Forum ŚFiNiA Strona Główna ŚFiNiA
ŚFiNiA - Światopoglądowe, Filozoficzne, Naukowe i Artystyczne forum - bez cenzury, regulamin promuje racjonalną i rzeczową dyskusję i ułatwia ucinanie demagogii. Forum założone przez Wuja Zbója.
 
 FAQFAQ   SzukajSzukaj   UżytkownicyUżytkownicy   GrupyGrupy   GalerieGalerie   RejestracjaRejestracja 
 ProfilProfil   Zaloguj się, by sprawdzić wiadomościZaloguj się, by sprawdzić wiadomości   ZalogujZaloguj 

Algebra Kubusia Beta 3.0

 
Napisz nowy temat   Odpowiedz do tematu    Forum ŚFiNiA Strona Główna -> Metodologia / Forum Kubusia
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 35963
Przeczytał: 15 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Nie 0:35, 05 Lut 2012    Temat postu: Algebra Kubusia Beta 3.0

2012-01-17 Przed premierą!

Dogmat Kubusia:
Nigdy nie zaakceptuję logiki matematycznej sprzecznej z naturalną logiką człowieka, logiką 5-cio latka!
Powyższy dogmat to światełko w tunelu do którego przez 6 lat dążył Kubuś wraz z przyjaciółmi, czyli ze wszystkimi którzy zabierali głos na śfinii i ateiście.pl.



Algebra Kubusia
Matematyka języka mówionego

Autor: Kubuś - wirtualny Internetowy Miś
Naszym dzieciom dedykuję

Kim jest Kubuś ?
Kubuś - wirtualny Internetowy Miś, wysłannik obcej cywilizacji, którego zadaniem było przekazanie ludziom matematycznego fundamentu logiki człowieka.

Podręcznik w oryginale:
Algebra Kubusia - matematyka języka mówionego

W pracach nad podręcznikiem nowej matematyki bezcennej pomocy udzielili Kubusiowi przyjaciele:
Barah (sfinia), Barycki (śfinia), Emde (sfinia), Exodim (ateista.pl) Fizyk (ateista.pl), FlauFly(ateista.pl) Gavrila_Ardalionovitch (ateista.pl), HeHe (ateista.pl), Idiota (ateista.pl), Incognito (ateista.pl), Irbisol (sfinia), Jeremiasz Szary (sfinia), Koklusz (ateista.pl), Krowa (śfinia), Krystkon (śfinia), Makaron czterojajeczny (sfinia), Macjan (sfinia), Marcin Kotasiński (śfinia), Metafizyk (ateista.pl), Michał Dyszyński (śfinia), Miki (sfinia), NoBody (ateista.pl), Paloma (ateista.pl), Quebaab (ateista.pl), Rafał3006 (sfinia), Rexerex (ateista.pl), Rogal (matematyka.pl), Sogors (ateista.pl), Słupek (ateista.pl), tomektomek (ateista.pl), Uczy (wolny), Volrath (sfinia), Windziarz (ateista.pl), WujZbój (sfinia), Wyobraźnia (ateista.pl), zbigniewmiller (sfinia) i inni

Szczególne podziękowania dla:
Wuja Zbója - znakomitego nauczyciela małego Kubusia, dzięki któremu Kubuś nauczył się poprawnie patrzeć na algebrę Boole’a od strony matematycznej.
Volratha - za decydującą o wszystkim dyskusję
Macajna - za ciekawą dyskusję podczas której jako jedyny Ziemianin podał poprawną, matematyczną definicję warunku wystarczającego.
Fizyka, Windziarza i Sogorsa - za długą i ciekawą dyskusję na ateiście.pl
Incognito - za podsunięcie pomysłu zapisania całej algebry Kubusia w zbiorach
Quebaabowi - za fantastyczną, finałową dyskusję


Wstęp:

Każdy człowiek, od 5-cio latka po profesora, doskonale zna algebrę Kubusia i posługuje się nią na co dzień w naturalnym języku mówionym.

Definicja algebry Kubusia:
Algebra Kubusia = Algebra zbiorów => Definicje spójników logicznych => Definicje operatorów logicznych => Algebra bramek logicznych
Definicje spójników logicznych => Algebra naturalnego języka mówionego => Logika człowieka

Fundamentem algebry Kubusia są aksjomaty Kubusia, czyli po prostu pełna zero-jedynkowa lista operatorów logicznych zapisana w formie równań algebry Kubusia (Boole’a!).
Równania te wyprowadzone zostały z aksjomatycznych, zero-jedynkowych definicji operatorów logicznych, oraz niezależnie z nowej teorii zbiorów. Nowa teoria zbiorów jest w 100% zgodna z aksjomatycznymi, zero-jedynkowymi definicjami operatorów logicznych, pod warunkiem, że zbiory p i q mają część wspólną i mamy do czynienia ze światem totalnie niezdeterminowanym.
Część II to algebra Kubusia w służbie lingwistyki, czyli operatory logiczne plus rozszerzona algebra zbiorów kapitalnie tłumacząca dlaczego mówimy tak a nie inaczej.

Algebra Kubusia jest zgodna z teorią i praktyką bramek logicznych, jest więc weryfikowalna doświadczalnie.
[link widoczny dla zalogowanych] napisał:

4.002 Człowiek posiada zdolność budowania języków, które pozwalają wyrazić każdy sens - nie mając przy tym pojęcia, co i jak każde słowo oznacza. - Podobnie też mówimy, nie wiedząc, jak wytwarzane są poszczególne głoski.
Język potoczny stanowi część organizmu ludzkiego i jest nie mniej niż on skomplikowany.
Wydobycie logiki języka wprost z języka potocznego jest niepodobieństwem.
Język przesłania myśl. Tak mianowicie, że z zewnętrznej formy szaty nie można wnosić o formie przybranej w nią myśli. Kształtowaniu szaty przyświecają bowiem zgoła inne cele, niż ujawnianie formy ciała.
Ciche umowy co do rozumienia języka potocznego są niebywale skomplikowane.

Język potoczny musi mieć kręgosłup matematyczny inaczej człowiek z człowiekiem nigdy by się nie dogadał. Ten kręgosłup to Algebra Kubusia.
Algebra Kubusia to matematyka każdego 5-cio latka, więc gdzie tu jest to „niebywałe skomplikowanie”?


Spis treści:

Część I
Algebra Kubusia - matematyka języka mówionego


1.0 Notacja
1.1 Sprowadzanie zmiennych do jedynek
1.2 Podstawowe operacje na zbiorach

2.0 Algebra Kubusia w pigułce
2.1 Aksjomatyka algebry Kubusia
2.2 Aksjomaty Kubusia w praktyce języka mówionego
2.3 Operatory OR i AND
2.4 Operatory implikacji i równoważności

3.0 Operatory OR i AND
3.1 Spójniki “i”(*) i “lub”(+)
3.2 Spójniki „i”(*) i „lub”(+) w zbiorach
3.3 Definicja operatora OR
3.4 Operator OR w zbiorach
3.5 Definicja operatora AND
3.6 Operator AND w zbiorach

4.0 Operatory implikacji i równoważności
4.1 Operatory implikacji
4.2 Definicje implikacji w bramkach logicznych
4.3 Definicja implikacji prostej
4.4 Operator implikacji prostej w zbiorach
4.5 Definicja implikacji odwrotnej
4.6 Operator implikacji odwrotnej w zbiorach
4.7 Operator równoważności
4.8 Równoważność w zbiorach

5.0 Równoważność czy implikacja
5.1 ŚFIŃSKIE definicje implikacji i równoważności
5.2 Gimnazjalne definicje implikacji i równoważności
5.3 Licealne definicja implikacji i równoważności
5.4 Kwadrat logiczny równoważności
5.5 Kwadrat logiczny implikacji
5.6 Algorytmy dowodzenia twierdzeń matematycznych
5.7 Matematyczne związki w implikacji
5.8 Implikacje nietypowe
5.9 Operator implikacji prostej zdefiniowany spójnikiem “i”(*)

6.0 Algebra Kubusia w równaniach logicznych
6.1 Prawa wynikające z definicji operatora AND
6.2 Prawa wynikające z definicji operatora OR
6.3 Najważniejsze prawa algebry Kubusia
6.4 Metody upraszczania równań algebry Kubusia
6.5 Tworzenie równań algebry Kubusia z tabel zero-jedynkowych

7.0 Aksjomatyczne definicje operatorów logicznych
7.1 Abstrakcyjny model operatora logicznego
7.2 Operatory logiczne ~~> i N(~~>)
7.3 Operatory transmisji P i Q
7.4 operatory negacji NP i NQ


Część II
Algebra Kubusia w służbie lingwistyki


9.0 Algebra Kubusia w służbie lingwistyki
9.1 Nieznane prawa logiki
9.2 Świat niezdeterminowany
9.3 Świat zdeterminowany
9.4 Prawa eliminacji fałszu ze spójnika „lub”(+)
9.5 Prawa eliminacji fałszu ze spójnika „i”(*)
9.6 Operatory OR i AND w świecie zdeterminowanym

10.0 Operatory implikacji w świecie zdeterminowanym
10.1 Podstawowe analizy implikacji prostej i odwrotnej
10.2 Złożona implikacja prosta w świecie zdeterminowanym
10.3 Złożona implikacja odwrotna w świecie zdeterminowanym

11.0 Obietnice i groźby
11.1 Obietnica
11.2 Groźba
11.3 Analiza złożonej obietnicy
11.4 Analiza złożonej groźby
11.5 Obietnice i groźby w ujęciu filozoficznym
11.6 Rodzaje obietnic

12.0 Obietnice i groźby w równaniach matematycznych
12.1 Obietnica w równaniach matematycznych
12.2 Groźba w równaniach matematycznych


1.0 Notacja

W algebrze Kubusia zera i jedynki oznaczają.
1 - prawda, zawsze i wszędzie, niezależna od logiki dodatniej i ujemnej
0 - fałsz, zawsze i wszędzie, niezależnie od logiki dodatniej i ujemnej

W nowej teorii zbiorów zera i jedynki oznaczają:
1 - zbiór niepusty, zdanie prawdziwe
0 - zbiór pusty, zdanie fałszywe

~ - symbol przeczenia NIE

Prawo podwójnego przeczenia:
p=~(~p)
Przykład:
Jestem uczciwy = Nieprawdą jest ~(…), że jestem nieuczciwy
U = ~(~U)

# - różne
Prawda # Fałsz
1 # 0
Aksjomaty znane ludziom od tysiącleci:
Prawda to NIE fałsz
1 = ~0
Ziemia jest płaska
ZP=0 - fałsz
Ziemia nie jest płaska
~ZP=~0=1 - prawda

Fałsz to NIE prawda
0 = ~1
Ziemia jest kulą
ZK=1 - prawda
Ziemia nie jest kulą
~ZK=~1=0 - fałsz

## - różne na mocy definicji
Y=p+q ## Y=p*q
p=>q ## p~>q

Spójniki logiczne
W całej matematyce mamy zaledwie pięć spójników logicznych.
Operatory OR i AND:
* - spójnik „i” w mowie potocznej
+ - spójnik „lub” w mowie potocznej
Operatory implikacji i równoważności:
=> - warunek wystarczający, spójnik „musi” w całym obszarze matematyki
~> - warunek konieczny, spójnik „może” w implikacji
~~> - naturalny spójnik „może” wystarczy pokazać jeden przypadek prawdziwy

Kolejność wykonywania działań:
nawiasy, „i”(*), „lub”(+), =>, ~>, ~~>
W spójnikach =>, ~>, ~~> kolejność nie ma znaczenia bo są to operatory wyłącznie dwuargumentowe, czyli po lewej i prawej stronie tego znaku może być wyłącznie funkcja logiczna ze spójnikami „i”(*) oraz „lub”(+)

Zdanie w algebrze Kubusia
W algebrze Kubusia zdanie to poprawne lingwistycznie zdanie sensowne.
Zdanie musi mieć sens w danym języku.

Zdanie warunkowe:
Jeśli p to q
gdzie:
p - poprzednik
q - następnik
W algebrze Kubusia w zdaniu „Jeśli p to q” poprzednik musi być powiązany z następnikiem warunkiem wystarczającym lub koniecznym albo naturalnym spójnikiem „może” ~~>, wystarczy jedna prawda. Wszelkie sensowne zdania „Jeśli…to…” w naturalnym języku mówionym spełniają ten warunek.


1.1 Sprowadzanie zmiennych do jedynek

Twierdzenie:
Warunkiem koniecznym dla zrozumienia naturalnej logiki człowieka jest akceptacja banalnej logiki dodatniej i ujemnej oraz przejście na równania algebry Boole’a, czyli odcięcie się od bezwzględnych zer i jedynek.

Prawo algebry Boole’a:
Jeśli p=0 to ~p=1
Naturalna logika człowieka wymaga sprowadzenia wszystkich zmiennych do jedynek na mocy powyższego prawa.

O co chodzi?

Rozważmy zdanie:
A.
Jutro pójdę do kina
Y=K - logika dodatnia bo Y (niezanegowane)
co matematycznie oznacza:
Dotrzymam słowa (Y=1) wtedy i tylko wtedy gdy jutro pójdę do kina (K=1)
Y=1 <=> K=1)
... a kiedy skłamię?
Oczywistość każdego 5-cio latka:
Skłamię, wtedy i tylko wtedy gdy jutro nie pójdę do kina
To zdanie możemy zapisać poprawnie matematycznie na dwa sposoby:
B.
Skłamię (Y=0) wtedy i tylko wtedy gdy jutro nie pójdę do kina (K=0)
Y=0 <=> K=0
W tym przypadku całą logikę mamy zakodowaną w zerach jedynkach!
Tymczasem wszystkie prawa logiczne działają w zapisach symbolicznych po uwolnieniu się od idiotycznych zer i jedynek.
Jak pozbyć się tych zer i jedynek?

Matematyczne podejście do problemu jest takie:
... a kiedy skłamię?
Przechodzimy do logiki ujemnej negując dwustronnie tożsamość A:
~Y=~K - logika ujemna bo ~Y (zanegowane)
Co matematycznie oznacza:
C.
Skłamię (~Y=1) wtedy i tylko wtedy gdy jutro nie pójdę do kina (~K=1)
~Y=~K
~Y=1 <=> ~K=1
Czytamy:
~Y=1 - prawdą jest (=1), że skłamałem (~Y)
~K=1 - prawdą jest (=1), że nie byłem w kinie (~K)

Porównanie kodowania w logice dodatniej i ujemnej

Zdanie B.
Skłamię (Y=0) wtedy i tylko wtedy gdy jutro nie pójdę do kina (K=0)
Y=0 <=> K=0
Logika dodatnia bo K (bez przeczenia):
K=0 - nie byłem w kinie, zapisane w logice dodatniej
Zdanie B musimy czytać:
Fałszem jest (=0), że byłem w kinie (K)
co ma się nijak do zdania B, bowiem w zdaniu B jest przeczenie przy „kinie” a tu go totalnie nie widać.

Zdanie C.
Skłamię (~Y=1) wtedy i tylko wtedy gdy jutro nie pójdę do kina (~K=1)
~Y=~K
~Y=1 <=> ~K=1
Logika ujemna bo ~K (jest przeczenie)
Zdanie C czytamy:
C1: ~K=1 - prawdą jest (=1), że nie byłem w kinie (~K)
C2: ~K=1 - nie byłem w kinie
C3: ~K - nie byłem w kinie

Jak widzimy, mamy tu aż trzy równoważne sposoby zapisu i odczytu, wszystkie w 100% zgodne z naturalną logiką człowieka, wiernie odzwierciedlające to, co mówimy w zdaniu C.
W zdaniu C3 pozbyliśmy się idiotycznych zer i jedynek totalnie, a mimo wszystko ten zapis jest zrozumiały dla wszystkich.
C3: ~K - nie byłem w kinie
A3: K - byłem w kinie

Widać jak na dłoni, iż w poprawnej logice matematycznej rolę zer i jedynek przejmują zmienne.
Jutro pójdę do kina
K - logika dodatnia bo K
Jutro nie pójdę do kina
~K - logika ujemna bo ~K
Jak widzimy w logice symbolicznej zera i jedynki w ogóle się nie pojawiają, ich role przejmują zmienne zaprzeczone i niezaprzeczone.

Weźmy teraz takie zdanie:
Pies miauczy
P=>M
P=1 => M=0
Mamy tu 100% determinizm, to zdanie jest zawsze fałszywe, zatem w tym przypadku musimy zapisać zero w wyniku (M=0). Zwierzę „nie pies” (~P) nas totalnie nie interesuje bo nic o tym to zdanie nie mówi. Poza tym w poprawnej logice fałszów się nie analizuje, bowiem nie istnieje prawo matematyczne któryby z fałszu mogło zrobić prawdę.


1.2 Podstawowe operacje na zbiorach

Podane niżej podstawowe operacje logiczne na zbiorach są wystarczające do obsługi pełnej listy dwuargumentowych operatorów logicznych, gdzie obowiązuje rachunek zero-jedynkowy.
Działania te są również wystarczające do obsługi rozszerzonej teorii zbiorów, gdzie nie obowiązuje rachunek zero-jedynkowy (cześć II podręcznika).

W teorii zbiorów zera i jedynki oznaczają:
1 - zbiór istnieje (niepusty), zdanie prawdziwe
0 - zbiór pusty, zdanie fałszywe

1.
Zbiory tożsame = identyczne


TR = zbiór trójkątów równobocznych
KR = zbiór trójkątów o równych kątach
Oczywiście zachodzi tożsamość:
Zbiór trójkątów równobocznych = Zbiór trójkątów o równych kątach
Zbiór TR = Zbiór KR

~TR = zbiór trójkątów nierównobocznych
~KR = zbiór trójkątów nie mających kątów równych
Oczywiście zachodzi tożsamość:
Zbiór trójkątów nierównobocznych = Zbiór trójkątów o nie równych kątach
Zbiór ~TR = Zbiór ~KR

2.
Iloczyn logiczny zbiorów = wspólna cześć zbiorów bez powtórzeń (operacja AND)

Y=A*B
A=[1,2], B=[1,2,3,4]
Y=A*B=[1,2]

3.
Suma logiczna zbiorów = wszystkie elementy zbiorów bez powtórzeń (operacja OR)

Y=A+B
A=[1,2], B=[1,2,3,4]
Y=A+B = [1,2,3,4]

4.
Różnica zbiorów A-B = elementy zbioru A pomniejszone o cześć wspólna zbiorów A i B

Y=A-B
A=[1,2,3,4], B=[1,2]
Y=A-B = [3,4]
Y=B-A = 0 - zbiór pusty !

5.
Zbiór pusty
= brak wspólnej części zbiorów w operacji AND, albo różnica zbiorów pusta jak wyżej
Y=A*B=0
A=[1,2], B=[3,4]
Y=A*B =0 - brak części wspólnej, zbiór pusty !

Przykład:
Dane są trzy zbiory:
A=[1,2,3,4]
B=[3,4,5,6]
C=[5,6,7,8]
Iloczyn logiczny:
A*B*C = 0 bo: A*C=0
Suma logiczna:
A+B+C = [1,2,3,4,5,6,7,8]
Różnica zbiorów:
A-B = [1,2]
A-C = [1,2,3,4]

Pojęcie zbioru jako zbioru przypadkowych elementów jest matematycznie bez sensu.

Jednorodność zbioru:
Zbiór musi być jednorodny w określonej dziedzinie

Oznacza to, że nie wolno do jednego zbioru wkładać psa, krzesła, samochodu, wąsów dziadka itp

Implikacja:
p=>q
Jeśli p to q
p - poprzednik
q - następnik

Równoważność
p<=>q
p wtedy i tylko wtedy gdy q

Definicja dziedziny:
Dziedzina to kompletny zbiór na którym operuje implikacja lub równoważność

W algebrze Kubusia musi być spełnione:
p+~p=1 - zbiór ~p jest dopełnieniem zbioru p do wspólnej dziedziny D
p*~p=0 - żaden element zbioru ~p nie należy do zbioru p
q+~q=1 - zbiór ~q jest dopełnieniem zbioru q do wspólnej dziedziny D
q*~q=0 - żaden element zbioru ~q nie należy do zbioru q

Przykład:
Jeśli zwierzę jest psem to na pewno => ma cztery łapy
P=>4L

Dziedzina po stronie p:
P + ~P=1
P*~P=0
P - zbiór wszystkich psów
~P - zbiór pozostałych zwierząt
Dziedzina: zbiór wszystkich zwierząt

Dziedzina po stronie q:
4L+~4L=1
4L*~4L=0
4L - zbiór zwierząt mających 4 łapy
~4L - zbiór zwierząt nie mających 4 łap
Dziedzina: zbiór wszystkich zwierząt

Doskonale widać, że wszystkie powyższe zbiory operują w tej samej dziedzinie.

Zbiór bieżący (aktualny):
Zbiór bieżący (aktualny) to zbiór na którym aktualnie pracujemy, zdefiniowany szczegółowo w poprzedniku zdania „Jeśli p to q”

Uwaga:
W zdaniach najczęściej wypowiadanych oba zbiory p i q należą do tej samej dziedziny jak to pokazano na przykładzie wyżej nie są rozłączne.

W ogólnym przypadku nie jest to wymagane, prawdziwe są takie implikacje:
A.
Jeśli zwierzę jest psem to na pewno => nie jest kotem
Pies to nie kot
P=>~K=1
Zbiór psów i zbiór kotów to zbiory rozłączne, należące do tej samej dziedziny: zbiór zwierząt
Zbiór psów P zawiera się w całości w zbiorze zwierząt nie będących kotami (~K).
B.
Jeśli zwierzę jest psem to na pewno => nie jest samochodem
Pies to nie samochód
P=>~S=1
Zbiór psów i zbiór samochodów to zbiory rozłączne, należące do różnych dziedzin.
Zbiór psów P zawiera się w całości w zbiorze ~S.

Oczywiście takich zdań ludzie normalni nie wymawiają, chyba że w czasie nauki języka 2-latka, albo w dowcipach. Tego typu zdaniami prawdziwymi, gdzie następnik q jest negacją zbioru rozłącznego w stosunku do p, zajmiemy się w dalszej części podręcznika.


2.0 Algebra Kubusia w pigułce

Algebra Kubusia w pigułce to wyłącznie definicje formalne, czyli to co najważniejsze bez zbędnych przykładów. Oczywiście przy pierwszym czytaniu ten punkt może nie być zrozumiały. Właściwy podręcznik rozpoczyna się od pkt. 3.0.

Notacja:
1 -prawda, niezależnie od logiki dodatniej czy ujemnej
0 - fałsz, niezależnie od logiki dodatniej czy ujemnej


2.1 Aksjomatyka algebry Kubusia

Wikipedia:
Aksjomat (postulat, pewnik) (gr. αξιωμα [aksíoma] – godność, pewność, oczywistość) – jedno z podstawowych pojęć logiki matematycznej. Od czasów Euklidesa uznawano, że aksjomaty to zdania przyjmowane za prawdziwe, których nie dowodzi się w obrębie danej teorii matematycznej.
We współczesnej matematyce definicja aksjomatu jest nieco inna:
Aksjomaty są zdaniami wyodrębnionymi spośród wszystkich twierdzeń danej teorii, wybranymi tak, aby wynikały z nich wszystkie pozostałe twierdzenia tej teorii. Taki układ aksjomatów nazywany jest aksjomatyką.

Aksjomatyka algebry Kubusia to po prostu wszystkie możliwe zero-jedynkowe definicje operatorów logicznych, znane ludziom od ponad 100 lat.
Aksjomatyczne definicje operatorów logicznych w algebrze Boole’a i algebrze Kubusia:
Kod:

p q  OR NOR  AND NAND  <=> XOR  => N(=>) ~> N(~>)  ~~>  N(~~>)  P NP  Q NQ
1 1  1   0    1   0     1   0   1    0   1    0     1    0      1 0   1 0
1 0  1   0    0   1     0   1   0    1   1    0     1    0      1 0   0 1
0 1  1   0    0   1     0   1   1    0   0    1     1    0      0 1   1 0
0 0  0   1    0   1     1   0   1    0   1    0     1    0      0 1   0 1


Uwagi
1.
Definicje zero-jedynkowe wszystkich operatorów logicznych zapisane dla świata totalnie niezdeterminowanego gdzie nie jest znana wartość logiczna ani p, ani q.
2.
Twierdzenie Sowy:
W świecie totalnie zdeterminowanym, gdzie wartości logiczne p i q są znane z góry, dowolny operator logiczny ulega redukcji do operatora AND.
3.
W nowej teorii zbiorów zbiory p i q muszą mieć wspólną część, inaczej nie ma gwarancji spełnienia w 100% tabel zero-jedynkowych powyższych operatorów.

Na dzień dzisiejszy operatory logiczne są poprawnie rozszyfrowane z punktu odniesienia banalnych bramek logicznych będących sprzętowym fundamentem każdego komputera.

W teorii bramek logicznych zachodzi tożsamość:
Algebra Kubusia = Algebra Boole’a

Trzeba tu jednak zdecydowanie odróżnić sprzęt od oprogramowania. Sprzęt komputerowy to fundamentalnie co innego niż program komputerowy napisany przez człowieka. Pisząc program komputerowy posługujemy się naturalną logiką człowieka, jak do tej pory totalnie nierozszyfrowaną od strony matematycznej.

Zadaniem tego podręcznika jest pokazanie jak nieprawdopodobnie banalna jest od strony matematycznej naturalna logika człowieka, algebra Kubusia, którą doskonale znają i posługują się w praktyce wszyscy od 5-cio latka po profesora.

Spójniki logiczne w algebrze Kubusia

W całej matematyce mamy zaledwie sześć spójników logicznych.
Operatory OR i AND:
* - spójnik „i” w mowie potocznej
+ - spójnik „lub” w mowie potocznej
Operatory implikacji i równoważności:
=> - warunek wystarczający, spójnik „musi” w całym obszarze matematyki
~> - warunek konieczny, spójnik „może” w implikacji
~~> - naturalny spójnik „może” wystarczy pokazać jeden przypadek prawdziwy
<=> - wtedy i tylko wtedy, to jedyny znaczek będący równocześnie spójnikiem i operatorem logicznym.

Aksjomatyka algebry Kubusia!

I aksjomat Kubusia.
Operator OR w równaniach algebry Boole’a:

Y=p+q
~Y=~p*~q
gdzie:
Y=p+q
Y - dotrzymam słowa (Y), logika dodatnia bo Y
... a kiedy skłamię?
Przejście do logiki ujemnej poprzez negację zmiennych i wymianę spójników:
~Y=~p*~q
~Y - skłamię (~Y), logika ujemna bo ~Y

Związek logiki dodatniej i ujemnej:
Y = ~(~Y) - prawo podwójnego przeczenia
stąd:
Y = p+q = ~(~p*~q) - prawo de’Morgana
Uwaga!
Prawo de’Morgana nie daje odpowiedzi na pytanie:
Kiedy skłamię (~Y)?
Dlatego w języku potocznym jest praktycznie nie używane.

II aksjomat Kubusia.
Operator AND w równaniach algebry Boole’a:

Y=p*q
~Y=~p+q
gdzie:
Y=p*q
Y - dotrzymam słowa (Y), logika dodatnia bo Y
... a kiedy skłamię?
Przejście do logiki ujemnej poprzez negację zmiennych i wymianę spójników:
~Y=~p+~q
~Y - skłamię (~Y), logika ujemna bo ~Y

Związek logiki dodatniej i ujemnej:
Y = ~(~Y) - prawo podwójnego przeczenia
stąd:
Y = p*q = ~(~p+~q) - prawo de’Morgana
Uwaga!
Prawo de’Morgana nie daje odpowiedzi na pytanie:
Kiedy skłamię (~Y)?
Dlatego w języku potocznym jest praktycznie nie używane.

III aksjomat Kubusia.
Operator implikacji prostej w równaniu algebry Boole’a:

p=>q = ~p~>~q - prawo Kubusia
gdzie:
p=>q
Jeśli zajdzie p to na pewno => zajdzie q
p musi być wystarczające => dla q
Logika dodatnia bo q
... a jeśli zajdzie ~p?
Przejście do logiki ujemnej poprzez negacje zmiennych i wymianę spójników:
~p~>~q
Jeśli zajdzie ~p to może ~> zajść ~q
~p musi być konieczne ~> dla ~q
Logika ujemna bo ~q

Prawo Kubusia:
p=>q = ~p~>~q
gdzie:
=> - warunek wystarczający, spójnik „na pewno” => w całym obszarze logiki
~> - warunek konieczny, spójnik „może” ~> w implikacji
Spełnienie warunku wystarczającego => z jednej strony tożsamości Kubusia wymusza spełnienie warunku koniecznego ~> z drugiej strony równania Kubusia i odwrotnie.

Definicja warunku wystarczającego => w logice dodatniej (bo ~q):
Kod:

p=>q=1
p=>~q=0

p=>q
Jeśli zajdzie p to na pewno => zajdzie q
Z czego wynika że p musi być wystarczające dla q
Z czego wynika że zdanie p=>~q musi być fałszem.
Warunek wystarczający => = gwarancja matematyczna

Równoważna definicja implikacji prostej
Implikacja prosta to wyłącznie jedna gwarancja matematyczna:
p=>q = ~p~>~q = ~(p*~q)

IV aksjomat Kubusia.
Operator implikacji odwrotnej w równaniu algebry Boole’a:

p~>q = ~p=>~q - prawo Kubusia
gdzie:
p~>q
Jeśli zajdzie p to na może ~> zajść q
p musi być konieczne ~> dla q
Logika dodatnia bo q
... a jeśli zajdzie ~p?
Przejście do logiki ujemnej poprzez negacje zmiennych i wymianę spójników.
~p=>~q
Jeśli zajdzie ~p to na pewno => zajdzie ~q
~p musi być wystarczające => dla ~q

Prawo Kubusia:
p~>q = ~p=>~q
gdzie:
~> - warunek konieczny, spójnik „może” ~> w implikacji
=> - warunek wystarczający, spójnik „na pewno” => w całym obszarze logiki

Spełnienie warunku koniecznego ~> z jednej strony tożsamości Kubusia wymusza spełnienie warunku wystarczającego => z drugiej strony równania Kubusia i odwrotnie.

Definicja warunku wystarczającego => w logice ujemnej (bo ~q):
Kod:

~p=>~q=1
~p=>q=0

~p=>~q
Jeśli zajdzie ~p to na pewno => zajdzie ~q
Z czego wynika że ~p musi być wystarczające dla ~q
Z czego wynika że zdanie ~p=>q musi być fałszem.
Warunek wystarczający => = gwarancja matematyczna

Równoważna definicja implikacji odwrotnej
Implikacja odwrotna to wyłącznie jedna gwarancja matematyczna:
p~>q = ~p=>~q = ~(~p*q)

V aksjomat Kubusia.
Operator równoważności w równaniu algebry Boole’a:

p<=>q= (p=>q)*(~p=>~q)
Równoważność to jednoczesne spełnienie warunku wystarczającego => w logice dodatniej (bo q) i warunku wystarczającego w logice ujemnej (bo ~q).

Równoważna definicja równoważności:
p<=>q = (p=>q)*[p~>q] = (p=>q)*(~p=>~q)
Uwaga:
Wyłącznie w równoważności mamy do czynienia z iloczynem logicznym implikacji wirtualnych niedostępnych w świecie rzeczywistym, gdzie warunek konieczny ~> (spójnik „może”) jest wycinany przez definicję równoważności i nie jest dostępny w świecie rzeczywistym.

Wirtualna definicja implikacji prostej:
p=>q = [~p~>~q] - prawo Kubusia

Wirtualna definicja implikacji odwrotnej:
[p~>q] = ~p=>~q - prawo Kubusia
gdzie:
[ ... ] - część wirtualna, niedostępna w świecie rzeczywistym
=> - warunek wystarczający, spójnik „na pewno” w całym obszarze logiki
[~>] - wirtualny warunek konieczny o definicji:
[p~>q] = ~p=>~q - prawo Kubusia
[~p~>~q] = p=>q - prawo Kubusia
W równoważności, znany z implikacji spójnik „może” ~> jest blokowany przez definicję równoważności i nie jest dostępny w świecie rzeczywistym.
W równoważności mamy do czynienia ze 100% determinizmem (spójnik „na pewno” =>) zarówno po stronie p jak i po stronie ~p.
W świecie rzeczywistym mamy do czynienia wyłącznie z iloczynem logicznym warunku wystarczającego w logice dodatniej => (bo q) i warunku wystarczającego w logice ujemnej (bo ~q).

Równoważna definicja równoważności
Równoważność to dwie gwarancje matematyczne:
p=>q = ~(p*~q) - gwarancja A
~p=>~q = ~(~p*q) - gwarancja B

VI aksjomat Kubusia.
Operator zdania zawsze prawdziwego ~~>

p~~>q=1
Zdanie prawdziwe dla dowolnych przeczeń p i q
gdzie:
~~> - naturalny spójnik „może” ~~>, wystarczy pokazać jeden przypadek prawdziwy

Uwaga!
Bezpośrednio z aksjomatów III, IV i V wynika prawo ateisty.pl

Definicja warunku koniecznego w całym obszarze logiki:
p~>q = ~p=>~q - prawo Kubusia
~p~>~q = p=>q - prawo Kubusia
Warunek konieczny ~> między p i q zachodzi wtedy i tylko wtedy gdy z zanegowanego poprzednika wynika => zanegowany następnik.

Z powyższego wynika, że całą logikę w zakresie rozstrzygania o prawdziwości/fałszywości implikacji i równoważności możemy sprowadzić do badania banalnych warunków wystarczających!

Podsumowanie:
Jak widzimy, spójnik logiczny to zawsze tylko połówka odpowiedniego operatora (wyjątkiem jest tu <=>).
Oczywiście matematycznie zachodzi:
Spójnik logiczny ## operator logiczny
gdzie:
## - różne na mocy definicji


2.2 Aksjomaty Kubusia w praktyce języka mówionego

Dlaczego prawa de’Mograna i prawa Kubusia to najważniejsze prawa w całej logice matematycznej?
... bo to są najzwyklejsze definicje operatorów logicznych:
OR, AND, implikacji prostej, implikacji odwrotnej!
Zapisane w równaniach algebry Boole’a!

Dowód!

Prawa de’Morgana znane człowiekowi:
p+q = ~(~p*~q)
p*q = ~(~p+~q)
Praw de’Morgana zapisanych w tej postaci człowiek praktycznie NIGDY nie używa!

Każdy człowiek, od 5-cio latka po profesora używa praw de’Morgana milion razy na dobę, ale nie tych wyżej, lecz tych niżej!

Prawo de’Morgana dla spójnika „lub”(+):
Y - dotrzymam słowa, logika dodatnia bo Y
Y=p+q
Przejście do logiki ujemnej poprzez negację zmiennych i wymianę operatorów na przeciwne:
~Y - skłamię, logika ujemna bo ~Y
~Y=~p*~q
To co wyżej to pełna definicja operatora logicznego OR zapisana w równaniach algebry Boole’a!

Związek logiki dodatniej i ujemnej:
Y = ~(~Y) - prawo podwójnego przeczenia
Stąd prawo de’Morgana znane człowiekowi:
p+q = ~(~p*~q)

Przykład użycia:
Jutro pójdę do kina lub do teatru
Y=K+T
... a kiedy skłamię?
Przejście do logiki ujemnej poprzez negację zmiennych i wymianę operatorów na przeciwne:
~Y=~K*~T
Skłamię (~Y) wtedy i tylko wtedy gdy jutro nie pójdę do kina (~K) i nie pójdę do teatru (~T)

Prawo de’Morgana dla spójnika „i”(*):
Y - dotrzymam słowa, logika dodatnia bo Y
Y=p*q
Przejście do logiki ujemnej poprzez negację zmiennych i wymianę operatorów na przeciwne:
~Y - skłamię, logika ujemna bo ~Y
~Y=~p+~q
To co wyżej to pełna definicja operatora logicznego AND zapisana w równaniach algebry Boole’a!

Związek logiki dodatniej i ujemnej:
Y = ~(~Y) - prawo podwójnego przeczenia
Stąd prawo de’Morgana znane człowiekowi:
p*q = ~(~p+~q)

Przykład użycia:
Jutro pójdę do kina i do teatru
Y=K*T
... a kiedy skłamię?
Przejście do logiki ujemnej poprzez negację zmiennych i wymianę operatorów na przeciwne:
~Y=~K+~T
Skłamię (~Y) wtedy i tylko wtedy gdy jutro nie pójdę do kina (~K) lub nie pójdę do teatru (~T)

Prawa Kubusia!
p~>q = ~p=>~q - definicja operatora implikacji odwrotnej
p=>q = ~p~>~q - definicja operatora implikacji prostej

Definicja logiki dodatniej i ujemnej w implikacji:
Zdanie jest wypowiedziane w logice dodatniej wtedy i tylko wtedy gdy q jest niezanegowane (q).
Zdanie jest wypowiedziane w logice ujemnej wtedy i tylko wtedy gdy q jest zanegowane (~q)

Przykład użycia prawa Kubusia:
p~>q = ~p=>~q
A.
Jeśli jutro będzie pochmurno to może ~> padać
CH~>P=1 - istnieje taka możliwość, „rzucanie monetą”!
Chmury są warunkiem koniecznym ~> dla deszczu!
... a jak nie będzie pochmurno?
Prawo Kubusia:
CH~>P = ~CH=>~P
stąd:
C.
Jeśli jutro nie będzie pochmurno to na pewno => nie będzie padać
~CH=>~P=1 - oczywistość, gwarancja matematyczna!
Brak chmur jest warunkiem wystarczającym aby jutro nie padało!

Przykład użycia drugiego prawa Kubusia:
p=>q = ~p~>~q
A.
Jeśli jutro będzie padało to na pewno => będzie pochmurno
P=>CH=1 - oczywistość, gwarancja matematyczna!
Padanie deszczu jest warunkiem wystarczającym aby jutro było pochmurno!
... a jak nie będzie padało?
Prawo Kubusia:
P=>CH = ~P~>~CH
stąd:
Jeśli jutro nie będzie padło to może ~> nie być pochmurno
~P~>~CH=1 - istnieje taka możliwość, „rzucanie monetą”!
Brak opadów jest warunkiem koniecznym ~> aby jutro nie było pochmurno!

Jak widać z powyższego prawa Kubusia to matematyczne związki między warunkiem koniecznym ~> a warunkiem wystarczającym => !

Prawa Kubusia to najważniejsze prawa w logice matematycznej!
p~>q = ~p=>~q - definicja implikacji odwrotnej w równaniu algebry Boole’a
p=>q = ~p~>~q - definicja implikacji prostej w równaniu algebry Boole’a
Czyli:
Jeśli zachodzi warunek wystarczający => (100% pewność) z jednej strony prawa Kubusia to z drugiej strony musi zachodzić warunek konieczny~> („rzucanie monetą”), albo odwrotnie!
Nie ma przeproś!
To jest prawo matematyczne pod które wszyscy podlegamy, człowiek nie ma tu nic do gadania, choćby się nie wiem jak napinał to tych praw NIGDY nie złamie!

Wniosek:
Nie ma implikacji, ani prostej, ani odwrotnej, bez warunku koniecznego ~>, czyli najzwyklejszego „rzucania monetą”

Dlaczego prawa Kubusia są najważniejsze?
Bo sterują wszelkim życiem na ziemi, OR i AND to tylko dodatek do kożucha.

Dowód!

Definicja obietnicy:
Jeśli dowolny warunek to nagroda
W=>N = ~W~>~N
Implikacja prosta na mocy definicji!

Definicja groźby:
Jeśli dowolny warunek to kara
W~>K = ~W=>~K
Implikacja odwrotna na mocy definicji

Fundamentem życia na Ziemi jest odróżnianie kary od nagrody przez wszelkie istoty żywe!
Zwierzątka które tego nie odróżniały dawno wyginęły!


