|
ŚFiNiA ŚFiNiA - Światopoglądowe, Filozoficzne, Naukowe i Artystyczne forum - bez cenzury, regulamin promuje racjonalną i rzeczową dyskusję i ułatwia ucinanie demagogii. Forum założone przez Wuja Zbója.
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 35977
Przeczytał: 15 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Nie 4:59, 17 Kwi 2022 Temat postu: |
|
|
Algebra Kubusia
10.3 Przykłady operatorów chaosu p||~~>q
Spis treści
10.3 Przykład chaosu P8|~~>P3 w zbiorach 1
10.3.1 Operator chaosu P8||~~>P3 w zbiorach 3
10.4 Przykład chaosu A|~~>S w zdarzeniach 5
10.4.1 Operator chaosu A||~~>S w zdarzeniach 9
10.3 Przykład chaosu P8|~~>P3 w zbiorach
Kod: |
T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
## ## ## ## ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5: p+~q
Prawa Kubusia: | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q | A1: p=>q = A4:~q=>~p
B1: p~>q = B2:~p=>~q | B2:~p=>~q = B3: q=>p
Prawa Tygryska: | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p | B1: p~>q = B4:~q~>~p
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Definicja dowodu „nie wprost” w algebrze Kubusia:
Dowód „nie wprost” w algebrze Kubusia to dowód warunku koniecznego ~> lub wystarczającego => (ziemskie twierdzenia matematyczne) z wykorzystaniem praw logiki matematycznej (prawa Kubusia, prawa Tygryska, prawa kontrapozycji dla warunku wystarczającego =>, prawa kontrapozycji dla warunku koniecznego) plus definicja kontrprzykładu.
Prawo Słonia dla zbiorów:
W algebrze Kubusia w zbiorach zachodzi tożsamość [=] pojęć:
A1: p=>q - warunek wystarczający => [=] A1: p=>q - relacja podzbioru => [=] A1: p=>q twierdzenie proste
##
B1: p~>q - warunek konieczny ~> [=] B1: p~>q - relacja nadzbioru ~> [=] B3: q=>p - twierdzenie odwrotne
bo prawo Tygryska:
B1: p~>q = B3: q=>p = p+~q
Gdzie:
[=], „=”, <=> - tożsame znaczki tożsamości logicznej
<=> - wtedy i tylko wtedy
## - różne na mocy definicji
p i q musi być wszędzie tymi samymi p i q, inaczej błąd podstawienia
Definicja tożsamości logicznej [=]:
Prawdziwość dowolnego członu z tożsamości logicznej [=] wymusza prawdziwość pozostałych członów.
Fałszywość dowolnego członu z tożsamości logicznej [=] wymusza fałszywość pozostałych członów.
Z definicji tożsamości logicznej [=] wynika, że:
a)
Udowodnienie prawdziwości dowolnego członu powyższej tożsamości logicznej gwarantuje prawdziwość dwóch pozostałych członów
b)
Udowodnienie fałszywości dowolnego członu powyższej tożsamości logicznej gwarantuje fałszywość dwóch pozostałych członów
Na mocy prawa Słonia i jego powyższej interpretacji, możemy dowodzić prawdziwość dowolnych zdań warunkowych "Jeśli p to q" mówiących o zbiorach metodą "nie wprost"
Definicja chaosu p|~~>q w logice dodatniej (bo q):
Definicja chaosu p|~~>q w logice dodatniej (bo q) to nie zachodzenie ani warunku wystarczającego => ani też warunku koniecznego ~> miedzy tymi samymi punktami i w tym samym kierunku
A1: p=>q =0 - warunek wystarczający => nie jest spełniona (=0)
B1: p~>q =0 - warunek konieczny ~> nie jest spełniona (=0)
Stąd:
p|~>q = ~(A1: p=>q)* ~(B1: p~>q) =~(0)*~(0) =1*1 =1
Prawo Kłapouchego:
Domyślny punkt odniesienia dla zdań warunkowych „Jeśli p to q”:
W zapisie aktualnym zdań warunkowych (w przykładach) po „Jeśli…” mamy zdefiniowany poprzednik p zaś po „to..” mamy zdefiniowany następnik q z pominięciem przeczeń.
Prawo Kłapouchego determinuje wspólny dla wszystkich ludzi punktu odniesienia zawarty wyłącznie w kolumnach A1B1 oraz A2B2, dający odpowiedź na pytanie o p (A1B1) oraz o ~p (A2B2).
Rozważmy zdanie wypowiedziane:
A1”
Jeśli dowolna liczba jest podzielna przez 8 to może ~~> być podzielna przez 3
P8~~>P3 = P8*P3 =1 bo 24
Zdanie A1” definiuje zbiory:
P8=[8,16,24..] - zbiór liczb podzielnych przez 8
P3=[3,6,9,12..24.. ..] - zbiór liczb podzielnych przez 3
Istnieje wspólny element ~~> zbiorów P8 i P3.
cnd
Na mocy prawa Kłapouchego mamy:
p=P8
q=P3
stąd zdanie A1’’ w zapisie formalnym:
p~~>q = p*q =1
Przyjmijmy dziedzinę:
LN=[1,2,3,4,5,6,7,8,9..] - zbiór liczb naturalnych
Obliczamy zaprzeczenia zbiorów rozumianych jako uzupełnienie do wspólnej dziedziny LN.
~P8=[LN-P8]=[1,2,3,4,5,6,7..9..]
~P3=[LN-P3]=[1,2..4,5..6,7..]
Zauważmy, że warunek wystarczający A1: P8=>P3 nie jest tu spełniony:
A1.
Jeśli dowolna liczba jest podzielna przez 8 to na 100% => jest podzielna przez 3
P8=>P3 =0 bo kontrprzykład: 3
Definicja warunku wystarczającego P8=>P3 nie jest (=0) spełniona bo zbiór P8=[8,16,24..] nie jest (=0) podzbiorem => zbioru P3=[3,6,9..] bo kontrprzykład: 3
cnd
Zbadajmy warunek konieczny ~> między tymi samymi punktami:
B1.
Jeśli dowolna liczba jest podzielna przez 8 to może ~> być podzielna przez 3
P8~>P3 =0
Definicja warunku koniecznego ~> nie jest (=0) spełniona bo zbiór P8=[8,16,24..] nie jest (=0) nadzbiorem ~> zbioru P3=[3,6,9..] bo kontrprzykład: 3
cnd
Stąd mamy pewność że zdanie A1” należy do chaosu P8|~~>P3.
10.3.1 Operator chaosu P8||~~>P3 w zbiorach
Definicja podstawowa chaosu P8|~~>P3:
Chaos P8|~~>P3 to nie zachodzenie ani warunku wystarczającego =>, ani też koniecznego ~> między tymi samymi punktami i w tym samym kierunku:
A1: P8=>P3 =0 - podzielność dowolnej liczby przez 8 nie jest (=0) warunkiem wystarczającym =>
dla jej podzielności przez 3, bo zbiór P8 nie jest (=0) podzbiorem => P3
B1: P8~>P3 =0 - podzielność dowolnej liczby przez 8 nie jest (=0) warunkiem koniecznym ~>
dla jej podzielności przez 3, bo zbiór P8 nie jest (=0) nadzbiorem ~> P3
Stąd:
P8|~~>P3 = ~(A1: P8=>P3)*~(B1: P8~>P3) = ~(0)*~(0) =1*1 =1
Podstawmy to do tabeli prawdy chaosu p|~~>q.
Kod: |
CH
Kolumna A1B1: Punkt odniesienia w zapisie formalnym {p,q}:
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla q
A1B1: p|~~>q=~(A1: p=>q)*~(B1: p~>q)=~(0)*~(0)=1*1=1
Aktualny punkt odniesienia:
p=P8=[8,16,24..] - zbiór liczb podzielnych przez 8
q=P3=[3,6,9..] - zbiór liczb podzielnych przez 3
Kolumna A1B1: Punkt odniesienia w zapisie aktualnym {P8,P3}:
A1: P8=>P3 =0 - zbiór P8 nie jest (=0) podzbiorem => P3
B1: P8~>P3 =0 - zbiór P8 nie jest (=0) nadzbiorem ~> P3
A1B1: P8|~~>P3 = ~(A1: P8=>P3)*~(B1: P8~>P3)=~(0)*~(0)=1*1 =1
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q =0 = 2:~p~>~q =0 [=] 3: q~>p =0 = 4:~q=>~p =0
A’: 1: p~~>~q=1 = [=] = 4:~q~~>p =1
A’: 1: P8~~>~P3=1 = [=] = 4:~P3~~>P8 =1
A”: 1: p~~>q =1 [=] 4:~q~~>~p =1
A”: 1: P8~~>P3 =1 [=] 4:~P3~~>~P8=1
## ## | ## ##
B: 1: p~>q =0 = 2:~p=>~q =0 [=] 3: q=>p =0 = 4:~q~>~p =0
B’: = 2:~p~~>q =1 [=] 3: q~~>~p =1
B’: = 2:~P8~~>P3 =1 [=] 3: P3~~>~P8=1
B”: 2:~p~~>~q =1 [=] 3: q~~>p =1
B”: 2:~P8~~>~P3=1 [=] 3: P3~~>P8 =1
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
„=”, [=] - tożsame znaczki tożsamości logicznej
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Uwaga:
Zdania A1” i B2” kodowane zdarzeniem możliwym ~~> muszą być prawdziwe, bowiem wtedy i tylko wtedy będziemy mieli do czynienia z chaosem p|~~>q.
Dowód nie wprost:
Załóżmy, że zdanie A1” jest fałszywe:
A1”: p~~>q =0
Wówczas na mocy definicji kontrprzykładu prawdziwy byłby warunek wystarczający =>:
A1S: p=>~q =1
co prowadzi do sprzeczności z definicją chaosu p|~~>q gdzie o żadnym spełnionym warunku wystarczającym => mowy być nie może.
cnd
Identyczny dowód nie wprost możemy przeprowadzić w stosunku do zdania prawdziwego B2” oraz do zdań B3” i A4”.
W tabeli chaosu CH widzimy, że fałszywe są wszystkie warunki wystarczające => i konieczne ~>, ale analiza spójnika chaosu p|~~>q przez wszystkie możliwe przeczenia p i q w zdarzeniach możliwych ~~> (dla zdarzeń) albo w elementach wspólnych zbiorów ~~> (dla zbiorów) to seria czterech zdań prawdziwych.
Wniosek:
Najprostszy sposób udowodnienia iż mamy do czynienia z chaosem p|~~>q to udowodnienie iż cztery zdania kodowane znaczkiem ~~> przez wszystkie możliwe przeczenia p i q są prawdziwe.
Operator chaosu P8||~~>P3 to układ równań logicznych dający odpowiedź na pytanie o P8 i ~P8:
A1B1: P8|~~>P3 =~(A1: P8=> P3)*~(B1: P8~>P3) - co się stanie jeśli wylosujemy liczbę z P8?
A2B2:~P8|~~>~P3 =~(A2:~P3~>~P3)*~(B2:~P8=>~P3)- co się stanie jeśli wylosujemy liczbę z ~P8?
A1B1:
Co może się wydarzyć jeśli dowolna liczba będzie podzielna przez 8 (P8=1)?
Kolumna A1B1:
A1”.
Jeśli dowolna liczba jest podzielna przez 8 (P8=1) to może ~~> być podzielna przez 3 (P3=1)
P8~~>P3 = P8*P3 =1
Definicja elementu wspólnego zbiorów ~~> P8 i P3 jest (=1) spełniona bo zbiory P8=[8,16,24..] i P3=[3,6,9..24..] mają element wspólny ~~> np. 24
LUB
A1’.
Jeśli dowolna liczba jest podzielna przez 8 (P8=1) to może ~~> nie być podzielna przez 3 (~P3=1)
P8~~>~P3 = P8*~P3 =1
Definicja elementu wspólnego zbiorów ~~> P8 i ~P3 jest (=1) spełniona bo zbiory P8=[8,16,24..] i ~P3=[1,2..4.5..7,8..] mają element wspólny ~~> np. 8
A2B2:
Co może się wydarzyć jeśli dowolna liczba nie będzie podzielna przez z 8 (~P8=1)?
Kolumna A2B2:
B2”.
Jeśli dowolna liczba nie jest podzielna przez 8 (~P8=1) to może ~~> nie być podzielna przez 3 (~P3=1)
~P8~~>~P3 = ~P8*~P3 =1
Definicja elementu wspólnego zbiorów ~~> ~P8 i ~P3 jest (=1) spełniona bo zbiory ~P8=[1,2,3,4,5,6,7..9..] i ~P3=[1,2..4,5..7,8..] mają element wspólny np. 2
LUB
B2’.
Jeśli dowolna liczba nie jest podzielna przez 8 (~P8=1) to może ~~> być podzielna przez 3 (P3=1)
~P8~~>P3 = ~P8*P3 =1 bo element wspólny 3
Definicja elementu wspólnego zbiorów ~~> ~P8 i P3 jest (=1) spełniona bo zbiory ~P8=[1,2,3,4,5,6,7..9..] i P3=[3,6,9..24..] mają element wspólny np. 3
Podsumowanie:
Istotą operatorach chaosu P8||~~>P3 jest najzwyklejsze „rzucanie monetą” w rozumieniu „na dwoje babka wróżyła” zarówno po stronie P8 (zdania A1’’, A1’) jak i po stronie ~P8 (zdania B2’’ i B2’)
Zauważmy że:
a)
Układ równań logicznych jest przemienny, stąd mamy:
Operator chaosu ~P8||~~>~P3 w logice ujemnej (bo ~P3) to układ równań logicznych A2B2 i A1B1 dający odpowiedź na pytania o ~P8 i P8:
A2B2:~P8|~~>~P3 =~(A2:~P3~>~P3)*~(B2:~P8=>~P3)- co się stanie jeśli wylosujemy liczbę z ~P8?
A1B1: P8|~~>P3 =~(A1: P8=> P3)*~(B1: P8~>P3) - co się stanie jeśli wylosujemy liczbę z P8?
Doskonale widać, że analiza matematyczna operatora chaosu ~P8||~~>~P3 w logice ujemnej (bo ~P3) będzie identyczna jak operatora chaosu P8||~~>P3 w logice dodatniej (bo P3) z tym, że zaczynamy od kolumny A2B2 kończąc na kolumnie A1B1, co matematycznie jest bez znaczenia.
b)
Także kolejność wypowiadanych zdań jest dowolna, tak więc zdania z powyższej analizy A1’’, A1’, B2’’, B2’ możemy wypowiadać w sposób losowy - matematycznie to bez znaczenia.
10.4 Przykład chaosu A|~~>S w zdarzeniach
Kod: |
T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
## ## ## ## ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5: p+~q
Prawa Kubusia: | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q | A1: p=>q = A4:~q=>~p
B1: p~>q = B2:~p=>~q | B2:~p=>~q = B3: q=>p
Prawa Tygryska: | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p | B1: p~>q = B4:~q~>~p
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Definicja dowodu „nie wprost” w algebrze Kubusia:
Dowód „nie wprost” w algebrze Kubusia to dowód warunku koniecznego ~> lub wystarczającego => (ziemskie twierdzenia matematyczne) z wykorzystaniem praw logiki matematycznej (prawa Kubusia, prawa Tygryska, prawa kontrapozycji dla warunku wystarczającego =>, prawa kontrapozycji dla warunku koniecznego) plus definicja kontrprzykładu.
Definicja podstawowa chaosu p|~~>q w logice dodatniej (bo q):
Definicja podstawowa chaosu p|~~>q w logice dodatniej (bo q) to nie zachodzenie ani warunku wystarczającego => ani też warunku koniecznego ~> miedzy tymi samymi punktami i w tym samym kierunku
A1: p=>q =0 - warunek wystarczający => nie jest spełniona (=0)
B1: p~>q =0 - warunek konieczny ~> nie jest spełniona (=0)
Stąd:
p|~>q = ~(A1: p=>q)* ~(B1: p~>q) =~(0)*~(0) =1*1 =1
Rozważmy następujący schemat elektryczny:
Kod: |
S4 Schemat 4
Fizyczna realizacja chaosu A|~~>S w zdarzeniach:
A|~~>S=~(A1: A=>S)*~(B1: A~>S)=~(0)*~(0)=1*1=1
B
______
---o o------
| |
S C | A |
------------- ______ | ______ |
-----| Żarówka |-------o o-----o o-----|
| ------------- |
| |
______ |
___ U (źródło napięcia) |
| |
| |
------------------------------------------------
Zmienne związane definicją: A, S
Zmienne wolne: C, B
Istotą operatora chaosu są zmienne wolne.
|
Definicja zmiennej związanej:
Zmienna związana to zmienna występujące w układzie uwzględniona w opisie matematycznym układu.
Zmienna związana z definicji jest ustawiana na 0 albo 1 przez człowieka.
Definicja zmiennej wolnej:
Zmienna wolna to zmienna występująca w układzie, ale nie uwzględniona w opisie matematycznym układu.
Zmienna wolna z definicji może być ustawiana na 0 albo 1 poza kontrolą człowieka.
Fizyczna interpretacja zmiennych wolnych B i C:
Wyobraźmy sobie trzy pokoje 1, 2 i 3.
W pokoju 1 siedzi Jaś mając do dyspozycji wyłącznie przycisk A widzący żarówkę S, w pokoju 2 siedzi Zuzia mając do dyspozycji wyłączne przycisk C widząca duplikat żarówki S, zaś w pokoju 3 siedzi Małgosia mając do dyspozycji wyłącznie przycisk B oraz duplikat żarówki S. Jaś, Zuzia i Małgosia nie wiedzą o swoim wzajemnym istnieniu ani też nie znają schematu ideowego S4.
Zadaniem każdego członka z grupy jest rozszyfrowanie rzeczywistego schematu ideowego sterującego żarówką.
Przyjmijmy za punkt odniesienia Jasia i pokój 1.
Z punktu odniesienia Jasia mamy dwie zmienne wolne B i C do których Jaś nie ma dostępu, są poza jego kontrolą.
Definicja zmiennej wolnej B:
Matematycznie jest kompletnie bez znaczenia czy zmienna wolna B będzie pojedynczym przyciskiem, czy też dowolną funkcją logiczną f(b) zbudowaną z n przycisków, byleby dało się ustawić:
f(b) =1
oraz
f(b)=0
bowiem z definicji funkcja logiczna f(b) musi być układem zastępczym pojedynczego przycisku B, gdzie daje się ustawić zarówno B=1 jak i B=0.
Przykład:
f(b) = G*(~H+I)
Gdzie:
G, I - przyciski normalnie rozwarte
~H - przycisk normalnie zwarty
Definicja zmiennej wolnej C:
Matematycznie jest kompletnie bez znaczenia czy zmienna wolna C będzie pojedynczym przyciskiem, czy też dowolną funkcją logiczną f(c) zbudowaną z n przycisków, byleby dało się ustawić:
f(c) =1
oraz
f(c)=0
bowiem z definicji funkcja logiczna f(c) musi być układem zastępczym pojedynczego przycisku C, gdzie daje się ustawić zarówno C=1 jak i C=0.
Przykład:
f(c) = C+D*(E+~F)
Gdzie:
C, D, E - przyciski normalnie rozwarte
~F - przycisk normalnie zwarty
Definicja zmiennej związanej A:
Także zmienna związana A nie musi być pojedynczym przyciskiem, może być zespołem n przycisków realizujących funkcję logiczną f(a) byleby dało się ustawić:
f(a) =1
oraz
f(a)=0
bowiem z definicji funkcja logiczna f(a) musi być układem zastępczym pojedynczego przycisku A, gdzie daje się ustawić zarówno A=1 jak i A=0.
Przykład:
f(a) = K+~L*~M
Gdzie:
K - przycisk normalnie rozwarty
~L, ~M - przyciski normalnie zwarte
Na początek musimy udowodnić, iż rzeczywiście układ S4 jest fizyczną realizacją chaosu A|~~>S.
Prawo Kłapouchego:
Domyślny punkt odniesienia dla zdań warunkowych „Jeśli p to q”:
W zapisie aktualnym zdań warunkowych (w przykładach) po „Jeśli…” mamy zdefiniowany poprzednik p zaś po „to..” mamy zdefiniowany następnik q z pominięciem przeczeń.
Prawo Kłapouchego determinuje wspólny dla wszystkich ludzi punktu odniesienia zawarty wyłącznie w kolumnach A1B1 oraz A2B2, dający odpowiedź na pytanie o p (A1B1) oraz o ~p (A2B2).
Badamy prawdziwość/fałszywość warunku wystarczającego => A1.
A1.
Jeśli przycisk A jest wciśnięty (A=1) to żarówka na 100% => świeci się (S=1)
A=>S =0
Wciśnięcie przycisku A nie jest (=0) warunkiem wystarczającym => dla świecenia się żarówki S bo zmienna wolna C może być ustawiona na C=0 - wtedy żarówka nie będzie się świecić (~S=1).
Na mocy prawa Kłapouchego przyjmijmy zdanie A1 za punkt odniesienia:
p = A (przycisk A)
q = S (żarówka S)
Stąd mamy zapis zdania A1 w zapisie formalnym:
p=>q =0
Badamy prawdziwość/fałszywość warunku koniecznego ~> B1:
B1:
Jeśli przycisk A jest wciśnięty (A=1) to żarówka może ~> się świecić (S=1)
A~>S =?
To samo w zapisie formalnym:
p~>q=?
W takim przypadku zawsze najprościej jest skorzystać z prawa Tygryska prowadzącego do najprostszego warunku wystarczającego =>.
Prawo Tygryska:
B1: A~>S = B3: S=>A
To samo w zapisie formalnym:
B1: p~>q = B3: q=>p
Badamy prawdziwość/fałszywość warunku wystarczającego => B3.
B3.
Jeśli żarówka świeci się (S=1) to na 100% => przycisk A jest wciśnięty (A=1)
S=>A =0
Definicja warunku wystarczającego => nie jest spełniona bo żarówka S może się świecić (S=1) gdy C=1 i B=1 zaś przycisk A wcale nie musi być wciśnięty.
Stąd, na mocy prawa Tygryska warunek konieczny ~> B1 jest fałszem:
B1:
Jeśli przycisk A jest wciśnięty (A=1) to żarówka może ~> się świecić (S=1)
A~>S =0 - wciśnięcie przycisku A nie jest (=0) konieczne ~> dla świecenia się żarówki S.
cnd
Wniosek:
Schemat S4 jest fizyczną realizacją chaosu A|~~>S
10.4.1 Operator chaosu A||~~>S w zdarzeniach
Kod: |
S4 Schemat 4
Fizyczna realizacja chaosu A|~~>S w zdarzeniach:
A|~~>S=~(A1: A=>S)*~(B1: A~>S)=~(0)*~(0)=1*1=1
W
______
---o o------
| |
S Z | A |
------------- ______ | ______ |
-----| Żarówka |-------o o-----o o-----|
| ------------- |
| |
______ |
___ U (źródło napięcia) |
| |
| |
------------------------------------------------
Zmienne związane definicją: A, S
Zmienne wolne: W, Z
Istotą chaosu A|~~>S są zmienne wolne W i Z.
|
Dowód iż schemat S4 jest fizyczną realizacją operatora chaosu przedstawiliśmy wyżej.
Dopiero w tym momencie możemy skorzystać z szablonu chaosu p|~~>q wyrażonego warunkami wystarczającymi => i koniecznymi ~>
Kod: |
CH
Kolumna A1B1: Punkt odniesienia w zapisie formalnym:
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla q
A1B1: p|~~>q=~(A1: p=>q)*~(B1: p~>q)=~(0)*~(0)=1*1=1
Aktualny punkt odniesienia:
p=A (przycisk A)
q=S (żarówka S)
Kolumna A1B1: Punkt odniesienia w zapisie aktualnym:
A1: A=>S =0 - wciśnięcie A nie jest (=0) wystarczające => dla świecenia S
B1: A~>S =0 - wciśnięcie A nie jest (=0) konieczne ~> dla świecenia S
A1B1: A|~~>S = ~(A1: A=>S)*~(B1: A~>S) =~(0)*~(0) =1*1=1
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q =0 = 2:~p~>~q =0 [=] 3: q~>p =0 = 4:~q=>~p =0
A: 1: A=>S =0 = 2:~A~>~S =0 [=] 3: S~>A =0 = 4:~S=>~A =0
A’: 1: p~~>~q=1 = [=] = 4:~q~~>p =1
A’: 1: A~~>~S=1 = [=] = 4:~S~~>A =1
A”: 1: p~~>q =1 [=] 4:~q~~>~p=1
A”: 1: A~~>S =1 [=] 4:~S~~>~A=1
## ## | ## ##
B: 1: p~>q =0 = 2:~p=>~q =0 [=] 3: q=>p =0 = 4:~q~>~p =0
B: 1: A~>S =0 = 2:~A=>~S =0 [=] 3: S=>A =0 = 4:~S~>~A =0
B’: = 2:~p~~>q =1 [=] 3: q~~>~p=1
B’: = 2:~A~~>S =1 [=] 3: S~~>~A=1
B”: 2:~p~~>~q=1 [=] 3: q~~>p =1
B”: 2:~A~~>~S=1 [=] 3: S~~>A =1
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
„=”, [=] - tożsame znaczki tożsamości logicznej
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Uwaga:
Zdania A1” i B2” kodowane zdarzeniem możliwym ~~> muszą być prawdziwe, bowiem wtedy i tylko wtedy będziemy mieli do czynienia z chaosem p|~~>q.
Dowód nie wprost:
Załóżmy, że zdanie A1” jest fałszywe:
A1”: p~~>q =0
Wówczas na mocy definicji kontrprzykładu prawdziwy byłby warunek wystarczający =>:
A1S: p=>~q =1
co prowadzi do sprzeczności z definicją chaosu p|~~>q gdzie o żadnym spełnionym warunku wystarczającym => mowy być nie może.
cnd
Identyczny dowód nie wprost możemy przeprowadzić w stosunku do zdania prawdziwego B2” oraz do zdań B3” i A4”.
