|
ŚFiNiA ŚFiNiA - Światopoglądowe, Filozoficzne, Naukowe i Artystyczne forum - bez cenzury, regulamin promuje racjonalną i rzeczową dyskusję i ułatwia ucinanie demagogii. Forum założone przez Wuja Zbója.
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 35576
Przeczytał: 15 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Pon 10:39, 20 Lut 2023 Temat postu: Smieci |
|
|
Algebra Kubusia - matematyka języka potocznego
2.0 Kwintesencja algebry Kubusia
Spis treści
2.0 Kwintesencja algebry Kubusia 2
2.1 Skorowidz definicji implikacyjnych algebry Kubusia 2
2.2 Elementarne spójniki implikacyjne w zdarzeniach 2
2.2.1 Definicja zdarzenia możliwego ~~> 2
2.2.2 Definicja warunku wystarczającego => w zdarzeniach 3
2.2.3 Definicja warunku koniecznego ~> w zdarzeniach 4
2.2.4 Definicja kontrprzykładu w zdarzeniach 6
2.3 Elementarne spójniki implikacyjne w zbiorach 6
2.3.1 Definicja elementu wspólnego zbiorów ~~> 7
2.3.2 Definicja warunku wystarczającego => w zbiorach 7
2.3.3 Definicja warunku koniecznego ~> w zbiorach 8
2.3.4 Definicja kontrprzykładu w zbiorach 9
2.4 Rachunek zero-jedynkowy warunków wystarczających => i koniecznych ~> 10
2.5 Prawa algebry Kubusia wynikłe z rachunku zero-jedynkowego 13
2.5.1 Definicje znaczków # i ## 15
2.6 Fundamentalne definicje i prawa algebry Kubusia 16
2.6.1 Prawa Sowy 16
2.6.2 Definicja tożsamości logicznej 16
2.6.3 Definicja dowodu "nie wprost" w algebrze Kubusia 17
2.6.4 Prawa Prosiaczka 17
2.7 Prawo Kłapouchego - kluczowe prawo logiki matematycznej 17
2.7.1 Definicja podstawowego spójnika implikacyjnego 17
2.7.2 Prawo Kłapouchego i prawo Kameleona w implikacji prostej p|=>q 18
2.7.3 Prawo Kłapouchego w implikacji odwrotnej p|~>q 20
2.7.4 Nietrywialny błąd podstawienia ### 21
2.8 Prawa Słonia 22
2.8.1 Prawa Słonia dla zbiorów 23
2.8.2 Prawa Słonia dla zdarzeń 25
2.9 Prawo Irbisa 26
2.9.1 Prawo Irbisa dla zbiorów 26
2.9.2 Prawo Irbisa dla zdarzeń 28
2.0 Kwintesencja algebry Kubusia
Niniejszy punkt to kwintesencja algebry Kubusia zawierająca wszystkie potrzebne definicje i prawa algebry Kubusia konieczne i wystarczające do zrozumienia matematycznej obsługi zdań warunkowych "Jeśli p to q" zarówno na gruncie teorii zdarzeń, jak i na gruncie teorii zbiorów.
2.1 Skorowidz definicji implikacyjnych algebry Kubusia
Definicja spójnika implikacyjnego:
Spójnik implikacyjny to spójnik związany w obsługą zdań warunkowych "Jeśli p to q" definiowanych warunkami wystarczającymi => i koniecznymi ~>
Definicje spójników implikacyjnych w algebrze Kubusia mają układ trzypoziomowy {1=>2=>3}:
1.
Elementarne spójniki logiczne w zdarzeniach:
~~> - spójnik zdarzenia możliwego (2.2.1)
=> - warunek wystarczający (2.2.2)
~> - warunek konieczny (2.2.3)
Elementarne spójniki logiczne w zbiorach:
~~> - element wspólny zbiorów (2.3.1)
=> - warunek wystarczający tożsamy z relacją podzbioru =>(2.3.2)
~> - warunek konieczny tożsamy z relacją nadzbioru ~>(2.3.3)
2.
Podstawowe spójniki implikacyjne definiowane spójnikami elementarnymi:
|=> - implikacja prosta (2.12)
|~> - implikacja odwrotna (2.13)
<=> - równoważność (2.14)
|~~> - chaos (2.15)
3.
Operatory implikacyjne definiowane podstawowymi spójnikami implikacyjnymi
||=> - operator implikacji prostej (2.12.1)
||~> - operator implikacji odwrotnej (2.13.1)
|<=> - operator równoważności (2.14.1)
||~~> - operator chaosu (2.15.1)
2.2 Elementarne spójniki implikacyjne w zdarzeniach
Cała logika matematyczna w obsłudze zdań warunkowych „Jeśli p to q” stoi na zaledwie trzech elementarnych znaczkach (~~>, =>, ~>) definiujących wzajemne relacje zdarzeń/zbiorów p i q
2.2.1 Definicja zdarzenia możliwego ~~>
Definicja zdarzenia możliwego ~~>:
Jeśli zajdzie p to może ~~> zajść q
p~~>q =p*q =1
Definicja zdarzenia możliwego ~~> jest spełniona (=1) wtedy i tylko wtedy gdy możliwe jest jednoczesne zajście zdarzeń p i q.
Inaczej:
p~~>q=p*q =[] =0
Decydujący w powyższej definicji jest znaczek zdarzenia możliwego ~~>, dlatego dopuszczalny jest zapis skrócony p~~>q.
Uwaga:
Na mocy definicji zdarzenia możliwego ~~> badamy możliwość zajścia jednego zdarzenia, nie analizujemy tu czy między p i q zachodzi warunek wystarczający => czy też konieczny ~>.
Kod: |
Zero-jedynkowa definicja zdarzenia możliwego ~~>:
p q p~~>q = p*q + p*~q + ~p*~q + ~p*q
A: 1 1 =1
B: 1 0 =1
C: 0 0 =1
D: 0 1 =1
Interpretacja:
p~~>q=p*q=1 - wtedy i tylko wtedy
gdy możliwe jest jednoczesne ~~> zajście zdarzeń p i q
Inaczej:
p~~>q=p*q=0
|
Przykład:
Jeśli jutro będzie pochmurno (CH) to może ~~> nie padać (~P)
CH~~>~P=CH*~P =1
Możliwe jest (=1) zdarzenie: są chmury (CH) i nie pada (~P)
2.2.2 Definicja warunku wystarczającego => w zdarzeniach
Definicja warunku wystarczającego => w zdarzeniach:
Jeśli zajdzie p to zajdzie q
p=>q =1
Definicja warunku wystarczającego => jest spełniona (=1) wtedy i tylko wtedy gdy zajście zdarzenia p jest wystarczające => dla zajścia zdarzenia q
Inaczej:
p=>q =0
Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
p=>q = ~p+q
Przykład:
A1.
Jeśli jutro będzie padało (P) to na 100% => będzie pochmurno (CH)
P=>CH =1
Padanie jest (=1) warunkiem wystarczającym => dla istnienia chmur bo zawsze gdy pada, są chmury
W zapisie formalnym mamy tu:
p=P (pada)
q=CH (chmurka)
Gdzie:
p - przyczyna (część zdania po "Jeśli …")
q - skutek (część zdania po "to…")
Podsumowując:
Kod: |
Definicja warunku wystarczającego =>:
Zapis formalny:
A1: p=>q =~p+q
Zapis aktualny (przykład):
A1: p=P
A1: q=CH
A1: P=>CH=~P+CH
|
Można łatwo udowodnić, iż zdarzenie P (pada) jest podzbiorem => zdarzenia CH (chmury).
Dowód:
Matematycznie zachodzi tożsamość:
Warunek wystarczający => = relacja podzbioru =>
p=>q
1.
Prawo algebry Boole'a:
p=p*1
q=q*1
Stąd mamy:
p*1=>q*1
2.
Korzystamy z definicji wspólnej dziedziny dla p i q:
p+~p=D =1
q+~q=D =1
Stąd mamy wyprowadzone.
