ZWT) wylosujemy trójkąt nieprostokątny (~TP=1) to może ~~> w nim zachodzić suma kwadratów (SK=1)
~TP~~>SK = ~TP*SK =[] =0
Czytamy:
Nie istnieje (=0) element wspólny zbiorów ~~>: ~TP i SK
Innymi słowy:
Zbiór trójkątów nieprostokątnych (~TP=1) jest rozłączny ze zbiorem trójkątów ze spełnioną sumą kwadratów (SK=1)
Dowód:
Zachodzą tożsamości zbiorów:
SK=TP
~SK=~TP
stąd mamy:
~TP~~>TP = ~TP*TP =[] =0
cnd

4.4.2 Operator równoważności SK|<=>TP w zbiorach

Zapiszmy ponownie równoważności Pitagorasa w tabeli prawdy:
Kod:

T3
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w równoważności p<=>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
A1B1: p<=>q=(A1: p=>q)*(B1: p~>q)=1*1=1
To samo w zapisach aktualnych dla punktu odniesienia:
p=TP, q=SK
A1: TP=>SK =1 - zajście TP jest (=1) wystarczające => dla zajścia SK
B1: TP~>SK =1 - zajście TP jest (=1) konieczne ~> dla zajścia SK
A1B1: TP<=>SK=(A1: TP=>SK)*(B1: TP~>SK)=1*1=1
       A1B1:           A2B2:       |     A3B3:            A4B4:
A:  1: p=>q    =1 = 2:~p~>~q  =1  [=] 3: q~>p    =1  = 4:~q=>~p   =1
A:  1: TP=>SK  =1 = 2:~TP~>~SK=1  [=] 3: SK~>TP  =1  = 4:~SK=>~TP =1
A’: 1: p~~>~q  =0 =               [=]                = 4:~q~~>p   =0
A’: 1: TP~~>~SK=0 =               [=]                = 4:~SK~~>TP =0
       ##              ##          |     ##               ##
B:  1: p~>q    =1 = 2:~p=>~q  =1  [=] 3: q=>p    =1  = 4:~q~>~p   =1
B:  1: TP~>SK  =1 = 2:~TP=>~SK=1  [=] 3: SK=>TP  =1  = 4:~SK~>~TP =1
B’:               = 2:~p~~>q  =0  [=] 3: q~~>~p  =0
B’:               = 2:~TP~~>SK=0  [=] 3: SK~~>~TP=0
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
A1: TP=>SK=1 - prawdziwy A1 wymusza fałszywy kontrprzykład A1’ i odwrotnie
B2:~TP=>~SK=1 - prawdziwy B2 wymusza fałszywy kontrprzykład B2’ i odwrotnie
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Definicja operatora równoważności q|<=>p w zapisie formalnym:
Operator równoważności q|<=>p to złożenie równoważności q<=>p w logice dodatniej (bo p) zdefiniowanej w kolumnie A3B3 oraz równoważności ~q<=>~p w logice ujemnej (bo ~p) zdefiniowanej w kolumnie A4B4.

Definicja operatora równoważności SK|<=>TP w zapisie aktualnym:
Operator równoważności SK|<=>TP to złożenie równoważności SK<=>TP w logice dodatniej (bo TP) zdefiniowanej w kolumnie A3B3 oraz równoważności ~SK<=>~TP w logice ujemnej (bo ~TP) zdefiniowanej w kolumnie A4B4.

Innymi słowy:
Operator równoważności SK|<=>TP to odpowiedź na dwa pytania 1 i 2:

1.
Co może się wydarzyć jeśli ze zbioru wszystkich trójkątów (ZWT) wylosujemy trójkąt w którym spełniona jest suma kwadratów (SK=1)?

Odpowiedź mamy w kolumnie A3B3:
Równoważność Pitagorasa SK<=>TP w logice dodatniej (bo TP) to spełnienie zarówno warunku wystarczającego =>, jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A3: SK~>TP =1 - wylosowanie SK jest (=1) konieczne ~> aby trójkąt był prostokątny (TP)
B3: SK=>TP =1 - wylosowanie SK jest (=1) wystarczające => aby trójkąt był prostokątny (TP)
stąd:
A3B3: SK<=>TP = (A3: SK~>TP)*(B3: SK=>TP) =1*1=1
Prawą stronę czytamy:
Wylosowanie z ze zbioru wszystkich trójkątów (ZWT) trójkąta w którym spełniona jest suma kwadratów (SK=1) jest konieczne ~> i wystarczające => aby ten trójkąt był prostokątny (TP=1).
Innymi słowy (lewą stronę czytamy) :
W dowolnym trójkącie zachodzi suma kwadratów (SK=1) wtedy i tylko wtedy gdy ten trójkąt jest prostokątny (TP=1)
Dowolny trójkąt jest prostokątny (TP=1) wtedy i tylko wtedy gdy zachodzi w nim suma kwadratów (SK=1)
A3B3: SK<=>TP = (A3: SK~>TP)*(B3: SK=>TP) =1*1=1
Powyższa równoważność definiuje tożsamość zbiorów:
SK=TP

W rozpisce na warunek wystarczający => mamy:
B3.
Jeśli ze zbioru wszystkich trójkątów (ZWT) wylosujemy trójkąt w którym będzie spełniona suma kwadratów (SK=1) to na 100% => ten trójkąt będzie prostokątny (TP=1)
SK=>TP =1
Wylosowanie trójkąta w którym zachodzi suma kwadratów (SK=1) jest (=1) wystarczające => dla wnioskowania iż ten trójkąt jest prostokątny (TP=1)
Wylosowanie trójkąta w którym zachodzi suma kwadratów (SK=1) jest (=1) daje nam gwarancję matematyczną => iż wylosowany trójkąt jest prostokątny (TP=1).
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>
Kontrprzykład B3’ dla prawdziwego warunku wystarczającego => B3 musi być fałszem.
B3’.
Jeśli ze zbioru wszystkich trójkątów (ZWT) wylosujemy trójkąt w którym będzie spełniona suma kwadratów (SK=1) to ten trójkąt może ~~> nie być prostokątny (~TP=1)
SK~~>~TP=SK*~TP =[] =0
Czytamy:
Nie istnieje (=0) element wspólny zbiorów ~~>: SK i ~TP
Innymi słowy:
Zbiór trójkątów w których spełniona jest suma kwadratów (SK=1) jest rozłączny ze zbiorem trójkątów nieprostokątnych (~TP=1)
Dowód:
Zachodzą tożsamości zbiorów:
SK=TP
~SK=~TP
stąd mamy:
SK~~>~SK = SK*~SK = [] =0
cnd

2.
Co może się wydarzyć jeśli ze zbioru wszystkich trójkątów (ZWT) wylosujemy trójkąt w którym nie jest spełniona suma kwadratów (~SK=1)?

Odpowiedź mamy w kolumnie A4B4:
Równoważność Pitagorasa ~SK<=>~TP w logice ujemnej (bo ~TP) to spełnienie zarówno warunku wystarczającego =>, jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A4: ~SK=>~TP =1 - wylosowanie ~SK jest (=1) wystarczające => dla ~TP
B4: ~SK~>~SK =1 - wylosowanie ~SK jest (=1) konieczne ~> dla ~TP
Stąd:
A4B4: ~SK<=>~TP = (A4: ~SK=>~TP)*(B4: ~SK~>~TP) =1*1 =1
Prawą stronę czytamy:
Wylosowanie z ze zbioru wszystkich trójkątów (ZWT) trójkąta w którym nie jest spełniona suma kwadratów jest konieczne ~> i wystarczające => do tego, aby ten trójkąt był nieprostokątny (~TP=1)
Innymi słowy (lewą stronę czytamy) :
W dowolnym trójkącie nie zachodzi suma kwadratów (~SK=1) wtedy i tylko wtedy gdy ten trójkąt nie jest prostokątny (~TP=1)
A4B4: ~SK<=>~TP = (A4: ~SK=>~TP)*(B4: ~SK~>~TP) =1*1 =1
Powyższa równoważność definiuje tożsamość zbiorów:
~SK=~TP

W rozpisce na warunek wystarczający => mamy:
A4.
Jeśli ze zbioru wszystkich trójkątów (ZWT) wylosujemy trójkąt w którym nie zachodzi suma kwadratów (~SK=1) to na 100% => ten trójkąt nie jest prostokątny (~TP=1).
~SK=>~TP =1
Wylosowanie trójkąta w którym nie jest spełniona suma kwadratów (~SK=1) jest (=1) wystarczające => dla wnioskowania, iż ten trójkąt jest nieprostokątny (~TP=1)
Wylosowanie trójkąta w którym nie jest spełniona suma kwadratów (~SK=1) daje nam (=1) gwarancję matematyczną =>, iż ten trójkąt jest nieprostokątny (~TP=1)
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>
Kontrprzykład A4’ dla prawdziwego warunku wystarczającego => A4 musi być fałszem.
A4’.
Jeśli ze zbioru wszystkich trójkątów (ZWT) wylosujemy trójkąt w którym nie zachodzi suma kwadratów (~SK=1) to ten trójkąt może być prostokątny (TP=1).
~SK~~>TP = ~SK*TP=[] =0
Czytamy:
Nie istnieje (=0) element wspólny zbiorów ~~>: ~SK i TP
Innymi słowy:
Zbiór trójkątów z niespełnioną sumą kwadratów (~SK=1) jest rozłączny ze zbiorem trójkątów prostokątnych (TP=1)
Dowód:
Zachodzą tożsamości zbiorów:
SK=TP
~SK=~TP
stąd mamy:
~SK~~>SK = ~SK*SK =[] =0
cnd


Ostatnio zmieniony przez rafal3006 dnia Nie 15:33, 11 Kwi 2021, w całości zmieniany 1 raz
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 35963
Przeczytał: 15 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Nie 15:29, 11 Kwi 2021    Temat postu:

Algebra Kubusia - wykład rozszerzony
4.5 Fizyczna realizacja równoważności A<=>S w zdarzeniach

Spis treści
4.5 Fizyczna realizacja równoważności A<=>S w zdarzeniach 1
4.5.1 Operator równoważności A|<=>S w zdarzeniach 9


4.5 Fizyczna realizacja równoważności A<=>S w zdarzeniach

Definicja warunku wystarczającego => w zdarzeniach:
Jeśli zajdzie p to zajdzie q
p=>q =1
Definicja warunku wystarczającego => jest spełniona (=1) wtedy i tylko wtedy gdy zajście zdarzenia p jest wystarczające => dla zajścia zdarzenia q
Inaczej:
p=>q =0

Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
p=>q = ~p+q

Definicja warunku koniecznego ~> w zdarzeniach:
Jeśli zajdzie p to zajdzie q
p~>q =1
Definicja warunku koniecznego ~> jest spełniona (=1) wtedy i tylko wtedy gdy zajście zdarzenia p jest konieczne ~> dla zajścia zdarzenia q
Inaczej:
p~>q =0

Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
p~>q = p+~q

Definicja podstawowa równoważności p<=>q:
Równoważność to jednoczesne zachodzenie zarówno warunku wystarczającego => jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku.
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
##
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Definicja podstawowa równoważności p<=>q:
Równoważność p<=>q to jednoczesne zachodzenie zarówno warunku wystarczającego => jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku.
A1: p=>q =1 - warunek wystarczający => spełniony (=1)
##
B1: p~>q =1 - warunek konieczny ~> spełniony (=1)
Gdzie:
## - różne na mocy definicji
Stąd mamy:
p<=>q = (A1: p=>q)*(B1: p~>q) =1*1 =1

Matematyczne związki warunku wystarczającego => i koniecznego ~> w równoważności p<=>q wynikające z rachunku zero-jedynkowego.
Kod:

T1
Związki warunku wystarczającego => i koniecznego ~> w p<=>q
      A1B1      A2B2         A3B3      A4B4
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p =1
##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p =1
Gdzie:
## - różne na mocy definicji
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla udowodnienia, iż mamy do czynienia z równoważnością p<=>q potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii A(x) i prawdziwość dowolnego zdania serii B(x)

Kluczowym punktem zaczepienia w wprowadzeniu symbolicznej definicji równoważności p<=>q będzie definicja kontrprzykładu rodem z algebry Kubusia działająca wyłącznie w warunku wystarczającym =>.

Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>~q=p*~q

Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)

Uzupełnijmy naszą tabelę wykorzystując powyższe rozstrzygnięcia działające wyłącznie w warunkach wystarczających =>.
Kod:

T2
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w równoważności p<=>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
A1B1: p<=>q=(A1: p=>q)*(B1: p~>q)=1*1=1
       A1B1:           A2B2:          |     A3B3:            A4B4:
A:  1: p=>q  =1   = 2:~p~>~q=1       [=] 3: q~>p  =1    = 4:~q=>~p =1
A’: 1: p~~>~q=0   =                  [=]                = 4:~q~~>p =0
       ##              ##             |     ##               ##
B:  1: p~>q  =1   = 2:~p=>~q=1       [=] 3: q=>p  =1    = 4:~q~>~p =1
B’:               = 2:~p~~>q=0       [=] 3: q~~>~p=0
--------------------------------------------------------------------------
R: p<=>q=p*q+~p*~q ~p<=>~q=p*q+~p*~q [=] q<=>p=p*q+~p*~q ~q<=>~p=p*q+~p*~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
A1: p=>q=1 - prawdziwy A1 wymusza fałszywy kontrprzykład A1’ (i odwrotnie)
B2:~p=>~q=1 - prawdziwy B2 wymusza fałszywy kontrprzykład B2’ (i odwrotnie)
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


Stąd mamy:
Kolumna A1B1:
Definicja podstawowa równoważności p<=>q w zdarzeniach:
Równoważność p<=>q to jednoczesne zachodzenie zarówno warunku wystarczającego => jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku.
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
Stąd mamy:
Zajście p jest konieczne ~> i wystarczające => dla zajścia q
p<=>q = (A1: p=>q)*(B1: p~>q) =1*1 =1

Innymi słowy:
Lewą stronę czytamy:
Zajdzie p wtedy i tylko wtedy gdy zajdzie q
p<=>q = (A1: p=>q)*(B1: p~>q) =1*1 =1

Definicja podstawowa równoważności jest znana i powszechnie używana przez wszystkich ludzi z ziemskimi matematykami na czele.
Dowód:
Klikamy na googlach:
„konieczne i wystarczające”
Wyników: 7330
Klikamy na googlach:
„potrzeba i wystarcza”
Wyników: 12300
etc

Kod:

S3 Schemat 3
Fizyczna realizacja równoważności A<=>S w zdarzeniach:
A<=>S=(A1: A=>S)*(B1: A~>S)=1*1=1
             S               A       
       -------------       ______     
  -----| Żarówka   |-------o    o-----
  |    -------------                 |
  |                                  |
______                               |
 ___    U (źródło napięcia)          |
  |                                  |
  |                                  |
  ------------------------------------
Zmienne związane definicją: A, S
Zmienna wolna: brak
Istotą równoważności jest brak zmiennych wolnych

Definicja zmiennej związanej:
Zmienna związana to zmienna występujące w układzie uwzględniona w opisie matematycznym układu.
Zmienna związana z definicji jest ustawiana na 0 albo 1 przez człowieka.

Definicja zmiennej wolnej:
Zmienna wolna to zmienna występująca w układzie, ale nie uwzględniona w opisie matematycznym układu.
Zmienna wolna z definicji może być ustawiana na 0 albo 1 poza kontrolą człowieka.

Matematycznie jest kompletnie bez znaczenia czy zmienna związana A będzie pojedynczym przyciskiem, czy też dowolną funkcją logiczną f(a) zbudowaną z n przycisków, byleby dało się ustawić:
f(a) =1
oraz
f(a)=0
bowiem z definicji funkcja logiczna f(a) musi być układem zastępczym pojedynczego przycisku A, gdzie daje się ustawić zarówno A=1 jak i A=0.
Przykład:
f(a) = C+D*(E+~F)
Gdzie:
C, D, E - przyciski normalnie rozwarte
~F - przycisk normalnie zwarty

Na początek musimy udowodnić, iż rzeczywiście układ S3 jest fizyczną realizacją równoważności A<=>S.

Fizyczna realizacja równoważności A<=>S w zdarzeniach:
Równoważność A<=>S to jednoczesne zachodzenie warunku wystarczającego => i koniecznego ~> między tymi samymi punktami i w tym samym kierunku

Dowodzimy prawdziwości warunku wystarczającego => A1:
A1.
Jeśli przycisk A jest wciśnięty (A=1) to żarówka na 100% => świeci się (S=1)
A=>S =1
Wciśnięcie przycisku A jest (=1) warunkiem wystarczającym => dla świecenia się żarówki S
cnd

Dowodzimy prawdziwości warunku koniecznego ~> B1:
B1.
Jeśli przycisk A jest wciśnięty (A=1) to żarówka na 100% ~> świeci się (S=1)
A~>S =1
Wciśnięcie przycisku A jest warunkiem koniecznym ~> dla świecenia się żarówki S, bo w układzie S3 nie ma przycisku W (zmienna wolna) podłączonego równolegle do A który mógłby zaświecić żarówkę S niezależnie od stanu przycisku A.
Wciśnięcie przycisku A (A=1) jest (=1) warunkiem koniecznym ~> świecenia się żarówki S (S=1), bo jak przycisk A nie będzie wciśnięty (~A=1) to żarówka na 100% => nie będzie się świecić (~S=1)
Jak widzimy prawo Kubusia samo nam tu wyskoczyło:
B1: A~>S = B2: ~A=>~S

Stąd mamy:
Podstawowa definicja równoważności:
Wciśnięcie przycisku A jest konieczne ~> i wystarczające => dla zaświecenia się żarówki S
A<=>S=(A1: A=>S)*(B1: A~>S)=1*1=1

Innymi słowy:
Przycisk A jest wciśnięty wtedy i tylko wtedy gdy żarówka S świeci się
A<=>S=(A1: A=>S)*(B1: A~>S)=1*1=1

Prawo Kameleona po raz n-ty:
Dwa zdania brzmiące identycznie z dokładnością do każdej literki i każdego przecinka nie muszą być matematycznie tożsame.

Doskonale widać, że zdania A1 i B1 brzmią identycznie z dokładnością do każdej literki i każdego przecinka a mimo to zdania te nie są tożsame na mocy definicji warunku wystarczającego => i koniecznego ~>.
Różność zdań A1 i B1 rozpoznajemy po znaczkach warunku wystarczającego => i koniecznego ~> wplecionych w treść zdań.
Innymi słowy:
Wszystko zależy tu jak matematycznie zakodujemy banalne zdanie prawdziwe opisujące układ S3:
S3:
Jeśli przycisk A jest wciśnięty (A=1) to żarówka na 100% świeci się (S=1)

Zapis aktualny zdań A1 i B1:
A1: A=>S=~A+S =1 ## B1: A~>S = A+~S =1
Zapis formalny (ogólny) zdań A1 i B1:
A1: p=>q =~p+q =1 ## B1: p~>q = p+~q =1
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Dopiero po udowodnieniu iż układ S3 jest fizyczną realizacją równoważności A<=>S, co wyżej się stało, możemy skorzystać z gotowego szablonu równoważności p<=>q wyrażonego spójnikami warunku wystarczającego => i koniecznego ~>.
Kod:

T3
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w równoważności A<=>S
A1B1 punkt odniesienia w zapisie formalnym:
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
A1B1: p<=>q=(A1: p=>q)*(B1: p~>q)=1*1=1
A1B1 punkt odniesienia w zapisie aktualnym:
A1: A=>S =1 - wciśnięcie A jest (=1) wystarczające => dla świecenia S
B1: A~>S =1 - wciśnięcie A jest (=1) konieczne ~> dla świecenia S
A1B1: A<=>S=(A1: A=>S)*(B1: A~>S)=1*1=1
       A1B1:           A2B2:          |     A3B3:            A4B4:
A:  1: p=>q  =1   = 2:~p~>~q=1       [=] 3: q~>p  =1    = 4:~q=>~p =1
A:  1: A=>S  =1   = 2:~A~>~S=1       [=] 3: S~>A  =1    = 4:~S=>~A =1
A’: 1: p~~>~q=0   =                  [=]                = 4:~q~~>p =0
A’: 1: A~~>~S=0   =                  [=]                = 4:~S~~>A =0
       ##              ##             |     ##               ##
B:  1: p~>q  =1   = 2:~p=>~q=1       [=] 3: q=>p  =1    = 4:~q~>~p =1
B:  1: A~>S  =1   = 2:~A=>~S=1       [=] 3: S=>A  =1    = 4:~S~>~A =1
B’:               = 2:~p~~>q=0       [=] 3: q~~>~p=0
B’:               = 2:~A~~>S=0       [=] 3: S~~>~A=0
--------------------------------------------------------------------------
R: A<=>S=A*S+~A*~S ~A<=>~S=A*S+~A*~S [=] S<=>A=A*S+~A*~S ~S<=>~A=A*S+~A*~S
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
A1: A=>S=1 - prawdziwy A1 wymusza fałszywy kontrprzykład A1’ (i odwrotnie)
B2:~A=>~S=1 - prawdziwy B2 wymusza fałszywy kontrprzykład B2’ (i odwrotnie)
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