W tabeli CH widzimy, że fałszywe są wszystkie warunki wystarczające => i konieczne ~>, ale analiza spójnika chaosu p|~~>q przez wszystkie możliwe przeczenia p i q w zdarzeniach możliwych ~~> (dla zdarzeń) albo w elementach wspólnych zbiorów ~~> (dla zbiorów) to seria czterech zdań prawdziwych.
Wniosek:
Najprostszy sposób udowodnienia iż mamy do czynienia z chaosem p|~~>q to udowodnienie iż cztery zdania kodowane znaczkiem ~~> przez wszystkie możliwe przeczenia p i q są prawdziwe.
Operator chaosu A||~~>S w logice dodatniej (bo S) to układ równań logicznych A1B1 i A2B2 dający odpowiedź na pytanie o A i ~A:
A1B1: A|~~>S =~(A1: A=> S)*~(B1: A~>S) - co się stanie jeśli A jest wciśnięty (A=1)?
A2B2:~A|~~>~S =~(A2:~A~>~S)*~(B2:~A=>~S)- co się stanie jeśli A nie jest wciśnięty (~A=1)?
A1B1:
Co może się wydarzyć jeśli przycisk A będzie wciśnięty (A=1)?
Kolumna A1B1:
A1: A=>S =0 - wciśnięcie A nie jest (=0) wystarczające => dla świecenia S
B1: A~>S =0 - wciśnięcie A nie jest (=0) konieczne ~> dla świecenia S
A1B1: A||~~>S = ~(A1: A=>S)*~(B1: A~>S) =~(0)*~(0) =1*1=1
Z kolumny A1B1 odczytujemy:
A1”.
Jeśli przycisk A będzie wciśnięty (A=1) to żarówka może ~~> się świecić (S=1)
A~~>S = A*S =1
Możliwe jest (=1) zdarzenie:
Przycisk A jest wciśnięty (A=1) i żarówka świeci się (S=1) gdy dodatkowo zmienna wolna Z będzie ustawiona na Z=1
LUB
A’.
Jeśli przycisk A będzie wciśnięty (A=1) to żarówka może ~~> nie świecić się (~S=1)
A~~>~S = A*~S =1
Możliwe jest (=1) zdarzenie: przycisk A jest wciśnięty (A=1) i żarówka nie świeci się (~S=1)
Gdy zmienna wolna Z ustawiona jest na Z=0
A2B2:
Co może się wydarzyć jeśli przycisk A nie będzie wciśnięty (~A=1)?
Kolumna A2B2:
A2: ~A~>~S =0 - nie wciśnięcie A (~A=1) nie jest (=0) konieczne ~> dla nie świecenia S (~S=1)
B2: ~A=>~S =0 - nie wciśnięcie A (~A=1) nie jest (=0) wystarczające => nie dla świecenia S (~S=1)
~A|~~>~S = ~(A2:~A~>~S)*~(B2:~A=>~S) = ~(0)*~(0) =1*1 =1
Z kolumny A2B2 odczytujemy:
B”.
Jeśli przycisk A nie będzie wciśnięty (~A=1) to żarówka może ~~> nie świecić się (~S=1)
~A~~>~S = ~A*~S =1
Możliwe jest (=1) zdarzenie: przycisk A nie jest wciśnięty (~A=1) i żarówka nie świeci się (~S=1)
Gdy zmienna wolna Z ustawiona jest na Z=0 (albo W=0)
LUB
B’.
Jeśli przycisk A nie jest wciśnięty (~A=1) to żarówka może ~~> świecić się (S=1)
~A~~>S = ~A*S =1
Możliwe jest (=1) zdarzenie: przycisk A nie jest wciśnięty (~A=1) i żarówka świeci się (S=1)
Gdy zmienna wolna Z ustawiona jest na Z=1 i zmienna wolna W ustawiona jest na W=1
Podsumowanie:
Operator chaosu A||~~>S to „rzucanie monetą” w sensie „na dwoje babka wróżyła” zarówno po stronie wciśniętego klawisza A (A=1 - zdania A1’’ i A1’), jak i po stronie nie wciśniętego klawisza A (~A=1 - zdania B2’’ i B2’)
Zauważmy że:
a)
Układ równań logicznych jest przemienny, stąd mamy:
Operator chaosu ~A||~~>~S w logice ujemnej (bo ~S) to układ równań logicznych A2B2 i A1B1 dający odpowiedź na pytanie o ~A i A:
A2B2:~A|~~>~S =~(A2:~A~>~S)*~(B2:~A=>~S) - co się stanie jeśli A nie jest wciśnięty (~A=1)?
A1B1: A|~~>S =~(A1: A=> S)*~(B1: A~>S) - co się stanie jeśli A jest wciśnięty (A=1)?
Doskonale widać, że analiza matematyczna operatora chaosu ~A||~~>~S w logice ujemnej (bo ~S) będzie identyczna jak operatora chaosu A||~~>S w logice dodatniej (bo S) z tym, że zaczynamy od kolumny A2B2 kończąc na kolumnie A1B1, co matematycznie jest bez znaczenia.
b)
Także kolejność wypowiadanych zdań jest dowolna, tak więc zdania z powyższej analizy A1’’, A1’, B2’’, B2’ możemy wypowiadać w sposób losowy - matematycznie to bez znaczenia.
Ostatnio zmieniony przez rafal3006 dnia Nie 14:54, 12 Cze 2022, w całości zmieniany 6 razy
|
|
Powrót do góry |
|
|
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 35977
Przeczytał: 15 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Nie 5:01, 17 Kwi 2022 Temat postu: |
|
|
Algebra Kubusia
11.0 Obietnice i groźby
Spis treści
11.0 Obietnice i groźby 1
11.1 Implikacja prosta p|=>q 2
11.1.1 Operator implikacji prostej p||=>q 3
11.2 Implikacja odwrotna p|~>q 5
11.2.1 Operator implikacji odwrotnej p||~>q 7
11.3 Prawa transformacji w obietnicy i groźbie 8
11.3.1 Prawo transformacji w obietnicy 8
11.3.2 Prawo transformacji w groźbie 10
11.0 Obietnice i groźby
Największą tragedią ziemskich matematyków jest fakt, że mając 2500 lat czasu (od Sokratesa) nie doszli do poprawnych matematycznie definicji obietnicy i groźby niżej zapisanych.
Definicja obietnicy:
Jeśli dowolny warunek W to nagroda N
W=>N =1
Dowolna obietnica to warunek wystarczający W=>N wchodzący w skład implikacji prostej W|=>N.
Zauważmy, że na mocy definicji obietnicy musimy jedynie rozstrzygnąć czy w następniku q zdania warunkowego „Jeśli p to q” mamy nagrodę.
Poza tym nic a nic nie musimy dodatkowo udowadniać, wszystko mamy zdeterminowane na mocy definicji implikacji prostej p|=>q.
Przykład:
A1.
Jeśli zdasz egzamin dostaniesz komputer
E=>K =1
Dostanie komputera to nagroda, zatem warunek wystarczający A1: E=>K z definicji jest częścią implikacji prostej E|=>K. W tym momencie wszystko mamy zdeterminowane, nic a nic nie musimy dodatkowo udowadniać.
Zdanie egzaminu jest warunkiem wystarczającym => dla otrzymania komputera
Zdanie egzaminu daje nam gwarancję matematyczną => otrzymania komputera
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>
Definicja groźby:
Jeśli dowolny warunek W to kara K
W~>K =1
Dowolna groźba to warunek konieczny W~>K wchodzący w skład implikacji odwrotnej W|~>K
Zauważmy, że na mocy definicji groźby musimy jedynie rozstrzygnąć czy w następniku q zdania warunkowego „Jeśli p to q” mamy karę.
Przykład:
B1.
Jeśli ubrudzisz spodnie dostaniesz lanie
B~>L =1
Dostanie lania to kara, zatem warunek konieczny B1: B~>L z definicji jest częścią implikacji odwrotnej B|~>L. W tym momencie wszystko mamy zdeterminowane, nic a nic nie musimy dodatkowo udowadniać.
Brudne spodnie są warunkiem koniecznym ~> dostania lania, ale nie jest to warunek wystarczający => bowiem na mocy definicji implikacji odwrotnej B|~>L każdy człowiek ma prawo do odstąpienia wykonania kary zależnej od niego.
Chrystus:
Zaprawdę, powiadam ci, jeszcze dziś będziesz ze Mną w raju. (Łk 23, 43);
Przypomnijmy sobie teorię implikacji prostej p|=>q i implikacji odwrotnej p|~>q.
11.1 Implikacja prosta p|=>q
IP
Definicja implikacji prostej p|=>q w logice dodatniej (bo q):
Kolumna A1B1:
Implikacja prosta p|=>q w logice dodatniej (bo q) to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku.
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
stąd:
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) =1*~(0) = 1*1 =1
Czytamy:
Implikacja prosta p|=>q w logice dodatniej (bo q) jest spełniona (=1) wtedy i tylko wtedy gdy p jest (=1) wystarczające => dla q (A1) i jednocześnie p nie jest (=0) konieczne ~> dla zajścia q (B1)
Podstawmy tą definicję do matematycznych związków warunku wystarczającego => i koniecznego ~>:
Kod: |
T1
Matematyczne związki warunku wystarczającego => i koniecznego ~> w implikacji prostej p|=>q:
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p =1 [=] 5: ~p+q
## ## ## ## ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p =0 [=] 5: p+~q
Gdzie:
p=>q=~p+q - definicja warunku wystarczającego =>
p~>q=p+~q - definicja warunku koniecznego ~>
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Dla udowodnienia, iż zdanie warunkowe „Jeśli p to q” wchodzi w skład implikacji prostej p|=>q potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Ax i fałszywość dowolnego zdania serii Bx.
Kluczowym punktem zaczepienia w wyprowadzeniu symbolicznej definicji implikacji prostej p|=>q jest definicja kontrprzykładu rodem z algebry Kubusia działająca wyłącznie w warunku wystarczającym =>.
Definicja kontrprzykładu w zbiorach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane elementem wspólnym zbiorów p~~>~q=p*~q
Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>~q=p*~q
Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)
Uzupełnijmy naszą tabelę wykorzystując powyższe rozstrzygnięcia działające wyłącznie w warunkach wystarczających =>.
Kod: |
IP
Tabela prawdy implikacji prostej p|=>q
Kolumna A1B1 to punkt odniesienia w zapisie formalnym {p,q}:
A1: p=>q =1 - p jest (=1) wystarczające => dla q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla q
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q =1 = 2:~p~>~q=1 [=] 3: q~>p =1 = 4:~q=>~p =1
A’: 1: p~~>~q=0 = [=] = 4:~q~~>p =0
## ## | ## ##
B: 1: p~>q =0 = 2:~p=>~q=0 [=] 3: q=>p =0 = 4:~q~>~p =0
B’: = 2:~p~~>q=1 [=] 3: q~~>~p=1
Definicja implikacji prostej p|=>q to odpowiedź na pytanie o p:
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p?
Definicja implikacji odwrotnej ~p|~>~q to odpowiedź na pytanie o ~p:
A2B2: ~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p?
Operator implikacji prostej p||=>q to układ równań logicznych:
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p
A2B2:~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
Układ równań logicznych jest przemienny, stąd mamy:
Operator implikacji odwrotnej ~p||~>~q to układ równań logicznych:
A2B2:~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
11.1.1 Operator implikacji prostej p||=>q
Operator implikacji prostej p||=>q w logice dodatniej (bo q) to układ równań logicznych A1B1 i A2B2 dający odpowiedzi na pytania o p i ~p:
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p
A2B2:~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A1B1.
Co może się wydarzyć jeśli zajdzie p (p=1)?
Odpowiedź mamy w kolumnie A1B1:
A1: p=>q =1 - p jest (=1) wystarczające => dla q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla q
A1B1: p|=>q =(A1: p=>q)* ~(B1: p~>q) - co się stanie jeśli zajdzie p?
Stąd:
Jeśli zajdzie p (p=1) to mamy gwarancję matematyczną => iż zajdzie q (q=1)
Mówi o tym zdanie A1
Odpowiedź w zdaniach warunkowych „Jeśli p to q” mamy w kolumnie A1B1:
A1.
Jeśli zajdzie p (p=1) to na 100% => zajdzie q (q=1)
p=>q =1
Zajście p jest (=1) wystarczające => dla zajścia q
Zajście p daje nam (=1) gwarancję matematyczną => zajścia q
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>
Prawdziwy warunek wystarczający A1 wymusza fałszywość kontrprzykładu A1’ i odwrotnie.
A1’.
Jeśli zajdzie p (p=1) to może ~~> zajść ~q (~q=1)
p~~>~q = p*~q=0
Zdarzenia:
Niemożliwe jest (=0) jednoczesne zajście zdarzeń ~~>: p i ~q
Zbiory:
Nie istnieje (=0) element wspólny zbiorów ~~>: p i ~q
A2B2.
Co może się wydarzyć jeśli zajdzie ~p (~p=1)?
Odpowiedź mamy w kolumnie A2B2:
A2: ~p~>~q =1 - zajście ~p jest (=1) konieczne ~> dla zajścia ~q
B2: ~p=>~q =0 - zajście ~p nie jest (=0) wystarczające => dla zajścia ~q
A2B2: ~p|~>~q =(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p?
Stąd:
Jeśli zajdzie ~p to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła”.
Mówią o tym zdania A2 i B2’
Odpowiedź w zdaniach warunkowych „Jeśli p to q” mamy w kolumnie A2B2:
A2.
Jeśli zajdzie ~p (~p=1) to może ~> zajść ~q (~q=1)
~p~>~q =1
Zajście ~p jest konieczne ~> dla zajścia ~q, bo jak zajdzie p to na 100% => zajdzie q
Prawo Kubusia samo nam tu wyskoczyło:
A2: ~p~>~q = A1: p=>q
LUB
Fałszywy warunek wystarczający => B2 wymusza prawdziwość kontrprzykładu B2’ i odwrotnie:
B2’.
Jeśli zajdzie ~p (~p=1) to może ~~> zajść q (q=1)
~p~~>q = ~p*q =1
Zdarzenia:
Możliwe jest (=1) jednoczesne zajście zdarzeń ~~>: ~p i q
Zbiory:
Istnieje (=1) element wspólny zbiorów ~~>: ~p i q
Podsumowanie:
Jak widzimy, istotą operatora implikacji prostej p||=>q jest gwarancja matematyczna => po stronie p (zdanie A1), oraz „rzucanie monetą” w sensie „na dwoje babka wróżyła” po stronie ~p (zdania A2 i B2’) .
Zauważmy że:
a)
Układ równań logicznych jest przemienny, stąd mamy:
Operator implikacji odwrotnej ~p||~>~q w logice ujemnej (bo ~q) to układ równań logicznych dających odpowiedź na pytanie o ~p i p:
A2B2:~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p
Doskonale widać, że analiza matematyczna operatora implikacji odwrotnej ~p||~>~q w logice ujemnej (bo ~q) będzie identyczna jak operatora implikacji prostej p||=>q w logice dodatniej (bo q) z tym, że zaczynamy od kolumny A2B2 kończąc na kolumnie A1B1.
b)
Także kolejność wypowiadanych zdań jest dowolna, tak więc zdania z powyższej analizy A1, A1’, A2, B2’ możemy wypowiadać w sposób losowy - matematycznie to bez znaczenia.
11.2 Implikacja odwrotna p|~>q
IO
Definicja implikacji odwrotnej p|~>q w logice dodatniej (bo q):
Implikacja odwrotna p|~>q w logice dodatniej (bo q) to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
stąd:
A1B1:
p|~>q = ~(A1: p=>q)*(B1: p~>q) =~(0)*1 = 1*1 =1
Czytamy:
Implikacja odwrotna p|~>q w logice dodatniej (bo q) jest spełniona (=1) wtedy i tylko wtedy gdy zajście p jest (=1) konieczne ~> dla zajścia q (B1) i nie jest (=0) wystarczające => (A1) dla zajścia q.
Podstawmy tą definicję do matematycznych związków warunku wystarczającego => i koniecznego ~>:
Kod: |
T1
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji odwrotnej p|~>q
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p =0 [=] 5: ~p+q
## ## ## ## ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p =1 [=] 5: p+~q
Gdzie:
p=>q=~p+q - definicja warunku wystarczającego =>
p~>q=p+~q - definicja warunku koniecznego ~>
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Dla udowodnienia, iż zdanie warunkowe „Jeśli p to q” wchodzi w skład implikacji odwrotnej p|~>q potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Bx i fałszywość dowolnego zdania serii Ax.
Kluczowym punktem zaczepienia w wyprowadzeniu symbolicznej definicji implikacji odwrotnej p|~>q jest definicja kontrprzykładu rodem z algebry Kubusia działająca wyłącznie w warunku wystarczającym =>.
Definicja kontrprzykładu w zbiorach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane elementem wspólnym zbiorów p~~>~q=p*~q
Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>~q=p*~q
Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)
Uzupełnijmy naszą tabelę wykorzystując powyższe rozstrzygnięcia działające wyłącznie w warunkach wystarczających =>.
Kod: |
IO
Tabela prawdy implikacji odwrotnej p|~>q
Kolumna A1B1 to formalny punkt odniesienia {p,q}:
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
A1B1: p|~>q =~(A1: p=>q)*(B1: p~>q)=~(0)*1=1*1=1
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q =0 = 2:~p~>~q=0 [=] 3: q~>p =0 = 4:~q=>~p =0
A’: 1: p~~>~q=1 = [=] = 4:~q~~>p =1
## ## | ## ##
B: 1: p~>q =1 = 2:~p=>~q=1 [=] 3: q=>p =1 = 4:~q~>~p =1
B’: = 2:~p~~>q=0 [=] 3: q~~>~p=0
Definicja implikacji odwrotnej p|~>q to odpowiedź na pytanie o p:
A1B1: p|~>q =~(A1: p=>q)*(B1: p~>q) - co się stanie jeśli zajdzie p?
Definicja implikacji prostej ~p|=>~q to odpowiedź na pytanie o ~p:
A2B2: ~p|=>~q=~(A2:~p~>~q)*(B2:~p=>~q) - co się stanie jeśli zajdzie ~p?
Operator implikacji odwrotnej p||~>q to układ równań logicznych:
A1B1: p|~>q =~(A1: p=> q)* (B1: p~>q) - co się stanie jeśli zajdzie p?
A2B2:~p|=>~q =~(A2:~p~>~q)* (B2:~p=>~q)- co się stanie jeśli zajdzie ~p?
Układ równań logicznych jest przemienny, stąd mamy:
Operator implikacji prostej ~p||=>~q to układ równań logicznych:
A2B2:~p|=>~q =~(A2:~p~>~q)* (B2:~p=>~q)- co się stanie jeśli zajdzie ~p?
A1B1: p|~>q =~(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p?
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
11.2.1 Operator implikacji odwrotnej p||~>q
Operator implikacji odwrotnej p||~>q w logice dodatniej (bo q) to układ równań logicznych A1B1 i A2B2 dający odpowiedź na pytanie o p i ~p:
A1B1: p|~>q =~(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p?
A2B2: ~p|=>~q =~(A2:~p~>~q)*(B2:~p=>~q) - co się stanie jeśli zajdzie ~p?
A1B1.
Co może się wydarzyć jeśli zajdzie p (p=1)?
Odpowiedź mamy w kolumnie A1B1:
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
A1B1: p|~>q =~(A1: p=>q)* (B1: p~>q)=~(0)*1=1*1=1
Stąd:
Jeśli zajdzie p (p=1) to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła”.
Mówią o tym zdania B1 i A1’
Odpowiedź w zdaniach warunkowych „Jeśli p to q” mamy w kolumnie A1B1:
B1.
Jeśli zajdzie p (p=1) to może ~> zajść q (q=1)
p~>q =1
Zajście p jest konieczne ~> dla zajścia q, bo jak zajdzie ~p to na 100% => zajdzie ~q
Prawo Kubusia samo nam tu wyskoczyło:
B1: p~>q = B2:~p=>~q
LUB
Fałszywy warunek wystarczający A1 wymusza prawdziwy kontrprzykład A1’ (i odwrotnie):
A1’.
Jeśli zajdzie p (p=1) to może ~~> zajść ~q (~q=1)
p~~>~q = p*~q =1
Zdarzenia:
Możliwe jest (=1) jednoczesne zajście zdarzeń ~~>: p i ~q
Zbiory:
Istnieje (=1) element wspólny zbiorów ~~>: p i ~q
A2B2.
Co może się wydarzyć jeśli zajdzie ~p (~p=1)?
Odpowiedź mamy w kolumnie A2B2:
A2: ~p~>~q =0 - zajście ~p nie jest (=0) konieczne ~> dla zajścia ~q
B2: ~p=>~q =1 - zajście ~p jest (=1) wystarczające => dla zajścia ~q
A2B2: ~p|=>~q =~(A2:~p~>~q)*(B2:~p=>~q)=~(0*1=1*1=1
Stąd:
Jeśli zajdzie ~p (~p=1) to mamy gwarancję matematyczną => iż zajdzie ~q (~q=1).
Mówi o tym zdanie B2
Odpowiedź w zdaniach warunkowych „Jeśli p to q” mamy w kolumnie A2B2:
B2.
Jeśli zajdzie ~p (~p=1) to na 100% => zajdzie ~q (~q=1)
~p=>~q =1
Zajście ~p jest (=1) wystarczające => dla zajścia ~q
Zajście ~p daje nam (=1) gwarancję matematyczną => zajścia ~q
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>
Prawdziwy warunek wystarczający B2 wymusza fałszywość kontrprzykładu B2’ (i odwrotnie):
B2’.
Jeśli zajdzie ~p (~p=1) to może ~~> zajść q (q=1)
~p~~>q = ~p*q=0
Zdarzenia:
Niemożliwe jest (=0) zdarzenie ~~>: zajdzie ~p i zajdzie q
Zbiory:
Nie istnieje (=0) element wspólny zbiorów ~~>: ~p i q
Podsumowanie:
Jak widzimy, istotą operatora implikacji odwrotnej p||~>q jest „rzucanie monetą” w sensie „na dwoje babka wróżyła” po stronie p (zdania B1 i A1’) , oraz gwarancja matematyczna => po stronie ~p (zdanie B2).
Zauważmy że:
a)
Układ równań jest przemienny, stąd mamy definicję logicznie tożsamą:
Operator implikacji prostej ~p||=>~q w logice ujemnej (bo ~q) to układ równań logicznych:
A2B2: ~p|=>~q =~(A2:~p~>~q)*(B2:~p=>~q) - co się stanie jeśli zajdzie ~p?
A1B1: p|~>q =~(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p?
Doskonale widać, że analiza matematyczna operatora implikacji prostej ~p||=>~q w logice ujemnej (bo ~q) będzie identyczna jak operatora implikacji odwrotnej p||~>q w logice dodatniej (bo q) z tym, że zaczynamy od kolumny A2B2 kończąc na kolumnie A1B1.
b)
Także kolejność wypowiadanych zdań jest dowolna, tak więc zdania z powyższej analizy B1, A1’ B2, B2’ możemy wypowiadać w sposób losowy - matematycznie to bez znaczenia.
11.3 Prawa transformacji w obietnicy i groźbie
Prawo transformacji:
W obietnicach i groźbach z definicji opisanych czasem przyszłym po zamianie p i q zdanie ulega transformacji do czasu przeszłego.
11.3.1 Prawo transformacji w obietnicy
Definicja obietnicy:
Jeśli dowolny warunek W to nagroda N
W=>N =1
Dowolna obietnica to warunek wystarczający W=>N wchodzący w skład implikacji prostej W|=>N.
Zauważmy, że na mocy definicji obietnicy musimy jedynie rozstrzygnąć czy w następniku q zdania warunkowego „Jeśli p to q” mamy nagrodę.
Definicja groźby:
Jeśli dowolny warunek W to kara K
W~>K =1
Dowolna groźba to warunek konieczny W~>K wchodzący w skład implikacji odwrotnej W|~>K
Zauważmy, że na mocy definicji groźby musimy jedynie rozstrzygnąć czy w następniku q zdania warunkowego „Jeśli p to q” mamy karę.
Prawo transformacji:
W obietnicach i groźbach z definicji opisanych czasem przyszłym po zamianie p i q zdanie ulega transformacji do czasu przeszłego.
Zauważmy, że o groźbach i obietnicach możemy mówić wyłącznie w odniesieniu do świata żywego.
Definicja świata żywego:
Dowolne zdanie warunkowe „Jeśli p to q” należy do obszaru świata żywego wtedy i tylko wtedy gdy prawdziwość poprzednika lub następnika zależy od „wolnej woli” istoty żywej.
Definicja „wolnej woli” istot żywych:
Wolna wola istot żywych to zdolność do gwałcenia wszelkich praw logiki matematycznej wyznaczanej przez świat martwy (w tym przez matematykę).
Zobaczmy jak działa prawo transformacji na przykładzie.
Przykład:
A1.
Jeśli jutro będzie padało (P=1) to otworzę parasol (OP=1)
P=>OP =1
Padanie (P=1) w dniu jutrzejszym daje nam gwarancję matematyczną => otwarcia parasola (OP=1)
Prawo kontrapozycji:
A1: P=>OP = A4: ~OP=>~P
Zdanie A4 w czasie przyszłym:
A4.
Jeśli jutro nie otworzę parasola (~OP=1) to na 100% => nie będzie padało (~P=1)
~OP=>~P=1
Brak otwarcia parasola w dniu jutrzejszym (~OP=1) daje nam gwarancję matematyczną => iż jutro nie będzie padało (~P=1)
Jak widzimy, bez zastosowania prawa transformacji zdanie A4 jest kompletnie bez sensu, ale …
Zdanie A4 w czasie przeszłym:
Jest pojutrze i nie wiemy nic w temacie otwarcia parasola.
