|
ŚFiNiA ŚFiNiA - Światopoglądowe, Filozoficzne, Naukowe i Artystyczne forum - bez cenzury, regulamin promuje racjonalną i rzeczową dyskusję i ułatwia ucinanie demagogii. Forum założone przez Wuja Zbója.
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 35973
Przeczytał: 14 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Sob 2:42, 28 Sty 2017 Temat postu: |
|
|
idiota napisał: | "Jeśli zbiór A jest podzbiorem => B to zbiór A jest częścią zbioru B, jak również zbiór A jest elementem zbioru B "
Zatem:
Jeśli JEDYNYMI elementami zbioru{1,2,3} są liczby 1, 2 i 3 to jego elementem jet też zbiór {1,3} mimo że nie jest on tożsamy, równy czy identyczny z żadnym z elementów które są jedynymi jego elementami.
Fajnie. |
Oznaczmy:
C=[1+3]
B=[1+2+3] = [1+2+3+[1+3]]
Wolno mi powielać elementy w dowolnym zbiorze na mocy prawa:
p=p+p
stąd:
B=[1+2+3] = [1+2+3+C]
Pytanie do Idioty:
Czy zbiór C jest elementem zbioru B czy nie jest?
Proszę o odpowiedź
Ostatnio zmieniony przez rafal3006 dnia Sob 2:42, 28 Sty 2017, w całości zmieniany 1 raz
|
|
Powrót do góry |
|
|
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
fiklit
Dołączył: 24 Wrz 2012
Posty: 4197
Przeczytał: 0 tematów
Płeć: Mężczyzna
|
Wysłany: Sob 2:58, 28 Sty 2017 Temat postu: |
|
|
Jestem to odpowiem. No jest. I co?
|
|
Powrót do góry |
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 35973
Przeczytał: 14 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Sob 3:01, 28 Sty 2017 Temat postu: |
|
|
fiklit napisał: | Nie chcę w to mieszać twojej geometrii.
Dlaczego nie możesz tego wyjaśnić na przykładzie na którym pracujemy? |
Bo na przykładzie [1+2+3] ja mówię o czym innym a ty o czym innym - w ten sposób to możemy się spierać do końca świata i nigdy do porozumienia nie dojdziemy.
Dyskutujemy tu o zbiorach, więc znajdźmy przykład gdzie zbiory widać ewidentnie i nie mają one nic wspólnego z cyferkami.
Cyferki to nic nie znacząca kropla w morzu innych zbiorów - skoro na gruncie cyferek nie możemy dojść do porozumienia to znajdźmy inne zbiory.
Proponuję czworokąty w moim poście wyżej.
Zauważ że nie wolno ci zapisać:
trapez prostokątny = trapez
trapez równoramienny = trapez
Poprawnie matematycznie musi być:
zbiór trapezów prostokątnych jest podzbiorem => zbioru trapez
TP=>trapez
zbiór trapezów równoramiennych jest podzbiorem => zbioru trapez
TR=>trapez
Matematycznie zachodzi zatem:
TP ## TR ## TRAPEZ ## KW (kwadrat)
gdzie:
## - różne na mocy definicji
Zauważ, że gdyby tu zachodziła tożsamość:
TP = TR = TRAPEZ
to matematycy nie byliby w stanie odróżnić trapezu prostokątnego od trapezu równoramiennego
zatem tu tożsamości nie ma prawa być
cnd
Nie wiem czemu twierdzisz, że to jest moja geometria:
Matematycznie zachodzi zatem:
TP ## TR ## TRAPEZ ## KW (kwadrat)
gdzie:
## - różne na mocy definicji
Mam nadzieję że powyższe równanie to także twoja geometria.
Czy mam rację?
Czy możemy zatem wrócić do tego postu?
http://www.sfinia.fora.pl/forum-kubusia,12/prawo-subalternacji,8368-2625.html#310707
rafal3006 napisał: |
Proszę teraz o uwagę:
Ja mówię:
Matematycznie zachodzi:
1.
TP ## TR ## KW ## TRAPEZ
gdzie:
## - różne na mocy definicji
Czyli:
TRAPEZ nie jest którymkolwiek z elementów podstawowych, nie jest ani TP, ani TR, ani KW
Ty natomiast Fiklicie mówisz:
2.
Potwierdziłeś że trapez nie jest czworokątem
Uwaga:
Niczego takiego nie potwierdziłem!
Potwierdziłem tylko że zachodzi 1.
Pytanie do ciebie Fiklicie:
Zachodzi 1, czy nie zachodzi? |
Ostatnio zmieniony przez rafal3006 dnia Sob 3:08, 28 Sty 2017, w całości zmieniany 1 raz
|
|
Powrót do góry |
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
fiklit
Dołączył: 24 Wrz 2012
Posty: 4197
Przeczytał: 0 tematów
Płeć: Mężczyzna
|
Wysłany: Sob 3:22, 28 Sty 2017 Temat postu: |
|
|
Rafał, ja widze masę dodatkowych problemów które się pojawią jak zaczniemy drążyć przykład w figurami. Nie wchodzę w to. Twoje usilne próby zmiany przykladu traktuję jak próbę rozmycia problemu. Pokazuję ci przykład na którym widać problem.