Definicja warunku koniecznego w całym obszarze logiki matematycznej!

Warunek konieczny ~> miedzy p i q zachodzi wtedy i tylko wtedy gdy z zanegowanego poprzednika wynika => zanegowany następnik.
p~>q = ~p=>~q - prawo Kubusia
~p~>~q = p=>q - prawo Kubusia

Prosty przykład rozstrzygnięcia o braku zachodzenia warunku koniecznego ~> między p i q.
B.
Jeśli jutro będzie pochmurno to może nie padać
CH ??? ~P=1 - istnieje taka możliwość.

Sprawdzamy prawem Kubusia czy między p i q zachodzi warunek konieczny:
CH~>~P = ~CH=>P=0 - prawo Kubusia
Prawa strona tożsamości Kubusia brzmi:
Jeśli jutro nie będzie pochmurno to na pewno => będzie padać
~CH=>P=0 - oczywisty fałsz!

Prawa strona równania Kubusia jest fałszem, zatem z lewej strony nie zachodzi warunek konieczny~>!
Nie możemy zatem zdania B zakodować symbolem warunku koniecznego ~>!

Zdanie B jest jednak ewidentnie prawdziwe, bowiem w spójniku „może” wystarczy pokazać jeden przypadek dla którego całe zdanie jest prawdziwe.

Cóż więc robić?

Oczywiście musimy sięgnąć po ten symbol:
~~> - naturalny spójnik „może”, wystarczy pokazać jeden przypadek prawdziwy.
B.
Jeśli jutro będzie pochmurno to może nie padać
CH ~~> ~P=1 - istnieje taka możliwość.


2.3 Operatory OR i AND

Symboliczna definicja operatora OR:
Kod:

W: Y=p+q=p*q+p*~q+~p*q
Y - dotrzymam słowa, logika dodania bo Y
A:  p* q = Y
B:  p*~q = Y
C: ~p* q = Y
.. a kiedy skłamię?
Przejście z W do logiki ujemnej poprzez
negację zmiennych i wymianę spójników na przeciwne
   ~Y=~p*~q
~Y - skłamię, logika ujemna bo ~Y
D: ~p*~q =~Y

gdzie:
W - zdanie wypowiedziane
U - zdanie przeciwne do wypowiedzianego
~ - przeczenie NIE z naturalnego języka mówionego
„*” - spójnik logiczny „i”(*) z naturalnego języka mówionego
„+” - spójnik logiczny „lub”(+) z naturalnego języka mówionego
Y - dotrzymam słowa, logika dodatnia bo Y
~Y - skłamię, logika ujemne bo ~Y

Definicja spójnika „lub”(+) w logice dodatniej (bo Y):
W.
Y=p+q
Dotrzymam słowa (Y=1) wtedy i tylko wtedy gdy zajdzie p (p=1) lub zajdzie q (q=1)
Y=1 <=> p=1 lub q=1
Równoważna definicja spójnika „lub”(+) w logice dodatniej (bo Y):
W.
Y=p*q + p*~q + ~p*q
co matematycznie oznacza:
Y=1 <=> (p=1 i q=1) lub (p=1 i ~q=1) lub (~p=1 i q=1)

... a kiedy skłamię?
Przejście ze zdaniem W do logiki ujemnej poprzez negację zmiennych i wymianę spójników
D.
~Y=~p*~q - logika ujemne bo ~Y
Skłamię (~Y=1) wtedy i tylko wtedy gdy zajdzie ~p (~p=1) i zajdzie ~q (~q=1)
~Y=1 <=> ~p=1 i ~q=1

Związek logiki dodatniej i ujemnej:
Y= ~(~Y) - prawo podwójnego przeczenia
Podstawiając W i D mamy prawo de’Morgana:
Y = p+q = ~(~p*~q)

Przykład:
Jutro pójdę do kina lub do teatru
Y=K+T

Symboliczna definicja operatora AND:
Kod:

W: Y=p*q
Y - dotrzymam słowa, logika dodania bo Y
A:  p* q = Y
.. a kiedy skłamię?
Przejście z W do logiki ujemnej poprzez
negację zmiennych i wymianę spójników na przeciwne
U: ~Y=~p+~q
~Y - skłamię, logika ujemna bo ~Y
Czyli:
Skłamię w pozostałych kombinacjach przeczeń p i q
w odniesieniu do zdania wypowiedzianego W
~Y=~p*~q+~p*q+p*~q
B: ~p*~q =~Y
C: ~p* q =~Y
D:  p*~q =~Y

gdzie:
W - zdanie wypowiedziane
U - zdanie przeciwne do wypowiedzianego
~ - przeczenie NIE z naturalnego języka mówionego
„*” - spójnik logiczny „i”(*) z naturalnego języka mówionego
„+” - spójnik logiczny „lub”(+) z naturalnego języka mówionego
Y - dotrzymam słowa, logika dodatnia bo Y
~Y - skłamię, logika ujemne bo ~Y

Definicja spójnika „i”(*) w logice dodatniej (bo Y):
W.
Y=p*q
Dotrzymam słowa (Y=1) wtedy i tylko wtedy gdy zajdzie p (p=1) i zajdzie q (q=1)
Y=1 <=> p=1 i q=1

... a kiedy skłamię?
Przejście ze zdaniem W do logiki przeciwnej poprzez negację zmiennych i wymianę spójników
~Y=~p+~q
U.
Skłamię (~Y=1) wtedy i tylko wtedy gdy zajdzie ~p (~p=1) lub zajdzie ~q (~q=1)
~Y=1 <=> ~p=1 lub ~q=1
Definicja równoważna:
Wszystkie inne kombinacje zmiennych p i q różne od W.
U.
~Y=~p*~q+~p*q+p*~q
co matematycznie oznacza:
~Y=1 <=> (~p=1 i ~q=1) lub (~p=1 i q=1) lub (p=1 i ~q=1)

Związek logiki dodatniej i ujemnej:
Y= ~(~Y)
Podstawiając W i U mamy prawo de’Morgana:
Y = p*q = ~(~p+~q)

Przykład:
Jutro pójdę do kina i do teatru
Y=K*T


2.4 Operatory implikacji i równoważności

Symboliczna definicja implikacji prostej:
Kod:

Warunek wystarczający => w logice dodatniej (bo q)
=> - gwarancja matematyczna
A: p=>  q=1 - gwarancja matematyczna
B: p=> ~q=0
.. a jeśli zajdzie ~p?
Prawo Kubusia:
p=>q=~p~>~q
Warunek konieczny ~> w logice ujemnej (bo ~q)
~> - rzucanie monetą
C: ~p~>~q=1
D: ~p~~>q=1

Definicja implikacji prostej w równaniu algebry Boole’a:
p=>q = ~p~>~q - prawo Kubusia
gdzie:
=> - spójnik „na pewno” miedzy p i q, warunek wystarczający o definicji wyłącznie w A i B
~> - spójnik „może” miedzy p i q, warunek konieczny o definicji:
~p~>~q = p=>q
~~> - naturalny spójnik „może”, wystarczy pokazać jeden przypadek prawdziwy
Gwarancja matematyczna wyrażona spójnikiem „i”(*):
p=>q = ~(p*~q)
W implikacji prostej mamy gwarancję po stronie p i totalny brak gwarancji po stronie ~p.
Po stronie ~p mamy najzwyklejsze „rzucanie monetą”.
Stąd.
Licealna definicja implikacji prostej:
Implikacja prosta to wyłącznie jedna gwarancja matematyczna
p=>q = ~(p*~q)
~p=>~q=0

Przykład:
Jeśli jutro będzie padało to na pewno będzie pochmurno
P=>CH = ~(P*~CH)=1 - gwarancja matematyczna
Nie może się zdarzyć ~(...) że jutro będzie padało i nie będzie pochmurno
~(P*~CH)

Symboliczna definicja implikacji odwrotnej:
Kod:

Warunek konieczny ~> w logice dodatniej (bo q)
~> - rzucanie monetą
A: p~>  q=1
B: p~~>~q=1
.. a jeśli zajdzie ~p?
Prawo Kubusia:
p~>q=~p=>~q
Warunek wystarczający => w logice ujemnej (bo ~q)
=> - gwarancja matematyczna
C: ~p=>~q=1 - gwarancja matematyczna
D: ~p=> q=0

Definicja implikacji odwrotnej w równaniu algebry Boole’a:
p~>q = ~p=>~q - prawo Kubusia
gdzie:
=> - spójnik „na pewno”, warunek wystarczający o definicji wyłącznie w C i D
~> - spójnik „może”, warunek konieczny o definicji:
p~>q = ~p=>~q
~~> - naturalny spójnik „może”, wystarczy pokazać jeden przypadek prawdziwy
Gwarancja matematyczna wyrażona spójnikiem „i”(*):
~p=>~q = ~(~p*q)
W implikacji odwrotnej mamy gwarancję po stronie ~p i totalny brak gwarancji po stronie p.
Po stronie p mamy najzwyklejsze „rzucanie monetą”.
Stąd.
Licealna definicja implikacji odwrotnej:
Implikacja odwrotna to wyłącznie jedna gwarancja matematyczna
~p=>~q = ~(~p*q)
p=>q=0

Przykład:
Jeśli jutro będzie pochmurno to może padać
CH~>P
... a jak nie będzie pochmurno?
Prawo Kubusia:
CH~>P=~CH=>~P
Jeśli jutro nie będzie pochmurno to na pewno => nie będzie padało
~CH=>~P = ~(~CH*P)=1 - gwarancja matematyczna
Nie może się zdarzyć ~(...), że jutro nie będzie pochmurno i będzie padało
~(CH*P)

Na mocy powyższych definicji mamy najważniejsze definicje w całej logice matematycznej!
To definicje warunku wystarczającego w logice dodatniej i ujemnej.

1.
Definicja warunku wystarczającego w logice dodatniej (bo q):
Kod:

Warunek wystarczający w logice dodatniej (bo q)
A: p=>  q=1
B: p=> ~q=0

p=>q
Jeśli zajdzie p to „na pewno” => zajdzie q
Z czego wynika że druga linia musi być fałszem
Z czego wynika że p musi być wystarczające dla q
Z czego wynika że zbiór p musi zawierać się w całości w zbiorze q
Przykład:
Jeśli jutro będzie padło to na pewno będzie pochmurno
P=>CH
P=>~CH=0

2.
Definicja warunku wystarczającego w logice ujemnej (bo ~q)
Kod:

Warunek wystarczający w logice ujemnej (bo ~q)
C: ~p=>~q=1
D: ~p=> q=0

~p=>~q
Jeśli zajdzie ~p to na pewno zajdzie ~q
Z czego wynika że druga linia musi być fałszem
Z czego wynika że ~p musi być wystarczające dla ~q
Z czego wynika że zbiór ~p musi zawierać się w całości w zbiorze ~q
Przykład:
Jeśli jutro nie będzie pochmurno to na pewno nie będzie padało
~CH=>~P
~CH=>P=0

Ogólna definicja warunku koniecznego:
Warunek konieczny ~> między p i q zachodzi wtedy i tylko wtedy gdy z zanegowanego poprzednika wynika => zanegowany następnik.
p~>q = ~p=>~q - prawo Kubusia
~p~>~q = p=>q - prawo Kubusia

Z powyższego wynika, że całą logikę w zakresie implikacji możemy sprowadzić do badania banalnych warunków wystarczających o definicjach jak wyżej.

Definicja równoważności:
p<=>q = (p=>q)*[p~>q] = (p=>q)*(~p=>~q)
Równoważność to iloczyn logiczny wirtualnej implikacji prostej i odwrotnej.
Kod:

Implikacja      Implikacja
prosta          Odwrotna
p=>q=[~p~>~q]   [p~>q]=~p=>~q    p<=>q=(p=>q)*[p~>q]=(p=>q)*(~p=>~q)
A:  p=> q=1      [p~>  q=1]        =1
B:  p=>~q=0      [p~~>~q=1]        =0
C:[~p~>~q=1]     ~p=> ~q=1         =1
D:[~p~~>q=1]     ~p=>  q=0         =0

gdzie:
[…] - część wirtualna, niedostępna w świecie rzeczywistym

Warunek konieczny w implikacji prostej (linie C i D):
[~p~>~q]
jest wycinany przez warunek wystarczający implikacji odwrotnej (C i D) i nie jest dostępny w świecie rzeczywistym.
Stąd:
[~p~>~q] - wirtualny warunek konieczny, niedostępny w świecie rzeczywistym
W świecie rzeczywistym w liniach C i D widzimy wyłącznie warunek wystarczający:
~p=>~q = ~(~p*q) - gwarancja matematyczna

Analogicznie:
Warunek konieczny w implikacji odwrotnej (linie A i B):
[p~>q]
jest wycinany przez warunek wystarczający implikacji prostej (A i B) i nie jest dostępny w świecie rzeczywistym.
Stąd:
[p~>q] - wirtualny warunek konieczny, niedostępny w świecie rzeczywistym
W świecie rzeczywistym w liniach A i B widzimy wyłącznie warunek wystarczający:
p=>q = ~(p*~q) - gwarancja matematyczna

Stąd.
Licealna definicja równoważności:
Równoważność to dwie i tylko dwie gwarancje matematyczne:
p=>q = ~(p*~q)=1 - gwarancja matematyczna A
~p=>~q = ~(~p*q) - gwarancja matematyczna B

Przykład:
Jeśli trójkąt jest równoboczny to ma kąty równe
TR=>KR = ~(TR*~KR)=1
Jeśli trójkąt nie jest równoboczny to nie ma katów równych
~TR=>~KR=~(~TR*KR)=1
Wniosek:
Mamy tu do czynienia z równoważnością!
Trójkąt jest równoboczny wtedy i tylko wtedy gdy ma kąty równe
TR<=>KR = (TR=>KR)*(~TR=>~KR) = 1*1=1

Na podstawie powyższego mamy.

Symboliczna definicja równoważności:
Kod:

p<=>q = (p=>q)*(~p=>~q)
Warunek wystarczający w logice dodatniej (bo q):
p=>q
A: p=>q  =1 - twarda prawda, [b]gwarancja matematyczna[/b]
B: p=>~q =0 - twardy fałsz wynikły z A
… a jeśli zajdzie ~p ?
~p<=>~q = (~p=>~q)*(p=>q)
Warunek wystarczający w logice ujemnej (bo ~q):
~p=>~q
C: ~p=>~q=1 - twarda prawda, [b]gwarancja matematyczna[/b]
D: ~p=>q =0 - twardy fałsz wynikły z C


Równania rachunku zero-jedynkowego opisujące równoważność:
p<=>p = (p=>q)*(~p=>~q)
gdzie:
Możliwe są dwie równoważne interpretacje słowne prawej strony równania:
p=>q - warunek wystarczający o definicji jak w liniach A i B
p=>q - implikacja wirtualna gdzie „rzucanie monetą” jest przykryte przez linie C i D powyższej definicji.

~p=>~q - warunek wystarczający o definicji jak w liniach C i D
~p=>~q - implikacja wirtualna gdzie „rzucanie monetą” jest przykryte przez linie A i B powyższej definicji
Definicja równoważności w postaci gwarancji matematycznych:
p=>q = ~(p*~q)
~p=>~q = ~(~p*q)
stąd:
p<=>q = [~(p*~q)]*[~(~p*q)] =1*1=1
Muszą zachodzić dwie gwarancje matematyczne!
Wtedy i tylko wtedy zdanie jest równoważnością.

Przykład:
Trójkąt jest równoboczny wtedy i tylko wtedy gdy ma kąty równe
TR<=>KR = (TR=>KR)*(~TR=>~KR)=1*1=1

Definicja równoważności:
p<=>q = (p=>q)*[p~>q]
czyli:
p=>q - p jest wystarczające dla q
i
[p~>q] - p jest konieczne dla q
Stąd mamy śfińską definicję równoważności niżej.

Najważniejsze definicje do rozstrzygania o prawdziwości/fałszywości dowolnej implikacji i równoważności

Wszystkie poniższe definicje sprowadzają się do badania banalnych warunków wystarczających o definicji wyżej.

ŚFIŃSKIE definicje implikacji i równoważności:
Definicja równoważności:
p<=>q = (p=>q)*[p~>q] =1*1=1
Równoważność, to jednoczesne zachodzenie warunku wystarczającego => i koniecznego ~> między p i q
p=>q=1
p~>q=~p=>~q=1
Definicja implikacji prostej:
Implikacja prosta to zachodzenie wyłącznie warunku wystarczającego => miedzy p i q
p=>q=1
p~>q=~p=>~q=0
Definicja implikacji odwrotnej:
Implikacja odwrotna to zachodzenie wyłącznie warunku koniecznego ~> między p i q
p~>q=~p=>~q=1
p=>q=0

Gimnazjalne definicje implikacji i równoważności
Implikacja to wynikanie => wyłącznie w jedną stronę:

Implikacja prosta:
Implikacja prosta to warunek wystarczający => wyłącznie w kierunku p=>q
p=>q=~p~>~q =1
q=>p=0

Implikacja odwrotna:
Implikacja odwrotna to warunek wystarczający wyłącznie w kierunku ~p=>~q
~p=>~q = p~>q =1
~q=>~p=0

Równoważność:
Równoważność to wynikanie => w dwie strony.
Definicja równoważności:
p<=>q = (p=>q)*(q=>p)
p=>q=1
q=>p=1
albo:
Definicja równoważna:
p<=>q = ~p<=>~q = (~p=>~q)*(~q=>~p)
~p=>~q=1
~q=>~p=1

Licealne definicja implikacji i równoważności:
Implikacja to wyłącznie jedna gwarancja matematyczna

Implikacja prosta:
p=>q=~(p*~q)=1
~p=>~q=0

Implikacja odwrotna:
~p=>~q=~(~p*q)=1
p=>q=0

Równoważność:
Równoważność to dwie gwarancje matematyczne
p<=>q = (p=>q)*(~p=>~q)
p=>q=~(p*~q)=1 - gwarancja A
~p=>~q=~(~p*q)=1 - gwarancja B


Kwadrat logiczny równoważności
Kod:

A: p=>q  =1        A1. q=>p=1


C: ~p=>~q=1        C1: ~q=>~p=1


Wszystkie możliwe definicje równoważności to dowolny bok kwadratu:
p<=>q = (p=>q)*(~p=>~q) = (q=>p)*(~q=>~p) = (p=>q)*(q=>p) = (~p=>~q)*(~q=>~p)

W równoważności między dowolnymi dwoma wierzchołkami zachodzą jednocześnie warunki wystarczający rzeczywisty => i warunek konieczny wirtualny ~>.
Wirtualny warunek konieczny ~> (rzucanie monetą) nie jest dostępny w świecie rzeczywistym!
W świecie rzeczywistym dostępne są wyłącznie warunki wystarczające => o definicjach jak wyżej.

Oczywiście w równoważności zachodzą też warunki wystarczający => i konieczny wirtualny ~> po przekątnych kwadratu:
p???q = (p=>q)*(~q=>~p) = (~p=>~q)*(q=>p)
Dlaczego to nie są definicje równoważności?
Odpowiedź:
Bo operator ??? nie jest jednoznaczny.
??? - to może być operator zarówno równoważności jak i czegoś fundamentalnie innego, implikacji!

Równoważność to fundamentalnie co innego niż implikacja.
Nic co jest równoważnością prawdziwą nie ma prawa być implikacją prawdziwą i odwrotnie.

Kwadrat logiczny implikacji
Kod:

A: p=>q  =1        A1. p~>q=1


C: ~p~>~q=1        C1: ~p=>~q=1

W kwadracie logicznym implikacji zachodzą tożsamościowe prawa matematyczne wyłącznie w pionach.
Definicja implikacji prostej:
p=>q = ~p~>~q=1 - prawo Kubusia
Definicja implikacji odwrotnej:
p~>q = ~p=>~q=1 - prawo Kubusia

Oczywiście na mocy definicji mamy:
p=>q = ~p>~q ## p~>q = ~p=>~q
gdzie:
## - różne na mocy definicji.

W pionach mamy do czynienia z dwom izolowanymi układami logicznymi pomiędzy którymi nie zachodzą żadne tożsamości matematyczne, ani w poziomie, ani po przekątnych!

Pod p i q w obu pionach możemy sobie podstawiać co nam się żywcem podoba.
Przykładowo:
Jeśli stwierdzimy warunek wystarczający w punkcie C1:
~p=>~q=1
oraz brak warunku wystarczającego w punkcie A1:
p=>q=0
To możemy być pewni iż nasze zdanie to piękna implikacja odwrotna, czyli coś fundamentalnie innego niż implikacja prosta czy też równoważność!


3.0 Operatory OR i AND

Zmienna binarna:
Zmienna binarna (wejście cyfrowe w układzie logicznym) to zmienna mogąca przyjmować w osi czasu wyłącznie dwie wartości:
1 - prawda
0 - fałsz
Przykłady zmiennych binarnych:
p, q

Funkcja logiczna:
Funkcja logiczna (Y - wyjście cyfrowe w układzie logicznym) to funkcja n-zmiennych binarnych połączonych spójnikami „i”(*) albo „lub”(+) mogąca w osi czasu przyjmować wyłącznie 0 albo 1 w zależności od aktualnej wartości zmiennych binarnych.

Y - funkcja logiczna
Przykład:
Y=p*q+p*~q+~p*q

Definicja zero-jedynkowa operatora OR:
Kod:

p q Y=p+q
1 1  =1
1 0  =1
0 1  =1
0 0  =0

Y=p+q
Y=1 <=> p=1 lub q=1

Definicja zero-jedynkowa operatora AND:
Kod:

p q Y=p*q
1 1  =1
1 0  =0
0 1  =0
0 0  =0

Y=p*q
Y=1 <=> p=1 i q=1


3.1 Spójniki “i”(*) i “lub”(+)

Definicja spójnika „i”.
Iloczyn logiczny (spójnik „i”(*) ) n-zmiennych binarnych jest równy 1 wtedy i tylko wtedy gdy wszystkie zmienne są równe 1
Y=p*q
Co matematycznie oznacza:
Y=1 <=> p=1 i q=1
Analogia w celu łatwego zapamiętania:
1*1*1…*1 =1
1*0*1…*1 =0
Zauważmy że mamy tu 100% analogię do mnożenia znanego ze szkoły podstawowej, stąd nazwa „iloczyn logiczny”. Oczywiście znaczek „*” nie ma nic wspólnego z mnożeniem, to po prostu symbol spójnika „i” z naturalnego języka mówionego.

Definicja spójnika „lub”(+)
Suma logiczna (spójnik „lub”(+) ) n-zmiennych binarnych jest równa 1 wtedy i tylko wtedy gdy którakolwiek zmienna jest równa 1
Y=p+q
Co matematycznie oznacza:
Y=1 <=> p=1 lub q=1
Analogia w celu łatwego zapamiętania:
0+0+0….+0 =0
1+1+0….+0 =1
Mamy tu „drobną” różnicę w stosunku do dodawania znanego ze szkoły podstawowej. Oczywiście znaczek „+” nie ma nic wspólnego z dodawaniem, to spójnik „lub”(+) z naturalnego języka mówionego.

Najważniejsze prawa algebry Kubusia wynikające z powyższych definicji

Spójnik „i”(*):
1*1 =1
1*0 =0
p*1 =p
p*0 =0
p*p=p
p*~p=0

Spójnik „lub”(+):
1+1 =1
1+0 =1
p+0 =p
p+ 1 =1
p+p=p
p+~p = 1
Fundament algebry Kubusia:
p*~p =0
p+~p =1
Przykłady:
Jutro pójdę do kina i nie pójdę do kina
Y=K*~K=0 - zdanie sprzeczne wewnętrznie
Zbiory K i ~K są rozłączne
Jutro pójdę do kina lub nie pójdę do kina
Y = K+~K=1
Zbiór ~K jest dopełnieniem zbioru K do wspólnej dziedziny.
Tu dziedzina: wszelkie dostępne możliwości
Cokolwiek nie zrobię to dotrzymam słowa, nie ma tu szans na kłamstwo.


3.2 Spójniki „i”(*) i „lub”(+) w zbiorach

Definicja spójnika „i”(*) w zbiorach



Definicja spójnika „i”(*) w zbiorach w logice dodatniej (bo Y):
Y=p*q
Y=1 <=> p=1 i q=1
Co matematycznie oznacza:
Dotrzymam słowa (Y=1) wtedy i tylko wtedy gdy zajdzie p (p=1) i zajdzie q (q=1)
Koniec !
O niczym innym zdanie A nie mówi.

Symboliczna definicja spójnika „i”:
Kod:

Dotrzymam słowa Y
p*q =Y



Definicja spójnika „lub”(+) w zbiorach



Na podstawie powyższego diagramu mamy dwie równoważne definicje spójnika “lub”(+) w logice dodatniej (bo Y).
A.
Y=p+q
B.
Y= p*q + p*~q + ~p*q
Oczywiście:
Y=Y
stąd definicja równoważna spójnika „lub”(+)
C.
Y=p+q = p*q + p*~q + ~p*q

Doskonale widać poprawność powyższej tożsamości w zbiorach.
Oczywiście wszystkie te zbiory realnie istnieją.
Znaczenie jedynki i zera w teorii zbiorów:
1 - zbiór niepusty
0 - zbiór pusty

Stąd matematycznie powyższe równanie możemy rozpisać jako:
A.
Y=p+q
Y=1 <=> p=1 lub q=1
B.
Y= p*q + p*~q + ~p*q
Y=1 <=> (p=1 i q=1) lub (p=1 i ~q=1) lub (~p=1 i q=1)

Na mocy definicji spójnika „lub” możemy symbolicznie zapisać:
Y=p+q = p*q + p*~q + ~p*q
Co matematycznie oznacza:
p*q=Y - dotrzymam słowa (Y=1) jeśli zajdzie p=1 i q=1
lub
p*~q=Y - dotrzymam słowa (Y=1) jeśli zajdzie p=1 i ~q=1
lub
~p*q=Y - dotrzymam słowa (Y=1) jeśli zajdzie ~p=1 i q=1

Stąd definicja symboliczna spójnika „lub”:
Kod:

Definicja symboliczna spójnika „lub”
Y – dotrzymam słowa
Y=p+q =p*q + p*~q + ~p*q
 p* q =Y
 p*~q =Y
~p* q =Y


Ostatnio zmieniony przez rafal3006 dnia Nie 0:35, 05 Lut 2012, w całości zmieniany 1 raz
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 35963
Przeczytał: 15 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Nie 0:36, 05 Lut 2012    Temat postu:

3.3 Definicja operatora OR

Zero-jedynkowa definicja operatora OR:
Kod:

   p q Y=p+q
A: 1 1  =1
B: 1 0  =1
C: 0 1  =1
D: 0 0  =0


Twierdzenie Prosiaczka:
Równanie algebry Kubusia dla dowolnej tabeli zero-jedynkowej otrzymujemy opisując wyłącznie linie z tą samą wartością logiczną w wyniku.

Najprostsze równanie dla powyższej tabeli otrzymamy dla linii D bowiem mamy tu samotne zero.
D.
Y=0 <=> p=0 i q=0
Korzystając z prawa algebry Kubusia:
Jeśli p=0 to ~p=1
Sprowadzamy wszystkie zmienne do jedynek.
D.
~Y=1 <=> ~p=1 i ~q=1

Definicja spójnika „i”.
Iloczyn logiczny (spójnik „i”(*) ) n-zmiennych binarnych jest równy 1 wtedy i tylko wtedy gdy wszystkie zmienne są równe 1
Y=p*q
Co matematycznie oznacza:
Y=1 <=> p=1 i q=1

Jak widzimy, na mocy definicji spójnika „i”(*) w równaniu D możemy wykopać w kosmos bezwzględne jedynki otrzymując równanie algebry Kubusia opisujące powyższą tabele zero-jedynkową.
Mamy zatem:
D.
~Y=~p*~q
co matematycznie oznacza:
~Y=1 <=> ~p=1 i ~q=1

Prawo przejście do logiki przeciwnej:
Negujemy zmienne i wymieniamy spójniki logiczne na przeciwne
W tym przypadku „i”(*) na „lub”(+) i odwrotnie.

Przechodzimy z równaniem D do logiki przeciwnej otrzymując:
Y=p+q
co matematycznie oznacza:
Y=1 <=> p=1 lub q=1

Zauważmy, że mamy tu 100% zgodność z definicją spójnika „lub”(+).
Definicja spójnika „lub”(+)
Suma logiczna (spójnik „lub”(+) ) n-zmiennych binarnych jest równa 1 wtedy i tylko wtedy gdy którakolwiek zmienna jest równa 1
Y=p+q
Co matematycznie oznacza:
Y=1 <=> p=1 lub q=1

Równoważną definicje spójnika „lub”(+) otrzymamy opisując same jedynki w definicji zero-jedynkowej.
Mamy:
A: Y=1 <=> p=1 i q=1
lub
B: Y=1 <=> p=1 i q=0
lub
C: Y=1 <=> p=0 i q=1
Sprowadzamy wszystkie zmienne do jedynek korzystając z prawa algebry Kubusia:
Jeśli p=0 to ~p=1
A: Y=1 <=> p=1 i q=1
lub
B: Y=1 <=> p=1 i ~q=1
lub
C: Y=1 <=> ~p=1 i q=1

Stąd mamy równoważną definicję spójnika ‘lub”(+):
Y=p*q + p*~q + ~p*q
Co matematycznie oznacza:
Y=1 <=> (p=1 i q=1) lub (p=1 i ~q=1) lub (~p=1 i q=1)

Definicja logiki dodatniej i ujemnej w operatorach OR I AND:
Funkcja logiczna ze spójnikami „i”(*) oraz „lub”(+) zapisana jest w logice dodatniej, gdy nie jest zanegowana
Y - logika dodatnia, dotrzymam słowa (wystąpi prawda)
~Y - logika ujemna, skłamię (wystąpi fałsz)
Stąd:
Symboliczna definicja operatora OR:
Kod:

Dotrzymam słowa Y
E: Y=p+q = p*q+p*~q+~p*q
A:  p* q= Y
B:  p*~q= Y
C: ~p* q= Y
.. a kiedy skłamię?
Przejście do logiki ujemnej poprzez
negacje zmiennych i wymianę spójników
Skłamię ~Y
~Y=~p*~q
D: ~p*~q=~Y

Związek logiki dodatniej i ujemnej:
Y=~(~Y) - prawo podwójnego przeczenia
Podstawiając E i D mam prawo de’Morgana:
p+q = ~(~p*~q)

Kodowanie zero-jedynkowe powyższej definicji:
Kod:

Dotrzymam słowa: Y=1
E: Y=p+q = p*q+p*~q+~p*q
             |p q Y=p+q       | ~p ~q ~Y=~(p+q)=~p*~q |Y=~(~p*~q)
A:  p* q= Y  |1 1  =1 /p*q =Y |  0  0   =0            | =1
B:  p*~q= Y  |1 0  =1 /p*~q=Y |  0  1   =0            | =1
C: ~p* q= Y  |0 1  =1 /~p*q=Y |  1  0   =0            | =1
Skłamię: ~Y=1
D: ~p*~q=~Y  |0 0  =0         |  1  1   =1 /~p*~q=~Y  | =0
Punkt odniesienia = zdanie z nagłówka tabeli:
             |p=1, ~p=0       | ~p=1, p=0
             |q=1, ~q=0       | ~q=1, q=0
             |Y=1, ~Y=0       | ~Y=1, Y=0

W komentarzu (po znaku „/”) uwidoczniono te linie tabeli zero-jedynkowej, które biorą udział w obsłudze naturalnej logiki człowieka. Doskonale widać zero-jedynkową definicję spójnika „i”(*) w tabeli ~Y=~p*~q

Znaczenie zer i jedynek w tabelach zero-jedynkowych operatorów OR i AND:
1.
Po stronie wejścia p i q jedynki i zera oznaczają:
1 - brak negacji sygnału z nagłówka tabeli
0 - negacja sygnału z nagłówka tabeli
2.
Po stronie wyjścia Y w operatorach OR i AND znaczenie sygnałów jest następujące:
Dotrzymam słowa (Y):
Y=1 /linie A,B,C kolumny Y=p+q
Skłamię (~Y)
~Y=1 /linia D kolumny ~Y=~p*~q

W operatorach OR i AND linie z zerami w wyniku są nieistotne, gdyż interesuje nas wyłącznie odpowiedź na dwa pytania:
E.
Kiedy dotrzymam słowa?
Y=1 /linie A,B,C kolumny Y=p+q
D.
Kiedy skłamię?
~Y=1 /linia D kolumny ~Y=~p*~q

Tożsamość kolumn zero-jedynkowych trzeciej i ostatniej jest dowodem poprawności prawa de’Morgana:
Y=p+q = ~(~p*~q)
Z prawa de’Morgana wynika układ zastępczy bramki OR w technice cyfrowych układów logicznych:
Negujemy wejścia p i q oraz wyjście Y bramki AND, otrzymując bramkę OR.

Doświadczenie 1.
Zbudować poniższy układ logiczny i sprawdzić zgodność świata fizycznego z tabelami zero-jedynkowymi operatora OR przedstawionymi wyżej.



Z punktu widzenia świata zewnętrznego nie jesteśmy w stanie odróżnić który układ logiczny jest fizycznie zrealizowany, bowiem oba układy, po lewej i prawej stronie, dają identyczną tabele zero-jedynkową operatora OR.
Oczywiście dla wejścia p i q oraz wyjścia:
Y=p+q = ~(~p*~q)

Zero-jedynkowa definicja bramki OR (operatora OR):
Kod:

p q Y=p+q
1 1  =1
1 0  =1
0 1  =1
0 0  =0

Jak widzimy odpowiedź na pytanie:
Kiedy dotrzymam słowa?
Y=1 /linie A,B,C kolumny Y=p+q
Mamy w punkcie odniesienia: Y=p+q

Natomiast odpowiedź na pytanie:
Kiedy skłamię?
~Y=1 /linia D kolumny ~Y=~p*~q
Mamy w punkcie odniesienia: ~Y=~p*~q

W laboratorium techniki cyfrowej wymuszamy na wejściach p i q dowolne zera i jedynki przełącznikami. Próbnikiem stanów logicznych sprawdzamy zgodność rzeczywistości z tabelami zero-jedynkowymi wyżej.
Znaczenie światełek w próbniku stanów logicznych:
0 - zielona dioda świecąca LED
1 - czerwona dioda świecąca LED
Pewne jest, że algebra Kubusia ma 100% pokrycie w teorii i praktyce bramek logicznych.

Przykład:
Jutro Pojdę do kina lub do teatru
Y=K+T
Co matematycznie oznacza:
Dotrzymam słowa (Y=1) wtedy i tylko wtedy gdy jutro pójdę do kina (K=1) lub do teatru (T=1)
Y=K+T
Y=1 <=> K=1 lub T=1
… a kiedy skłamię?
Przejście do logiki ujemnej poprzez negacje zmiennych i wymianę spójników
~Y=~K*~T
Skłamię (~Y=1) jeśli jutro nie pójdę do kina (~K=1) i nie pójdę do teatru (~T=1)
~Y=~K*~T
~Y=1 <=> ~K=1 i ~T=1
Poprawny odczyt symboli:
K=1 - prawdą jest (=1), że wczoraj byłem w kinie (K)
~K=1 - prawdą jest (=1), że wczoraj nie byłem w kinie (~K)
Y=1 - prawdą jest (=1), że dotrzymałem słowa (Y)
~Y=1 - prawdą jest (=1), że skłamałem (~Y)

Równoważną odpowiedź na pytanie „Kiedy dotrzymam słowa?” otrzymujemy z linii A,B,C definicji symbolicznej.
Dotrzymam słowa (Y=1) wtedy i tylko wtedy gdy:
A: K*T=1 - jutro pójdę do kina (K=1) i do teatru (T=1)
lub
B: K*~T=1 - jutro pójdę do kina (K=1) i nie pójdę do teatru (~T=1)
lub
C: ~K*T - jutro nie pójdę do kina (~K=1) i pójdę do teatru (T=1)
Oczywiście jutro wyłącznie jeden z przypadków A,B,C ma szansę zaistnieć, pozostałe zdania będą fałszywe.

Twierdzenie Sowy:
W świecie totalnie zdeterminowanym, gdzie wartości logiczne p i q są znane z góry, dowolny operator logiczny ulega redukcji do operatora AND.

Przykład:
A.
Mickiewicz był Polakiem lub napisał „Pana Tadeusza”
M => P+PT
Oczywiście za takie zdanie każdy polonista postawi pałę.

Dlaczego?
Zauważmy, że mamy tu 100% determinizm.
P=1 - twarda prawda
PT=1 - twarda prawda
z powyższego wynika:
~P=0 - twardy fałsz
~PT=0 - twardy fałsz

Rozwijamy prawą stronę przez symboliczną definicję spójnika „lub”(+):
p+q = p*q+p*~q+~p*q
stąd dla naszego przykładu:
B.
P+PT = (P*PT=1*1=1) lub (P*~PT=1*0=0) lub (~P*PT=0*1=0)
Po minimalizacji funkcji, czyli usunięciu wszelkich fałszów logicznych mamy:
C.
P+PT=P*PT

Zdanie wzorcowe po minimalizacji funkcji A brzmi:
D.
Mickiewicz był Polakiem i napisał „Pana Tadeusza”
M=>P*PT
M=1 => P=1 i PT=1

Oczywiście w żartach, kabarecie, czy nawet ze zwykłego niedbalstwa językowego człowiek może powiedzieć zdanie A.
Zauważmy, że forma A jest po prostu śmieszna, wskazuje iż nadawca robi sobie jaja, bowiem wszyscy znamy zdanie wzorcowe D.
... i o to chodzi w kabarecie.

Sprawdźmy działanie prawa Sowy:
A.
Mickiewicz był Polakiem lub napisał „Pana Tadeusza”
M=>P+PT
M=1 => P=1 + PT=1
Mamy świat w 100% zdeterminowany:
P=1, ~P=0
PT=1, ~PT=0
Badamy odpowiedź układu logicznego na wszystkie możliwe przeczenia p i q.
Kod:

 P* PT =1*1=1
 P*~PT =1*0=0
~P* PT =0*1=0
~P*~PT =0*0=0

Jak widzimy w świecie totalnie zdeterminowanym mamy do czynienia z operatorem AND, co potwierdza prawo Sowy.


3.4 Operator OR w zbiorach

Operator OR to złożenie spójnika „lub”(+) w logice dodatniej (bo Y) ze spójnikiem „i”(*) w logice ujemnej (bo ~Y).



Definicja spójnika „lub”(+) w zbiorach w logice dodatniej (bo Y):
A.
Y=p+q
Y=1 <=> p=1 lub q=1
Definicja równoważna na podstawie powyższego diagramu:
A1.
Y=p*q + p*~q + ~p*q
Y=1 <=> (p=1 i q=1) lub (p=1 i ~q=1) lub (~p=1 i q=1)
stąd:
Y=p+q = p*q + p*~q + ~p*q



Definicja spójnika “I”(*) w zbiorach w logice ujemnej (bo ~Y)
B.
~Y=~p*~q
Co matematycznie oznacza:
~Y=1 <=> ~p=1 i ~q=1

W teorii zbiorów zera i jedynki oznaczają.
Po stronie wejścia p i q:
1 - zbiór istnieje, niepusty
0 - zbiór pusty, nie istnieje
Po stronie wyjścia Y:
1 - iloczyn logiczny zbiorów p i q jest zbiorem niepustym
0 - iloczyn logiczny zbiorów p i q jest zbiorem pustym

Zauważmy, że oba diagramy razem opisują zdanie Y=p+q w kompletnej dziedzinie.