Wówczas na mocy prawa transformacji zdanie A4 opisuje przeszłość.
A4.
Jeśli wczoraj nie otworzyłem parasola to na 100% => nie padało
~OP =>~P =1
Jak widzimy, po zastosowaniu prawa transformacji wszystko pięknie gra i buczy.
Abstrakcyjnie możemy się przenieść do przyszłości mówiąc tak:
A4.
Jeśli nie otworzysz parasola to będzie to oznaczało że (wcześniej) nie padało
~OP=>~P=1
Z definicji wszelkie obietnice zapisane są w czasie przyszłym z czego wynika, że na mocy prawa transformacji z tabeli prawdy implikacji prostej p|=>q możemy usunąć kolumny A3B3 i A4B4 dotyczące czasu przeszłego skupiając się na kolumnach A1B1 i A2B2 opisujących przyszłość.
Kod: |
IP
Tabela prawdy implikacji prostej p|=>q w obsłudze obietnicy p=>q
Matematyczna obsługa obietnicy p=>q w czasie przyszłym
po usunięciu kolumn A2B3 i A4B4 opisujących obietnice w czasie przeszłym
Kolumna A1B1 to punkt odniesienia w zapisie formalnym {p,q}:
A1: p=>q =1 - p jest (=1) wystarczające => dla q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla q
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
A1B1: A2B2:
A: 1: p=>q =1 = 2:~p~>~q=1
A’: 1: p~~>~q=0 =
## ##
B: 1: p~>q =0 = 2:~p=>~q=0
B’: = 2:~p~~>q=1
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
11.3.2 Prawo transformacji w groźbie
Definicja groźby:
Jeśli dowolny warunek W to kara K
W~>K =1
Dowolna groźba to warunek konieczny W~>K wchodzący w skład implikacji odwrotnej W|~>K
Zauważmy, że na mocy definicji groźby musimy jedynie rozstrzygnąć czy w następniku q zdania warunkowego „Jeśli p to q” mamy karę.
Prawo transformacji:
W obietnicach i groźbach z definicji opisanych czasem przyszłym po zamianie p i q zdanie ulega transformacji do czasu przeszłego.
Zauważmy, że o groźbach i obietnicach możemy mówić wyłącznie w odniesieniu do świata żywego.
Definicja świata żywego:
Dowolne zdanie warunkowe „Jeśli p to q” należy do obszaru świata żywego wtedy i tylko wtedy gdy prawdziwość poprzednika lub następnika zależy od „wolnej woli” istoty żywej.
Definicja „wolnej woli” istot żywych:
Wolna wola istot żywych to zdolność do gwałcenia wszelkich praw logiki matematycznej wyznaczanej przez świat martwy (w tym przez matematykę).
Zobaczmy jak działa prawo transformacji na przykładzie.
Przykład:
B1.
Jeśli jutro ubrudzisz spodnie (B) to dostaniesz lanie (L)
B~>L =1
Następnik q jest tu ewidentną groźbą, zatem zdanie A1 musimy kodować zgodnie z definicją groźby warunkiem konicznym ~> wchodzącym w skład implikacji odwrotnej B|~>L, bez względu na ostrość wypowiedzenia groźby B1.
Gwarancja matematyczna => w groźbie wynika z prawa Kubusia:
B1: B~>L = B2: ~B=>~L
stąd mamy:
B2.
Jeśli jutro przyjdziesz w czystych spodniach (~B=1) to na 100% => nie dostaniesz lania (~L=1)
~B=>~L =1
Przyjście w czystych spodniach (~B=1) jest warunkiem wystarczającym => dla nie dostania lania (~L=1) … z powodu przyjścia w czystych spodniach (~B=1)
Tylko tyle i aż tyle gwarantuje znaczek warunku wystarczającego =>.
Lanie z dowolnego innego powodu jest możliwe, ale nie będzie ono dotyczyło wypowiedzianej groźby B1.
Zauważmy, że zdanie B2 spełnia klasyczną definicję obietnicy, bowiem w następniku jest mowa o „nie dostaniu lania” które dla dziecka jest nagrodą.
Matematycznie zachodzą tożsamości:
Kara to brak nagrody
K=~N
Nagroda to brak kary
N=~K
Zastosujmy do zdania B2 prawo kontrapozycji:
B2: ~B=>~L = B4: L=>B
Zdanie B4 w czasie przyszłym czytamy:
B4.
Jeśli jutro dostaniesz lanie (L=1) to na 100% => przyjdziesz w brudnych spodniach (B=1)
L=>B =1
Zauważmy, że w czasie przyszłym zdanie B4 traci sens bowiem mówi ono że jeśli dzieciak jutro dostanie lanie (przyczyna) to na 100% => ubrudzi spodnie (skutek) … czyli na złość mamie ugryzę się w język.
Poza tym zdanie B4 nie spełnia definicji obietnicy którą kodujemy warunkiem wystarczającym => bowiem następnik brzmi tu:
B - przyjdę w brudnych spodniach
Brudne spodnie nie są dla dziecka ani karą, ani też nagrodą, to tylko stwierdzenie stopnia zabrudzenia jego spodni.
Zdanie B4 nabierze sensu jeśli wypowiemy je w czasie przeszłym.
Załóżmy, że jest pojutrze i nie wiemy nic w temacie obietnicy B2 która dotyczyła dnia wczorajszego.
Na mocy prawa transformacji zdanie B4 opisuje przeszłość:
B4.
Jeśli wczoraj dostałeś lanie (L=1) to na 100% => ubrudziłeś spodnie (B=1)
L=>B =1
Z faktu, iż dziecko dostało lanie (L=1) wnioskujemy na 100% => iż ubrudziło spodnie (B=1)
Jak widzimy, po zastosowaniu prawa transformacji wszystko pięknie gra i buczy.
Abstrakcyjnie możemy się przenieść do przyszłości mówiąc tak:
B4.
Jeśli jutro dostaniesz lanie (L=1) to będzie to oznaczało, że wcześniej ubrudziłeś spodnie (B=1)
L=>B =1
Z definicji wszelkie groźby zapisane są w czasie przyszłym z czego wynika, że na mocy prawa transformacji z tabeli prawdy implikacji odwrotnej p|~>q możemy usunąć kolumny A3B3 i A4B4 dotyczące czasu przeszłego skupiając się na kolumnach A1B1 i A2B2 opisujących przyszłość.
Kod: |
IO
Tabela prawdy implikacji odwrotnej p|~>q w obsłudze groźby p~>q.
Matematyczna obsługa groźby p~>q w czasie przyszłym
po usunięciu kolumn A2B3 i A4B4 opisujących groźby w czasie przeszłym
Kolumna A1B1 to formalny punkt odniesienia {p,q}:
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
A1B1: p|~>q =~(A1: p=>q)*(B1: p~>q)=~(0)*1=1*1=1
A1B1: A2B2:
A: 1: p=>q =0 = 2:~p~>~q=0
A’: 1: p~~>~q=1 =
## ##
B: 1: p~>q =1 = 2:~p=>~q=1
B’: = 2:~p~~>q=0
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Ostatnio zmieniony przez rafal3006 dnia Nie 14:53, 12 Cze 2022, w całości zmieniany 6 razy
|
|
Powrót do góry |
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 35977
Przeczytał: 15 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Nie 5:02, 17 Kwi 2022 Temat postu: |
|
|
Algebra Kubusia
11.4 Przykłady obietnicy
Spis treści
11.4 Obietnica E=>K 1
11.4.1 Operator implikacji prostej E||=>K 2
11.4.2 Kluczowe dialogi ojca z synem 5
11.5 Obietnica W=>Z 5
11.5.1 Operator implikacji prostej W||=>Z 7
11.5.2 Kluczowe dialogi Chrystusa z człowiekiem 10
11.4 Obietnica E=>K
Definicja obietnicy:
Jeśli dowolny warunek W to nagroda N
W=>N =1
Dowolna obietnica to warunek wystarczający W=>N wchodzący w skład implikacji prostej W|=>N.
Zauważmy, że na mocy definicji obietnicy musimy jedynie rozstrzygnąć czy w następniku q zdania warunkowego „Jeśli p to q” mamy nagrodę.
Poza tym nic a nic nie musimy dodatkowo udowadniać, wszystko mamy zdeterminowane na mocy definicji implikacji prostej p|=>q.
Zajmijmy się sztandarowym przykładem obietnicy.
A1.
Jeśli zdasz egzamin dostaniesz komputer
E=>K =1
Dostanie komputera to nagroda, zatem zdanie A1: E=>K z definicji jest częścią implikacji prostej E|=>K. W tym momencie wszystko mamy zdeterminowane, nic a nic nie musimy dodatkowo udowadniać.
Definicja podstawowa implikacji prostej E|=>K:
A1: E=>K =1 - zdanie egzaminu (E=1) jest (=1) warunkiem wystarczającym =>
dla otrzymania komputera (K=1)
B1: E~>K =0 - zdanie egzaminu (E=1) nie jest (=0) warunkiem koniecznym ~>
dla otrzymania komputera (K=1)
Stąd:
A1B1: E|=>K = (A1: E=>K)*~(B1: E~>K) = 1*~(0) =1*1 =1
Podstawmy nasz przykład do tabeli prawdy implikacji prostej p|=>q
Kod: |
IP
Tabela prawdy implikacji prostej p|=>q
Kolumna A1B1 to punkt odniesienia w zapisie formalnym {p,q}:
A1: p=>q =1 - p jest (=1) wystarczające => dla q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla q
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
Kolumna A1B1 to także punkt odniesienia w zapisie aktualnym {E,K}:
A1: Jeśli zdasz egzamin dostaniesz komputer
Przyjmijmy punkt odniesienia:
p=E(egzamin)
q=K(komputer)
A1: E=>K=1 - zdanie egzaminu wystarcza => dla otrzymania komputera
B1: E~>K=0 - zdanie egzaminu nie jest konieczne ~> dla otrzymania komputera
A1B1: E|=>K=(A1: E=>K)*~(B1: E~>K)=1*~(0)=1*1=1
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q =1 = 2:~p~>~q=1 [=] 3: q~>p =1 = 4:~q=>~p =1
A: 1: E=>K =1 = 2:~E~>~K=1 [=] 3: K~>E =1 = 4:~K=>~E =1
A’: 1: p~~>~q=0 = [=] = 4:~q~~>p =0
A’: 1: E~~>~K=0 = [=] = 4:~K~~>E =0
## ## | ## ##
B: 1: p~>q =0 = 2:~p=>~q=0 [=] 3: q=>p =0 = 4:~q~>~p =0
B: 1: E~>K =0 = 2:~E=>~K=0 [=] 3: K=>E =0 = 4:~K~>~E =0
B’: = 2:~p~~>q=1 [=] 3: q~~>~p=1
B’: = 2:~E~~>K=1 [=] 3: K~~>~E=1
Definicja implikacji prostej p|=>q to odpowiedź na pytanie o p:
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p?
Definicja implikacji odwrotnej ~p|~>~q to odpowiedź na pytanie o ~p:
A2B2: ~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p?
Operator implikacji prostej p||=>q to układ równań logicznych:
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p
A2B2:~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
Układ równań logicznych jest przemienny, stąd mamy:
Operator implikacji odwrotnej ~p||~>~q to układ równań logicznych:
A2B2:~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
11.4.1 Operator implikacji prostej E||=>K
Operator implikacji prostej E||=>K w logice dodatniej (bo q) to układ równań logicznych A1B1 i A2B2 dający odpowiedzi na pytania o E i ~E:
A1B1.
Co może się wydarzyć jeśli zdam egzamin (E=1)?
Odpowiedź mamy w kolumnie A1B1:
A1: E=>K =1 - zdanie egzaminu (E=1)jest (=1) wystarczające => dla dostania komputera (K=1)
B1: p~>q =0 - zdanie egzaminu (E=1) nie jest (=0) konieczne ~> dla dostania komputera (K=1)
A1B1: E|=>K =(A1: K=>K)* ~(B1: E~>K) - co się stanie jeśli zdam egzamin (E=1)?
Stąd:
Jeśli zdam egzamin (E=1) to mam gwarancję matematyczną => iż dostanę komputer (K=1) - mówi o tym zdanie A1
Odpowiedź w zdaniach warunkowych „Jeśli p to q” mamy w kolumnie A1B1:
A1.
Jeśli zdasz egzamin (E=1) to na 100% => dostaniesz komputer (K=1)
E=>K =1
to samo w zapisie formalnym:
p=>q =1
Zdanie egzaminu jest warunkiem wystarczającym => dla dostania komputera z powodu zdanego egzaminu.
Zdanie egzaminu daje nam gwarancje matematyczną => dostania komputera z powodu zdanego egzaminu
Tylko tyle i aż tyle gwarantuje znaczek warunku wystarczającego =>.
Znaczek warunku wystarczającego => nie wyklucza dostania komputera z dowolnego innego powodu. Dostanie komputera z innego powodu będzie miało zero wspólnego z obietnicą A1: E=>K, nie będzie dotyczyć tej konkretnej obietnicy A1: E=>K.
Matematycznie:
Warunek wystarczający => = gwarancja matematyczna => = pewność 100% => etc
Prawdziwy warunek wystarczający A1 wymusza fałszywość kontrprzykładu A1’ i odwrotnie.
A1’.
Jeśli zdasz egzamin (E=1) to możesz ~~> nie dostać komputera (~K=1)
E~~>~K = E*~K=0
to samo w zapisach formalnych:
p~~>~q = p*~q =0
Nie może się zdarzyć (=0), że zdam egzamin (E=1) i nie dostanę komputera (~K=1).
W świecie martwym (i w matematyce) kontrprzykład A1’ jest twardym fałszem którego świat martwy nie jest w stanie złamać.
W świecie żywym, mającym „wolną wolę” ojciec może kłamać do woli, czyli syn może zdać egzamin a ojciec z premedytacją może nie dać mu komputera. W tym przypadku ojciec jest kłamcą o czym wszyscy wiedzą od 5-cio latka poczynając. Tylko tyle i aż tyle rozstrzyga w obietnicy matematyka ścisła, algebra Kubusia.
A2B2.
Co może się wydarzyć jeśli nie zdam egzaminu (~E=1)?
Odpowiedź mamy w kolumnie A2B2:
A2: ~E~>~K =1 - nie zdanie egzaminu jest (=1) warunkiem koniecznym ~> nie dostania komputera
B2: ~E=>~K =0 - nie zdanie egzaminu nie jest (=0) warunkiem wystarczającym =>
dla nie dostania komputera
A2B2: ~E|~>~K =(A2:~E~>~K)*~(B2:~E=>~K) - co się stanie jeśli nie zdam egzaminu (~E=1)?
Stąd:
Jeśli nie zdam egzaminu (~E=1) to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” - mówią o tym zdania A2 i B2’
Odpowiedź w zdaniach warunkowych „Jeśli p to q” mamy w kolumnie A2B2:
A2.
Jeśli nie zdasz egzaminu (~E=1) to na 100% ~> nie dostaniesz komputera (~K=1)
~E~>~K =1
to samo w zapisie formalnym:
~p~~>~q 1
Nie zdanie egzaminu (~E=1) jest warunkiem koniecznym ~> dla nie dostania komputera (~K=1) bo jak zdam egzamin (E=1) to na 100% => dostanę komputer (K=1)
A2: ~E~>~K = A1: E=>K
Zauważmy, że zdanie A2 ojciec może wypowiedzieć w dowolnie ostry sposób, jednak na mocy definicji obietnicy A1: E=>K będącej częścią implikacji prostej E|=>K zdanie A2 musimy kodować warunkiem koniecznym ~> z możliwością wręczenia komputera mimo że syn nie zdał egzaminu, o czym mówi zdanie B2’.
LUB
Fałszywy warunek wystarczający => B2 wymusza prawdziwość kontrprzykładu B2’ i odwrotnie:
B2’.
Jeśli nie zdasz egzaminu (~E=1) to możesz ~~> dostać komputer (K=1)
~E~~>K = ~E*K =1
to samo w zapisie formalnym:
~p~~>q = ~p*q =1
Może się zdarzyć (=1), że nie zdam egzaminu (~E=1) i dostanę komputer (K=1)
Zdanie B2’ to piękny akt miłości w stosunku do zdania A1, czyli prawo do wręczenia nagrody (tu komputera) mimo że syn nie spełnił warunku nagrody (tu nie zdał egzaminu)
Zdanie B2’ to także piękny „akt łaski” w stosunku do groźby A2, czyli prawo do darowania dowolnej kary zależnej od nadawcy.
Chrystus:
Zaprawdę, powiadam ci, jeszcze dziś będziesz ze Mną w raju. (Łk 23, 43)
Podsumowanie:
Jak widzimy, istotą operatora implikacji prostej E||=>K jest gwarancja matematyczna => po stronie E (zdanie A1), oraz „rzucanie monetą” w sensie „na dwoje babka wróżyła” po stronie ~E (zdania A2 i B2’) .
Zauważmy że:
a)
Układ równań logicznych jest przemienny, stąd mamy:
Operator implikacji odwrotnej ~E||~>~K to układ równań logicznych:
A2B2:~E|~>~K=(A2:~E~>~K)*~(B2:~E=>~K) - co się stanie jeśli nie zdam egzaminu (~E=1)
A1B1: E|=>K=(A1: E=>K)*~(B1: E~>K) - co się stanie jeśli zdam egzamin (E=1)
Doskonale widać, że analiza matematyczna operatora implikacji odwrotnej ~E||~>~K w logice ujemnej (bo ~K) będzie identyczna jak operatora implikacji prostej E||=>K w logice dodatniej (bo K) z tym, że zaczynamy od kolumny A2B2 kończąc na kolumnie A1B1.
b)
Także kolejność wypowiadanych zdań jest dowolna, tak więc zdania z powyższej analizy A1, A1’, A2, B2’ możemy wypowiadać w sposób losowy - matematycznie to bez znaczenia.
Komentarz do zdania A2:
A2.
Jeśli nie zdasz egzaminu (~E=1) to na 100% ~> nie dostaniesz komputera (~K=1)
A2: ~E~>~K =1
Nie zdanie egzaminu (~E=1) jest (=1) warunkiem koniecznym ~> dla nie dostana komputera (~K=1)
Zdanie tożsame:
A21.
Jeśli nie zdasz egzaminu (~E=1) to możesz ~> nie dostać komputera (~K=1)
A21: ~E~>~K =1
Nie zdanie egzaminu (~E=1) jest (=1) warunkiem koniecznym ~> dla nie dostana komputera (~K=1)
Zauważmy, że zdanie A2 jest ewidentną groźbą, zaś wszelkie groźby na mocy definicji musimy kodować warunkiem koniecznym ~> z możliwością darowania kary opisanym prawdziwym kontrprzykładem B2’.
Dlaczego zachodzi tożsamość zdań?
A2: ~E~>~K = A21: ~E~>~K?
Wynika to z definicji obietnicy zgodnie z którą zdanie A2=A21 musimy kodować warunkiem koniecznym ~> z prawem do aktu miłości względem zdania A1 wyrażonym prawdziwym kontrprzykładem B2’, niezależnie od tego w jak ostrej formie groźba A2=A21 będzie wyrażona.
Zauważmy, że w groźbie nadawca ma prawo do blefowania, czyli może wypowiedzieć groźbę w dowolnie ostry sposób. Z faktu iż nadawca w chwili wypowiadania groźby nie zamierza jej wykonać (blef - o czym odbiorca nie wie) nie wynika iż finalnie nadawca nie może zmienić zdania i zapowiedzianą groźbę wykonać.
11.4.2 Kluczowe dialogi ojca z synem
Tata do syna:
A1:
Jeśli zdasz egzamin (E) to dostaniesz komputer (K)
A1: E=>K =1
Zdanie egzaminu jest warunkiem wystarczającym => dla dostania komputera
Syn:
… a jeśli nie zdam egzaminu?
Tata:
Prawo Kubusia:
A1: E=>K = A2: ~E~>~K
stąd:
A2.
Jeśli nie zdasz egzaminu (~E) to nie dostaniesz komputera (~K)
~E~>~K =1
Nie zdanie egzaminu jest warunkiem koniecznym ~> dla nie dostania komputera.
Syn:
Tata, czy możesz powtórzyć co się stanie jeśli zdam egzamin (E), oraz co się stanie jeśli nie zdam egzamin (~E)
Tata:
Bardzo proszę synku:
Jeśli zdasz egzamin (E) to dostaniesz komputer (K) (zdanie A1) a jeśli nie zdasz egzaminu (~E) to nie dostaniesz komputera (~K) (zdanie A2)
A1A2: (A1: E=>K)* (A2: ~E~>~K)=1*1=1
Jak widzimy, tata ma prawo wypowiedzieć zdania A1 i A2 w jednym zdaniu, gdyby nie mógł tego zrobić to logika matematyczna ległaby w gruzach.
11.5 Obietnica W=>Z
Definicja obietnicy:
Jeśli dowolny warunek W to nagroda N
W=>N =1
Dowolna obietnica to warunek wystarczający W=>N wchodzący w skład implikacji prostej W|=>N.
Zauważmy, że na mocy definicji obietnicy musimy jedynie rozstrzygnąć czy w następniku q zdania warunkowego „Jeśli p to q” mamy nagrodę.
Poza tym nic a nic nie musimy dodatkowo udowadniać, wszystko mamy zdeterminowane na mocy definicji implikacji prostej p|=>q.
Zajmijmy się teraz kluczową obietnicą Chrystusa dzięki której już 15 lat temu zrozumiałem algebrę Kubusia. Oczywiście droga do poprawnego rozszyfrowania kompletnej algebry Kubusia była jeszcze bardzo daleka, wymagała 15 lat zaciętych dyskusji z ziemskimi matematykami.
Chrystus:
A1.
Kto wierzy we mnie będzie zbawiony
W=>Z=1
Wiara w Chrystusa jest warunkiem wystarczającym => dla zbawienia
Wiara w Chrystusa daje nam gwarancję matematyczną => zbawienia
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>
Zdanie A1 to ewidentna obietnica, bowiem w następniku mamy tu nagrodę, musimy ją zatem kodować warunkiem wystarczającym A1: W=>Z wchodzącym w skład implikacji prostej W|=>Z.
Dlaczego ta obietnica była dla mnie kluczowa w początkach rozszyfrowywania algebry Kubusia?
Odpowiedź jest prosta:
W naszym Wszechświecie Chrystus, w przeciwieństwie do człowieka, nie ma prawa do kłamstwa, czyli nie może wierzącego w niego człowieka posłać do piekła.
Natomiast człowiek w obietnicy może kłamać do woli, to woda na młyn wszelkiej maści oszustów np. wyłudzanie pieniędzy od emerytów metodą na wnuczka.
Definicja podstawowa implikacji prostej E|=>K:
A1: W=>Z=1 - wiara w Boga jest (=1) warunkiem wystarczającym => dla zbawienia
B1: W~>Z=0 - wiara w Boga nie jest (=0) warunkiem koniecznym ~> dla zbawienia
Stąd:
A1B1: W|=>Z = (A1: W=>Z)*~(B1: W~>Z) = 1*~(0) =1*1 =1
Podstawmy obietnicę Chrystusa do tabeli prawdy implikacji prostej p|=>q
Kod: |
IP
Tabela prawdy implikacji prostej p|=>q
Kolumna A1B1 to punkt odniesienia w zapisie formalnym {p,q}:
A1: p=>q =1 - p jest (=1) wystarczające => dla q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla q
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
Kolumna A1B1 to także punkt odniesienia w zapisie aktualnym {W,Z}:
A1: Kto wierzy we mnie będzie zbawiony
Przyjmijmy punkt odniesienia:
p=W (wierzy)
q=Z (zbawiony)
A1: W=>Z=1 - wiara w Boga jest (=1) warunkiem wystarczającym =>
dla zbawienia
B1: W~>Z=0 - wiara w Boga nie jest (=0) warunkiem koniecznym ~>
dla zbawienia
Stąd:
A1B1: W|=>Z = (A1: W=>Z)*~(B1: W~>Z) = 1*~(0) =1*1 =1
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q =1 = 2:~p~>~q=1 [=] 3: q~>p =1 = 4:~q=>~p =1
A: 1: W=>Z =1 = 2:~W~>~Z=1 [=] 3: Z~>W =1 = 4:~Z=>~W =1
A’: 1: p~~>~q=0 = [=] = 4:~q~~>p =0
A’: 1: W~~>~Z=0 = [=] = 4:~Z~~>W =0
## ## | ## ##
B: 1: p~>q =0 = 2:~p=>~q=0 [=] 3: q=>p =0 = 4:~q~>~p =0
B: 1: W~>Z =0 = 2:~W=>~Z=0 [=] 3: Z=>W =0 = 4:~Z~>~W =0
B’: = 2:~p~~>q=1 [=] 3: q~~>~p=1
B’: = 2:~W~~>Z=1 [=] 3: Z~~>~W=1
Definicja implikacji prostej p|=>q to odpowiedź na pytanie o p:
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p?
Definicja implikacji odwrotnej ~p|~>~q to odpowiedź na pytanie o ~p:
A2B2: ~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p?
Operator implikacji prostej p||=>q to układ równań logicznych:
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p
A2B2:~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
Układ równań logicznych jest przemienny, stąd mamy:
Operator implikacji odwrotnej ~p||~>~q to układ równań logicznych:
A2B2:~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
11.5.1 Operator implikacji prostej W||=>Z
Operator implikacji prostej W||=>Z w logice dodatniej (bo Z) to układ równań logicznych A1B1 i A2B2 dający odpowiedzi na pytania o wierzących (W) i niewierzących (~W):
A1B1.
Co może spotkać człowieka wierzącego (W=1)?