W tabeli T3 zachodzi:
I Prawo Kubusia:
A1: A=>S = A2: ~A~>~S =1
##
II Prawo Kubusia:
B1: A~>S = B2: ~A=>~S =1
Gdzie:
## - różne na mocy definicji

Z kolumny A1B1 odczytujemy:

1.
Definicja równoważności A<=>S dla wciśniętego przycisku A (A=1):

Kolumna A1B1:
Równoważność A<=>S to jednoczesne zachodzenie warunku wystarczającego => i koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: A=>S =1 - wciśnięcie A jest wystarczające => dla świecenia S
B1: A~>S =1 - wciśnięcie A jest konieczne ~> dla świecenia S
Czytamy:
RA1:
Przycisk A jest wciśnięty (A=1) wtedy I tylko wtedy gdy żarówka świeci się (S=1)
A<=>S = (A1: A=>S)*(B1: A~>S) =1*1 =1
Innymi słowy:
Wciśnięcie przycisku A (A=1) jest konieczne ~> i wystarczające => dla świecenia się żarówki S (S=1)
A<=>S = (A1: A=>S)*(B1: A~>S) =1*1 =1

Każda równoważność to tożsamość pojęć (zbiorów), stąd:
Wiedza o wciśnięciu klawisza A (A=1) jest tożsama „=” z wiedzą o świecącej się żarówce S (S=1)
A=S
Sprawdźmy czy dla A=S zachodzi nasza równoważność:
S:=A - pod zmienną S podstaw :=> A
Stąd mamy:
A<=>A = (A1: A=>A)*(B1: A~>A) =1*1 =1 - relacja równoważności <=> zachodzi (=1).
bo:
Każde pojęcie (zbiór) jest podzbiorem => siebie samego
Każde pojęcie (zbiór) jest nadzbiorem ~> siebie samego
cnd

Oczywiście relacja spójnika „albo”($) musi tu być fałszem.
Definicja spójnika „albo”($):
p$q = p*~q + ~p*q
podstawmy:
p=A
q=A
stąd:
A$A = A*~(A) + ~(A)*(A) = A*~A + ~A*A = []+[] =0
cnd

Prawa Kubusia:
A1: A=>S = A2:~A~>~S
B1: A~>S = B2:~A=>~S

Z kolumny A2B2 odczytujemy:

2.
Definicja równoważności ~A<=>~S dla nie wciśniętego przycisku A (~A=1):

Kolumna A2B2:
Równoważność ~A<=>~S to jednoczesne zachodzenie warunku wystarczającego => i koniecznego ~> między tymi samymi punktami i w tym samym kierunku
RB2.
A2: ~A~>~S =1 - nie wciśnięcie A (~A=1) jest warunkiem koniecznym ~> dla nie świecenia S (~S=1)
B2: ~A=>~S =1 - nie wciśnięcie A (~A=1) jest warunkiem wystarczającym => dla nie świecenia S (~S=1)
Czytamy:
Przycisk A nie jest wciśnięty (~A=1) wtedy I tylko wtedy gdy żarówka nie świeci się (~S=1)
~A<=>~S = (A2: ~A~>~S)*(B2: ~A=>~S) =1*1 =1
Innymi słowy:
Nie wciśnięcie przycisku A (~A=1) jest konieczne ~> i wystarczające => dla nie świecenia się żarówki S (~S=1)
~A<=>~S = (A2: ~A~>~S)*(B2: ~A=>~S) =1*1 =1

Każda równoważność to tożsamość pojęć (zbiorów), stąd:
Wiedza o nie wciśnięciu klawisza A (~A=1) jest tożsama „=” z wiedzą o nie świecącej się żarówce S (~S=1)
~A=~S
Sprawdźmy czy dla ~A=~S zachodzi nasza równoważność:
~S:=~A - pod zmienną ~S podstaw :=> ~A
Stąd mamy:
~A<=>~A = (A2: ~A~>~A)*(B2: ~A=>~A) =1*1 =1 - relacja równoważności zachodzi (=1)
bo:
Każde pojęcie (zbiór) jest podzbiorem => siebie samego
Każde pojęcie (zbiór) jest nadzbiorem ~> siebie samego
cnd

Oczywiście relacja spójnika „albo”($) musi tu być fałszem.
Definicja spójnika „albo”($):
p$q = p*~q + ~p*q
podstawmy:
p=~A
q=~A
stąd:
~A$~A = (~A)*~(~A) + ~(~A)*(~A) = ~A*A + A*~A = []+[] =0
cnd

Zauważmy, że w kolumnie A1B1 równoważność A<=>S definiuje tożsamość pojęć:
A1B1: A=S
Natomiast w kolumnie A2B2 równoważność ~A<=>~S definiuje tożsamość pojęć:
A2B2: ~A=~S

Doskonale widać, ze między pojęciami A=S a ~A=~S zachodzi relacja spójnika „albo”($).
Przycisk A może być wciśnięty A=1 albo($) nie wciśnięty ~A=1
A$~A

Sprawdźmy to:
Definicja spójnika „albo”($):
p$q = p*~q + ~p*q
Po podstawieniu:
p=A
q=~A
mamy:
A$~A = (A)*~(~A) + ~(A)*(~A) = A+~A =1 - relacja spójnika „albo”($) zachodzi (=1)
cnd

O obszarze AB34 opowiemy w skrócie:
Prawa Tygryska:
A1: A=>S = A3: S~>A
B1: A~>S = B3: S=>A

Z kolumny A3B3 odczytujemy:

Definicja równoważności S<=>A dla świecącej się żarówki S (S=1):
Kolumna A3B3:
Równoważność S<=>A to jednoczesne zachodzenie warunku wystarczającego => i koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A3B3:
A3: S~>A =1 - świecenie S jest konieczne ~> dla wnioskowania o wciśnięciu A
B3: S=>A =1 - świecenie S jest wystarczające => dla wnioskowania o wciśnięciu A
Czytamy:
Żarówka świeci się (S=1) wtedy i tylko wtedy gdy przycisk A jest wciśnięty (A=1)
S<=>A = (A3: S~>A)*(B3: S=>A)=1*1 =1
Innymi słowy:
Świecenie się żarówki S (S=1) jest konieczne ~> i wystarczające => dla wnioskowania o wciśniętym klawiszu A (A=1)
S<=>A = (A3: S~>A)*(B3: S=>A)=1*1 =1

Każda równoważność to tożsamość pojęć (zbiorów), stąd:
Wiedza o świecącej się żarówce S (S=1) jest tożsama „=” z wiedzą o wciśniętym klawiszu A (A=1)
S=A

Prawa Kubusia:
A3: S~>A = A4: ~S=>~A
B3: S=>A = B4: ~S~>~A

Z kolumny A4B4 odczytujemy:

Definicja równoważności ~S<=>~A dla nie świecącej się żarówki S (~S=1):
Kolumna A4B4:
Równoważność ~S<=>~A to jednoczesne zachodzenie warunku wystarczającego => i koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A4B4:
A4: ~S=>~A =1 - nie świecenie S jest wystarczające => dla wnioskowania o nie wciśnięciu A
B4: ~S~>~A =1 - nie świecenie S jest konieczne ~> dla wnioskowania o nie wciśnięciu A
Czytamy:
Żarówka nie świeci się (~S=1) wtedy i tylko wtedy gdy przycisk A nie jest wciśnięty (~A=1)
~S<=>~A = (A4: ~S=>~A)*(B4: ~S~>~A) = 1*1 =1
Innymi słowy:
Nie świecenie się żarówki S (~S=1) jest konieczne ~> i wystarczające => dla wnioskowania o nie wciśniętym klawiszu A (~A=1)
~S<=>~A = (A4: ~S=>~A)*(B4: ~S~>~A) = 1*1 =1

Każda równoważność to tożsamość pojęć (zbiorów), stąd:
Wiedza o nie świecącej się żarówce S (~S=1) jest tożsama „=” z wiedzą o nie wciśniętym klawiszu A (~A=1)
~S=~A

4.5.1 Operator równoważności A|<=>S w zdarzeniach

Kod:

S3 Schemat 3
Fizyczna realizacja równoważności A<=>S w zdarzeniach:
A<=>S=(A1: A=>S)*(B1: A~>S)=1*1=1
             S               A       
       -------------       ______     
  -----| Żarówka   |-------o    o-----
  |    -------------                 |
  |                                  |
______                               |
 ___    U (źródło napięcia)          |
  |                                  |
  |                                  |
  ------------------------------------
Zmienne związane definicją: A, S
Zmienna wolna: brak
Istotą równoważności jest brak zmiennych wolnych

Kod:

T3
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w równoważności A<=>S
A1B1 punkt odniesienia w zapisie formalnym:
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
A1B1: p<=>q=(A1: p=>q)*(B1: p~>q)=1*1=1
A1B1 punkt odniesienia w zapisie aktualnym:
A1: A=>S =1 - wciśnięcie A jest (=1) wystarczające => dla świecenia S
B1: A~>S =1 - wciśnięcie A jest (=1) konieczne ~> dla świecenia S
A1B1: A<=>S=(A1: A=>S)*(B1: A~>S)=1*1=1
       A1B1:           A2B2:          |     A3B3:            A4B4:
A:  1: p=>q  =1   = 2:~p~>~q=1       [=] 3: q~>p  =1    = 4:~q=>~p =1
A:  1: A=>S  =1   = 2:~A~>~S=1       [=] 3: S~>A  =1    = 4:~S=>~A =1
A’: 1: p~~>~q=0   =                  [=]                = 4:~q~~>p =0
A’: 1: A~~>~S=0   =                  [=]                = 4:~S~~>A =0
       ##              ##             |     ##               ##
B:  1: p~>q  =1   = 2:~p=>~q=1       [=] 3: q=>p  =1    = 4:~q~>~p =1
B:  1: A~>S  =1   = 2:~A=>~S=1       [=] 3: S=>A  =1    = 4:~S~>~A =1
B’:               = 2:~p~~>q=0       [=] 3: q~~>~p=0
B’:               = 2:~A~~>S=0       [=] 3: S~~>~A=0
--------------------------------------------------------------------------
R: A<=>S=A*S+~A*~S ~A<=>~S=A*S+~A*~S [=] S<=>A=A*S+~A*~S ~S<=>~A=A*S+~A*~S
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
A1: A=>S=1 - prawdziwy A1 wymusza fałszywy kontrprzykład A1’ (i odwrotnie)
B2:~A=>~S=1 - prawdziwy B2 wymusza fałszywy kontrprzykład B2’ (i odwrotnie)
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