3.5 Definicja operatora AND

Zero-jedynkowa definicja operatora AND:
Kod:

   p q Y=p*q
A: 1 1  =1
B: 1 0  =0
C: 0 1  =0
D: 0 0  =0


Twierdzenie Prosiaczka:
Równanie algebry Kubusia dla dowolnej tabeli zero-jedynkowej otrzymujemy opisując wyłącznie linie z tą samą wartością logiczną w wyniku.

Najprostsze równanie dla powyższej tabeli otrzymamy dla linii A bowiem mamy tu samotną jedynkę.
A.
Y=1 <=> p=1 i q=1

Definicja spójnika „i”.
Iloczyn logiczny (spójnik „i”(*) ) n-zmiennych binarnych jest równy 1 wtedy i tylko wtedy gdy wszystkie zmienne są równe 1
Y=p*q
Co matematycznie oznacza:
Y=1 <=> p=1 i q=1

Jak widzimy, na mocy definicji spójnika „i”(*) w równaniu A możemy usunąć bezwzględne jedynki otrzymując równanie algebry Kubusia opisujące powyższą tabelę zero-jedynkową.
Mamy zatem:
A.
Y=p*q
co matematycznie oznacza:
Y=1 <=> p=1 i q=1

Prawo przejście do logiki przeciwnej:
Negujemy zmienne i wymieniamy spójniki logiczne na przeciwne
W tym przypadku „i”(*) na „lub”(+) i odwrotnie.

Przechodzimy z równaniem A do logiki przeciwnej otrzymując:
B1.
~Y=~p+~q
co matematycznie oznacza:
~Y=1 <=> ~p=1 lub ~q=1

Równanie równoważne do B1 otrzymamy z linii B,C,D gdzie mamy zera w wyniku:
Mamy:
B: Y=0 <=> p=0 i q=0
lub
C: Y=0 <=> p=0 i q=1
lub
D: Y=0 <=> p=1 i q=0
Sprowadzamy wszystkie zmienne do jedynek korzystając z prawa algebry Kubusia:
Jeśli p=0 to ~p=1
B: ~Y=1 <=> ~p=1 i ~q=1
lub
C: ~Y=1 <=> ~p=1 i q=1
lub
D: ~Y=1 <=> p=1 i ~q=1

Opuszczamy jedynki i mamy równoważne równanie opisujące spójnik logiczny „lub”(+) w logice ujemnej (bo ~Y)
~Y=~p*~q + ~p*q + p*~q
Co matematycznie oznacza:
~Y=1 <=> (~p=1 i ~q=1) lub (~p=1 i q=1) lub (p=1 i ~q=1)

Definicja logiki dodatniej i ujemnej w operatorach OR I AND:
Funkcja logiczna ze spójnikami „i”(*) oraz „lub”(+) zapisana jest w logice dodatniej, gdy nie jest zanegowana
Y - logika dodatnia, dotrzymam słowa (wystąpi prawda)
~Y - logika ujemna, skłamię (wystąpi fałsz)
Stąd:
Symboliczna definicja operatora AND:
Kod:

Dotrzymam słowa Y
Y=p*q
A:  p* q= Y
.. a kiedy skłamię?
Przejście do logiki ujemnej poprzez
negację zmiennych i wymianę spójników
Skłamię ~Y
S: ~Y=~p+~q = ~p*~q+~p*q+p*~q
B: ~p*~q=~Y
C. ~p* q=~Y
D:  p*~q=~Y

Związek logiki dodatniej i ujemnej:
Y=~(~Y) - prawo podwójnego przeczenia
Podstawiając A i S mam prawo de’Morgana:
p*q = ~(~p+~q)

Kodowanie zero-jedynkowe powyższej definicji:
Kod:

Dotrzymam słowa: Y=1
                   |p q Y=p*q       |~p ~q ~Y=~(p*q)=~p+~q | Y=~(~p+~q)
A:  p* q= Y        |1 1  =1 /p*q=Y  | 0  0   =0            |  =1
Skłamię: ~Y
~Y=~p+~q
~Y=~p*~q+~p*q+p*~q
B: ~p*~q=~Y        |0 0  =0         | 1  1   =1 /~p*~q=~Y  |  =0
C. ~p* q=~Y        |0 1  =0         | 1  0   =1 /~p*q=~Y   |  =0
D:  p*~q=~Y        |1 0  =0         | 0  1   =1 /p*~q=~Y   |  =0
Punkt odniesienia = zdanie z nagłówka tabeli:
                   |p=1, ~p=0       | ~p=1, p=0
                   |q=1, ~q=0       | ~q=1, q=0
                   |Y=1, ~Y=0       | ~Y=1, Y=0

W komentarzu (po znaku „/”) uwidoczniono te linie tabeli zero-jedynkowej, które biorą udział w obsłudze naturalnej logiki człowieka. Doskonale widać zero-jedynkową definicję spójnika „lub”(+) w tabeli ~Y=~p+~q

Znaczenie zer i jedynek w tabelach zero-jedynkowych operatorów OR i AND:
1.
Po stronie wejścia p i q jedynki i zera w tabeli zero-jedynkowej oznaczają:
1 - brak negacji sygnału z nagłówka tabeli
0 - negacja sygnału z nagłówka tabeli
2.
Po stronie wyjścia Y w operatorach OR i AND znaczenie sygnałów jest następujące:
Dotrzymam słowa (Y):
Y=1 /linia A kolumny Y=p*q
Skłamię (~Y):
~Y=1 /linie B,C,D kolumny ~Y=~p+~q

W operatorach OR i AND linie z zerami w wyniku są nieistotne, gdyż interesuje nas wyłącznie odpowiedź na dwa pytania:
A.
Kiedy dotrzymam słowa?
Y=1 /linia A kolumny Y=p*q
Kiedy skłamię?
~Y=1 /linie B,C,D kolumny ~Y=~p+~q

Tożsamość kolumn zero-jedynkowych trzeciej i ostatniej jest dowodem poprawności prawa de’Morgana:
Y=p*q = ~(~p+~q)
Z prawa de’Morgana wynika układ zastępczy bramki AND w technice cyfrowych układów logicznych:
Negujemy wejścia p i q oraz wyjście Y bramki OR otrzymując bramkę AND.

Doświadczenie 2.
Zbudować poniższy układ logiczny i sprawdzić zgodność świata fizycznego z tabelami zero-jedynkowymi operatora AND przedstawionymi wyżej.



Z punktu widzenia świata zewnętrznego nie jesteśmy w stanie odróżnić który układ logiczny jest fizycznie zrealizowany, bowiem oba układy dają identyczną tabele zero-jedynkową operatora AND.
Oczywiście dla wejścia p i q oraz wyjścia:
Y=p*q = ~(~p+~q)

Zero-jedynkowa definicja bramki AND (operatora AND):
Kod:

p q Y=p*q
1 1  =1
1 0  =0
0 1  =0
0 0  =0


Jak widzimy odpowiedź na pytanie:
Kiedy dotrzymam słowa?
Y=1 /linia A kolumny Y=p*q
Mamy w punkcie odniesienia: Y=p*q

Natomiast odpowiedź na pytanie:
Kiedy skłamię?
~Y=1 /linie B,C,D kolumny ~Y=~p+~q
Mamy w punkcie odniesienia: ~Y=~p+~q

Wróćmy do naturalnego języka mówionego …

Przykład:
Jutro Pojdę do kina i do teatru
Y=K*T
Co matematycznie oznacza:
Dotrzymam słowa (Y=1) wtedy i tylko wtedy gdy jutro pójdę do kina (K=1) i do teatru (T=1)
Y=K*T
Y=1 <=> K=1 i T=1
… a kiedy skłamię?
Przejście do logiki ujemnej poprzez negacje zmiennych i wymianę spójników
~Y=~K+~T
Skłamię (~Y=1) jeśli jutro nie pójdę do kina (~K=1) lub nie pójdę do teatru (~T=1)
~Y=~K+~T
~Y=1 <=> ~K=1 lub ~T=1

Na mocy definicji symbolicznej mamy równoważną odpowiedź na pytanie kiedy skłamię.
Skłamię (~Y=1) wtedy i tylko wtedy gdy:
C: ~K*~T=1 - nie pójdę do kina (~K=1) i nie pójdę do teatru (~T=1)
lub
D: ~K*T=1 - nie pójdę do kina (~K=1) i pójdę do teatru (T=1)
lub
E: K*~T=1 - pójdę do kina (K=1) i nie pójdę do teatru (~T=1)
Oczywiście jutro tylko i wyłącznie jeden z przypadków C,D,E ma szansę zaistnieć, pozostałe zdania będą fałszywe.


3.6 Operatora AND w zbiorach

Operator AND to złożenie spójnika „i”(*) w logice dodatniej (bo Y) ze spójnikiem „lub”(+) w logice ujemnej (bo ~Y).



Definicja spójnika „i”(*) w zbiorach w logice dodatniej (bo Y):
A.
Y=p*q
Y=1 <=> p=1 i q=1



Definicja spójnika „lub”(+) w logice ujemnej (bo ~Y):
B.
~Y=~p+~q
~Y=1 <=> ~p=1 lub ~q=1
Definicja równoważna na podstawie powyższego diagramu:
B1.
~Y=~p*~q + ~p*q + p*~q
~Y=1 <=> (~p=1 i ~q=1) lub (~p=1 i q=1) lub (p=1 i ~q=1)
stąd:
~Y=~p+~q =~p*~q + ~p*q + p*~q

Zauważmy, że oba diagramy razem opisują zdanie Y=p*q w kompletnej dziedzinie.

W teorii zbiorów zera i jedynki oznaczają.
1 - zbiór istnieje, niepusty
0 - zbiór pusty, nie istnieje


4.0 Operatory implikacji i równoważności

Zdanie w algebrze Kubusia
W algebrze Kubusia zdanie to poprawne lingwistycznie zdanie sensowne.
Zdanie musi mieć sens w danym języku.

Zdanie warunkowe:
Jeśli p to q
gdzie:
p - poprzednik
q - następnik
W algebrze Kubusia w zdaniu „Jeśli p to q” poprzednik musi być powiązany z następnikiem warunkiem wystarczającym lub koniecznym albo naturalnym spójnikiem „może” ~~>, wystarczy jedna prawda. Wszelkie sensowne zdania „Jeśli…to…” w naturalnym języku mówionym spełniają ten warunek.


4.1 Operatory implikacji

Definicja implikacji prostej:
Implikacja prosta to złożenie warunku wystarczającego => w logice dodatniej (bo q) z warunkiem koniecznym ~> w logice ujemnej (bo ~q)
p=>q = ~p~>~q - Prawo Kubusia

Definicja implikacji odwrotnej:
Implikacja odwrotna to złożenie warunku koniecznego ~> w logice dodatniej (bo q) z warunkiem wystarczającym => w logice ujemnej (bo ~q)
p~>q = ~p=>~q - Prawo Kubusia

Logika dodatnia i ujemna w operatorach implikacji:
Zdanie wypowiedziane jest w logice dodatniej gdy wyjście q jest niezanegowane, w logice ujemnej gdy wyjście q jest zanegowane.
Prawa Kubusia:
p=>q = ~p~>~q
p~>q = ~p=>~q
p=>q - logika dodatnia bo q niezanegowane
~p~>~q - logika ujemna bo q zanegowane

Definicja warunku wystarczającego => w logice dodatniej (bo q):
Kod:

p=>q =1
p=>~q =0

p=>q
Jeśli zajdzie p to na pewno => zajdzie q
Z czego wynika że p jest wystarczające dla q
Z czego wynika że drugie zdanie musi być fałszem
Z czego wynika że zbiór p musi się zawierać w całości w zbiorze q
gdzie:
=> - warunek wystarczający, spójnik „musi” („na pewno”) miedzy p i q w całym obszarze logiki

Przykład:
Jeśli jutro będzie padać to na pewno => będzie pochmurno
P=>CH =1
Jeśli jutro będzie padać to na pewno => nie będzie pochmurno
P=>~CH=0
Wniosek:
Warunek wystarczający w zdaniu P=>CH spełniony
Logika dodatnia bo CH.

Definicja warunku wystarczającego => w logice ujemnej (bo ~q):
Kod:

~p=>~q =1
~p=>q =0

~p=>~q
Jeśli zajdzie ~p to na pewno => zajdzie ~q
Z czego wynika że ~p jest wystarczające dla ~q
Z czego wynika że drugie zdanie musi być fałszem
Z czego wynika że zbiór ~p musi się zawierać w całości w zbiorze ~q
gdzie:
=> - warunek wystarczający, spójnik „musi” („na pewno”) miedzy p i q w całym obszarze matematyki

Przykład:
Jeśli jutro nie będzie pochmurno to na pewno => nie będzie padało
~CH=>~P =1
Jeśli jutro nie będzie pochmurno to na pewno => będzie padało
~CH=>P =0
Wniosek:
Warunek wystarczający w zdaniu ~CH=>~P spełniony
Logika ujemna bo ~P.

Definicja warunku koniecznego ~> w algebrze Kubusia:
Warunek konieczny ~> między p i q zachodzi wtedy i tylko wtedy gdy z zanegowanego poprzednika wynika => zanegowany następnik.
p~>q = ~p=>~q – I prawo Kubusia
~p~>~q = p=>q – II prawo Kubusia
gdzie:
=> - warunek wystarczający, spójnik „musi” (na pewno) miedzy p i q w całym obszarze logiki
~> - warunek konieczny, w implikacji spójnik „może” miedzy p i q (nie w równoważności! )

Z powyższego wynika, że całą logikę w zakresie implikacji możemy sprowadzić do badania łatwych w dowodzeniu warunków wystarczających.


4.2 Definicje implikacji w bramkach logicznych

Definicja implikacji prostej
Implikacja prosta to złożenie warunku wystarczającego w logice dodatniej (bo q) z warunkiem koniecznym w logice ujemnej (bo ~q)
p=>q = ~p~>~q

Zero-jedynkowa definicja implikacji prostej:
Kod:

   p q p=>q
A: 1 1  =1
B: 1 0  =0
C: 0 0  =1
D: 0 1  =1

Definicja implikacji prostej wyrażona w bramkach OR i AND.

Twierdzenie Prosiaczka:
Równanie algebry Kubusia dla dowolnej tabeli zero-jedynkowej otrzymujemy opisując wyłącznie linie z tą samą wartością logiczną w wyniku.

Dla powyższej tabeli najprostsze równanie otrzymamy z linii B, bowiem tu mamy samotne zero.
Dla linii B zapisujemy:
B.
p=>q=0 <=> p=1 i q=0
Sprowadzamy wszystkie sygnały do jedynek korzystając z prawa algebry Kubusia:
Jeśli p=0 to ~p=1
stąd:
B.
~(p=>q)=1 <=> p=1 i ~q=1

Definicja spójnika „i”(*):
Iloczyn logiczny (spójnik „i”(*)) jest równy 1 wtedy i tylko wtedy gdy wszystkie zmienne są równe 1
Y=p*q
co matematycznie oznacza:
Y=1 <=> p=1 i q=1

Porównując tą definicję z B widzimy, że w równaniu B możemy opuścić bezwzględne jedynki otrzymując poprawne równanie algebry Kubusia opisujące tabele zero-jedynkową operatora implikacji prostej.
B.
~(p=>q) = p*~q
Przechodzimy do logiki przeciwnej poprzez negację zmiennych i wymianę operatorów na przeciwne:
p=>q = ~p+q
Widzimy, że operator implikacji prostej to najzwyklejsza bramka OR z zanegowana w środku linią p.
Taką bramkę logiczną nazwiemy bramką „musi” =>

Zero-jedynkowa definicja implikacji odwrotnej:
Kod:

   p q p~>q
A: 1 1  =1
B: 1 0  =1
C: 0 0  =1
D: 0 1  =0

Definicja implikacji prostej wyrażona w bramkach OR i AND.
Dla linii D zapisujemy:
D.
p~>q=0 <=> p=0 i q=1
Sprowadzamy wszystkie sygnały do jedynek korzystając z prawa algebry Kubusia:
Jeśli p=0 to ~p=1
stąd:
D.
~(p~>q)=1 <=> ~p=1 i q=1

Stąd równanie algebry Kubusia dla powyższej tabeli zero-jedynkowej:
D.
~(p~>q) = ~p*q
Przechodzimy do logiki przeciwnej poprzez negacje zmiennych i wymianę operatorów na przeciwne:
p~>q = p+~q
Widzimy, że operator implikacji odwrotnej to najzwyklejsza bramka OR z zanegowana w środku linią q.
Taką bramkę logiczną nazwiemy bramką „może” ~>

Zauważmy w zero-jedynkowych definicjach wyżej, nie jest spełniona definicja spójnika „lub”.

Definicja spójnika „lub”(+):
Suma logiczna (spójnik „lub”(+)) n-zmiennych binarnych jest równa 1 wtedy i tylko wtedy gdy którakolwiek zmienna jest równa 1.
Y=p+q
Y=1 <=>p=1 lub q=1

Definicję tą w powyższych tabelach gwałcą linie 1 0 =0 oraz 0 1 =0.
Implikacja to zatem zdecydowanie ani operator OR, ani też AND!

O co więc chodzi w implikacji?

Oczywiście o prawa Kubusia!
p=>q = ~p~>~q
p~>q = ~p=>~q
Po lewej stronie mamy odpowiedź na pytanie:
Co się stanie jeśli zajdzie p?
Natomiast po prawej stronie mamy odpowiedź na pytanie:
Co się stanie jeśli zajdzie ~p?


4.3 Definicja implikacji prostej

Definicja implikacji prostej:
Implikacja prosta to złożenie warunku wystarczającego => w logice dodatniej (bo q) z warunkiem koniecznym ~> w logice ujemnej (bo ~q)
p=>q = ~p~>~q - prawo Kubusia

Symboliczna definicja implikacji prostej.
Kod:

Warunek wystarczający w logice dodatniej (bo q)
A: p=>q=1
B: p=>~q=0
.. a jeśli zajdzie ~p
Prawo Kubusia:
p=>q = ~p~>~q
Warunek konieczny w logice ujemnej (bo ~q)
C: ~p~>~q=1
D: ~p~~>q=1

Gdzie:
=> - warunek wystarczający, spójnik „musi” między p i q w całym obszarze logiki
~> - warunek konieczny, w implikacji spójnik „może” miedzy p i q o definicji:
~p~>~q = p=>q
~~> - naturalny spójnik „może”, wystarczy pokazać jeden przypadek prawdziwy
Zdanie D: nie może być warunkiem koniecznym ~> bo nie jest spełnione prawo Kubusia:
D: ~p~>q = B: p=>~q=0
Zdanie B jest fałszem, zatem D nie może być warunkiem koniecznym ~>.
Zdanie D jest prawdziwe na mocy naturalnego spójnika „może”~~>, wystarczy pokazać jeden przypadek prawdziwy
D: ~p~~>q=1

Kodowanie zero-jedynkowe powyższej definicji:
Kod:

Warunek wystarczający
w logice dodatniej (bo q)
                          |p q p=>q         |~p ~q ~p~>~q
A: p=>q=1                 |1 1  =1 /p=>q=1  | 0  0   =1
B: p=>~q=0                |1 0  =0 /p=>~q=0 | 0  1   =0
.. a jeśli zajdzie ~p
Prawo Kubusia:
p=>q = ~p~>~q
Warunek konieczny
w logice ujemnej (bo ~q)
C: ~p~>~q=1               |0 0 =1           | 1  1   =1 /~p~>~q=1
D: ~p~~>q=1               |0 1 =1           | 1  0   =1 /~p~~>q=1
Punkt odniesienia = zdanie z nagłówka tabeli:
                          |p=1, ~p=0        | ~p=1, p=0
                          |q=1, ~q=0        | ~q=1, q=0

Tożsamość kolumn zero-jedynkowych trzeciej i ostatniej jest dowodem formalnym poprawności prawa Kubusia:
p=>q = ~p~>~q
W komentarzu (po znaku „/”) zapisano linie które biorą bezpośredni udział w opisie matematycznym naturalnej logiki człowieka, pozostałe są ignorowane. Doskonale widać tabelę zero-jedynkową implikacji odwrotnej w kolumnach ~p~>~q.

Znaczenie zer i jedynek w tabelach zero-jedynkowych operatora implikacji prostej:
1.
Po stronie wejścia p i q jedynki i zera oznaczają:
1 - brak negacji sygnału z nagłówka tabeli
0 - negacja sygnału z nagłówka tabeli
2.
Po stronie wyjścia mamy 1 i 0 w warunku wystarczającym:
Kod:

A: p=>q=1    /1 1 =1
B: p=>~q=0   /1 0 =0

p=>q
Jeśli zajdzie p to musi => zajść q
oraz:
Po stronie wyjścia mamy 1 i 1 w warunku koniecznym:
Kod:

C: ~p~>~q=1  /1 1 =1
D: ~p~~>q=1  /1 0 =1

~p~>~q
Jeśli zajdzie ~p to może ~> zajść ~q
Gdzie:
~> - warunek konieczny, w implikacji spójnik „może” między p i q o definicji:
~p~>~q = p=>q - prawo Kubusia

Narysujmy schemat ideowy implikacji prostej w bramkach logicznych:



Z punktu widzenia świata zewnętrznego nie jesteśmy w stanie odróżnić który układ logiczny jest fizycznie zrealizowany, bowiem oba układy dają identyczną tabelę zero-jedynkową operatora implikacji prostej.
Oczywiście dla wejścia p i q oraz wyjścia:
p=>q = ~p~>~q

Odpowiedź na pytanie:
Co będzie jeśli zajdzie p?
Otrzymujemy patrząc na wejścia p i q poprzez bramkę „musi” => bowiem tylko tu widzimy niezanegowane wejście p (p).

Natomiast odpowiedź na pytanie:
Co będzie jeśli zajdzie ~p?
Otrzymujemy patrząc na wejścia p i q poprzez bramkę „może” ~> bowiem tylko tu mamy zanegowane wejście (~p).

Doświadczenie 3.
Zbudować powyższy układ logiczny i sprawdzić zgodność świata fizycznego z tabelami zero-jedynkowymi operatora implikacji prostej wyżej

Jak widzimy odpowiedź na pytanie:
Co będzie jeśli zajdzie p?
Mamy w liniach:
Kod:

A: p=>q=1    /1 1 =1
B: p=>~q=0   /1 0 =0

Bramki „musi” =>

Natomiast odpowiedź na pytanie:
Co będzie jak zajdzie ~p?
Mamy w liniach:
Kod:

C: ~p~>~q=1  /1 1 =1
D: ~p~~>q=1  /1 0 =1

Bramki „może” ~>

Wróćmy do naturalnego języka mówionego …

Przykład:
Jeśli jutro będzie padało to na pewno => będzie pochmurno
P=>CH=1

Analiza matematyczna przez wszystkie możliwe przeczenia p i q.
A.
Jeśli jutro będzie padało to na pewno => będzie pochmurno
P=>CH=1 – twarda prawda, gwarancja matematyczna
Padanie deszczu wystarcza dla istnienia chmur
B.
Jeśli jutro będzie padało to na pewno => nie będzie pochmurno
P=>~CH=0 – twardy fałsz, wynikły tylko i wyłącznie ze zdania A
.. a jeśli jutro nie będzie padało?
Prawo Kubusia:
P=>CH = ~P~>~CH
C.
Jeśli jutro nie będzie padało to może ~> nie być pochmurno
~P~>~CH=1 – miękka prawda, może zajść ale nie musi
Brak deszczu jest warunkiem koniecznym aby nie było chmur.
LUB
D.
Jeśli jutro nie będzie padało to może ~~> być pochmurno
~P~~>CH=1 – miękka prawda, może zajść ale nie musi

W zdaniu C zachodzi warunek konieczny na mocy prawa Kubusia.
C: ~P~>~CH = A: P=>CH =1
Prawa strona jest prawdą, zatem w zdaniu C zachodzi warunek konieczny
Interpretacja warunku koniecznego w logice ujemnej (bo ~q):
Wymuszając padanie deszczu, wymuszamy istnienie chmur

W zdaniu D nie zachodzi warunek konieczny bo prawo Kubusia:
D: ~P~>CH = B: P=>~CH =0
Prawa strona (zdanie B) jest fałszem, zatem w zdaniu D nie zachodzi warunek konieczny
Zdanie D jest prawdziwe na mocy naturalnego spójnika „może” ~~>, wystarczy sama możliwość zaistnienia.


4.4 Operator implikacji prostej w zbiorach

Definicja operatora implikacji prostej:
Implikacja prosta to złożenie warunku wystarczającego => w logice dodatniej (bo q) z warunkiem koniecznym ~> w logice ujemnej (bo ~q)
p=>q = ~p~>~q
gdzie:
=> - warunek wystarczający, spójnik „musi” między p i q
~> - warunek konieczny, w implikacji spójnik „może” miedzy p i q

Definicja warunku wystarczającego w logice dodatniej (bo q)
p=>q
Jeśli zajdzie p to na pewno => zajdzie q
Z czego wynika, że zbiór p musi zawierać się w całości w zbiorze q
Z czego wynika, że p musi być wystarczające dla q.
Z czego wynika że zbiór p musi zawierać się w całości w zbiorze q

Stąd mamy definicję warunku wystarczającego w zbiorach:



Z wykresu odczytujemy definicję symboliczną warunku wystarczającego w logice dodatniej (bo q):
A.
Jeśli zajdzie p to na pewno => zajdzie q
p=>q=1 - twarda prawda, gwarancja matematyczna
Zbiory:
p*q=1 - zbiór p zawiera się w całości w zbiorze q
stąd:
B.
Jeśli zajdzie p to na pewno => nie zajdzie q
p=>~q=0 - twardy fałsz, wynikły tylko i wyłącznie ze zdania A
Zbiory:
p*~q=0
Zbiory p i ~q są rozłączne, stąd wynik iloczynu logicznego jest równy 0, co doskonale widać na diagramie.

Definicja symboliczna warunku wystarczającego w logice dodatniej (bo q):
Kod:

p=> q=1
p*q  =1 - istnieje cześć wspólna zbiorów p i q
p=>~q=0
p*~q =0 - zbiory p i ~q są rozłączne, wynik: 0=zbiór pusty

p=>q
Jeśli zajdzie p to na pewno => zajdzie q
Z czego wynika że zbiór p musi zawierać się w całości w zbiorze q
Z czego wynika że p jest wystarczające dla q
Warunek wystarczający => w logice dodatniej (bo q) zachodzi wtedy i tylko wtedy gdy iloczyn logiczny zbiorów p*q jest zbiorem niepustym oraz iloczyn logiczny zbiorów p*~q jest zbiorem pustym.

… a jeśli zajdzie ~p ?
Prawo Kubusia:
p=>q = ~p~>~q

Zobaczmy ten przypadek na diagramie.



Z wykresu odczytujemy definicję warunku koniecznego ~> w logice ujemnej (bo ~q)
C.
Jeśli zajdzie ~p to może ~> zajść ~q
~p~>~q=1 - miękka prawda, może zajść ale nie musi bo zdanie D
Zbiory:
~p*~q=1 - istnieje cześć wspólna
lub
D.
Jeśli zajdzie ~p to może ~~> zajść q
~p~~>q=1 - miękka prawda, może zajść ale nie musi bo zdanie C
Zbiory:
~p*q=1 - istnieje część wspólna
W zdaniu D nie zachodzi warunek konieczny ~> bo prawo Kubusia nie może być zgwałcone:
D: ~p~>q = B: p=>~q =0
Zdanie B jest fałszywe zatem w zdaniu D nie może zachodzić warunek konieczny ~>.
Zdanie D jest prawdziwe na mocy naturalnego spójnika „może” ~~>, wystarczy pokazać jeden przypadek prawdziwy.

Symboliczna definicja implikacji prostej:
Kod:

Warunek wystarczający w logice dodatniej (bo q)
A: p=>q=1       /Twarda prawda, gwarancja matematyczna
B: p=>~q=0      /Twardy fałsz, wynikły tylko i wyłącznie z A
… a jeśli zajdzie ~p ?
Prawo Kubusia:
p=>q = ~p~>~q
Warunek konieczny w logice ujemnej (bo ~q)
C: ~p~>~q=1     /miękka prawda, może zajść ale nie musi bo D
D: ~p~~>q=1     /miękka prawda, może zajść ale nie musi bo C

p=>q = ~p~>~q
Jeśli zajdzie p to na pewno => zajdzie q
Z czego wynika że druga linia musi być twardym fałszem
Z czego wynika że p musi być wystarczające dla q
Gdzie:
=> - warunek wystarczający, spójnik „na pewno” w całym obszarze logiki
~> - warunek konieczny, w implikacji spójnik „może” (nie w równoważności!)
~~> - naturalny spójnik „może”, wystarczy pokazać jeden przypadek prawdziwy

Definicja warunku koniecznego wynika z prawa Kubusia:
~p~>~q = p=>q
Warunek konieczny ~> miedzy p i q zachodzi wtedy i tylko wtedy gdy z zanegowanego poprzednika wynika => zanegowany następnik.
Z definicji tej wynika, że całą logikę matematyczną możemy sprowadzić do badania łatwych w dowodzeniu warunków wystarczających =>.

Definicja operatora implikacji prostej:
p=>q = ~p~>~q - prawo Kubusia

Kodowanie zero-jedynkowe powyższej definicji:
Kod:

Warunek wystarczający
w logice dodatniej (bo q)
                          |p q p=>q         |~p ~q ~p~>~q
A: p=>q=1                 |1 1  =1 /p=>q=1  | 0  0   =1
B: p=>~q=0                |1 0  =0 /p=>~q=0 | 0  1   =0
.. a jeśli zajdzie ~p
Prawo Kubusia:
p=>q = ~p~>~q
Warunek konieczny
w logice ujemnej (bo ~q)
C: ~p~>~q=1               |0 0 =1           | 1  1   =1 /~p~>~q=1
D: ~p~~>q=1               |0 1 =1           | 1  0   =1 /~p~~>q=1
Punkt odniesienia = zdanie z nagłówka tabeli:
                          |p=1, ~p=0        | ~p=1, p=0
                          |q=1, ~q=0        | ~q=1, q=0

Tożsamość kolumn zero-jedynkowych trzeciej i ostatniej jest dowodem formalnym poprawności prawa Kubusia:
p=>q = ~p~>~q

W komentarzu (po znaku „/”) zapisano linie które biorą bezpośredni udział w opisie matematycznym naturalnej logiki człowieka, pozostałe są ignorowane. Doskonale widać tabelę zero-jedynkową implikacji odwrotnej w kolumnach ~p~>~q.

Znaczenie zer i jedynek w tabelach zero-jedynkowych operatora implikacji prostej:
1.
Po stronie wejścia p i q jedynki i zera oznaczają:
1 - brak negacji sygnału z nagłówka tabeli
0 - negacja sygnału z nagłówka tabeli
2.
Po stronie wyjścia mamy 1 i 0 w warunku wystarczającym:
Kod:

A: p=>q=1    /1 1 =1
B: p=>~q=0   /1 0 =0

p=>q
Jeśli zajdzie p to musi => zajść q
oraz:
Po stronie wyjścia mamy 1 i 1 w warunku koniecznym:
Kod:

C: ~p~>~q=1  /1 1 =1
D: ~p~~>q=1  /1 0 =1

~p~>~q
Jeśli zajdzie ~p to może ~> zajść ~q
Gdzie:
~> - warunek konieczny, w implikacji spójnik „może” między p i q o definicji:
~p~>~q = p=>q - prawo Kubusia

Wnioski:
1.
Mózg człowieka operuje wyłącznie na zbiorach, poszukując części wspólnej zbiorów, wtedy i tylko wtedy zdanie jest prawdziwe.
2.
Matematycznie, z punktu widzenia świata zewnętrznego widzimy zero-jedynkową definicje operatora implikacji prostej albo implikacji odwrotnej w zależności od przyjętego punktu odniesienia.
3.
Sposób kodowania zero-jedynkowego nie wpływa na treść samych zdań, stąd oba kodowania zero-jedynkowe są równoważne.

Przykład:
A.
Jeśli liczba jest podzielna przez 8 to na pewno => jest podzielna przez 2
P8=>P2=1 bo 8,16… - twarda prawda, gwarancja matematyczna, zachodzi zawsze bez wyjątków
Zbiory:
P8=[8,16…]
P2=[2,4,8,16..]
P8*P2=1 bo 8,16…
B.
Jeśli liczba jest podzielna przez 8 to na pewno => nie jest podzielna przez 2
P8=>~P2=0 – twardy fałsz wynikły tylko i wyłącznie ze zdania A
Zbiory:
P8=[8,16..]
~P2=[1,3,5…]
P8*~P2=0 – zbiory P8 i ~P2 istnieją, ale są rozłączne, stąd 0 w wyniku
… a jeśli liczba nie jest podzielna przez 8 ?
Prawo Kubusia:
P8=>P2 = ~P8~>~P2
C.
Jeśli liczba nie jest podzielna przez 8 to może ~> nie być podzielna przez 2
~P8~>~P2=1 bo 3,5.. – miękka prawda, może zajść ale nie musi bo D
Zbiory:
~P8=[2,3,5…]
~P2=[3,5,7…]
~P8*~P2=1 bo 3,5…
LUB
D.
Jeśli liczba nie jest podzielna przez 8 to może ~~> być podzielna przez 2
~P8~~>P2=1 bo 2,4… - miękka prawda, może zajść ale nie musi bo C
Zbiory:
~P8=[2,4,5…]
P2=[2,4,6…]
~P8*P2=1 bo 2,4…
W zdaniu D nie zachodzi warunek konieczny bo prawo Kubusia:
D: ~P8~>P2 = B: P8=>~P2=0 bo 8
Prawa strona jest fałszem zatem w zdaniu D nie ma prawa zachodzić warunek konieczny. Zdanie D jest prawdziwe na mocy naturalnego spójnika „może” ~~>, wystarczy pokazać jeden przypadek prawdziwy.

Doskonale widać tabelę zero-jedynkową implikacji prostej dla kodowania zgodnego ze zdaniem wypowiedzianym A:
P8=1, ~P8=0
P2=1, ~P2=0
Kod:

A: P8=>P2=1 bo 8   /1 1 =1
B: P8=>~P2=0       /1 0 =0
C: ~P8~>~P2=1 bo 3 /0 0 =1
D: ~P8~~>P2=1 bo 2 /0 1 =1

Dla nieskończonej ilości losowań puste będzie wyłącznie pudełko B, pozostałe będą niepuste, stąd taki a nie inny rozkład wynikowych zer i jedynek.

Twierdzenie Sowy:
W świecie zdeterminowanym (gdy znamy rozwiązanie) zdanie prawdziwe wchodzące w skład dowolnego operatora ulega redukcji do spójnika „i”(*).

Definicja implikacji w zbiorach:
Kod:

A: P8=>P2     / P8* P2
B: P8=>~P2    / P8*~P2
C: ~P8~>~P2   /~P8*~P2
D: ~P8~~>P2   /~P8* P2


Przykład:
Wylosowana liczba: 8
Dla tego losowania zdanie A będzie prawdziwe, pozostałe zdania będą fałszywe
Jeśli wylosowano liczbę 8 (L8=1) to jest ona podzielna przez 8 (P8=1) i jest podzielna przez 2 (P2=1)
L3=>P8*P2
Co matematycznie oznacza:
L8=1 => P8=1 i P2=1
stąd dla liczby 8 mamy:
~P8=0, ~P2=0
stąd definicja zero-jedynkowa w zbiorach:
Kod:

A: P8=>P2     / P8* P2 =1*1=1
B: P8=>~P2    / P8*~P2 =1*0=0
C: ~P8~>~P2   /~P8*~P2 =0*0=0
D: ~P8~~>P2   /~P8* P2 =0*1=0

Doskonale widać zero-jedynkową definicję operatora AND

Wylosowana liczba: 3
Dla tego losowania zdanie C będzie prawdziwe, pozostałe zdania będą fałszywe
Jeśli wylosowano liczbę 3 (L3=1) to nie jest ona podzielna przez 8 (~P8=1) i nie jest podzielna przez 2 (~P2=1)
L3=>~P8*~P2
Co matematycznie oznacza:
L3=1 => ~P8=1 i ~P2=1
stąd dla liczby 3 mamy:
P8=0, P2=0
stąd definicja zero-jedynkowa w zbiorach:
Kod:

A: P8=>P2     / P8* P2 =0*0=0
B: P8=>~P2    / P8*~P2 =0*1=0
C: ~P8~>~P2   /~P8*~P2 =1*1=1
D: ~P8~~>P2   /~P8* P2 =1*0=0

Doskonale widać zero-jedynkową definicję operatora AND

Wylosowana liczba: 2
Dla tego losowania zdanie D będzie prawdziwe, pozostałe zdania będą fałszywe
Jeśli wylosowano liczbę 2 (L2=1) to nie jest ona podzielna przez 8 (~P8=1) i jest podzielna przez 2 (P2=1)
L2=>~P8*P2
co matematycznie oznacza:
L2=1 => ~P8=1 i P2=1
Stąd dla liczby 2 mamy:
P8=0, ~P2=0
stąd definicja zero-jedynkowa w zbiorach:
Kod:

A: P8=>P2     / P8* P2 =0*1=0
B: P8=>~P2    / P8*~P2 =0*0=0
C: ~P8~>~P2   /~P8*~P2 =1*0=0
D: ~P8~~>P2   /~P8* P2 =1*1=1

Doskonale widać zero-jedynkową definicję operatora AND


4.5 Definicja implikacji odwrotnej

Definicja implikacji odwrotnej:
Implikacja odwrotna to złożenie warunku koniecznego ~> w logice dodatniej (bo q) z warunkiem wystarczającym => w logice ujemnej (bo ~q)
p~>q = ~p=>~q - prawo Kubusia

Symboliczna definicja implikacji odwrotnej:
Kod:

Warunek konieczny w logice dodatniej (bo p)
A: p~>q =1
B: p~~>~q=1
.. a jeśli zajdzie ~p?
Prawo Kubusia:
p~>q = ~p=>~q
Warunek wystarczający w logice ujemnej (bo ~q)
C: ~p=>~q=1
D: ~p=>q =0


Kodowanie zero-jedynkowe powyższej definicji:
Kod:

Warunek konieczny
w logice dodatniej (bo q)
                          |p q p~>q          |~p ~q ~p=>~q
A: p~>q=1                 |1 1  =1 /p~>q=1   | 0  0   =1
B: p~~>~q=1               |1 0  =1 /p~~>~q=0 | 0  1   =1
.. a jeśli zajdzie ~p
Prawo Kubusia:
p~>q = ~p=>~q
Warunek wystarczający
w logice ujemnej (bo ~q)
C: ~p=>~q=1               |0 0 =1            | 1  1   =1 /~p=>~q=1
D: ~p=>q =0               |0 1 =0            | 1  0   =0 /~p=> q=0
Punkt odniesienia = zdanie z nagłówka tabeli:
                          |p=1, ~p=0         | ~p=1, p=0
                          |q=1, ~q=0         | ~q=1, q=0

Tożsamość kolumn trzeciej i ostatniej jest dowodem formalnym poprawności prawa Kubusia:
p~>q = ~p=>~q
W komentarzu (po znaku „/”) zapisano linie które biorą bezpośredni udział w opisie matematycznym naturalnej logiki człowieka, pozostałe są ignorowane. Doskonale widać tabelę zero-jedynkową implikacji prostej w kolumnach ~p=>~q.