Odpowiedź mamy w kolumnie A1B1:
A1: W=>Z=1 - wiara w Boga jest (=1) warunkiem wystarczającym => dla zbawienia
B1: W~>Z=0 - wiara w Boga nie jest (=0) warunkiem koniecznym ~> dla zbawienia
Stąd:
A1B1: W|=>Z = (A1: W=>Z)*~(B1: W~>Z) = 1*~(0) =1*1 =1 - co się stanie z wierzącym (W)?
Stąd:
Jeśli wierzę w Boga (W=1) to mam gwarancję matematyczną => zbawienia (Z) - mówi o tym zdanie A1
Odpowiedź w zdaniach warunkowych „Jeśli p to q” mamy w kolumnie A1B1:
A1.
Kto wierzy (W) we mnie będzie zbawiony (Z)
W=>Z=1
to samo w zapisie formalnym:
p=>q =1
Wiara w Chrystusa jest warunkiem wystarczającym => dla zbawienia
Wiara w Chrystusa daje nam gwarancję matematyczną => zbawienia
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>
Tylko tyle i aż tyle gwarantuje znaczek warunku wystarczającego =>.
Prawdziwy warunek wystarczający A1 wymusza fałszywość kontrprzykładu A1’ i odwrotnie.
A1’.
Kto wierzy we mnie (W) ten może ~~> nie zostać zbawiony (~Z)
W~~>~Z = W*~Z=0
to samo w zapisach formalnych:
p~~>~q = p*~q =0
Nie może się zdarzyć (=0), że wierzę w Chrystusa i nie zostanę zbawiony.
To jedyne miejsce w całej analizie obietnicy A1 Chrystusa gdzie mógłby skłamać, czyli posłać wierzącego w niego człowieka do piekła.
Oczywistym jest, że w naszym Wszechświecie Chrystus z definicji nie ma prawa do kłamstwa (w przeciwieństwie do człowieka).
A2B2.
Co może spotkać człowieka niewierzącego (~W=1)?
Odpowiedź mamy w kolumnie A2B2:
A2: ~W~>~Z =1 - brak wiary w Boga (~W) jest (=1) warunkiem koniecznym ~> dla nie zbawienia (~Z)
B2: ~W=>~Z =0 - brak wiary w Boga nie jest (=0) warunkiem wystarczającym => dla nie zbawienia
A2B2: ~W|~>~Z =(A2:~W~>~Z)*~(B2:~W=>~Z) - co się stanie z niewierzącym (~W=1)?
Stąd:
W przypadku niewierzących (~W=1) mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” - mówią o tym zdania A2 i B2’
Odpowiedź w zdaniach warunkowych „Jeśli p to q” mamy w kolumnie A2B2:
A2.
Kto nie wierzy we mnie (~W) nie zostanie zbawiony (~Z)
~W~>~Z =1
to samo w zapisie formalnym:
~p~~>~q =1
Brak wiary w Chrystusa (~W=1) jest warunkiem koniecznym ~> dla nie zbawienia (~Z=1) bo jak kto wierzy (W=1) to na 100% => zostanie zbawiony (Z=1)
Prawo Kubusia samo nam tu wyskoczyło:
A2: ~W~>~Z = A1: W=>Z
Zauważmy, ze Chrystus, podobnie jak człowiek może groźbę A2 wypowiedzieć w dowolnie ostrej formie, jednak na mocy definicji obietnicy A1: W=>Z będącej częścią implikacji prostej W|=>Z zdanie A2 musimy kodować warunkiem koniecznym ~> z możliwością zbawienia, mimo że człowiek nie wierzył (nie spełnił warunku nagrody) o czym mówi zdanie B2’
LUB
Fałszywy warunek wystarczający => B2 wymusza prawdziwość kontrprzykładu B2’ i odwrotnie:
B2’.
Kto nie wierzy we mnie (~W=1) ten może ~~> zostać zbawiony (~Z)
~W~~>Z = ~W*Z =1
to samo w zapisie formalnym:
~p~~>q = ~p*q =1
Może się zdarzyć (=1), że nie wierzę w Chrystusa (~W) i zostanę zbawiony (Z)
Zdanie B2’ to piękny akt miłości w stosunku do zdania A1, czyli prawo do wręczenia nagrody (tu zbawienie) mimo że człowiek nie spełnił warunku nagrody (tu nie wierzył)
Zdanie B2’ to także piękny „akt łaski” w stosunku do groźby A2, czyli prawo do darowania dowolnej kary zależnej od nadawcy.
Chrystus:
Zaprawdę, powiadam ci, jeszcze dziś będziesz ze Mną w raju. (Łk 23, 43)
Zauważmy, że na mocy zdań A2 i B2’ Chrystus może umieścić w niebie wszystkich ludzi (z Hitlerem na czele) i nie zostanie kłamcą.
Oczywiście „może’ nie oznacza „musi”!
Wynika z tego, że zanana filozofom idea powszechnego zbawienia, zwana także ideą pustego piekła (Apokatastaza) matematycznie jest możliwa.
Podsumowanie:
Jak widzimy, istotą operatora implikacji prostej W||=>Z jest gwarancja matematyczna => po stronie W (zdanie A1), oraz „rzucanie monetą” w sensie „na dwoje babka wróżyła” po stronie ~W (zdania A2 i B2’) .
Zauważmy że:
a)
Układ równań logicznych jest przemienny, stąd mamy:
Operator implikacji odwrotnej ~W||~>~Z to układ równań logicznych:
A2B2: ~W|~>~Z =(A2:~W~>~Z)*~(B2:~W=>~Z) - co się stanie z niewierzącym (~W=1)?
A1B1: W|=>Z = (A1: W=>Z)*~(B1: W~>Z) = 1*~(0) =1*1 =1 - co się stanie z wierzącym (W)?
Doskonale widać, że analiza matematyczna operatora implikacji odwrotnej ~W||~>~Z w logice ujemnej (bo ~Z) będzie identyczna jak operatora implikacji prostej W||=>Z w logice dodatniej (bo Z) z tym, że zaczynamy od kolumny A2B2 kończąc na kolumnie A1B1.
b)
Także kolejność wypowiadanych zdań jest dowolna, tak więc zdania z powyższej analizy A1, A1’, A2, B2’ możemy wypowiadać w sposób losowy - matematycznie to bez znaczenia.
Komentarz do zdania A2:
A2.
Kto nie wierzy we mnie (~W=1) ten na 100% ~> nie zostanie zbawiony (~Z=1)
A2: ~W~>~Z =1
Brak wiary w Chrystusa (~W=1) jest (=1) warunkiem koniecznym ~> dla nie zbawienia (~Z=1)
Zdanie tożsame:
A21.
Kto nie wierzy we mnie (~W=1) ten może ~> nie zostać zbawiony (~Z=1)
A21: ~W~>~Z =1
Brak wiary w Chrystusa (~W=1) jest (=1) warunkiem koniecznym ~> dla nie zbawienia (~Z=1)
Zauważmy, że zdanie A2 jest ewidentną groźbą, zaś wszelkie groźby na mocy definicji musimy kodować warunkiem koniecznym ~> z możliwością darowania kary opisanym prawdziwym kontrprzykładem B2’.
Dlaczego zachodzi matematyczna tożsamość zdań?
A2: ~W~>~Z = A21: ~W~>~Z?
Wynika to z definicji obietnicy zgodnie z którą zdanie A2=A21 musimy kodować warunkiem koniecznym ~> z prawem do aktu miłości względem zdania A1 wyrażonym prawdziwym kontrprzykładem B2’, niezależnie od tego w jak ostrej formie groźba A2=A21 będzie wyrażona.
Zauważmy, że w groźbie nadawca ma prawo do blefowania, czyli może wypowiedzieć groźbę w dowolnie ostry sposób. Z faktu iż nadawca w chwili wypowiadania groźby nie zamierza jej wykonać (blef - o czym odbiorca nie wie) nie wynika iż finalnie nadawca nie może zmienić zdania i zapowiedzianą groźbę wykonać.
Wniosek:
Z punktu widzenia logiki matematycznej, najostrzejszą groźbę Chrystusa, grzech przeciwko Duchowi Św. musimy uznać za blef Chrystusa.
Ewangelia Mateusza: Dlatego powiadam wam: Każdy grzech i bluźnierstwo będą odpuszczone ludziom, ale bluźnierstwo przeciwko Duchowi nie będzie odpuszczone. Jeśli ktoś powie słowo przeciw Synowi Człowieczemu, będzie mu odpuszczone, lecz jeśli powie przeciw Duchowi Świętemu, nie będzie mu odpuszczone ani w tym wieku, ani w przyszłym
Zauważmy, że gdyby Chrystus nie miał prawa do darowania dowolnego grzechu, w tym grzechu przeciwko Duchowi Św. to jego wolna wola, prawo do darowania dowolnej kary zależnej od niego, ległaby w gruzach.
Dowodów iż Chrystus ma prawo darować dowolny grzech jest w Biblii mnóstwo np.
Zaprawdę, powiadam ci, jeszcze dziś będziesz ze Mną w raju. (Łk 23, 43)
11.5.2 Kluczowe dialogi Chrystusa z człowiekiem
Chrystus:
A1:
Kto wierzy we mnie (W), będzie zbawiony (Z)
A1: W=>Z =1
Wiara w Chrystusa (W) jest warunkiem wystarczającym => dla zbawienia (Z)
Człowiek:
… a jeśli kto nie wierzy, Panie?
Chrystus:
Prawo Kubusia:
A1: E=>K = A2: ~E~>~K
stąd:
A2.
Kto nie wierzy we mnie (~W), nie będzie zbawiony (~Z)
~W~>~Z =1
Brak wiary w Chrystusa (~W) jest warunkiem koniecznym ~> dla nie zbawienia (~Z)
Człowiek:
Panie, czy możesz powtórzyć co się stanie z wierzącymi (W), oraz co się stanie z niewierzącymi (~W)?
Chrystus:
Bardzo proszę:
A1A2:
Kto wierzy we mnie (W) zostanie zbawiony (Z) (zdanie A1) a kto nie wierzy we mnie (~W) nie zostanie zbawiony (~Z) (zdanie A2)
A1A2: (A1: W=>Z)*(A2: ~W~>~Z)=1*1=1
Jak widzimy, Chrystus ma prawo wypowiedzieć zdania A1 i A2 w jednym zdaniu, gdyby nie mógł tego zrobić to logika matematyczna, algebra Kubusia, której sam jest autorem, ległaby w gruzach.
Zdanie A1A2 znajdziemy w Biblii:
A1A2:
Kto uwierzy i przyjmie chrzest, będzie zbawiony, a kto nie uwierzy, będzie potępiony
Św. Marek, Mk 16
Wiara w Chrystusa zawiera w sobie obowiązek Chrztu, zatem poprzednik możemy zredukować do słowa „uwierzy”.
Zachodzi także tożsamość matematyczna pojęć:
potępiony = nie zbawiony
Stąd zdanie tożsame Chrystusa przyjmuje postać:
A1A2:
Kto uwierzy i przyjmie chrzest, będzie zbawiony, a kto nie uwierzy, będzie potępiony
A1A2: (A1: W=>Z)*(A2: ~W~>~Z)=1*1=1
cnd
Ostatnio zmieniony przez rafal3006 dnia Nie 14:52, 12 Cze 2022, w całości zmieniany 5 razy
|
|
Powrót do góry |
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 35977
Przeczytał: 15 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Nie 7:15, 17 Kwi 2022 Temat postu: |
|
|
Algebra Kubusia
11.6 Właściwości obietnic
Spis treści
11.6 Właściwości obietnic 1
11.6.1 Prawo transformacji w obietnicy 1
11.6.2 Definicja „wolnej woli” 5
11.6.3 Obietnica w równaniach logicznych 7
11.6.4 Obietnica w spójnikach „i”(*) i „lub”(+) 11
11.6.5 Rodzaje obietnic 17
11.6 Właściwości obietnic
W rozdziale tym zajmiemy się głównie właściwościami obietnic oraz ich alternatywną obsługą w praktyce nieużywaną, dlatego ten punkt należy traktować jako ciekawostkę.
11.6.1 Prawo transformacji w obietnicy
Definicja obietnicy:
Jeśli dowolny warunek W to nagroda N
W=>N =1
Dowolna obietnica to warunek wystarczający W=>N wchodzący w skład implikacji prostej W|=>N.
Zauważmy, że na mocy definicji obietnicy musimy jedynie rozstrzygnąć czy w następniku q zdania warunkowego „Jeśli p to q” mamy nagrodę.
Poza tym nic a nic nie musimy dodatkowo udowadniać, wszystko mamy zdeterminowane na mocy definicji implikacji prostej p|=>q.
Zajmijmy się sztandarowym przykładem obietnicy.
A1.
Jeśli zdasz egzamin to dostaniesz komputer
E=>K =1
„Dostanie komputera” to nagroda, stąd na mocy definicji obietnicy mamy rozstrzygnięcie iż warunek wystarczający A1: E=>K jest częścią implikacji prostej E|=>K, poza tym faktem nic a nic nie musimy udowadniać, wszystko mamy zdeterminowane.
Szczegółowa rozpiska implikacji prostej E|=>K w warunkach wystarczających => i koniecznych ~> jest następująca.
Kod: |
IP
Tabela prawdy implikacji prostej p|=>q
Kolumna A1B1 to punkt odniesienia w zapisie formalnym {p,q}:
A1: p=>q =1 - p jest (=1) wystarczające => dla q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla q
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
Kolumna A1B1 to także punkt odniesienia w zapisie aktualnym {E,K}:
A1: Jeśli zdasz egzamin dostaniesz komputer
Przyjmijmy punkt odniesienia:
p=E(egzamin)
q=K(komputer)
A1: E=>K=1 - zdanie egzaminu wystarcza => dla otrzymania komputera
B1: E~>K=0 - zdanie egzaminu nie jest konieczne ~> dla otrzymania komputera
A1B1: E|=>K=(A1: E=>K)*~(B1: E~>K)=1*~(0)=1*1=1
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q =1 = 2:~p~>~q=1 [=] 3: q~>p =1 = 4:~q=>~p =1
A: 1: E=>K =1 = 2:~E~>~K=1 [=] 3: K~>E =1 = 4:~K=>~E =1
A’: 1: p~~>~q=0 = [=] = 4:~q~~>p =0
A’: 1: E~~>~K=0 = [=] = 4:~K~~>E =0
## ## | ## ##
B: 1: p~>q =0 = 2:~p=>~q=0 [=] 3: q=>p =0 = 4:~q~>~p =0
B: 1: E~>K =0 = 2:~E=>~K=0 [=] 3: K=>E =0 = 4:~K~>~E =0
B’: = 2:~p~~>q=1 [=] 3: q~~>~p=1
B’: = 2:~E~~>K=1 [=] 3: K~~>~E=1
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Weźmy naszą sztandarową obietnicę.
Przykład 1
A1.
Jeśli zdasz egzamin (E=1) to na 100% => dostaniesz komputer (K=1)
E=>K =1
Zdanie egzaminu jest warunkiem wystarczającym => dla dostania komputera
Zdanie egzaminu daje nam gwarancję matematyczną => dostania komputera
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>
Zastosujmy do zdania A1 prawo kontrapozycji.
Prawo kontrapozycji w zapisie formalnym (ogólnym):
A1: p=>q = A4: ~q=>~p
Prawo kontrapozycji w zapisie aktualnym (nasz przykład):
A1: E=>K = A4: ~K=>~E
Odczytajmy zdanie A4 w czasie przyszłym.
A4.
Jeśli nie dostaniesz komputera (~K=1) to na 100% => nie zdasz egzaminu (~E=1)
~K=>~E=1
Nie danie synowi komputera przed egzaminem daje nam gwarancję matematyczną => iż syn nie zda egzaminu
Jak widzimy, zdanie A4 to paradoks w stosunku do zdania A1.
Dlaczego?
W zdaniu A1 ojciec obiecuje synowi komputer z powodu zdanego egzaminu (po egzaminie), natomiast zdanie A4 wymusza na ojcu danie komputera przed egzaminem, bowiem inaczej syn na 100% => nie zda egzaminu.
Inne zdania uwypuklające zachodzący tu paradoks.
Przykład 2
A1.
Jeśli zdasz egzamin to na 100% => dostaniesz cukierka
E=>C =1
Zdanie egzaminu daje nam gwarancję matematyczną => dostania cukierka
Prawo kontrapozycji:
A1: E=>C = A4: ~C=>~E
stąd:
Zdanie A4 w czasie przyszłym:
A4.
Jeśli nie dostaniesz cukierka (~C=1) to na 100% => nie zdasz egzaminu (~E=1)
~C=>~E =1
Brak cukierka (~C=1) daje nam gwarancję matematyczną => iż nie zdamy egzaminu (~E=1)
Przykład 3
A1.
Jeśli jutro będzie padało (P=1) to otworzę parasol (OP=1)
P=>OP =1
Padanie (P=1) w dniu jutrzejszym daje nam gwarancję matematyczną => otwarcia parasola (OP=1)
Prawo kontrapozycji:
A1: P=>OP = A4: ~OP=>~P
Zdanie A4 w czasie przyszłym:
A4.
Jeśli jutro nie otworzę parasola (~OP=1) to na 100% => nie będzie padało (~P=1)
~OP=>~P=1
Brak otwarcia parasola w dniu jutrzejszym (~OP=1) daje nam gwarancję matematyczną => iż jutro nie będzie padało (~P=1)
Jak widzimy, logika matematyczna która działa wyśmienicie w świecie martwym i w matematyce prowadzi do paradoksów w świecie żywym, gdzie poprzednik lub następnik zależy od „wolnej woli” istoty żywej.
Jak uniknąć opisanego wyżej paradoksu?
Prawo transformacji:
W obietnicach i groźbach z definicji opisanych czasem przyszłym po zamianie p i q zdanie ulega transformacji do czasu przeszłego.
Oczywistym jest, że o groźbach i obietnicach możemy mówić wyłącznie w odniesieniu do świata żywego.
Definicja świata żywego:
Dowolne zdanie warunkowe „Jeśli p to q” należy do obszaru świata żywego wtedy i tylko wtedy gdy prawdziwość poprzednika lub następnika zależy od „wolnej woli” istoty żywej.
Definicja „wolnej woli” istot żywych:
Wolna wola istot żywych to zdolność do gwałcenia wszelkich praw logiki matematycznej wyznaczanej przez świat martwy (w tym przez matematykę).
Zobaczmy jak działa prawo transformacji na naszych przykładach.
Przykład 1
A1.
Jeśli zdasz egzamin (E=1) to na 100% => dostaniesz komputer (K=1)
E=>K =1
Zdanie egzaminu daje nam gwarancję matematyczną => dostania komputera
Prawo kontrapozycji:
A1: E=>K = A4: ~K=>~E
Odczytajmy zdanie A4 w czasie przyszłym.
A4.
Jeśli nie dostaniesz komputera (~K=1) to na 100% => nie zdasz egzaminu (~E=1)
~K=>~E=1
Nie danie synowi komputera przed egzaminem daje nam gwarancję matematyczną => iż syn nie zda egzaminu
Odczytajmy zdanie A4 w czasie przeszłym na mocy prawa transformacji.
Załóżmy iż jest po egzaminie.
Zaistniały fakt: Jaś nie ma komputera
Jaś do Zuzi która zna obietnicę ojca, ale nie zna zaistniałego faktu:
Zgadnij Zuzia czy zdałem egzamin jeśli nie mam komputera?
Zuzia:
A4.
Jeśli nie dostałeś komputera (~K=1) to na 100% => nie zdałeś egzaminu (~E=1)
~K=>~E =1
Brak komputera (~K=1) daje nam gwarancję matematyczną => iż Jaś nie zdał egzaminu (~E=1)
Jak widzimy, po zastosowaniu prawa transformacji wszystko pięknie gra i buczy.
Abstrakcyjnie możemy się przenieść do przyszłości mówiąc tak:
A4.
Jeśli nie dostaniesz komputera to będzie to oznaczało iż (wcześniej) nie zdałeś egzaminu
~K=>~E=1
Przykład 3
A1.
Jeśli jutro będzie padało (P=1) to otworzę parasol (OP=1)
P=>OP =1
Padanie (P=1) w dniu jutrzejszym daje nam gwarancję matematyczną => otwarcia parasola (OP=1)
Prawo kontrapozycji:
A1: P=>OP = A4: ~OP=>~P
Zdanie A4 w czasie przyszłym.
A4.
Jeśli jutro nie otworzę parasola (~OP=1) to na 100% => nie będzie padało (~P=1)
~OP=>~P=1
Brak otwarcia parasola w dniu jutrzejszym (~OP=1) daje nam gwarancję matematyczną => iż jutro nie będzie padało (~P=1)
Zdanie A4 w czasie przeszłym.
Jest pojutrze.
Wówczas na mocy prawa transformacji zdanie A4 opisuje przeszłość.
A4.
Jeśli wczoraj nie otworzyłem parasola to na 100% => nie padało
~OP =>~P =1
Jak widzimy, po zastosowaniu prawa transformacji wszystko pięknie gra i buczy.
Abstrakcyjnie możemy się przenieść do przyszłości mówiąc tak:
A4.
Jeśli nie otworzysz parasola to będzie to oznaczało że (wcześniej) nie padało
~OP=>~P=1
11.6.2 Definicja „wolnej woli”
Obietnica rodem ze świata żywego:
A1.
Jeśli zdasz egzamin (E=1) to na 100% => dostaniesz komputer (K=1)
E=>K =1
Zdanie egzaminu jest warunkiem wystarczającym => dla dostania komputera
Zauważmy, że w świecie martwym (w tym w matematyce) zdanie A1 ze spełnionym warunkiem wystarczającym => jest gwarancją absolutną której świat martwy nie jest w stanie złamać.
Zobaczmy to przez analogię:
A1.
Jeśli jutro będzie padało (P=1) to na 100% => będzie pochmurno (CH=1)
P=>CH =1
Padanie jest warunkiem wystarczającym => dla istnienia chmur bo zawsze gdy pada, są chmury.
Prawdziwy warunek wystarczający A1 wymusza fałszywość kontrprzykładu A1’ (i odwrotnie)
A1’.
Jeśli jutro będzie padało (P=1) to może ~~> nie być pochmurno (~CH=1)
P~~>~CH = P*~CH =0
W naszym Wszechświecie niemożliwe jest (=0) zdarzenie ~~>: pada (P=1) i nie ma chmur (~CH=1)
Stąd mamy wyprowadzoną definicję „wolnej woli” istot żywych (nie tylko człowieka).
Definicja „wolnej woli” istot żywych:
Wolna wola istot żywych to zdolność do gwałcenia wszelkich praw logiki matematycznej wyznaczanej przez świat martwy (w tym przez matematykę).
Na mocy definicji widać, że pojęcia „wolna wola” możemy używać tylko i wyłącznie w stosunku do świata żywego, bowiem wyłącznie świat żywy może gwałcić wszelkie prawa logiki matematycznej wyznaczanej przez świat martwy (w tym przez matematykę).
„Wolna wola” istot żywych może być wykorzystana także w niecnych celach, czyli nadawca wypowiada obietnicę której nie zamierza spełnić, której celem jest oszukanie odbiorcy.
„Wolna wola” istot żywych jest wodą na młyn dla oszustów wszelkiej maści np. wyłudzenia metodą na wnuczka. Ofiary dają się oszukiwać tylko dlatego iż oszust działa tak, by ofiara nie domyślała się że jest oszukiwana.
Zauważmy, że ojciec wypowiadając obietnicę:
A1.
Jeśli zdasz egzamin to dostaniesz komputer
Zdanie tożsame:
Jeśli zdasz egzamin (E=1) to na 100% => dostaniesz komputer (K=1)
E=>K =1
Tylko teoretycznie musi dać synowi komputer, bowiem w praktyce tak może się nie stać z różnych powodów, na przykład:
1.
Syn zdaje egzamin ale w drodze do domu ginie w wypadku samochodowym - oczywiście wyłącznie idiota będzie wkładał do trumny obiecany komputer.
2.
Syn zdaje egzamin, ale jednocześnie u mamy stwierdzono raka i wspólnie z ojcem postanawiają wydać pieniądze przeznaczone na komputer, na leczenie mamy.
3.
Ojciec jest sadystą i nie dotrzymuje danego słowa z premedytacją.
Oczywistym jest, że wyłącznie w przypadku 3 ojciec jest kłamcą, bo nie dotrzymał danego słowa z premedytacją.
Przypadek 1 to automatyczne zwolnienie z obietnicy wynikłe z przypadku losowego, natomiast w przypadku 2 syn dobrowolnie zwalnia ojca z danej obietnicy.
Prawo zwolnienia z obietnicy:
Zwolnić nadawcę z wypowiedzianej obietnicy może wyłącznie odbiorca.
Zauważmy że:
Jeśli rodzic cokolwiek obiecuje dziecku to z reguły dotrzymuje danej obietnicy. Nie ma tu mowy o ograniczeniu „wolnej woli” rodzica bowiem składa obietnicę dobrowolnie oczekując spełnienia warunku dostania nagrody.
Jeśli dziecko spełni warunek nagrody to rodzic wręcza nagrodę … i wszyscy są szczęśliwi.
Problem dla ojca zaczyna się, gdy syn nie spełni warunku nagrody.
Tu ojciec ma 100% wolnej woli, może nagrody nie wręczyć argumentując tak:
A2:~E~>~K =1
Synku, nie zdałeś egzaminu (~E=1), zatem nie dostaniesz komputera (~K=1)
W tym przypadku ojciec nie musi uzasadniać swojej negatywnej decyzji, ale może mówiąc tak:
A2: ~E~>~K =1
Synku, nie zdałeś egzaminu (~E=1), nie dostajesz komputera (~K=1) bo widziałem, że w ogóle się nie uczyłeś.
W przypadku nie zdanego egzaminu, na mocy zdania B2’ ojciec równie dobrze może wręczyć synowi komputer
B2’: ~E~~>K = ~E*K =1
uzasadniając to tak:
Synku, nie zdałeś egzaminu (~E=1) dostajesz komputer (K=1) bo cię kocham … bo widziałem że się uczyłeś, ale miałeś pecha itp.