Obszar AB12:

Operator równoważności A|<=>S dla A to odpowiedź w spójnikach równoważności A<=>S oraz ~A<=>~S na dwa pytania 1 i 2:

1.
Kiedy przycisk A jest wciśnięty (A=1)?

Kolumna A1B1
Równoważność dla wciśniętego przyciska A (A=1):
A1: A=>S =1 - wciśnięcie A jest (=1) wystarczające => dla świecenia S
B1: A~>S =1 - wciśnięcie A jest (=1) konieczne ~> dla świecenia S
Stąd:
RA1.
Przycisk A jest wciśnięty (A=1) wtedy i tylko wtedy gdy żarówka świeci się (S=1)
A<=>S = (A1: A=>S)*(B1: A~>S) =1*1 =1
Innymi słowy:
Wciśnięcie przycisku A (A=1) jest konieczne ~> i wystarczające => do tego, by żarówka świeciła się (S=1)
A<=>S = (A1: A=>S)*(B1: A~>S) =1*1 =1

Odpowiedź na pytanie 1 w warunku wystarczającym => jest następująca:
A1.
Jeśli przycisk A jest wciśnięty (A=1) to żarówka na 100% => świeci się (S=1)
A=>S =1 - wciśnięcie A wystarcza => dla świecenia S

Kontrprzykład A1’ dla warunku wystarczającego => A musi być fałszem
A1’.
Jeśli przycisk A jest wciśnięty (A=1) to żarówka może ~~> się nie świecić (~S=1)
A~~>~S = A*~S =0 - zdarzenie niemożliwe (=0)

Komentarz:
I.
Warunek wystarczający A=>S to zdanie A1
II.
Równoważność A<=>S dla wciśniętego przycisku A to:
RA1.
Przycisk A jest wciśnięty (A=1) wtedy i tylko wtedy gdy żarówka świeci się (S=1)
A1: A=>S =1 - wciśnięcie A jest (=1) wystarczające => dla świecenia S
B1: A~>S =1 - wciśnięcie A jest (=1) konieczne ~> dla świecenia S
A<=>S = (A1: A=>S)*(B1: A~>S) =1*1 =1
III.
Operator równoważności A|<=>S to układ równań logicznych RA1 i RB2:
RA1.
Przycisk A jest wciśnięty (A=1) wtedy i tylko wtedy gdy żarówka świeci się (S=1)
A1: A=>S =1 - wciśnięcie A jest (=1) wystarczające => dla świecenia S
B1: A~>S =1 - wciśnięcie A jest (=1) konieczne ~> dla świecenia S
A<=>S = (A1: A=>S)*(B1: A~>S) =1*1 =1
RB2:
Przycisk A nie jest wciśnięty (~A=1) wtedy i tylko wtedy gdy żarówka nie świeci się (~S=1)
A2: ~A~>~S =1 - nie wciśnięcie A jest (=1) konieczne ~> dla nie świecenia S
B2: ~A=>~S =1 - nie wciśnięcie A jest (=1) wystarczające => dla nie świecenia S
~A<=>~S = (A2: ~A~>~S)*(B2: ~A=>~S)=1*1 =1

Operator równoważności ~A|<=>~S dla ~A to odpowiedź w spójnikach równoważności ~A<=>~S oraz A<=>S na dwa pytania 2 i 1:

2.
Kiedy przycisk A nie jest wciśnięty (~A=1)?

Kolumna AB2
Równoważność dla nie wciśniętego przycisku A (~A=1):
RB2.
Przycisk A nie jest wciśnięty (~A=1) wtedy i tylko wtedy gdy żarówka nie świeci się (~S=1)
A2: ~A~>~S =1 - nie wciśnięcie A jest (=1) konieczne ~> dla nie świecenia S
B2: ~A=>~S =1 - nie wciśnięcie A jest (=1) wystarczające => dla nie świecenia S
~A<=>~S = (A2: ~A~>~S)*(B2: ~A=>~S)=1*1 =1

Odpowiedź na pytanie 2 w warunku wystarczającym => to:
B2.
Jeśli przycisk A nie jest wciśnięty (~A=1) to żarówka na 100% => nie świeci się (~S=1)
~A=>~S =1 - nie wciśnięcie A wystarcza => dla nie świecenia S

Kontrprzykład B2’ dla prawdziwego warunku wystarczającego B2 musi być fałszem
B2’.
Jeśli przycisk A nie jest wciśnięty (~A=1) to żarówka może ~~> się świecić (S=1)
~A~~>S = ~A*S =0 - zdarzenie niemożliwe

Komentarz:
I.
Warunek wystarczający ~A=>~S to zdanie B2
II.
Równoważność ~A<=>~S dla nie wciśniętego przycisku A to:
RB2.
Przycisk A nie jest wciśnięty (~A=1) wtedy i tylko wtedy gdy żarówka nie świeci się (~S=1)
A2: ~A~>~S =1 - nie wciśnięcie A jest (=1) konieczne ~> dla nie świecenia S
B2: ~A=>~S =1 - nie wciśnięcie A jest (=1) wystarczające => dla nie świecenia S
~A<=>~S = (A2: ~A~>~S)*(B2: ~A=>~S)=1*1 =1
III.
Operator równoważności ~p|<=>~q to układ równań logicznych RB2 i RB1:
RB2.
Przycisk A nie jest wciśnięty (~A=1) wtedy i tylko wtedy gdy żarówka nie świeci się (~S=1)
A2: ~A~>~S =1 - nie wciśnięcie A jest (=1) konieczne ~> dla nie świecenia S
B2: ~A=>~S =1 - nie wciśnięcie A jest (=1) wystarczające => dla nie świecenia S
~A<=>~S = (A2: ~A~>~S)*(B2: ~A=>~S)=1*1 =1
RA1.
Przycisk A jest wciśnięty (A=1) wtedy i tylko wtedy gdy żarówka świeci się (S=1)
A1: A=>S =1 - wciśnięcie A jest (=1) wystarczające => dla świecenia S
B1: A~>S =1 - wciśnięcie A jest (=1) konieczne ~> dla świecenia S
A<=>S = (A1: A=>S)*(B1: A~>S) =1*1 =1
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 35963
Przeczytał: 15 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Nie 15:34, 11 Kwi 2021    Temat postu:

Algebra Kubusia - wykład rozszerzony
5.0 Krótka historia wojny o algebrę Kubusia

Spis treści
5.0 Krótka historia wojny o algebrę Kubusia 1
5.1 Cel historii wojny o algebrę Kubusia 1
5.2 Fundament algebry Kubusia w świecie żywym 5
5.3 Dlaczego nie chcę dyskutować z ziemskimi, twardogłowymi matematykami? 6
5.4 Czym byłby nasz świat bez wariatów? 7
5.5 Smutny los walczących z Szatanem zwanym „Implikacja materialna” 8
5.6 Błędy nauki 9
5.7 Satyra w krótkich majteczkach 10
5.8 Są na Ziemi matematycy wątpiący 12


5.0 Krótka historia wojny o algebrę Kubusia

Algebra Kubusia - czas wojny
Algebra Kubusia to bezpardonowy atak na największe gówno jakie kiedykolwiek człowiek wymyślił zwane „implikacją materialną” będące fundamentem wszelkich ziemskich logik matematycznych. Czas wojny to czas przejściowy w którym matematycy głoszący nową wiarę, algebrę Kubusia, będą paleni żywcem na stosie przez twardogłowych matematyków tzn. zostaną wyklęci ze społeczności matematycznej.

Giordano Bruno - patron odwagi cywilnej:
"Ogłaszamy cię bracie Giordano Bruno nieskruszonym, zawziętym i zatwardziałym heretykiem. Na podstawie tego podlegasz wszystkim potępieniom i karom Kościoła powszechnego" – brzmiał wyrok inkwizycji.
17 lutego 1600 roku w Rzymie zapłonął stos, który uwiecznił Giordana Bruna jako szermierza i patrona odwagi cywilnej.
Biuletyn Ritorni di Roma 19 lutego 1600 napisał: "W czwartek spalony został żywcem na Campo de Fiori zakonnik, dominikanin z Noli, niepoprawny heretyk. Z kneblem w ustach z powodu zbrodniczych słów, które wypowiadał". Tym samym Giordano Bruno stał się męczennikiem w rozwoju nauki, która ostatecznie wygrała walkę z Kościołem, feudalizmem i całą mentalnością tamtej epoki.


5.1 Cel historii wojny o algebrę Kubusia

Celem opisanej tu historii wojny o algebrę Kubusia jest uświadomienie przyszłym matematykom, będącym już w 100% wyznawcami algebry Kubusia, z jakim betonem musiał walczyć Rafał3006, nim banalna algebra Kubusia trafiła do serc matematyków.

Czy dojdzie do Armagedonu wszelkich ziemskich logik matematycznych?
Na 100% TAK.
... a jeśli nie dojdzie to stracę wszelki szacunek dla ziemskich matematyków opętanych przez Szatana zwanego Klasycznym Rachunkiem Zdań i umrę sobie w spokoju.

W wykładzie podstawowym algebry Kubusia celowo ograniczam się do jednego przykładu zrozumiałego przez 5-cio latków, tym o chmurce i deszczu, bowiem twierdzę, że prędzej 5-cio latek zrozumie algebrę Kubusia pod którą podlega (tzn. nie musi się jej uczyć), niż ziemski, twardogłowy matematyk zrozumie co do niego piszę.

W temacie logika matematyczna ziemscy matematycy nic a nic nie rozumieją - wszystkiemu winna jest „implikacja materialna”, największe gówno wszech czasów jakie w swej historii wymyślił człowiek.
Fundamentem implikacji logicznej jest implikacja materialna, zatem to też jest do bani.
Implikacja materialna (i logiczna) jest fundamentem wszelkich logik „matematycznych” ziemskich matematyków, zatem wszystkie logiki matematyczne ziemian również są do bani.
cnd

Zamiarem wykładu podstawowego algebry Kubusia jest nokaut ziemskich, twardogłowych matematyków tzn. nie danie im szansy na wygibasy iż nie są w stanie zrozumieć algebry Kubusia.

Te wygibasy!