Znaczenie zer i jedynek w tabelach zero-jedynkowych operatora implikacji odwrotnej:
1.
Po stronie wejścia p i q jedynki i zera oznaczają:
1 - brak negacji sygnału z nagłówka tabeli
0 - negacja sygnału z nagłówka tabeli
2.
Po stronie wyjścia mamy 1 i 1 w warunku koniecznym:
Kod:

C: p~>q=1   /1 1 =1
D: p~~>~q=1 /1 0 =1

p~>q
Jeśli zajdzie p to może ~> zajść q
Gdzie:
~> - warunek konieczny, w implikacji spójnik „może” między p i q o definicji:
p~>q = ~p=>~q - prawo Kubusia
oraz:
Po stronie wyjścia mamy 1 i 0 w warunku wystarczającym:
Kod:

A: ~p=>~q=1    /1 1 =1
B: ~p=>q=0     /1 0 =0

~p=>~q
Jeśli zajdzie ~p to musi => zajść ~q

Narysujmy schemat ideowy implikacji odwrotnej:



Z punktu widzenia świata zewnętrznego nie jesteśmy w stanie odróżnić który układ logiczny jest fizycznie zrealizowany, bowiem oba układy dają identyczną tabelę zero-jedynkową operatora implikacji odwrotnej.
Oczywiście dla wejścia p i q oraz wyjścia:
p~>q = ~p=>~q

Odpowiedź na pytanie:
Co będzie jeśli zajdzie p?
Otrzymujemy patrząc na wejścia p i q poprzez bramkę „może” ~> bowiem tylko tu widzimy niezanegowane wejście p (p).

Natomiast odpowiedź na pytanie:
Co będzie jeśli zajdzie ~p?
Otrzymujemy patrząc na wejścia p i q poprzez bramkę „musi” => bowiem tylko tu mamy zanegowane wejście (~p).

Doświadczenie 4.
Zbudować powyższy układ logiczny i sprawdzić zgodność świata fizycznego z tabelami zero-jedynkowymi operatora implikacji odwrotnej wyżej.

Jak widzimy odpowiedź na pytanie:
Co będzie jeśli zajdzie p?
Mamy w liniach:
Kod:

A: p~> q =1   /1 1 =1
B: p~~>~q=1   /1 0 =1

Bramki „może” ~>

Natomiast odpowiedź na pytanie:
Co będzie jak zajdzie ~p?
Mamy w liniach:
Kod:

C: ~p=>~q=1  /1 1 =1
D: ~p=> q=0  /1 0 =0

Bramki „musi” =>

Wróćmy do naturalnego języka mówionego …

Przykład:
Jeśli jutro będzie pochmurno to może ~> padać
CH~>P

Analiza matematyczna przez wszystkie możliwe przeczenia p i q:
A.
Jeśli jutro będzie pochmurno to może ~> padać
CH~>P =1 – miękka prawda, może zajść ale nie musi
Chmury są warunkiem koniecznym dla deszczu.
LUB
B.
Jeśli będzie pochmurno to może ~~> nie padać
CH~~>~P=1 – miękka prawda, może zajść ale nie musi
… a jeśli nie będzie pochmurno?
Prawo Kubusia:
CH~>P = ~CH=>~P
Warunek wystarczający w logice ujemnej (bo ~q)
C.
Jeśli jutro nie będzie pochmurno to na pewno => nie będzie padać
~CH=>~P=1 – twarda prawda, gwarancja matematyczna
Brak chmur wystarcza aby nie padało.
D.
Jeśli jutro nie będzie pochmurno to na pewno => będzie padać
~CH=>P=0 – twardy fałsz, wynikły tylko i wyłącznie ze zdania C

Zauważmy że:
A: CH~>P = C: ~CH=>~P =1
Zdanie C jest prawdziwe, zatem w zdaniu A musi zachodzić warunek konieczny ~>.
Znaczenie warunku koniecznego w logice dodatniej (bo P)
Zabieramy chmury wykluczając możliwość padania.

Zauważmy, że jak jutro będzie pochmurno to mamy rzucanie monetą, może padać (zdanie A) albo może nie padać (zdanie B).
stąd:
~> - warunek konieczny, spójnik „może” między p i q, w implikacji to po prostu „rzucanie monetą”

W zdaniu B nie zachodzi warunek konieczny bo nie zachodzi tu prawo Kubusia:
B: CH~>~P = D: ~CH=>P=0
Prawa strona jest fałszem, zatem z lewej strony nie zachodzi warunek konieczny ~>
Zdanie B jest prawdziwe na mocy naturalnego spójnika „może” ~~>, wystarczy sama możliwość zaistnienia.


4.6 Operator implikacji odwrotnej w zbiorach

Definicja implikacji odwrotnej:
Implikacja odwrotna to złożenie warunku koniecznego ~> w logice dodatniej (bo q) z warunkiem wystarczającym => w logice ujemnej (bo ~q)
p~>q = ~p=>~q – prawo Kubusia
gdzie:
~> - warunek konieczny, spójnik „może” miedzy p i q
=> - warunek wystarczający, w implikacji spójnik „musi” między p i q

Definicja warunku koniecznego wynika z prawa Kubusia:
p~>q = ~p=>~q
Warunek konieczny ~> między p i q zachodzi wtedy i tylko wtedy gdy z zanegowanego poprzednika wynika => zanegowany następnik.

Warunek konieczny w diagramie logiki wygląda następująco:



p~>q

Z wykresu odczytujemy definicje symboliczną warunku koniecznego w logice dodatniej (bo q):
A.
Jeśli zajdzie p to może ~> zajść q
p~>q=1 - miękka prawda, może zajść ale nie musi, bo zdanie B
Zbiory:
p*q=1 - istnieje cześć wspólna zbiorów p i q
LUB
B.
Jeśli zajdzie p to może ~~> zajść ~q
p~~>~q=1 - miękka prawda, może zajść ale nie musi, bo zdanie A
Zbiory:
p*~q=1 - istnieje część wspólna zbiorów p i ~q

… a jeśli nie zajdzie ~p ?
Prawo Kubusia:
p~>q = ~p=>~q

Zobaczmy to na diagramie logicznym:



~p=>~q

Z diagramu odczytujemy:
C.
Jeśli zajdzie ~p to na pewno => zajdzie ~q
~p=>~q=1 - twarda prawda, gwarancja matematyczna, zachodzi zawsze, bez wyjątków
Zbiory:
~p*~q=1 - zbiór ~p zawiera się w całości w zbiorze ~q!
stąd:
D.
Jeśli zajdzie ~p to na pewno => zajdzie q
~p=>q=0 - twardy fałsz, wynikły tylko i wyłącznie ze zdania C
Zbiory:
~p*q=0
Zbiory ~p i q istnieją, ale są rozłączne, stąd wynik iloczynu logicznego jest równy 0, co doskonale widać na diagramie.

Zauważmy, że w zdaniu B nie może zachodzić warunek konieczny bo prawo Kubusia:
B: p~>~q = D: ~p=>q=0
Zdanie D jest fałszywe, zatem w zdaniu B nie może zachodzić warunek konieczny ~>.
Zdanie B jest prawdziwe na mocy naturalnego spójnika „może” ~~>, wystarczy pokazać jeden przypadek prawdziwy.

Definicja symboliczna warunku wystarczającego w logice ujemnej (bo q):
Kod:

~p=>~q=1
~p*~q =1 - istnieje część wspólna zbiorów ~p i ~q
~p=>q =0
~p*q  =0 - zbiory ~p i q są rozłączne, stąd wynik: 0=zbiór pusty

~p=>~q
Jeśli zajdzie ~p to na pewno => zajdzie ~q
Z czego wynika że zajście ~p wystarcza dla zajścia ~q
Warunek wystarczający => w logice ujemnej (bo ~q) zachodzi wtedy i tylko wtedy gdy iloczyn logiczny zbiorów ~p*~q jest zbiorem niepustym oraz iloczyn logiczny zbiorów ~p*q jest zbiorem pustym.

Symboliczna definicja implikacji odwrotnej:
Kod:

Warunek konieczny w logice dodatniej (bo q)
A: p~>q  =1   - miękka prawda, może zajść ale nie musi
B: p~~>~q=1   - miękka prawda, może zajść ale nie musi
… a jeśli zajdzie ~p ?
Prawo Kubusia:
p~>q = ~p=>~q
Warunek wystarczający w logice ujemnej (bo ~q)
C: ~p=>~q=1   - twarda prawda, gwarancja matematyczna
D: ~p=>q =0   - twardy fałsz, wynikły tylko i wyłącznie z C

p~>q
Jeśli zajdzie p to „może” ~> zajść q
bo druga linia p~~>~q też ma prawo wystąpić
Gdzie:
~> - warunek konieczny
=> - warunek wystarczający
~~> - naturalny spójnik „może”, wystarczy pokazać jeden przypadek prawdziwy

Definicja warunku koniecznego wynika z prawa Kubusia:
p~>q = ~p=>~q
Warunek konieczny ~> miedzy p i q zachodzi wtedy i tylko wtedy gdy z zanegowanego poprzednika wynika => zanegowany następnik.
Z definicji tej wynika, że całą logikę matematyczną możemy sprowadzić do badania łatwych w dowodzeniu warunków wystarczających =>.

Definicja operatora implikacji odwrotnej:
p~>q = ~p=>~q - prawo Kubusia

Kodowanie zero-jedynkowe powyższej definicji:
Kod:

Warunek konieczny
w logice dodatniej (bo q)
                          |p q p~>q          |~p ~q ~p=>~q
A: p~>q=1                 |1 1  =1 /p~>q=1   | 0  0   =1
B: p~~>~q=1               |1 0  =1 /p~~>~q=0 | 0  1   =1
.. a jeśli zajdzie ~p
Prawo Kubusia:
p~>q = ~p=>~q
Warunek wystarczający
w logice ujemnej (bo ~q)
C: ~p=>~q=1               |0 0 =1            | 1  1   =1 /~p=>~q=1
D: ~p=>q =0               |0 1 =0            | 1  0   =0 /~p=> q=0
Punkt odniesienia = zdanie z nagłówka tabeli:
                          |p=1, ~p=0         | ~p=1, p=0
                          |q=1, ~q=0         | ~q=1, q=0

Tożsamość kolumn trzeciej i ostatniej jest dowodem formalnym poprawności prawa Kubusia:
p~>q = ~p=>~q
W komentarzu (po znaku „/”) zapisano linie które biorą bezpośredni udział w opisie matematycznym naturalnej logiki człowieka, pozostałe są ignorowane. Doskonale widać tabelę zero-jedynkową implikacji prostej w kolumnach ~p=>~q.

Znaczenie zer i jedynek w tabelach zero-jedynkowych operatora implikacji odwrotnej:
1.
Po stronie wejścia p i q jedynki i zera oznaczają:
1 - brak negacji sygnału z nagłówka tabeli
0 - negacja sygnału z nagłówka tabeli
2.
Po stronie wyjścia mamy 1 i 1 w warunku koniecznym:
Kod:

C: p~>q=1   /1 1 =1
D: p~~>~q=1 /1 0 =1

p~>q
Jeśli zajdzie p to może ~> zajść q
Gdzie:
~> - warunek konieczny, w implikacji spójnik „może” między p i q o definicji:
p~>q = ~p=>~q - prawo Kubusia
oraz:
Po stronie wyjścia mamy 1 i 0 w warunku wystarczającym:
Kod:

A: ~p=>~q=1    /1 1 =1
B: ~p=>q=0     /1 0 =0

~p=>~q
Jeśli zajdzie ~p to musi => zajść ~q

Jak widzimy, mózg człowieka operuje wyłącznie na zbiorach, poszukując części wspólnej zbiorów, wtedy i tylko wtedy zdanie jest prawdziwe.

Przykład:
Jeśli liczba jest podzielna przez 2 to może ~> być podzielna przez 8
P2~>P8

Analiza matematyczna:
A.
Jeśli liczba jest podzielna przez 2 to może ~> być podzielna przez 8
P2~>P8=1 bo 8,16… - miękka prawda, może zajść ale nie musi bo zdanie B
Zbiory:
P2=[2,4,8,16..]
P8=[8,16…]
P2*P8=1 bo 8,16…
LUB
B.
Jeśli liczba jest podzielna przez 2 to może ~~> nie być podzielna przez 8
P2~~>~P8=1 bo 2,4… - miękka prawda, może zajść ale nie musi bo zdanie A
Zbiory:
P2=[2,4,6…]
~P8=[2,4,5…]
P2*~P8=1 bo 2,4…
… a jeśli liczba nie jest podzielna przez 2 ?
Prawo Kubusia:
P2~>P8 = ~P2=>~P8
C.
Jeśli liczba nie jest podzielna przez 2 to na pewno => nie jest podzielna przez 8
~P2=>~P8=1 bo 3,5… - twarda prawda, gwarancja matematyczna
Zbiory:
~P2=[3,5,7…]
~P8=[2,3,5…]
~P2*~P8=1 bo 3,5…
stad:
D.
Jeśli liczba nie jest podzielna przez 2 to na pewno => jest podzielna przez 8
~P2=>P8=0 – twardy fałsz wynikły tylko i wyłącznie ze zdania C
Zbiory:
~P2=[1,3,5…]
P8=[8,16..]
~P2*P8=0 - zbiory rozłączne, wynik =0

W zdaniu B nie zachodzi warunek konieczny bo prawo Kubusia:
B: ~P2~>P8 = D: P2=>~P8=0 bo 8
Prawa strona jest fałszem zatem w zdaniu B nie ma prawa zachodzić warunek konieczny. Zdanie B jest prawdziwe na mocy naturalnego spójnika „może” ~~>, wystarczy pokazać jeden przypadek prawdziwy.

Doskonale widać tabelę zero-jedynkową implikacji odwrotnej dla kodowania zgodnego ze zdaniem wypowiedzianym A:
P2=1, ~P2=0
P8=1, ~P8=0
Kod:

A: P2~>P8=1 bo 8   /1 1 =1
B: P2~~>~P8=1 bo 2 /1 0 =1
C: ~P2=>~P8=1 bo 3 /0 0 =1
D: ~P2=>P8=0       /0 1 =0

Po nieskończonej ilości losowań puste będzie wyłącznie pudełko D, stąd taki a nie inny rozkład wynikowych zer i jedynek.

Twierdzenie Sowy:
W świecie zdeterminowanym (gdy znamy rozwiązanie) zdanie prawdziwe wchodzące w skład dowolnego operatora ulega redukcji do spójnika „i”(*),

Definicja implikacji w zbiorach:
Kod:

A: P2~>P8     / P2* P8
B: P2~~>~P8   / P2*~P8
C: ~P2=>~P8   /~P2*~P8
D: ~P2=>P8    /~P2* P8


Przykład:
Wylosowana liczba: 8
Dla tego losowania zdanie A będzie prawdziwe, pozostałe zdania będą fałszywe
Jeśli wylosowano liczbę 8 (L8=1) to jest ona podzielna przez 2 (P2=1) i jest podzielna przez 8 (P8=1)
L8=>P2*P8
Co matematycznie oznacza:
L8=1 => P2=1 i P8=1
Kodowanie zero-jedynkowe tabeli zbiorów dla:
P2=1, ~P2=0
P8=1. ~P8=0
Kod:

A: P2~>P8     / P2* P8 =1*1=1
B: P2~~>~P8   / P2*~P8 =1*0=0
C: ~P2=>~P8   /~P2*~P8 =0*0=0
D: ~P2=>P8    /~P2* P8 =0*1=0

Doskonale widać zero-jedynkową definicję operatora AND

Wylosowana liczba: 2
Dla tego losowania zdanie B będzie prawdziwe, pozostałe zdania będą fałszywe
Jeśli wylosowano liczbę 2 (L2=1) to jest ona podzielna przez 2 (P2=1) i nie jest podzielna przez 8 (~P8=1)
L2=>P2*~P8
Co matematycznie oznacza:
L2=1 => P2=1 i ~P8=1
Kodowanie zero-jedynkowe tabeli zbiorów dla:
P2=1, ~P2=0
~P8=1. P8=0
Kod:

A: P2~>P8     / P2* P8 =1*0=0
B: P2~~>~P8   / P2*~P8 =1*1=1
C: ~P2=>~P8   /~P2*~P8 =0*1=0
D: ~P2=>P8    /~P2* P8 =0*0=0

Doskonale widać zero-jedynkową definicję operatora AND

Wylosowana liczba: 3
Dla tego losowania zdanie C będzie prawdziwe, pozostałe będą fałszywe
Jeśli wylosowano liczbę 3 (L3=1) to nie jest ona podzielna przez 2 (~P2=1) i nie jest podzielna przez 8 (~P8=1)
L3=>~P2*~P8
co matematycznie oznacza:
L3=1 => ~P2=1 i ~P8=1
Kodowanie zero-jedynkowe tabeli zbiorów dla:
~P2=1, P2=0
~P8=1. P8=0
Kod:

A: P2~>P8     / P2* P8 =0*0=0
B: P2~~>~P8   / P2*~P8 =0*1=0
C: ~P2=>~P8   /~P2*~P8 =1*1=1
D: ~P2=>P8    /~P2* P8 =1*0=0

Doskonale widać zero-jedynkową definicję operatora AND

Dla nieskończonej ilości losowań puste będzie wyłącznie pudełko D, pozostałe będą niepuste, stąd taki a nie inny rozkład wynikowych zer i jedynek.
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 35963
Przeczytał: 15 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Nie 0:38, 05 Lut 2012    Temat postu:

4.7 Operator równoważności

Zero-jedynkowa definicja równoważności:
Kod:

p q p<=>q
1 1  =1
1 0  =0
0 0  =1
0 1  =0

Gdzie:
<=> - operator równoważności, spójnik „wtedy i tylko wtedy” w naturalnej logice człowieka

Definicja równoważności:
p<=>q = (p=>q)*[p~>q] = (p=>q)*(~p=>~q)
Równoważność to iloczyn logiczny wirtualnych definicji implikacji prostej i odwrotnej.

Równoważna definicja równoważności:
Równoważność to jednoczesne zachodzenie warunku wystarczającego => w logice dodatniej (bo q) i warunku wystarczającego => w logice ujemnej (bo ~q).
p<=>q = (p=>q)*(~p=>~q)

Przypomnijmy sobie definicje implikacji prostej i odwrotnej.

Symboliczna definicja implikacji prostej:
Kod:

Warunek wystarczający => w logice dodatniej (bo q)
=> - gwarancja matematyczna
A: p=>  q=1 - gwarancja matematyczna
B: p=> ~q=0
.. a jeśli zajdzie ~p?
Prawo Kubusia:
p=>q=~p~>~q
Warunek konieczny ~> w logice ujemnej (bo ~q)
~> - rzucanie monetą
C: ~p~>~q=1
D: ~p~~>q=1

Definicja implikacji prostej w równaniu algebry Boole’a:
p=>q = ~p~>~q - prawo Kubusia
gdzie:
=> - spójnik „na pewno” miedzy p i q, warunek wystarczający o definicji wyłącznie w A i B
~> - spójnik „może” miedzy p i q, warunek konieczny o definicji:
~p~>~q = p=>q
~~> - naturalny spójnik „może”, wystarczy pokazać jeden przypadek prawdziwy
Gwarancja matematyczna wyrażona spójnikiem „i”(*):
p=>q = ~(p*~q)
W implikacji prostej mamy gwarancję po stronie p i totalny brak gwarancji po stronie ~p.
Po stronie ~p mamy najzwyklejsze „rzucanie monetą”.
Stąd:
Implikacja prosta = jedna i tylko jedna gwarancja matematyczna

Przykład:
Jeśli jutro będzie padało to na pewno będzie pochmurno
P=>CH

Symboliczna definicja implikacji odwrotnej:
Kod:

Warunek konieczny ~> w logice dodatniej (bo q)
~> - rzucanie monetą
A: p~>  q=1
B: p~~>~q=1
.. a jeśli zajdzie ~p?
Prawo Kubusia:
p~>q=~p=>~q
Warunek wystarczający => w logice ujemnej (bo ~q)
=> - gwarancja matematyczna
C: ~p=>~q=1 - gwarancja matematyczna
D: ~p=> q=0

Definicja implikacji odwrotnej w równaniu algebry Boole’a:
p~>q = ~p=>~q - prawo Kubusia
gdzie:
=> - spójnik „na pewno”, warunek wystarczający o definicji wyłącznie w C i D
~> - spójnik „może”, warunek konieczny o definicji:
p~>q = ~p=>~q
~~> - naturalny spójnik „może”, wystarczy pokazać jeden przypadek prawdziwy
Gwarancja matematyczna wyrażona spójnikiem „i”(*):
~p=>~q = ~(~p*q)
W implikacji odwrotnej mamy gwarancję po stronie ~p i totalny brak gwarancji po stronie p.
Po stronie p mamy najzwyklejsze „rzucanie monetą”.
Stąd:
Implikacja odwrotna = jedna i tylko jedna gwarancja matematyczna

Przykład:
Jeśli jutro będzie pochmurno to może padać
CH~>P

Na mocy powyższych definicji mamy najważniejsze definicje w całej logice matematycznej!
To definicje warunku wystarczającego w logice dodatniej i ujemnej.

1.
Definicja warunku wystarczającego w logice dodatniej (bo q):
Kod:

Warunek wystarczający w logice dodatniej (bo q)
A: p=>  q=1
B: p=> ~q=0

p=>q
Jeśli zajdzie p to „na pewno” => zajdzie q
Z czego wynika że druga linia musi być fałszem
Z czego wynika że p musi być wystarczające dla q
Z czego wynika że zbiór p musi zawierać się w całości w zbiorze q
Przykład:
Jeśli jutro będzie padło to na pewno będzie pochmurno
P=>CH
P=>~CH=0

2.
Definicja warunku wystarczającego w logice ujemnej (bo ~q)
Kod:

Warunek wystarczający w logice ujemnej (bo ~q)
C: ~p=>~q=1
D: ~p=> q=0

~p=>~q
Jeśli zajdzie ~p to na pewno zajdzie ~q
Z czego wynika że druga linia musi być fałszem
Z czego wynika że ~p musi być wystarczające dla ~q
Z czego wynika że zbiór ~p musi zawierać się w całości w zbiorze ~q
Przykład:
Jeśli jutro nie będzie pochmurno to na pewno nie będzie padało
~CH=>~P

Ogólna definicja warunku koniecznego:
Warunek konieczny ~> między p i q zachodzi wtedy i tylko wtedy gdy z zanegowanego poprzednika wynika => zanegowany następnik.
p~>q = ~p=>~q - prawo Kubusia
~p~>~q = p=>q - prawo Kubusia

Z powyższego wynika, że całą logikę w zakresie implikacji możemy sprowadzić do badania banalnych warunków wystarczających o definicjach jak wyżej.

Definicja równoważności:
p<=>q = (p=>q)*[p~>q] = (p=>q)*(~p=>~q)
Równoważność to iloczyn logiczny wirtualnych definicji implikacji prostej i odwrotnej.
Kod:

Implikacja      Implikacja
prosta          Odwrotna
p=>q=[~p~>~q]   [p~>q]=~p=>~q    p<=>q=(p=>q)*[p~>q]=(p=>q)*(~p=>~q)
A:  p=> q=1      [p~>  q=1]        =1
B:  p=>~q=0      [p~~>~q=1]        =0
C:[~p~>~q=1]     ~p=> ~q=1         =1
D:[~p~~>q=1]     ~p=>  q=0         =0

gdzie:
[…] - część wirtualna, niedostępna w świecie rzeczywistym

Warunek konieczny w implikacji prostej (linie C i D):
[~p~>~q]
jest wycinany przez warunek wystarczający implikacji odwrotnej (C i D) i nie jest dostępny w świecie rzeczywistym.
Stąd:
[~p~>~q] - wirtualny warunek konieczny, niedostępny w świecie rzeczywistym
W świecie rzeczywistym w liniach C i D widzimy wyłącznie warunek wystarczający:
~p=>~q = ~(~p*q) - gwarancja matematyczna A

Analogicznie:
Warunek konieczny w implikacji odwrotnej (linie A i B):
[p~>q]
jest wycinany przez warunek wystarczający implikacji prostej (A i B) i nie jest dostępny w świecie rzeczywistym.
Stąd:
[p~>q] - wirtualny warunek konieczny, niedostępny w świecie rzeczywistym
W świecie rzeczywistym w liniach A i B widzimy wyłącznie warunek wystarczający:
p=>q = ~(p*~q) - gwarancja matematyczna B

Stąd mamy:
Równoważność = dwie i tylko dwie gwarancje matematyczne

Na podstawie powyższego mamy.

Symboliczna definicja równoważności:
Kod:

p<=>q = (p=>q)*(~p=>~q)
Warunek wystarczający w logice dodatniej (bo q):
p=>q
A: p=>q  =1 - twarda prawda, [b]gwarancja matematyczna[/b]
B: p=>~q =0 - twardy fałsz wynikły z A
… a jeśli zajdzie ~p ?
~p<=>~q = (~p=>~q)*(p=>q)
Warunek wystarczający w logice ujemnej (bo ~q):
~p=>~q
C: ~p=>~q=1 - twarda prawda, [b]gwarancja matematyczna[/b]
D: ~p=>q =0 - twardy fałsz wynikły z C

Możliwe dwie definicje słowne równoważności:
1.
Równoważność to iloczyn logiczny warunku wystarczającego w logice dodatniej (bo q) oraz warunku wystarczającego w logice ujemnej (bo ~q)
p<=>q = (p=>q)*(~p=>~q)
gdzie:
p=>q, ~p=>~q - definicje warunku wystarczającego => jak w tabeli wyżej

2.
Równoważność to iloczyn logiczny implikacji wirtualnej w logice dodatniej (bo q) oraz implikacji wirtualnej w logice ujemnej (bo ~q)
p<=>q = (p=>q)*(~p=>~q)
Definicja implikacji wirtualnej w logice dodatniej:
p=>q = [~p~>~q]
Definicja implikacji wirtualnej w logice ujemnej (bo ~q)
~p=>~q = [p~>q]
gdzie:
[p~>q], [~p~>~q] - wirtualny warunek konieczny, niedostępny w świecie rzeczywistym.

Równania rachunku zero-jedynkowego opisujące równoważność:
p<=>p = (p=>q)*(~p=>~q)
gdzie:
Możliwe są dwie równoważne interpretacje słowne prawej strony równania:
p=>q - warunek wystarczający o definicji jak w liniach A i B
p=>q - implikacja wirtualna gdzie „rzucanie monetą” jest przykryte przez linie C i D powyższej definicji.

~p=>~q - warunek wystarczający o definicji jak w liniach C i D
~p=>~q - implikacja wirtualna gdzie „rzucanie monetą” jest przykryte przez linie A i B powyższej definicji
To samo równanie w postaci gwarancji matematycznych:
p=>q = ~(p*~q)
~p=>~q = ~(~p*q)
stąd:
p<=>q = [~(p*~q)]*[~(~p*q)] =1*1=1
Muszą zachodzić dwie gwarancje matematyczne!
Wtedy i tylko wtedy zdanie jest równoważnością.

Kodowanie zero-jedynkowe definicji równoważności:
Kod:

p<=>q=(p=>q)*(~p=>~q)
Warunek wystarczający
p=>q                     /p  q  p<=>q   /~p ~q ~p<=>~q
A: p=>q  =1              /1  1  =1      / 0  0  =1
B: p=>~q =0              /1  0  =0      / 0  1  =0
~p<=>~q=(~p=>~q)*(p=>q)
Warunek wystarczający
~p=>~q
C: ~p=>~q=1              /0  0  =1      / 1  1  =1
D: ~p=>q =0              /0  1  =0      / 1  0  =0
Kodowanie zero-jedynkowe zgodne z nagłówkiem tabeli
                         /p=1, ~p=0     /~p=1, p=0
                         /q=1, ~q=0     /~p=1, q=0

Tożsamość kolumn wynikowych jest dowodem formalnym zachodzenia tożsamości:
p<=>q = ~p<=>~q = (p=>q)*(~p=>~q)

Przykład:
Trójkąt jest równoboczny wtedy i tylko wtedy gdy ma kąty równe
TR<=>KR = (TR=>KR)*(~TR=>~KR)

Dowód poprzez analizę przez wszystkie możliwe przeczenia TR i KR.
TR<=>KR = (TR=>KR)*(~TR=>~KR)
TR=>KR - warunek wystarczający w logice dodatniej (bo KR)
A.
Jeśli trójkąt jest równoboczny to na pewno => ma kąty równe
TR=>KR=1 - twarda prawda, gwarancja matematyczna
B.
Jeśli trójkąt jest równoboczny to na pewno => nie ma kątów równych
TR=>~KR=0 - twardy fałsz wynikły wyłącznie z A
… a jeśli trójkąt nie jest równoboczny ?
~TR<=>~KR = (~TR=>~KR)*(TR=>KR)
~TR=>~KR - warunek wystarczający w logice ujemnej (bo ~KR)
C.
Jeśli trójkąt nie jest równoboczny to na pewno =. nie ma kątów równych
~TR=>~KR=1 - twarda prawda, gwarancja matematyczna
D.
Jeśli trójkąt nie jest równoboczny to na pewno =>ma kąty równe
~TR=>KR=0 - twardy fałsz wynikły wyłącznie z C

Doświadczenie 5.
Schemat ideowy operatora równoważności w bramkach logicznych jest następujący.



Zbudować powyższy układ i sprawdzić poprawność tabel zero-jedynkowych w punktach:
p=>q
~p=>~q
p<=>q
w zależności od wszystkich możliwych sygnałów wejściowych p i q


4.8 Równoważność w zbiorach

Zero-jedynkowa definicja równoważności:
Kod:

p q p<=>q
1 1  =1
1 0  =0
0 0  =1
0 1  =0


Definicja równoważności:
p<=>q = (p=>q)*(~p=>~q)

Równoważność to jednoczesne zachodzenie warunku wystarczającego w logice dodatniej (bo q) i warunku wystarczającego w logice ujemnej (bo ~q)

Zobaczmy to na diagramach logiki:



Warunek wystarczający w logice dodatniej:
Kod:

p=>q =1
p*q  =1 - istnieje część wspólna zbiorów p i q
p=>~q=0
p*~q =0 - zbiory p i ~q są rozłączne, wynik:0=zbiór pusty

p=>q
Jeśli zajdzie p to na pewno => zajdzie q
Z czego wynika że p jest warunkiem wystarczającym dla q
Z czego wynika, że zbiór p musi zawierać się w całości w zbiorze q

Z diagram widzimy, że zbiory p i q są dokładnie tymi samymi zbiorami:
p=q
co wymusza tożsamość zbiorów:
~p=~q



Warunek wystarczający w logice ujemnej:
Kod:

~p=>~q=1
~p*~q =1 - istnieje cześć wspólna zbiorów ~p i ~q
~p=>q =0
~p*q  =0 - zbiory ~p i q są rozłączne, wynik: 0-zbiór pusty

~p=>~q
Jeśli zajdzie ~p to musi zajść ~q
Z czego wynika że ~p jest wystarczające dla ~q
Z czego wynika że zbiór ~p musi zawierać się w całości w zbiorze ~q

Z diagramu widzimy, że zbiory ~p i ~q są dokładnie tymi samymi zbiorami:
~p=~q
co wymusza tożsamość zbiorów:
p=q

Z powyższego mamy operatorową definicję równoważności.
p<=>q = (p=>q)*(~p=>~q)

Analiza ogólna równoważności:
p<=>q = (p=>q)*(~p=>~q)
Warunek wystarczający w logice dodatniej (bo q)
p=>q - pierwszy człon po prawej stronie
A.
Jeśli zajdzie p to na pewno => zajdzie q
p=>q=1 - twarda prawda, gwarancja matematyczna
Zbiory:
p*q=1 - zbiory p i q są tymi samymi zbiorami
B.
Jeśli zajdzie p to na pewno => nie zajdzie q
p=>~q=0 - twardy fałsz, wynikły tylko i wyłącznie z A
Zbiory:
p*~q=0 - zbiory rozłączne

… a jeśli nie zajdzie p ?
~p<=>~q = (~p=>~q)*(p=>q)
Warunek wystarczający w logice ujemnej bo ~q
~p=>~q - pierwszy człon po prawej stronie
C.
Jeśli nie zajdzie p to na pewno => nie zajdzie q
~p=>~q=1 - twarda prawda, gwarancja matematyczna
Zbiory:
~p*~q=1 - zbiory ~p i ~q są tymi samymi zbiorami
D.
Jeśli nie zajdzie p to na pewno => zajdzie q
~p=>q=0 - twardy fałsz, wynikły tylko i wyłącznie z C
Zbiory:
~p*q=0 - zbiory rozłączne


5.0 Równoważność czy implikacja

W tym punkcie omówimy praktyczne sposoby rozstrzygania czy dane zdanie jest implikacją, czy też czymś fundamentalnie innym, równoważnością.

5.1 ŚFIŃSKIE definicje implikacji i równoważności

Definicja równoważności:
p<=>q = (p=>q)*[p~>q]
czyli:
p=>q - p jest wystarczające dla q
i
p~>q - p jest konieczne dla q
Stąd mamy śfińską definicję równoważności niżej.

Definicja warunku wystarczającego w logice dodatniej (bo q):
Kod:

p=>q=1
p=>~q=0

p=>q
Jeśli zajdzie p to na pewno => zajdzie q
Z czego wynika że p musi być wystarczające dla q
gdzie:
=> - warunek wystarczający, spójnik „musi” w całym obszarze logiki

Definicja warunku wystarczającego w logice ujemnej (bo ~q):
Kod:

~p=>~q=1
~p=>q=0

Jeśli zajdzie ~p to na pewno => zajdzie ~q
Z czego wynika że ~p musi być wystarczające dla ~q

Definicja warunku koniecznego:
Warunek konieczny ~> między p i q zachodzi wtedy i tylko wtedy gdy z zanegowanego poprzednika wynika => zanegowany następnik.
~p~>~q = p=>q – prawo Kubusia, definicja implikacji prostej
p~>q = ~p=>~q – prawo Kubusia, definicja implikacji odwrotnej

Oczywiście wynika z tego, że całą logikę możemy sprowadzić do badania banalnych warunków wystarczających.
gdzie:
=> - warunek wystarczający, spójnik „musi” w całym obszarze logiki
~> - warunek konieczny, w implikacji spójnik „może” między p i q (rzucanie monetą)


Śfińska definicja Implikacji prostej
Implikacja prosta to zachodzenie wyłącznie warunku wystarczającego w kierunku p=>q
p=>q=1
p~>q=0
Definicja warunku wystarczającego =>:
p=>q=1
Definicja warunku koniecznego ~>, prawo Kubusia
p~>q = ~p=>~q =0

Przykład:
A.
Warunek wystarczający:
Jeśli jutro będzie padało to na pewno => będzie pochmurno
P=>CH=1
P=>~CH=0
Warunek wystarczający spełniony

Badamy warunek konieczny:
B.
Jeśli jutro będzie padało to może ~> być pochmurno
P~>CH = ~P=>~CH=0
Warunek konieczny niespełniony bo:
C.
Jeśli jutro nie będzie padało to na pewno => nie będzie pochmurno
~P=>~CH=0
Wniosek:
Zdanie A spełnia śfińską definicję implikacji prostej, w skrócie, jest implikacją prostą


Śfińska definicja implikacji odwrotnej
Implikacja odwrotna to zachodzenie wyłącznie warunku koniecznego między p i q
p~>q=1
p=>q=0
Definicja warunku koniecznego ~>, prawo Kubusia
p~>q = ~p=>~q=1
Definicja warunku wystarczającego =>:
p=>q=0

Przykład:
A.
Jeśli jutro będzie pochmurno to może ~> padać
CH~>P
Prawo Kubusia:
CH~>P = ~CH=>~P=1
czyli:
B.
Jeśli jutro nie będzie pochmurno to na pewno => nie będzie padać
~CH=>~P=1
Prawa strona równania Kubusia jest prawdą, zatem w zdaniu A zachodzi warunek konieczny CH~>P=1.

Badamy warunek wystarczający:
C.
Jeśli jutro będzie pochmurno to na pewno => będzie padać
CH=>P=0
Warunek wystarczający niespełniony
Wniosek:
Zdanie A spełnia śfińską definicję implikacji odwrotnej, w skrócie, jest implikacją odwrotną


Śfińska definicja równoważności
Równoważność to jednoczesne zachodzenie warunku wystarczającego i koniecznego
p<=>q = (p=>q)*(p~>q) = 1*1=1
p=>q=1
p~>q=1
Definicja warunku wystarczającego =>:
p=>q=1
Definicja warunku koniecznego ~> to prawo Kubusia:
p~>q = ~p=>~q =1
Definicja równoważności:
p<=>q = (p=>q)*(p~>q) = (p=>q)*(~p=>~q)

Przykład:
A.
Jeśli trójkąt jest równoboczny to na pewno => ma kąty równe
TR=>KR=1
TR=>~KR=0
Warunek wystarczający spełniony.

Badamy warunek konieczny:
TR~>KR = ~TR=>~KR=1 - prawo Kubusia
B.
Jeśli trójkąt nie jest równoboczny to na pewno => nie ma katów równych
~TR=>~KR=1
~TR=>KR=0
Prawa strona równania Kubusia jest prawdą, zatem z lewej strony zachodzi warunek konieczny:
TR~>KR=1
Oczywiście symbol ~> to warunek konieczny na poziomie wirtualnym, nie jest to spójnik „może” znany z implikacji , bowiem w równoważności wykluczone jest „rzucanie monetą”.

Zdanie A spełnia śfińską definicję równoważności, w skrócie możemy powiedzieć iż jest równoważnością.


5.2 Gimnazjalne definicje implikacji i równoważności

Podstawa matematyczna

Dowód formalny braku przemienności argumentów w implikacji:
Kod:

p q p=>q q=>p
1 1  =1   =1
1 0  =0   =1
0 0  =1   =1
0 1  =1   =0

Brak tożsamości dwóch ostatnich kolumn jest dowodem braku przemienności argumentów w implikacji prostej.

Dowód formalny przemienności argumentów w równoważności:
Kod:

p q p<=>q q<=>p
1 1   =1    =1
1 0   =0    =0
0 0   =1    =1
0 1   =0    =0

Tożsamość dwóch ostatnich kolumn jest dowodem przemienności argumentów w równoważności.

Na podstawie powyższego mamy.

Gimnazjalna definicja implikacji prostej:
Implikacja to wynikanie => (warunek wystarczający) wyłącznie w jedna stronę
A: p=>q=1
B: q=>p=0
Jeśli zdanie jest implikacją to nie może być równoważnością:
p<=>q = (p=>q)*(q=>p)=1*0 =0

Przykład:
A.
Jeśli liczba jest podzielna przez 8 to na pewno jest podzielna przez 2
P8=>P2=1
Zdanie odwrotne:
B.
Jeśli liczba jest podzielna przez 2 to na pewno => jest podzielna przez 8
P2=>P8=0 bo 2
Równoważność jest tu wykluczona:
P8<=>P2 = (P8=>P2)*(P2=>P8)=1*0=0
Na mocy gimnazjalnej definicji implikacji zdanie A to piękna implikacja prosta.

Gimnazjalna definicja implikacji odwrotnej:
A: ~p=>~q=1
B: ~q=>~p=0
Jeśli zdanie jest implikacją to nie może być równoważnością:
~p<=>~q = (~p=>~q)*(~q=>~p)=1*0 =0

Przykład:
A.
Jeśli liczba nie jest podzielna przez 2 to na pewno nie jest podzielna przez 8
~P2=>~P8=1
Zdanie odwrotne:
B.
Jeśli liczba nie jest podzielna przez 8 to na pewno nie jest podzielna przez 2
~P8=>~P2=0 bo 2
Równoważność jest tu wykluczona:
~P2<=>~P8 = (~P2=>~P8)*(~P8=>~P2)=1*0=0
Na mocy gimnazjalnej definicji implikacji zdanie A to piękna implikacja odwrotna

Gimnazjalna definicja równoważności:
Równoważność to wynikanie => (warunek wystarczający) w dwie strony
A: p=>q=1
B: q=>p=1
Twierdzenie:
Jeśli zdanie jest równoważnością prawdziwą to na mocy definicji nie może być implikacją prawdziwą i odwrotnie.
p<=>q = (p=>q)*(q=>p) = 1*1=1

Przykład:
A.
Jeśli trójkąt jest równoboczny na pewno => ma kąty równe
TR=>KR=1
Zdanie odwrotne:
B.
Jeśli trójkąt ma kąty równe to na pewno => jest równoboczny
KR=>TR=1
Na mocy gimnazjalnej definicji równoważności zdanie A to piękna równoważność:
TR<=>KR = (TR=>KR)*(KR=>TR) = 1*1=1

Zauważmy, że warunki wystarczające => w zdaniach A są identyczne w implikacji i równoważności.
Definicja warunku wystarczającego:
Kod:

p=>q=1
p=>~q=0

p=>q
Jeśli zajdzie p to na pewno => zajdzie q

Zatem po udowodnieniu p=>q o zdaniu A możemy powiedzieć tylko i wyłącznie iż jest to warunek wystarczający =>, żadna tam implikacja czy też równoważność bo jeszcze tego nie udowodniliśmy!