Uwaga:
Uzasadnienie wręczenia komputera musi być w tym przypadku niezależne tzn. różne od poprzednika.
Ojciec nie może wręczyć komputera z uzasadnieniem zależnym bo będzie mimo wszystko kłamcą.
Uzasadnienie zależne brzmi tak:
Synku, nie zdałeś egzaminu (~E=1), dostajesz komputer (K=1) bo nie zdałeś egzaminu (~E=1)
W przypadku uzasadnienia zależnego ojciec mimo wszystko jest kłamcą, co udowodniłem na samym początku mojej przygody na serio z logiką matematyczną około 14 lat temu.
11.6.3 Obietnica w równaniach logicznych
A1.
Jeśli zdasz egzamin to dostaniesz komputer
E=>K =1
Warunek wystarczający => A1 jest częścią implikacji prostej E|=>K na mocy definicji obietnicy
Szczegółowa rozpiska implikacji prostej E|=>K w warunkach wystarczających => i koniecznych ~> jest następująca.
Kod: |
IP
Tabela prawdy implikacji prostej p|=>q
Kolumna A1B1 to punkt odniesienia w zapisie formalnym {p,q}:
A1: p=>q =1 - p jest (=1) wystarczające => dla q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla q
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
Kolumna A1B1 to także punkt odniesienia w zapisie aktualnym {E,K}:
A1: Jeśli zdasz egzamin dostaniesz komputer
Przyjmijmy punkt odniesienia:
p=E(egzamin)
q=K(komputer)
A1: E=>K=1 - zdanie egzaminu wystarcza => dla otrzymania komputera
B1: E~>K=0 - zdanie egzaminu nie jest konieczne ~> dla otrzymania komputera
A1B1: E|=>K=(A1: E=>K)*~(B1: E~>K)=1*~(0)=1*1=1
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q =1 = 2:~p~>~q=1 [=] 3: q~>p =1 = 4:~q=>~p =1
A: 1: E=>K =1 = 2:~E~>~K=1 [=] 3: K~>E =1 = 4:~K=>~E =1
A’: 1: p~~>~q=0 = [=] = 4:~q~~>p =0
A’: 1: E~~>~K=0 = [=] = 4:~K~~>E =0
## ## | ## ##
B: 1: p~>q =0 = 2:~p=>~q=0 [=] 3: q=>p =0 = 4:~q~>~p =0
B: 1: E~>K =0 = 2:~E=>~K=0 [=] 3: K=>E =0 = 4:~K~>~E =0
B’: = 2:~p~~>q=1 [=] 3: q~~>~p=1
B’: = 2:~E~~>K=1 [=] 3: K~~>~E=1
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Rozważmy sztandarową obietnicę:
Kolumna A1B1:
A1.
Jeśli zdasz egzamin (E=1) to na 100% => dostaniesz komputer (K=1)
E=>K =1
Zdanie egzaminu jest warunkiem wystarczającym => dla dostania komputera z powodu zdanego egzaminu.
Zdanie egzaminu daje nam gwarancje matematyczną => dostania komputera z powodu zdanego egzaminu
Tylko tyle i aż tyle gwarantuje znaczek warunku wystarczającego =>.
Znaczek warunku wystarczającego => nie wyklucza dostania komputera z dowolnego innego powodu. Dostanie komputera z innego powodu będzie miało zero wspólnego z obietnicą A1: E=>K, nie będzie dotyczyć tej konkretnej obietnicy A1: E=>K.
Matematycznie:
Warunek wystarczający => = gwarancja matematyczna => = pewność 100% => etc
Prawdziwy warunek wystarczający A1 wymusza fałszywość kontrprzykładu A1’ (i odwrotnie):
A1’
Jeśli zdasz egzamin (E=1) to możesz ~~> nie dostać komputera (~K=1)
E~~>~K = E*~K =0
Jeśli syn zda egzamin (E=1) i ojciec nie wręczy komputera (~K=1) to ojciec będzie kłamcą (=0).
… a jeśli nie zdam egzaminu?
Prawo Kubusia:
A1: E=>K = A2: ~E~>~K
Stąd:
Kolumna A2B2:
A2.
Jeśli nie zdasz egzaminu (~E=1) to na 100% ~> nie dostaniesz komputera (~K=1)
~E~>~K =1
Nie zdanie egzaminu jest warunkiem koniecznym ~> nie dostania komputera.
Nie jest to jednocześnie warunek wystarczający => bo na mocy definicji implikacji prostej E|=>K zdanie B2’ jest prawdziwe, czyli ojciec ma matematyczne prawo do wręczenia nagrody mimo nie spełnienia warunku nagrody w zdaniu A: E=>K i kłamcą nie będzie.
Sposób wypowiedzenia groźby A2 nie ma tu znaczenia.
Zdanie A2 to ewidentna groźba, zatem im ostrzej wypowiedziana tym teoretycznie będzie skuteczniejsza - stąd w zdaniu A2 mamy „na 100% ~>”
Można wypowiedzieć groźbę „lichą”:
A2.
Jeśli nie zdasz egzaminu to możesz ~> nie dostać komputera
~E~>~K =1
W praktyce jednak nadawca rzadko używa spójnika „może ~>” osłabiającego groźbę, bowiem marzeniem nadawcy jest, by odbiorca na 100% ~> nie spełnił warunku groźby (tu zdał egzamin)
LUB
Kolumna A2B2:
B2: ~E=>~K =0
Fałszywy warunek wystarczający B2 wymusza prawdziwość kontrprzykładu B2’ (i odwrotnie):
B2’.
Jeśli nie zdasz egzaminu to możesz ~~> dostać komputer
~E~~>K = ~E*K =1
Zdanie B2’ to akt miłości, czyli prawo do wręczenia nagrody mimo nie spełnienia warunku nagrody w zdaniu A: E=>K.
Zauważmy, ze akt miłości jest tożsamy z aktem łaski, jeśli za punkt odniesienia przyjmiemy groźbę A2: A2: ~E~>~K.
Uwaga:
W przypadku nie zdania egzaminu ojciec może wręczyć nagrodę z dowolnym uzasadnieniem niezależnym, czyli różnym od poprzednika.
Po nie zdanym egzaminie może powiedzieć:
1.
Synku, nie zdałeś egzaminu, dostajesz komputer bo cię kocham
lub
2.
Synku, nie zdałeś egzaminu, dostajesz komputer bo widziałem że się uczyłeś ale miałeś pecha
etc
Ojciec będzie kłamcą jeśli powie słowo w słowo:
3.
Synku, nie zdałeś egzaminu (~E=1) dostajesz komputer (K=1) bo nie zdałeś egzaminu (~E=1)
W zdaniu 3 mamy do czynienia z uzasadnieniem zależnym, gdzie uzasadnienie jest identyczne jak poprzednik.
Czysto matematyczny dowód iż wypowiadając zdanie 3 ojciec będzie kłamcą:
Zastosujmy świętą zasadę algebry Boole’a „Jak się mówi tak się pisze” doskonale znaną wszystkim inżynierom elektronikom, ci od cyfrowych układów logicznych.
Definicja obietnicy:
Jeśli dowolny warunek to nagroda
W=>N
Spełnienie warunku nagrody jest warunkiem wystarczającym => dostania nagrody
Zasada „Jak się mówi tak się pisze”:
Dostanę nagrodę (N) gdy spełnię warunek nagrody (zdanie A1) lub gdy nadawca zdecyduje o daniu nagrody (zdanie B2’)
Wprowadźmy zmienną uznaniową nadawcy:
U=1 - dam nagrodę
U=0 - nie dam nagrody
Równanie obietnicy:
N=W+U
Gdzie:
N=1 - mam nagrodę
N=0 - nie mam nagrody
W=1 - warunek nagrody spełniony
W=0 - warunek nagrody nie spełniony
Zmienna uznaniowa nadawcy:
U=1 - dam nagrodę
U=0 - nie dam nagrody
Analiza równania obietnicy.
Przypadek A.
W=1 - odbiorca spełnił warunek nagrody.
Równanie obietnicy przybierze wówczas postać:
N = 1+U = 1 - muszę dostać nagrodę.
W przypadku gdy odbiorca spełni warunek nagrody (W=1) nadawca nie ma wyjścia i musi dać nagrodę, inaczej jest kłamcą. Zauważmy, że nikt nie zmuszał nadawcy do obiecania czegokolwiek, że nadawca obiecał nagrodę z własnej woli, że chce dać nagrodę. Nie ma tu zatem mowy o jakimkolwiek ograniczeniu wolnej woli nadawcy.
Przypadek B.
W=0 - warunek nagrody nie spełniony
Równanie obietnicy przybiera postać:
N=W+U=0+U=U
Wszystko w rękach nadawcy który podejmuje decyzję o daniu nagrody zgodnie ze swoją wolną wolą, niczym nie ograniczoną.
U=1 - dam nagrodę
U=0 - nie dam nagrody
Przy niespełnionym warunku nagrody (W=0) nadawca może zrobić co mu się podoba i nie zostaje kłamcą. Większość nadawców tak czy siak da nagrodę pod byle pretekstem niezależnym (U=1 - akt miłości), ale nie musi tego robić!
W tym przypadku nadawca może wszystko z maleńkim wyjątkiem:
Nie spełniłeś warunku nagrody (W=0) dostajesz nagrodę (N=1), bo nie spełniłeś warunku nagrody (U=W=0)
Równanie obietnicy przybierze tu postać:
N = W+U = 0+0 =0
Zakaz wręczenia nagrody z uzasadnieniem zależnym, czyli z powodu nie spełnienia warunku nagrody (W=0).
Nikt nie może robić z człowieka idioty, przede wszystkim matematyka.
Przykład:
A.
Jeśli zdasz egzamin dostaniesz komputer
E=>K
Równanie obietnicy:
K = W+U
Jeśli egzamin zdany (W=1) to:
K=1+U =1 - gwarancja otrzymania komputera.
Zmienna uznaniowa nadawcy U jest tu bez znaczenia.
Jeśli egzamin nie zdany (W=0) to:
K=W+U = 0+U =U
Wszystko w rękach nadawcy:
U=1 - dam komputer
U=0 - nie dam komputera
Akt miłości nie zaszedł:
U=0
Nie zdałeś egzaminu (W=0), nie dostajesz komputera ... bo kompletnie się nie uczyłeś (U=0)
Równanie obietnicy:
K=W+U = 0+0 =0 - nie mam komputera
Akt miłości zaszedł:
U=1
Nie zdałeś egzaminu (W=0), dostajesz komputer ... bo widziałem że się starałeś ale miałeś pecha, bo cię kocham, bo tak czy siak zamierzałem dać ci komputer itp.
Gdzie:
U=1 - dowolne uzasadnienie niezależne.
Równanie obietnicy:
N=W+U=0+1=1 - mam komputer dzięki dobremu sercu nadawcy (akt miłości)
Podsumowując:
Nadawca może wręczyć nagrodę pod byle pretekstem, ale nie może wręczyć nagrody z uzasadnieniem zależnym identycznym jak warunek nagrody.
Nie zdałeś egzaminu (W=0), dostajesz komputer (K=1) ... bo nie zdałeś egzaminu (U=W=0).
Równanie obietnicy:
N=W+U=0+0=0 - zakaz wręczania nagrody N z uzasadnieniem zależnym, czyli z powodu „nie zdania egzaminu” (W=U=0)
Nikt nie może robić z człowieka idioty, przede wszystkim matematyka.
11.6.4 Obietnica w spójnikach „i”(*) i „lub”(+)
Definicja obietnicy:
Jeśli dowolny warunek W to nagroda N
W=>N =1
Dowolna obietnica to warunek wystarczający W=>N wchodzący w skład implikacji prostej W|=>N.
Zauważmy, że na mocy definicji obietnicy musimy jedynie rozstrzygnąć czy w następniku q zdania warunkowego „Jeśli p to q” mamy nagrodę.
Kod: |
Zero-jedynkowa definicja warunku wystarczającego =>
Y= ~Y=
p q p=>q ~(p=>q)
A: 1 1 =1 =0
B: 1 0 =0 =1
C: 0 0 =1 =0
D: 0 1 =1 =0
|
Algorytm opisania dowolnej tabeli zero-jedynkowej równaniami Y i ~Y w logice jedynek poznaliśmy w „Nowej algebrze Boole’a” (punkt 3.1)
Przypomnijmy:
Definicja pełnej tabeli zero-jedynkowej:
Pełna tabela zero-jedynkowa układu logicznego (bramka logiczna) to zero-jedynkowy zapis wszystkich sygnałów wejściowych w postaci niezanegowanej (p, q, r..) i zanegowanej (~p, ~q, ~r…) oraz zapis wyjścia Y również w postaci niezanegowanej (Y) i zanegowanej (~Y).
Algorytm logiki jedynek:
W pełnej tabeli zero-jedynkowej, w logice jedynek, opisujemy wyłącznie jedynki gdzie w poziomie używamy spójnika „i”(*) zaś w pionie spójnika „lub”(+)
Logika jedynek prowadzi do równań alternatywno-koniunkcyjnych zgodnych z naturalną logika matematyczną człowieka, co oznacza, że będą one rozumiane w języku potocznym przez wszystkich ludzi, od 5-cio latka poczynając.
Zastosujmy logikę jedynek do naszego warunku wystarczającego Y = p=>q:
Kod: |
T2
Pełna definicja |Co w logice jedynek |Równania
zero-jedynkowa Y |oznacza |cząstkowe
| |
p q ~p ~q Y ~Y | |
A: 1 1 0 0 =1 =0 | Ya=1<=> p=1 i q=1 | Ya= p* q
B: 1 0 0 1 =0 =1 |~Yb=1<=> p=1 i ~q=1 |~Yb= p*~q
C: 0 0 1 1 =1 =0 | Yc=1<=>~p=1 i ~q=1 | Yc=~p*~q
D: 0 1 1 1 =1 =0 | Yd=1<=>~p=1 i q=1 | Yd=~p* q
1 2 3 4 5 6 a b c d e f
|
Z tabeli równań cząstkowych odczytujemy:
Y = Ya+Yc+Yd
Po rozwinięciu mamy sumę logiczną zdarzeń rozłącznych:
1.
Y = A: p*q + C: ~p*~q + D: ~p*q
co w logice jedynek oznacza:
Y=1 <=> A: p=1 i q=1 lub C: ~p=1 i ~q=1 lub D: ~p=1 i q=1
Kiedy zajdzie ~Y?
Z tabeli równań cząstkowych otrzymujemy:
~Y=~Yb
Po rozwinięciu mamy:
2.
~Y = p*~q
co w logice jedynek oznacza:
~Y=1 <=> B: p=1 i ~q=1
Jak widzimy, logika jedynek prowadzi do równań alternatywno-koniunkcyjnych (1) doskonale rozumianych przez człowieka, albo do prostego równania koniunkcji (2) lub alternatywy.
Oba te przypadki są doskonale rozumiane przez człowieka, od 5-cio latka poczynając, co za chwilkę udowodnimy.
Definicja obietnicy:
Jeśli dowolny warunek W to nagroda N
W=>N =1
Dowolna obietnica to warunek wystarczający W=>N wchodzący w skład implikacji prostej W|=>N.
Zauważmy, że na mocy definicji obietnicy musimy jedynie rozstrzygnąć czy w następniku q zdania warunkowego „Jeśli p to q” mamy nagrodę. Nic a nic więcej nie musimy udowadniać, dalej wszystko mamy zdeterminowane na mocy definicji obietnicy.
Rozważmy naszą sztandarową obietnicę.
A1.
Jeśli zdasz egzamin to na 100% => dostaniesz komputer
E=>K =1
Na mocy definicji obietnicy zdanie egzaminu jest warunkiem wystarczającym => dostania komputera.
Dowolny operator logiczny wyrażony spójnikami „i”(*) i „lub”(+) to odpowiedź na dwa pytania:
1. Kiedy zajdzie Y (ojciec dotrzyma słowa)
2. Kiedy zajdzie ~Y (ojciec nie dotrzyma słowa)
Przyjmijmy notację zgodną z naturalną logiką matematyczną człowieka gdzie w kodowaniu zdań zapisujemy wszelkie przeczenia (~) sprowadzając wszystkie zmienne binarne do jedynek:
Y - ojciec dotrzyma słowa (Y=1)
~Y - ojciec nie dotrzyma słowa (~Y=1)
Innymi słowy:
Y=1 - prawdą jest (=1) że ojciec dotrzyma słowa (Y)
~Y=1 - prawdą jest (=1) że ojciec nie dotrzyma słowa (~Y)
1.
Kiedy ojciec dotrzyma słowa (Y=1)?
Nasz przykład:
1.
Y = (E=>K) = A: E*K + C:~E*~K + D:~E*K
co w logice jedynek oznacza:
Y = (E=>K) = A: E=1 i K=1 lub C: ~E=1 i ~K=1 lub D: ~E=1 i K=1
Gdzie:
Y = Ya+Yc+Yd - suma logiczna funkcji cząstkowych w logice dodatniej (bo Yx)
2.
Kiedy ojciec nie dotrzyma słowa (~Y=1)?
Nasz przykład:
2.
~Y= B: E*~K
co w logice jedynek oznacza:
~Y=1 <=> B: E=1 i ~K=1
Gdzie:
~Y =~Yb - bo jest tylko jedna funkcja cząstkowa w logice ujemnej (bo ~Yb)
Stąd mamy zrozumiałą dla każdego 5-cio latka analizę odpowiadającą na dwa pytania 1 i 2:
1.
Kiedy ojciec dotrzyma słowa (Y=1)?
1.
Y = (E=>K) = A: E*K + C:~E*~K + D:~E*K
co w logice jedynek oznacza:
Y = (E=>K) = A: E=1 i K=1 lub C: ~E=1 i ~K=1 lub D: ~E=1 i K=1
Czytamy:
Ojciec dotrzyma słowa (Y=1) wtedy i tylko wtedy gdy:
Ya = A: E*K=1*1=1 - syn zda egzamin (E=1) i dostanie komputer (K=1)
LUB
Yc = C: ~E*~K=1*1 =1 - syn nie zda egzaminu (~E=1) i nie dostanie komputera (~K=1)
LUB
Yd = D: ~E*K =1*1 =1 - syn nie zda egzaminu (~E=1) i dostanie komputer (K=1)
Zdanie D to oczywiście piękny akt miłości w odniesieniu do obietnicy A1, czyli prawo nadawcy do wręczenia nagrody (syn dostaje komputer), mimo że odbiorca nie spełnił warunku nagrody (tu syn nie zdał egzaminu)
2.
Kiedy ojciec nie dotrzyma słowa (~Y=1)?
~Y= B: E*~K
co w logice jedynek oznacza:
~Y=1 <=> B: E=1 i ~K=1
Matematycznie zachodzi tożsamość pojęć:
Ojciec nie dotrzyma słowa (~Y) = ojciec skłamie (S)
~Y=S
Czytamy:
2.
Ojciec skłamie (~Y=1) wtedy i tylko wtedy gdy:
~Y = B: E*~K = 1*1 =1 - syn zda egzamin (E=1) i nie dostanie komputera (~K=1)
Zapis tożsamy powyższego równania to:
(~Y=1) <=> B: E*~K
co a logice jedynek oznacza:
(~Y=1) <=> B: E=1 i ~K=1
Prawo Prosiaczka:
(~Y=1) = (Y=0)
Stąd dokładnie to samo zdanie w logice dodatniej (bo Y):
2a.
(Y=0) <=> B: E=1 i ~K=1
Czytamy:
Fałszem jest (=0), że ojciec dotrzyma słowa (Y) wtedy i tylko wtedy gdy syn zda egzamin (E=1) i nie dostanie komputera (~K=1)
W algebrze Kubusia zapis matematycznie tożsamy do powyższego to:
2b.
Y = B: E=1 i ~K =1*1 =0
Czytamy:
Ojciec skłamie (Y=0) wtedy i tylko wtedy gdy:
Y = B: E=1 i ~K =1*1 =0 - syn zda egzamin (E=1) i nie dostanie komputera (K=1)
Uwaga na notację w algebrze Kubusia gdzie tożsame są zapisy równań logicznych:
2a=2b
Podsumowanie:
I.
Zauważmy, że równania cząstkowe A, B, C i D to zdarzenia rozłączne uzupełniające się wzajemnie do dziedziny.
Dowód iż zdarzenia A, B, C i D są wzajemnie rozłączne:
A: E*K
B: E*~K
C: ~E*~K
D: ~E*K
Sprawdzamy:
A*B = (E*K)*(E*~K) = [] =0
A*C = (E*K)*(~E*~K) =[] =0
A*D = (E*K)*(~E*K) =[] =0
B*C = (E*~K)*(~E*~K)=[] =0
B*D = (E*~K)*(~E*K) = [] =0
C*D = (~E*~K)*(~E*K) =[] =0
cnd
Wnioski:
a)
W dniu dzisiejszym wszystkie zdarzenia A, B, C i D mają wartość logiczną miękkiej prawdy tzn. każde z nich może jutro zajść, ale nie musi zajść
b)
Pojutrze wyłącznie jedno ze zdarzeń A, B, C albo D ma szanse być prawdą absolutną, pozostałe zdarzenia będą fałszem absolutnym (nie zajdą)
Definicja prawdy absolutnej:
Prawda absolutna to prawda niezmienna do końca naszego Wszechświata.
Przykładowo, jeśli pojutrze stwierdzimy iż zaszło zdarzenie B:
~Y = B: E*~K =1*1 =1 - syn zdał egzamin (E=1) i nie dostał komputera (~K=1) to ojciec jest kłamcą (~Y=1) i tego faktu nikt nie zmieni do końca naszego Wszechświata bo czasu nie da się cofnąć.
Innymi słowy:
~Y=1 - prawdą absolutną (=1) jest fakt, iż ojciec jest kłamcą (~Y).
Pozostałe zdarzenia pojutrze będą fałszem absolutnym:
Ya = A: E*K = 1*1 =0 - nie zaszło (Ya=0) zdarzenie: syn zdał egzamin (E=1) i ma komputer (K=1)
LUB
Yc = C: ~E*~K=1*1 =0 - nie zaszło (Yc=0) zdarzenie: syn nie zdał egzaminu (~E=1) i nie ma komputera (~K=1)
LUB
Yd = D: ~E*K =1*1 =0 - nie zaszło (Yd=0) zdarzenie: syn nie zdał egzaminu (~K=1) i ma komputer (K=1)
Zauważmy, że wzajemnie rozłączne równania cząstkowe A, B, C i D uzupełniają się wzajemnie do dziedziny D.
Dowód:
D = A+B+C+D = E*K + E*~K + ~E*~K + ~E*K = E*(K+~K) + ~E*(~K+K) = E+~E =1
cnd
Zapiszmy jeszcze raz nasz przykład w punktach 1 i 2 w zapisach ogólnych podstawiając:
E (egzamin) =p
K (komputer) =q
1.
Kiedy ojciec dotrzyma słowa (Y=1):
1.
Y= p*q + ~p*~q + ~p*q
co w logice jedynek oznacza:
Y=1 <=> A: p=1 i q=1 lub C: ~p=1 i ~q=1 lub D: ~p=1 i q=1
2.
Kiedy ojciec skłamie (~Y), czyli nie dotrzyma słowa (~Y=1):
2.
~Y = p*~q
co w logice jedynek oznacza:
~Y=1 <=> B: p=1 i ~q=1
Minimalizujemy równanie 1:
Y= p*q + ~p*~q + ~p*q
Y = p*q + ~p*(~q+q)
Y = ~p+ (p*q)
Przejście do logiki ujemnej (bo ~Y) poprzez negację zmiennych i wymianę spójników:
~Y = p*(~p+~q)
~Y = p*~p + p*~q
~Y = p*~q
Powrót do logiki dodatniej (bo Y) poprzez negację zmiennych i wymianę spójników:
1’
Y = ~p+q
co w logice jedynek oznacza:
Y=1 <=> ~p=1 lub q=1
Odtwarzając nasz przykład mamy:
A1.
Jeśli zdasz egzamin to na 100% => dostaniesz komputer
E=>K =1
Na mocy definicji obietnicy zdanie egzaminu jest warunkiem wystarczającym => dostania komputera.
Zdanie egzaminu daje nam gwarancję matematyczną => dostania komputera.
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>
Dokładnie to samo zdanie A1 po przejściu do spójników „i”(*) i „lub”(+) opisuje minimalne równanie logiczne:
1’
Y = (E=>K) = ~E + K
co w logice jedynek oznacza:
Y=1 <=> ~E=1 lub K=1
Czytamy:
Ojciec wypowiadając obietnicę A1 dotrzyma słowa (Y=1) wtedy i tylko wtedy gdy:
Y = ~E+K =1+1 =1 - syn nie zda egzaminu (~E=1) lub dostanie komputer (K=1)
Wnioski:
1..
Obietnica A1 jest w języku potocznym doskonale rozumiana przez każdego 5-cio latka.
2..
Przejście z obietnicą A1 do tożsamego minimalnego równania 1’:
1’
Y = (E=>K) = ~E + K
co w logice jedynek oznacza:
Y=1 <=> ~E=1 lub K=1
jest w języku potocznym niezrozumiałe.
3.
Zrozumiałą dla każdego 5-cio latka odpowiedzią na pytanie:
Kiedy ojciec jutro dotrzyma słowa (Y=1)?
mamy jedynie w równaniu nieminimalnym, co dowiedziono wyżej:
Y = (E=>K) = A: E*K + C:~E*~K + D:~E*K
co w logice jedynek oznacza:
Y = (E=>K) = A: E=1 i K=1 lub C: ~E=1 i ~K=1 lub D: ~E=1 i K=1
4.
Zauważmy, że przechodząc z obietnicą A1 do równania 3 zabijamy istotę zdań warunkowych, zabijamy występujące w nich warunki wystarczające => i konieczne ~>.