Cytaty ze śfinii:

http://www.sfinia.fora.pl/forum-kubusia,12/czysto-matematyczne-obalenie-logiki-matematycznej-ziemian,9269-225.html#310261
idiota napisał:
Chyba ostatecznie przegrzaliśmy rafałowi pozostałości mózgu.

http://www.sfinia.fora.pl/forum-kubusia,12/prawo-subalternacji,8368-2000.html#299283
idiota napisał:
Boże, co za bzdury...
To niesamowite jak rafał swoim nierozumieniem niczego potrafi sobie w głowie posklejać co się da i zrobić to jakoś odnoszące się do jego idee fixe...
Przecież tego nie ma sensu nawet wyjaśniać, bo widać tu raczej symptomy choroby, a nie rozumowanie.

http://www.sfinia.fora.pl/forum-kubusia,12/p-1-i-q-1-ale-p-q-0,10575-450.html#369345
Irbisol napisał:
Ty jesteś naprawdę ograniczony - nie ma z tobą podstawowego kontaktu ... Nie wiem, jak do ciebie przemówić, bo twoja głupota przerasta wszystko, co do tej pory spotkałem na wielu forach

http://www.sfinia.fora.pl/forum-kubusia,12/algebra-kubusia-2018-cdn,10787-1050.html#415439
Irbisol napisał:

Po prostu nie mam już słów na wyrażenie stopnia twojego upośledzenia, które nie pozwala ci tego pojąć.

http://www.sfinia.fora.pl/forum-kubusia,12/algebra-kubusia-2018-cdn,10787-1150.html#418651
Irbisol napisał:
Debil by zrozumiał, dlatego nie nazywam cię debilem, żeby debili nie obrażać.

http://www.sfinia.fora.pl/forum-kubusia,12/szach-mat-ktory-przejdzie-do-historii-matematyki,15663-2400.html#526961
Irbisol napisał:
Jestem tu tylko dlatego, żeby zobaczyć, jakiego jeszcze większego debila będziesz z siebie robił. Zawsze mam wrażenie, że sięgnąłeś dna - i zawsze się mylę - tam niżej jeszcze coś jest i ty to odkrywasz.


Cytaty z matematyki.pl:

[link widoczny dla zalogowanych]
autor: miodzio1988 » 4 sie 2009, o 11:45
miodzio1988 napisał:
Znowu te brednie? Realne zastosowania poprosimy. Postaw problem i rozwiąż go za pomocą tego co napisałeś tutaj. Tylko konkrety poproszę.

[link widoczny dla zalogowanych]
silicium2002 napisał:
To nie ma sensu. Czy ktoś czytał co za brednie powypisywał na tym forum do którego podał linki. Równie dobrze możemy założyć że 2 # 2 i zacząć pisać nową matematykę. Jestem przeciwny takiemu zaśmiecaniu forum.

[link widoczny dla zalogowanych]
miodzio1988 napisał:
No i na żadne pytanie nie odpowiedziałeś. Żadnego problemu nie postawiłeś. Żadnego problemu nie rozwiązałeś. Wniosek? Nic ta Twoja teoria nie jest warta. Musiałeś trafić na mnie żeby się do tego przekonać. No, ale uświadomiłem Cię. Zajmij się czymś pożytecznym. Ekstrema umiesz liczyć? Całki?
Jeśli następny Twój post nie będzie odpowiedzią na poprzednie pytania to stworzymy algebrę Miodzia. I ta algebra będzie równie absurdalna i równie nieprzydatna jak Twoja algebra.

[link widoczny dla zalogowanych]
Moderator matematyki.pl, Rogal, w ostatnim poście napisał:
Powtórzę się po raz ostatni - w matematyce niczego nie zmienisz, więc możesz nam przestać zawracać tym głowę - wszyscy już zrozumieli, o co chodzi - widzisz jaki entuzjazm? Nie jest potrzebny matematykom nowy operator do codziennego stosowania, bo te które są wystarczają.
Jeśli ktoś będzie miał tutaj coś bardzo istotnego do dodania do tej dyskusji, co nie zostało powiedziane, niech napisze do mnie PW, to temat odblokuję.

Algebra Kubusia od zawsze była wściekle zwalczana przez ziemskich matematyków, czego dowód wyżej. Za głoszenie algebry Kubusia na matematyce.pl, Rafal3006 po kilkudziesięciu postach został zbanowany. Małym usprawiedliwieniem dla matematyków jest fakt, iż to był rok 2009 kiedy to algebra Kubusia była jeszcze w wieku niemowlęcym.

Cytaty z ateisty.pl

[link widoczny dla zalogowanych]
26.03.2012, 21:09
Windziarz napisał:
Wracając do tematu: Kubuś nadal nie wie, że zbiory to nie zdania.
Poza tym, teza iż "nie wolno w jednym zbiorze trzymać rzeczy zupełnie różnych" nie dość, że zaczyna zahaczać o teorię typów, to jeszcze w dodatku w żadnej teorii typów nie jest prawdziwe.
Kubusiu: bredzisz i zapętlasz się w swoich bredniach coraz bardziej. Zapomnij wszystkiego, co w ogóle wydaje Ci się o logice i zacznij czytać jakieś podręczniki.

Moja odpowiedź na to wytłuszczone jest od 15 lat niezmienna:
Nigdy nie przeczytałem choćby jednego podręcznika ziemskiej logiki matematycznej i nigdy nie przeczytam.
Dlaczego?
Bo nie zamierzam nurkować w szambie zwanym Klasycznym Rachunkiem Zdań, czy też w jakiejkolwiek innej pseudo-logice ziemskich matematyków.

[link widoczny dla zalogowanych]
Admin Fizyk napisał:

Miało się to stać na 140 stronie, stanie się na 144 (przynajmniej ładna liczba, 12^2) - zamykam wątek.
Na koniec chciałbym jeszcze podziękować wszystkim walczącym z Kubusiem za wsparcie, a nieraz i nauczenie mnie czegoś nowego o logice - w szczególności Idiocie, Windziarzowi i Quebabowi.
Samemu Rafałowi3006 też w sumie należą się podziękowania - za stworzenie okazji dla innych do nauki logiki. Dzięki temu ten wątek miał jednak jakąś wartość edukacyjną

Ten sam Quebab cztery lata później napisał do mnie na PW na matematyce.pl (sorry za cytat z PW):
23 sierpnia 2016, 19:01
Quebab napisał:

Od czasu naszej ostatniej dyskusji zdążyłem zacząć studia i skończyć magistra z matematyki. Nawet moja praca magisterska dotyczyła logiki właśnie! Nie piszę jednak o tym, żeby się chwalić - przeciwnie, chciałbym Ci podziękować za to, że tak dużo mogłem nauczyć się z powodu Twojej manii! :)
Jeśli chcesz pogadać na poważnie, to powiedz najpierw, czy zapoznawałeś się już z logikami nieklasycznymi? Przede wszystkim, z logiką relewantną?
[link widoczny dla zalogowanych]

Jeśli chodzi o link który podał Quebab wyżej to mogę tylko współczuć ziemskim matematykom, że nie znają banalnej algebry Kubusia, będącej gilotyną dla wszelkich ziemskich logik „matematycznych”, w tym tych z cytatu. Po prostu, logika rządząca naszym Wszechświatem może być jedna i tylko jedna, to matematyka języka potocznego człowieka, algebra Kubusia.
Jedna z moich odpowiedzi dla Quebaba była taka:
Rafal3006 napisał:

Quebab napisał:

rafal3006, widzę, że u Ciebie niewiele zmian? :)
Pozdrawiam,
quebab z pewnego-innego-forum :)

... a tobie już wyprali mózg implikacją materialną, czy są w trakcie?
Dobrze że Fizyk zamknął temat NTI na ateiście.pl ... bo dyskusja taka jak tam była nie miała najmniejszego sensu tzn. zawsze od zera musiałem tłumaczyć NTI przypadkowym osobom tam się pojawiającym np. Quebabowi.
Od 4 lat mam stałego partnera w dyskusji na śfinii, Fiklita, twierdzę że najlepszego speca od logiki w Polsce, a może i na świecie.
Efekty tej dyskusji są tu:
http://www.sfinia.fora.pl/forum-kubusia,12/algebra-kubusia,8889.html#287781
P.S.
Jak myślisz?
Czy matematyk z najwyższej półki, Fiklit, napisałby ok. 1100 postów na temat algebry Kubusia, gdyby sensu w tym nie widział?


Wściekłe ataki na konkurencyjną logikę matematyczną, algebrę Kubusia, która burzy stary porządek rzeczy przewidział Kuhn.

[link widoczny dla zalogowanych]
Wikipedia napisał:

Paradygmat a rewolucja naukowa
W czasach nauki instytucjonalnej (określenie również wprowadzone przez Kuhna) podstawowym zadaniem naukowców jest doprowadzenie uznanej teorii i faktów do najściślejszej zgodności. W konsekwencji naukowcy mają tendencję do ignorowania odkryć badawczych, które mogą zagrażać istniejącemu paradygmatowi i spowodować rozwój nowego, konkurencyjnego paradygmatu.

Na przykład Ptolemeusz spopularyzował pogląd, że Słońce obiega Ziemię, i to przekonanie było bronione przez stulecia nawet w obliczu obalających go dowodów. Jak zaobserwował Kuhn, w trakcie rozwoju nauki „nowości wprowadzane są z trudem i z towarzyszącym mu, zgodnym z oczekiwaniami, jawnym oporem”. I tylko młodzi uczeni, nie tak głęboko indoktrynowani przez uznane teorie – jak Newton, Lavoisier lub Einstein – mogą dokonać odrzucenia starego paradygmatu.

Takie rewolucje naukowe następują tylko po długich okresach nauki instytucjonalnej, tradycyjnie ograniczonej ramami, w których musiała się ona (nauka) znajdować i zajmować się badaniami, zanim mogła te ramy zniszczyć”. Zresztą kryzys zawsze niejawnie tai się w badaniach, ponieważ każdy problem, który nauka instytucjonalna postrzega jako łamigłówkę, może być ujrzany z innej perspektywy, jako sprzeczność (wyłom), a zatem źródło kryzysu – jest to „istotne obciążenie” badań naukowych...

Kuhn argumentuje, że rewolucje naukowe są nieskumulowanym epizodem rozwojowym, podczas którego starszy paradygmat jest zamieniany w całości lub po części przez niezgodny z nim paradygmat nowszy. Ale nowy paradygmat nie może być zbudowany na poprzedzającym go, a raczej może go tylko zamienić, gdyż „instytucjonalna tradycja naukowa wyłaniająca się z rewolucji naukowej jest nie tylko niezgodna, ale też nieuzgadnialna z tą, która pojawiła się przed nią”. Rewolucja kończy się całkowitym zwycięstwem jednego z dwóch przeciwnych obozów.