Precyzyjnie na temat zdania A możemy się wypowiedzieć wyłącznie po udowodnieniu B, co pokazano w definicjach równoważności wyżej.


5.3 Licealne definicja implikacji i równoważności

Implikacja = jedna i tylko jedna gwarancja matematyczna

Licealna definicja implikacji prostej:
A: p=>q=~(p*~q)=1
B: ~p=>~q=0
Przykład:
A.
Jeśli jutro będzie padało to na pewno będzie pochmurno
P=>CH = ~(P*~CH)=1
AG:
Nie może się zdarzyć ~(...), że jutro będzie padło i nie będzie pochmurno
~(P*~CH)=1
Sprawdzamy B:
B.
Jeśli jutro nie będzie padło to na pewno nie będzie pochmurno
~P=>~CH=0 - bo może nie padać i być pochmurno

Licealna definicja implikacji odwrotnej:
A: ~p=>~q=~(~p*q)=1
B: p=>q=0
Przykład:
A.
Jeśli jutro nie będzie pochmurno to na pewno nie będzie padało
~CH=>~P=~(~CH*P) =1
AG:
Nie może się zdarzyć ~(...), że jutro nie będzie pochmurno i będzie padało
~(~CH*P)=1
Sprawdzamy B:
Jeśli jutro będzie pochmurno to na pewno będzie padało
CH=>P=0 - bo może być pochmurno i może nie padać
Wniosek:
Zdanie A to piękna implikacja odwrotna

Licealna definicja równoważności

Równoważność = dwie i tylko dwie gwarancje matematyczne
p<=>q = (p=>q)*(~p=>~q)
A: p=>q=~(p*~q)=1
B: ~p=>~q=~(~p*q)=1
Przykład:
A.
Jeśli trójkąt jest równoboczny to ma kąty równe
TR=>KR = ~(TR*~KR)=1
AG.
Nie może się zdarzyć ~(...), że trójkąt jest równoboczny i nie ma kątów równych
~(TR*~KR)=1
B.
Jeśli trójkąt nie jest równoboczny to na pewno nie ma kątów równych
~TR=>~KR=~(~TR*KR)=1
BG.
Nie może się zdarzyć ~(...), że trójkąt nie jest równoboczny i ma kąty równe
~(~TR*KR)=1
Wniosek:
Na mocy licealnej definicji równoważności zachodzi równoważność:
Trójkąt jest równoboczny wtedy i tylko wtedy gdy ma kąty równe
TR<=>KR = (TR=>KR)*(~TR=>~KR)=1*1=1


5.4 Kwadrat logiczny równoważności

Kod:

A: p=>q  =1        A1. q=>p=1


C: ~p=>~q=1        C1: ~q=>~p=1


Wszystkie możliwe definicje równoważności to dowolny bok kwadratu:
p<=>q = (p=>q)*(~p=>~q) = (q=>p)*(~q=>~p) = (p=>q)*(q=>p) = (~p=>~q)*(~q=>~p)

W równoważności między dowolnymi dwoma wierzchołkami zachodzą jednocześnie warunki wystarczający rzeczywisty => i warunek konieczny wirtualny ~>.
Wirtualny warunek konieczny ~> (rzucanie monetą) nie jest dostępny w świecie rzeczywistym!
W świecie rzeczywistym dostępne są wyłącznie warunki wystarczające => o definicjach jak wyżej.

Oczywiście w równoważności zachodzą też warunki wystarczający => i konieczny wirtualny ~> po przekątnych kwadratu:
p???q = (p=>q)*(~q=>~p) = (~p=>~q)*(q=>p)
Dlaczego to nie są definicje równoważności?
Odpowiedź:
Bo operator ??? nie jest jednoznaczny.
??? - to może być operator zarówno równoważności jak i czegoś fundamentalnie innego, implikacji!

Oczywiście równoważność to fundamentalnie co innego niż implikacja.
Nic co jest równoważnością prawdziwą nie ma prawa być implikacją prawdziwą i odwrotnie.

Przykład:
Kod:

A: TR=>KR         A1  KR=>TR


C: ~TR=>~KR       C1:~KR=>~TR

Definicje równoważności wynikające z pionów:
TR<=>KR = (TR=>KR)*(~TR=>~KR) = ~TR<=>~KR
KR<=>TR = (KR=>TR)*(~KR=>~TR) = ~KR<=>~TR


5.5 Kwadrat logiczny implikacji

Kod:

A: p=>q  =1        A1. p~>q=1


C: ~p~>~q=1        C1: ~p=>~q=1

W kwadracie logicznym implikacji zachodzą tożsamościowe prawa matematyczne wyłącznie w pionach.
Definicja implikacji prostej:
p=>q = ~p~>~q=1 - prawo Kubusia
Definicja implikacji odwrotnej:
p~>q = ~p=>~q=1 - prawo Kubusia

Oczywiście na mocy definicji mamy:
p=>q = ~p>~q ## p~>q = ~p=>~q
gdzie:
## - różne na mocy definicji.

W pionach mamy do czynienia z dwom izolowanymi układami logicznymi pomiędzy którymi nie zachodzą żadne tożsamości matematyczne, ani w poziomie, ani po przekątnych!

Pod p i q w obu pionach możemy sobie podstawiać co nam się żywcem podoba.
Przykładowo:
Jeśli stwierdzimy warunek wystarczający w punkcie C1:
~p=>~q=1
oraz brak warunku wystarczającego w punkcie A1:
p=>q=0
To możemy być pewni iż nasze analizowane zdanie to piękna implikacja odwrotna, czyli coś fundamentalnie innego niż implikacja prosta czy też równoważność!

Przykład:
Kod:

A: P=>CH         A1: CH~>P

P=>CH=~P~>~CH    CH~>P=~CH=>~P

C: ~P~>~CH       C1:~CH=>~P

A.
Jeśli jutro będzie padło to na pewno będzie pochmurno
P=>CH=1
... a jak nie będzie padło?
Prawo Kubusia:
P=>CH = ~CH~>P
C.
Jeśli jutro nie będzie padało to może nie być pochmurno
~CH~>~P=1

A1.
Jeśli jutro będzie pochmurno to może padać
CH~>P=1
... a jak nie będzie pochmurno?
Prawo Kubusia:
CH~>P = ~CH=>~P
C1.
Jeśli jutro nie będzie pochmurno to na pewno nie będzie padało
~CH=>~P=1

To są jedyne tożsamości matematyczne zachodzące w kwadracie logicznym implikacji.

Na mocy definicji zachodzi:
P=>CH ## CH~>P
gdzie:
## - różne na mocy definicji


5.6 Algorytmy dowodzenia twierdzeń matematycznych

Definicja warunku wystarczającego => (wynikania)
Kod:

A: p=> q=1
B: p=>~q=0

p=>q
Jeśli zajdzie p to na pewno => zajdzie q
Z czego wynika że p musi być wystarczające dla q
gdzie:
=> - symbol warunku wystarczającego, spójnik „na pewno” => w całym obszarze matematyki

Trzy sposoby dowodzenia warunku wystarczającego:
1.
Sprawdzamy czy dla każdego p zachodzi q
TAK, to koniec dowodu
2.
Szukamy jednego przypadku spełniającego A oraz jednego przypadku spełniającego B czyli:
Kod:

A: p~~> q=1
B: p~~>~q=1

gdzie:
~~> - naturalny spójnik „może”, wystarczy znaleźć jeden przypadek prawdziwy

Algorytm:
A1
Jeśli znajdziemy A i znajdziemy B to:
p=>q=0
A2
Jeśli znajdziemy A i wykluczymy B to:
p=>q=1

Przykład A1:
Jeśli liczba jest podzielna przez 2 to może ~~> być podzielna przez 8
P2~~>P8=1 bo 8
P2~~>~P8=1 bo 2
stąd:
P2=>P8=0

Przykład A2
Jeśli liczba jest podzielna przez 8 to może ~~> być podzielna przez 2
P8~~>P2=1 bo 8
P8~~>~P2=0 - nie ma takiej liczby
Stąd:
P8=>P2=1

3.
Szukamy jednego kontrprzykładu obalającego A:
Kod:

A: p=> q=1

Przykład:
Jeśli liczba jest podzielna przez 2 to na pewno => jest podzielna przez 8
P2=>P8=0 bo 2

W praktyce najprościej korzystać ze sposobu 3.

Algorytm dowodzenia równoważności

Rozważmy zdanie:
Jeśli trójkąt jest równoboczny to ma kąty równe
TR=>KR=1
TR=>~KR=0

Oczywisty warunek wystarczający po udowodnieniu którego mamy taka sytuację
Kod:

Warunek wystarczający w logice dodatniej bo KR
TR=>KR=1    /1 1 =1
TR=>~KR=0   /1 0 =0
… a dalej mamy ciemność.
??????      /0 0 =x
??????      /0 1 =x

Jeśli zatem udowodniliśmy warunek wystarczający TR=>KR to mamy ciemność, o zdaniu A możemy powiedzieć tylko i wyłącznie iż jest to warunek wystarczający o definicji jak wyżej, żadna tam implikacja czy równoważność, bo jeszcze tego nie udowodniliśmy!

Tą ciemność możemy zamienić w jasność dwoma sposobami:
A.
Badamy warunek wystarczający dla zdania odwrotnego:
Jeśli trójkąt ma kąty równe to na pewno => jest równoboczny
KR=>TR=1
KR=>~TR=0
i wszystko jasne, przemienność argumentów zachodzi zatem zdanie A to piękna równoważność
Dopiero teraz możemy zapisać to co niżej.

Trójkąt jest równoboczny wtedy i tylko wtedy gdy ma kąty równe
TR<=>KR = (TR=>KR)*(KR=>TR)=1*1=1

B.
Równoważne do powyższego jest rozświetlenie ciemności w powyższej tabeli.
Kod:

Warunek wystarczający w logice dodatniej bo KR
TR=>KR=1    /1 1 =1
TR=>~KR=0   /1 0 =0
Badamy warunek wystarczający w logice ujemnej bo ~KR
… i mamy jasność bo:
~TR=>~KR=1  /0 0 =1
~TR=>KR=0   /0 1 =0

Tabele zero-jedynkowa równoważności otrzymujemy kodując tabele symboliczną zgodnie ze zdaniem A:
TR=>KR=1
TR=1, ~TR=0
KR=1, ~KR=0
Jak widzimy równoważny do A sposób to po prostu badanie kolejnego warunku wystarczającego w logice ujemnej.

Algorytm dowodzenia implikacji

Rozważmy zdanie:
Jeśli liczba jest podzielna przez 8 to jest podzielna przez 2
P8=>P2=1
P8=>~P2=0 bo 8

Oczywisty warunek wystarczający po udowodnieniu którego mamy taka sytuację
Kod:

Warunek wystarczający w logice dodatniej bo P2
P8=>P2=1    /1 1 =1
P8=>~P2=0   /1 0 =0
… a dalej mamy ciemność.
??????      /0 0 =x
??????      /0 1 =x

Jeśli zatem udowodniliśmy warunek wystarczający P8=>P2 to mamy ciemność, o zdaniu A możemy powiedzieć tylko i wyłącznie iż jest to warunek wystarczający o definicji jak wyżej, żadna tam implikacja czy równoważność, bo jeszcze tego nie udowodniliśmy!

Tą ciemność możemy zamienić w jasność dwoma sposobami:
A.
Badamy warunek wystarczający dla zdania odwrotnego:
P2=>P8=0 bo 0
i wszystko jasne, zachodzi brak przemienności argumentów zachodzi zatem zdanie A to piękna implikacja prosta.
Oczywiście równoważność gdzie zachodzi przemienność argumentów jest wykluczona.
P8<=>P2 = (P8=>P2)*(P2=>P8) = 1*0 =0

B.
Równoważne do powyższego jest rozświetlenie ciemności w powyższej tabeli!
Kod:

A.
Warunek wystarczający w logice dodatniej bo P2
P8=>P2=1         /1 1 =1
B.
P8=>~P2=0        /1 0 =0
Badamy warunek wystarczający w logice ujemnej bo ~P2
… i mamy mam jasność bo:
~P8=>~P2=0 bo 2
Wniosek:
Zdanie P8=>P2 to piękna implikacja prosta
Walimy ją zatem prawem Kubusia:
P8=>P2 = ~P8~>~P2
czyli:
C.
Jeśli liczba nie jest podzielna przez 8 to może nie być podzielna przez 2
~P8~>~P2=1 bo 3  /0 0 =1
LUB
D.
Jeśli liczba nie jest podzielna przez 8 to może być podzielna przez 2
~P8~~>P2=1 bo 2  /0 1 =1

Tabele zero-jedynkową implikacji otrzymujemy kodując tabele symboliczną zgodnie ze zdaniem A:
P8=>P2=1
P8=1, ~P8=0
P2=1, ~P2=0
Jak widzimy równoważny do A sposób rozstrzygnięcia o implikacji to po prostu brak zachodzenia warunku wystarczającego w logice ujemnej.


5.7 Matematyczne związki w implikacji

1.
Przemienność argumentów w implikacji


W implikacji argumenty nie są przemienne.
Dowód formalny:
Kod:

p  q p=>q q=>p ~p ~q ~p~>~q | p  q p~>q q~>p ~p ~q ~p=>~q
1  1  =1   =1   0  0   =1   | 1  1  =1   =1   0  0   =1
1  0  =0   =1   0  1   =0   | 1  0  =1   =0   0  1   =1
0  0  =1   =1   1  1   =1   | 0  0  =1   =1   1  1   =1
0  1  =1   =0   1  0   =1   | 0  1  =0   =1   1  0   =0
Punkt odniesienia:
      p=>q =~p~>~q          |      p~>q = ~p=>~q

Brak tożsamości w kolumnach p=>q i q=>p oraz w kolumnach p~>q i q~>p jest dowodem braku przemienności argumentów w implikacji.
Oczywiście matematycznie na mocy definicji zachodzi:
p=>q # p~>q
To są dwa fundamentalnie różne punkty odniesienia (różne definicje), zatem nie wolno mieszać kolumn miedzy kreską „|”.
Po obu stronach kreski „|” zachodzą prawa Kubusia:
p=>q = ~p~>~q
p~>q = ~p=>~q

Oczywiście w obrębie tych dwóch różnych punktów odniesienia zachodzi brak przemienności argumentów.

Lewa strona znaku „|”:
p=>q # q=>p
Jeśli strona ma wartość logiczna 1 to druga musi być 0.
Przykład:
A.
Jeśli jutro będzie padało to na pewno => będzie pochmurno
P=>CH=1
Zdanie odwrotne:
B.
jeśli jutro będzie pochmurno to na pewno => będzie padać
CH=>P=0

Prawa strona znaku „|”:
Przykład:
A.
Jeśli jutro będzie pochmurno to może ~> padać
CH~>P
Prawo Kubusia:
CH~>P = ~CH=>~P=1
czyli:
B.
Jeśli jutro nie będzie pochmurno to na pewno => nie będzie padać
~CH=>~P=1
Prawa strona tożsamości Kubusia jest prawdą, zatem z lewej strony musi zachodzić warunek konieczny ~>.
CH~>P=1

Zdanie odwrotne:
Jeśli jutro będzie padać to może być pochmurno
P~>CH
Prawo Kubusia:
P~>CH = ~P=>~CH=0
czyli:
B.
jeśli jutro nie będzie padać to na pewno => nie będzie pochmurno
~P=>~CH=0
Prawa strona tożsamości Kubusia jest fałszem, zatem z lewej strony nie zachodzi warunek konieczny ~>:
P~>CH=0

2.
Prawa Kubusia

W powyższej tabeli zero-jedynkowej mamy do czynienia z dwoma izolowanymi układami logicznym (oddzielonymi „|”) pomiędzy którymi nie zachodzą żadne tożsamości matematyczne.

W obrębie każdego z tych układów zachodzą prawa Kubusia:
p=>q = ~p~>~q - lewa strona znaku „|”
p~>q = ~p=>~q - prawa strona znaku „|”

3.
Implikacje różne na mocy definicji


Możliwe są tu dwa przypadki:
A.
p=>q = ~p~>~q # p~>q = ~p=>~q
# - rożne na mocy definicji, zdanie prawdziwe po jednej stronie znaku # wymusza zdanie fałszywe po drugiej stronie #.
Dla tych samych parametrów p i q jeśli zdanie po lewej stronie znaku # jest prawdziwe to zdanie po drugiej stronie znaku # musi być fałszywe

Przykład:
P8=>P2 = ~P8~>~P2=1 # P8~>P2 = ~P8=>~P2 =0 bo 2
P2=>P8 = 0 bo 2
P2=>P8 = ~P2~>~P8 =0 # P2~>P8 = ~P2=>~P8=1

B.
p=>q = ~p~>~q ## p~>q = ~p=>~q
## - rożne na mocy definicji, możliwe są zdania prawdziwe po obu stronach znaku ##
## - po obu stronach znaku ## mamy zdania prawdziwe, ale na mocy definicji nie równoważne

Dla dowolnych parametrów p i q możliwa jest sytuacja że zdania po obu stronach znaku ## będą prawdziwe.
Przykład:
P8=>P2 = ~P8~>~P2=1 ## P2~>P8 = ~P2=>~P8=1

C.
Zauważmy, że w równoważności niemożliwe są zdania typu A, bowiem w równoważności zachodzi przemienność argumentów. Także warunki wystarczające i konieczne występują tu jednocześnie.

Przykład:
Jeśli trójkąt jest równoboczny to ma kąty równe
TR=>KR

TR~>KR = ~TR=>~KR = KR~>TR = KR=>TR itd


5.8 Implikacje nietypowe

Dotychczas rozważaliśmy implikacje i równoważności w których p i q należały do tej samej dziedziny oraz zbiory p i q nie były zbiorami rozłącznymi.

Uwaga!
W praktyce naturalnego języka mówionego praktycznie wszystkie zdania spełniają powyższy warunek.

Nikt normalny nie sypie zdaniami prawdziwymi będącymi zaprzeczeniem fałszu:
Pies to nie kura
Pies to nie samochód
itp.

Definicja zdania prawdziwego w algebrze Kubusia:
1 - zdanie prawdziwe, zbiór niepusty
0 - zdanie fałszywe, zbiór pusty

Przykład zdań fałszywych.
Pies to kura
Zbiór psów będących kurami jest zbiorem pustym
Słoń ma trzy nogi
Zbiór słoni z trzema nogami jest zbiorem pustym


Rodzaje implikacji nietypowych:

Implikacje nietypowe w których p i q należy do tej samej dziedziny to:
1.
p i q są zbiorami rozłącznymi, gdzie oba zbiory są niepuste
Przykład:
Jeśli zwierze jest psem to na pewno nie ma dwóch nóg
P=>~2N=1
p - zbiór psów istnieje
q - zbiór zwierząt z dwoma nogami też istnieje (kura)
Zbiory p i q są oczywiście rozłączne
2.
p i q są zbiorami rozłącznymi, gdzie q jest zbiorem pustym
Przykład:
Jeśli zwierze jest psem to na pewno nie ma miliona nóg
P=>~MN=1
p - zbiór psów istnieje
q - zbiór zwierząt które mają milion nóg jest zbiorem pustym

Implikacje nietypowe w których p i q należy do różnych dziedzin
Oczywiście z takiego założenia wynika że zbiory p i q są rozłączne.
1.
p i q istnieje i p i q to zbiory niepuste
Jeśli zwierze jest psem to na pewno nie jest samochodem
P=>~S=1
W skrócie:
Pies to nie samochód
Zdania typu:
Pies to nie ocean, to nie wąsy dziadka, to nie krzesło
Są prawdziwe ale ze zrozumiałych względów nie będziemy się nad nimi rozczulać.

Twierdzenie:
Wartość prawd powstałych w wyniku negacji fałszu jest równa zeru absolutnemu i każdy człowiek, od 5-cio latka po profesora wysyła je w kosmos.

Zajmiemy się tu wyłącznie nietypowymi implikacjami gdzie p i q należy do tej samej dziedziny.
Zobaczmy to na diagramie.



p=>~q=1
p=>q=0



~p~>q=1
~p~~>~q=1

Na mocy powyższego diagramu, ogólna analiza tego typu implikacji jest następująca.
A.
Jeśli zajdzie p to na pewno => zajdzie ~q
p=>~q=1
p*~q=1 - istnieje część wspólna zbiorów p i ~q
Zbiór p zawiera się w całości w zbiorze ~q
B.
Jeśli zajdzie p to na pewno => zajdzie q
p=>q=0
p*q=0 - zbiory p i q są rozłączne, stąd wynik: 0=zbiór pusty
Zdania A i B spełniają definicje warunku wystarczającego.

… a jeśli zajdzie ~p ?
Prawo Kubusia:
p=>~q = ~p~>q
C.
Jeśli zajdzie ~p to może ~> zajść q
~p~>q=1
~p*q=1
Zbiory ~p i q istnieją i są niepuste, oraz mają część wspólną, stąd w wyniku mamy jeden (prawda)
LUB
D.
Jeśli zajdzie ~p to może ~~> zajść ~q
~p~~>~q=1
To samo w zbiorach:
~p*~q=1
Zbiory ~p i ~q istnieją i są niepuste, oraz mają część wspólną, stąd w wyniku mamy jeden (prawda).

Uwagi:
1.
Doskonale widać tabelę zero-jedynkową implikacji prostej dla kodowania zgodnego ze zdaniem wypowiedzianym p=>~q czyli:
p=1, ~p=0
~q=1, q=1
Kod:

             / p ~q p=>~q
p=>~q =1     / 1  1  =1
p=>q  =0     / 1  0  =0
… a jeśli zajdzie ~p?
Prawo Kubusia:
p=>~q = ~p~>q
~p~>q=1      / 0  0  =1
~p~~>~q=1    / 0  1  =1

2.
Nie ma tu szans na równoważność bowiem zbiory p i q są rozłączne, natomiast w równoważności zbiory p i q musza być dokładnie tymi samymi zbiorami.
3.
W szczególnym przypadku, gdy zbiór q jest zbiorem pustym, zdanie wypowiedziane A będzie spełniać wyłącznie definicję warunku wystarczającego.

Analiza ogólna zdania A dla przypadku, gdy zbiór q jest zbiorem pustym.
Oczywiście iloczyn logiczny zbioru pustego i dowolnego innego zbioru jest zbiorem pustym.

Założenie:
q=0 - zbiór pusty o wartości logicznej zero (fałsz)

Dla tego przypadku będziemy mieli:
A.
Jeśli zajdzie p to na pewno => zajdzie ~q
p=>~q=1
p*~q=1 - istnieje cześć wspólna zbiorów p i ~q
Zbiór p zawiera się w całości w zbiorze ~q
B.
Jeśli zajdzie p to na pewno => zajdzie q
p=>q=0
p*q=0
Zbiór q=0 jest zbiorem pustym, stąd iloczyn logiczny jest równy zeru, niezależnie od wzajemnego położenia zbiorów p i q.
Zdania A i B spełniają definicje warunku wystarczającego.

… a jeśli zajdzie ~p ?
Prawo Kubusia:
p=>~q = ~p~>q
C.
Jeśli zajdzie ~p to może ~> zajść q
~p~>q=0
~p*q=0
Zero w wyniku wymusza zbiór pusty q=0 o wartości logicznej zero (fałsz)
LUB
D.
Jeśli zajdzie ~p to może ~~> zajść ~q
~p~~>~q=1
~p*~q=1 - istnieje cześć wspólna zbiorów ~p i ~q.

Doskonale widać, że zdanie A nie spełnia definicji zero-jedynkowej implikacji prostej dla kodowania zgodnego z tym zdaniem p=>~q czyli:
p=1, ~p=0
~q=1, q=0
Tabela zero-jedynkowa jaką tu otrzymujemy wygląda następująco:
Kod:

Założenie:
q=0 – zbiór pusty
A: p=>~q =1     /1 1 =1
   p*~q=1
B: p=>q  =0     /1 0 =0
   p*q=0
C: ~p~>q=0      /0 0 =0
   ~p*q=0 – bo q jest zbiorem pustym z założenia!
D: ~p~~>~q=1    /0 1 =1
   ~p*~q=1
 

Zdanie A jest warunkiem wystarczającym, ale nie spełnia definicji implikacji prostej z powodu linii C gdzie powinno być: 0 0 =1

Wnioski:
1.
Warunek wystarczający => może istnieć samodzielnie, przykład: zdanie A wyżej
2.
Warunek konieczny ~> nie może istnieć samodzielnie bowiem nie pozwala na to jego definicja.

Definicja warunku koniecznego:
p~>q = ~p=>~q - I prawo Kubusia
~p~>~q = p=>q - II prawo Kubusia
Warunek konieczny ~> miedzy p i q zachodzi wtedy i tylko wtedy, gdy z zanegowanego poprzednika wynika => zanegowany następnik.

Przykład zdania p=>~q gdzie q nie jest zbiorem pustym:
A.
Jeśli zwierze jest psem to na pewno => nie ma dwóch nóg
P=>~2N=1
P*~2N=1
Zbiór zwierząt będących psami (P) i zbiór zwierząt nie mających 2 nóg (~2N) jest zbiorem niepustym bo pies, stąd iloczyn logiczny jest równy 1 (prawda).
B.
Jeśli zwierze jest psem to na pewno => ma dwie nogi
P=>2N=0
P*2N=0
Zbiór psów (P) i zbiór zwierząt mających dwie nogi (2N) to zbiory rozłączne, zatem ich iloczyn logiczny jest równy zero (fałsz)
… a jeśli zwierze nie jest psem ?
Prawo Kubusia:
P=>~2N = ~P~>2N
C.
Jeśli zwierze nie jest psem to może > mieć dwie nogi
~P~>2N=1 bo kura
~P*2N=1
Istnieje zbiór zwierząt nie będących psami (~P) oraz zbiór zwierząt mających dwie nogi (2N).
Zbiory te maja część wspólną (kura), stad wynik iloczynu logicznego równy 1 (prawda)
LUB
D.
Jeśli zwierze nie jest psem to może ~~> nie mieć dwóch nóg
~P~~>~2N=1 bo słoń
~P*~2N=1
Istnieje zbiór zwierząt nie będących psami (~P) oraz zbiór zwierząt nie mających dwóch nóg (~2N).
Zbiory te maja część wspólną (słoń), stad wynik iloczynu logicznego równy 1 (prawda)

Doskonale widać zero-jedynkową definicję implikacji prostej dla kodowania zgodnego ze zdaniem P=>~2N czyli:
P=1, ~P=0
~2N=1, 2N=0

Przykład zdania p=>~q gdzie q jest zbiorem pustym:
A.
Jeśli zwierze jest psem to na pewno nie ma miliona nóg
P=>~MN=1
P*~MN=1
Zbiór psów i zbiór zwierząt nie mających miliona nóg jest zbiorem niepustym bo pies.
B.
Jeśli zwierze jest psem to na pewno ma milion nóg
P=>NM=0
P*MN=0
Tu możliwe są dwa dowody:
0 - bo zbiór zwierząt mających milion nóg jest zbiorem pustym czyli: MN=0
0 - bo zbiór psów i zbiór zwierząt mających milion nóg to zbiory rozłączne, iloczyn logiczny zbiorów rozłącznych jest równy 0
… a jeśli zwierze nie jest psem ?
Prawo Kubusia:
P=>~MN = ~P~>MN
C.
Jeśli zwierze nie jest psem to może mieć milion nóg
~P~>MN=0
To samo w zbiorach:
~P*MN=0
0 - bo zbiór zwierząt mających milion nóg jest zbiorem pustym czyli: MN=0
Iloczyn logiczny zbioru pustego i czegokolwiek jest zbiorem pustym.
LUB
D.
Jeśli zwierze nie jest psem to może nie mieć miliona nóg
~P~~>~MN=1
To samo w zbiorach:
~P*~MN=1
Istnieje zbiór nie psów (~P) i zbiór zwierząt nie mających miliona nóg (~MN).
Zbiory te maja cześć wspólną (kura, słoń…), stąd wynik iloczynu logicznego równy 1 (prawda).

Doskonale widać że zdanie A spełnia wyłącznie definicję warunku wystarczającego dla kodowania zgodnego ze zdaniem wypowiedzianym a:
P=1, ~P=1
~MN=1, MN=0
Kod:

A: P=>~MN=1    /1 1 =1
B: P=>MN =0    /1 0 =0
… a jeśli to nie pies?
Prawo Kubusia:
P=>~MN = ~P~>MN
C: ~P~>MN=0    /0 0 =0
D: ~P~~>~MN=1  /0 1 =1

Zdanie A spełnia definicję warunku wystarczającego (A i B), ale nie spełnia definicji implikacji prostej z powodu linii C gdzie powinna być sekwencja: 0 0 =1


5.9 Operator implikacji prostej zdefiniowany spójnikiem “i”(*)

Definicja zero-jedynkowa operatora implikacji prostej:
Kod:

p q    Y= p=>q        ~Y=~(p=>q)
Warunek wystarczający w logice dodatniej (bo q)
1 1   =1 /p=>q=1      =0 
1 0   =0 /p=>~q=0     =1     
Warunek wystarczający w logice ujemnej (bo ~q)
0 0   =1 /~p~>~q=1    =0     
0 1   =1 /~p~~>q=1    =0     

Najprostsza definicję implikacji prostej wyrażoną w spójniku „i”(*) otrzymamy z drugiej linii:
A.
~Y = ~(p=>q) = p*~q
czyli:
Skłamię (~Y=1) wtedy i tylko wtedy gdy zajdzie p i nie zajdzie q

… a kiedy dotrzymam słowa ?
Negujemy równanie a dwustronnie:
B.
Y=p=>q = ~(p*~q)
czyli:
Dotrzymam słowa (Y=1) wtedy i tylko wtedy gdy nie zdarzy się ~(…), że zajdzie p (p=1) i nie zajdzie q (~q=1)

Wyrażenie implikacji prostej w spójniku „i”(*) to największa tragedia matematyczna w historii ludzkości.

Zauważmy, że mamy tu poprawną wiedzę kiedy nie skłamiemy, ale nie mamy informacji o gwarancji matematycznej, istocie definicji implikacji!

Weźmy doskonale znany nam przykład:

Warunek wystarczający => !
A.
Jeśli zwierze jest psem to na pewno => ma cztery łapy
P=>4L=1 bo pies – gwarancja matematyczna, twarda prawda, zachodzi zawsze bez wyjątków
Bycie psem wystarcza aby mieć cztery łapy
stąd:
B.
Jeśli zwierzę jest psem to na pewno => nie ma czterech łap
P=>~4L=0 – twardy fałsz wynikły tylko i wyłącznie z powyższej twardej prawdy

… a jeśli zwierze nie jest psem ?
Prawo Kubusia:
P=>4L = ~P~>~4L

Warunek konieczny ~> !
C.
Jeśli zwierzę nie jest psem to może ~> nie mieć czterech łap
~P~>~4L=1 bo kura – miękka prawa, może zajść ale nie musi
D.
Jeśli zwierze nie jest psem to może ~~> mieć cztery łapy
~P~~>4L=1 bo słoń – miękka prawda, może zajść ale nie musi

Dla kodowania zgodnego ze zdaniem wypowiedzianym:
A: P=>4L
P=1, ~P=0
4L=1, ~4L=0
Otrzymamy tabele zero-jedynkową implikacji prostej:
Kod:

A: P=>4L  =1    /1 1 =1
B: P=>~4L =0    /1 0 =0
… a jeśli zwierze nie jest psem?
Prawo Kubusia:
P=>4L = ~P~>~4L
C: ~P~>~4L=1   /0 0 =1
D: ~P~~>4L=1   /0 1 =1


Jak działa implikacja ?
Na początku wszystkie pudełka A,B,C,D maja wartość logiczną 0, czyli fałsz.
Losujemy po kolei wszystkie ziemskie zwierzęta i wkładamy je do odpowiednich pudelek.
Oczywiście po przeiterowaniu po wszystkich zwierzakach wyłącznie pudełko B będzie puste (fałsz=0), pozostałe będą niepuste (prawda=1), stąd taki a nie inny rozkład wynikowych jedynek w definicji implikacji.

Traktowanie operatora implikacji prostej spójnikiem „i”(*) zrównuje matematycznie bezcenną twardą prawdę (zdanie A = gwarancja matematyczna) z prawdami miękkimi w zdaniach C i D (rzucanie monetą).

Zdanie A wyrażone przy pomocy spójnika „i”(*) przybierze brzmienie:
p=>q = ~(p*~q)
Nasz przykład:
P=>4L = ~(P*~4L)
czyli:
A1.
Nie może się zdarzyć ~(…), że zwierze jest psem (P=1) i nie ma czterech łap (~4L=1)
~(P*~4L)
Poza tym wszystko może się zdarzyć !
Czyli wszystkie wynikowe jedynki w powyższej tabeli zero-jedynkowej są tak samo prawdopodobne, gubimy tu istotą implikacji, czyli do jednego worka wrzucamy bezcenną twardą prawdę (zdanie A) i dwie prawdy miękkie czyli rzucanie monetą (zdania C i D).

Zauważmy, że nikt normalny mając do wyboru zdania A i równoważne zdanie A1 nie wypowie zdania A1, bo nie będzie z siebie robił idioty. Zdanie A1 może być użyte w szczególnych okolicznościach np. gdy uczymy 3-latka naturalnego języka mówionego, algebry Kubusia.

Definicja obietnicy:
Jeśli dowolny warunek to nagroda
W=>N – implikacja prosta na mocy definicji

Definicja groźby:
jeśli dowolny warunek to kara
W~>K – implikacja odwrotna na mocy definicji

Tata:
A.
Jeśli będziesz grzeczny dostaniesz czekoladę
G=>C=1
Jaś (lat 3):
… a jeśli nie będę grzeczny ?
W mózgu taty generowane jest prawo Kubusia:
G=>C = ~G~>~C
Tata:
C.
Jeśli nie będziesz grzeczny to nie dostaniesz czekolady
~G~>~C=1
LUB
D.
Jeśli nie będziesz grzeczny to dostaniesz czekoladę
~G~~>C=1 – akt miłości, prawo do wręczenia czekolady mimo nie spełnionego warunku nagrody

Oczywiście tata wypowiada wyłącznie zdanie C, które to zdanie jest ewidentna groźbą z domyślnym na mocy definicji groźby spójnikiem „może” ~>, który nie musi być wypowiedziany.

Jaś:
Tata, a czy może się zdarzyć że będę grzeczny i nie dostane czekolady ?

Tata:
Nie może się zdarzyć ~(…), że będziesz grzeczny (G=1) i nie dostaniesz czekolady (~C=1)
G=>C = ~(G*~C)

Tylko i wyłącznie w takim przypadku sensowne jest wypowiedzenie zdania A1.

Zdanie wytłuszczone wyżej („poza tym wszystko może się zdarzyć”) to kluczowy błąd matematyczny, zrównującym prawdy w zdaniach A, C, D. W tym przypadku mamy fałszywy obraz implikacji prostej, zrównujący 100% pewność (zdanie A) z najzwyklejszym rzucaniem monetą (zdania C i D).

Dokładnie to generuje głupoty w stylu:
„z fałszu może powstać prawda” itp.

Oczywiście w rzeczywistości nie ma mowy aby z prawdy powstał fałsz, jak również nie ma mowy aby z fałszu powstała prawda.

Taka jest jedyna poprawna matematyka naszego Wszechświata, algebra Kubusia.


6.0 Algebra Kubusia w równaniach logicznych

W naturalnym języku mówionym każdy człowiek posługuje się równaniami algebry Kubusia (algebry Boole’a), nigdy tabelami zero-jedynkowymi.

Twierdzenie:
Dowolną tabele zero-jedynkową można zapisać w postaci równoważnego równania algebry Kubusia i odwrotnie.

Równania algebry Kubusia można łatwo minimalizować. Szczególnie użyteczna jest tu technika przechodzenia do logiki ujemnej i z powrotem co za chwile zobaczymy.

Operatory implikacji i równoważności to operatory dwuargumentowe.
Równania algebry Kubusia z operatorami implikacji i równoważności są banalne.
Prawa Kubusia:
p=>q = ~p~>~q – definicja operatora implikacji prostej
p~>q = ~p=>~q – definicja operatora implikacji odwrotnej
Definicja równoważności:
p<=>q = (p=>q)*(~p=>~q) = (p=>q)*(q=>p)
gdzie:
=> - warunek wystarczający
~> - warunek konieczny

Definicja warunku wystarczającego w logice dodatniej (bo q):
Kod:

p=>q=1
p=>~q=0

p=>q
Jeśli zajdzie p to musi zajść q
Z czego wynika że druga linia musi być fałszem
Z czego wynika że p musi być wystarczające dla q
Przykład:
Jeśli liczba jest podzielna przez 8 to na pewno => jest podzielna przez 2
P8=>P2=1
P8=>~P2=0 bo 2

Definicja warunku wystarczającego w logice ujemnej (bo ~q):
Kod:

~p=>~q=1
~p=>q=0

~p=>~q
Jeśli zajdzie ~p to musi zajść ~q
Z czego wynika że druga linia musi być fałszem
Z czego wynika że ~p musi być wystarczające dla ~q
Przykład:
Jeśli liczba nie jest podzielna przez 2 to na pewno => nie jest podzielna przez 8
~P2=>~P8=1
~P2=>P8=0 bo 8
gdzie:
=> - warunek wystarczający, spójnik „na pewno” miedzy p i q w całym naszym Wszechświecie, w tym w matematyce.

Definicja warunku koniecznego:
~p~>~q = p=>q – I prawo Kubusia, definicja implikacji prostej
p~>q = ~p=>~q – II prawo Kubusia, definicja implikacji odwrotnej
Warunek konieczny ~> miedzy p i q zachodzi wtedy i tylko wtedy gdy z zanegowanego poprzednika wynika => zanegowany następnik.
gdzie:
~> - warunek konieczny, spójnik „może” miedzy p i q w implikacji (nie w równoważności!)

Z powyższego wynika, ze całą logikę w zakresie rozstrzygania o prawdziwości/ fałszywości implikacji i równoważności można sprowadzić do badania banalnych warunków wystarczających =>.

Zupełnie inną sytuację mamy w operatorach AND i OR, gdzie argumentów może być nieskończenie wiele. Fundament algebry Kubusia w operatorach OR i AND to zaledwie dwie definicje, definicja spójnika „i” oraz definicja spójnika „lub”.


6.1 Prawa wynikające z definicji operatora AND

Definicja zero-jedynkowa operatora AND:
Kod:

p q Y=p*q
1 1  =1
1 0  =0
0 1  =0
0 0  =0


Definicja iloczynu logicznego w logice dodatniej:
Iloczyn logiczny n-zmiennych binarnych jest równy jeden wtedy i tylko wtedy gdy wszystkie zmienne są równe jeden.
Y=A*B
Y=1 <=> A=1 i B=1

Definicja równoważna w logice ujemnej:
Iloczyn logiczny jest równy zeru gdy którakolwiek zmienna jest równa zeru.
Y=A*B
Y=0 <=> A=0 lub B=0
Zauważmy, że mamy tu niezgodność z naturalną logiką człowieka. W zapisie matematycznym mamy spójnik „i”(*) a w rozwinięciu szczegółowym używamy spójnika „lub”(+) - dlatego to jest logika ujemna.