W równaniu 3 nie ma bowiem mowy o jakimkolwiek warunku wystarczającym =>, czy też koniecznym ~> bowiem z definicji spójniki „i”(*) i „lub”(+) są w stanie opisać co najwyżej istnienie/nie istnienie elementu wspólnego zbiorów ~~>, ale nie są w stanie opisać relacji podzbioru => czy też relacji nadzbioru ~>.
cnd
11.6.5 Rodzaje obietnic
1.
Obietnica z natychmiastową wykonalnością:
Jeśli zdasz egzamin dostaniesz komputer
E=>K
… a jak nie zdam egzaminu.
Prawo Kubusia:
E=>K = ~E~>~K
czyli jeśli syn nie zda egzaminu to mogę mu tego komputera nie kupić lub kupić i nie mam szans na zostanie kłamcą.
2.
Obietnica z odroczoną wykonalnością:
Kto przyjdzie jutro dostanie gotowca
J=>G
… a jak przyjdę pojutrze ?
J=>G = ~J~>~G
Oczywiście jak ktoś przyjdzie później, byle przed egzaminem to też może dostać gotowca ale nie musi. Po egzaminie ta obietnica traci sens.
3.
Obietnica w której spełnienie warunku obietnicy jest bardzo mało prawdopodobne:
Jeśli wygram milion w TOTKA to kupię ci samochód
W=>S
… a jak nie wygram w TOTKA?
Prawo Kubusia:
W=>S = ~W~>~S
Jeśli nie wygram w TOTKA to mogę ci nie kupić samochodu lub kupić i nie mam szans na zostanie kłamcą.
Ostatnio zmieniony przez rafal3006 dnia Nie 14:51, 12 Cze 2022, w całości zmieniany 5 razy
|
|
Powrót do góry |
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 35977
Przeczytał: 15 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Pią 7:52, 06 Maj 2022 Temat postu: |
|
|
Algebra Kubusia
11.7 Groźba B~>L
Spis treści
11.7 Groźba B~>L 1
11.7.1 Operator implikacji odwrotnej B||~>L 2
11.8 Właściwości groźby 5
11.8.1 Prawo transformacji w groźbie 6
11.8.2 Groźba w równaniach logicznych 7
11.8.3 Groźba w spójnikach „i”(*) i „lub”(+) 9
11.7 Groźba B~>L
Największą tragedią ziemskich matematyków jest fakt, że mając 2500 lat czasu (od Sokratesa) nie doszli do poprawnych definicji obietnicy i groźby tu przedstawionych.
Definicja groźby:
Jeśli dowolny warunek W to kara K
W~>K =1
Dowolna groźba to warunek konieczny W~>K wchodzący w skład implikacji odwrotnej W|~>K
Zauważmy, że na mocy definicji groźby musimy jedynie rozstrzygnąć czy w następniku q zdania warunkowego „Jeśli p to q” mamy karę.
Poza tym nic a nic nie musimy dodatkowo udowadniać, wszystko mamy zdeterminowane na mocy definicji implikacji odwrotnej p|~>q.
Zajmijmy się sztandarowym przykładem groźby.
B1.
Jeśli ubrudzisz spodnie to dostaniesz lanie
B~>L =1
Dostanie lania to kara, zatem zdanie B1 z definicji jest częścią implikacji odwrotnej B|~>L. W tym momencie wszystko mamy zdeterminowane, nic a nic nie musimy dodatkowo udowadniać.
Definicja podstawowa implikacji odwrotnej B|~>L:
A1: B=>L =0 - brudne spodnie (B=1) nie są (=0) warunkiem wystarczającym => dla dostania lania (L=1)
B1: B~>L =1 - brudne spodnie (B=1) są (=1) warunkiem koniecznym ~> dla dostania lania (L=1)
Stąd:
A1B1: B|~>L = ~(A1: B=>L)*(B1: B~>L) = ~(0)*1 =1*1=1
Podstawmy nasz przykład do tabeli prawdy implikacji odwrotnej p|~>q:
Kod: |
IO
Tabela prawdy implikacji odwrotnej p|~>q
Kolumna A1B1 to formalny punkt odniesienia {p,q}:
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
A1B1: p|~>q =~(A1: p=>q)*(B1: p~>q)=~(0)*1=1*1=1
Kolumna A1B1 to także punkt odniesienia w zapisie aktualnym {B,L}
B1: Jeśli ubrudzisz spodnie to dostaniesz lanie
Przyjmijmy punkt odniesienia:
p=B (brudne spodnie)
q=L (lanie)
A1: B=>L=0 - brudne spodnie nie są (=0) wystarczające => dla dostania lania
B1: B~>L=1 - brudne spodnie są (=1) konieczne ~> dla dostania lania
A1B1: B|~>L =~(A1: B=>L)*(B1: B~>L)=~(0)*1=1*1=1
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q =0 = 2:~p~>~q=0 [=] 3: q~>p =0 = 4:~q=>~p =0
A: 1: B=>L =0 = 2:~B~>~L=0 [=] 3: L~>B =0 = 4:~L=>~B =0
A’: 1: p~~>~q=1 = [=] = 4:~q~~>p =1
A’: 1: B~~>~L=1 = [=] = 4:~L~~>B =1
## ## | ## ##
B: 1: p~>q =1 = 2:~p=>~q=1 [=] 3: q=>p =1 = 4:~q~>~p =1
B: 1: B~>L =1 = 2:~B=>~L=1 [=] 3: L=>B =1 = 4:~L~>~B =1
B’: = 2:~p~~>q=0 [=] 3: q~~>~p=0
B’: = 2:~B~~>L=0 [=] 3: L~~>~B=0
Definicja implikacji odwrotnej p|~>q to odpowiedź na pytanie o p:
A1B1: p|~>q =~(A1: p=>q)*(B1: p~>q) - co się stanie jeśli zajdzie p?
Definicja implikacji prostej ~p|=>~q to odpowiedź na pytanie o ~p:
A2B2: ~p|=>~q=~(A2:~p~>~q)*(B2:~p=>~q) - co się stanie jeśli zajdzie ~p?
Operator implikacji odwrotnej p||~>q to układ równań logicznych:
A1B1: p|~>q =~(A1: p=> q)* (B1: p~>q) - co się stanie jeśli zajdzie p?
A2B2:~p|=>~q =~(A2:~p~>~q)* (B2:~p=>~q)- co się stanie jeśli zajdzie ~p?
Układ równań logicznych jest przemienny, stąd mamy:
Operator implikacji prostej ~p||=>~q to układ równań logicznych:
A2B2:~p|=>~q =~(A2:~p~>~q)* (B2:~p=>~q)- co się stanie jeśli zajdzie ~p?
A1B1: p|~>q =~(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p?
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
11.7.1 Operator implikacji odwrotnej B||~>L
Operator implikacji odwrotnej B||~>L w logice dodatniej (bo L) to układ równań logicznych A1B1 i A2B2 dający odpowiedź na pytanie o brudne spodnie (B=1) i czyste spodnie (~B=1):
A1B1: B|~>L =~(A1: B=>L)* (B1: B~>L) - co się stanie jeśli przyjdę w brudnych spodniach (B=1)?
A2B2: ~B|=>~L =~(A2:~B~>~L)*(B2:~B=>~L) - co się stanie jeśli przyjdę w czystych spodniach (~B=1)
A1B1.
Co może się wydarzyć jeśli przyjdę w brudnych spodniach (B=1)?
Odpowiedź mamy w kolumnie A1B1:
A1: B=>L =0 - brudne spodnie (B=1) nie są (=0) wystarczające => dla dostania lania (L=1)
B1: B~>L =1 - brudne spodnie są (=1) konieczne ~> dla dostania lania (L=1)
A1B1: B|~>L =~(A1: B=>L)* (B1: B~>L)=~(0)*1=1*1=1
Stąd:
Jeśli przyjdę w brudnych spodniach (B=1) to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” - mówią o tym zdania B1 i A1’
Odpowiedź w zdaniach warunkowych „Jeśli p to q” mamy w kolumnie A1B1:
B1.
Jeśli ubrudzisz spodnie (B=1) to dostaniesz lanie (L=1)
B~>L =1
to samo w zapisie formalnym:
p~>q =1
Co w logice jedynek oznacza:
(B=1)~>(L=1) =1
Czytamy:
B=1 - prawdą jest (=1) że mam brudne spodnie (B)
L=1 - prawdą jest (=1) dostaję lanie (L)
Przyjście w brudnych spodniach (B=1) jest warunkiem koniecznym ~> dla dostania lania (L=1) bo jak przyjdę w czystych spodniach (~B=1) to na 100% => nie dostanę lania (~L=1)
Prawo Kubusia samo nam tu wyskoczyło:
B1: p~>q = B2:~p=>~q
To samo w zapisie aktualnym:
B1: B~>L = B2: ~B=>~L
Komentarz:
Zdania tożsame do B1 to:
B11.
Jeśli ubrudzisz spodnie (B=1) to na 100% ~> dostaniesz lanie (L=1)
B~>L =1
Przyjście w brudnych spodniach (B=1) jest warunkiem koniecznym ~> dla dostania lania (L=1)
B12.
Jeśli ubrudzisz spodnie (B=1) to możesz ~> dostać lanie (L=1)
B~>L =1
Przyjście w brudnych spodniach (B=1) jest warunkiem koniecznym ~> dla dostania lania (L=1)
Uwaga:
Na mocy definicji groźby zdanie B1 musimy kodować warunkiem koniecznym ~> z możliwością darowania kary na mocy prawdziwego kontrprzykładu A1’. Ostrość wypowiedzianej groźby nie ma tu znaczenia, czyli zachodzi tożsamość matematyczna zdań:
B1 = B11 = B12
W groźbach nadawca z reguły nie wypowiada spójnika „może ~>” osłabiającego groźbę (B12) bowiem marzeniem nadawcy jest, by odbiorca nie spełnił warunku groźby, zatem im ostrzej wypowiedziana groźba, tym teoretycznie lepiej.
Zauważmy, że algebra Kubusia pozwala nadawcy na blefowanie tzn. nadawca może wypowiedzieć groźbę w dowolnie ostrej formie (np. B11) nie mając zamiaru wykonać kary w niej zawartej.
Z faktu, że nadawca w chwili wypowiadania groźby blefuje (o czym odbiorca nie wie) nie wynika iż finalnie zawartej w groźbie kary nie może wykonać.
Innymi słowy:
Finalnie nadawca może wykonać karę w groźbie która w chwili wypowiedzenia groźby była jego blefem.
LUB
Fałszywy warunek wystarczający A1 wymusza prawdziwy kontrprzykład A1’ (i odwrotnie):
A1’.
Jeśli przyjdziesz w brudnych spodniach (B=1) to możesz ~~> nie dostać lania (~L=1)
B~~>~L = B*~L =1
Na mocy definicji groźby możliwe jest (=1) zdarzenie:
przyjdę w brudnych spodniach (B=1) i nie dostanę lania (~L=1)
Zdanie A1’ to powszechny w świecie żywym (nie tylko u człowieka) akt łaski, czyli możliwość darowania dowolnej kary zależnej od nadawcy, mimo że odbiorca spełnił warunek kary.
Chrystus:
Zaprawdę, powiadam ci, jeszcze dziś będziesz ze Mną w raju. (Łk 23, 43)
A2B2.
Co może się wydarzyć jeśli przyjdę w czystych spodniach (~B=1)?
Matematycznie zachodzi tożsamość pojęć:
Czyste spodnie = nie brudne spodnie (~B=1)
Odpowiedź mamy w kolumnie A2B2:
A2: ~B~>~L =0 - czyste spodnie (~B=1) nie są (=0) konieczne ~> dla nie dostania lania (~L=1)
B2: ~B=>~L =1 - czyste spodnie (~B=1) są (=1) wystarczające => dla nie dostania lania (~L=1)
A2B2: ~B|=>~L =~(A2:~B~>~L)*(B2:~B=>~L)=~(0*1=1*1=1
Stąd:
Jeśli przyjdę w czystych spodniach (~B=1) to mam gwarancję matematyczną => iż nie dostanę lania (~L=1) z powodu że przyszedłem w czystych spodniach (~B=1). Tylko tyle i aż tyle gwarantuje znaczek warunku wystarczającego =>
Odpowiedź w zdaniach warunkowych „Jeśli p to q” mamy w kolumnie A2B2:
B2.
Jeśli przyjdziesz w czystych spodniach (~B=1) to na 100% => nie dostaniesz lania (~L=1)
~B=>~L =1
to samo w zapisie formalnym:
~p=>~q =1
Przyjście w czystych spodniach (~B=1) daje mi gwarancję matematyczną => iż nie dostanę lania (~L=1) z powodu że przyszedłem w czystych spodniach (~B=1). Tylko tyle i aż tyle gwarantuje znaczek warunku wystarczającego =>. Lanie z innego powodu jest oczywiście możliwe, ale takie lanie będzie miało zerowy związek z wypowiedzianą groźbą B1.
Prawdziwy warunek wystarczający B2 wymusza fałszywość kontrprzykładu B2’ (i odwrotnie):
B2’.
Jeśli przyjdziesz w czystych spodniach (~B=1) to możesz ~~> dostać lanie (L=1)
~B~~>L = ~B*L =0
To samo w zapisie formalnym:
~p~~>q = ~p*q =0
Nie może się zdarzyć (=0), że przyjdę w czystych spodniach (~B=1) i dostanę lanie (L=1) … z powodu czystych spodni (~B=1). Tylko tyle i aż tyle gwarantuje definicja groźby.
Zauważmy, że gwarancja B2: ~B=>~L braku lania w groźbie B1 jest niesłychanie silna.
Aby ją złamać ojciec musi powiedzieć słowo w słowo:
Synku, przyszedłeś w czystych spodniach (~B=1) dostajesz lanie (L=1) bo przyszedłeś w czystych spodniach (~B=1) (z powodu czystych spodni (~B=1)).
W tym momencie mama synka dzwoni po pogotowie - ojciec zwariował i należy go umieścić w szpitalu psychiatrycznym.
Zauważmy, że ojciec-sadysta, jeśli musi walić bez trudu znajdzie sobie pretekst do walenia bez powoływania się na czyste spodnie.
Ojciec-sadysta może powiedzieć tak:
Synku, przyszedłeś w czystych spodniach (~B=1), dostajesz lanie (L=1) bo masz brudne buty (BB=1).
… i sadysta już może walić, bez narażania się na umieszczenie w szpitalu psychiatrycznym.
Zauważmy że:
W świecie martwym (i matematyce) zdanie B2’ to twarda prawda której świat martwy nie jest w stanie złamać.
Przykład:
B2’.
Jeśli jutro nie będzie pochmurno (~CH=1) to może ~~> padać (P=1)
~CH~~>P = ~CH*P =0
Niemożliwe jest (=0) zdarzenie ~~>: nie ma chmur (~CH=1) i pada (P=1)
To co nie jest możliwe w świecie martwym jest możliwe w świecie żywym, mającym „wolną wolę” co udowodniliśmy wyżej.
Definicja „wolnej woli” w świecie żywym:
Wolna wola to możliwość gwałcenia wszelkich praw logiki matematycznej wyznaczanej przez świat martwy (w tym przez matematykę).
Na mocy definicji pojęcie „wolnej woli” dotyczy wyłącznie świata żywego.
Definicja świata żywego:
W zdaniach warunkowych „Jeśli p to q” mamy do czynienia ze światem żywym wtedy i tylko wtedy gdy prawdziwość/fałszywość poprzednika p lub następnika q zależy od „wolnej woli” istoty żywej.
Podsumowanie:
Jak widzimy, istotą operatora implikacji odwrotnej B||~>L jest „rzucanie monetą” w sensie „na dwoje babka wróżyła” po stronie B (zdania B1 i A1’) , oraz gwarancja matematyczna => po stronie ~B (zdanie B2).
Zauważmy że:
a)
Układ równań jest przemienny, stąd mamy definicję tożsamą:
Operator implikacji prostej ~B||=>~L w logice ujemnej (bo ~L) to układ równań logicznych:
A2B2: ~B|=>~L =~(A2:~B~>~L)*(B2:~B=>~L) - co się stanie jeśli przyjdę w czystych spodniach (~B=1)?
A1B1: B|~>L =~(A1: B=>L)* (B1: B~>L) - co się stanie jeśli przyjdę w brudnych spodniach (B=1)?
Doskonale widać, że analiza matematyczna operatora implikacji prostej ~B||=>~L w logice ujemnej (bo ~L) będzie identyczna jak operatora implikacji odwrotnej B||~>L w logice dodatniej (bo L) z tym, że zaczynamy od kolumny A2B2 kończąc na kolumnie A1B1.
b)
Także kolejność wypowiadanych zdań jest dowolna, tak więc zdania z powyższej analizy B1, A1’ B2, B2’ możemy wypowiadać w sposób losowy - matematycznie to bez znaczenia.
11.8 Właściwości groźby
W rozdziale tym zajmiemy się głównie właściwościami obietnic oraz ich alternatywną obsługą w praktyce nieużywaną, dlatego ten punkt należy traktować jako ciekawostkę.
11.8.1 Prawo transformacji w groźbie
Definicja groźby:
Jeśli dowolny warunek W to kara K
W~>K =1
Dowolna groźba to warunek konieczny W~>K wchodzący w skład implikacji odwrotnej W|~>K
Zauważmy, że na mocy definicji groźby musimy jedynie rozstrzygnąć czy w następniku q zdania warunkowego „Jeśli p to q” mamy karę.
Poza tym nic a nic nie musimy dodatkowo udowadniać, wszystko mamy zdeterminowane na mocy definicji implikacji prostej p|=>q.
Zajmijmy się sztandarowym przykładem groźby.
B1.
Jeśli ubrudzisz spodnie to dostaniesz lanie
B~>L =1
Dostanie lania to kara, zatem prawdziwy z definicji warunek konieczny ~> B1 jest częścią implikacji odwrotnej B|~>L.
W tym momencie wszystko mamy zdeterminowane, nic a nic nie musimy dodatkowo udowadniać.
Prawo Tygryska wiążące warunek konieczny ~> z warunkiem wystarczającym => poprzez zamianę poprzednika z następnikiem:
B1: B~>L = B3: L=>B
Stąd mamy:
B3.
Jeśli dostaniesz lanie (L=1) to na 100% => ubrudzisz spodnie (B=1)
L=>B=1
Dostanie lania (L=1) daje nam gwarancję matematyczną => iż syn ubrudzi spodnie (B=1)
Innymi słowy:
Jeśli syn dostanie jakiekolwiek lanie (bo w zdaniu B3 nie ma przyczyny lania) to mamy gwarancję matematyczną => iż ubrudzi spodnie.
Zauważmy, że już samo dostanie lania bez podania przyczyny lania kwalifikuje się do szpitala psychiatrycznego.
Jak wybrnąć z tego paradoksu?
Prawo transformacji:
W obietnicach i groźbach z definicji opisanych czasem przyszłym po zamianie p i q zdanie ulega transformacji do czasu przeszłego.
Oczywistym jest, że o groźbach i obietnicach możemy mówić wyłącznie w odniesieniu do świata żywego.
Definicja świata żywego:
Dowolne zdanie warunkowe „Jeśli p to q” należy do obszaru świata żywego wtedy i tylko wtedy gdy prawdziwość poprzednika lub następnika zależy od „wolnej woli” istoty żywej.
Definicja „wolnej woli” istot żywych:
Wolna wola istot żywych to zdolność do gwałcenia wszelkich praw logiki matematycznej wyznaczanej przez świat martwy (w tym przez matematykę).
Zobaczmy jak działa prawo transformacji na naszym przykładzie.
B1.
Jeśli ubrudzisz spodnie to dostaniesz lanie
B~>L =1
Dostanie lania to kara, zatem prawdziwy z definicji warunek konieczny ~> B1 jest częścią implikacji odwrotnej B|~>L. W tym momencie wszystko mamy zdeterminowane, nic a nic nie musimy dodatkowo udowadniać.
Prawo Tygryska wiążące warunek konieczny ~> z warunkiem wystarczającym => poprzez zamianę poprzednika z następnikiem:
B1: B~>L = B3: L=>B
stąd na mocy prawa transformacji zdanie B3 wypowiadamy w czasie przeszłym:
B3.
Jeśli dostałeś lanie (L=1) to na 100% => ubrudziłeś spodnie (B=1)
L=>B =1
Na mocy groźby B1 dostanie lania (L=1) daje nam gwarancję matematyczną => iż wcześniej syn ubrudził spodnie (B=1) i dostał to lanie z powodu brudnych spodni - w tym przypadku ojciec nie skorzystał z prawa łaski i nie darował synowi lania.
Jak widzimy, dzięki prawu transformacji obowiązującemu wyłącznie w obietnicach i groźbach nadawca skutecznie broni się przed umieszczeniem go w szpitalu psychiatrycznym.
11.8.2 Groźba w równaniach logicznych
Definicja groźby:
B1.
Jeśli spełnisz dowolny warunek (W=1) to zostaniesz ukarany (K=1)
W~>K =1
Dowolna groźba to warunek konieczny W~>K wchodzący w skład implikacji odwrotnej W|~>K
Zauważmy, że na mocy definicji groźby musimy jedynie rozstrzygnąć czy w następniku q zdania warunkowego „Jeśli p to q” mamy karę.
Poza tym nic a nic nie musimy dodatkowo udowadniać, wszystko mamy zdeterminowane na mocy definicji implikacji prostej p|=>q.
Gwarancja matematyczna => w groźbie wynika z prawa Kubusia:
B1: W~>K = B2: ~W=>~K
stąd:
B2.
Jeśli nie spełnisz warunku kary (~W=1) to na 100% => nie zostaniesz ukarany (~K=1)
~W=>~K =1
… z powodu iż nie spełniłeś warunku kary (~W=1). Tylko tyle i aż tyle gwarantuje implikacja odwrotna B|~>L.
Definicja groźby:
B1.
Jeśli spełnisz dowolny warunek (W=1) to zostaniesz ukarany (K=1)
W~>K =1
Dowolna groźba to warunek konieczny W~>K wchodzący w skład implikacji odwrotnej W|~>K
Opiszmy groźbę w naturalnej logice matematycznej człowieka.
Obowiązuje tu zasada „Jak się mówi tak się pisze”:
Zostanę ukarany (K) gdy spełnię warunek kary (W) i nadawca zdecyduje o ukaraniu (U).
W groźbie nadawca może skorzystać z aktu łaski ale nie musi tego robić.
Przyjmijmy zmienną uznaniową U, którą nadawca może ustawić na dowolną wartość.
Matematyczne równanie groźby:
K=W*U
Gdzie:
K=1 - zostanę ukarany
K=0 - nie zostanę ukarany
W=1 - warunek kary spełniony
W=0 - warunek kary nie spełniony
Nadawca może ustawić zmienną uznaniową na dowolną wartość:
U=1 - ukarać
U=0 - nie karać (akt łaski)
Akt łaski w groźbie zajdzie wtedy, gdy odbiorca spełni warunek kary zaś nadawca odstąpi od wykonania kary ustawiając swoją zmienną wolną U na wartość:
U=0 - akt łaski (nie karać)
Analiza równania groźby.
K=W*U
Przypadek A.
W=0 - warunek kary nie jest spełniony
Równanie groźby przybierze wówczas postać:
K=W*U=0*U=0 - zakaz karania jeśli warunek kary nie zostanie spełniony.
Zauważmy, że nadawca nie ma tu nic do gadania. Może sobie ustawiać swoją zmienną wolną U długo i namiętnie na U=1 (karać) ... a i tak ma zakaz karania z powodu nie spełnienia warunku kary.
Przypadek B.
W=1 - warunek kary spełniony
Równanie groźby przybiera postać:
K=W*U=1*U=U
Wszystko w rękach nadawcy który może zrobić co mu się podoba wedle wolnej woli:
U=1 - karać
U=0 - nie karać
Przykład:
Jeśli ubrudzisz spodnie dostaniesz lanie
B~>L
Akt łaski:
Ubrudziłeś spodnie (W=1), nie dostaniesz lania (~L=1) ... bo samochód cię ochlapał, bo dziś mam dobry humor, bo cię kocham itp.
Gdzie:
U=0 - dowolne uzasadnienie niezależne jak wyżej.
K=W*U=1*0=0 - nie zostałem ukarany, bo nadawca zastosował akt łaski (U=0)
Uzasadnienie zależne:
Zauważmy, że nadawca może robić co mu się podoba z małym wyjątkiem, nie może darować kary z uzasadnieniem zależnym identycznym jak warunek kary.
Jeśli ubrudzisz spodnie dostaniesz lanie
B~>L
Ubrudziłeś spodnie (W=1), nie dostajesz lania (~L=1), bo ubrudziłeś spodnie (U=W=1).
Gdzie:
W=1 - warunek kary spełniony
U=W=1 - uzasadnienie darowania kary identyczne jak poprzednik
Równanie groźby:
K=W*U=1*1=1 - kara musi być wykonana, zakaz darowania kary z uzasadnieniem zależnym
Nikt nie może robić z człowieka idioty, przede wszystkim matematyka.
11.8.3 Groźba w spójnikach „i”(*) i „lub”(+)
Definicja groźby:
B1.
Jeśli spełnisz dowolny warunek (W=1) to zostaniesz ukarany (K=1)
W~>K =1
Dowolna groźba to warunek konieczny W~>K wchodzący w skład implikacji odwrotnej W|~>K
Zauważmy, że na mocy definicji groźby musimy jedynie rozstrzygnąć czy w następniku q zdania warunkowego „Jeśli p to q” mamy karę.