5.2 Fundament algebry Kubusia w świecie żywym

Jestem Polakiem, ale niestety, wstyd mi za to, co obecnie dzieje się w mojej Ojczyźnie.
Ludzie - opamiętajcie się, kubeł zimnej wody na głowę.

http://www.sfinia.fora.pl/wiezienie-script-src-http-wujzboj-com-sfinia-hideu-js-script,20/mord-na-sprawiedliwym-i-jego-zmartwychwstanie,4928-29775.html#586813
mika.maik napisał:
Tego posta już nie zdążył Bóg ŁP JWPB umieścić na NIE.
Przy logowaniu pojawiła się taka informacja:
Masz całkowicie zabroniony dostęp do tej witryny.
Aby uzyskać więcej informacji, proszę skontaktować się z administratorem witryny.
Twoja nazwa użytkownika została zablokowana.


JWP Barycki - Pan jesteś po prostu logicznym tumanem bo nie rozumie Pan algebry Kubusia.
Wszystkie fora naszego Wszechświata zachowują się identycznie - zgodnie z algebrą Kubusia gdzie podstawowe prawo logiki matematycznej brzmi.
Fundament AK:
Szanuj swoich, bij wrogów naszych

Moderator z NIE uznał JWP Baryckiego za wroga którego musi zniszczyć, tu wszelkie chwyty są dozwolone - ostateczne rozwiązanie problemu to zabić wroga, w przypadku forów tylko zbanować.

Gorzej jest w świecie rzeczywistym, gdzie fundament AK również obowiązuje:
Fundament AK:
Szanuj swoich, bij wrogów naszych

Wystarczy sobie pooglądać wścieklizny sączącej się z propagandowej tuby PIS, „publicznej” TVP.

Zadanie dla JWP Baryckiego:
Jak usłyszy pan w „publicznej” TVP choćby jedno dobre zdanie na temat dowolnego człowieka z opozycji, to proszę tu napisać - ogłosimy święto państwowe.

„Publiczna” TVP ostatnio wzięła na cel marszałka senatu prof. Tomasza Grodzkiego:
[link widoczny dla zalogowanych]

„Po raz kolejny wykorzystano organy państwa i pieniądze podatników do zdyskredytowania w opinii publicznej Marszałka Senatu RP. Akcja CBA [ponad 100 funkcjonariuszy – MK], które bezskutecznie szuka haków na prof. Tomasza Grodzkiego została przeprowadzona tym razem w środku walki o władzę w tzw. Zjednoczonej Prawicy i miała za zadanie odwrócenie uwagi od tego, co dzieje się w obozie rządzącym”

Podsumowując:
JWP Barycki czy rozumie Pan już AK?
Czy rozumie Pan że moderator z NIE wcale Pana nie skrzywdził, bo nie ma takiej władzy by 100 funkcjonariuszy CBA zajęło się pańskim życiorysem od momentu narodzin do stanu na dzień dzisiejszy.

P.S.
Co ja gadam, CBA szuka haków na przeciwnika z opozycji do X pokoleń wstecz.
Dowód:
Hak na Tuska, gdzie TVP opublikowało zdjęcie dziadka Tuska (wszyscy widzieli) siedzącego za kierownicą limuzyny z Wermachtu.

5.3 Dlaczego nie chcę dyskutować z ziemskimi, twardogłowymi matematykami?

Po 15 latach wojny o zaistnienie algebry Kubusia w głowach ziemskich matematyków (tylko o nich tu chodzi bo 5-cio latki są ekspertami AK) dobijamy do brzegu.
Aktualną algebrę Kubusia podzieliłem na wie części "AK - wykład podstawowy" i "AK - wykład rozszerzony".
W wersji podstawowej wyłożona jest kwintesenscja AK.
Matematycznie wersja rozszerzona AK nie jest trudniejsza w zrozumieniu od wersji podstawowej (głównie punkty 3.0, 4.0 i 5.0) o ile ktoś zna poprawną algebrę Boole'a. Poprawna algebra Boole'a to funkcje logiczne w logice dodatniej (bo Y) i ujemnej (bo ~Y) - niestety najwybitniejsi ziemscy matematycy nie mają o tym fakcie najmniejszego pojęcia, bo nigdy nie byli w laboratorium techniki cyfrowej (nie mają doświadczenia praktycznego), więc jak ja biedny mam z nimi o tym dyskutować?
Algebra Boole'a to najtrudniejsza część AK, dlatego praktycznie nie ma tego "świństwa" (z punktu widzenia normalnego człowieka tzn. nie matematyka) w wersji podstawowej którą są części 3.0, 4.0 i 5.0.

Aktualnie wojna toczy się nie o rozszyfrowanie algebry Kubusia (to już się stało), logiki matematycznej której autorem jest Stwórca naszego Wszechświata (Bóg), ale o jak najprostszy przekaz dla ludzkości, by matematycy byli w stanie zrozumieć AK.
Aktualny system pracy nad przekazem AK (zero dyskusji) bardzo mi odpowiada. Dyskusje z Zieminami były mi niezbędnie potrzebne - bez nich nie byłoby możliwe rozpracowanie algebry Kubusia, za co wszystkim dziękuję, także twardogłowemu Irbisolowi który pewnie nigdy nie zrozumie AK mimo iż jest bardzo dobrym ziemskim logikiem ... sęk w tym, że z mózgiem wypranym gównem zwanym "implikacja materialna".

Dlaczego nie chcę już dyskutować z ziemskimi, twardogłowymi matematykami?
Bo nie są w stanie zrozumieć, że może istnieć poprawna logika matematyczna, algebra Kubusia, gdzie 100% definicji z obszaru logiki matematycznej jest sprzecznych ze wszystkimi ziemskimi logikami "matematycznymi" tzn. jakąkolwiek logikę "matematyczną" ziemian wzięlibyśmy na tapetę to zawsze będziemy mieć 100% definicji sprzecznych względem AK.

P.S.
Z matematykami normalnymi, którzy są w stanie wysłać gówno zwane „implikacją materialną” do piekła na wieczne piekielne męki chętnie podyskutuję … tylko czy są tacy?
… wierzę, że są.

5.4 Czym byłby nasz świat bez wariatów?

Od 15 lat ziemscy matematycy zamiast próbować zrozumieć co do nich piszę (są wyjątki np. Wuj Zbój, Volrath, Macjan, Fiklit), non-stop udowadniają, iż jestem wariatem, który rzucił rękawicę ich bogu, tzn. Klasycznemu Rachunku Zdań

I tak jak obłęd, w wyższym tego słowa znaczeniu, jest początkiem wszelkiej mądrości, tak schizofrenia jest początkiem wszelkiej sztuki, wszelkiej fantazji.
Herman Hesse.

idiota napisał:
Z rafałem jest o wiele gorzej.
Cierpi na paranoję wynalazczą.


Przewodnik Lekarza 1/2009

Tytuł: Wielcy twórcy i ich choroby

autorzy:
prof. dr hab. n. med. Andrzej Steciwko
kierownik Katedry i Zakładu Medycyny Rodzinnej
Akademii Medycznej we Wrocławiu;
rektor Państwowej Medycznej Wyższej Szkoły Zawodowej w Opolu

lek. Dominika Siejka
Katedra i Zakład Medycyny Rodzinnej
Akademii Medycznej we Wrocławiu,
kierownik Katedry i Zakładu prof. dr hab. n. med. Andrzej Steciwko

[link widoczny dla zalogowanych]

Fragmenty …

W historii, zarówno nauki, jak i sztuki, czy rozwoju kultury ogromną rolę odegrało kilkudziesięciu, a być może kilkuset ludzi, którzy na zawsze zmienili myślenie i postrzeganie człowieka. To dzięki nim, dzięki pojedynczym myślom jednostek, które na przestrzeni wieków określane były jako geniusze, nasza świadomość, wiedza o świecie oraz kultura społeczna rozwijały się, a etapy tej ewolucji często nie odbywały się stopniowo i powoli, lecz gwałtownymi skokami. Współcześni im oraz historycy badający ich życie już dawno zauważali, iż często wyróżnia ich jakaś właściwość, która u zwykłych ludzi uważana jest za poważną chorobę lub ułomność, a która wzmacnia cechy pozwalające tym jednostkom osiągać niezwykłe rezultaty. Czy to przypadek, czy też choroba może zrodzić geniusz? To pytanie naukowcy zadawali sobie od dawna. Istnieje wiele przykładów, które zdają się odpowiadać twierdząco na to pytanie. Czy jednak choroba jest przyczyną czy skutkiem geniuszu?

Choroba afektywna dwubiegunowa była i jest, można by powiedzieć, „popularna” wśród wybitnych artystów, zwłaszcza związanych z muzyką i literaturą. Cierpieli na nią m.in.: Piotr Czajkowski, Siergiej Rachmaninow, Virginia Woolf, Samuel Clemens (Mark Twain), Hermann Hesse, Tennessee Williams, Ernest Hemingway, Edgar Allan Poe i Paul Gauguin. Analiza biografii stu znanych pisarzy i poetów doprowadziła profesora psychiatrii z Uniwersytetu Oksfordzkiego, Feliksa Posta, do wniosku, że ok. 80% z nich miało zaburzenia nastroju i emocji. Z kolei Nancy Andreasen, neuropsychiatra z University of Iowa, obserwowała 30 amerykańskich pisarzy przez 15 lat i również u ok. 80% z nich stwierdziła zaburzenia nastroju i emocji, a u połowy zdiagnozowała chorobę maniakalno-depresyjną. Przypuszcza się, iż jest to związane z faktem, że w chorobie afektywnej dwubiegunowej w trakcie epizodów manii, a także w schizofrenii w fazie przedurojeniowej, dochodzi do nadmiernego wydzielania dopaminy, a jednocześnie do pobudzenia ośrodka nagrody w mózgu, co prowadzi do wzmożonej aktywności, a także intensywnego odczuwania wszelkich doznań i myśli. Może to w pewien sposób tłumaczyć, dlaczego ludzie na krawędzi choroby psychicznej dostrzegają czy wyczuwają rzeczy, które dla zwykłych śmiertelników są niewidoczne, a także rzucają się w wir kreatywnej pracy [5].

Według niektórych na schizofrenię chorował także jeden z największych fizyków – Izaak Newton. W swoim dziele Philosophiae naturalis principia mathematica (1687 r.) Newton przedstawił prawo powszechnego ciążenia, a także prawa ruchu leżące u podstaw mechaniki klasycznej. Również Albertowi Einsteinowi – laureatowi Nagrody Nobla w dziedzinie fizyki za wyjaśnienie efektu fotoelektrycznego, twórcy szczególnej i ogólnej teorii względności oraz współtwórcy korpuskularno-falowej teorii światła – niektórzy badacze przypisują schizofrenię, a inni zespół Aspergera (wspomniane zaburzenie ze spektrum zaburzeń autystycznych).