Prawo Orła:
p*(q+~q) => q*(p+~p)
3.
Wymnażamy wielomiany logiczne:
p*q + p*~q => p*q + ~p*q
Gdzie:
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
Nasz przykład:
p=P(pada)
q=CH(chmury)
Podstawiając do 3 mamy:
4.
P*CH + P*~CH => P*CH + ~P*CH
Badamy możliwość ~~> wystąpienia wszystkich zdarzeń:
P*CH=1 - możliwe jest (=1) zdarzenie: P(pada) i są CH(chmury)
P*~CH=0 - niemożliwe jest (=0) zdarzenie: P(pada) i nie ma chmur (~CH)
~P*CH=1 - możliwe jest (=1) zdarzenie: nie pada (~P) i są chmury (CH)
Stąd:
P*CH => P*CH + ~P*CH
bo x+0=x - prawo algebry Boole'a
Doskonale tu widać, że zdarzenie P*CH jest podzbiorem => zdarzenia (P*CH + ~P*CH)
2.2.3 Definicja warunku koniecznego ~> w zdarzeniach
Definicja warunku koniecznego ~> w zdarzeniach:
Jeśli zajdzie p to zajdzie q
p~>q =1
Definicja warunku koniecznego ~> jest spełniona (=1) wtedy i tylko wtedy gdy zajście zdarzenia p jest konieczne ~> dla zajścia zdarzenia q
Inaczej:
p~>q =0
Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
p~>q = p+~q
Przykład:
B1.
Jeśli jutro będzie pochmurno (CH) to może ~> padać (P)
CH~>P =1
Chmury (CH) są (=1) konieczne ~> dla padania (P), bo padać może wyłącznie z chmurki.
W zapisie formalnym mamy tu:
p=CH (chmurka)
q=P (pada)
Gdzie:
p - przyczyna (część zdania po "Jeśli …")
q - skutek (część zdania po "to…")
Podsumowując:
Kod: |
Definicja warunku koniecznego ~>:
Zapis formalny:
B1: p~>q = p+~q
Zapis aktualny (przykład):
B1: p=CH
B1: q=P
B1: CH~>P=CH+~P
|
Można łatwo udowodnić, iż zdarzenie CH (chmury) jest nadzbiorem ~> zdarzenia P (pada)
Dowód:
Matematycznie zachodzi tożsamość:
Warunek konieczny ~> = relacja nadzbioru ~>
p~>q
1.
Prawo algebry Boole'a:
p=p*1
q=q*1
Stąd mamy:
p*1~>q*1
2.
Korzystamy z definicji wspólnej dziedziny dla p i q:
p+~p=D =1
q+~q=D =1
stąd mamy wyprowadzone.
Prawo Orła:
p*(q+~q) ~> q*(p+~p)
3.
Wymnażamy wielomiany logiczne:
p*q + p*~q ~> p*q + ~p*q
Gdzie:
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
Nasz przykład:
p=CH(chmury)
q=P(pada)
Podstawiając do 3 mamy:
4.
CH*P + CH*~P ~> CH*P + ~CH*P
Badamy możliwość ~~> wystąpienia wszystkich zdarzeń:
CH*P=1 - możliwe jest (=1) zdarzenie: są chmury (CH) i pada (P)
CH*~P=1 - możliwe jest (=1) zdarzenie: są chmury (CH) i nie pada (~P)
~CH*P=0 - niemożliwe jest (=0) zdarzenie: nie ma chmur (~CH) i pada (P)
Stąd mamy:
5.
CH*P + CH*~P ~> CH*P
bo x+0=x
Doskonale tu widać, że zdarzenie (CH*P + CH*~P) jest nadzbiorem ~> zdarzenia CH*P
2.2.4 Definicja kontrprzykładu w zdarzeniach
Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>~q=p*~q
Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wymusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wymusza prawdziwość kontrprzykładu p~~>~q=p*~q=1
(i odwrotnie)
Przykład:
A1.
Jeśli jutro będzie padało (P) to na 100% => będzie pochmurno (CH)
P=>CH=1
Padanie jest warunkiem wystarczającym => dla istnienia chmur bo zawsze gdy pada, są chmury
Na mocy definicji kontrprzykładu prawdziwy warunek wystarczający A1: P=>CH=1 wymusza fałszywość kontrprzykładu A1' (i odwrotnie)
A1'
Jeśli jutro będzie padało (P) to może ~~> nie być pochmurno (~CH)
P~~>~CH = P*~CH=0
Dowód wprost:
Niemożliwe jest (=0) zdarzenie ~~>: pada (P) i nie jest pochmurno (~CH)
Dowód "nie wprost":
Na mocy definicji kontrprzykładu tego faktu nie musimy udowadniać, ale możemy, co wyżej uczyniliśmy.
Uwaga na standard w algebrze Kubusia:
Kontrprzykład dla warunku wystarczającego => A1 oznaczamy A1’
2.3 Elementarne spójniki implikacyjne w zbiorach
Cała logika matematyczna w obsłudze zdań warunkowych „Jeśli p to q” stoi na zaledwie trzech znaczkach (~~>, =>, ~>) definiujących wzajemne relacje zbiorów/zdarzeń p i q.
2.3.1 Definicja elementu wspólnego zbiorów ~~>
Definicja elementu wspólnego ~~> zbiorów:
Jeśli p to q
p~~>q =p*q =1
Definicja elementu wspólnego zbiorów ~~> jest spełniona (=1) wtedy i tylko wtedy gdy zbiory p i q mają co najmniej jeden element wspólny
Inaczej:
p~~>q= p*q= [] =0 - zbiory p i q są rozłączne, nie mają (=0) elementu wspólnego ~~>
Decydujący w powyższej definicji jest znaczek elementu wspólnego zbiorów ~~>, dlatego dopuszczalny jest zapis skrócony p~~>q.
W operacji iloczynu logicznego zbiorów p*q poszukujemy jednego wspólnego elementu co kończy dowód.
Jeśli zbiory p i q mają element wspólny ~~> to z reguły błyskawicznie go znajdujemy:
p~~>q=p*q =1
co na mocy definicji kontrprzykładu (poznamy za chwilkę) wymusza fałszywość warunku wystarczającego =>:
p=>~q =0 (i odwrotnie)
Kod: |
Zero-jedynkowa definicja elementu wspólnego zbiorów ~~>:
p q p~~>q = p*q + p*~q + ~p*~q + ~p*q
A: 1 1 =1
B: 1 0 =1
C: 0 0 =1
D: 0 1 =1
Interpretacja:
p~~>q=p*q=1 - wtedy i tylko wtedy
gdy istnieje (=1) element wspólny ~~> zbiorów p i q
Inaczej:
p~~>q=p*q=0
|
Przykład:
Jeśli dowolna liczba jest podzielna przez 8 to może ~~> być podzielna przez 3
P8~~>P3 = P8*P3 =1
Istnieje (=1) wspólny element zbiorów P8=[8,16,24..] i P3=[3,6,9..24..] np. 24
2.3.2 Definicja warunku wystarczającego => w zbiorach
Definicja podzbioru => w algebrze Kubusia:
Zbiór p jest podzbiorem => zbioru q wtedy i tylko wtedy gdy wszystkie elementy zbioru p należą do zbioru q
p=>q =1 - wtedy i tylko wtedy gdy relacja podzbioru => jest (=1) spełniona
Inaczej:
p=>q =0 - wtedy i tylko wtedy gdy relacja podzbioru => nie jest (=0) spełniona
Definicja warunku wystarczającego => w zbiorach:
Jeśli p to q
p=>q =1
Zajście p jest (=1) wystarczające => dla zajścia q wtedy i tylko wtedy gdy zbiór p jest (=1) podzbiorem => zbioru q
Inaczej:
p=>q =0
Zajście p nie jest (=0) wystarczające => dla zajścia q wtedy i tylko wtedy gdy zbiór p nie jest (=0) podzbiorem => zbioru q
Matematycznie zachodzi tożsamość logiczna:
Warunek wystarczający => = relacja podzbioru =>
Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
p=>q = ~p+q
Przykład:
A1.