Ty próbujesz zmienić przyklad na taki gdzie problem jest zamazany.
Po co?
Czy to jedyny sposób, żeby Ak wyglądała na bezbłędną?
Pokazuję ci przykład na którym wyraźnie widać, że masz w NTZ błedy. Że masz sprzecznośći. Musisz mieć naprawdę problemy z rozumem, żeby tego nie widzieć.
Cytat: |
Bo na przykładzie [1+2+3] ja mówię o czym innym a ty o czym innym |
To mów o tym problemie na który ci zwracam uwagę, a nie o powielaniu elementów.
|
|
Powrót do góry |
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 35973
Przeczytał: 14 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Sob 4:28, 28 Sty 2017 Temat postu: |
|
|
fiklit napisał: | Rafał, ja widze masę dodatkowych problemów które się pojawią jak zaczniemy drążyć przykład w figurami. Nie wchodzę w to. Twoje usilne próby zmiany przykladu traktuję jak próbę rozmycia problemu. Pokazuję ci przykład na którym widać problem.
Ty próbujesz zmienić przyklad na taki gdzie problem jest zamazany.
Po co?
Czy to jedyny sposób, żeby Ak wyglądała na bezbłędną?
Pokazuję ci przykład na którym wyraźnie widać, że masz w NTZ błedy. Że masz sprzecznośći. Musisz mieć naprawdę problemy z rozumem, żeby tego nie widzieć.
Cytat: |
Bo na przykładzie [1+2+3] ja mówię o czym innym a ty o czym innym |
To mów o tym problemie na który ci zwracam uwagę, a nie o powielaniu elementów. |
Nie widzę, żadnych problemów z figurami.
Trapezy dzielimy na:
trapez = prostokątne + równoramienne + nieregularne
Dokładnie tak tu powinna wyglądać tożsamość matematyczna, w matematyce nieregularne pomijamy jako mało intersujące co nie oznacza że takich czworokątów nie ma.
Matematycznie zachodzi:
trapez ## prostokątne ## równoramienne ## nieregularne
gdzie:
## - różne na mocy definicji
Wracając do liczb:
B=[1+2+3]
Czy zbiór B jest zbiorem liczb?
Tak
B=[1+2+3+[1+2]]
Czy zbiór B jest nadal zbiorem liczb tożsamym z B wyżej?
tak
Czy zbiór:
[1+2]
będący zbiorem liczb jest elementem zbioru B?
tak
Czy zbiór:
[1+2]=[1+1..+2+2…]
będący zbiorem liczb jest tożsamy z poniższym zbiorem liczb?
[1]=[1+1+1..]
Nie jest tożsamy!
Wszystkie zbiory wyżej to zbiory liczb!
W którym miejscu widzisz tu błąd?
P.S.
Zauważ, że w poniższej tożsamości:
A=[1]= B=[1+1+1…]
Spełniona jest definicja tożsamości zbiorów:
Zbiory A i B są tożsame A=B wtedy i tylko wtedy gdy każdy element zbioru A należy do zbioru B i odwrotnie
Stąd czysto matematycznie poniższy zapis jest jak najbardziej poprawny:
[1] = [1+1+1..]
Ostatnio zmieniony przez rafal3006 dnia Sob 4:43, 28 Sty 2017, w całości zmieniany 3 razy
|
|
Powrót do góry |
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
fiklit
Dołączył: 24 Wrz 2012
Posty: 4197
Przeczytał: 0 tematów
Płeć: Mężczyzna
|
Wysłany: Sob 4:50, 28 Sty 2017 Temat postu: |
|
|
[1,2] jest elementem B;
[1,2] nie jest liczbą;
B ma element który nie jest liczbą;
Nie jest prawdą, że wszystkie elementy B są liczbą.
Do którego momentu się zgadzasz?
|
|
Powrót do góry |
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 35973
Przeczytał: 14 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Sob 5:09, 28 Sty 2017 Temat postu: |
|
|
fiklit napisał: | [1,2] jest elementem B;
[1,2] nie jest liczbą;
B ma element który nie jest liczbą;
Nie jest prawdą, że wszystkie elementy B są liczbą.
Do którego momentu się zgadzasz? |
Zacznijmy tak:
Czy zbiór liczb:
A=[1+2+3]
Jest tożsamy ze zbiorem liczb:
B=[1+1…+2+2…+3+3…]
to znaczy czy spełniona jest definicja tożsamości zbiorów:
Zbiór A jest tożsamy ze zbiorem B wtedy i tylko wtedy gdy każdy element zbioru A należy do B i odwrotnie.
Pytanie:
Czy poniższe zbiory są tożsame:
A=[1+2+3] = B=[1+1…+2+2…+3+3…]
Proszę o odpowiedź, wtedy pójdziemy krok dalej
|
|
Powrót do góry |
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
fiklit
Dołączył: 24 Wrz 2012
Posty: 4197
Przeczytał: 0 tematów
Płeć: Mężczyzna
|
Wysłany: Sob 5:15, 28 Sty 2017 Temat postu: |
|
|
Ale czemu mnie pytasz? Ja się nie znam na NTZ, próbuje sie w tym odnaleźć.