5.5 Smutny los walczących z Szatanem zwanym „Implikacja materialna”

[link widoczny dla zalogowanych]

Paweł Porębski
Wiara rozumna świeckiego teologa – Pawła Porębskiego
Hermeneutyka i egzegeza wiary wg filozoteizmu

Nieskończoność
11 listopada 2016

Pojęcie nieskończoności często prowadzi do paradoksów (najbardziej znane paradoksy są Zenona z Elei). Pojęcie to bardziej mi się kojarzy z opisem niż bytem: Nieskończoność (symbol: ∞) – byt nieograniczony (w sensie wielkości bądź ilości), który przyjęło się oznaczać za pomocą znaku ilości), który przyjęło się oznaczać za pomocą „przewróconej ósemki” (lemniskata). (Wikipedia). W XIX w. niemiecki matematyk Georg Cantor nieskończoność uznał za byt, obiekt, który można porównywać z innymi obiektami, dokonywać na nim operacji. Pojęcie to wykorzystywane zostało do teorii mnogości. M.innymi ma to służyć do wyeliminowania paradoksów.

Często jest tak, że nieskończoną liczbę uważa się za jakąś konkretną liczbę, którą można stale powiększać, bez ograniczeń, zmierzając do nieskończoności. Tak rozumianą nieskończoność filozofowie nazywają „potencjalną”.

Pojęcie nieskończoności służy do opisów fenomenów matematycznych (np. liczba nieskończona), zjawisk fizykalnych (np. przestrzeń, czasu), jak i przymiotów Boga. Jej niezwykłe właściwości zaskakiwały, jak wprowadzenie do matematyki pojęcia zera (wynalazek hinduski z IV–V wieku po Chrystusie). Nieskończoność nie jest liczbą, np. nie jest parzysta ani nieparzysta. To pewna idea wielkości, a może i doskonałości.

Pojęcie nieskończoności przydaje się do opisu wieczności w eschatologii chrześcijańskiej. Mówi o pośmiertnym życiu wiecznym.

Używając pojęcia nieskończoności nie można mówić o wielkościach większych lub mniejszych, choć np. liczb dodatnich i ujemnych jest więcej niż tylko dodatnich. Arytmetyka nie bardzo nadaje się do nieskończoności. Kiedy do nieskończoności doda się 1, to w wyniku otrzyma się również nieskończoność. Gdy do nieskończoności doda się nieskończoność, to też nic się nie zmieni, tj. wciąż będzie to nieskończoność. Nic nie da także mnożenie nieskończoności. W wyniku zawsze będzie nieskończoność.

Pojęcie nieskończoności w umyśle może doprowadzić do jej destabilizacji. Georg Cantor zajmując się wyższą matematyką abstrakcyjną przeszedł załamanie nerwowe i zmarł w przytułku dla obłąkanych. Wprowadził on wielość nieskończoności, całą hierarchie, co spowodowało, że jego umysł zapełnił się od nich i nie wytrzymał. Widać umysł ludzki ma ograniczenia, które nie należy przekraczać.

Austriacki logik Kurt Gödel zajmujący się systemami logicznymi oraz pojęciem nieskończoności skończył życie podobnie jak Cantor – pokonała go choroba psychiczna.

Trudno się dziwić, że tak potężne narzędzie i pojęcie zostało wykorzystane, adekwatnie do wielkości, do opisu przymiotów Stwórcy. Bóg jest nieskończenie dobry, miłosierny i doskonały. Bóg jest obecny wszędzie, nawet w nieskończoności. W nieskończonej odległości od Boskiego Źródła Niebiańskiego Światła znajduje się „piekło” (czyli praktycznie nie istnieje).


5.6 Błędy nauki

Błędy nauki
Autor: Luc Bürgin

Ludzie mają widocznie skłonność do przedwczesnego i negatywnego oceniania perspektyw rozwojowych pewnych dziedzin nauki. Niektóre rewolucyjne odkrycia lub idee przez lata bojkotowano i zwalczano tylko dlatego, że dogmatycznie nastawieni luminarze nauki nie umieli odrzucić swych ulubionych, choć przestarzałych i skostniałych idei i przekonań. Jednym słowem: „Niemożliwe!" hamowali postęp nauki, a przykładami można dosłownie sypać jak z rękawa:

• Gdy w XVIII wieku Antoine-Laurem de Lavoisier zaprzeczył istnieniu „flogistonu" – nieważkiej substancji, która wydziela się w trakcie procesu spalania i w którą wierzyli wszyscy ówcześni chemicy – i po raz pierwszy sformułował teorię utleniania, świat nauki zatrząsł się z oburzenia. „Observations sur la Physique", czołowy francuski magazyn naukowy, wytoczył przeciwko Lavoisierowi najcięższe działa, a poglądy uczonego upowszechniły się dopiero po zażartych walkach.

• Gdy w 1807 roku matematyk Jean-Baptiste Joseph de Fourier wystąpił przed Paryską Akademią Nauk z wykładem na temat przewodnictwa cieplnego w obwodzie zamkniętym i wyjaśnił, że każdą funkcję okresową można przedstawić w postaci nieskończonej sumy prostych funkcji okresowych (sinus, cosinus), wstał Joseph-Louis de Lagrange, jeden z najwybitniejszych matematyków tamtej epoki, i bez ogródek odrzucił tę teorię. A ponieważ przeciwko Fourierowi wystąpili także inni słynni uczeni, np. Pierre-Simon de Laplace, Jean-Baptiste Biot, Denis Poisson i Leonhard Euler, musiało minąć sporo czasu, zanim uznano doniosłość jego odkrycia. Obecnie nie można sobie wyobrazić matematyki i fizyki bez analizy Fouriera.

• Gdy w latach czterdziestych XIX wieku John James Waterston, nieznany młody fizyk, przedstawił brytyjskiemu Towarzystwu Królewskiemu swój rękopis, dwaj recenzenci nie pozostawili na nim suchej nitki. Gdyby w 1891 roku fizyk i późniejszy laureat Nagrody Nobla John William Rayleight nie odnalazł oryginalnego rękopisu w archiwach tej szacownej instytucji, na próżno szukalibyśmy w podręcznikach fizyki nazwiska Waterstona. A to właśnie on był pierwszym badaczem, który sformułował tak zwaną zasadę ekwipartycji energii dla specjalnego przypadku. W 1892 roku Rayleight napisał: „Bardzo trudno postawić się w sytuacji recenzenta z 1845 roku, ale można zrozumieć, że treść artykułu wydała mu się nadmiernie abstrakcyjna i nie przemówiły do niego zastosowane obliczenia matematyczne. Mimo to dziwi, że znalazł się krytyk, według którego: "Cały artykuł to czysty nonsens, który nie nadaje się nawet do przedstawienia Towarzystwu". Inny opiniujący zauważył: "[...] analiza opiera się – co przyznaje sam autor – na całkowicie hipotetycznej zasadzie, z której zamierza on wyprowadzić matematyczne omówienie zjawisk materiałów sprężystych [...]. Oryginalna zasada wynika z przyjęcia założenia, którego nie mogę zaakceptować i które w żadnym razie nie może służyć jako zadowalająca podstawa teorii matematycznej".

• Gdy pod koniec XIX wieku Wilhelm Conrad Röntgen, odkrywca promieni, bez których trudno sobie wyobrazić współczesną medycynę, opublikował wyniki swoich badań, musiał wysłuchać wielu krytycznych komentarzy. Nawet światowej sławy brytyjski fizyk lord Kelvin określił promienie rentgenowskie mianem .,sprytnego oszustwa''. Friedrich Dessauer, profesor fizyki medycznej, w czasie wykładu wygłoszonego 12 lipca 1937 roku na uniwersytecie w szwajcarskim Fryburgu powiedział w odniesieniu do odkrycia Röntgena: „Nadal widzę sceptyków wykrzykujących: "Niemożliwe!". I nadal słyszę proroków, wielkie autorytety tamtych lat, którzy odmawiali promieniom rentgenowskim jakiegokolwiek, także medycznego, znaczenia".

• Gdy Werner von Siemens, twórca elektrotechniki, zaprezentował przed Scientific Community teorię ładunku elektrostatycznego przewodów zamkniętych i otwartych, wywołał falę gwałtownych sprzeciwów. „Początkowo nie wierzono w moją teorię, ponieważ była sprzeczna z obowiązującymi w tamtych czasach poglądami", wspominał Siemens w autobiografii wydanej pod koniec XIX wieku.

• Podobnych przeżyć doświadczył William C. Bray z Uniwersytetu Kalifornijskiego w Berkeley, gdy w 1921 roku poinformował o zaobserwowaniu oscylującej okresowo reakcji chemicznej. W 1987 roku w fachowym czasopiśmie „Chemical and Engineering News" ukazał się artykuł R. Epsteina, który napisał, że amerykański uczony został wyśmiany i wyszydzony, bo reakcja taka wydawała się niepodobieństwem. I choć odkrycie Braya potwierdzono w teorii i w praktyce, to musiało upłynąć pięćdziesiąt lat, nim uznano znaczenie jego pracy.

Studenci rzadko mają okazję zetknąć się z podobnymi przykładami, ponieważ naukowcy, jak wszyscy inni ludzie, przejawiają osobliwą skłonność do zapominania o rozmaitych „wpadkach", z jakimi na przestrzeni lat musiała się uporać ich dyscyplina wiedzy. Z dumnie wypiętą piersią sprzedają uczniom historię nauki jako pasmo nieustających sukcesów. Wstydliwie przemilczają opowieści o walkach, które poprzedzają wielkie przełomy.


5.7 Satyra w krótkich majteczkach

Satyra w krótkich majteczkach, czyli życie w totalitaryzmie zwanym „implikacja materialna”

[link widoczny dla zalogowanych]
Gżdacz w artykule wynurzenia z szamba napisał:

Jeśli 2+2=5, to jestem papieżem

Z książki Johna D. Barrowa Kres możliwości? wypisuję cytaty, które są cytatami drugiego rzędu, bo w rzeczonej książce są to również cytaty.