Prawa wynikające bezpośrednio z tej definicji:
1*0=0
1*1=1
A*0=0
A*1=A
A*A=A
A*~A=0
Odpowiedniki z języka mówionego:
Pies szczeka i miauczy
P=>S*M = S*0 =0
Pies szczeka i szczeka
P=>S*S = S*1= S
Pies szczeka i nie szczeka
P=>S*~S = 1*0=0

Przykłady z języka mówionego:
A.
Jutro pójdę do kina i pójdę do kina = jutro pójdę do kina
Y=K*K=K
B.
Jutro pójdę do kina i nie pójdę do kina
Y=K*~K=0 - sprzeczność, sytuacja niemożliwa, dlatego wartość logiczna zdania to fałsz (0).

W naturalnym języku mówionym zdania A i B to bełkot, dlatego nikt tak nie mówi.


6.2 Prawa wynikające z definicji operatora OR

Definicja zero-jedynkowa operatora OR:
Kod:

p q Y=p+q
1 1  =1
1 0  =1
0 1  =1
0 0  =0


Definicja sumy logicznej w logice dodatniej:
Suma logiczna n-zmiennych binarnych jest równa jeden gdy którakolwiek zmienna jest równa 1
Y=A+B
Y=1 <=> A=1 lub B=1

Definicja równoważna w logice ujemnej:
Suma logiczna n-zminnych binarnych jest równa zeru wtedy i tylko wtedy gdy wszystkie zmienne są równe zeru.
Y=A+B
Y=0 <=> A=0 i B=0
Zauważmy, że mamy tu niezgodność z naturalną logiką człowieka. W zapisie matematycznym mamy spójnik „lub”(+) a w rozwinięciu szczegółowym używamy spójnika „i”(*) - dlatego to jest logika ujemna.

Prawa wynikające bezpośrednio z tej definicji:
1+0=1
0+0=0
A+1=1
A+0=A
A+A=A
A+~A=1
Odpowiedniki z języka mówionego, wątpliwej jakości
Pies szczeka lub miauczy
P=>S+M = S+0 = S+0 =S
Pies miauczy lub miauczy
P=>M+M = 0+0=0
Pies szczeka lub szczeka
P=>S+S = 1+1=1
Pies szczeka lub nie szczeka
P=>S+~S=1+0=1

Przykłady z języka mówionego:
C.
Jutro pójdę do kina lub pójdę do kina = jutro pójdę do kina
Y=K+K = K
D.
Jutro pójdę do kina lub nie pójdę do kina
Y=K+~K=1
Twarda prawda, bowiem jutro musi wystąpić K lub ~K, nie ma innej możliwości matematycznej.
Nikt tak nie mówi, bowiem mamy tu zero sensu, czyli nic nie zależy od decyzji człowieka, cokolwiek zrobi, nie skłamie. W technice cyfrowej takie połączenie sygnałów to również bezsens, zero logiki.

Czasami mówimy:
Jutro pójdę do kina albo nie pójdę do kina
Y=K+~K
Wyrażając tym samym swoje niezdecydowanie, dając do zrozumienia odbiorcy, że rozważmy pójście do kina ale nie jesteśmy tego pewni.
Zdania równoważne:
Zastanawiam się czy jutro pójść do kina
Możliwe że jutro pójdę do kina
itp


6.3 Najważniejsze prawa algebry Kubusia

W języku mówionym prawa łączności i przemienności to oczywistość, natomiast absorpcja, rozdzielność i pochłanianie są przydatne jedynie w technice cyfrowej.

Kolejność wykonywania działań:
nawiasy, AND, OR

Łączność:
A+(B+C) = (A+B)+C
A*(B*C)=(A*B)*C

Przemienność:
A+B=B+C
A*B=B*C

Absorpcja:
A+(A*B)=A
A*(A+B)=A

Rozdzielność:
A+(B*C) = (A+B)*(A+C)
A*(B+C)=(A*B)+(A*C)

Pochłanianie, to fundament algebry Kubusia (i algebry Boole’a):
1.
A*~A=0 - iloczyn logiczny zbioru A i jego dopełnienia ~A jest zbiorem pustym (=0).
Żaden element zbioru A nie ma prawa należeć do zbioru ~A (zbiory rozłączne)
2.
A+~A=1 - suma logiczna zbioru A i zbioru ~A jest zbiorem pełnym (=1)
Zbiór ~A jest dopełnieniem zbioru A do dziedziny (zbioru pełnego)

Zbiór pełny = dziedzina na której operuje zdanie lub cześć zdania


6.4 Metody upraszczania równań algebry Kubusia

Podstawowe metody pokażemy na przykładzie praw logicznych przedstawionych w poprzednim punkcie.

Definicja bramki logicznej
Bramka logiczna to układ fizyczny o n wejściach (A,B,C…) i tylko jednym wyjściu (Y) realizujący ściśle określoną funkcje logiczną

Bramka logiczna = funkcja logiczna

Przykład funkcji logicznej:
Y=A+B(C+~D)
Zarówno wejścia logiczne (A,B,C,D…) jak i wyjście logiczne to zmienne binarne mogące przyjmować w osi czasu wyłącznie dwie wartości, zero albo 1.

Definicja logiki dodatniej i ujemnej w operatorach OR i AND
Y - funkcja logiczna w logice dodatniej (brak przeczenia)
~Y - funkcja logiczna w logice ujemnej (jest przeczenie)

Prawo przejścia do logiki przeciwnej:
Negujemy zmienne i wymieniamy spójniki logiczne na przeciwne

Kolejność wykonywania działań:
nawiasy, spójnik „i”(*), spójnik „lub”(+)

Metoda Wuja Zbója:
Dana jest funkcja logiczna
Y=A+B(~C+D)
Krok 1:
Uzupełniamy nawiasy i spójniki:
Y = A+[B*(~C+D)] – logika dodatnia bo Y
Krok 2:
Negujemy zmienne i wymieniamy operatory na przeciwne
~Y = ~A*[~B+(C*~D)] – logika ujemna bo ~Y
Zauważmy, że w logice ujemnej zmienia się kolejność wykonywania działań, stąd konieczność uzupełniania nawiasów w kroku 1

Absorbcja:
A+(A*B)=A
1.
Dowód metodą bramek logicznych (funkcji logicznej Y):
Y=A+(A*B)
Jeśli A=1 to Y=A+(A*B)=1+(A*B)=1+x=1
Jeśli A=0 to Y=A+(A*B)=0+(0*B)=0+0=0
niezależnie od wartości B
stąd:
Y=A+(A*B)=A
CND
2.
Ten sam dowód metodą rachunku zero-jedynkowego:
Kod:

A B A*B A+A*B
1 1 =1   =1
1 0 =0   =1
0 1 =0   =0
0 0 =0   =0

Tożsamość kolumn pierwszej i ostatniej jest dowodem zachodzenia prawa absorpcji:
A+A*B = A

Zauważmy, że przy wypełnianiu tabeli zero-jedynkowej korzystamy wyłącznie z dwóch definicji.

Definicja iloczynu logicznego w logice dodatniej
Iloczyn logiczny (spójnik „i”(*) ) n-zmiennych binarnych jest równy jeden wtedy i tylko wtedy gdy wszystkie zmienne są równe jeden.
Y=A*B
Y=1 <=> A=1 i B=1

Definicja sumy logicznej w logice dodatniej:
Suma logiczna (spójnik „lub”(+) ) n-zmiennych binarnych jest równa jeden gdy którakolwiek zmienna jest równa 1
Y=A+B
Y=1 <=> A=1 lub B=1

Koniec !
Absolutnie nic więcej nie jest nam potrzebne do poprawnego wypełnienia tabeli zero-jedynkowej dowolnej funkcji logicznej.

Absorpcja:
A*(A+B)=A
1.
Dowód metoda bramek logicznych (funkcji logicznej Y):
Y=A*(A+B)
Jeśli A=1 to Y=A*(A+B)= 1*(1+B)=1*1=1
Jeśli A=0 to Y=A*(A+B)=0*(A+B)=0
niezależnie od wartości B.
stąd:
Y=A*(A+B)=A
CND
2.
Ten sam dowód metodą rachunku zero-jedynkowego:
Kod:

A B A+B A*(A+B)
1 1 =1   =1
1 0 =1   =1
0 1 =1   =0
0 0 =0   =0

Tożsamość kolumn pierwszej i ostatniej jest dowodem zachodzenia prawa absorpcji:
A*(A+B) = A

Rozdzielność:
A+(B*C) = (A+B)*(A+C)

Uwaga:
Zasady mnożenia wielomianów w algebrze Kubusia są identyczne jak w matematyce klasycznej, mnożymy każdy element z każdym.
1.
Dowód metodą mnożenia wielomianów plus prawo absorpcji:
Y=(A+B)*(A+C) = A*A+A*C+B*A+B*C
A*A=A
stąd:
Y== (A+A*C)+A*B+B*C
A+A*C=A – absorpcja
stąd:
Y=A+A*B+B*C
A+A*B=A – absorpcja
stąd:
Y=A+B*C = A+(B*C)
CND

2.
Ten sam dowód metodą bramek logicznych:
Y=(A+B)*(A+C)
Jeśli A=0 to Y=B*C
Jeśli A=1 to Y=(1+B)*(1+C) = 1*1=1
stąd:
Y=A+B*C = A+(B*C)
Suma logiczna jest tu wymuszona przez przypadek:
Jeśli A=1 to Y=1
CND

Rozdzielność:
A*(B+C)=(A*B)+(A*C)

1.
To jest najzwyklejsze mnożenie zmiennej przez wielomian znane z matematyki klasycznej
cnd

2.
Dowód przez przejście do logiki ujemnej plus redukcja przy pomocy prawa absorpcji:
Y=(A*B)+(A*C)
Przejście do logiki ujemnej poprzez negacje zmiennych i wymianę operatorów:
~Y=(~A+~B)*(~A+~C) = ~A*~A+~A*~C+~B*~A+~B*~C
~A*~A=~A
stad:
~Y=~A+~A*~C+~B*~A+~B*~C
~A+~A*~C=~A – absorpcja
stąd:
~Y=~A+~A*~B + ~B*~C
~A+~A*~B=~A – absorpcja
stąd:
~Y = ~A + ~B*~C
Przejście do logiki dodatniej poprzez negacje zmiennych i wymianę operatorów:
Y=A(B+C)
cnd

3.
Dowód metodą bramek logicznych:
Y=(A*B)+(A*C)
Jeśli A=0 to Y=(0*B)+(0*C) = 0+0=0
jeśli A=1 to Y=(1*B)+(1*C) = B+C
stąd:
Y=A*(B+C)
Iloczyn logiczny jest tu wymuszony przez przypadek:
Jeśli A=0 to Y=0
CND

4.
Dowód metodą rachunku zero-jedynkowego:
Kod:

A B C B+C A(B+C) A*B A*C (A*B)+(A*C)
1 1 1  1   1      1   1    1
1 1 0  1   1      1   0    1
1 0 1  1   1      0   1    1
1 0 0  0   0      0   0    0
0 1 1  1   0      0   0    0
0 1 0  1   0      0   0    0
0 0 1  1   0      0   0    0
0 0 0  0   0      0   0    0

Tożsamość kolumn 5 i ostatniej jest dowodem zachodzenia prawa rozdzielności:
A(B+C) = (A*B)+(A*C)
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 35963
Przeczytał: 15 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Nie 0:39, 05 Lut 2012    Temat postu:

6.5 Tworzenie równań algebry Kubusia z tabel zero-jedynkowych

Dowolną tabelę zero-jedynkową możemy opisać jednoznacznie równaniem algebry Kubusia i odwrotnie, czyli na podstawie dowolnego równania algebry Kubusia możemy wygenerować jednoznaczną tabelę zero- jedynkową.

W tym przypadku:
Równania algebry Kubusia = Równania algebry Boole’a

Twierdzenie Prosiaczka mówi o sposobie przejścia z tabeli zero-jedynkowej n-elementowej do równania algebry Boole’a opisującego tą tabelę.

Definicja zero-jedynkowa operatora OR:
Kod:

p q  Y=p+q
1 1 =1
1 0 =1
0 1 =1
0 0 =0


Kubuś, nauczyciel logiki w I klasie LO w stumilowym lesie:
Kto potrafi z powyższej tabeli zero-jedynkowej wygenerować równanie algebry Boole’a ?

Wszystkie ręce w górze, do tablicy podchodzi Jaś:
W ostatniej linii w wyniku mamy samotne zero, zatem dla tej linii możemy zapisać najprostsze równanie.

Z tabeli widzimy że:
A.
Y=0 <=> p=0 i q=0
Przejście z takiego zapisu do równań algebry Boole’a jest banalne. Należy skorzystać z definicji iloczynu logicznego sprowadzając wszystkie zmienne do jedynki albo z definicji sumy logicznej sprowadzając wszystkie zmienne do zera.

Sposób I.
Sprowadzam wszystkie zmienne do jedynki dzięki czemu w równaniu algebry Kubusia możemy się pozbyć bezwzględnych zer i jedynek:
B.
Prawo algebry Kubusia (Boole’a):
Jeśli Y=0 to ~Y=1
Twierdzenie odwrotne również zachodzi:
Jeśli ~Y=1 to Y=0
Definicja równoważności:
p<=>q = (p=>q)*(q=>p)
stąd możemy używać symbolu równoważności:
Y=0 <=> ~Y=1
… ale nie musimy, bowiem interesuje nas wynikanie wyłącznie w jedną stronę!
Jeśli Y=0 to ~Y=1
Jeśli p=0 to ~p=1
Jeśli q=0 to ~q=1

Definicja iloczynu logicznego (logika dodatnia):
Iloczyn logiczny (spójnik „i”) n-zmiennych binarnych jest równy jeden wtedy i tylko wtedy gdy wszystkie zmienne są równe jeden.
Y=p*q
Y=1 <=> p=1 i q=1

Korzystając z A i B na podstawie tej definicji mamy:
~Y=1 <=> ~p=1 i ~q=1
mając sprowadzone wszystkie zmienne do tej samej wartości logicznej, opuszczamy bezwzględne jedynki.
stąd:
~Y = ~p*~q
Przechodzimy do logiki przeciwnej metodą przedszkolaka negując wszystkie zmienne i wymieniając spójniki na przeciwne.
Y = p+q

Sposób II
Sprowadzamy wszystkie zmienne do zera i stosujemy definicję sumy logicznej.

Definicja sumy logicznej (logika ujemna):
Suma logiczna (spójnik „lub”) n-zmiennych binartnych jest równa zeru wtedy i tylko wtedy gdy wszystkie składniki sumy są równe zeru
Y=p+q
Y=0 <=>p=0 i q=0
Zauważmy, że mamy tu niezgodność zapisu z naturalną logiką człowieka.
W równaniu algebry Kubusia mamy spójnik „lub”(+):
Y=p+q
natomiast w szczegółowej rozpisce mamy spójnik „i”(*):
Y=0 <=>p=0 i q=0
dlatego to jest logika ujemna!

W równaniu A wszystkie zmienne są równe zeru, zatem tu nic nie musimy robić, od razu mamy równanie algebry Kubusia dla powyższej tabeli zero-jedynkowej.
A.
Y=0 <=> P=0 i q=0
stąd:
Y=p+q

Kubuś:
Jasiu, zapisałeś równanie algebry Kubusia wyłącznie dla ostatniej linii, skąd wiesz jakie będą wartości logiczne w pozostałych liniach, nie opisanych tym równaniem ?

Twierdzenie Prosiaczka:
Równania algebry Kubusia dla dowolnej tabeli zero-jedynkowej n-elementowej tworzymy na podstawie linii z tą samą wartością logiczną w wyniku. Wszelkie nie opisane równaniem linie przyjmą wartości przeciwne do linii opisanych. Dla dowolnej tabeli zero-jedynkowej możliwe jest wygenerowanie ośmiu równań algebry Kubusia.

Powyżej ułożyliśmy równanie wyłącznie dla ostatniej linii tabeli gdzie w wyniku było zero, wszelkie pozostałe linie, zgodnie z twierdzeniem Prosiaczka muszą być jedynkami niezależnie od chciejstwa człowieka … bo to jest matematyka przecież.

Kubuś:
Z tego co mówisz wynika, że dla powyższej tabeli można ułożyć równoważne równania dla linii z jedynkami w wyniku, czy potrafisz je zapisać ?

Jaś:
Postępujemy identycznie jak wyżej !
Korzystnie jest tu przejść do tabeli symbolicznej w logice dodatniej (do teorii zbiorów! ) przyjmując:
p=1, ~p=0
q=1, ~q=0
Y=1, ~Y=0
Stąd mamy definicję sumy logicznej w wersji symbolicznej:
Kod:

Dotrzymam słowa (Logika dodatnia bo Y) gdy:
Y=p+q = p*q+p*~q+~p*q
 p* q = Y     /1 1 =1
 p*~q = Y     /1 0 =1
~p* q = Y     /0 1 =1
Skłamię (logika ujemna bo ~Y) gdy:
~p*~q =~Y     /0 0 =0

Stąd równoważne równanie algebry Boole’a dla samych jedynek (Y) przybierze postać:
C.
Y=p+q = (p*q)+(p*~q)+(~p*q)
Z powyższym równaniem możemy przejść do logiki ujemnej negując sygnały i wymieniając operatory na przeciwne.
D.
~Y = ~p*~q = (~p+~q)*(~p+q)*(p+~q)
Negujemy stronami przechodząc do logiki dodatniej:
Y = ~[~p*~q] = ~[(~p+~q)*(~p+q)*(p+~q)]

Twierdzenie Prosiaczka w równaniu algebry Kubusia:
Y=p+q
Y=p*q+ p*~q +~p*q

Oczywiście:
Y=Y
Y= p+q = p*q+ p*~q +~p*q
Dowód metoda przejścia do logiki przeciwnej i z powrotem:
Y=p*q+ p*~q +~p*q
Y=p(q+~q)+~p*q
Prawa algebry Kubusia:
q+~q=1
p*1=p
stąd:
Y=p+(~p*q)
Przechodzimy do logiki ujemnej poprzez negacje zmiennych i odwrócenie spójników:
~Y = ~p(p+~q)
stąd:
~Y=~p*p+~p*~q
Prawa algebry Kubusia:
~p*p=0
0+A=A
stąd:
~Y=~p*~q
Przechodzimy z powrotem do logiki dodatniej poprze negację zmiennych i wymianę spójników na przeciwne.
Y=p+q
cnd

Z powyższego wynika że to samo zdanie:
Y=p+q
możemy wypowiedzieć na wiele różnych sposobów.

W naturalnym języku mówionym najczęściej używamy formy najprostszej jak wyżej. Część z możliwych zdań równoważnych będzie dla człowieka trudno zrozumiała.

Dowód, iż tabelę zero-jedynkową operatora OR możemy opisać ośmioma równaniami algebry Kubusia na przykładzie.

Przykład:
A1.
Jutro pójdę do kina lub do teatru
Y=K+T
… a kiedy skłamię ?
Przejście do logiki ujemnej poprzez negację zmiennych i wymianę operatorów.
A2.
Skłamię (~Y=1) gdy jutro nie pójdę do kina (~K=1) i nie pójdę do teatru (~T=1)
~Y=~K*~T
Związek logiki dodatniej i ujemnej:
Y=~(~Y)
stąd:
Y = K+T = ~(~K*~T)
A3.
Nie może się zdarzyć, że jutro nie pójdę do kina i nie pójdę do teatru
Y = K+T = ~(~K*~T)
A4.
Wyłącznie negujemy równanie A1:
~Y = ~(K+T)
Skłamię (~Y) jeśli nie zdarzy się ~(…), że jutro pójdę do kina (K=1) lub do teatru (T=1)

Analogiczną serię zdań otrzymamy dla równań równoważnych ułożonych dla jedynek w definicji zero-jedynkowej sumy logicznej.
B1.
Y=K+T = K*T+K*~T+~K*T
czyli:
Dotrzymam słowa, jeśli wystąpi którekolwiek zdarzenie:
K*T - byłem w kinie i w teatrze
K*~T - byłem w kinie i nie byłem w teatrze
~K*T - nie byłem w kinie i byłem w teatrze
Oczywiście wyłącznie jedno z powyższych zdarzeń ma szansę wystąpić w rzeczywistości.

… a kiedy skłamię ?
Przejście ze zdaniem B1 do logiki ujemnej poprzez negację zmiennych i wymianę operatorów na przeciwne:
B2.
~Y = (~K+~T)*(~K+T)*(K+~T)
Negujemy dwustronnie i mamy kolejne możliwe zdanie:
B3.
Y = ~[(~K+~Y)*(~K+T)*(K+~T)]
Ostatnie możliwe zdanie otrzymujemy negując dwustronnie B1:
B4.
~Y= ~[(K*T)+(K*~T)+(~K*T)]

Mamy wyżej fantastyczną możliwość powiedzenia tego samego na wiele różnych sposobów.

Wszystkie zdania z wyjątkiem B2 i B3 są dla przeciętnego człowieka intuicyjnie zrozumiałe!

Zdania B2 i B3 to rozbudowane zdania ze zmiennymi w logice ujemnej w stosunku do zdania wypowiedzianego A1.

Na zakończenie rozważmy bardziej złożony przykład.

Dana jest funkcja logiczna:
Y=A+B*C
1.
Narysuj tabele zero-jedynkową dla tej funkcji
2.
Na podstawie narysowanej tabeli zapisać funkcję alternatywną, równoważną
3.
Udowodnić bez tabeli zero-jedynkowej tożsamość tych funkcji

Rozwiązanie:
1.
Kod:

A B C  B*C  Y=A+B*C
1 1 1   1    1
1 1 0   0    1
1 0 1   0    1
1 0 0   0    1
0 1 1   1    1
0 1 0   0    0
0 0 1   0    0
0 0 0   0    0

Twierdzenie:
Równanie algebry Boole’a dla dowolnej tabeli zero-jedynkowej uzyskamy opisując linie z ta samą wartością w wyniku.

Najprostsze równanie algebry Boole’a utworzymy z trzech ostatnich linii bo tu mamy najmniejszą ilość zer w wyniku.

Kolejno dla linii z samymi zerami mamy:
Krok A.
Y=0 <=> A=0 i B=1 i C=0
LUB
Y=0 <=> A=0 i B=0 i C=1
LUB
Y=0 <=> A=0 i B=0 i C=0

Najprościej utworzyć równanie algebry Kubusia w logice dodatniej sprowadzając wszystkie zmienne do jedynek, będziemy mieli wówczas 100% zgodność z naturalną logika człowieka, czyli opisem tabeli w kroku A.
Oczywiście:
Jeśli Y=1 to ~Y=1
Jeśli A=0 to ~A=1
itd

Ze zmiennymi które mają wartość 1 nic nie robimy, po prostu je przepisujemy.

Stąd układ równań A przyjmie postać:
Krok B.
~Y=1 <=> ~A=1 i B=1 i ~C=1
LUB
~Y=1 <=> ~A=1 i ~B=1 i C=1
LUB
~Y=1 <=> ~A=1 i ~B=1 i ~C=1

Krok C.
Wywalamy jedynki w kosmos i zastępujemy spójniki logiczne symbolami:
+ = „lub”
* = „i”
Stąd mamy:
C.
~Y = ~A*B*~C + ~A*~B*C + ~A*~B*~C
stąd:
Y=~[~A*B*~C + ~A*~B*C + ~A*~B*~C]

Krok C.
Matematyczny dowód iż zachodzi:
Y=A+B*C = ~[~A*B*~C + ~A*~B*C + ~A*~B*~C]
Bez użycia tabel zero-jedynkowych !

Przekształcamy równanie C:
Y= ~[~A*B*~C + ~A*~B*C + ~A*~B*~C]
Negujemy stronami:
~Y = ~A*B*~C + ~A*~B*C + ~A*~B*~C
~Y = ~A(B*~C + ~B*C + ~B*~C)
~Y = ~A[B*~C + ~B(C+~C)]
Prawa algebry Kubusia:
C+~C=1
~B*1=~B
stąd:
~Y = ~A[(B*~C) + ~B]
Przechodzimy do logiki przeciwnej poprzez negacje zmiennych i wymianę spójników na przeciwne
Y = A+[(~B+C)*B]
Y=A+(~B*B + C*B)
Oczywiście prawa algebry Boole’a::
~B*B=0
0+A=A
stąd:
Y=A+B*C
CND

Jak mi ktoś jeszcze powie, iż algebra Kubusia nie jest absolutnie i genialnie prosta to kubeł miodu na jego głowę poleci!


7.0 Aksjomatyczne definicje operatorów logicznych

Podstawowe definicje dwuelementowej algebry Kubusia to po prostu pełna lista operatorów logicznych.

Aksjomatyczne definicje operatorów logicznych w algebrze Boole’a i algebrze Kubusia:
Kod:

p q  OR NOR  AND NAND  <=> XOR  => N(=>) ~> N(~>)  ~~>  N(~~>)  P NP  Q NQ
1 1  1   0    1   0     1   0   1    0   1    0     1    0      1 0   1 0
1 0  1   0    0   1     0   1   0    1   1    0     1    0      1 0   0 1
0 1  1   0    0   1     0   1   1    0   0    1     1    0      0 1   1 0
0 0  0   1    0   1     1   0   1    0   1    0     1    0      0 1   0 1

Kod:

Logika dodatnia    Logika ujemna
OR                 NOR
AND                NAND
<=>                XOR
=>                 N(=>)
~>                 N(~>)
~~>                N(~~>)
P                  NP
Q                  NQ

Wszystkich możliwych operatorów logicznych dwuargumentowych jest 16. Za operatory dodatnie przyjęto te, które człowiek używa w naturalnym języku mówionym.

Operator ujemny to zanegowany operator dodatni, co doskonale widać w powyższej tabeli.
Operator dodatni to zanegowany operator ujemny, co również widać wyżej.
Kod:

Definicje operatorów ujemnych:
pNORq       =     ~(p+q)
pNANDq      =     ~(p*q)
pXORq       =     ~(p<=>q)
pN(=>)q     =     ~(p=>q)
pN(~>)q     =     ~(p~>q)   
p~~>q       =     ~(p~~>q)
pNPq        =     ~(pPq)
pNQq        =     ~(pQq)

W języku mówionym operatory ujemne nie są używane, ponieważ łatwo je zastąpić operatorami dodatnimi plus negacją co widać w powyższej tabeli.

Dowolny operator logiczny jest jednoznacznie zdefiniowany tabelą zero-jedynkową i nie ma tu miejsca na jego niejednoznaczną interpretację. Argumenty w dowolnym operatorze logicznym mogą być albo przemienne (AND, OR, <=>), albo nieprzemienne (implikacja prosta i implikacja odwrotna).

Operatory ~~>, OR, AND, implikacji prostej, implikacji odwrotnej i równoważności zostały omówione w części I i II.

Zajmiemy się operatorami dotychczas nie omówionymi.


7.1 Abstrakcyjny model operatora logicznego

Wyobraźmy sobie czarną skrzynkę z dwoma przełącznikami p i q na których można ustawiać logiczne 0 albo 1. Wyjściem w tej skrzynce jest lampka Y sterowana przez najprawdziwszego krasnoludka imieniem OPERATOR w następujący sposób.
Y=1 - lampka zaświecona
Y=0 - lampka zgaszona
Panel sterowania naszej czarnej skrzynki umożliwia wybór jednego z 16 możliwych operatorów logicznych.
Fizyczna realizacja takiej czarnej skrzynki w technice TTL jest banalna. W laboratorium techniki cyfrowej można sprawdzić doświadczalnie działanie wszystkich 16 operatorów logicznych. Pewne jest że teoria matematyczna musi być w 100% zgodna z rzeczywistością co jest dowodem że … krasnoludki są na świecie.


7.2 Operatory logiczne ~~> i N(~~>)

Definicje ~~> i N(~~>)
Kod:

p q Y=p~~>q Y=~(p~~>q)
1 1  =1       =0
1 0  =1       =0
0 1  =1       =0
0 0  =1       =0

Jak widzimy po wybraniu operatora ~~> krasnoludek OPERATOR zapala lampkę na wyjściu Y=1, siada na stołeczku i odpoczywa kompletnie nie interesując się co też człowiek na wejściach p i q sobie ustawia. Analogicznie jeśli wybierzemy operator N(~~>) to lampka na wyjściu Y będzie cały czas zgaszona (Y=0).


7.3 Operatory transmisji P i Q

Definicje operatorów transmisji P i Q:
Kod:

p q Y=pPq Y=pQq
1 1  =1    =1
1 0  =1    =0
0 1  =0    =1
0 0  =0    =0

Operator P generuje na wyjściu Y sygnał identyczny z tym jaki widnieje po lewej stronie operatora P:
pPq =p
Fizycznie operator pPq to po prostu połączenie kabelkiem wejścia p z wyjściem Y, wejście q jest tu zupełnie nieistotne i można je usunąć.
Z powyższego wynika że operator P można i należy zredukować do sygnału widniejącego po lewej stronie operatora P, czyli całość redukujemy do operatora jednoargumentowego o definicji.

Definicja operatora transmisji:
Kod:

p Y=pP=p
1  =1
0  =0

Analogicznie operator Q można i należy zredukować do sygnału widniejącego z prawej strony operatora Q.
pQq=q

Operator transmisji w zbiorach:



Y=p

Przykład:
A.
Jutro pójdę do kina
Y=K
Matematycznie oznacza to:
Dotrzymam słowa (Y=1) wtedy i tylko wtedy gdy jutro pójdę do kina (K=1)
Y=K
Y=1 <=> K=1

… a kiedy skłamię ?
Negujemy tożsamość A dwustronnie:
~Y=~K
B.
Skłamię (~Y=1) wtedy i tylko wtedy gdy jutro nie pójdę do kina (~K=1)
~Y=~K
~Y=1 <=> ~K=1


7.4 operatory negacji NP i NQ

Definicje operatorów negacji NP i NQ
Kod:

p q Y=pNPq Y=pNQq
1 1  =0     =0
1 0  =0     =1
0 1  =1     =0
0 0  =1     =1

Doskonale widać, że na wyjściu operatora pNPq mamy:
Y=pNPq = pNP = ~p
Na wyjściu Y mamy zanegowany sygnał z wejścia p, sygnał q jest tu totalnie nieistotny i można go do kosza wyrzucić. Fizycznie ten operator to połączenie wejścia p z wyjściem Y poprzez układ negatora, czyli całość to w rzeczywistości jednoargumentowy układ negatora o definicji jak niżej.

Definicja negatora:
Kod:

p Y=pNP=~p
1  =0
0  =1

Gdzie:
~ - symbol negacji, w mowie potocznej przeczenie NIE

Analogiczną funkcję negatora realizuje operator pNQq:
Y=pNQq = NQq=~q

Jedno z kluczowych praw algebry Kubusia (Boole’a)
A=~(~A) – prawo podwójnego przeczenia
Przykład:
Jestem uczciwy
U
Zaprzeczenie:
Nie jestem uczciwy
~U
Podwójne zaprzeczenie:
Nieprawdą jest, że jestem nieuczciwy = jestem uczciwy
~(~U) = U

Dowód formalny:
Kod:

~Y=p  Y=~p  ~Y=~(~p)
  1    =0     =1
  0    =1     =0

Tożsamość kolumn pierwszej i ostatniej jest dowodem poprawności prawa podwójnego przeczenia.

Operator negacji w zbiorach:



Y=~p

Przykład:
A.
Jutro nie pójdę do kina
Y=~K
Matematycznie oznacza to:
Dotrzymam słowa (Y=1) wtedy i tylko wtedy gdy jutro nie pójdę do kina (~K=1)
Y=~K
Y=1 <=> ~K=1

… a kiedy skłamię ?
Negujemy tożsamość A dwustronnie:
~Y=K
B.
Skłamię (~Y=1) wtedy i tylko wtedy gdy jutro pójdę do kina (K=1)
~Y=K
~Y=1 <=> K=1
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 35963
Przeczytał: 15 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Nie 0:40, 05 Lut 2012    Temat postu:

Część II
Algebra Kubusia w służbie lingwistyki




Prawo Kłapouchego:
Z dowolnego zdania musimy usunąć wszelkie fałsze logiczne.
Wtedy i tylko wtedy otrzymamy prawidłowy matematycznie kręgosłup logiki człowieka.


9.0 Algebra Kubusia w służbie lingwistyki

Algebra Kubusia to fundament logiki człowieka, a tym samym fundament naturalnego języka mówionego.

9.1 Nieznane prawa logiki

Definicja spójnika „i”(+):
Iloczyn logiczny (spójnik „i”) jest równy 1 wtedy i tylko wtedy gdy wszystkie zmienne są równe 1
Y=p*q
Y=1 <=> p=1 i q=1

Definicja spójnika „lub”(+)
Suma logiczna (spójnik „lub”) n zmiennych binarnych jest równa 1 wtedy i tylko wtedy gdy którakolwiek zmienna jest równa 1
Y=p+q
Y=1 <=>p=1 lub q=1

Równoważna definicja spójnika „lub”(+):
p+q = p*q + p*~q + ~p*q
W świecie zdeterminowanym to jest podstawowe narzędzie do eliminacji wszelkich fałszów ze zdania.

Przykład:
A.
Pies ma cztery łapy lub nie miauczy
P=>4L+~M
Dla psa mamy świat totalnie zdeterminowany:
4L=1, ~4L=0
~M=1, M=0

Definicja spójnika „lub”(+):
p+q = p*q + p*~q + ~p*q
stąd dla naszego przykładu:
4L+~M = (4L*~M=1*1=1) + (~4L*~M=0*1=0) + (4L*M=1*0=0) = 4L*~M
Stąd po minimalizacji funkcji mamy jedyne poprawne matematycznie zdanie:
A.
Pies ma cztery łapy i nie miauczy
P=>4L*~M
Oczywiście każdy polonista postawi pałę za zdanie A i będzie miał rację.

Zdanie podobne:
A.
Mickiewicz był polakiem lub napisał „Pana Tadeusza”
Y=MP+PT
Oczywiście tu również mamy świat totalnie zdeterminowany:
MP=1, ~MP=0
PT=1, ~PT=0

Definicja spójnika „lub”(+):
p+q = p*q + p*~q + ~p*q
stąd dla naszego przykładu:
MP+PT = (MP*PT=1*1=1) + (~MP*PT=0*1=0) + (MP*~PT=1*0=0) =MP*PT
Stąd po minimalizacji funkcji mamy jedyne poprawne matematycznie zdanie:
Mickiewicz był polakiem i napisał „Pana Tadeusza”
Y=MP*PT=1
Oczywiście tu również za zdanie A każdy polonista postawi pałę i nie ma przeproś.

Twierdzenie Sowy:
W świecie totalnie zdeterminowanym dowolny operator logiczny ulega redukcji do operatora AND.

Definicja operatora logicznego:
Operator logiczny to odpowiedź układu na wszelkie możliwe przeczenia p i q.

Dla naszego przykładu, świata totalnie zdeterminowanego, mamy:
Kod:

 MP* PT = 1*1=1
 MP*~PT = 1*0=0
~MP* PT = 0*1=0
~MP*~PT = 0*0=0

Doskonale widać definicje zero-jedynkową operatora AND.
cnd

I nieznane prawo logiki!
Dla zbiorów rozłącznych p i q zachodzi:
(p+q=>r) = [(p=>r)*(q=>r)]
Przykład:
A.
Jeśli zwierze jest psem lub kotem to na pewno => ma cztery łapy
(P+K=>4L) = [(P=>4L)*(K=>4L)]
Jeśli prawdziwe jest zdanie A to na pewno prawdziwe są zdania B i C:
B.
Jeśli zwierzę jest psem to na pewno ma cztery łapy
P=>4L=1
i
C.
Jeśli zwierzę jest kotem to na pewno ma cztery łapy
K=>4L=1
Oczywiście wynikanie w druga stronę również zachodzi.

Zbiory rozłączne można zdefiniować korzystając z definicji spójnika „lub”(+):
p+q = p*q + p*~q + ~p*q
Jeśli z założenia zbiory p i q są rozłączne to ich iloczyn logiczny jest równy zeru:
p*q=0
stąd dla zbiorów rozłącznych:
p+q = p*~q + ~p*q
oczywiście dla zbiorów rozłącznych p i q zachodzi:
p*~q=p
~p*q=q

Prawo którego dowodzimy przyjmuje zatem postać:
[(p*~q + ~p*q)=>r] = [(p*~q=>r) * (~p*q=>r)]

Dowód formalny:

Operator implikacji prostej:
Kod:

p q p=>q
1 1  =1
1 0  =0
0 0  =1
0 1  =1


[(p*~q + ~p*q)=>r] = [(p*~q=>r) * (~p*q=>r)]
Kod:

             A     B           
p q r ~p ~q p*~q ~p*q A+B A+B=>r A=>r B=>r (A=>r)*(B=>r)
1 1 1  0  0  0     0   0    1     1    1    1
1 1 0  0  0  0     0   0    1     1    1    1
1 0 1  0  1  1     0   1    1     1    1    1
1 0 0  0  1  1     0   1    0     0    1    0
0 1 1  1  0  0     1   1    1     1    1    1
0 1 0  1  0  0     1   1    0     1    0    0
0 0 1  1  1  0     0   0    1     1    1    1
0 0 0  1  1  0     0   0    1     1    1    1
                            X               Y

Tożsamość kolumn wynikowych X i Y jest dowodem zachodzenia powyższego prawa.

Po fakcie okazało się że poniższe prawo nie potrzebuje żadnych zastrzeżeń typu zbiory rozłączne, działa zawsze. Pozostawiam powyższy dowód bo jest ciekawy merytorycznie.
(p=>r)*(q=>r) = (p+q=>r)
Kod:
         
p+q p q r p=>r q=>r (p=>r)*(q=>r) (p+q)=>r
 1  1 1 1  1    1         1         1
 1  1 1 0  0    0         0         0
 1  1 0 1  1    1         1         1
 1  1 0 0  0    1         0         0 
 1  0 1 1  1    1         1         1
 1  0 1 0  1    0         0         0
 0  0 0 1  1    1         1         1
 0  0 0 0  1    1         1         1


Ten sam dowód w równaniach algebry Kubusia:
(p=>r)*(q=>r) = (p+q)=>r
Prawa strona:
(p=>r)*(q=>r) = (~p+r)*(~q+r) = ~p*~q + ~p*r + ~q*r + r = ~p*~q + r(~p+~q+1) = ~p*~q + r
Lewa strona:
(p+q)=>r = ~(p+q)+r = ~p*~q+r
cnd

II nieznane prawo logiki
(r=>p*q) = [(r=>p)*(r=>q)
A.
Jeśli zwierze jest psem to na pewno => ma cztery łapy i szczeka
(P=>4L*S) = [(P=>4L)*(P=>S)]
Jeśli prawdziwe jest zdanie A to prawdziwe są zdania B i C:
B.
Jeśli zwierze jest psem to na pewno ma cztery łapy
P=>4L=1
i
C.
Jeśli zwierzę jest psem to na pewno szczeka
P=>S=1
oczywiście zachodzi także wynikanie odwrotne.