Kod: |
Zero-jedynkowa definicja warunku koniecznego ~>
Y= ~Y=
p q p~>q ~(p~>q)
A: 1 1 =1 =0
B: 1 0 =1 =0
C: 0 0 =1 =0
D: 0 1 =0 =1
|
Algorytm opisania dowolnej tabeli zero-jedynkowej równaniami Y i ~Y w logice jedynek poznaliśmy w punkcie 2.5.1
Przypomnijmy:
Definicja pełnej tabeli zero-jedynkowej:
Pełna tabela zero-jedynkowa układu logicznego (bramka logiczna) to zero-jedynkowy zapis wszystkich sygnałów wejściowych w postaci niezanegowanej (p, q, r..) i zanegowanej (~p, ~q, ~r…) oraz zapis wyjścia Y również w postaci niezanegowanej (Y) i zanegowanej (~Y).
Algorytm logiki jedynek:
W pełnej tabeli zero-jedynkowej, w logice jedynek, opisujemy wyłącznie jedynki gdzie w poziomie używamy spójnika „i”(*) zaś w pionie spójnika „lub”(+)
Logika jedynek prowadzi do równań alternatywno-koniunkcyjnych zgodnych z naturalną logika matematyczną człowieka, co oznacza, że będą one rozumiane w języku potocznym przez wszystkich ludzi, od 5-cio latka poczynając.
Zastosujmy logikę jedynek do naszego warunku koniecznego Y = p~>q:
Kod: |
T2
Pełna definicja |Co w logice jedynek |Równania
zero-jedynkowa Y |oznacza |cząstkowe
| |
p q ~p ~q Y ~Y | |
A: 1 1 0 0 =1 =0 | Ya=1<=> p=1 i q=1 | Ya= p* q
B: 1 0 0 1 =1 =0 | Yb=1<=> p=1 i ~q=1 | Yb= p*~q
C: 0 0 1 1 =1 =0 | Yc=1<=>~p=1 i ~q=1 | Yc=~p*~q
D: 0 1 1 0 =0 =1 |~Yd=1<=>~p=1 i q=1 |~Yd=~p* q
1 2 3 4 5 6 a b c d e f
|
Z tabeli równań cząstkowych odczytujemy:
Y = Ya+Yb+Yc - suma logiczna funkcji cząstkowych Ya, Yb i Yc
Po rozwinięciu mamy sumę logiczną zdarzeń rozłącznych:
1.
Y = A: p*q + B: p*~q + C: ~p*~q
co w logice jedynek oznacza:
Y=1 <=> A: p=1 i q=1 lub B: p=1 i ~q=1 lub C: ~p=1 i ~q=1
Kiedy zajdzie ~Y?
Z tabeli równań cząstkowych otrzymujemy:
~Y=~Yd - bo jest tylko jedna funkcja cząstkowa ~Yd
Po rozwinięciu mamy:
2.
~Y = D: ~p*q
co w logice jedynek oznacza:
~Y=1 <=> D: ~p=1 i q=1
Jak widzimy, logika jedynek prowadzi do równań alternatywno-koniunkcyjnych (1) doskonale rozumianych przez człowieka, albo do prostego równania koniunkcji (2) lub alternatywy.
Oba te przypadki są doskonale rozumiane przez człowieka, od 5-cio latka poczynając, co za chwilkę udowodnimy.
Definicja groźby:
B1.
Jeśli spełnisz dowolny warunek (W=1) to zostaniesz ukarany (K=1)
W~>K =1
Dowolna groźba to warunek konieczny W~>K wchodzący w skład implikacji odwrotnej W|~>K
Zauważmy, że na mocy definicji groźby musimy jedynie rozstrzygnąć czy w następniku q zdania warunkowego „Jeśli p to q” mamy karę. Nic a nic więcej nie musimy udowadniać, dalej wszystko mamy zdeterminowane na mocy definicji groźby.
Rozważmy naszą sztandarową groźbę.
B1.
Jeśli ubrudzisz spodnie (B=1) to na 100% ~> dostaniesz lanie (L=1)
B~>L =1
Na mocy definicji groźby brudne spodnie (B=1) są warunkiem koniecznym ~> dla lania (L=1)
Dowolny operator logiczny wyrażony spójnikami „i”(*) i „lub”(+) to odpowiedź na dwa pytania:
1. Kiedy zajdzie Y (ojciec dotrzyma słowa)
2. Kiedy zajdzie ~Y (ojciec nie dotrzyma słowa):
Przyjmijmy notację zgodną z naturalną logiką matematyczną człowieka gdzie w kodowaniu zdań zapisujemy wszelkie przeczenia (~) sprowadzając wszystkie zmienne binarne do jedynek:
Y - ojciec dotrzyma słowa (Y=1)
~Y - ojciec nie dotrzyma słowa (~Y=1)
Innymi słowy:
Y=1 - prawdą jest (=1) że ojciec dotrzyma słowa (Y)
~Y=1 - prawdą jest (=1) że ojciec nie dotrzyma słowa (~Y)
1.
Kiedy ojciec dotrzyma słowa (Y=1)?
Nasz przykład:
1.
Y = A: B*L + B: B*~L + C: ~B*~L
co w logice jedynek oznacza:
Y=1 <=> A: B=1 i L=1 lub B: B=1 i ~L=1 lub C: ~B=1 i ~L=1
Gdzie:
Y = Ya+Yb+Yc - suma logiczna funkcji cząstkowych w logice dodatniej (bo Yx)
2.
Kiedy ojciec nie dotrzyma słowa (~Y=1)?
Nasz przykład:
2.
~Y = D: ~B*L
co w logice jedynek oznacza:
~Y=1 <=> D: ~B=1 i L=1
Gdzie:
~Y=~Yd - bo jest tylko jedna funkcja logiczna w logice ujemnej (bo ~Yd)
Stąd mamy zrozumiałą dla każdego 5-cio latka analizę odpowiadającą na dwa pytania 1 i 2:
1.
Kiedy ojciec dotrzyma słowa (Y=1)?
1.
Y = A: B*L + B: B*~L + C: ~B*~L
co w logice jedynek oznacza:
Y=1 <=> A: B=1 i L=1 lub B: B=1 i ~L=1 lub C: ~B=1 i ~L=1
Czytamy:
Ojciec dotrzyma słowa (Y=1) wtedy i tylko wtedy gdy:
Ya = A: B*L=1*1=1 - syn przyjdzie w brudnych spodniach (B=1) i dostanie lanie (L=1)
LUB
Yb = B: B*~L=1*1=1 - syn przyjdzie w brudnych spodniach (B=1) i nie dostanie lania (~L=1)
LUB
Yc = C: ~B*~L=1*1=1 - syn przyjdzie w czystych spodniach (~B=1) i nie dostanie lania (~L=1)
Zdanie B to oczywiście piękny akt łaski w odniesieniu do groźby B1: B~>L, czyli prawo nadawcy do darowania kary zależnej od nadawcy (syn nie dostaje lania ~L=1), mimo że odbiorca spełnił warunek kary (tu syn przyszedł w brudnych spodniach B=1).
2.
Kiedy ojciec skłamie (~Y), czyli nie dotrzyma słowa (~Y=1)?
~Y = D: ~B*L
co w logice jedynek oznacza:
~Y=1 <=> D: ~B=1 i L=1
Czytamy:
Ojciec skłamie (~Y=1) wtedy i tylko wtedy gdy:
~Y = D: ~B*L =1*1 =1 - syn przyjdzie w czystych spodniach (~B=1) i dostanie lanie (L=1)
Zapis tożsamy powyższego zdania to:
(~Y=1) <=> D: ~B*L
co w logice jedynek oznacza:
(~Y=1) <=> D: ~B=1 i L=1
Prawo Prosiaczka:
(~Y=1) = (Y=0)
Stąd dokładnie to samo zdanie w logice dodatniej (bo Y):
2a.
(Y=0) <=> D: ~B=1 i L=1
Czytamy:
Fałszem jest (=0) że ojciec dotrzyma słowa (Y) wtedy i tylko wtedy gdy syn przyjdzie w czystych spodniach (~B=1) i dostanie lanie
W algebrze Kubusia zapis matematycznie tożsamy do powyższego to
2b.
Y = B: E=1 i ~K =1*1 =0
Czytamy:
Ojciec skłamie (Y=0) wtedy i tylko wtedy gdy:
Y = D: ~B*L =1*1 =0 - syn przyjdzie w czystych spodniach (~B=1) i dostanie lanie (L=1)
Uwaga na notację w algebrze Kubusia gdzie tożsame są zapisy równań logicznych:
2a=2b
Podsumowanie:
I.
Zauważmy, że równania cząstkowe A, B, C i D to zdarzenia rozłączne uzupełniające się wzajemnie do dziedziny.
Dowód iż zdarzenia A, B, C i D są wzajemnie rozłączne:
A: E*K
B: E*~K
C: ~E*~K
D: ~E*K
Sprawdzamy:
A*B = (B*L)*(B*~L) = [] =0
A*C = (B*L)*(~B*~L) =[] =0
A*D = (B*L)*(~B*L) =[] =0
B*C = (B*~L)*(~B*~L)=[] =0
B*D = (B*~L)*(~B*L) = [] =0
C*D = (~B*~L)*(~B*L) =[] =0
cnd
Wnioski:
a)
W dniu dzisiejszym wszystkie zdarzenia A, B, C i D mają wartość logiczną miękkiej prawdy tzn. każde z nich może jutro zajść, ale nie musi zajść
b)
Pojutrze wyłącznie jedno ze zdarzeń A, B, C albo D ma szanse być prawdą absolutną, pozostałe zdarzenia będą fałszem absolutnym (nie zajdą)
Definicja prawdy absolutnej:
Prawda absolutna to prawda niezmienna do końca naszego Wszechświata.
Przykładowo, jeśli pojutrze stwierdzimy iż zaszło zdarzenie D:
~Y = D: ~B*L =1*1 =1 - syn przyszedł w czystych spodniach (~B=1) i dostał lanie (L=1) z powodu czystych spodni (~B=1) to ojciec jest kłamcą (~Y=1) i tego faktu nikt nie zmieni do końca naszego Wszechświata bo czasu nie da się cofnąć.
~Y=1 - prawdą absolutna (=1) jest fakt, iż ojciec jest kłamcą (~Y).
Pozostałe zdarzenia pojutrze będą fałszem absolutnym:
Ya = A: B*L=1*1=0 - nie zaszło (Ya=0) zdarzenie: syn przyszedł w brudnych spodniach (B=1) i dostał lanie (L=1)
LUB
Yb = B: B*~L=1*1=0 - nie zaszło (Yb=0) zdarzenie: syn przyszedł w brudnych spodniach (B=1) i nie dostał lania (~L=1)
LUB
Yc = C: ~B*~L=1*1=0 - nie zaszło (Yc=0) zdarzenie: syn przyszedł w czystych spodniach (~B=1) i nie dostał lania (~L=1)
Zauważmy, że wzajemnie rozłączne równania cząstkowe A, B, C i D uzupełniają się wzajemnie do dziedziny D.
Dowód:
D = A+B+C+D = B*L + B*~L + ~B*~L + ~B*L = B*(L+~L) + ~B*(~L+L) = B+~B =1
cnd
Zapiszmy jeszcze raz nasz przykład w punktach 1 i 2 w zapisach ogólnych podstawiając:
B (brudne spodnie) =p
L (lanie) =q
1.
Kiedy ojciec dotrzyma słowa (Y=1):
1.
Y = A: p*q + B: p*~q + C: ~p*~q
co w logice jedynek oznacza:
Y=1 <=> A: p=1 i q=1 lub B: p=1 i ~q=1 lub C: ~p=1 i ~q=1
2.
Kiedy ojciec skłamie (~Y), czyli nie dotrzyma słowa (~Y=1):
2.
~Y = D: ~p*q
co w logice jedynek oznacza:
~Y=1 <=> D: ~p=1 i q=1
Minimalizujemy równanie 1:
Y= p*q + p*~q + ~p*~q
Y = p*(q+~q)+~p*~q
Y = p+(~p*~q)
Przejście do logiki ujemnej (bo ~Y) poprzez negację zmiennych i wymianę spójników:
~Y= ~p*(p+q)
~Y = ~p*p + ~p*q
~Y = ~p*q
Powrót do logiki dodatniej (bo Y) poprzez negację zmiennych i wymianę spójników:
1’
Y = p+~q
co w logice jedynek oznacza:
Y=1 <=> p=1 lub ~q=1
Odtwarzając nasz przykład mamy:
B1.
Jeśli ubrudzisz spodnie to na 100% ~> dostaniesz lanie
B~>L =1
Na mocy definicji groźby brudne spodnie (B=1) są warunkiem koniecznym ~> dostania lania.
Dokładnie to samo zdanie B1 po przejściu do spójników „i”(*) i „lub”(+) opisuje minimalne równanie logiczne:
1’
Y = (B~>L) = B+~L
co w logice jedynek oznacza:
Y=1 <=> B=1 lub ~L=1
Czytamy:
Ojciec wypowiadając groźbę B1 dotrzyma słowa (Y=1) wtedy i tylko wtedy gdy:
Y = B+~L =1+1 =1 - syn przyjdzie w brudnych spodniach (B=1) lub nie dostanie lania (~L=1)
Wnioski:
1.
Groźba B1 jest w języku potocznym doskonale rozumiana przez każdego 5-cio latka tzn. każdy 5-cio latek wie iż może przyjść w brudnych spodniach i nie musi dostać lania, bo ojciec może mu to lanie darować.
2.
Przejście z groźbą B1 do tożsamego minimalnego równania 1’ w spójniku „lub”(+):
1’
Y = (B~>L) = B+~L
co w logice jedynek oznacza:
Y=1 <=> B=1 lub ~L=1
jest w języku potocznym niezrozumiałe.
3.
Zrozumiałą dla każdego 5-cio latka odpowiedzią na pytanie:
Kiedy ojciec jutro dotrzyma słowa (Y=1)?
mamy jedynie w równaniu nieminimalnym, co dowiedziono wyżej:
Y = A: B*L + B: B*~L + C: ~B*~L
co w logice jedynek oznacza:
Y=1 <=> A: B=1 i L=1 lub B: B=1 i ~L=1 lub C: ~B=1 i ~L=1
4.
Zauważmy, że przechodząc z groźbą B1 do równania 3 zabijamy istotę zdań warunkowych, zabijamy występujące w nich warunki wystarczające => i konieczne ~>.
W równaniu 3 nie ma bowiem mowy o jakimkolwiek warunku wystarczającym =>, czy też koniecznym ~> bowiem z definicji spójniki „i”(*) i „lub”(+) są w stanie opisać co najwyżej istnienie/nie istnienie elementu wspólnego zbiorów ~~>, ale nie są w stanie opisać relacji podzbioru => czy też relacji nadzbioru ~>.
cnd
Ostatnio zmieniony przez rafal3006 dnia Nie 14:50, 12 Cze 2022, w całości zmieniany 21 razy
|
|
Powrót do góry |
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 35977
Przeczytał: 15 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Nie 19:59, 08 Maj 2022 Temat postu: |
|
|
Algebra Kubusia
12.0 Zastosowania algebry Kubusia
Spis treści
12.0 Zastosowania algebry Kubusia 1
12.1 Zastosowania algebry Kubusia w świecie techniki 1
12.1.1 Operator równoważności p|<=>q w świecie techniki 1
12.1.2 Operator implikacji prostej p||=>q w świecie techniki 7
12.1.3 Operator implikacji odwrotnej p||~>q w świecie techniki 11
12.0 Zastosowania algebry Kubusia
Algebra Kubusia to logika matematyczna, pod którą podlega cały nasz Wszechświat, żywy i martwy, w tym matematyka.
Najważniejszym zastosowaniem algebry Kubusia jest matematyczna obsługa języka potocznego, w szczególności chodzi tu kluczową dla świata żywego obsługę obietnic i gróźb, z którą zapoznaliśmy się w punkcie 11.0.
12.1 Zastosowania algebry Kubusia w świecie techniki
Jedynym operatorem logicznym przydatnym w świecie techniki jest operator równoważności p|<=>q.
W świecie techniki operatory implikacji prostej p||=>q i implikacji odwrotnej p||~>q nie mają prawa bytu bowiem definiują one „wolną wolę” istot żywych.
Definicja „wolnej woli” istot żywych:
„Wolna wola” istot żywych to zdolność do gwałcenia wszelkich praw logiki matematycznej wyznaczanych przez świat martwy (w tym przez matematykę).
Najłatwiej pokazać o to tu chodzi prezentując komputerowe algorytmy działania operatorów równoważności p|<=>q, implikacji prostej p||=>q i implikacji odwrotnej p||~>q.
Prawo programisty:
Operator równoważności p|<=>q gdzie nie ma miejsca na „rzucania monetą” w sensie „na dwoje babka wróżyła” jest jedynym operatorem logicznym przydatnym w świecie techniki (np. w programowaniu komputerów).
Operatory implikacji prostej p||=>q i odwrotnej p||~>q, których cechą charakterystyczną jest „rzucanie monetą” w sensie „na dwoje babka wróżyła” są idiotyzmem w świecie techniki i nigdy nie znajdą tu zastosowania (np. w świecie programowania komputerów)
To tłumaczy dlaczego ziemscy matematycy, mając 2500 lat czasu (od Sokratesa) do tej pory nie znają takich kluczowych pojęć z logiki matematycznej, jak implikacja prosta p|=>q czy też implikacja odwrotna p|~>q.
12.1.1 Operator równoważności p|<=>q w świecie techniki
A1B1:
Definicja równoważności p<=>q w logice dodatniej (bo q):
Równoważność p<=>q w logice dodatniej (bo q) to spełnienie zarówno warunku wystarczającego =>, jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
Stąd mamy definicję równoważności p<=>q w równaniu logicznym:
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) =1*1 =1
Czytamy:
Równoważność p<=>q w logice dodatniej (bo q) jest spełniona (=1) wtedy i tylko wtedy gdy
zajście p jest (=1) konieczne ~> (B1) i wystarczające => (A1) dla zajścia q
Powyższa definicja równoważności znana jest wszystkim ludziom (nie tylko matematykom):
Dowód:
Klikamy na googlach:
„konieczne i wystarczające”
Wyników: 8 630
„potrzeba i wystarcza”
Wyników: 49 000
Stąd mamy tabelę prawdy równoważności p<=>q.
Kod: |
TR
Tabela prawdy równoważności p<=>q
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w równoważności p<=>q
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
Stąd mamy definicję równoważności p<=>q w równaniu logicznym:
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) =1*1 =1
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q=1 = 2:~p~>~q=1 [=] 3: q~>p=1 = 4:~q=>~p=1
A’: 1: p~~>~q=0 4:~q~~>p=0
## ## ## ##
B: 1: p~>q=1 = 2:~p=>~q=1 [=] 3: q=>p=1 = 4:~q~>~p=1
B’: 2:~p~~>q=0 3: q~~>~p=0
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Prawa Sowy dla równoważności p<=>q:
Prawdziwość dowolnego zdania serii Ax wymusza prawdziwość wszystkich zdań serii Ax
Prawdziwość dowolnego zdania serii Bx wymusza prawdziwość wszystkich zdań serii Bx
Na mocy prawa Sowy równoważność prawdziwa p<=>q determinuje prawdziwość operatora równoważności p|<=>q (albo odwrotnie)
W powyższej tabeli prawdy uwzględniono definicję kontrprzykładu, działającą wyłącznie w warunku wystarczającym =>.
Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>~q=p*~q
Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1
(i odwrotnie)
Jak działa operator równoważności p|<=>q w programowaniu komputerów?
Rozważmy fragment programu komputerowego wykonującego dodawanie dwóch 8-bitowych liczb binarnych A i B działający w oparciu o definicję operatora równoważności p|<=>q
Potrzebne definicje:
A, B - ośmiobitowe liczby binarne (zakładamy mikroprocesor 8 bitowy np. Z80)
A:=A+B - do rejestru A wpisz „:=”sumę algebraiczną rejestrów A+B.
c - jednobitowy wskaźnik przeniesienia w dodawaniu dwóch liczb A i B o znaczeniu:
c - przeniesienie wystąpiło (c=1), jednobitowa zmienna binarna
~c - przeniesienie nie wystąpiło (~c=1), jednobitowa zmienna binarna
q - procedura obsługująca przeniesienie „c”, gdy wystąpiło przeniesienie w operacji dodawania A+B
~q - procedura obsługująca brak przeniesienia „~c” w operacji dodawania A+B
Nanieśmy nasz przykład do tabeli prawdy równoważności p<=>q:
Kod: |
TR
Tabela prawdy równoważności c<=>q
A1B1: A2B2: | A3B3: A4B4:
Zapis formalny:
A: 1: p=>q=1 = 2:~p~>~q=1 [=] 3: q~>p=1 = 4:~q=>~p=1
A’: 1: p~~>~q=0 4:~q~~>p=0
## ## ## ##
B: 1: p~>q=1 = 2:~p=>~q=1 [=] 3: q=>p=1 = 4:~q~>~p=1
B’: 2:~p~~>q=0 3: q~~>~p=0
Nasz przykład:
A: 1: c=>q=1 = 2:~c~>~q=1 [=] 3: q~>c=1 = 4:~q=>~c=1
A’: 1: c~~>~q=0 4:~q~~>c=0
## ## ## ##
B: 1: c~>q=1 = 2:~c=>~q=1 [=] 3: q=>c=1 = 4:~q~>~c=1
B’: 2:~c~~>q=0 3: q~~>~c=0
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Prawa Sowy dla równoważności p<=>q:
Prawdziwość dowolnego zdania serii Ax wymusza prawdziwość wszystkich zdań serii Ax
Prawdziwość dowolnego zdania serii Bx wymusza prawdziwość wszystkich zdań serii Bx
Na mocy prawa Sowy równoważność prawdziwa p<=>q determinuje prawdziwość operatora równoważności p|<=>q (albo odwrotnie)
Narysujmy schemat blokowy interesującego nas fragmentu programu:
Kod: |
---------
| START |
---------
|
c ------------ ~c
-----------| A:=A+B |----------------
| ------------ |
| |
--------------- ----------------
| Procedura q | | Procedura ~q |
--------------- ----------------
| |
------- -------
| END | | END |
------- -------
|
Definicja operatora równoważności p|<=>q:
Operator równoważności p|<=>q to układ równań A1B1 i A2B2 dający odpowiedź na dwa pytania o p i ~p:
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) =1*1 =1 - co się stanie jeśli zajdzie p?
A2B2: ~p<=>~q = (A2: ~p~>~q)*(B2: ~p=>~q) =1*1=1 - co się stanie jeśli zajdzie ~p?
Nasz przykład:
A1B1:
Co się stanie jeśli wystąpi przeniesienia „c”?
Odpowiedź mamy w kolumnie A1B1:
A1: c=>q =1 - wystąpienie przeniesienia „c” jest (=1) wystarczające => dla wykonania procedury q
B1: c~>q =1 - wystąpienie przeniesienia „c” jest (=1) konieczne ~> dla wykonania procedury q
Stąd:
A1B1: c<=>q = (A1: c=>q)*(B1: c~>q)=1*1 =1 - co się stanie jeśli wystąpi przeniesienie „c”?
Czytamy:
Równoważność c<=>q w logice dodatniej (bo q) jest prawdziwa (=1) wtedy i tylko wtedy gdy wystąpienie przeniesienia „c” (c=1) jest konieczne ~> (B1) i wystarczające => (A1) dla wykonania procedury q
Ta definicja równoważności jest powszechnie znana wszystkim ludziom.
Odpowiedź w postaci zdań warunkowych „Jeśli p to q” odczytujemy z kolumny A1B1:
A1.
Jeśli wystąpi przeniesienie „c” to na 100% => nastąpi wykonanie procedury q
c=>q =1
Zajście „c” jest (=1) warunkiem wystarczającym => dla wykonania procedury q
Zajście „c” daje nam (=1) gwarancję matematyczną => dla wykonania procedury q
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>
Prawdziwość warunku wystarczającego A1 wymusza fałszywość kontrprzykładu A1’ (i odwrotnie)
A1’.
Jeśli wystąpi przeniesienia „c” to może ~~> zostać wykonana procedura ~q
c~~>~q = c*~q =0
Niemożliwe jest (=0) zdarzenie: wystąpi przeniesienie „c” i wykonana zostanie procedura ~q
Wniosek:
Z kolumny A1B1 wynika, że jeśli wystąpi przeniesienie „c” to na 100% => zostanie wykonana procedura „q” obsługująca to przeniesienie, bowiem zakazane jest (=0) wówczas wykonanie procedury „~q”
… a jeśli przeniesienie „c” nie wystąpi (~c=1)?
Odpowiedź na to pytanie mamy w kolumnie A2B2.
A2B2:
Co się stanie jeśli nie wystąpi przeniesienie „c” (~c=1)?
Odpowiedź mamy w kolumnie A2B2:
A2: ~c~>~q =1 - brak przeniesienia c (~c=1) jest (=1) konieczne ~> dla wykonania procedury ~q
B2: ~c=>~q =1 - brak przeniesienia c (~c=1) jest (=1) wystarczające => dla wykonania procedury ~q
Stąd:
A2B2: ~c<=>~q = (A2:~c~>~q)*(B2:~c=>~q) =1*1=1 - co się stanie jeśli nie zajdzie „c” (~c=1)?
Czytamy:
Równoważność ~c<=>~q w logice ujemnej (bo ~q) jest spełniona (=1) wtedy i tylko wtedy gdy brak przeniesienia „c” (~c=1) jest konieczny ~> (A2) i wystarczający => (B2) dla wykonania procedury ~q
Ta definicja równoważności jest powszechnie znana wszystkim ludziom.
Odpowiedź w zdaniach warunkowych „Jeśli p to q” mamy w kolumnie A2B2:
B2.
Jeśli nie wystąpi przeniesienie „c” (~c=1) to na 100% => wykonana zostanie procedura ~q
~c=>~q =1
Brak przeniesienia „c” (~c=1) jest (=1) warunkiem wystarczającym => dla wykonania procedury ~q
Brak przeniesienia „c” (~c=1) daje nam (=1) gwarancję matematyczną => wykonania procedury ~q
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>
Prawdziwość warunku wystarczającego B2: ~c=>~q=1 wymusza fałszywość kontrprzykładu B2’ (i odwrotnie)
B2’.