Cytat pierwszy (s. 226).
Sądzę, że mistycyzm można scharakteryzować jako badanie tych propozycji, które są równoważne swoim zaprzeczeniom. Z zachodniego punktu widzenia, klasa takich propozycji jest pusta. Ze wschodniego punktu widzenia klasa ta jest pusta wtedy i tylko wtedy, kiedy nie jest pusta. (Raymond Smullyan)
Przepisałem wiernie, pozostawiając niepoprawną interpunkcję oraz nadużycie leksykalne polegające na tłumaczeniu angielskiego proposition jako propozycja, zamiast stwierdzenie.

Cytat drugi (s. 226) wymaga lekkiego wprowadzenia.
Warunkiem niesprzeczności systemu w logice klasycznej jest ścisły podział zdań na prawdziwe bądź fałszywe, bowiem ze zdania fałszywego można wywnioskować dowolne inne, fałszywe bądź prawdziwe.
Kiedy Bertrand Russell wypowiedział ten warunek na jednym z publicznych wykładów jakiś sceptyczny złośliwiec poprosił go, by udowodnił, że jeśli 2 razy 2 jest 5, to osoba pytająca jest Papieżem. Russell odparł: "Jeśli 2 razy 2 jest 5, to 4 jest 5; odejmujemy stronami 3 i wówczas 1=2. A że pan i Papież to 2, więc pan i Papież jesteście jednym."!
W ramach zadania domowego zadałem sobie wykazanie, że jeśli Napoleon Bonaparte był kobietą, to ja jestem jego ciotką. Na razie zgłaszam "bz".


[link widoczny dla zalogowanych]
Wikipedia napisał:

Matryca implikacji od wieków budzi kontrowersje, niekiedy sięgające samej istoty logiki.
Matryca implikacji:
Kod:

 p  q  p=>q
 1  1   1
 0  1   1
 1  0   0
 0  0   1

Z dowolnego zdania fałszywego wynika dowolne zdanie prawdziwe (drugi wiersz matrycy) i dowolne zdanie fałszywe (czwarty wiersz matrycy). Twierdzenie to znane jest od wielu wieków w postaci łacińskiej formuły Falsum sequitur quodlibet (z fałszu wynika cokolwiek, czyli wszystko).

Mimo to, gdy Bertrand Russell opublikował swój system logiki oparty na omawianej matrycy implikacji materialnej, niektórzy filozofowie przyjęli ten system za rodzaj herezji logicznej.

Ktoś próbował wykpić B. Russella, ogłaszając list otwarty, w którym zaproponował mu do rozwiązania następujące zadanie:
Ponieważ według pana można udowodnić wszystko na podstawie jednego zdania fałszywego, proszę na podstawie fałszywego zdania "5 = 4" udowodnić, że jest pan papieżem.

Na pierwszy rzut oka zadanie to może się wydać niewykonalne. Intuicyjnie bowiem nie potrafimy dojrzeć żadnego związku między zdaniem "5 = 4" a zdaniem: "B. Russell jest papieżem". Intuicji nie można jednak wierzyć ślepo, jest bowiem zawodna. Russell podjął zadanie i rozwiązał je w wyniku następującego rozumowania:
Opierając się na regule głoszącej, że od obu stron równości wolno odjąć tę samą liczbę, odejmuję od obu stron równości: "5 = 4", liczbę 3. Wyprowadzam w ten sposób ze zdania "5 = 4" zdanie "2 = 1".
Dowód, że jestem papieżem, jest już teraz zupełnie prosty: papież i ja to dwie osoby, ale 2 = 1 (w tym przypadku papież i B. Russell, czyli dwie osoby są jedną osobą), więc jestem papieżem.
Rozumowanie to jest zupełnie poprawne, zatem początkowa intuicja zgodnie z którą zadanie dane Russellowi wydawało się nierozwiązalne, okazała się zawodna.
Zdanie "B. Russell jest papieżem" rzeczywiście wynika ze zdania "5 = 4". Jest to przykład wynikania fałszu z fałszu (odpowiednik czwartego wiersza matrycy).

Równie łatwo możemy wykazać, że z tego samego zdania fałszywego wynika zdanie prawdziwe, np. zdanie "B. Russell jest wykształcony". Wystarczy do już wyprowadzonego zdania "B. Russell jest papieżem" dodać oczywiście prawdziwe zdanie "Każdy papież jest wykształcony" i mamy:
B. Russell jest papieżem
Każdy papież jest wykształcony
zatem B. Russell jest wykształcony

Można również łatwo wskazać inne, prawdziwe konsekwencje zdania "5 = 4", np. "B. Russell jest mężczyzną", "B. Russell zna język łaciński", B. Russell jest osobistością znaną w całym świecie" itp.
Teoretyczna możliwość wyprowadzenia dowolnego zdania z danego zdania fałszywego nie zawsze jest równoznaczna z praktyczna łatwością wykonania takiego zadania. Ale takie zadanie jest do rozwiązania.
________________________________________
Prof. Tadeusz Kwiatkowski (Jego Wykłady i szkice z logiki ogólnej to źródło dzisiejszej notki) komentuje:
"Twierdzenie Falsum sequitur quodlibet i — tym samym — równoważne mu łącznie drugi i czwarty wiersze matrycy implikacji są nie tylko twierdzeniami logiki, lecz stanowią ujęcie głębokiej prawdy filozoficznej dotyczącej istoty prawdy i fałszu. Prawda ma tę istotną własność, że kierowana konsekwentnie prawami iogiki. nigdy nie doprowadzi do konsekwencji fałszywej. Fałsz natomiast konsekwentnie stosowany przekreśla możliwość rozróżnienia prawdy i fałszu, czyli przekreśla wartość poznania (burzy wszelki porządek logiczny!)."



5.8 Są na Ziemi matematycy wątpiący

… na szczęście, są.

[link widoczny dla zalogowanych]

Logika, sens i wątpliwości
Marek Kordos
Delta, marzec 2013


Już przed laty, gdy brałem udział w tworzeniu jednej z kolejnych reform nauczania matematyki, miałem poważne wątpliwości, czy umieszczanie w programach nauczania matematyki (podstawach programowych, wykazach efektów nauczania, podręcznikach itp.) działu logika jest zgodne ze zdrowym rozsądkiem.

Oczywiście, wiem, że wielu głosi, iż nauczanie matematyki (jak niegdyś łaciny, której się zresztą uczyłem) to nauka logicznego myślenia. Ale, gdy czytałem otwierające wówczas podręczniki do liceum rozdziały poświęcone logice, trudno mi było powstrzymać się od wrażenia, że nie ma w nich żadnego sensu. Nie wymienię, rzecz jasna, żadnego konkretnego podręcznika (po co mi rozprawy sądowe – przecież podręcznik to wielkie pieniądze), ale wrażenie przy lekturze każdego z nich było podobne.
Od razu chciałbym powiedzieć, że nie chodzi o opinię, iż logika nigdy matematyce nie pomogła, bo unikanie błędów nie jest aktem twórczym (patrz Nicolas Bourbaki, Elementy historii matematyki). Chodzi o coś więcej. Ale nie śmiałem nalegać na usunięcie tego działu ze szkolnego nauczania, bo jeśli wszyscy widzą w nim sens, to może on tam – wbrew pozorom – istnieje.

Dopiero na sympozjum z okazji dziewięćdziesięciolecia Profesora Andrzeja Grzegorczyka dowiedziałem się, że moje wątpliwości nie są odosobnione i nawet w Instytucie Filozofii i Socjologii PAN prowadzone są prace nad taką modyfikacją logiki, by jej wady usunąć.

Co to za wady? Proszę spojrzeć na zdanie:
Dwa plus dwa równa się cztery wtedy i tylko wtedy, gdy Płock leży nad Wisłą.

Oczywiście, zdanie to jest prawdziwe, ale czy ma sens? Przecież między pewnym faktem arytmetycznym a innym faktem geograficznym żadnego związku nie ma. Dlaczego więc chcemy twierdzić (ba, uczyć tego), że te dwa zdania są równoważne?

Albo zdanie:
Jeśli dwa plus dwa jest równe pięć, to zachodzi twierdzenie Pitagorasa.

Z punktu widzenia logiki to zdanie jest prawdziwe. Tu już po obu stronach implikacji są zdania dotyczące faktów matematycznych. Dlaczego jednak chcemy zmusić młodego człowieka, by widział w tym sens?
Wyjaśnienie jest proste: w pierwszym przypadku chodzi o to, że równoważność zdań ma miejsce, gdy wartość logiczna obu zdań jest taka sama; w drugim – o to, że implikacja jest poprawna, gdy ma fałszywy poprzednik.

A więc logika sprowadza nasz świat do zbioru dwuelementowego, nic przeto dziwnego, że rzeczy absolutnie niepołączone żadnym znaczeniowym (semantycznym) związkiem muszą się znajdować w przynajmniej jednej z dwóch komórek, do jakiejś muszą trafić.

Powstają dwa pytania. Po pierwsze, czemu logika została tak skonstruowana, że – abstrahując od sensu – okalecza pojęciowy świat? Po drugie, czy faktycznie należy trzymać ją jak najdalej od młodzieży, bo tylko ją demoralizuje, każąc za wiedzę uważać takie androny, jak przytoczone powyżej?

Odpowiedź na pierwsze pytanie jest dość prosta. Nowoczesna logika formalna została stworzona (jak wielu uważa) przez Gottloba Fregego (1848-1925) tak, by obsługiwała matematykę, a tę rozumiano wówczas jako badanie prawdziwości zdań języków formalnych.

Odpowiedzi na drugie pytanie de facto nie ma. Tłumaczymy się z używania takich abstrahujących od znaczeń spójników logicznych tym, że alternatywa, koniunkcja i negacja są sensowne; że chcemy, aby młody człowiek wiedział, że zaprzeczeniem zdania, iż istnieje coś mające własność A, jest to, że wszystkie cosie własności A nie mają; że implikacja ze zdania prawdziwego daje jednak tylko zdania prawdziwe itd., itp.

Ale naprawdę chodzi o to, że – jak z małżeństwem i demokracją – lepszej propozycji dotąd nie wynaleziono. A szkoda.
Powrót do góry
Zobacz profil autora
Wyświetl posty z ostatnich:   
Napisz nowy temat   Ten temat jest zablokowany bez możliwości zmiany postów lub pisania odpowiedzi    Forum ŚFiNiA Strona Główna -> Metodologia / Forum Kubusia Wszystkie czasy w strefie CET (Europa)
Strona 1 z 1

 
Skocz do:  
Nie możesz pisać nowych tematów
Nie możesz odpowiadać w tematach
Nie możesz zmieniać swoich postów
Nie możesz usuwać swoich postów
Nie możesz głosować w ankietach

fora.pl - załóż własne forum dyskusyjne za darmo
Powered by phpBB © 2001, 2005 phpBB Group
Regulamin