Dowód formalny:
(r=>p*q) = [(r=>p)*(r=>q)
Kod:

r p q p*q r=>p*q r=>p r=>q (r=>p)*(r=>q)
1 1 1  1   1      1    1     1
1 1 0  0   0      1    0     0
1 0 1  0   0      0    1     0
1 0 0  0   0      0    0     0
0 1 1  1   1      1    1     1
0 1 0  0   1      1    1     1
0 0 1  0   1      1    1     1
0 0 0  0   1      1    1     1

Zachodzi tożsamość kolumn wynikowych:
r=>p*q = (r=>p)*(r=>q)

Ten sam dowód w równaniach algebry Kubusia:
~r + p*q = (~r+p)*(~r+q) = ~r + ~r*q + ~r*p + p*q = ~r*(1+q+p) + p*q = ~r + p*q
cnd

Prawa symetryczne dla implikacji odwrotnej!

III nieznane prawo logiki
Dla zbiorów rozłącznych p i q zachodzi:
(r~>p+q) = [(r~>p)*(r~>q)]
A.
Jeśli zwierzę ma cztery łapy to może ~> być psem lub kotem
(4L~>P+K) = [(4L~>P)*(4L~>K)]
Jeśli prawdziwe jest zdanie A to na pewno prawdziwe są zdania B i C:
B.
Jeśli zwierze ma cztery łapy to może ~> być psem
4L~>P=1
Prawo Kubusia:
4L~>P = ~4L=>~P=1
Jeśli zwierzę nie ma czterech łap to na pewno => nie jest psem
~4L=>~P=1
Z prawej strony zachodzi warunek wystarczający =>, zatem z lewej strony zachodzi warunek konieczny ~>.
cnd
i
C.
Jeśli zwierze ma cztery łapy to może ~> być kotem
4L~>K=1
Prawo Kubusia:
4L~>K = ~4L=>~K=1
Jeśli zwierzę nie ma czterech łap to na pewno => nie jest kotem
~4L=>~K=1
Z prawej strony zachodzi warunek wystarczający =>, zatem z lewej strony zachodzi warunek konieczny ~>.
cnd
Oczywiście wynikanie odwrotne również zachodzi.

Zbiory rozłączne można zdefiniować korzystając z definicji spójnika „lub”(+):
p+q = p*q + p*~q + ~p*q
Jeśli z założenia zbiory p i q są rozłączne to ich iloczyn logiczny jest równy zeru:
p*q=0
stąd dla zbiorów rozłącznych:
p+q = p*~q + ~p*q
oczywiście dla zbiorów p i q rozłącznych zachodzi:
p*~q=p
~p*q=q

Prawo którego dowodzimy przyjmuje zatem postać:
r~>(p*~q + ~p*q) = [(r~>p*~q)*(r~>~p*q)

Dowód formalny

Operator implikacji odwrotnej:
Kod:

p q p~>q
1 1  =1
1 0  =1
0 0  =1
0 1  =0


r~>(p*~q + ~p*q) = [(r~>p*~q)*(r~>~p*q)
Kod:

             A     B           
p q r ~p ~q p*~q ~p*q A+B r~>A+B r~>A r~>B (r~>A)*(r~>B)
1 1 1  0  0  0     0   0    1     1    1    1
1 1 0  0  0  0     0   0    1     1    1    1
1 0 1  0  1  1     0   1    1     1    1    1
1 0 0  0  1  1     0   1    0     0    1    0
0 1 1  1  0  0     1   1    1     1    1    1
0 1 0  1  0  0     1   1    0     1    0    0
0 0 1  1  1  0     0   0    1     1    1    1
0 0 0  1  1  0     0   0    1     1    1    1
                            X               Y

Tożsamość kolumn wynikowych X i Y jest dowodem zachodzenia powyższego prawa.

IV nieznane prawo logiki
(p*q~>r) = [(p~>r)*(q~>r)]

Przykład:
A.
Jeśli zwierzę ma cztery łapy i szczeka to może ~> być psem
(4L*S~>P) = [(4L~>P)*(S~>P)]
Jeśli prawdziwe jest zdanie A to prawdziwe są zdania B i C:
B.
Jeśli zwierze ma cztery łapy to może ~> być psem
4L~>S=1
Prawo Kubusia:
4L~>P = ~4L=>~P=1
Jeśli zwierzę nie ma czterech łap to na pewno => nie jest psem
~4L=>~P=1
Z prawej strony zachodzi warunek wystarczający =>, zatem z lewej strony musi zachodzić warunek konieczny ~>.
cnd
i
C.
Jeśli zwierzę szczeka to może ~> być psem
S~>P=1
Prawo Kubusia:
S~>P = ~S=>~P=1
Jeśli zwierzę nie szczeka to na pewno => nie jest psem
~S=>~P=1
Z prawej strony zachodzi warunek wystarczający =>, zatem z lewej strony musi zachodzić warunek konieczny ~>.
cnd
Oczywiście wynikanie odwrotne również zachodzi.

Dowód formalny:

Operator implikacji odwrotnej:
Kod:

p q p~>q
1 1  =1
1 0  =1
0 0  =1
0 1  =0


(p*q~>r) = [(p~>r)*(q~>r)]
Kod:

p*q p q r p*q~>r p~>r q~>r (p~>r)*(q~>r)
 1  1 1 1  1      1    1     1
 1  1 1 0  1      1    1     1
 0  1 0 1  0      1    0     0
 0  1 0 0  1      1    1     1
 0  0 1 1  0      0    1     0
 0  0 1 0  1      1    1     1
 0  0 0 1  0      0    0     0
 0  0 0 0  1      1    1     1

Zachodzi tożsamość kolumn wynikowych:
p*q~>r = (p~>r)*(q~>r)


9.2 Świat niezdeterminowany

Definicja:
Świat niezdeterminowany to świat w którym nie znamy z góry wartości logicznej ani jednej zmiennej

Przykład 1
Jutro pójdę do kina
Y=K
Matematycznie oznacza to:
Dotrzymam słowa (Y=1) wtedy i tylko wtedy gdy jutro pójdę do kina (K=1)
Y=K
Y=1 <=> K=1
… a kiedy skłamię ?
Negujemy stronami bo to jest równoważność (tożsamość):
~Y=~K
Skłamię (~Y=1) wtedy i tylko wtedy gdy jutro nie pójdę do kina (~K=1)
~Y=~K
~Y=1 <=> ~K=1
Czytamy:
~K=1 - prawdą jest (=1), że nie byłem w kinie (~K)
~Y=1 - prawdą jest (=1), że skłamałem (~Y)
To samo w formie symbolicznej:
~K - nie byłem w kinie
~Y - skłamałem
Oczywiście stan:
~K=1 - nie byłem wczoraj w kinie ma szansę wystąpić
Wtedy skłamałem:
~Y=1

Przykład 2
Jutro nie pójdę do kina
Y=~K
Matematycznie oznacza to:
Dotrzymam słowa (Y=1) wtedy i tylko wtedy gdy jutro nie pójdę do kina (~K=1)
Y=~K
Y=1 <=> ~K=1
… a kiedy skłamię ?
Negujemy stronami bo to jest równoważność (tożsamość):
~Y=K
Skłamię (~Y=1) wtedy i tylko wtedy gdy jutro pójdę do kina (K=1)
~Y=K
~Y=1 <=> K=1
Oczywiście stan:
K=1 - byłem wczoraj w kinie ma szansę wystąpić
Wtedy skłamałem:
~Y=1


9.3 Świat zdeterminowany

Definicja:
Świat zdeterminowany to świat w którym wartości zmiennych logicznych są znane z góry.

Determinizm może być:
Całkowity, gdy znamy z góry wartości logiczne wszystkich zmiennych
Częściowy, gdy znamy z góry wartości logiczne niektórych zmiennych


9.4 Prawa eliminacji fałszu ze spójnika „lub”(+)

Definicja sumy logicznej
Suma logiczna (spójnik „lub”) n zmiennych binarnych jest równa 1 wtedy i tylko wtedy gdy którakolwiek zmienna jest równa 1
Y=p+q
Y=1 <=>p=1 lub q=1
Pełna definicja sumy logicznej:
p+q = p*q+p*~q+~p*q

Prawo eliminacji fałszu w świecie zdeterminowanym dla spójnika „lub”(+):
W świecie zdeterminowanym, częściowo lub całkowicie, w definicji sumy logicznej występuję fałsze które eliminujemy korzystając z pełnej definicji sumy logicznej.

Przykład:
A.
Pies szczeka lub miauczy
P=>S+M
Korzystamy z pełnej definicji spójnika „lub”(+)
Dla psa mamy:
S+M = (S*M=1*0=0) + (S*~M=1*1=1)+(~S*M=0*1=0) = S*~M
Stąd po redukcji mamy zdanie prawdziwe:
Pies szczeka i nie miauczy
P=>S*~M
Tylko i wyłącznie do takiego zdania możemy stosować prawa logiczne np. przejście do logiki przeciwnej poprzez negacje zmiennych i wymianę operatorów
Jeśli zwierzę nie jest psem to może nie szczekać lub miauczeć
~P~>~S+M
~P=1 <=> ~S=1+M=1
Losujemy zwierzaka: kot
M=1 - .. i już wiemy że to nie pies, drugiej zmiennej nie musimy sprawdzać


9.5 Prawa eliminacji fałszu ze spójnika „i”(*)

Definicja iloczynu logicznego
Iloczyn logiczny (spójnik „i”) n zmiennych binarnych jest równy 1 wtedy i tylko wtedy gdy wszystkie zmienne są równe 1
Y=p*q
Y=1 <=>p=1 i q=1

Oczywiście jeśli zmienna q=0 jest zdeterminowana to:
Y=p*q = 1*0=0
Zdanie jest fałszywe.

Przykład:
A.
Pies szczeka i miauczy
P=>S*M
Dla psa mamy:
M=0
Zatem:
P=S*M=1*0=0
Całe zdanie jest fałszywe, wyrzucamy do kosza.

Prawo redukcji prawdy powstałej z negacji fałszu:
Y=p*~q
Jeśli ~q=1 to:
Y=p
Dowód:
jeśli ~q=1
to:
q=0 – zbiór pusty = zdanie fałszywe
Z punktu widzenia języka mówionego taka zmienna jest bezwartościowa, stąd redukcja ~q.

Od strony matematycznej takie zdanie jest poprawne bowiem zapis:
Y=p*~q
Oznacza matematycznie:
Y=1 <=> p=1 i ~q=1
Zatem takiej redukcji możemy dokonać, ale nie musimy dokonać!

Przykład:
A.
Pies szczeka i nie miauczy
P=>S*~M
Dla psa mamy:
M=0 – zbiór psów miauczących jest zbiorem pustym
Stąd zdanie A po redukcji:
B.
Pies szczeka
P=>S


9.6 Operatory OR i AND w świecie zdeterminowanym

Definicja determinizmu:
Determinizm to pełna lub częściowa znajomość rozwiązania

Definicja świata niezdeterminowanego:
Świat jest niezdeterminowany, gdy wartości logiczne zdań wchodzących w skład operatora logicznego nie są zdeterminowane ani częściowo, ani całkowicie.

Zacznijmy od błahostki ze świata totalnie zdeterminowanego, gdzie z góry znamy wartości logiczne wszystkich zmiennych.

Przykład 1
Czy wiesz drogi czytelniku dlaczego Pani Przedszkolanka koryguje trzylatków którzy mówią:
A.
Pies ma cztery łapy lub szczeka
P=>(4L+S)
żądając jedynie słusznej formy:
B.
Pies ma cztery łapy i szczeka
P=>4L*S

Oczywiście nie wynika to z chciejstwa pani przedszkolanki, lecz z matematyki ścisłej, algebry Kubusia, pod którą wszyscy podlegamy.

Zdanie A jest matematycznie równoważne zdaniu:
Jeśli zwierzę jest psem to na pewno => ma cztery łapy lub szczeka
P=>(4L+S)

Rozpiszmy następnik zgodnie z definicją szczegółową spójnika ‘lub”:
Y=p+q = p*q+p*~q+~p*q
stąd:
C.
Dla psa mamy:
4L+S = (4L*S=1) + (4L*~S=0) + (~4L*S=0) = 4L*S

… i wszystko jasne, dwa ostatnie człony są fałszywe, zatem możemy je wywalić w kosmos.

Stąd po minimalizacji funkcji C otrzymujemy zdanie:
B.
Jeśli zwierze jest psem to na pewno => ma cztery łapy i szczeka
P=>4L*S

Zdanie równoważne w języku potocznym:
Pies ma cztery łapy i szczeka
P=>4L*S

Stąd znana każdemu poloniście reguła lingwistyczna:
Jeśli definiujemy cokolwiek to powinniśmy używać spójnika „i”.

Przykład 2
Zdanie wypowiedziane:
A.
Jutro pójdę do kina lub do teatru
Y=K+T
Y=1 <=> K=1 lub T=1

To samo zdanie w rozwinięciu szczegółowym:
Y= K+T = K*T+K*~T+~K*T
Dotrzymam słowa (Y) jeśli:
A.
Jutro pójdę do kina i do teatru
Y=K*T
LUB
B.
Jutro pójdę do kina i nie pójdę do teatru
Y=K*~T
LUB
C.
Jutro nie pójdę do Kina i pójdę do teatru
Y+~K*T
… a kiedy skłamie ?
Przejście ze zdaniem A do logiki przeciwnej poprzez negacje zmiennych i wymianę operatorów na przeciwne
~Y=~K*~T
D.
Skłamię (~Y) jeśli jutro nie pójdę do kina (~K) i nie pójdę do teatru (~T)
~Y=~K*~T
~Y=1 <=> ~K=1 i ~T=1

Oczywiście po jutrze wyłącznie jedno zdanie ze zdań A,B,C,D może być prawdziwe, pozostałe będą fałszywe, nie ma innej możliwości matematycznej. Ten świat jest niezdeterminowany, bowiem jutro dowolne z powyższych zdań może być prawdziwe.

Weźmy teraz nasz przykład w skróconym zapisie symbolicznym:
Kod:

Dotrzymam słowa (Y) gdy:
Y=K+T – zdanie wypowiedziane
Y=K+T = K*T+K*~T+~K*T
A: K* T= Y
B: K*~T= Y
C:~K* T= Y
… a kiedy skłamię ?
Przejście do logiki przeciwnej!
~Y - skłamię
D:~K*~T=~Y

Zauważmy, że symboliczna tabela operatorowa OR pokazuje wszystkie możliwe przypadki jakie jutro mogą zajść. Najważniejsza informacja to rozstrzygnięcie kiedy jutro dotrzymam słowa (Y), a kiedy skłamię (~Y). Oczywiście jutro może zajść wyłącznie jeden z powyższych przypadków, dzisiaj nie wiemy który, czyli rzeczywistość nie jest zdeterminowana.

Definicja miękkiej i twardej prawdy w logice:
Miękka prawda, może zajść ale nie musi, przykładem jest tu spójnik „lub”.
Twarda prawda, tylko jedno zdanie może być prawdziwe, przykładem jest tu spójnik „i”

Spójnik „lub” w naszym przykładzie to wyłącznie zdania A,B,C. Dla konkretnego losowania wyłącznie jedno z tych zdań może być prawdziwe.

Spójnik „i” w naszym przykładzie to wyłącznie zdanie D.
Skłamię (~Y=1) wtedy i tylko wtedy gdy jutro nie pójdę do kina (~K=1) i nie pójdę do teatru (~T=1)
~Y=~K*~T
~Y=1 <=> ~K=1 i ~T=1

Definicja:
Determinizm to pełna lub częściowa znajomość rozwiązania

W szczególności:
Przeszłość = 100% determinizm.
Co się stało to się nie odstanie, film pt. „Nasz Wszechświat” został nakręcony i nic w nim nie można zmienić.

Twierdzenie Sowy:
We wszystkich operatorach (w tym w OR i AND) znajomość rozwiązania determinuje jedno, jedyne zdanie prawdziwe ze spójnikiem „i”(*), czyli takie zdanie będzie spełniało definicję operatora AND !

Załóżmy, że dla naszego przykładu wyżej zaszedł przypadek C.
C.
Wczoraj nie byliśmy w kinie i byliśmy w teatrze
Y=~K*T
Y=1 <=> ~K=1 i T=1
stąd dla punktu odniesienia ustalonym na zaistniałej rzeczywistości mamy:
~K=1, K=0
T=1, ~T=0
Nasza tabela symboliczna w kodowaniu zero-jedynkowym w świecie zdeterminowanym przybierze postać:
Kod:

Dotrzymam słowa (Y) gdy:
Y=K+T – zdanie wypowiedziane
Y=K+T = K*T+K*~T+~K*T
A: K* T= Y     /0*1 =0
B: K*~T= Y     /0*0 =0
C:~K* T= Y     /1*1 =1 – wyłącznie to zdanie jest prawdziwe !
… a kiedy skłamię ?
Przejście do logiki przeciwnej!
~Y - skłamię
D:~K*~T=~Y     /1*0 =0

W przypadku determinizmu wynikowe zera i jedynki generowane są na podstawie zaistniałej rzeczywistości zgodnie z definicją spójnika „i”. Jak widzimy w tym przypadku nasza tabela przeszła jednoznacznie w operator AND zgodnie ze zdaniem wypowiedzianym C.

Weźmy inny przykład ze świata totalnie zdeterminowanego.

Przykład 3
A.
Dowolny kraj leży w Europie, Azji lub Afryce
Y=E+Az+Af
Dla uproszczenia celowo pominięto pozostałe kontynenty

Prawo ogólne dla trzech zmiennych:
A.
Y=p+q+r
Y – wystąpi prawda, logika dodatnia bo Y
To samo w rozpisce szczegółowiej na podstawie szczegółowej definicji spójnika „lub”(+)
B.
Y=p+q+r = p*q*r+p*q*~r+p*~q*r+p*~q*~r+~p*q*r+~p*q*~r+~p*~q*r
… a kiedy wystąpi fałsz?
Przejście ze zdaniem A do logiki ujemnej poprzez negacje zmiennych i wymianę operatorów
C.
~Y=~p*~q*~r
~Y – wystąpi fałsz, logika ujemna bo ~Y
Wyłącznie ta sekwencja iloczynu nie ma prawa pojawić się w równaniu B, pozostałe przypadki musza być w równaniu B uwzględnione!

Wróćmy do naszego przykładu.

Zdanie A będzie prawdziwe jeśli:
Y = E+Az+Af
czyli:
1: E*Az*Af =Y
lub
2: E*Az*~AF=Y
lub
3: E*~Az*Af=Y
lub
4: E*~Az*~Af=Y
lub
5: ~E*Az*Af=Y
lub
6: ~E*Az*~Af=Y
lub
7. ~E*~Az*Af=Y
… a kiedy zdanie A będzie fałszywe ?
Przechodzimy do logiki ujemnej poprzez negacje zmiennych i wymianę argumentów
8. ~E*~Az*~Af= ~Y

Zauważmy, że dowolny kraj musi gdzieś leżeć, zatem linia 8 będzie zawsze fałszem dla dowolnego, wylosowanego kraju

Losujemy kraj: Polska

Oczywiście w tym przypadku wyłącznie linia 4 będzie prawdziwa:
4.
Polska leży w Europie i nie leży w Azji i nie leży w Afryce
Y = E*~Az*~Af
Y=1 <=> E=1 i ~Az=1 i ~Af=1 = 1*1*1 =1
Ten punkt odniesienia determinuje:
E=1, ~E=0
~Az=1, Az=0
~Af=1, Af=0

Tabela zero-jedynkowa dla tego przypadku przybierze postać:
Y = E+Az+Af
czyli:
1: E*Az*Af =Y
1*0* 0 =0
lub
2: E*Az*~AF=Y
0*0*1=0
lub
3: E*~Az*Af=Y
0*1*0 =0
lub
Jedyne zdanie prawdziwe:
4: E*~Az*~Af=Y
1 1 1 =1
lub
5: ~E*Az*Af=Y
0*0*0 =0
lub
6: ~E*Az*~AF=Y
0*0*1 =0
lub
7. ~E*~Az*Af=Y
0*1*0 =0
… a kiedy zdanie A będzie fałszywe ?
Przechodzimy do logiki ujemnej poprzez negacje zmiennych i wymianę argumentów
8. ~E*~Az*~Af= ~Y
0 1 1 =0

Polska leży wyłącznie na jednym kontynencie, zatem otrzymaliśmy wyżej tabelę zero-jedynkową operatora AND dla zdania wypowiedzianego 4.

Twierdzenie Sowy:
W świecie zdeterminowanym, gdzie wartości logiczne zmiennych są znane, spójnik logiczny „lub”(+) ulega redukcji do spójnika „i”(*)

Dowód:
W przypadku spójnika „lub”(+) tylko i wyłącznie jedno zdanie może być prawdziwe spośród:
2^n-1
różnych zdań.
gdzie:
2^n – dwa do potęgi n
n – ilość zmiennych
Dla trzech zmiennych mamy:
2^n-1 = 2^3-1 = 8-1 = 7
Co jest zgodne z przykładem wyżej.

Z powyższego wynika, że jedynki w spójniku „lub” (zdania 1-7) wyrażają samą możliwość zajścia, że nie są to prawdy twarde, zachodzące zawsze, bez wyjątków.


Losujemy kraj: Rosja

Oczywiście w tym przypadku będzie prawdziwe wyłącznie zdanie 2.

Rosja leży w Europie i leży w Azji i nie leży w Afryce
Y=E*Az*~Af

Wszystkie pozostałe zdania będą tu fałszywe.
Mózg człowieka genialnie minimalizuje wszelkie funkcje logiczne.

Każde dziecko wypowie zdanie:
Dowolny kraj leży w Europie lub w Azji lub w Afryce
Y=E+Az+Af
(w celu uproszczenia ograniczamy liczbę kontynentów)

… ale już dla konkretnego kraju absolutnie nikt nie powie:
Polska leży w Europie lub w Azji lub w Afryce
P=E+Az+Af
bo doskonale wszyscy wiemy gdzie leży Polska.

W zagadkach takie zdanie jest jak najbardziej sensowne, ale przy znajomości rozwiązania jest bez sensu. Informacja precyzyjna po minimalizacji tej funkcji w sposób wyżej pokazany generuje jedynie słuszne zdanie:

Polska leży w Europie i nie leży w Azji i nie leży w Afryce
P = E*~Az*~Af
P=1 <=> E=1 i ~Az=1 i ~Af=1

Zauważmy, że takiego zdania również nikt nie wypowie z powodu znajomości rozwiązania.
W powyższym równaniu prawdy powstałe z negacji fałszu (~Az=1, ~AF=1) są bezwartościowe i każdy normalny człowiek je zignoruje wypowiadając zdanie precyzyjnie.

Polska leży w Europie
P=E

Zauważmy, że przy znajomości rozwiązania uwzględnianie w równaniu prawd powstałych z negacji fałszu jest bez sensu bo takich prawd jest nieskończenie wiele.

Przykład:
Polska leży w Europie i Polska to nie rzeka i Polska to nie wąsy dziadka ….
P = E * ~R * ~W …
Formalnie to zdanie jest prawdziwe, tyle że sensu w tym nie ma.

Kolejny przykład świata totalnie zdeterminowanego.

W poniższym przykładzie świadomie ograniczamy cechy definiujące psa wyłącznie do dwóch:
Pies ma cztery łapy i szczeka
P=>4L*S
Oczywiście w ogólnym przypadku takich cech może być „nieskończenie wiele”.

Przykład 4
Zdanie wypowiedziane
Jeśli zwierze jest psem to na pewno => ma cztery łapy lub szczeka
P=>4L+S
To samo zdanie wypowiedziane w formie skróconej, czyli w formie zdania twierdzącego.
A.
Pies ma cztery łapy lub szczeka
P=>4L+S
P=1 => 4L=1 lub S=1
Po prawej stronie mamy cech charakteryzujące psa, zatem od strony matematycznej jest wszystko w porządku. Spójnik „lub”(+) nie jest jednak precyzyjny, natomiast logika 5-cio latka jest do bólu precyzyjna i każdy wypowie zdanie A w formie …

W definicji szczegółowej mamy tu:
P=>4L+S =( 4L*S=1)+(4L*~S=0)+(~4L*S=0)
stad po redukcji otrzymujemy zdanie lingwistycznie wzorcowe:
B.
Pies ma cztery łapy i szczeka
P=>4L*S =1*1=1

Z tego powodu każda nauczycielka w przedszkolu będzie wymagała od dzieci wersji B.
Tylko w przypadku B mamy piękne i precyzyjne przejście do logiki ujemnej.

… a kiedy zwierzę nie jest psem ?
Przejście ze zdaniem B do logiki ujemnej poprzez negacje zmiennych i wymianę operatorów na przeciwne
~P~>~4L+~S
Zauważmy, że otrzymaliśmy tu prawo Kubusia metodą na skróty.
Prawo Kubusia dla zdania B:
P=>4L*S = ~P~>~(4L*S)
Prawo de’Morgana dla prawej strony tożsamości:
~(p*q) = ~p+~q
Stąd nasza końcowa funkcja:
~P~>~4L+~S
Czyli:
Zwierze które nie jest psem (~P=1) może nie mieć czterech łap (~4L=1) lub może nie szczekać (~S=1)
~p~>~4L+~S
Losujemy zwierzaka i stwierdzamy:
Nie ma czterech łap
~4L=1
Wniosek:
To zwierzę na pewno nie jest psem, drugiej cechy „czy szczeka” nie musimy sprawdzać
Losujemy zwierzaka i stwierdzamy:
Nie szczeka
~S=1
Wniosek:
To zwierzę na pewno nie jest psem, drugiej cechy „ma cztery łapy” nie musimy sprawdzać

To jest istota spójnika „lub” dokładnie tak musi on działać !

Jeśli zatem ktoś powie:
A.
Pies ma cztery łapy lub szczeka lub miauczy lub ma dwie nogi
P=>4L+S+M+2N
to jest to zdanie matematycznie błędne!
Bowiem równanie algebry Kubusia opisujące to zdanie jest czysto matematycznym błędem!
Dlaczego?
P=>4L+S+M+2N
Taki zapis matematycznie oznacza:
P=1 => 4L=1 lub S=1 lub M=1 lub 2N=1
Czyli jak wylosujemy kota (M) to wyjdzie nam że miauczenie jest cecha psa, co jest idiotyzmem.
Jak wylosujemy kurę (2N) to wychodzi nam iż dwie nogi to cecha psa, czyli brednie.

Wniosek:
W świecie zdeterminowanym, gdy znamy z góry wartości logiczne zmiennych nie wolno nam umieszczać fałszu w spójniku „lub”(+), to jest błąd czysto matematyczny!

Oczywiście zdanie A można zapisać formalnie w taki sposób:
P=1 => 4L=1 lub S=1 lub M=0 lub 2N=0
Aby z takiego zapisu wygenerować równanie algebry Kubusia musimy wszystkie zmienne sprowadzić do jedynek.
W algebrze Kubusia zachodzi:
Jeśli A=0 to ~A=1
stąd:
P=1 => 4L=1 lub S=1 lub ~M=1 lub ~2N=1
Dopiero teraz możemy opuścić jedynki otrzymując poprawne równanie algebry Kubusia:
B.
Pies ma cztery łapy lub szczeka lub nie miauczy lub nie ma dwóch nóg
P=>4L+S+~M+~2N
Równanie B jest matematycznie poprawne ale nie jest to zdanie wzorcowe lingwistycznie.
Po rozwinięciu prawej strony na mocy definicji szczegółowej spójnika „lub”(+) jedynym prawdziwym członem będzie:
C.
P=>4L*S*~M*~2N
czyli:
Jeśli zwierze jest psem to na pewno ma cztery łapy i szczeka i nie miauczy i nie ma dwóch nóg
P=>4L*S*~M*~2N
ale …
To dalej nie jest zdanie lingwistycznie wzorcowe!

W Zdaniu lingwistycznie wzorcowym eliminujemy wszelkie prawdy powstałe z negacji fałszu!

Końcowe zdanie wzorcowe jest takie:
D.
Pies ma cztery łapy i szczeka
P=>4L*S

Czy wszyscy już rozumieją dlaczego średnio rozwinięty 5-cio latek wypowiada precyzyjne zdanie D?
Odpowiedź:
Bo 5-cio latki doskonale znają matematykę, pod która podlega każdy człowiek, algebrę Kubusia!

Oczywiście 5-cio latek może sobie jaja robić i wypowiadać zdanie B bo to też jest zdanie matematycznie prawdziwe.
Zdanie C jest jak najbardziej zdaniem poprawnym i bliskim wzorcowemu, tego typu zdania są fundamentem poprawnej polszczyzny którą w przedszkolu wypracowują wszystkie 5-cio latki .. z pomocą pani przedszkolanki.


Przykład świata częściowo zdeterminowanego:

Przykład 5
A.
Każdy człowiek jest mężczyzną lub kobietą
C=>M+K =1
Matematycznie zdanie to oznacza:
Jeśli ktoś jest człowiekiem to na pewno => jest mężczyzną lub kobietą
C=>K+M
Zauważmy, że zdanie odwrotne też zachodzi:
Jeśli ktoś jest mężczyzną lub kobietą to na pewno jest człowiekiem
K+M =>C
Definicja równoważności:
p<=>q = (p=>q)*(q=>p) = 1*1=1
C<=>M+K
Wniosek:
Zdanie A to równoważność wypowiedziana w formie zdania twierdzącego, czyli zdanie A możemy matematycznie kodować tak:
C=K+M
C=1 <=> K=1 lub M=1

Zdanie A jest prawdziwe (C=1) wtedy i tylko wtedy gdy powiemy:
Każdy człowiek (C=1) jest mężczyzną (M=1) lub kobietą (K=1)
C=1 <=> M=1 lub K=1
Definicja sumy logicznej w rozpisce szczegółowej:
C=M+K = M*K+M*~K+~M*K
co matematycznie oznacza:
C=1 = (M*K=0) + (M*~K=1) +(~M*K=1)
Zdanie:
Człowiek jest mężczyzną i kobietą
C=M*K=0
Jest oczywiście fałszywe, zatem nasz mózg minimalizuje funkcję logiczną do postaci:
C=M*~K+~M*K
Każdy człowiek (C=1) jest mężczyzną i nie jest kobietą (M*~K=1) lub nie jest mężczyzną i jest kobietą (~M*K=1)
… a czy istnieje człowiek który nie jest mężczyzną i nie jest kobietą ?
Przechodzimy ze zdaniem A do logiki ujemnej negując zmienne i wymieniając operatory na przeciwne
~C=~M*~K
Co matematycznie oznacza:
D.
Nie istnieje człowiek (~C=1), który nie jest mężczyzną (~M=1) i nie jest kobietą (~K=1)
~C=~M*~K
~C=1 <=> ~M=1 i ~K=1
Precyzyjny odczyt może być też taki:
D.
Prawdą jest (=1) że nie istnieje człowiek (~C), który nie jest mężczyzną (~M=1) i nie jest kobietą (~K=1)
~C=~M*~K
~C=1 <=> ~M=1 i ~K=1
Zauważmy, że po lewej stronie możemy zapisać:
Jeśli ~C=1 to C=0
czyli zdanie D przybierze postać:
D1.
Fałszem jest (=0) że istnieje człowiek (C), który nie jest mężczyzną (~M=1) i nie jest kobietą (~K=1)
C=0 <=> ~M=1 i ~K=1
Problem w tym, że z takiego zapisu nie da się wyeliminować bezwzględnych zer i jedynek, czyli nie da się zapisać zdania w postaci równania logicznego.
Dlatego taki zapis jest do bani !

Aby wyrugować ze zdania D1 bezwzględne zera i jedynki musimy wszystkie zmienne sprowadzić do tej samej wartości logicznej.

W logice dodatniej (zgodnej z naturalna logiką człowieka) wszystko sprowadzamy do jedynek i korzystamy z definicji spójnika „i”.

Definicja spójnika „i”:
Iloczyn logiczny (spójnik „i”) jest równy 1 wtedy i tylko wtedy gdy wszystkie zmienne są równe 1
Y=p*q
Y=1 <=> p=1 i q=1

Mamy:
D1
Fałszem jest (=0) że istnieje człowiek (C), który nie jest mężczyzną (~M=1) i nie jest kobietą (~K=1)
C=0 <=> ~M=1 i ~K=1
Jeśli C=0 to ~C=1
stąd:
~C=1 <=> ~M=1 i ~K=1
Dopiero teraz możemy wywalić jedynki i zapisać zdanie w formie równania logicznego:
D.
Prawdą jest (=1) że nie istnieje człowiek (~C), który nie jest mężczyzną (~M=1) i nie jest kobietą (~K=1)
~C=~M*~K
~C=1 <=> ~M=1 i ~K=1
Czyli w efekcie otrzymaliśmy zdanie D a nie zdanie D1.

Poprawna logika matematyczna to logika symboliczna w równaniach algebry Kubusia izolowana od bezwzględnych zer i jedynek.

Twierdzenie:
Z praw matematycznych możemy korzystać tylko i wyłącznie po wyeliminowaniu bezwzględnych zer i jedynek z dowolnego zapisu logicznego.

Przykłady praw matematycznych:
Prawo de’Morgana:
p+q = ~(~p*~q)
Prawo Kubusia:
p=>q = ~p~>~q

Twierdzenie:
Nie istnieje ani jedno prawo logiczne w którym prawda byłaby pomieszana z fałszem.

Oznacza to zakaz opuszczania bezwzględnych zer i jedynek w przypadku gdy wszystkie zmienne nie są sprowadzone do tej samej wartości logicznej.

Nasz przykład:
D1.
C=0 <=> ~M=1 i ~K=1
Dla powyższego zapisu nie wolno robić takich rzeczy:
C<=>~M*~K
bo to jest błąd czysto matematyczny !

Oczywiście dla dowolnego wylosowanego człowieka będziemy mieli 100% determinizm.

Losujemy: Kobieta
Ten człowiek jest kobietą i nie jest mężczyzną
C=K*~M
Po odrzuceniu prawdy powstałej z negacji fałszu otrzymamy końcową odpowiedź 5-cio latka:
To jest kobieta


10.0 Operatory implikacji w świecie zdeterminowanym

Twierdzenie Sowy:
W operatorach OR, AND, implikacji i równoważności znajomość rozwiązania determinuje definicję operatora AND.

Operatorami OR i AND zajęliśmy się wyżej.

Twierdzenie Sowy jest oczywistością, bo jak znamy w 100% rozwiązanie to składniki tego rozwiązania muszą być prawdziwe i połączone spójnikiem „i”

Zdanie:
Jeśli Jan nie był w Warszawie to na pewno nie zabił
~W=>~Z
… a jeśli Jan był w Warszawie ?
Prawo Kubusia:
~W=>~Z = W~>Z
Jeśli Jan był w Warszawie to mógł zamordować
W~>Z

Tego typu zdania są sensowne wyłącznie jeśli nie wiemy czy Jan jest mordercą.
Wtedy implikacjami w stylu jak wyżej dochodzimy prawdy.

Jeśli znamy prawdę „Jan nie był w Warszawie” to poprawne lingwistycznie zdanie jest wówczas takie:
Jan nie był w Warszawie i nie zamordował
J=>~W*~Z

Oczywiście sednem jest tu morderstwo, zatem zdanie 5-cio latka po końcowym uproszczeniu:
Jan nie jest mordercą
J=>~M

Kolejny przykład.
Zaistniały fakt:
Dziecko wybiegło na jezdnię i zabił je samochód
D=>W*ZS

Po fakcie nie ma sensu zdanie:
Jeśli wybiegniesz na jezdnię to może cię zabić samochód
W~>ZS

Załóżmy że jesteśmy świadkami takiego wypadku.
Przyjeżdża policjant i pyta co się stało.

Oczywiście jedyne sensowne zdanie jest tu takie:
Dziecko nagle wybiegło na ulicę i potrącił je samochód.
albo
Samochód wpadł w poślizg i potrącił prawidłowo idące dziecko

Jakiekolwiek implikacje nie mają tu sensu, bo mamy tu do czynienia z determinizmem, doskonale wiemy co się stało.


10.1 Podstawowe analizy implikacji prostej i odwrotnej

Implikacja prosta

Przykład:
Jeśli zwierze jest psem to na pewno ma cztery łapy
P=>4L
Analiza takich implikacji gdzie w poprzedniku i następniku mamy tylko jeden parametr bez operatorów AND i OR jest banalna.

Analiza:
A.
Jeśli zwierze jest psem to na pewno ma cztery łapy
P=>4L=1 bo pies - twarda prawda, gwarancja matematyczna
stąd:
B.
Jeśli zwietrzę jest psem to na pewno nie ma czterech łap
P=>~4L=0 - bo wszystkie psy mają cztery łapy, twardy fałsz wynikły tylko i wyłącznie z A

… a jeśli zwierze nie jest psem ?
Prawo Kubusia:
P=>4L=~P~>~4L
C.
Jeśli zwierze nie jest psem to może nie mieć czterech łap
~P~>~4L=1 bo mrówka, miękka prawda, może zajść ale nie musi
LUB
D.
Jeśli zwierze nie jest psem to może mieć cztery łapy
~P~~>4L=1 bo słoń, miękka prawda, może zajść ale nie musi

W zdaniu D nie może zachodzić warunek konieczny ~>.
Dowód nie wprost.
Załóżmy, że w zdaniu D zachodzi warunek konieczny i zastosujmy prawo Kubusia:
D: ~P~>4L = B: P=>~4L=0
Prawa strona tożsamości jest twardym fałszem, zatem z lewej strony nie może być spełniony warunek konieczny ~>.

Zdanie D jest prawdziwe na mocy naturalnego spójnika „może”~~>, wystarczy jedna prawda, warunek konieczny tu nie zachodzi co zostało udowodnione.

Tabele zero-jedynkowa implikacji prostej otrzymamy kodując powyższe zdania dla punktu odniesienia A czyli:
P=1, ~P=0
4L=1, ~4L=0
Kod:

A: P=>4L=1    /1 1 =1
B: P=>~4L=0   /1 0 =0
… a jeśli to nie pies?
Prawo Kubusia:
P=>4L=~p~>~4L
C: ~P~>~4L=1  /0 0 =1
D: ~P~~>4L=1  /0 1 =1


Implikacja odwrotna

Przykład:
Jeśli zwierze ma cztery łapy to może być psem
4L~>P

Analiza matematyczna:
A.
Jeśli zwierze ma cztery łapy to może być psem
4L~>P=1 bo pies, miękka prawda, bo może wystąpić B
LUB
B.
Jeśli zwierze ma cztery łapy to może nie być psem
4L~~>~P=1 bo słoń, miękka prawda, bo może zajść A

… a jeśli zwierzę nie ma czterech łap ?
Prawo Kubusia:
4L~>P = ~4L=>~P
czyli:
C.
Jeśli zwierze nie ma czterech łap to na pewno => nie jest psem
~4L=>~P=1 - twarda prawda, gwarancja matematyczna
stąd:
D.
Jeśli zwierzę nie ma czterech łap to na pewno => jest psem
~4L=>P=0 - twardy fałsz wynikły wyłącznie z C

Dla kodowania zgodnego ze zdaniem wypowiedzianym A otrzymamy tabelę zero-jedynkowa implikacji odwrotnej:
A: 4L~>P
4L=1, ~4L=0
P=1, ~P=0
Kod:

A: 4L~>P=1     /1 1 =1
B: 4L~~>~P=1   /1 0 =1
.. a jeśli nie ma czterech łap?
Prawo Kubusia:
4L~>P = ~4L=>~P
C: ~4L=>~P=1   /0 0 =1
D: ~4L=>P =0   /0 1 =0



10.2 Złożona implikacja prosta w świecie zdeterminowanym

Drodzy czytelnicy, czy zastanawialiście się kiedyś dlaczego w świecie zdeterminowanym wszyscy ludzie na ziemi używają jedynie słusznej formy np.

A.
Jeśli zwierze jest psem lub koniem to na pewno ma cztery łapy i nie ćwierka
P+K=>4L*~C

Przecież to zdanie możemy wyrazić aż w 32 różnych formach uwzględniając spójniki „i” oraz „lub” po każdej stronie znaku => !