Jeśli dowolna liczba jest podzielna przez 8 to na jest podzielna przez 2
P8=>P2 =1
Podzielność dowolnej liczby przez 8 jest warunkiem wystarczającym => dla jej podzielności przez 2 wtedy i tylko wtedy gdy zbiór P8=[8,16,24..] jest podzbiorem => zbioru P2=[2,4,6,8..]
Udowodnić relację podzbioru P8=>P2 potrafi każdy matematyk.
W zapisie formalnym mamy tu:
p=P8=[8,16,24..] - zbiór liczb podzielnych przez 8
q=P2=[2,4,6,8..] - zbiór liczb podzielnych przez 2
Gdzie:
p - przyczyna (część zdania po "Jeśli …")
q - skutek (część zdania po "to…")
Podsumowując:
Kod: |
Definicja warunku wystarczającego =>:
Zapis formalny:
A1: p=>q = ~p+q
Zapis aktualny (przykład):
A1: p=P8
A1: q=P2
A1: P8=>P2=~P8+P2
|
2.3.3 Definicja warunku koniecznego ~> w zbiorach
Definicja nadzbioru ~> w algebrze Kubusia:
Zbiór p jest nadzbiorem ~> zbioru q wtedy i tylko wtedy gdy zbiór p zawiera co najmniej wszystkie elementy zbioru q
p~>q =1 - wtedy i tylko wtedy gdy relacja nadzbioru ~> jest (=1) spełniona
Inaczej:
p~>q =0 - wtedy i tylko wtedy gdy relacja nadzbioru ~> nie jest (=0) spełniona
Definicja warunku koniecznego ~> w zbiorach:
Jeśli p to q
p~>q =1
Zajście p jest (=1) konieczne ~> dla zajścia q wtedy i tylko wtedy gdy zbiór p jest (=1) nadzbiorem ~> zbioru q
Inaczej:
p~>q =0
Zajście p nie jest (=0) konieczne ~> dla zajścia q wtedy i tylko wtedy gdy zbiór p nie jest (=0) nadzbiorem ~> zbioru q
Matematycznie zachodzi tożsamość logiczna:
Warunek konieczny ~> = relacja nadzbioru ~>
Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
p~>q = p+~q
Przykład:
B1.
Jeśli dowolna liczba jest podzielna przez 2 to może ~> być podzielna przez 8
P2~>P8 =1
Podzielność dowolnej liczby przez 2 jest warunkiem koniecznym ~> dla jej podzielności przez 8 wtedy i tylko wtedy gdy zbiór P2=[2,4,6,8..] jest nadzbiorem ~> zbioru P8=[8,16,24..]
W zapisie formalnym mamy tu:
p=P2=[2,4,6,8..] - zbiór liczb podzielnych przez 2
q=P8=[8,16,24..] - zbiór liczb podzielnych przez 8
Gdzie:
p - przyczyna (część zdania po "Jeśli …")
q - skutek (część zdania po "to…")
Podsumowując:
Kod: |
Definicja warunku koniecznego ~>:
Zapis formalny:
B1: p~>q = p+~q
Zapis aktualny (przykład):
B1: p=P2
B1: q=P8
B1: P2~>P8=P2+~P8
|
2.3.4 Definicja kontrprzykładu w zbiorach
Definicja kontrprzykładu w zbiorach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane elementem wspólnym zbiorów p~~>~q=p*~q
Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)
Przykład:
A1.
Jeśli dowolna liczba jest podzielna przez 8 to jest podzielna przez 2
P8=>P2=1
Podzielność dowolnej liczby przez 8 jest warunkiem wystarczającym => dla jej podzielności przez 2, bo zbiór P8=[8,16,24..] jest podzbiorem => zbioru P2=[2,4,6,8…], co każdy matematyk udowodni.
Na mocy definicji kontrprzykładu, z prawdziwości warunku wystarczającego A1 wynika fałszywość kontrprzykładu A1’ (i odwrotnie)
A1’
Jeśli dowolna liczba jest podzielna przez 8 to może ~~> nie być podzielna przez 2
P8~~>~P2 = P8*~P2 =[] =0
Dowód wprost:
Nie istnieje (=0) wspólny element zbiorów P8=[8,16,24..] i ~P2=[1,3,5,7,9…] bo dowolny zbiór liczb parzystych jest rozłączny z dowolnym zbiorem liczb nieparzystych.
Dowód "nie wprost":
Na mocy definicji kontrprzykładu fałszywości zdania A1' nie musimy udowadniać, ale możemy, co zrobiono wyżej.
Uwaga na standard w algebrze Kubusia:
Kontrprzykład dla warunku wystarczającego => A1 oznaczamy A1’
2.4 Rachunek zero-jedynkowy warunków wystarczających => i koniecznych ~>
Rachunek zero-jedynkowy dla teorii zdarzeń i teorii zbiorów jest wspólny.
Definicja stałej binarnej
Stała binarna to symbol mający w osi czasu stałą wartość logiczną 0 albo 1.
Definicja zmiennej binarnej:
Zmienna binarna to symbol, przyjmujący w osi czasu wyłącznie dwie wartości logiczne 0 albo 1.
Zachodzi tożsamość pojęć:
zmienna binarna = zmienna dwuwartościowa
Definicja zmiennej binarnej w logice dodatniej (bo p):
Zmienna binarna p wyrażona jest w logice dodatniej (bo p) wtedy i tylko wtedy gdy nie jest zanegowana.
Inaczej mamy do czynienia ze zmienną binarną w logice ujemnej (bo ~p)
Definicja funkcji logicznej Y dwóch zmiennych binarnych p i q:
Funkcja logiczna Y w logice dodatniej (bo Y) dwóch zmiennych binarnych p i q to cyfrowy układ logiczny (bramka logiczna) dający na wyjściu binarnym Y jednoznaczne odpowiedzi na wszystkie możliwe wymuszenia na wejściach p i q.
Zero-jedynkowa tabela prawdy:
Zero-jedynkowa tabela prawdy to zapis wszystkich możliwych wartościowań zmiennych binarnych w postaci tabeli zero-jedynkowej.
W poniższych tabelach T1 do T4 w kolumnach opisujących symbole {p, q Y} nie mamy stałych wartości 1 albo 0 co oznacza, że symbole te są zmiennymi binarnymi.
Kod: |
T1
Definicja warunku wystarczającego =>
Y=
p q p=>q=~p+q
A: 1=>1 1
B: 1=>0 0
C: 0=>0 1
D: 0=>1 1
1 2 3
Do łatwego zapamiętania:
p=>q=0 <=> p=1 i q=0
Inaczej:
p=>q=1
Gdzie:
Podstawa wektora => zawsze wskazuje poprzednik, część zdania po "Jeśli.."
Strzałka wektora => zawsze wskazuje następnik, część zdania po "to.."
;
Definicja warunku wystarczającego => w spójniku „lub”(+):
p=>q =~p+q
|
##
Kod: |
T2
Definicja warunku koniecznego ~>
Y=
p q p~>q=p+~q
A: 1~>1 1
B: 1~>0 1
C: 0~>0 1
D: 0~>1 0
1 2 3
Do łatwego zapamiętania:
p~>q=0 <=> p=0 i q=1
Inaczej:
p~>q=1
Gdzie:
Podstawa wektora ~> zawsze wskazuje poprzednik, część zdania po "Jeśli.."
Strzałka wektora ~> zawsze wskazuje następnik, część zdania po "to.."