Cały czas piszesz, że są, więc wierzę, że są.
|
|
Powrót do góry |
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 35973
Przeczytał: 14 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Sob 8:32, 28 Sty 2017 Temat postu: |
|
|
Dowód wewnętrznej sprzeczności w logice matematycznej ziemian!
Logika matematyczna jest jedna i obowiązuje w całym naszym Wszechświecie, matematyka (w szczególności teoria zbiorów) nie może być wyjątkiem.
fiklit napisał: |
Ale czemu mnie pytasz? Ja się nie znam na NTZ, próbuje sie w tym odnaleźć.
Cały czas piszesz, że są, więc wierzę, że są. |
Fikicie, algebra Kubusia powstaje na żywo, dzięki naszej dyskusji.
Pewne jest że nasza dyskusja przejdzie do historii matematyki (pewnie i nie tylko) jako dyskusja wszech czasów.
Teraz już jestem pewien!
Właśnie udowodniliśmy wewnętrzną sprzeczność logiki matematycznej ziemian na gruncie jej samej.
Miał rację Cantor, iż swoją badziewną TM chciał w końcówce swojego życia skasować - niestety nie pozwolili mu na to jemu współcześni „matematycy”, uczepili się tego gówna i bez przerwy, od ponad 100 lat przykrywają je coraz to nowszymi pomysłami by mniej śmierdziało.
Niestety, zapachu gówna nie da się zabić:
Jeśli 2+2=4 to Płock leży nad Wisłą
Zróbmy sobie przerywnik i sprawdźmy czy Idiota zrozumie swój potworny błąd czysto matematyczny, który przytrafiło mu się palnąć w cytacie niżej.
http://www.sfinia.fora.pl/forum-kubusia,12/prawo-subalternacji,8368-2575.html#308811
idiota napisał: | Nie, on jest zwyczajnie wariatem.
Klinicznym.
Dlatego umie nie zrozumieć, co znaczy słowo "tylko".
Przecież inaczej się tego zrobić nie da.
No i wychodzi na to, że każdy jednoelementowy zbiór jest zbiorem nieskończenieelementowym.
I ciekawe, że teoria zbiorów w której jest zakaz liczenia elementów w zbiorach ma być zgodna z teorią zbiorów, która na liczby elementów w zbiorach wymyśliła nawet specjalną nazwę (liczby kardynalne). |
Prawo Kukułki:
Dowolny element zbioru można powielać w nieskończoność na mocy prawa teorii zbiorów:
p=p+p
W przypadku zbioru jednoelementowego, na mocy prawa Kukułki, mamy w istocie do czynienia ze zbiorem nieskończonym tych samych elementów.
Przykład:
[2] = [2+2+2+2…]
czyli w zapisie tożsamym z użyciem przecinków:
[2] = [2,2,2,2..]
Kwadratura koła dla Idioty:
Korzystając z definicji tożsamości zbiorów z Wikipedii udowodnij iż powyższe zbiory nie są tożsame.
Przypomnę ci definicję którą doskonale znasz:
[link widoczny dla zalogowanych]
math.edu napisał: |
Równość zbiorów (tożsamość zbiorów):
Zbiory A i B nazywamy równymi wtedy i tylko wtedy, gdy każdy element zbioru A jest elementem zbioru B i na odwrót
A=B <=> (A=>B)*(B=>A) |
Do dzieła Idioto!
Wyjścia masz tylko dwa, trzeciej możliwości nie ma.
1.
Przyznajesz, że na mocy twojej własnej definicji tożsamości dwóch zbiorów A=B zbiory:
[2]=[2+2+2+2..] = [2,2,2,2…]
są tożsame
2.
Kasujesz definicję tożsamości zbiorów z Wikipedii, czyli swoją własną definicję!
http://www.sfinia.fora.pl/forum-kubusia,12/nti-fantastyczna-dyskusja-z-ateisty-pl,4825-275.html#124499
idiota napisał: |
tu masz w znaczkach:
Relacje między zbiorami
Równość zbiorów (tożsamość zbiorów):
Zbiory A i B nazywamy równymi wtedy i tylko wtedy, gdy każdy
element zbioru A jest elementem zbioru B i na odwrót.
A = B ⇔ ∀x (x∈A ⇔ x∈B).
|
Ostatnio zmieniony przez rafal3006 dnia Sob 8:54, 28 Sty 2017, w całości zmieniany 4 razy
|
|
Powrót do góry |
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
fiklit
Dołączył: 24 Wrz 2012
Posty: 4197
Przeczytał: 0 tematów
Płeć: Mężczyzna
|
Wysłany: Sob 8:51, 28 Sty 2017 Temat postu: |
|
|
Rafał, ale co ma LZ wspólnego z tym wszystkim tu napisanym?
|
|
Powrót do góry |
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 35973
Przeczytał: 14 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Sob 9:01, 28 Sty 2017 Temat postu: |
|
|
fiklit napisał: | Rafał, ale co ma LZ wspólnego z tym wszystkim tu napisanym? |
Wyjaśnia to nagłówek do poprzedniego postu, dopisany przeze mnie przed sekundą.