Jeśli nie wystąpi przeniesienie „c” (~c=1) to może ~~> zostać wykonana procedura q
~c~~>q = ~c*q =0
Niemożliwe jest (=0) zdarzenie: nie wystąpi przeniesienie „c” (~c=1) i wykonana zostanie procedura q
Podsumowanie:
Na mocy definicji operatora równoważności c|<=>q mamy gwarancję matematyczną zarówno po stronie „c” jak i „~c”
1.
Jeśli wystąpi przeniesienie „c” (c=1) to mamy gwarancję matematyczną => wykonania procedury q, o czym mówi zdanie A1
Natomiast:
Jeśli nie wystąpi przeniesienie „c” (~c=1) to mamy gwarancję matematyczną => wykonania procedury ~q, o czym mówi zdanie B2.
Trzeciej możliwości brak (tertium non datur).
2.
W świecie techniki jedynym przydatnym operatorem logicznym jest operator równoważności p|<=>q gdzie nie ma miejsca na „rzucanie monetą” w sensie „na dwoje babka wróżyła” charakterystycznym w implikacji: zarówno prostej p|=>q, jak i odwrotnej p|~>q, co za chwilkę zobaczmy.
Zauważmy, że po zamianie c i q w operatorze równoważności A3B3: q|<=>c również mamy gwarancje matematyczne zarówno po stronie q, jak i ~q o czym mówią kolumny A3B3 oraz A4B4.
A3B3:
Z kolumny A3B3 odczytujemy:
Co się stało jeśli wykonano procedurę „q”?
B3: q=>c =1 - jeśli wykonano procedurę „q” to mamy gwarancję matematyczną iż zaszło „c”
B3’: q~~>~c=0 - zakaz wykonania (=0) procedury „q” gdy zaszło „~c”
Czytamy:
Jeśli wykonana została procedura „q” to mamy gwarancję matematyczną => iż wystąpiło przeniesienie „c”, bowiem istnieje zakaz wykonania procedury q dla „~c”
Zauważmy, ze w czasie przyszłym powyższe zdanie traci sens, bowiem procedura „q” nie ustawia wskaźnika przeniesienia „c” na jakąkolwiek wartość logiczną - to jest matematyczno-fizyczny nonsens.
Dowód to zdanie B3 w czasie przyszłym:
B3.
Jeśli wykonana zostanie procedura „q” to spowoduje to ustawienia wskaźnika przeniesienia na „c”
q=>c =1
… a jeśli nie wykonano procedury q?
Odpowiedź na to pytanie mamy w kolumnie A4B4
A4b4:
Z kolumny A4B4 odczytujemy:
Co się stało jeśli wykonano procedurę „~q”?
A4: ~q=>~c =1 - jeśli wykonano procedurę „~q” to mamy gwarancję matematyczną => iż zaszło „~c”
A4’: ~q~~>c =0 - zakaz wykonania (=0) procedury „~q” gdyż zaszło „c”
Czytamy:
Jeśli wykonana została procedura „~q” to mamy gwarancję matematyczną => iż wystąpiło „~c”, bowiem istnieje zakaz wykonania procedury ~q dla „c”
Zauważmy, ze w czasie przyszłym powyższe zdanie traci sens, bowiem procedura „~q” nie ustawia wskaźnika przeniesienia „~c” na jakąkolwiek wartość logiczną - to jest matematyczno-fizyczny nonsens.
Dowód to zdanie A4 w czasie przyszłym:
A4.
Jeśli wykonana zostanie procedura „~q” to spowoduje to ustawienia wskaźnika przeniesienia na „~c”
~q=>c =1
Wniosek:
W językach programowania operator równoważności c|<=>q ma charakter jednokierunkowy, bowiem może być ustawiany wyłącznie wskaźnik przeniesienia „c” na wartość logiczną „c=1” albo „~c=1” powodujący wykonanie procedury „q” albo „~q”.
Odwrotnie się nie da, odwrotnie to matematyczno-fizyczny nonsens.
Prawo Prosiaczka:
(~c=1)=(c=0)
Stąd mamy wyprowadzone prawo transformacji.
Prawo transformacji:
W programowaniu komputerów z definicji opisanych czasem przyszłym po zamianie p i q zdanie warunkowe „Jeśli p to q” ulega transformacji do czasu przeszłego.
Dowód na przykładzie, wyżej.
12.1.2 Operator implikacji prostej p||=>q w świecie techniki
A1B1:
Definicja implikacji prostej p|=>q w logice dodatniej (bo q):
Implikacja prosta p|=>q w logice dodatniej (bo q) to spełnienie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
Stąd mamy definicję implikacji prostej p|=>q w równaniu logicznym:
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) =1*~(0)=1*1 =1
Czytamy:
Implikacja prosta p|=>q jest prawdziwa (=1) wtedy i tylko wtedy gdy zajście p jest (=1) wystarczające => dla zajścia q (A1) ale nie jest konieczne ~> dla zajścia q (B1)
stąd mamy:
Tabela prawdy implikacji prostej p|=>q:
Kod: |
IP
Definicja implikacji prostej p|=>q w logice dodatniej (bo q):
Implikacja prosta p|=>q w logice dodatniej (bo q)
to spełnienie wyłącznie warunku wystarczającego =>
między tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
Stąd mamy definicję implikacji prostej p|=>q w równaniu logicznym:
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) =1*~(0)=1*1 =1
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji prostej p|=>q
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q=1 = 2:~p~>~q=1 [=] 3: q~>p=1 = 4:~q=>~p=1
A’: 1: p~~>~q=0 4:~q~~>p=0
## ## ## ##
B: 1: p~>q=0 = 2:~p=>~q=0 [=] 3: q=>p=0 = 4:~q~>~p=0
B’: 2:~p~~>q=1 3: q~~>~p=1
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Prawa Sowy dla implikacji prostej p|=>q:
Prawdziwość dowolnego zdania serii Ax wymusza prawdziwość wszystkich zdań serii Ax
Fałszywość dowolnego zdania serii Bx wymusza fałszywość wszystkich zdań serii Bx
Na mocy prawa Sowy prawdziwa implikacja prosta p|=>q determinuje prawdziwość operatora implikacji prostej p||=>q (albo odwrotnie)
W powyższej tabeli prawdy uwzględniono definicję kontrprzykładu, działającą wyłącznie w warunku wystarczającym =>.
Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>~q=p*~q
Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1
(i odwrotnie)
Jak działa operator implikacji prostej p||=>q w programowaniu komputerów?
Rozważmy fragment programu komputerowego wykonującego dodawanie dwóch 8-bitowych liczb binarnych A i B działającego w oparciu o definicję operatora implikacji prostej p||=>q
Potrzebne definicje:
A, B - ośmiobitowe liczby binarne (zakładamy mikroprocesor 8 bitowy np. Z80)
A:=A+B - do rejestru A wpisz „:=”sumę algebraiczną rejestrów A+B.
c - jednobitowy wskaźnik przeniesienia w dodawaniu dwóch liczb A i B o znaczeniu:
c - przeniesienie wystąpiło (c=1), jednobitowa zmienna binarna
~c - przeniesienie nie wystąpiło (~c=1), jednobitowa zmienna binarna
q - procedura obsługująca przeniesienie „c”, gdy wystąpiło przeniesienie w operacji dodawania A+B
~q - procedura obsługująca brak przeniesienia „~c” w operacji dodawania A+B
Nanieśmy nasz przykład do tabeli prawdy implikacji prostej p|=>q:
Kod: |
TR
Tabela prawdy implikacji prostej c|=>q
A1B1: A2B2: | A3B3: A4B4:
Zapis formalny:
A: 1: p=>q=1 = 2:~p~>~q=1 [=] 3: q~>p=1 = 4:~q=>~p=1
A’: 1: p~~>~q=0 4:~q~~>p=0
## ## ## ##
B: 1: p~>q=0 = 2:~p=>~q=0 [=] 3: q=>p=0 = 4:~q~>~p=0
B’: 2:~p~~>q=1 3: q~~>~p=1
Nasz przykład:
A: 1: c=>q=1 = 2:~c~>~q=1 [=] 3: q~>c=1 = 4:~q=>~c=1
A’: 1: c~~>~q=0 4:~q~~>c=0
## ## ## ##
B: 1: c~>q=0 = 2:~c=>~q=0 [=] 3: q=>c=0 = 4:~q~>~c=0
B’: 2:~c~~>q=1 3: q~~>~c=1
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Prawa Sowy dla implikacji prostej p|=>q:
Prawdziwość dowolnego zdania serii Ax wymusza prawdziwość wszystkich zdań serii Ax
Fałszywość dowolnego zdania serii Bx wymusza fałszywość wszystkich zdań serii Bx
Na mocy prawa Sowy prawdziwa implikacja prosta c|=>q determinuje prawdziwość operatora implikacji prostej c||=>q (albo odwrotnie)
Narysujmy schemat blokowy interesującego nas fragmentu programu:
Kod: |
---------
| START |
---------
|
c ------------ ~c
-----------| A:=A+B |-------
| ------------ |
| |
| |
| reszka ---------------- orzełek
|<--------------------|reszka/orzełek|-------
| ---------------- |
| |
--------------- ----------------
| Procedura q | | Procedura ~q |
--------------- ----------------
| |
------- -------
| END | | END |
------- -------
|
Definicja operatora implikacji prostej p||=>q:
Operator implikacji prostej p||=>q to układ równań A1B1 i A2B2 dający odpowiedź na dwa pytania o p i ~p:
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) =1*~(0)=1*1 =1 - co się stanie jeśli zajdzie p?
A2B2: ~p|~>~q = (A2: ~p~>~q)*~(B2: ~p=>~q) =1*~(0)=1*1=1 - co się stanie jeśli zajdzie ~p?
Nasz przykład:
A1B1:
Co się stanie jeśli wystąpi przeniesienie „c” (c=1)?
Odpowiedź mamy w kolumnie A1B1:
A1: c=>q =1 - wystąpienie przeniesienia „c” jest (=1) wystarczające => dla wykonania procedury q
B1: c~>q =0 - wystąpienie przeniesienia „c” nie jest (=0) konieczne ~> dla wykonania procedury q
Stąd:
c|=>q = (A1: c=>q)*~(B1: c~>q) =1*~(0)=1*1 =1
A1B1:
Co się stanie jeśli wystąpi przeniesienie „c” (c=1)?
Odpowiedź w postaci zdań warunkowych „Jeśli p to q” mamy w kolumnie A1B1:
A1.
Jeśli wystąpi przeniesienie „c” to na 100% => wykonana zostanie procedura q
c=>q =1
Zajście „c” jest (=1) warunkiem wystarczającym => dla zajścia q
Zajście „c” daje nam gwarancję matematyczną => zajścia q
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>
Prawdziwość warunku wystarczającego A1 wymusza fałszywość kontrprzykładu A1’ (i odwrotnie)
A1’.
Jeśli wystąpi przeniesienie „c” to może ~~> zostać wykonana procedura ~q
c~~>~q = c*~q =0
Niemożliwe jest (=0) zdarzenie: zajdzie przeniesienie c (c=1) i zostanie wykonana procedura ~q
Wniosek:
Z kolumny A1B1 wynika, że jeśli zajdzie przeniesienie „c” to na 100% => zostanie wykonana procedura „q” obsługująca to przeniesienie, bowiem zakazane jest (=0) wówczas wykonanie procedury „~q”
… a jeśli przeniesienie „c” nie wystąpi (~c=1)?
Prawo Prosiaczka:
(~c=1) = (c=0)
Odpowiedź na to pytanie mamy w kolumnie A2B2.
A2B2:
Co się stanie jeśli przeniesienie „c” nie wystąpi (~c=1)?
A2: ~c~>~q =1 - brak przeniesienia „c” (~c=1) jest konieczny ~> dla wykonania procedury ~q
B2: ~c=>~q =0 - brak przeniesienia „c” (~c=1) nie jest (=0) wystarczający => dla wykonania ~q
Stąd:
~c|~>~q = (A2:~c~>~q)*~(B2:~c=>~q) =1*~(0)=1*1=1
A2B2:
Co się stanie jeśli nie wystąpi przeniesienie „c” (~c=1)?
Prawo Kubusia:
A1: c=>q = A2: ~c~>~q
Odpowiedź w zdaniach warunkowych „Jeśli p to q” mamy w kolumnie A2B2:
A2.
Jeśli nie wystąpi przeniesienie „c” (~c=1) to może ~> zostać wykonana procedura ~q
~c~>~q =1
Brak przeniesienia „c” (~c=1) jest konieczny ~> dla wykonania procedury ~q bo jak wystąpi przeniesienie „c” to na 100% => wykonana zostanie procedura q
Prawo Kubusia samo nam tu wyskoczyło:
A2: ~c~>~q = A1: c=>q
LUB
Fałszywość warunku wystarczającego B2: ~c=>~q=0 wymusza prawdziwość kontrprzykładu B2’ (i odwrotnie)
B2’.
Jeśli nie wystąpi przeniesienie „c” (~c=1) to może ~~> zostać wykonana procedura q
~c~~>q = ~c*q =1
Możliwe jest (=1) zdarzenie: nie wystąpi przeniesienie „c” (~c=1) i zostanie wykonana procedura q
Wniosek:
Z kolumny A2B2 wynika, że jeśli nie wystąpi przeniesienie „c” (~c=1) to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” bo wówczas może ~> być wykonana procedura „~q” na mocy zdania B2 albo może zostać wykonana procedura „q” na mocy zdania B2’
Innymi słowy:
Jeśli nie wystąpi przeniesienie „c” (~c=1) to w programie zostanie wywołany generator cyfr losowych dający binarną odpowiedź:
orzełek - wykonaj procedurę ~q
reszka - wykonaj procedurę q
co pokazano na schemacie blokowym
Podsumowując:
1.
Implikacja prosta c|=>q to gwarancja matematyczna => po stronie „c” (c=1), o czym mówi zdanie A1 oraz najzwyklejsze „rzucanie monetą” w rozumieniu „na dwoje babka wróżyła” po stronie ~c (~c=1) o czym mówią zdania A2 i B2’.
2.
Wnioek:
W dowolnym programie komputerowym sterowanie rozgałęzieniem c i ~c przy pomocy operatora implikacji prostej c||=>q nie ma sensu, bowiem po stronie ~c dajemy programowi „wolną wolę” w postaci „rzucania monetą”.
Innymi słowy:
W przypadku braku przeniesienia „c” (~c=1) obsługa dodawania dowolnie długich liczb binarnych An+Bn będzie działała czasami dobrze, gdy program wylosuje „orzełka” (~q), a czasami źle, gdy program wylosuje „reszkę” (q).
Innymi słowy:
Sterowanie rozgałęzieniem w dowolnym programie przy pomocy operatora implikacji prostej p||=>q jest matematycznie błędne (jest idiotyzmem).
cnd
12.1.3 Operator implikacji odwrotnej p||~>q w świecie techniki
A1B1:
Definicja implikacji odwrotnej p|~>q w logice dodatniej (bo q):
Implikacja odwrotna p|~>q w logice dodatniej (bo q) to spełnienie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
Stąd mamy definicję implikacji odwrotnej p|~>q w równaniu logicznym:
A1B1: p|~>q = ~(A1: p=>q)*(B1: p~>q) =~(0)*1=1*1 =1
Czytamy:
Implikacja odwrotna p|~>q jest prawdziwa (=1) wtedy i tylko wtedy gdy zajście p jest (=1) konieczne ~> dla zajścia q (B1) ale nie jest (=0) wystarczające => dla zajścia q (A1)
stąd mamy:
Tabela prawdy implikacji odwrotnej p|~>q:
Kod: |
IO
Definicja implikacji odwrotnej p|~>q w logice dodatniej (bo q):
Implikacja odwrotna p|~>q w logice dodatniej (bo q)
to spełnienie wyłącznie warunku koniecznego ~>
między tymi samymi punktami i w tym samym kierunku
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
Stąd mamy definicję implikacji odwrotnej p|~>q w równaniu logicznym:
A1B1: p|~>q = ~(A1: p=>q)*(B1: p~>q) =~(0)*1=1*1 =1
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q=0 = 2:~p~>~q=0 [=] 3: q~>p=0 = 4:~q=>~p=0
A’: 1: p~~>~q=1 4:~q~~>p=1
## ## ## ##
B: 1: p~>q=1 = 2:~p=>~q=1 [=] 3: q=>p=1 = 4:~q~>~p=1
B’: 2:~p~~>q=0 3: q~~>~p=0
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Prawa Sowy dla implikacji odwrotnej p|~>q:
Fałszywość dowolnego zdania serii Ax wymusza fałszywość wszystkich zdań serii Ax
Prawdziwość dowolnego zdania serii Bx wymusza prawdziwość wszystkich zdań serii Bx
Na mocy prawa Sowy prawdziwa implikacja odwrotna p|~>q determinuje prawdziwość operatora implikacji odwrotnej p||~>q (albo odwrotnie)
W powyższej tabeli prawdy uwzględniono definicję kontrprzykładu, działającą wyłącznie w warunku wystarczającym =>.
Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>~q=p*~q
Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1
(i odwrotnie)
Jak działa operator implikacji odwrotnej p||~>q w programowaniu komputerów?
Rozważmy fragment programu komputerowego wykonującego dodawanie dwóch 8-bitowych liczb binarnych A i B działającego w oparciu o definicję operatora implikacji odwrotnej p||~>q
Potrzebne definicje:
A, B - ośmiobitowe liczby binarne (zakładamy mikroprocesor 8 bitowy np. Z80)
A:=A+B - do rejestru A wpisz „:=”sumę algebraiczną rejestrów A+B.
c - jednobitowy wskaźnik przeniesienia w dodawaniu dwóch liczb A i B o znaczeniu:
c - przeniesienie wystąpiło (c=1), jednobitowa zmienna binarna
~c - przeniesienie nie wystąpiło (~c=1), jednobitowa zmienna binarna
q - procedura obsługująca przeniesienie „c”, gdy wystąpiło przeniesienie w operacji dodawania A+B
~q - procedura obsługująca brak przeniesienia „~c” w operacji dodawania A+B
Nanieśmy nasz przykład do tabeli prawdy implikacji prostej p|=>q:
Kod: |
TR
Tabela prawdy implikacji odwrotnej c|~>q
A1B1: A2B2: | A3B3: A4B4:
Zapis formalny:
A: 1: p=>q=0 = 2:~p~>~q=0 [=] 3: q~>p=0 = 4:~q=>~p=0
A’: 1: p~~>~q=1 4:~q~~>p=1
## ## ## ##
B: 1: p~>q=1 = 2:~p=>~q=1 [=] 3: q=>p=1 = 4:~q~>~p=1
B’: 2:~p~~>q=0 3: q~~>~p=0
Nasz przykład:
A: 1: c=>q=0 = 2:~c~>~q=0 [=] 3: q~>c=0 = 4:~q=>~c=0
A’: 1: c~~>~q=1 4:~q~~>c=1
## ## ## ##
B: 1: c~>q=1 = 2:~c=>~q=1 [=] 3: q=>c=1 = 4:~q~>~c=1
B’: 2:~c~~>q=0 3: q~~>~c=0
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Prawa Sowy dla implikacji odwrotnej p|~>q:
Fałszywość dowolnego zdania serii Ax wymusza fałszywość wszystkich zdań serii Ax
Prawdziwość dowolnego zdania serii Bx wymusza prawdziwość wszystkich zdań serii Bx
Na mocy prawa Sowy prawdziwa implikacja odwrotna p|~>q determinuje prawdziwość operatora implikacji odwrotnej p||~>q (albo odwrotnie)
Narysujmy schemat blokowy interesującego nas fragmentu programu:
Kod: |
---------
| START |
---------
|
~c ------------ c
-----------| A:=A+B |-------
| ------------ |
| |
| |
| reszka ---------------- orzełek
|<--------------------|reszka/orzełek|-------
| ---------------- |
| |
---------------- ----------------
| Procedura ~q | | Procedura q |
---------------- ----------------
| |
------- -------
| END | | END |
------- -------
|
Definicja operatora implikacji odwrotnej p||~>q:
Operator implikacji odwrotnej p||~>q to układ równań A1B1 i A2B2 dający odpowiedź na pytanie o p i ~p:
A1B1: p|~>q = ~(A1: p=>q)*(B1: p~>q) - co się stanie jeśli zajdzie p?
A2B2: ~p|=>~q = ~(A2: ~p~>~q)*(B2: ~p=>~q) - co się stanie jeśli zajdzie ~p?
Nasz przykład:
A1B1:
Co się stanie jeśli zajdzie przeniesienie „c”?
Odpowiedź mamy w kolumnie A1B1:
A1: c=>q =0 - wystąpienie przeniesienia „c” nie jest (=0) wystarczające => dla wykonania procedury q
B1: c~>q =1 - wystąpienie przeniesienia „c” jest (=1) konieczne ~> dla wykonania procedury q
Stąd:
c|~>q = ~(A1: c=>q)*(B1: c~>q) = ~(0)*1=1*1 =1
A1B1:
Odpowiedź w postaci zdań warunkowych „Jeśli p to q” mamy w kolumnie A1B1:
B1.
Jeśli wystąpi przeniesienie „c” to może ~> zostać wykonana procedura q
c~>q =1
Wystąpienie przeniesienia „c” (c=1) jest (=1) konieczne ~> dla wykonania procedury q
LUB
Fałszywość warunku wystarczającego A1: c=>q=0 wymusza prawdziwość kontrprzykładu A1’ (i odwrotnie)
A1’.
Jeśli wystąpi przeniesienie „c” to może ~~> zostać wykonana procedura ~q
c~~>~q=c*~q =1
Możliwe jest (=1) zdarzenie: wystąpi przeniesienie „c” i zostanie wykonana procedura ~q
Wniosek:
Z kolumny A1B1 wynika, że jeśli zajdzie przeniesienia „c” to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” bo wówczas może ~> być wykonana procedura „q” na mocy zdania B1 albo może zostać wykonana procedura „~q” na mocy zdania A1’
Innymi słowy:
Jeśli zajdzie „c” to w programie zostanie wywołany generator cyfr losowych dający binarną odpowiedź:
orzełek - wykonaj procedurę q
reszka - wykonaj procedurę ~q
co pokazano na schemacie blokowym
… co się stanie jeśli nie wystąpi przeniesienie „c” (~c=1)
Odpowiedź mamy w kolumnie A2B2
A2B2:
Co się stanie jeśli zajdzie nie wystąpi przeniesienie c (~c=1)?
Prawo Prosiaczka:
(~c=1)=(c=0)
Odpowiedź mamy w kolumnie A2B2:
A2: ~c~>~q =0 - brak przeniesienia c (~c=1) nie jest (=0) konieczny ~> dla wykonania procedury ~q
B2: ~c=>~q =1 - brak przeniesienia c (~c=1) jest (=1) wystarczający => dla wykonania procedury ~q
Stąd:
~c|=>~q =~(A2:~c~>~q)*(B2: ~c=>~q) = ~(0)*1=1
A2B2:
Co się stanie jeśli nie wystąpi przeniesienie c (~c=1)?
Prawo Kubusia:
B1: c~>q = B2: ~c=>~q
Odpowiedź w zdaniach warunkowych „Jeśli p to q” mamy w kolumnie A2B2:
B2.
Jeśli nie wystąpi przeniesienie c (~c=1) to na 100% => wykonana zostanie procedura ~q
~c=>~q =1
Brak przeniesienia c (~c=1) jest (=1) wystarczający => dla wykonania procedury ~q
Zajście ~c daje nam gwarancję matematyczną => wykonania procedury ~q
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>
Prawdziwość warunku wystarczającego B2 wymusza fałszywość kontrprzykładu B2’ (i odwrotnie)
B2’.
Jeśli nie wystąpi przeniesienie c (~c=1) to może ~~> zostać wykonana procedura q
~c~~>q = ~c*q =0
Niemożliwe jest (=0) zdarzenie ~~>: nie wystąpi przeniesienia c (~c) i wykonana zostanie procedura q
Wniosek:
W przypadku braku przeniesienia „c” (~c=1) mamy gwarancję matematyczną => wykonania procedury ~q, o czym mówi zdanie B2.
Podsumowując:
1.
Operator implikacji odwrotnej c||~>q to po stronie „c” najzwyklejsze „rzucanie monetą” w rozumieniu „na dwoje babka wróżyła” o czym mówią zdania B1 i A1’, natomiast po stronie „~c” mamy gwarancję matematyczną => w postaci zdania B2.
2.
W dowolnym programie komputerowym sterowanie rozgałęzieniem c i ~c przy pomocy operatora implikacji odwrotnej c||~>q nie ma sensu, bowiem po stronie c dajemy programowi „wolną wolę” w postaci „rzucania monetą”.
Innymi słowy:
W przypadku wystąpienia przeniesienia „c” (c=1) obsługa dodawania dowolnie długich liczb binarnych An+Bn będzie działała czasami dobrze, gdy program wylosuje „orzełka” (wykonania q), a czasami źle, gdy program wylosuje „reszkę” (wykonanie ~q).
Innymi słowy:
Sterowanie rozgałęzieniem w dowolnym programie przy pomocy operatora implikacji odwrotnej p||~>q jest matematycznie błędne (jest idiotyzmem).
cnd
Ostatnio zmieniony przez rafal3006 dnia Nie 14:49, 12 Cze 2022, w całości zmieniany 6 razy
|
|
Powrót do góry |
|
|
|
|
Nie możesz pisać nowych tematów Nie możesz odpowiadać w tematach Nie możesz zmieniać swoich postów Nie możesz usuwać swoich postów Nie możesz głosować w ankietach
|
fora.pl - załóż własne forum dyskusyjne za darmo
Powered by phpBB © 2001, 2005 phpBB Group
|