;
Definicja warunku koniecznego ~> w spójniku „lub”(+):
p~>q = p+~q
|
##
Kod: |
T3
Definicja spójnika “lub”(+):
Y=
p q p+q
A: 1+ 1 1
B: 1+ 0 1
C: 0+ 0 0
D: 0+ 1 1
1 2 3
Do łatwego zapamiętania:
Definicja spójnika „lub”(+) w logice jedynek:
p+q=1 <=> p=1 lub q=1
inaczej:
p+q=0
;
Definicja spójnika „lub”(+) w logice zer:
p+q=0 <=> p=0 i q=0
Inaczej:
p+q=1
Przy wypełnianiu tabel zero-jedynkowych szybsza jest logika zer.
|
##
Kod: |
T4
Definicja spójnika “i”(*)
Y=
p q p*q
A: 1* 1 1
B: 1* 0 0
C: 0* 0 0
D: 0* 1 0
1 2 3
Do łatwego zapamiętania:
Definicja spójnika „i”(*) w logice jedynek:
p*q=1 <=> p=1 i q=1
inaczej:
p*q=0
|
Gdzie:
## - różne na mocy definicji funkcji logicznych
Definicja znaczka różne na mocy definicji ## w logice dodatniej (bo Y):
Funkcje logiczne Y w logice dodatniej (bo Y) są różne na mocy definicji ## wtedy i tylko wtedy gdy dla identycznych wymuszeń na wejściach p i q:
p - w logice dodatniej (bo p)
oraz
q - w logice dodatniej (bo q)
mają różne kolumny wynikowe Y ( w logice dodatniej bo Y)
Wniosek:
Funkcje logiczne definiowane tabelami T1 do T4 spełniają definicję znaczka różne na mocy definicji ##
Wyprowadźmy w rachunku zero-jedynkowym matematyczne związki między warunkami wystarczającym => i koniecznym ~>
Kod: |
Ax:
Warunek wystarczający =>:
p=>q = ~p+q
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w rachunku zero-jedynkowym
Y= Y= Y= Y= Y= # ~Y=
p q ~p ~q p=>q ~p~>~q [=] q~>p ~q=>~p [=] p=>q=~p+q # ~(p=>q)=p*~q
A: 1 1 0 0 =1 =1 =1 =1 =1 # =0
B: 1 0 0 1 =0 =0 =0 =0 =0 # =1
C: 0 0 1 1 =1 =1 =1 =1 =1 # =0
D: 0 1 1 0 =1 =1 =1 =1 =1 # =0
1 2 3 4 5 6
Gdzie:
# - różne w znaczeniu iż jedna strona znaczka # jest negacją drugiej strony
|
##
Kod: |
Bx:
Warunek konieczny ~>:
p~>q = p+~q
Matematyczne związki warunku koniecznego ~> i wystarczającego =>
w rachunku zero-jedynkowym
Y= Y= Y= Y= Y= # ~Y=
p q ~p ~q p~>q ~p=>~q [=] q=>p ~q~>~p [=] p~>q=p+~q # ~(p~>q)=~p*q
A: 1 1 0 0 =1 =1 =1 =1 =1 # =0
B: 1 0 0 1 =1 =1 =1 =1 =1 # =0
C: 0 0 1 1 =1 =1 =1 =1 =1 # =0
D: 0 1 1 0 =0 =0 =0 =0 =0 # =1
1 2 3 4 5 6
Gdzie:
# - różne w znaczeniu iż jedna strona znaczka # jest negacją drugiej strony
|
Gdzie:
## - różne na mocy definicji
"=", [=], <=> (wtedy i tylko wtedy) - tożsame znaczki tożsamości logicznej
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
Definicja tożsamości logicznej:
Prawdziwość dowolnej strony tożsamości logicznej "=" wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej "=" wymusza fałszywość drugiej strony
Definicja znaczka różne #:
Dowolna strona znaczka różne # jest negacją drugiej strony
Doskonale widać, że w tabelach Ax i Bx definicja znaczka # jest spełniona
Definicja znaczka różne na mocy definicji ##:
Funkcje logiczne Ax i Bx są różne na mocy definicji ## wtedy i tylko wtedy gdy dla identycznych wymuszeń na wejściach {p, q} mają różne kolumny wynikowe i żadna z tych funkcji nie jest negacją drugiej.
Jak widzimy, między tabelami Ax i Bx obowiązuje znaczek różne na mocy definicji ##
2.5 Prawa algebry Kubusia wynikłe z rachunku zero-jedynkowego
Na mocy rachunku zero-jedynkowego wyżej mamy matematyczne związki warunku wystarczającego => i koniecznego ~> w zapisie skróconym.
Kod: |
T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
## ## ## ## ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5: p+~q
Prawa Kubusia: | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q | A1: p=>q = A4:~q=>~p
B1: p~>q = B2:~p=>~q | B2:~p=>~q = B3: q=>p
Prawa Tygryska: | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p | B1: p~>q = B4:~q~>~p
Gdzie:
p=>q = ~p+q - definicja warunku wystarczającego =>
p~>q = p+~q - definicja warunku koniecznego ~>
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Na mocy powyższego zapisujemy:
1.
Prawa Kubusia:
Matematyczne związki warunku wystarczającego => i koniecznego ~> bez zamiany p i q
A1: p=>q = A2: ~p~>~q
##
B1: p~>q = B2: ~p=>~q
Ogólne prawo Kubusia:
Negujemy zmienne i wymieniamy spójniki na przeciwne
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
2.
Prawa Tygryska:
Matematyczne związki warunku wystarczającego => i koniecznego ~> z zamianą p i q
A1: p=>q = A3: q~>p
##
B1: p~>q = B3: q=>p
Ogólne prawo Tygryska:
Zamieniamy miejscami zmienne i wymieniamy spójniki na przeciwne
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
3.
Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A4: ~q=>~p
##
B3: q=>p = B2: ~p=>~q
Ogólne prawo kontrapozycji:
Negujemy zmienne zamieniając je miejscami bez zmiany spójnika logicznego
Gdzie:
## - różne na mocy definicji
4.
Prawa kontrapozycji dla warunku koniecznego ~>:
B1: p~>q = B4: ~q~>~p
##
A3: q~>p = A2: ~p~>~q
Ogólne prawo kontrapozycji:
Negujemy zmienne zamieniając je miejscami bez zmiany spójnika logicznego
Gdzie:
## - różne na mocy definicji
2.5.1 Definicje znaczków # i ##
Zapiszmy matematyczne związki warunku wystarczającego => i koniecznego ~>
z uwzględnieniem kolumny 6.
Kod: |
T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
A1B1: A2B2: | A3B3: A4B4: A5B5: A6B6:
Y= Y= Y= Y= Y=(p=>q)= # ~Y=~(p=>q)=
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5:~p+ q # 6: p* ~q
## ## ## ## ## ##
Y= Y= Y= Y= Y=(p~>q)= # ~Y=~(p~>q)=
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5: p+~q # 6: ~p* q
Gdzie:
# - dowolna strona znaczka # jest negacją drugiej strony
## - różne na mocy definicji
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
A1: p=>q = ~p+q
##
Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
B1: p~>q = p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
Zapiszmy powyższe definicje wyrażone funkcjami logicznymi Y i ~Y
Kod: |
T0"
Funkcja logiczna Y warunku wystarczającego =>:
A5: Y=(p=>q)=~p+ q # A6: ~Y=~(p=>q)= p*~q
## ##
Funkcja logiczna Y warunku koniecznego ~>:
B5: Y=(p~>q)= p+~q # B6: ~Y=~(p~>q)=~p* q
Gdzie:
# - dowolna strona znaczka # jest negacją drugiej strony
## - różne na mocy definicji
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Definicja znaczka różne #:
Dowolna strona znaczka różne # jest negacją drugiej strony
Definicja znaczka różne na mocy definicji ##:
Dwie funkcje logiczne są różne na mocy definicji ## wtedy i tylko wtedy gdy nie są tożsame i żadna z nich nie jest negacją drugiej
Doskonale widać, że w tabeli T0" obie definicje znaczków # i ## są perfekcyjnie spełnione
2.6 Fundamentalne definicje i prawa algebry Kubusia
Kod: |
T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
## ## ## ## ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5: p+~q
Prawa Kubusia: | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q | A1: p=>q = A4:~q=>~p
B1: p~>q = B2:~p=>~q | B2:~p=>~q = B3: q=>p
Prawa Tygryska: | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p | B1: p~>q = B4:~q~>~p
Gdzie:
p=>q = ~p+q - definicja warunku wystarczającego =>
p~>q = p+~q - definicja warunku koniecznego ~>
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
2.6.1 Prawa Sowy
I Prawo Sowy
Dla udowodnienia prawdziwości wszystkich zdań serii Ax potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Ax
Dla udowodnienia fałszywości wszystkich zdań serii Ax potrzeba i wystarcza udowodnić fałszywość dowolnego zdania serii Ax
##
II Prawo Sowy
Dla udowodnienia prawdziwości wszystkich zdań serii Bx potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Bx
Dla udowodnienia fałszywości wszystkich zdań serii Bx potrzeba i wystarcza udowodnić fałszywość dowolnego zdania serii Bx
Gdzie:
## - różne na mocy definicji
2.6.2 Definicja tożsamości logicznej
Prawa Sowy to:
Ogólna definicja tożsamości logicznej „=” dla wielu zdań:
Prawdziwość dowolnego zdania w tożsamości logicznej „=” wymusza prawdziwość pozostałych zdań
Fałszywość dowolnego zdania w tożsamości logicznej „=” wymusza fałszywość pozostałych zdań
Tożsame znaczki tożsamości logicznej to:
„=”, [=], <=> (wtedy i tylko wtedy)
2.6.3 Definicja dowodu "nie wprost" w algebrze Kubusia
Definicja dowodu „nie wprost” w algebrze Kubusia:
Dowód „nie wprost” w algebrze Kubusia to dowód warunku koniecznego ~> lub wystarczającego => z wykorzystaniem praw logiki matematycznej (prawa Kubusia, prawa Tygryska, prawa kontrapozycji dla warunku wystarczającego =>, prawa kontrapozycji dla warunku koniecznego ~>) plus definicja kontrprzykładu.