Powtórzę:
Logika matematyczna jest jedna i obowiązuje w całym naszym Wszechświecie, matematyka (w szczególności teoria zbiorów) nie może być wyjątkiem.
Innymi słowy:
Logika matematyczna obowiązująca w naszym Wszechświecie jest jedna - to algebra Kubusia
Innymi słowy:
Nie jest możliwe istnienie konkurencyjnej logiki matematycznej
Dogmat (pewność) ziemskich matematyków iż:
"Możliwych logik jest nieskończenie wiele"
To przerażające, potwornie śmierdzące gówno - nic więcej
Dowód:
Póki co ziemianie nie znaleźli konkurencyjnej logiki matematycznej, do tej dwuelementowej, obsługiwanej przez znaną im tabelę zero-jedynkowych operatorów logicznych.
Pomysły Łukasiewicza to bajdurzenie, a nie logika matematyczna.
[link widoczny dla zalogowanych]
Fragment ze wstępu do bajdurzenia Łukasiewicza:
Wprowadzenie
W logice trójwartościowej, obok tradycyjnych wartości logicznych,
Prawdy 1 i Fałszu 0, posługujemy się również trzecią wartością logiczną
– zresztą rozmaicie rozumianą.
Trzecia wartość logiczna
HeHe... dobre, brawo
Ostatnio zmieniony przez rafal3006 dnia Sob 9:15, 28 Sty 2017, w całości zmieniany 4 razy
|
|
Powrót do góry |
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
lucek
Dołączył: 18 Lut 2011
Posty: 9040
Przeczytał: 66 tematów
|
Wysłany: Sob 9:19, 28 Sty 2017 Temat postu: |
|
|
Cytat: | Logika matematyczna obowiązująca w naszym Wszechświecie jest jedna - to algebra Kubusia
Innymi słowy:
Nie jest możliwe istnienie konkurencyjnej logiki matematycznej
Dogmat (pewność) ziemskich matematyków iż:
"Możliwych logik jest nieskończenie wiele" |
Nie Rafał to co piszesz to tylko efekt twojego dogmatyzmu i niewiedzy, bo nie może być, że świadomie kłamiesz . Zdaniem przynajmniej większości "ziemskich matematyków" (i nie tylko) logika) jest jedna i ta sama dla każdego, jej opisów może być "nieskończenie wiele", a prawdziwe z nich, muszą być sobie równoważne .... Co więcej Fiklit, pamiętam, że już próbował Ci to wytłumaczyć jak widać znów jednak wykazałeś się niezwykłą odpornością na przyswajanie nowych wiadomości .
|
|
Powrót do góry |
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 35973
Przeczytał: 14 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Sob 9:26, 28 Sty 2017 Temat postu: |
|
|
lucek napisał: | Cytat: | Logika matematyczna obowiązująca w naszym Wszechświecie jest jedna - to algebra Kubusia
Innymi słowy:
Nie jest możliwe istnienie konkurencyjnej logiki matematycznej
Dogmat (pewność) ziemskich matematyków iż:
"Możliwych logik jest nieskończenie wiele" |
Nie Rafał to co piszesz to tylko efekt twojego dogmatyzmu i niewiedzy, bo nie może być, że świadomie kłamiesz . Zdaniem przynajmniej większości "ziemskich matematyków" (i nie tylko) logika) jest jedna i ta sama dla każdego, jej opisów może być "nieskończenie wiele", a prawdziwe z nich, muszą być sobie równoważne .... Co więcej Fiklit, pamiętam, że już próbował Ci to wytłumaczyć jak widać znów jednak wykazałeś się niezwykłą odpornością na przyswajanie nowych wiadomości . |
Co rozumiesz przez "równoważne"?
Czy zdanie niżej jest równoważnością obowiązującą w naszym Wszechświecie?
Kwadrat ma cztery boki wtedy i tylko wtedy gdy prawdziwe jest twierdzenie Pitagorasa
To jest zdaniem ziemian równoważność prawdziwa:
Udowodnij Lucek prawdziwość matematyczną tej równoważności
Jak to zrobisz to kasuję AK
Rozumiemy się?
|
|
Powrót do góry |
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
lucek
Dołączył: 18 Lut 2011
Posty: 9040
Przeczytał: 66 tematów
|
Wysłany: Sob 9:29, 28 Sty 2017 Temat postu: |
|
|
ja tam jakoś ciebie rozumiem, choć wymaga to ode mnie bardzo dużo dobrej woli
|
|
Powrót do góry |
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
fiklit
Dołączył: 24 Wrz 2012
Posty: 4197
Przeczytał: 0 tematów
Płeć: Mężczyzna
|
Wysłany: Sob 9:36, 28 Sty 2017 Temat postu: |
|
|
Aha. Już myślałem, że to jakaś kontynuacja rozmowy i że nie załapałem jakiegoś ważnego przejścia. A to tylko rafał się poddał i próbuje "zresetować" dyskusję. Standard.
|
|
Powrót do góry |
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 35973
Przeczytał: 14 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Sob 9:55, 28 Sty 2017 Temat postu: |
|
|
fiklit napisał: | Aha. Już myślałem, że to jakaś kontynuacja rozmowy i że nie załapałem jakiegoś ważnego przejścia. A to tylko rafał się poddał i próbuje "zresetować" dyskusję. Standard. |
Nie poddaję się, niczego nie resetuję.