Przykład formy wybranej losowo:
B.
Jeśli zwierzę jest psem lub nie jest koniem to na pewno ma cztery łapy lub ćwierka
P+~K=>4L+C

Dlaczego nawet dziecko 5-cio letnie nigdy nie wymówi B (lub podobnych) a zawsze wypowie to zdanie w jedynie słusznej formie A !

Matematyczną odpowiedź na to banalne pytanie daje algebra Kubusia.

Rozważmy to jedynie słuszne zdanie:
A.
Jeśli zwierze jest psem lub koniem to na pewno ma cztery łapy i nie ćwierka
P+K=>4L*~C

Definicja sumy logicznej:
p+q=p*q+p*~q+~p*q

Na mocy tej definicji rozpisujemy poprzednik:
Y=P+K = P*K+P*~K+~P*K

Oczywiście mamy tu człony:
A.
Zwierze jest psem i koniem = fałsz
P*K=0
B.
Zwierze jest psem i nie koniem
P*~K=P
Część wspólna zbiorów P i ~K w dziedzinie wszystkich zwierząt
C.
Zwierze nie jest psem i jest koniem
~P*K=K
Część wspólna zbiorów ~P i K w dziedzinie wszystkich zwierząt

Czyli mamy:
Y= P*K=0 +P*~K=P + ~P*K=K = P+K
Stąd jedynie słuszna wersja poprzednika (funkcja minimalna):
Jeśli zwierzę jest psem lub koniem to ….
Y=P+K
cnd

Z następnikiem nie mamy tu żadnych problemów bo spójnik „i” jest jednoznacznie określony jedną linią tabeli zero-jedynkowej.

Definicja iloczynu logicznego:
Iloczyn logiczny (spójnik „i”) n-zmiennych binarnych jest równy 1 wtedy i tylko wtedy gdy wszystkie zmienne są równe 1.
Y=p*q
Y=1 <=> p=1 i q=1

Następnik w naszym jedynie słusznym zdaniu jest taki:
Zwierze ma cztery łapy i nie ćwierka
Y=4L*~C = 1*1=1
Oczywiście tu dowolne inne przeczenia będą fałszem:
4L*~C=1
4L*C=0
~4L*~C=0
~4L*C=0
Członów fałszywych dziecko 5-cio letnie nie wypowiada stąd jedynie słuszna forma następnika.

Rozważmy dwa przykładowe zdania z rozstrzygnięciem „dlaczego nikt tak nie mówi”.

1.
Jeśli zwierzę jest psem lub nie jest koniem to na pewno ma cztery łapy lub ćwierka
P+~K=>4L+C
Poprzednik:
P+~K = ~K – suma logiczna zbiorów P lub ~K w dziedzinie zwierząt
zatem równoważny i prawdziwy poprzednik brzmi:
Jeśli zwierzę jest nie jest koniem …
~K
Dokładnie to samo otrzymamy z równoważnej definicji sumy logicznej:
Y=p+q = p*q+p*~q+~p*q
Y=P+~K
Mamy:
P+~K:
P*~K=P – część wspólna zbiorów P i ~K to zbiór P
P*K=0 – zbiory rozłączne
~P*~K – iloczyn logiczny zbiorów nie jest pusty
Czyli po minimalizacji mamy:
Y=P+~K = P+~P*~K = ~K
Dlaczego ?

[link widoczny dla zalogowanych]

W dziedzinie wszystkich zwierząt zbiór ~P i ~K to wszystkie zwierzęta z białymi wysepkami P i K.
Wysepka P znika nam na mocy sumy logicznej - zostaje wypełniona przez zbiór P:
P+~P*~K
Stąd zostaje nam zbiór końcowy ~K
CND

Następnik:
4L+C = 4L*C=0 lub 4L*~C=1 lub ~4L*C=0 = 4L*~C
Jak widzimy jedyny prawdziwy następnik w tym przypadku brzmi jak w zdaniu wzorcowym !

2A.
Jeśli zwierzę jest psem i nie jest koniem to ma cztery łapy i nie ćwierka
P*~K=>4L*~C
Poprzednik:
P*~K = P – wspólna cześć zbiorów P i ~K w dziedzinie zwierząt

Zatem zdanie równoważne:
2B.
Jeśli zwierzę jest psem to ma cztery łapy i nie ćwierka
P=>4L*~C
Oczywiście wszyscy normalni mając do wyboru 2A albo 2B wybiorą 2B. Zdanie 2A to zapewne nawet 5-cio latkowi do głowy nie przyjdzie.

Jak widzimy, zdefiniowaliśmy zdanie „jedynie słuszne” w obszarze lingwistyki.

Czas teraz na jego analizę zero-jedynkową, czyli rozpatrzenie wszystkich możliwych przeczeń po stronie poprzednika i następnika.

Zdanie do analizy zero-jedynkowej:
A.
Jeśli zwierze jest psem lub koniem to na pewno ma cztery łapy i nie ćwierka
p=>q =1
P+K=>4L*~C =1 bo pies lub koń – gwarancja matematyczna, istota implikacji !
Przekształcenie pomocnicze ~q dla p=>~q:
q=4L*~C
Negujemy zmienne i wymieniamy operatory:
~q=~4L+C
B.
Jeśli zwierzę jest psem lub koniem to na pewno nie ma czterech łap lub ćwierka
p=>~q =0
P+K => ~4L+C =0
Dowód 1.
Dla psa lub konia mamy:
~4L=0 - oba zwierzaki mają 4 nogi
C=0 - oba zwierzaki nie ćwierkają
Następnik jest twardym fałszem, zatem całe zdanie jest fałszem bo:
p=>~q=0
p*~q = p*0=0 - zbiór ~q jest zbiorem pustym
Iloczyn logiczny zbioru pustego i czegokolwiek jest zbiorem pustym
Dowód 2.
Zbiór psów i zbiór koni jest zbiorem rozłącznym w stosunku do zwierząt które nie maja czterech łap i zwierząt ćwierkających.
Zatem:
p=>~q=0
bo:
p*~q=0 - zbiory rozłączne, zdanie fałszywe

Jaś (lat 5):
… a jeśli zwierze nie jest psem i nie jest koniem ?
Przejście ze zdaniem A do logiki ujemnej poprzez negacje zmiennych i wymianę operatorów:
~P*~K~>~4L+C
Oczywiście to jest prawo Kubusia:
p=>q = ~p~>~q
uzyskane metoda na skróty.
czyli:
C.
Jeśli zwierze nie jest psem i nie jest koniem to może nie mieć czterech łap lub ćwierkać
~p~>~q
~P*~K ~>~4L+C =1 bo kura, wąż, wróbelek
p+q=p*q+p*~q+~p*q – definicja
p+q=~4L+C
p*q=~4L*C=wróbelek
p*~q=~4L*~C=kura, waz …
~p*q=4L*C=0
LUB
D.
Jeśli zwierze nie jest psem i nie jest koniem to może mieć cztery łapy i nie ćwierkać
~p~~>q
~P*~K~~>4L*~C =1 bo słoń, hipopotam …


10.3 Złożona implikacja odwrotna w świecie zdeterminowanym

Uwaga:
Dla ułatwienia analizy wszędzie korzystamy z poniższej definicji sumy logicznej:
p+q = p*q+p*~q+~p*q

Odwróćmy zdanie z poprzedniego przykładu zmieniając parametr nie ćwierka (nie wróbelek) na nie miauczy (nie kot).
A.
Jeśli zwierze ma cztery łapy i nie miauczy to może być psem lub koniem
p~>q
4L*~M~>P+K =1 bo pies, koń (kot wykluczony !)
p+q=p*q+p*~q+~p*q - definicja
p+q=P+K
p*q=P*K=0
p*~q=P*~K=P – Pies =wspólna cześć zbiorów
~p*q=~P*K=K – Koń=wspólna cześć zbiorów

Przekształcenie pomocnicze ~q dla p~~>~q:
q=P+K
Przechodzimy do logiki ujemnej poprzez negacje zmiennych i wymianę operatorów:
~q=~P*~K
czyli:
B.
Jeśli zwierzę ma cztery łapy i nie miauczy to może nie być psem i nie być koniem
p~~>~q
4L*~M~~>~P*~K =1 bo słoń, hipopotam… (kot wykluczony !)
1 0 =1

… a jeśli zwierze nie ma czterech łap lub miauczy ?
Przechodzimy z równaniem A do logiki ujemnej uzyskując prawo Kubusia metodą na skróty:
A.
4L*~M~>P+K
C.
~4L+M => ~P*~K
czyli:
C.
Jeśli zwierze nie ma czterech łap lub miauczy to na pewno => nie jest psem i nie jest koniem
~p=>~q
~4L+M=>~P*~K =1 bo kura, mrówka, kot (tu jest kot !) – gwarancja matematyczna
p+q=p*q+p*~q+~p*q - definicja
p+q=~4L+M
p*q=~4L*M=0
p*~q=~4L*~M=kura,mrowka …
~p*q=4L*M=kot
D.
Jeśli zwierze nie ma czterech łap lub miauczy to na pewno jest psem lub koniem
~p=>q
~4L+M=>P+K =0 bo pies lub koń wykluczony


11.0 Obietnice i groźby

Żaden matematyk nie zakwestionuje poniższej definicji obietnicy:
Obietnica = implikacja prosta => - to jest w każdym podręczniku matematyki do I klasy LO

To wystarczy, dalej w banalny sposób można udowodnić że:
Groźba = implikacji odwrotna ~>

Dowód na przykładzie …


11.1 Obietnica

Typowa obietnica:
A.
Jeśli będziesz grzeczny dostaniesz czekoladę
G=>C =1 – gwarancja matematyczna
Obietnica, zatem implikacja prosta, tu wszyscy się zgadzamy
gdzie:
=> - warunek wystarczający, spójnik „na pewno” miedzy p i q w całym obszarze logiki
Skoro to warunek wystarczający => to:
B.
Jeśli będziesz grzeczny to na pewno => nie dostaniesz czekolady
G=>~C =0
… a jak będę niegrzeczny ?
Prawo Kubusia:
G=>C = ~G~>~C
Mama:
C.
Jeśli będziesz niegrzeczny to nie dostaniesz czekolady
~G~>~C
W groźbach (zdanie C) spójnik „może” ~> jest z reguły pomijany. Nie ma to znaczenia gdyż spójnik ten jest gwarantowany przez absolutna świętość algebry Boole’a, prawo Kubusia.

Z prawa Kubusia wynika tu coś fundamentalnego:
Wszelkie groźby (zdanie C) musimy kodować operatorem implikacji odwrotnej, inaczej algebra Kubusia (i Boole’a!) leży w gruzach.

Matematyczne znaczenie zdania C jest oczywiście takie:
C.
Jeśli będziesz niegrzeczny to możesz ~> nie dostać czekolady
~G~>~C =1
LUB
D.
Jeśli będziesz niegrzeczny to możesz ~~> dostać czekoladę
~G~~>C =1 – akt miłości!
gdzie:
~> - warunek konieczny
~~> - naturalne "może", wystarczy jedna prawda.

Oczywiście z powyższej analizy matematycznej wynika, że wszelkie groźby muszą być kodowane implikacją odwrotną:
Jeśli ubrudzisz spodnie dostaniesz lanie
B~>L - implikacja odwrotna bo groźba

Z powyższego mamy definicję obietnicy i groźby …

Definicja obietnicy:
Jeśli dowolny warunek to nagroda
W=>N =1 - twarda prawda
Implikacja prosta bo dobrowolnych obietnic musimy dotrzymywać
Spełnienie warunku nagrody jest warunkiem wystarczającym dla otrzymania nagrody
Prawo Kubusia:
W=>N = ~W~>~N
Gwarancją w implikacji jest zawsze warunek wystarczający =>.
W=>N
Jeśli spełnię warunek nagrody to na pewno => dostanę nagrodę z powodu że spełniłem warunek nagrody … poza tym wszystko może się zdarzyć.

W obietnicy nadawca ma nadzieję (marzenie), że odbiorca spełni warunek nagrody i będzie mógł wręczyć nagrodę. Jeśli odbiorca nie spełni warunku nagrody to nadawca może dać nagrodę lub nie zgodnie ze swoim „widzi mi się”, czyli wolną wolą.
Po stronie odbiorcy występuje nadzieja (marzenie), że nawet jeśli nie spełni warunku nagrody to może otrzymać nagrodę (akt miłości). Odbiorca może zwolnić nadawcę z obietnicy np. w przypadkach losowych.


11.2 Groźba

Definicja groźby:
Jeśli dowolny warunek to kara
W~>K =1
Implikacja odwrotna na mocy definicji!
Nadawca może ukarać, ale nie musi.
Spełnienie warunku kary jest warunkiem koniecznym ukarania z powodu spełnienia warunku kary. O tym czy będzie to warunek konieczny i wystarczający decyduje nadawca.

Gwarancja w groźbie wynika z prawa Kubusia:
W~>K = ~W => ~K
Stąd gwarancja:
~W => ~K
Jeśli nie spełnię warunku kary to na pewno => nie zostanę ukarany z powodu nie spełnienia warunku kary. Poza tym wszystko może sie zdarzyć.

W groźbie nadawca ma nadzieję (marzenie), że odbiorca nie spełni warunku kary i nie będzie musiał karać. Jeśli odbiorca spełni warunek kary to nadawca może wykonać karę lub ją darować zgodnie ze swoim „widzi mi się”, czyli wolną wolą.
Po stronie odbiorcy również występuje nadzieja (marzenie), że nawet jeśli spełni warunek kary to nadawca nie wykona kary (akt łaski). W groźbie decyzję o darowaniu kary podejmuje wyłącznie nadawca, odbiorca nie ma tu nic do powiedzenia.

Przykład:
Jeśli ubrudzisz spodnie dostaniesz lanie
B~>L - implikacja odwrotna bo groźba
Brudne spodnie są warunkiem koniecznym lania z powodu brudnych spodni. O tym czy będzie to warunek konieczny i wystarczający decyduje nadawca.

W groźbach naturalny spójnik implikacji odwrotnej „może” ~> jest z reguły pomijany bo osłabiałby groźbę. Nie prowadzi to do niejednoznaczności, gdyż definicje groźby i obietnicy są bardzo proste i precyzyjne.

Analiza:
A:
Jeśli ubrudzisz spodnie to dostaniesz lanie
B~>L =1
LUB
B:
Jeśli ubrudzisz spodnie to nie dostaniesz lania
B ~~> ~L =1 - prawo do darowania kary (akt łaski)
Zdanie prawdziwe na mocy naturalnego spójnika „może” ~~>.
Nadawca ma prawo do darowania dowolnej kary (akt łaski) zależnej od niego!
Przykład:
JPII i Ali Agca

… a jeśli nie ubrudzę spodni ?
B~>L = ~B => ~L - prawo Kubusia
czyli:
C:
Jeśli nie ubrudzisz spodni to na pewno => nie dostaniesz lania (z powodu że nie ubrudziłeś spodni!)
~B => ~L =1 - twarda prawda, gwarancja matematyczna
Z punktu odniesienia zdania C mamy do czynienia z implikacją prostą.
Jeśli nie ubrudzisz spodni to na pewno => nie dostaniesz lania z powodu czystych spodni. Poza tym wszystko może się zdarzyć. Tylko tyle i aż tyle gwarantuje operator implikacji prostej.
stąd:
D:
Jeśli nie ubrudzisz spodni to na pewno => dostaniesz lanie
~B => L =0 - twardy fałsz, zakaz karania niewinnego z powodu czystych spodni

Jedyne sensowne przejście z operatora implikacji odwrotnej do AND i OR to odpowiedź na pytanie dziecka „kiedy wystąpi kłamstwo”:

Jeśli ubrudzisz spodnie dostaniesz lanie
Y=B~>L
Jaś:
… tata, a kiedy skłamiesz ?

Y=B~>L = B+~L = ~(~B*L) - dotrzymam słowa
Negujemy dwustronnie:
~Y=~(B~>L) = ~B*L - skłamię

Skłamię (~Y=1), jeśli przyjdziesz w czystych spodniach (~B) i dostaniesz lanie (z powodu czystych spodni !)
~Y=~B*L
Jaś:
… a czy może się zdarzyć że przyjdę w czystych spodniach i dostanę lanie ?
Y=~(~Y) - prawo podwójnego przeczenia, stąd:
Y=~(~B*L)
Nie może się zdarzyć że przyjdziesz w czystych spodniach (~B) i dostaniesz lanie (z powodu czystych spodni)
Y=~(~B*L)
Zauważmy, że ostatnie pytanie Jasia jest mało prawdopodobne bo odpowiedź dostał wcześniej.

W obietnicach i groźbach bardzo dobrze widać sens logiki dodatniej i ujemnej w operatorach implikacji prostej i odwrotnej.

Definicja logiki dodatniej i ujemnej w operatorach implikacji prostej i odwrotnej:
Implikacja wypowiedziana jest w logice dodatniej jeśli po stronie q nie występuje negacja, inaczej mamy do czynienia z logiką ujemną.

Obietnica:
W=>N = ~W~>~N - prawo zamiany obietnicy => na równoważną groźbę ~>
Obietnica => w logice dodatniej (N) jest równoważna groźbie ~> w logice ujemnej (~N)

Groźba:
W~>K = ~W=>~K - prawo zamiany groźby ~> na równoważną obietnicę =>
Groźba ~> w logice dodatniej (K) jest równoważna obietnicy => w logice ujemnej (~K)

Piękna jest też następująca interpretacja obietnicy i groźby.
Kod:

p q p~>q p<=q
1 1  =1   =1
1 0  =1   =1
0 0  =1   =1
0 1  =0   =0

gdzie:
~> - operator implikacji odwrotnej, spójnik „może” ze spełnionym warunkiem koniecznym
Z tabeli widzimy że:
~> = <= - pod warunkiem że symbol <= będziemy czytać przeciwnie do strzałki jako spójnik „może” z warunkiem koniecznym (operator implikacji odwrotnej)

Obietnica:
W=>N - ja tego chcę, biegnę do nagrody
=> czytane zgodnie ze strzałką jako spójnik „musi” z warunkiem wystarczającym
Groźba:
W~>K = W<=K - ja tego nie chcę, uciekam od kary
gdzie:
<= - czytane przeciwnie do strzałki jako spójnik „może” z warunkiem koniecznym

Odróżnianie nagrody od kary to fundament wszelkiego życia. Zwierzątka które tego nie odróżniają, czyli wszystko co się rusza traktują jako nagrodę (ja tego chcę) skazane są na zagładę.

W Australii żyje sobie żółw błotny który na języku ma wyrostek imitujący żywego robaka, ryba która nabierze się na ten podstęp musi zginąć.


11.3 Analiza złożonej obietnicy

Definicja obietnicy:
Jeśli dowolny warunek to nagroda
W=>N

Definicja groźby:
Jeśli dowolny warunek to kara
W~>K

A.
Jeśli posprzątasz pokój i nie będziesz bił siostry to dostaniesz czekoladę i obejrzysz bajkę
p=>q
P*~B=>C*B=1
B.
p=>~q
~q=~(C*B)=~C+~B
Jeśli posprzątasz pokój i nie będziesz bił siostry to nie dostaniesz czekolady lub nie obejrzysz bajki
P*~B=>~C+~B =0
Rozpisujemy następnik przez definicje spójnika „lub”:
p+q = p*q+p*~q+~p*q
~C+~B
Możliwe kary
A: ~C*~B=0 – to jest 100% kary
B: ~C*B =0 – tu tez jest element kary
C: C*~B=0 – tu również jest kara
Zatem suma logiczna:
A+B+C = 0+0+0=0 – zakaz wykonywania jakiejkolwiek kary w przypadku spełnienia warunku nagrody
… a jeśli nie spełnię warunku nagrody ?
Prawo Kubusia:
p=>q = ~p~>~q
Czyli negujemy zmienne w równaniu A i odwracamy operatory – prawo Kubusia na skróty.
~P+B~>~C+~B
Oczywiście w tym przypadku mamy do czynienia z groźbą i definicją groźby.
czyli:
C.
Jeśli nie posprzątasz pokoju lub będziesz bił siostrę to możesz nie dostać czekolady lub nie obejrzeć bajki
~p~>~q
~P+B~>~C+~B=1
Warunki ukarania:
D: ~P*B=1 – warunek kary spełniony
E: ~P*~B=1 – warunek ukarania spełniony
F: P*B=1 – warunek ukarania spełniony
Równanie kary:
D+E+F = x+x+x=x
Jeśli dowolny warunek spełniony to mama ma 100% wolnej woli.
Zdanie C pozwala na częściowe darowanie kary, natomiast łącznie ze zdaniem D kara może być darowana w 100% !
LUB
D.
Jeśli nie posprzątasz pokoju lub będziesz bił siostrę to dostaniesz czekoladę i obejrzysz bajkę
~p~~>q=1
~P+B~~>C*B=1
W tej linii jest prawo do darowania kary w 100%


11.4 Analiza złożonej groźby

Definicja groźby:
Jeśli dowolny warunek to kara
W~>K

Definicja obietnicy:
Jeśli dowolny warunek to nagroda
W=>N

A.
Jeśli nie posprzątasz pokoju lub będziesz bił siostrę to nie dostaniesz czekolady i nie obejrzysz bajki
p~>q
~P+B~>~C*~B
Przekształcenie pomocnicze w celu uzyskania ~q dla:
p~~>~q
~q:
~(~C*~B)= C+B
stąd:
B.
Jeśli nie posprzątasz pokoju lub będziesz bił siostrę to dostaniesz czekoladę lub obejrzysz bajkę
p~~>~q
~P+B~~>C+B
Rozwijamy następnik na mocy definicji spójnika „lub”
p+q = p*q+~p*q+p*~q
C+B:
C*B=1 – dostaniesz czekoladę i obejrzysz bajkę, 100% darowanie kary
~C*B=1 – nie dostaniesz czekolady i obejrzysz bajkę, częściowe darowanie kary
C*~B=1 = dostaniesz czekoladę i nie obejrzysz bajki, częściowe darowanie kary
Mamy tu akt łaski, mama może darować karę całkowicie lub częściowo, cokolwiek nie zrobi to nie ma szans na zostanie kłamcą, czyli ma 100% wolnej woli.

… a jeśli posprzątam pokój i nie będę bił siostry ?
Mamy równanie A:
p~>q
~P+B~>~C*~B
Przechodzimy do logiki ujemnej poprzez negacje zmiennych i wymianę operatorów, czyli prawo Kubusia uzyskane metoda na skróty:
~p=>~q
P*~B=>C+B
stąd:
C.
Jeśli posprzątasz pokój i nie będziesz bił siostry to na pewno => dostaniesz czekoladę lub obejrzysz bajkę
~P=>~q
P*~B=>C+B
Rozwinięcie sumy logicznej C+B mamy wyżej.
Oczywiście tu nie może być mowy o najmniejszej nawet karze bowiem warunek groźby nie został spełniony.
Mamy zatem:
C*B=1 – dostaniesz czekoladę i obejrzysz bajkę, 100% darowanie kary
~C*B=0 – nie dostaniesz czekolady i obejrzysz bajkę, bo zakaz karania
C*~B=0 = dostaniesz czekoladę i nie obejrzysz bajki, bo zakaz karania
W tym przypadku mama nie ma prawa na wykonanie choćby najmniejszej kary, zatem musi dać czekoladę i pozwolić na obejrzenie bajki.
stąd:
D.
Jeśli posprzątasz pokój i nie będziesz bił siostry to na pewno => nie dostaniesz czekolady i nie obejrzysz bajki
~p=>q=0
P*~B=>~C*~B=0
Całkowity zakaz karania, bowiem warunek kary nie został spełniony


11.5 Obietnice i groźby w ujęciu filozoficznym

Zdanie wypowiedziane:
Jeśli zdasz egzamin dostaniesz komputer
E=>K
Implikacja prosta bo dobrowolnych obietnic musimy dotrzymywać
Gwarancja w implikacji prostej:
E=>K
Jeśli zdasz egzamin to na pewno => dostaniesz komputer z powodu że zdałeś egzamin, poza tym wszystko może się zdarzyć - tylko tyle i aż tyle gwarantuje operator implikacji prostej w obietnicy.

Analiza matematyczna:
A.
Jeśli zdasz egzamin to na pewno => dostaniesz komputer
E=>K =1
stąd:
B.
Jeśli zdasz egzamin to na pewno => nie dostaniesz komputera
E=>~K =0 - dobrowolnych obietnic musimy dotrzymywać
… a jeśli nie zdam egzaminu ?
Prawo Kubusia:
E=>K = ~E~>~K
czyli:
C.
Jeśli nie zdasz egzaminu to możesz ~> nie dostać komputera
~E~>~K =1
LUB
D.
Jeśli nie zdasz egzaminu to możesz ~~> dostać komputer
~E~~>K =1 - akt miłości

Zdanie C to ewidentna groźba. Intencją wypowiadającego jest, aby groźba była groźbą, dlatego praktycznie zawsze pomijany jest spójnik „może”.

Zdanie C przybierze postać.
C.
Jeśli nie zdasz egzaminu to nie dostaniesz komputera
~E~>~K =1
Nie zdanie egzaminu jest warunkiem koniecznym nie dostania komputera, zatem implikacja odwrotna. O tym czy będzie to warunek konieczny i wystarczający decyduje nadawca.

Oczywiście na mocy definicji groźby:
Jeśli dowolny warunek to kara
W~>K
zatem powyższą groźbę musimy kodować operatorem implikacji odwrotnej ~>:
~E~>~K

Matematyczna wolna wola
Matematyczna wolna wola to operator implikacji odwrotnej.

W przypadku nie zdania egzaminu, nadawca może nie dać komputera (C) lub dać komputer (D) co zależy tylko i wyłącznie od jego „widzi mi się” czyli wolnej woli.
W skrajnym przypadku może wyjąć monetę i rzucać:
orzełek - dam komputer
reszka - nie dam komputera
… i nie ma szans na zostanie kłamcą.
„Rzucanie monetą” jest matematyczną wolną wolą, ale nie jest wolną wolą człowieka !
Człowiek rzucający monetą staje się maszyną, wobec której nie można mówić o „wolnej woli”.

Wolna wola człowieka:
Wolna wola człowieka to świadoma decyzja negatywna lub pozytywna, nadawca powinien umieć uzasadnić decyzję.

Decyzja negatywna:
Nie zdałeś egzaminu, nie dostaniesz komputera
oczywiście domyślne jest tu „z powodu że nie zdałeś egzaminu”, nadawca może to rozwinąć np. bo kompletnie się nie uczyłeś itp.

Decyzja pozytywna:
Nie zdałeś egzaminu, dostajesz komputer, bo cie kocham, bo widziałem że się uczyłeś ale miałeś pecha itp.

Oczywiście matematycznie zabronione jest tu uzasadnienie zależne, identyczne jak warunek czyli:
Nie zdałeś egzaminu, dostajesz komputer bo nie zdałeś egzaminu
Matematyczny dowód pkt. 12.1

Prawdopodobieństwo zajścia „aktu miłości” w obietnicy:
1.
Zauważmy, że nadawca dobrowolnie obiecuje nagrodę, czyli chce tą nagrodę dać. Jeśli zobaczy że odbiorca starał się ale mu nie wyszło to z reguły i tak wręczy nagrodę (akt miłości).
2.
Obietnice „szyte są na miarę” odbiorcy, czyli nadawca nie daje obietnic gdzie spełnienie warunku nagrody jest niemożliwe lub bardzo mało prawdopodobne. Stąd najczęściej odbiorca spełnia warunek nagrody, nadawca wręcza nagrodę … i wszyscy są szczęśliwi.

Oczywiście obietnice to przyszłość której nie znamy, jednak jeśli obietnica wypowiedziana jest między przyjaciółmi, znajomymi czy nawet miedzy osobami obcymi to z reguły jest dotrzymywana. Czyli prawdopodobieństwo iż nagroda znajdzie się u nadawcy jest tu bardzo wysokie, myślę że na poziomie 90% lub wyższym.

Odrębnym zagadnieniem jest składanie fałszywych obietnic wobec wrogów których chcemy zniszczyć, tu podstęp i fałsz jest na porządku dziennym w myśl zasady, wszystkie chwyty dozwolone byleby zniszczyć wroga. Zauważmy jednak, że nasz wróg dał się złapać w pułapkę dzięki temu że spodziewa się nagrody, czyli również doskonale zna symboliczna algebrę Kubusia.

Każde żywe stworzenie, chce mieć jak najmniej wrogów i jak najwięcej przyjaciół, zatem w powodzi wypowiedzianych obietnic te fałszywe stanowią margines. Zauważmy, że stworzenia żywe żyją w grupach w ramach swojego gatunku. Tu również działa algebra Kubusia, człowiek nie jest tu żadnym wyjątkiem.

Zauważmy, że jeśli przyjmiemy „akt miłości” i „akt łaski” za dobro i wykluczymy linie fałszywe w groźbach i obietnicach to otrzymamy taki wynik:
Dobro-Zło = 4:2
Zatem matematycznie nasz Wszechświat ustawiony jest na dobro.

Weźmy na koniec typowa groźbę.

Jeśli ubrudzisz spodnie dostaniesz lanie
B~>L
Gwarancja w implikacji odwrotnej wynika z prawa Kubusia:
B~>L = ~B=>~L
czyli:
Jeśli przyjdziesz w czystych spodniach to na pewno => nie dostaniesz lania
~B=>~L
... z powodu czystych spodni - tylko tyle i aż tyle gwarantuje operator implikacji odwrotnej.

Równanie jest absolutnie genialne:
B~>L = ~B=>~L
Po prawej stronie mamy 100% determinizm, dlatego to jest matematyka ścisła.

Po lewej stronie mamy matematyczna wolną wolę człowieka, czyli jeśli syn przyjdzie w brudnych spodniach to nadawca może go zabić albo darować lanie (gwarancja wolnej woli) ... i nie ma szans na zostanie kłamcą. Tożsamość to tożsamość, z matematyką się nie dyskutuje.

Determinizm filozoficzny i fizyczny

Determinizm w ujęciu filozoficznym i można sprowadzić do jednego zdania:
Jeśli ktokolwiek zna moje myśli z wyprzedzeniem to moja wolna wola leży w gruzach, mój Wszechświat jest zdeterminowany.

Determinizm w ujęciu fizycznym opisuje genialna implikacja. W jednej połówce implikacji zarówno prostej jak i odwrotnej mamy 100% determinizm (=>), zaś w drugiej "rzucania monetą” ( ~>)

Oczywiście determinizm fizyczny to również równoważność p<=>q, ale ta występuje głównie w matematyce, w świecie rzeczywistym króluje implikacja.


11.6 Rodzaje obietnic

1.
Obietnica z natychmiastową wykonalnością:
Jeśli zdasz egzamin dostaniesz komputer
E=>K
… a jak nie zdam egzaminu.
Prawo Kubusia:
E=>K = ~E~>~K
czyli jeśli syn nie zda egzaminu to mogę mu tego komputera nie kupić lub kupić i nie mam szans na zostanie kłamcą.
Po egzaminie następuje rozstrzygnięcie

2.
Obietnica z odroczoną wykonalnością:
Kto przyjdzie jutro dostanie gotowca
J=>G
… a jak przyjdę pojutrze ?
J=>G = ~J~>~G
Oczywiście jak ktoś przyjdzie później, byle przed egzaminem to też może dostać gotowca ale nie musi. Po egzaminie ta obietnica traci sens.

3.
Obietnica w której spełnienie warunku obietnicy jest bardzo mało prawdopodobne:
Jeśli wygram milion w TOTKA to kupię ci samochód
W=>S
… a jak nie wygram w TOTKA ?
Prawo Kubusia:
W=>S = ~W~>~S
Jeśli nie wygram w TOTKA to mogę ci nie kupić samochodu lub kupić i nie mam szans na zostanie kłamcą.
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 35963
Przeczytał: 15 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Nie 0:42, 05 Lut 2012    Temat postu:

[b12.0 Obietnice i groźby w równaniach matematycznych[/b]

Równoważną do analizy zero-jedynkowej gróźb i obietnic jak wyżej, jest ich analiza przy pomocy równań matematycznych.


12.1 Obietnica w równaniach matematycznych

Zastosujmy świętą zasadę algebry Boole’a „Jak się mówi tak się pisze” doskonale znaną wszystkim dobrym logikom praktykom, ci od cyfrowych układów logicznych..

Definicja obietnicy:
Jeśli dowolny warunek to nagroda

Zasada „Jak się mówi tak się pisze”:
Dostanę nagrodę (N) gdy spełnię warunek nagrody (W) lub gdy nadawca zdecyduje o daniu nagrody.

Wprowadźmy zmienną uznaniową nadawcy:
U=1 – dam nagrodę
U=0 – nie dam nagrody

Równanie obietnicy:
N=W+U

Gdzie:
N=1 – mam nagrodę
N=0 – nie mam nagrody
W=1 – warunek nagrody spełniony
W=0 – warunek nagrody nie spełniony

Zmienna uznaniowa nadawcy:
U=1 – dam nagrodę
U=0 – nie dam nagrody

Analiza równania obietnicy.

A.
W=1 - odbiorca spełnił warunek nagrody.

Równanie obietnicy przybierze wówczas postać:
N = 1+U = 1 – muszę dostać nagrodę.
W przypadku gdy odbiorca spełni warunek nagrody nadawca nie ma wyjścia i musi dać nagrodę, inaczej jest kłamcą. Zauważmy, że nikt nie zmuszał nadawcy do obiecania czegokolwiek, że nadawca obiecał nagrodę z własnej woli, że chce dać nagrodę. Nie ma tu zatem mowy o jakimkolwiek ograniczeniu wolnej woli nadawcy.

B.
W=0 – warunek nagrody nie spełniony

Równanie obietnicy przybiera postać:
N=W+U=0+U=U
Wszystko w rękach nadawcy który podejmuje decyzję o daniu nagrody zgodnie ze swoją wolną wolą, niczym nie ograniczoną.
U=1 – dam nagrodę
U=0 – nie dam nagrody

Przy niespełnionym warunku nagrody (W=0) nadawca może zrobić co mu się podoba i nie zostaje kłamcą. Większość nadawców tak czy siak da nagrodę pod byle pretekstem niezależnym (U=1 - akt miłości), ale nie musi tego robić !

W tym przypadku nadawca może wszystko z maleńkim wyjątkiem:
Nie spełniłeś warunku nagrody (W=0) dostajesz nagrodę, bo nie spełniłeś warunku nagrody (U=W=0)

Równanie obietnicy przybierze tu postać:
N = W+U = 0+0 =0
Zakaz wręczenia nagrody z uzasadnieniem zależnym, czyli z powodu nie spełnienia warunku nagrody (W=0).

Nikt nie może robić z człowieka idioty, przede wszystkim matematyka.

Przykład:
Jeśli zdasz egzamin dostaniesz komputer
E=>K

Równanie obietnicy:
K = W+U

Jeśli egzamin zdany (W=1) to:
K=1+U =1 - gwarancja otrzymania komputera.
Zmienna uznaniowa nadawcy jest tu bez znaczenia.

Jeśli egzamin nie zdany (W=0) to:
K=W+U = 0+U =U
Wszystko w rękach nadawcy:
U=1 - dam komputer
U=0 - nie dam komputera

Akt miłości nie zaszedł:
U=0
Nie zdałeś egzaminu (W=0), nie dostajesz komputera ... bo kompletnie się nie uczyłeś (U=0)
Równanie obietnicy:
K=W+U = 0+0 =0 - nie mam komputera

Akt miłości zaszedł:
U=1
Nie zdałeś egzaminu (W=0), dostajesz komputer ... bo widziałem że się starałeś ale miałeś pecha, bo cię kocham, bo tak czy siak zamierzałem kupić ci komputer itp. (U=1 dowolne uzasadnienie niezależne)
Równanie obietnicy:
N=W+U=0+1=1 – mam komputer dzięki dobremu sercu nadawcy (akt miłości)

Nadawca może wręczyć nagrodę pod byle pretekstem, ale nie może wręczyć nagrody z uzasadnieniem zależnym identycznym jak warunek nagrody.

Nie zdałeś egzaminu (W=0), dostajesz komputer ... bo nie zdałeś egzaminu (U=W=0).

Równanie obietnicy:
N=W+U=0+0=0 – zakaz wręczania nagrody z uzasadnieniem zależnym, czyli z powodu „nie zdania egzaminu” (W=U=0)

Nikt nie może robić z człowieka idioty, przede wszystkim matematyka.


12.2 Groźba w równaniach matematycznych

Definicja groźby:
Jeśli dowolny warunek to kara

Zasada „Jak się mówi tak się pisze”:
Zostanę ukarany (K) gdy spełnię warunek kary (W) i nadawca zdecyduje o ukaraniu (U).

W groźbie nadawca może skorzystać z aktu łaski ale nie musi tego robić. Przyjmijmy zmienna uznaniową U, którą nadawca może ustawić na dowolną wartość.

Matematyczne równanie groźby:
K=W*U

Gdzie:
K=1 – zostanę ukarany
K=0 – nie zostanę ukarany
W=1 – warunek kary spełniony
W=0 – warunek kary nie spełniony

Nadawca może ustawić zmienną uznaniową na dowolną wartość:
U=1 – ukarać
U=0 – nie karać (akt łaski)

Akt łaski w groźbie zajdzie wtedy, gdy odbiorca spełni warunek kary zaś nadawca odstąpi od wykonania kary (U=0 - akt łaski).

Analiza równania groźby.
K=W*U

A.
W=0 – warunek kary nie spełniony

Równanie groźby przybierze wówczas postać:
K=W*U=0*U=0 – zakaz karanie jeśli warunek kary nie zostanie spełniony.

Zauważmy, że nadawca nie ma tu nic do gadania. Może sobie ustawiać swoją zmienną długo i namiętnie na U=1 (karać) ... a i tak ma zakaz karania z powodu nie spełnienia warunku kary.

B.
W=1 – warunek kary spełniony

Równanie groźby przybiera postać:
K=W*U=1*U=U

Wszystko w rękach nadawcy który może zrobić co mu się podoba wedle wolnej woli:
U=1 – karać
U=0 – nie karać

Przykład:
Jeśli ubrudzisz spodnie dostaniesz lanie
B~>L

Ubrudziłeś spodnie (W=1), nie dostaniesz lania ... bo samochód cię ochlapał, bo dziś mam dobry humor, bo cię kocham itp. (U=0 - dowolne uzasadnienie niezależne)

K=W*U=1*0=0 - nie zostałem ukarany, bo nadawca zastosował akt łaski

Zauważmy, że nadawca może robić co mu się podoba z małym wyjątkiem, nie może darować kary z uzasadnieniem zależnym identycznym jak warunek kary.

Jeśli ubrudzisz spodnie dostaniesz lanie
B~>L
Ubrudziłeś spodnie (W=1), nie dostajesz lania, bo ubrudziłeś spodnie (U=W=1).

Równanie groźby:
K=W*U=1*1=1 – kara musi być wykonana, zakaz darowania kary z uzasadnieniem zależnym

Nikt nie może robić z człowieka idioty, przede wszystkim matematyka.

Koniec 2011-12-24
Powrót do góry
Zobacz profil autora
Wyświetl posty z ostatnich:   
Napisz nowy temat   Odpowiedz do tematu    Forum ŚFiNiA Strona Główna -> Metodologia / Forum Kubusia Wszystkie czasy w strefie CET (Europa)
Strona 1 z 1

 
Skocz do:  
Nie możesz pisać nowych tematów
Nie możesz odpowiadać w tematach
Nie możesz zmieniać swoich postów
Nie możesz usuwać swoich postów
Nie możesz głosować w ankietach

fora.pl - załóż własne forum dyskusyjne za darmo
Powered by phpBB © 2001, 2005 phpBB Group
Regulamin