2.6.4 Prawa Prosiaczka
I Prawo Prosiaczka:
Prawda (=1) w logice dodatniej (bo Y) jest tożsama z fałszem (=0) w logice ujemnej (bo ~Y)
(Y=1) = (~Y=0)
##
II Prawo Prosiaczka:
Fałsz (=0) w logice dodatniej (bo Y) jest tożsamy z prawdą (=1) w logice ujemnej (bo ~Y)
(Y=0) = (~Y=1)
Gdzie:
## - różne na mocy definicji
Prawa Prosiaczka wiążą zmienną binarną w logice dodatniej (bo Y) ze zmienną binarną w logice ujemnej (bo ~Y).
Prawa Prosiaczka możemy stosować wybiórczo w stosunku do dowolnej zmiennej binarnej.
Dowód praw Prosiaczka znajdziemy w punkcie 1.4
2.7 Prawo Kłapouchego - kluczowe prawo logiki matematycznej
Prawo Kłapouchego:
Domyślny punkt odniesienia dla zdań warunkowych „Jeśli p to q”:
W zapisie aktualnym zdań warunkowych (w przykładach) po „Jeśli…” mamy zdefiniowaną przyczynę p zaś po „to..” mamy zdefiniowany skutek q z pominięciem przeczeń.
Prawo Kłapouchego determinuje wspólny dla wszystkich ludzi punktu odniesienia zawarty wyłącznie w kolumnach A1B1 oraz A2B2, dający odpowiedź na pytanie o p (A1B1) oraz o ~p (A2B2).
Prawo Kłapouchego jest tożsame z otwarciem drzwiczek pudełka z kotem Schrödingera (pkt.5.4.1)
Prawo Kłapouchego obowiązuje dla standardu dodatniego w języku potocznym człowieka.
Definicja standardu dodatniego w języku potocznym człowieka:
W języku potocznym ze standardem dodatnim mamy do czynienia wtedy i tylko wtedy gdy wszelkie przeczenia (~) w zdaniach są uwidocznione w kodowaniu matematycznym tych zdań.
Innymi słowy:
W kodowaniu matematycznym dowolnych zdań z języka potocznego wszystkie zmienne muszą być sprowadzone do logicznych jedynek na mocy prawa Prosiaczka.
Logiką matematycznie zgodną z językiem potocznym człowieka jest tylko i wyłącznie standard dodatni.
2.7.1 Definicja podstawowego spójnika implikacyjnego
Kod: |
T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
## ## ## ## ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5: p+~q
Prawa Kubusia: | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q | A1: p=>q = A4:~q=>~p
B1: p~>q = B2:~p=>~q | B2:~p=>~q = B3: q=>p
Prawa Tygryska: | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p | B1: p~>q = B4:~q~>~p
Gdzie:
p=>q = ~p+q - definicja warunku wystarczającego =>
p~>q = p+~q - definicja warunku koniecznego ~>
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Definicja podstawowego spójnika implikacyjnego
Podstawowy spójnik implikacyjny to badanie prawdziwości/fałszywości zdań w kolumnie A1B1 dającej odpowiedź na pytanie:
A1B1: Kiedy zajdzie p?
Podstawowe, przykładowe spójniki implikacyjne to implikacja prosta p|=>q i implikacja odwrotna p|~>q
Definicja implikacji prostej p|=>q
Implikacja prosta p|=>q to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
A1: p=>q=1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q=0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
##
Definicja implikacji odwrotnej p|~>q
Implikacja odwrotna p|~>q to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q=0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q=1 - zajście p jest (=1) konieczne ~> dla zajścia q
A1B1: p|~>q = ~(A1: p=>q)*(B1: p~>q)=~(0)*1=1*1=1
Gdzie:
## - różne na mocy definicji implikacji prostej p|=>q i odwrotnej p|~>q
2.7.2 Prawo Kłapouchego i prawo Kameleona w implikacji prostej p|=>q
Dane jest zdanie:
A1.
Jeśli jutro będzie padało to będzie pochmurno
Polecenie:
Zbadaj w skład jakiego podstawowego spójnika implikacyjnego wchodzi to zdanie
Rozwiązanie:
A1.
Jeśli jutro będzie padało (P) to na 100% => będzie pochmurno (CH)
A1: P=>CH =1
Padanie jest (=1) warunkiem wystarczającym => dla istnienia chmur bo zawsze gdy pada, są chmury
Na mocy prawa Kłapouchego mamy:
p=P (pada)
q=CH (chmury)
Aby rozstrzygnąć w skład jakiego spójnika implikacyjnego wchodzi badane zdanie musimy zbadać prawdziwość/fałszywość warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
##
B1.
Jeśli jutro będzie padało (P) to na 100% ~> będzie pochmurno (CH)
P~>CH =0
Padanie nie jest (=0) warunkiem koniecznym ~> dla istnienia chmur, bo może nie padać, a chmury mogą istnieć.
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
Stąd mamy wyprowadzone prawo Kameleona.
Prawo Kameleona:
Dwa zdania brzmiące identycznie z dokładnością do każdej literki i każdego przecinka nie muszą być matematycznie tożsame.
Dowód:
Zdania A1 i B1 wyżej.
Różność matematyczną zdań A1 i B1 rozpoznajemy wyłącznie po znaczkach warunku wystarczającego => (A1) i koniecznego ~> (B1) wbudowanych w treść zdań
W zapisach formalnych (ogólnych) zachodzi:
A1: p=>q = ~p+q ## B1: p~>q = p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
Nasza tabela prawdy z uwzględnieniem prawa Kłapouchego wygląda tak:
Kod: |
T1
Tabela prawdy implikacji prostej p|=>q w zapisie formalnym:
A1: p=>q=1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q=0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
To samo w zapisie aktualnym (nasz przykład):
p=P (pada)
q=CH (chmury)
A1: P=>CH=1 - padanie jest (=1) wystarczające => dla istnienia chmur
B1: P~>CH=0 - padanie nie jest (=0) konieczne ~> dla istnienia chmur
A1B1: P|=>CH = (A1: P=>CH)*~(B1: P~>CH)=1*~(0)=1*1=1
Matematyczne relacje między warunkiem wystarczającym => i koniecznym ~>
dla spełnionego warunku wystarczającego P=>CH=1
Warunek wystarczający p=>q | Warunek konieczny p~>q
Zapis formalny: | Zapis formalny:
1: Y = A1: p=>q =~p+q ## Y = B1: p~>q = B3: q=>p = p+~q
Zapis aktualny (przykład): | Zapis aktualny (przykład)
2: p=P (pada) [=] p=P (pada)
3: q=CH (chmury) [=] q=CH (chmury)
4: A1: P=>CH=1 ## B1: P~>CH=0
P jest wystarczające => dla CH ## P nie jest (=0) konieczne ~> dla CH
Gdzie:
## - różne na mocy definicji
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
2.7.3 Prawo Kłapouchego w implikacji odwrotnej p|~>q
Dane jest zdanie:
Jeśli jutro będzie pochmurno to może padać
Polecenie:
Zbadaj w skład jakiego podstawowego spójnika implikacyjnego wchodzi powyższe zdanie
Rozwiązanie:
B1.