Ja na wszystko co mówię mam poparcie w równaniach logiki matematycznej, choćby w tym:
p=p+p
Ty natomiast nie chcesz tego równania uznać, posługujesz się wyłącznie swoim, subiektywnym rozumowaniem, bez żadnego oparcia w matematyce ścisłej.
http://www.sfinia.fora.pl/forum-kubusia,12/prawo-subalternacji,8368-2650.html#310741
rafal3006 napisał: | fiklit napisał: | [1,2] jest elementem B;
[1,2] nie jest liczbą;
B ma element który nie jest liczbą;
Nie jest prawdą, że wszystkie elementy B są liczbą.
Do którego momentu się zgadzasz? |
Zacznijmy tak:
Czy zbiór liczb:
A=[1+2+3]
Jest tożsamy ze zbiorem liczb:
B=[1+1…+2+2…+3+3…]
to znaczy czy spełniona jest definicja tożsamości zbiorów:
Zbiór A jest tożsamy ze zbiorem B wtedy i tylko wtedy gdy każdy element zbioru A należy do B i odwrotnie.
Pytanie:
Czy poniższe zbiory są tożsame:
A=[1+2+3] = B=[1+1…+2+2…+3+3…]
Proszę o odpowiedź, wtedy pójdziemy krok dalej |
Odpisałeś na post wyżej tak:
http://www.sfinia.fora.pl/forum-kubusia,12/prawo-subalternacji,8368-2650.html#310743
fiklit napisał: | Ale czemu mnie pytasz? Ja się nie znam na NTZ, próbuje sie w tym odnaleźć.
Cały czas piszesz, że są, więc wierzę, że są. |
Tu nie chodzi o twoją wiarę Fiklicie, tu chodzi o to czy zgadzasz się ze swoją własną definicją tożsamości zbiorów czy też tą definicję wyrzucamy do kosza, bo jest do kitu.
Powtórzę:
[link widoczny dla zalogowanych]
math.edu napisał: |
Równość zbiorów (tożsamość zbiorów):
Zbiory A i B nazywamy równymi wtedy i tylko wtedy, gdy każdy element zbioru A jest elementem zbioru B i na odwrót
A=B <=> (A=>B)*(B=>A) |
Czy na mocy twojej definicji (powtórzę: twojej definicji) zachodzi tożsamość poniższych zbiorów:
(A=[1+2+3]) = (B=[1+1…+2+2…+3+3…])
Ostatnio zmieniony przez rafal3006 dnia Sob 10:00, 28 Sty 2017, w całości zmieniany 3 razy
|
|
Powrót do góry |
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
fiklit
Dołączył: 24 Wrz 2012
Posty: 4197
Przeczytał: 0 tematów
Płeć: Mężczyzna
|
Wysłany: Sob 10:04, 28 Sty 2017 Temat postu: |
|
|
Cytat: | Czy na mocy twojej definicji (powtórzę: twojej definicji) zachodzi tożsamość poniższych zbiorów:
(A=[1+2+3]) = (B=[1+1…+2+2…+3+3…]) |
Żebym mógł zastosować swoją definicję równości zbiorów do zbiorów z NTZ musiałbyś precyzyjnie określić co to znaczy "element" i "każdy element". Jak narazie to mam taki obraz, że jedna rzecz jednocześnie jest i nie jest elementem, więc nie wiem czy należy ją sprawdzać podczas sprawdzania "każdego elementu".
Generalnie to co robię tu od tygodnia to próbuję zrozumieć twoje zbiory i elementy.
|
|
Powrót do góry |
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 35973
Przeczytał: 14 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Sob 10:12, 28 Sty 2017 Temat postu: |
|
|
fiklit napisał: | Cytat: | Czy na mocy twojej definicji (powtórzę: twojej definicji) zachodzi tożsamość poniższych zbiorów:
(A=[1+2+3]) = (B=[1+1…+2+2…+3+3…]) |
Żebym mógł zastosować swoją definicję równości zbiorów do zbiorów z NTZ musiałbyś precyzyjnie określić co to znaczy "element" i "każdy element". Jak narazie to mam taki obraz, że jedna rzecz jednocześnie jest i nie jest elementem, więc nie wiem czy należy ją sprawdzać podczas sprawdzania "każdego elementu".
Generalnie to co robię tu od tygodnia to próbuję zrozumieć twoje zbiory i elementy. |
Dobrze, zacznijmy od elementu zbioru
http://www.sfinia.fora.pl/forum-kubusia,12/prawo-subalternacji,8368-2650.html#310751
rafal3006 napisał: |
http://www.sfinia.fora.pl/forum-kubusia,12/prawo-subalternacji,8368-2575.html#308811
idiota napisał: | Nie, on jest zwyczajnie wariatem.