Jeśli jutro będzie pochmurno (CH) to może ~> padać (P)
B1: CH~>P =1
Chmury (CH) są (=1) konieczne ~> dla padania (P), bo padać może wyłącznie z chmurki (CH)
Na mocy prawa Kłapouchego mamy:
p=CH (chmury)
q=P (pada)
Aby rozstrzygnąć w skład jakiego spójnika implikacyjnego wchodzi zdanie B1 musimy zbadać prawdziwość/fałszywość warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku.
##
A1.
Jeśli jutro będzie pochmurno (CH) to na 100% => będzie padało (P)
CH=>P =0
Chmury nie są (=0) warunkiem wystarczającym => dla padania, bo nie zawsze gdy są chmury, pada.
Gdzie:
## - zdania B1 i A1 to zdania różne na mocy definicji warunku koniecznego ~> i wystarczającego =>
Dowód w zapisach formalnych:
B1: p~>q=p+~q ## A1: p=>q=~p+q
Gdzie:
## - różne na mocy definicji warunku koniecznego ~> i wystarczającego =>
Nasza tabela prawdy z uwzględnieniem prawa Kłapouchego wygląda tak:
Kod: |
T2
Implikacja odwrotna p|~>q to zachodzenie wyłącznie warunku koniecznego ~>
między tymi samymi punktami i w tym samym kierunku
A1: p=>q=0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q=1 - zajście p jest (=1) konieczne ~> dla zajścia q
A1B1: p|~>q = ~(A1: p=>q)*(B1: p~>q)=~(0)*1=1*1=1
To samo w zapisie aktualnym (nasz przykład):
p=CH (chmury)
q=P (pada)
A1: CH=>P=0 - chmury nie są (=0) wystarczające => dla padania
B1: CH~>P=1 - chmury są (=1) konieczne ~> dla padania
A1B1: CH|~>P = ~(A1: CH=>P)*(B1: CH~>P)=~(0)*1=1*1=1
Matematyczne relacje między warunkiem wystarczającym => i koniecznym ~>
dla spełnionego warunku koniecznego CH~>P=1
Warunek wystarczający p=>q | Warunek konieczny p~>q
Zapis formalny: | Zapis formalny:
1: Y = A1: p=>q =~p+q ## Y = B1: p~>q = B3: q=>p = p+~q
Zapis aktualny (przykład): | Zapis aktualny (przykład)
2: p=CH (chmury) [=] p=CH (chmury)
3: q=P (pada) [=] q=P (pada)
4: CH=>P=0 ## CH~>P=1
CH nie są wystarczające => dla P ## CH są (=1) konieczne ~> dla P
Gdzie:
## - różne na mocy definicji
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
2.7.4 Nietrywialny błąd podstawienia ###
Zapiszmy przykłady warunku wystarczającego => i koniecznego ~> w zdarzeniach
A1.
Przykład spełnionego warunku wystarczającego =>:
Jeśli jutro będzie padało (P) to na 100% => będzie pochmurno (CH)
A1: P=>CH =1
Padanie jest (=1) warunkiem wystarczającym => dla istnienia chmur bo zawsze gdy pada, są chmury
Na mocy prawa Kłapouchego mamy:
p=P (pada)
q=CH (chmury)
B1.
Przykład spełnionego warunku koniecznego ~>:
Jeśli jutro będzie pochmurno (CH) to może ~> padać (P)
B1: CH~>P =1
Chmury (CH) są (=1) konieczne ~> dla padania (P), bo padać może wyłącznie z chmurki.
Na mocy prawa Kłapouchego mamy:
p=CH (chmury)
q=P (pada)
Umieśćmy nasze przykłady A1 i B1 w tabeli prawdy:
Kod: |
Nietrywialny błąd podstawienia ###:
Definicja warunku wystarczającego =>: | Definicja warunku koniecznego ~>:
Zapis formalny: | Zapis formalny:
1. Y = A1: p=>q =~p+q ## Y = B1: p~>q = B3: q=>p = p+~q
Zapis aktualny (przykład): | Zapis aktualny (przykład)
2. A1: p=P (pada) ### B1: p=CH (chmury)
3. A1: q=CH (chmury) ### B1: q=P (pada)
4. A1: Y= A1: P=>CH =~P+CH ### B1: Y= B1: CH~>P = B3: P=>CH =CH+~P
Gdzie:
## - różne na mocy definicji
### - różne na mocy nietrywialnego błędu podstawienia
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Zauważmy że:
1.
Suma logiczna (+) jest przemienna stąd w linii 4 zachodzi pozorna tożsamość logiczna [=].
2.
W rzeczywistości pozorna tożsamość [=] w linii 4 nie zachodzi, bowiem mamy tu do czynienia z nietrywialnym błędem podstawienia ###
3.
W liniach 2 i 3 doskonale widać na czym ten nietrywialny błąd podstawienia ### polega:
Warunek wystarczający A1: p=>q jest tu obserwowany z punktu odniesienia p=P i q=CH
Natomiast:
Warunek konieczny B1: p~>q jest tu obserwowany z innego punktu odniesienia p=CH i q=P
Prawo Wielbłąda:
Otaczająca nas rzeczywistość wygląda różnie z różnych punktów odniesienia.
Innymi słowy:
Otaczającą nas rzeczywistość opiszemy matematycznie poprawnie wtedy i tylko wtedy gdy będziemy na nią patrzeć z tego samego punktu odniesienia.
Poprawny opis rzeczywistości w naszym przykładzie to punkty 2.7.2 i 2.7.3
Stąd mamy:
Definicja nietrywialnego błędu podstawienia ###:
Dwie funkcje logiczne Y są różne na mocy nietrywialnego błędu podstawienia ### wtedy i tylko wtedy gdy w zapisach formalnych (ogólnych) są różne na mocy definicji ## (linia 1), zaś w zapisach aktualnych (przykład) skolerowanych z zapisem formalnym funkcje te są tożsame (linia 4)
Wniosek:
Prawo Kłapouchego broni nas przed niejednoznacznością logiki matematycznej, bowiem tylko i wyłącznie dzięki niemu zauważymy nietrywialny błąd podstawienia ###
Prawo Kłapouchego jest tożsame z otwarciem drzwiczek pudełka z kotem Schrödingera (pkt. 5.4.1)
2.8 Prawa Słonia
Prawa Słonia dla zdarzeń i zbiorów to najważniejsze prawa w logice matematycznej.
Kod: |
T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
## ## ## ## ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5: p+~q
Prawa Kubusia: | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q | A1: p=>q = A4:~q=>~p
B1: p~>q = B2:~p=>~q | B2:~p=>~q = B3: q=>p
Prawa Tygryska: | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p | B1: p~>q = B4:~q~>~p
Gdzie:
p=>q = ~p+q - definicja warunku wystarczającego =>
p~>q = p+~q - definicja warunku koniecznego ~>
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
2.8.1 Prawa Słonia dla zbiorów
I Prawo Słonia dla zbiorów:
W algebrze Kubusia w zbiorach zachodzi tożsamość [=] pojęć:
A1: p=>q - warunek wystarczający => [=] A1: p=>q - relacja podzbioru => [=] A1: p=>q - matematyczne twierdzenie proste
A1: p=>q = ~p+q
##
II Prawo Słonia dla zbiorów:
B1: p~>q - warunek konieczny ~> [=] B1: p~>q - relacja nadzbioru ~> [=] B3: q=>p - matematyczne twierdzenie odwrotne (w odniesieniu do A1)
Prawo Tygryska:
B1: p~>q = B3: q=>p = p+~q
Gdzie:
[=], „=”, <=> - tożsame znaczki tożsamości logicznej
<=> - wtedy o tylko wtedy
## - różne na mocy definicji
p i q musi być wszędzie tymi samymi p i q, inaczej błąd podstawienia
Definicja tożsamości logicznej [=]:
Prawdziwość dowolnego członu z tożsamości logicznej [=] wymusza prawdziwość pozostałych członów.
Fałszywość dowolnego członu z tożsamości logicznej [=] wymusza fałszywość pozostałych członów.
Z definicji tożsamości logicznej [=] wynika, że:
a)
Udowodnienie prawdziwości dowolnego członu powyższej tożsamości logicznej gwarantuje prawdziwość dwóch pozostałych członów
b)
Udowodnienie fałszywości dowolnego członu powyższej tożsamości logicznej gwarantuje fałszywość dwóch pozostałych członów
Na mocy prawa Słonia i jego powyższej interpretacji, możemy dowodzić prawdziwości/fałszywości dowolnych zdań warunkowych "Jeśli p to q" mówiących o zbiorach metodą ”nie wprost"
Definicja podzbioru =>:
Zbiór p jest (=1) podzbiorem => zbioru q wtedy i tylko wtedy gdy wszystkie jego elementy należą do zbioru q
Definicja nadzbioru ~>
Zbiór p jest (=1) nadzbiorem ~> zbioru q wtedy i tylko wtedy gdy zawiera co najmniej wszystkie elementy zbioru q
W logice matematycznej zachodzi tożsamość pojęć:
Podzbiór => = relacja podzbioru =>
Nadzbiór ~> = relacja nadzbioru ~>
W logice matematycznej rozstrzygamy o zachodzącej lub nie zachodzącej relacji podzbioru => czy też nadzbioru ~>.
Rozstrzygnięcia logiki matematycznej w relacji podzbioru =>:
A1: p=>q =1 - wtedy i tylko wtedy gdy zbiór p jest (=1) podzbiorem => zbioru q
Inaczej:
A1: p=>q =0 - wtedy i tylko wtedy gdy zbiór p nie jest (=0) podzbiorem => zbioru q
##
Rozstrzygnięcia logiki matematycznej w relacji nadzbioru ~>:
B1: p~>q =1 - wtedy i tylko wtedy gdy zbiór p jest (=1) nadzbiorem ~> zbioru q
Inaczej:
B1: p~>q =0 - wtedy i tylko wtedy gdy zbiór p nie jest (=0) nadzbiorem ~> zbioru q
Gdzie:
## - różne na mocy definicji podzbioru => i nadzbioru ~>
Przykład:
Zbadaj czy zachodzi warunek wystarczający => w poniższym zdaniu:
A1.
Jeśli dowolna liczba jest podzielna przez 8 to jest podzielna przez 2
A1: P8=>P2=?
Rozwiązanie:
Na mocy prawa Kłapouchego zapis formalny (ogólny) zdania A1 to:
A1: p=>q =1
Gdzie:
p=P8
q=P2
Prawo Słonia dla zbiorów:
W algebrze Kubusia w zbiorach zachodzi tożsamość [=] pojęć:
A1: p=>q - warunek wystarczający => [=] A1: p=>q - relacja podzbioru => [=] A1: p=>q matematyczne twierdzenie proste =>
W metodzie "nie wprost" na mocy prawa Słonia dowodzimy prawdziwości relacji podzbioru =>.
Innymi słowy badamy:
Czy zbiór P8=[8,16,24..] jest podzbiorem => zbioru P2=[2,4,6,8..]?
Oczywiście relacja podzbioru => jest (=1) tu spełniona:
P8=>P2=1
co każdy matematyk bez trudu udowodni.
W tym momencie na mocy prawa Słonia mamy udowodnione metodą "nie wprost" dwa fakty czysto matematyczne:
1.
Twierdzenie proste A1 jest prawdziwe
A1: P8=>P2 =1
2.
Podzielność dowolnej liczby przez 8 jest warunkiem wystarczającym => dla jej podzielności przez 2
A1: P8=>P2 =1
Podsumowując:
Z gołych definicji podzbioru => i warunku wystarczającego => nic w matematyce nie wynika, dopóki nie poznamy prawa Słonia.
Dopiero prawo Słonia w dowodzeniu prawdziwości warunku wystarczającego =>, czy też prawdziwości samego zdania warunkowego „Jeśli p to q" ma fundamentalne znaczenie, co udowodniono ciut wyżej.
2.8.2 Prawa Słonia dla zdarzeń
I Prawo Słonia dla zdarzeń:
W algebrze Kubusia w zdarzeniach zachodzi tożsamość [=] pojęć:
A1: p=>q - warunek wystarczający => [=] A1: p=>q - relacja podzbioru => [=] A1: p=>q - matematyczne twierdzenie proste
A1: p=>q = ~p+q
##
II Prawo Słonia dla zdarzeń:
B1: p~>q - warunek konieczny ~> [=] B1: p~>q - relacja nadzbioru ~> [=] B3: q=>p - matematyczne twierdzenie odwrotne (w odniesieniu do A1)
Prawo Tygryska:
B1: p~>q = B3: q=>p = p+~q
Gdzie:
[=], „=”, <=> - tożsame znaczki tożsamości logicznej
<=> - wtedy o tylko wtedy
## - różne na mocy definicji
p i q musi być wszędzie tymi samymi p i q, inaczej błąd podstawienia
Relacja podzbioru => i nadzbioru ~> w zdarzeniach nie jest intuicyjna, ale można ją łatwo udowodnić co zostało pokazane w punktach 2.2.2 i 2.2.3.
Definicja tożsamości logicznej [=]:
Prawdziwość dowolnego członu z tożsamości logicznej [=] wymusza prawdziwość pozostałych członów.
Fałszywość dowolnego członu z tożsamości logicznej [=] wymusza fałszywość pozostałych członów.
Z definicji tożsamości logicznej [=] wynika, że:
a)
Udowodnienie prawdziwości dowolnego członu powyższej tożsamości logicznej gwarantuje prawdziwość dwóch pozostałych członów
b)
Udowodnienie fałszywości dowolnego członu powyższej tożsamości logicznej gwarantuje fałszywość dwóch pozostałych członów
Na mocy prawa Słonia i jego powyższej interpretacji, możemy dowodzić prawdziwości/fałszywości
dowolnych zdań warunkowych "Jeśli p to q" mówiących o zbiorach metodą ”nie wprost"
W zdarzeniach dowodzimy:
1.
Warunku wystarczającego p=>q co na mocy prawa Słonia jest tożsame z udowodnieniem, iż zdarzenie p jest podzbiorem => zdarzenia q
albo
2.
Warunku koniecznego p~>q co na mocy prawa Słonia jest tożsame z udowodnieniem, iż zdarzenie p jest nadzbiorem ~> zdarzenia q
2.9 Prawo Irbisa
Kod: |
T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
## ## ## ## ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5: p+~q
Prawa Kubusia: | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q | A1: p=>q = A4:~q=>~p
B1: p~>q = B2:~p=>~q | B2:~p=>~q = B3: q=>p
Prawa Tygryska: | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p | B1: p~>q = B4:~q~>~p
Gdzie:
p=>q = ~p+q - definicja warunku wystarczającego =>
p~>q = p+~q - definicja warunku koniecznego ~>
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
2.9.1 Prawo Irbisa dla zbiorów
Definicja równoważności p<=>q:
Równoważność p<=>q w logice dodatniej (bo q) to spełnienie zarówno warunku wystarczającego =>, jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
Stąd mamy definicję równoważności p<=>q w równaniu logicznym:
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) =1*1 =1
Lewą stronę czytamy:
Zajdzie p wtedy i tylko wtedy gdy zajdzie q
Prawą stronę czytamy:
Zajście p jest (=1) warunkiem koniecznym ~> (B1) i wystarczającym => (A1) dla zajścia q
Innymi słowy:
Do tego by zaszło q potrzeba ~> (B1) i wystarcza => (A1) by zaszło p
Ta wersja równoważności jest powszechnie znana.