Klinicznym.
Dlatego umie nie zrozumieć, co znaczy słowo "tylko".
Przecież inaczej się tego zrobić nie da.
No i wychodzi na to, że każdy jednoelementowy zbiór jest zbiorem nieskończenieelementowym.
I ciekawe, że teoria zbiorów w której jest zakaz liczenia elementów w zbiorach ma być zgodna z teorią zbiorów, która na liczby elementów w zbiorach wymyśliła nawet specjalną nazwę (liczby kardynalne). |
Prawo Kukułki:
Dowolny element zbioru można powielać w nieskończoność na mocy prawa teorii zbiorów:
p=p+p
W przypadku zbioru jednoelementowego, na mocy prawa Kukułki, mamy w istocie do czynienia ze zbiorem nieskończonym tych samych elementów.
Przykład:
[2] = [2+2+2+2…]
czyli w zapisie tożsamym z użyciem przecinków:
[2] = [2,2,2,2..]
Kwadratura koła dla Idioty:
Korzystając z definicji tożsamości zbiorów z Wikipedii udowodnij iż powyższe zbiory nie są tożsame.
Przypomnę ci definicję którą doskonale znasz:
[link widoczny dla zalogowanych]
math.edu napisał: |
Równość zbiorów (tożsamość zbiorów):
Zbiory A i B nazywamy równymi wtedy i tylko wtedy, gdy każdy element zbioru A jest elementem zbioru B i na odwrót
A=B <=> (A=>B)*(B=>A) |
Do dzieła Idioto!
Wyjścia masz tylko dwa, trzeciej możliwości nie ma.
1.
Przyznajesz, że na mocy twojej własnej definicji tożsamości dwóch zbiorów A=B zbiory:
[2]=[2+2+2+2..] = [2,2,2,2…]
są tożsame
2.
Kasujesz definicję tożsamości zbiorów z Wikipedii, czyli swoją własną definicję!
http://www.sfinia.fora.pl/forum-kubusia,12/nti-fantastyczna-dyskusja-z-ateisty-pl,4825-275.html#124499
idiota napisał: |
tu masz w znaczkach:
Relacje między zbiorami
Równość zbiorów (tożsamość zbiorów):
Zbiory A i B nazywamy równymi wtedy i tylko wtedy, gdy każdy
element zbioru A jest elementem zbioru B i na odwrót.
A = B ⇔ ∀x (x∈A ⇔ x∈B).
|
|
Czy zgadzasz się że Idiota został „ugotowany” w swojej własnej logice matematycznej?
Czy zgadzasz się na prawo Kukułki?
|
|
Powrót do góry |
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
fiklit
Dołączył: 24 Wrz 2012
Posty: 4197
Przeczytał: 0 tematów
Płeć: Mężczyzna
|
Wysłany: Sob 10:26, 28 Sty 2017 Temat postu: |
|
|
Oprócz cytatu math.edu to ja tam nie widzę nic LZ.
|
|
Powrót do góry |
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
lucek
Dołączył: 18 Lut 2011
Posty: 9040
Przeczytał: 66 tematów
|
Wysłany: Sob 10:34, 28 Sty 2017 Temat postu: |
|
|
math.edu napisał: |
Równość zbiorów
Zbiory A i B nazywamy równymi wtedy i tylko wtedy, gdy każdy element zbioru A jest elementem zbioru B i na odwrót.
A = B ⇔ ∀x (x∈A ⇔ x∈B). |
fiklit napisał: | Oprócz cytatu math.edu to ja tam nie widzę nic LZ. |
ja u Rafała nawet cytatu z math.edu nie widzę
|
|
Powrót do góry |
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 35973
Przeczytał: 14 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Sob 10:47, 28 Sty 2017 Temat postu: |
|
|
fiklit napisał: | Oprócz cytatu math.edu to ja tam nie widzę nic LZ. |
[link widoczny dla zalogowanych]
math.edu napisał: |
Równość zbiorów (tożsamość zbiorów):
Zbiory A i B nazywamy równymi wtedy i tylko wtedy, gdy każdy element zbioru A jest elementem zbioru B i na odwrót
A=B <=> (A=>B)*(B=>A) |
To weźmy takie zadanie na poziomie gimnazjum w 100-milowym lesie.
Niech będą dane dwa zbiory:
A = [Idiota]
B = [Idiota, Idiota]
Gdzie:
Idiota = nasz kochany Idiota (nie oddamy go nikomu)
… bo znam go osobiście, to sympatyczny młody człowiek, tyle że wszystkie rozumy zjadł, łącznie ze swoim.
Polecenie:
Sprawdź, czy na mocy definicji tożsamości zbiorów z LZ zachodzi tożsamość zbiorów:
A=B
Rozwiązanie:
Korzystając z definicji tożsamości zbiorów z logiki ziemian (powtórzę: z logiki ziemian):
A=B <=> (A=>B)*(B=>A)
sprawdzamy:
I.