I Prawo Słonia dla zbiorów:
W algebrze Kubusia w zbiorach zachodzi tożsamość [=] pojęć:
A1: p=>q - warunek wystarczający => [=] A1: p=>q - relacja podzbioru => [=] A1: p=>q - matematyczne twierdzenie proste
Y = A1: p=>q = ~p+q
##
II Prawo Słonia dla zbiorów:
B1: p~>q - warunek konieczny ~> [=] B1: p~>q - relacja nadzbioru ~> [=] B3: q=>p - matematyczne twierdzenie odwrotne (w odniesieniu do A1)
Prawo Tygryska:
Y = B1: p~>q = B3: q=>p = p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q musi być wszędzie tymi samymi p i q, inaczej błąd podstawienia
[=], „=”, <=> - tożsame znaczki tożsamości logicznej
Na mocy prawa Słonia oraz tabeli T0 możemy wygenerować dużą ilość tożsamych definicji równoważności p<=>q.
Przykładowe, najbardziej użyteczne definicje to:
1.
Matematyczna definicja równoważności p<=>q (znana każdemu matematykowi):
Równoważność p<=>q to jednoczesna prawdziwość matematycznego twierdzenia prostego A1: p=>q i matematycznego twierdzenia odwrotnego B3: q=>p
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q, twierdzenie proste A1.
B3: q=>p =1 - zajście q jest (=1) wystarczające => dla zajścia p, twierdzenie odwrotne (względem A1)
Stąd mamy:
A1B3: p<=>q = (A1: p=>q)*(B3: q=>p) =1*1 =1
2.
Definicja równoważności wyrażona relacjami podzbioru =>
Równoważność p<=>q to relacja podzbioru => zachodząca w dwie strony
A1: p=>q =1 - wtedy i tylko wtedy gdy zbiór p jest (=1) podzbiorem => zbioru q
B3: q=>p =1 - wtedy i tylko wtedy gdy zbiór q jest (=1) podzbiorem => zbioru p
Stąd mamy:
A1B3: p<=>q = (A1: p=>q)*(B3: q=>p) =1*1 =1
Stąd mamy:
Prawo Irbisa dla zbiorów:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q (A1) i jednocześnie zbiór q jest podzbiorem => zbioru p (B3)
A1B3: p=q <=> (A1: p=>q)*(B3: q=>p)= A1B3: p<=>q
Prawo Irbisa znane jest każdemu matematykowi.
Innymi słowy:
Każda równoważność prawdziwa p<=>q definiuje tożsamość zbiorów p=q (i odwrotnie)
A1B3: p<=>q = (A1: p=>q)*(B3: q=>p) <=> A1B3: p=q
Prawo Irbisa w relacjach podzbioru => i nadzbioru ~>.
Prawo Irbisa dla zbiorów:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy zbiór p jest (=1) podzbiorem => zbioru q (A1) i jednocześnie zbiór p jest (=1) nadzbiorem ~> zbioru q (B1)
A1: p=>q =1 - wtedy i tylko wtedy gdy zbiór p jest (=1) podzbiorem => zbioru q
B1: p~>q =1 - wtedy i tylko wtedy gdy zbiór p jest (=1) nadzbiorem ~> zbioru q
Stąd mamy:
A1B1: p=q <=> (A1: p=>q)*(B1: p~>q) = A1B1: p<=>q
Dowód:
Oczywistość, bo na mocy definicji podzbioru => i nadzbioru ~> każdy zbiór jest jednocześnie podzbiorem => i nadzbiorem ~> siebie samego.
Korzystając z prawa Słonia prawo Irbisa możemy też zapisać w warunkach koniecznym ~> (B1) i wystarczającym => (A1).
Prawo Irbisa dla zbiorów:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy zajście p jest konieczne ~> (B1) i wystarczające => (A1) dla zajścia q
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
Stąd mamy:
A1B1: p=q <=> (A1: p=>q)*(B1: p~>q) = A1B1: p<=>q
Stąd mamy tabelę prawdy równoważności p<=>q z uwzględnieniem prawa Irbisa.
Kod: |
TR
Definicja równoważności:
Równoważność to jednocześnie zachodzący warunek wystarczający => i konieczny ~> między tymi samymi punktami i w tym samym kierunku
Dla kolumny A1B1 mamy:
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
Stąd mamy:
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) =1*1 =1
A1B1: A2B2: | A3B3: A4B4:
A: 1: p=>q=1 = 2:~p~>~q=1 [=] 3: q~>p=1 = 4:~q=>~p=1 [=] 5: ~p+q =1
## ## ## ## ##
B: 1: p~>q=1 = 2:~p=>~q=1 [=] 3: q=>p=1 = 4:~q~>~p=1 [=] 5: p+~q=1
-----------------------------------------------------------------------
Równoważność <=>: | Równoważność <=>:
AB: 1: p<=>q=1 = 2:~p<=>~q=1 [=] 3: q<=>p=1 = 4:~q<=>~p=1 [=] 5: p*q+~p*~q
definiuje tożsamość zbiorów: | definiuje tożsamość zbiorów:
AB: 1: p=q # 2:~p=~q | 3: q=p # 4:~q=~p
Gdzie:
# - różne w znaczeniu iż jedna strona znaczka # jest negacją drugiej strony
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
"=",[=],<=> - znaczki tożsamości logicznej
|
2.9.2 Prawo Irbisa dla zdarzeń
Prawo Irbisa dla zdarzeń:
Dwa zdarzenia p i q są tożsame p=q wtedy i tylko wtedy gdy zajście zdarzenia p jest konieczne ~> (B1) i wystarczające => (A1) dla zajścia zdarzenia q
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
Stąd mamy:
A1B1: p=q <=> (A1: p=>q)*(B1: p~>q) = A1B1: p<=>q
Przykład:
Pani w przedszkolu:
A1.
Jutro pójdziemy do kina
Y=K
co w logice jedynek oznacza:
Y=1 <=> K=1
Czytamy:
Pani dotrzyma słowa (Y=1) wtedy i tylko wtedy gdy jutro pójdziemy do kina (K=1)
Na mocy prawa Irbisa zachodzi tożsamość pojęć:
Y=K <=> (A1: Y=>K)*(B1: Y~>K) = Y<=>K
Lewą stronę czytamy:
Pojęcie „pani dotrzyma słowa” (Y) jest tożsame „=” z pojęciem „pójdziemy do kina” (K)
Środek czytamy:
Do tego by dzieci poszły do kina (K) potrzeba ~> (B1) i wystarcza => (A1) by pani dotrzymała słowa (Y)
Prawą stronę czytamy:
Pani dotrzyma słowa (Y) wtedy i tylko wtedy gdy jutro pójdziemy do kina (K)
Ostatnio zmieniony przez rafal3006 dnia Sob 10:17, 30 Lis 2024, w całości zmieniany 2410 razy
|
|
Powrót do góry |
|
|
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 35576
Przeczytał: 15 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Pon 0:02, 28 Paź 2024 Temat postu: |
|
|
...
Ostatnio zmieniony przez rafal3006 dnia Pon 0:06, 28 Paź 2024, w całości zmieniany 1 raz
|
|
Powrót do góry |
|
|
|
|
Nie możesz pisać nowych tematów Nie możesz odpowiadać w tematach Nie możesz zmieniać swoich postów Nie możesz usuwać swoich postów Nie możesz głosować w ankietach
|
fora.pl - załóż własne forum dyskusyjne za darmo
Powered by phpBB © 2001, 2005 phpBB Group
|