Sprawdzamy czy zbiór A jest podzbiorem => zbioru B
Biorę pierwszy element ze zbioru A:
x1=Idiota
Sprawdzam czy ten element znajduje się w zbiorze B?
Hura: jest!
Więcej elementów w zbiorze A nie ma zatem wnioskuję z tego że zbiór A jest podzbiorem => zbioru B.
Czyli:
A=>B =1
II.
Sprawdzamy czy zbiór B jest podzbiorem => zbioru A
Biorę pierwszy element ze zbioru B:
y1=Idiota
Sprawdzam czy ten element znajduje się w zbiorze A?
Hura: jest!
Biorę drugi i ostatni element ze zbioru B:
y2=Idiota
Sprawdzam czy ten element znajduje się w zbiorze A?
Hura: jest!
Więcej elementów w zbiorze B nie ma zatem wnioskuję z tego że zbiór B jest podzbiorem => zbioru A.
Czyli:
B=>A =1
Na mocy definicji tożsamości zbiorów z logiki ziemian (powtórzę: z logiki ziemian) zapisuję zatem:
A=B <=> (A=>B)*(B=>A) =1*1 =1
Wniosek:
Zbiory:
A=[Idiota]
i
B=[Idiota,Idiota]
są matematycznie tożsame
cnd
Pytanie:
Czy zgadzasz się że powyższy dowód przeprowadziłem na gruncie logiki matematycznej ziemian?
Jeśli nie, to proszę o pokazanie jak w logice ziemian dowodzi się iż zbiory A i B nie są tożsame, czyli:
A=[Idiota] ## B=[Idiota, Idiota]
gdzie:
## - różne na mocy definicji
Trzeciej możliwości matematycznej tu nie ma!
Ostatnio zmieniony przez rafal3006 dnia Sob 10:52, 28 Sty 2017, w całości zmieniany 3 razy
|
|
Powrót do góry |
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
fiklit
Dołączył: 24 Wrz 2012
Posty: 4197
Przeczytał: 0 tematów
Płeć: Mężczyzna
|
Wysłany: Sob 10:57, 28 Sty 2017 Temat postu: |
|
|
1. Niby coś pytasz o zbiory z TM, a w zapisie masz zbiory z NTZ, poznaję po [], a nie {}. Nie rozumiem o co Ci chodzi.
2. Jakie znaczenie ma to co tam w TM czy LZ jest? Rozmawiamy o NTZ.
Załóżmy jednak, że chodziło ci o {} zbiory.
3. "Biorę drugi i ostatni element ze zbioru B: " tu masz błąd. Zbiór B ma tylko jeden element, więc nie możesz wziąć drugiego.
4. "Czy zgadzasz się że powyższy dowód przeprowadziłem na gruncie logiki matematycznej ziemian? " Nie, patrz 3.
5. "Jeśli nie, to proszę o pokazanie jak w logice ziemian dowodzi się iż zbiory A i B nie są tożsame, czyli: "
??? Przecież próbowałeś udowodnić, że są tożsame. Nie umiesz tego. Tylko czemu chcesz dowodu czegoś przeciwnego, a nie poprawnego dowodu tego co próbowałeś udowodnić?
6. Żeby uciąć temat A={1}, B={1,1}.
- oba zbiory mają dokłdnie jeden element
- tak naprawdę, są to dwa (z nieskończenie wielu) sposobów zapisu, tego samego zbioru. Czyli A=B
- Ten zbiór nie ma żadnego innego elementu niż liczba 1.
- Zbiór pusty jest podzbiorem tego zbioru
- Zbiór pusty nie jest elementem tego zbioru.
Możemy wrócić do NTZ? Czy dalej próbujesz zresetować temat?
Ostatnio zmieniony przez fiklit dnia Sob 11:04, 28 Sty 2017, w całości zmieniany 3 razy
|
|
Powrót do góry |
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 35973
Przeczytał: 14 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Sob 12:39, 28 Sty 2017 Temat postu: |
|
|
fiklit napisał: |
6. Żeby uciąć temat A={1}, B={1,1}.
- oba zbiory mają dokładnie jeden element
- tak naprawdę, są to dwa (z nieskończenie wielu) sposobów zapisu, tego samego zbioru. Czyli A=B
Możemy wrócić do NTZ? Czy dalej próbujesz zresetować temat? |
Czyli zgadzasz się na tożsamość zbiorów:
A=[1]
B=[1+1+1…]=[1,1,1…]
Gdzie w zbiorze A jest fizycznie (powtórzę: fizycznie) jedna jedynka:
A=[1]
Natomiast w zbiorze B jest fizycznie (powtórzę: fizycznie) nieskończenie wiele jedynek
Czyli:
{A=[1]} = {B=[1+1+1…]=[1,1,1…]}
Brawo!
Wylądowaliśmy w AK!
Zgadzasz się z tym?
Dla każdego, nawet żółtodzioba matematycznego w 100-milowym lesie oczywista jest tu podstawa matematyczna tożsamości zbiorów A=B?
p=p+p
Czy zgadzasz się na aż tak banalną podstawę czysto matematyczną, upoważniającą cię do stwierdzenia tożsamości zbiorów?
A=B
W 100-milowym lesie to rybka!
I.
Możesz najpierw korzystając z prawa czysto matematycznego:
p=p+p
Zredukować nieskończoną ilość jedynek w zbiorze B do jednej jedynki, i po tym fakcie powiedzieć, no proszę mamy teraz:
A=[1] = B=[1]
II.
Nie musisz rozbić punktu I!
Równie dobrze możesz skorzystać z definicji zbiorów tożsamych, którą mamy wspólną, czyli w AK i LZ identyczną!
[link widoczny dla zalogowanych]
math.edu napisał: |
Równość zbiorów (tożsamość zbiorów):
Zbiory A i B nazywamy równymi wtedy i tylko wtedy, gdy każdy element zbioru A jest elementem zbioru B i na odwrót
A=B <=> (A=>B)*(B=>A) |
Jak się posługiwać tą definicją pokazałem w tym poście:
http://www.sfinia.fora.pl/forum-kubusia,12/prawo-subalternacji,8368-2650.html#310779
Podsumowując:
Każdy gimbus w 100-milowym lesie widzi, że logika ziemian jest tu bez sensu (powtórzę: bez sensu), bo porównywać zbiory A=B umie tylko i wyłącznie sposobem I.
Pewne jest także, że LZ nie zna podstawy czysto matematycznej na mocy której można redukować nieskończony zbiór jedynek w zbiorze B do jednej jedynki.
Jeśli twierdzisz Fiklicie że to nieprawda, to proszę o matematyczną (powtórzę: matematyczną) podstawę która upoważnia cię do redukcji zbioru nieskończenie wielu jedynek w zbiorze B do jednej jedynki.
P.S.
Jak nic, mamy tu problem Idioty:
Idioto co wolisz nieść: 5kg żelaza czy 5kg piór?
Idiota:
Wolę pióra, bo są lżejsze .
Ostatnio zmieniony przez rafal3006 dnia Sob 13:12, 28 Sty 2017, w całości zmieniany 8 razy
|
|
Powrót do góry |
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
fiklit
Dołączył: 24 Wrz 2012
Posty: 4197
Przeczytał: 0 tematów
Płeć: Mężczyzna
|
Wysłany: Sob 13:21, 28 Sty 2017 Temat postu: |
|
|
Cytat: | Czyli zgadzasz się na tożsamość zbiorów:
A=[1]
B=[1+1+1…]=[1,1,1…]
Gdzie w zbiorze A jest fizycznie (powtórzę: fizycznie) jedna jedynka:
A=[1]
Natomiast w zbiorze B jest fizycznie (powtórzę: fizycznie) nieskończenie wiele jedynek
Czyli:
{A=[1]} = {B=[1+1+1…]=[1,1,1…]}
Brawo!
Wylądowaliśmy w AK!
Zgadzasz się z tym? |
Jak wylądawaliśmy? Od początku tego co cytuję jesteśmy w AK/NTZ. Nie wiem czemu zaczynasz od "czyli". Napisałem o równości pewnych zbiorów z TM, nie mam pojęcia jak to wpływa na jakieś zbiory w NTZ. O tożsamości twoich zbiorów już pisałem, nie mam narzędzie żeby to stwierdzić. Wierzę ci, że tak jest.
|
|
Powrót do góry |
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 35973
Przeczytał: 14 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Sob 13:31, 28 Sty 2017 Temat postu: |
|
|
fiklit napisał: | Cytat: | Czyli zgadzasz się na tożsamość zbiorów:
A=[1]
B=[1+1+1…]=[1,1,1…]
Gdzie w zbiorze A jest fizycznie (powtórzę: fizycznie) jedna jedynka:
A=[1]
Natomiast w zbiorze B jest fizycznie (powtórzę: fizycznie) nieskończenie wiele jedynek
Czyli:
{A=[1]} = {B=[1+1+1…]=[1,1,1…]}
Brawo!
Wylądowaliśmy w AK!
Zgadzasz się z tym? |
Jak wylądawaliśmy? Od początku tego co cytuję jesteśmy w AK/NTZ. Nie wiem czemu zaczynasz od "czyli". Napisałem o równości pewnych zbiorów z TM, nie mam pojęcia jak to wpływa na jakieś zbiory w NTZ. O tożsamości twoich zbiorów już pisałem, nie mam narzędzie żeby to stwierdzić. Wierzę ci, że tak jest. |
Pytam więc konkretnie:
Czy na gruncie TM jeśli w worku A mam fizycznie jedną jedynkę:
A={1}
natomiast w worku B mam fizycznie 5 jedynek:
B={1,1,1,1,1}
to czy zachodzi tożsamość zbiorów:
A=B
?
Pytam, bo nie wiem jak to jest w TM.
|
|
Powrót do góry |
|
|
|
|
Nie możesz pisać nowych tematów Nie możesz odpowiadać w tematach Nie możesz zmieniać swoich postów Nie możesz usuwać swoich postów Nie możesz głosować w ankietach
|
fora.pl - załóż własne forum dyskusyjne za darmo
Powered by phpBB © 2001, 2005 phpBB Group
|