Forum ŚFiNiA Strona Główna ŚFiNiA
ŚFiNiA - Światopoglądowe, Filozoficzne, Naukowe i Artystyczne forum - bez cenzury, regulamin promuje racjonalną i rzeczową dyskusję i ułatwia ucinanie demagogii. Forum założone przez Wuja Zbója.
 
 FAQFAQ   SzukajSzukaj   UżytkownicyUżytkownicy   GrupyGrupy   GalerieGalerie   RejestracjaRejestracja 
 ProfilProfil   Zaloguj się, by sprawdzić wiadomościZaloguj się, by sprawdzić wiadomości   ZalogujZaloguj 

Algebra Kubusia v beta 3.1

 
Napisz nowy temat   Odpowiedz do tematu    Forum ŚFiNiA Strona Główna -> Metodologia / Forum Kubusia
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 36210
Przeczytał: 13 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Wto 10:07, 01 Lis 2011    Temat postu: Algebra Kubusia v beta 3.1

2011-10-10 Wersja przedpremierowa

… wszystko co chcecie, żeby ludzie wam czynili, wy też im podobnie czyńcie …
Ewangelia Mateusza 7:12

[link widoczny dla zalogowanych]

Algebra Kubusia
Matematyka przedszkolaków

Autor: Kubuś - wirtualny Internetowy Miś
Naszym dzieciom dedykuję

Kim jest Kubuś ?
Kubuś - wirtualny Internetowy Miś, wysłannik obcej cywilizacji, którego zadaniem było przekazanie ludziom tajemnicy implikacji.

Podręcznik w oryginale:
Algebra Kubusia
Zastosowanie algebry Kubusia:
Algebra Kubusia w służbie lingwistyki

W pracach nad podręcznikiem nowej matematyki bezcennej pomocy udzielili Kubusiowi przyjaciele:
Barah (sfinia), Barycki (śfinia), Emde (sfinia), Fizyk (ateista.pl), Gavrila_Ardalionovitch (ateista.pl), HeHe (ateista.pl), Idiota (ateista.pl), Incognito (ateista.pl), Irbisol (sfinia), Jeremiasz Szary (sfinia), Krowa (śfinia), Krystkon (śfinia), Makaron czterojajeczny (sfinia), Macjan (sfinia), Marcin Kotasiński (śfinia), Michał Dyszyński (śfinia), Miki (sfinia), NoBody (ateista.pl), Paloma (ateista.pl), Quebaab (ateista.pl), Rafał3006 (sfinia), Rexerex (ateista.pl), Rogal (matematyka.pl), Sogors (ateista.pl), Słupek (ateista.pl), tomektomek (ateista.pl), Uczy (wolny), Volrath (sfinia), Windziarz (ateista.pl), WujZbój (sfinia), Wyobraźnia (ateista.pl), zbigniewmiller (sfinia) i inni

Szczególne podziękowania dla:
Wuja Zbója – znakomitego nauczyciela małego Kubusia, dzięki któremu Kubuś nauczył się poprawnie patrzeć na algebrę Boole’a od strony matematycznej.
Volratha – za decydującą o wszystkim dyskusję
Macajna – za ciekawą dyskusję podczas której jako jedyny Ziemianin podał poprawną, matematyczną definicję warunku wystarczającego.
Fizyka, Windziarza i Sogorsa – za fantastyczną dyskusję na ateiście.pl
Idioty – za zdopingowanie Kubusia do zapisania całej algebry Kubusia na zaledwie dwóch stronach A4
Incognito – za podsunięcie pomysłu zapisania całej algebry Kubusia w zbiorach
Palomy i Quebaaba – za finałową dyskusję


Wstęp:

Pięć lat temu Kubuś, przybysz z innego Wszechświata zauważył na forum śfinia Wuja Zbója, iż ziemscy matematycy, eksperci Klasycznego Rachunku Zdań, robią z człowieka idiotę każąc mu uznawać za prawdziwe zdania typu:
Jeśli kura jest psem to człowiek ma dwie nogi
KP=>2N
Najśmieszniejszy dowód prawdziwości tego zdania z jakim Kubuś się spotkał jest taki.
Udowodnij że to zdanie jest fałszywe w innym Wszechświecie!
… a widzisz ?
Nie potrafisz, dlatego to zdanie jest prawdziwe.

W tym momencie dla Kubusia stało się jasne, że Klasyczny Rachunek Zdań to matematyka Szatana, którego wkrótce zlokalizował w postaci definicji „implikacji materialnej”. „Implikacja materialna”, to stara znajoma Kubusia którą ściga od nieskończoności po wszystkich możliwych Wszechświatach.

Wojna Kubusia z Klasycznym Rachunkiem Zdań trwała pięć lat zanim ta bestia, „implikacja materialna”, zgodziła się w ciągu kilku lat opuścić nasz Wszechświat.

Każdy człowiek, od 5-cio latka po profesora, doskonale zna algebrę Kubusia i posługuje się nią na co dzień w naturalnym języku mówionym.

Definicja algebry Kubusia:
Algebra Kubusia = Algebra zbiorów => Definicje spójników logicznych => Definicje operatorów logicznych => Algebra bramek logicznych
Definicje spójników logicznych => Algebra naturalnego języka mówionego => Logika człowieka

Fundamentem algebry Kubusia jest teoria zbiorów i wynikające z niej definicje spójników logicznych i operatorów. Algebra naturalnego języka mówionego to zaledwie pięć spójników logicznych, będących fundamentem najważniejszych operatorów logicznych.
Algebra Kubusia jest w 100% zgodna z teorią i praktyką bramek logicznych, jest więc weryfikowalna doświadczalnie!


Spis treści:

1.0 Notacja
1.1 Podstawowe definicje teorii zbiorów w algebrze Kubusia

2.0 Operatory OR i AND w zbiorach
2.1 Definicja operatora OR
2.2 Definicja operatora AND
2.3 Równanie ogólne dla operatorów OR i AND

3.0 Zdanie zawsze prawdziwe

4.0 Operatory implikacji prostej i odwrotnej w zbiorach
4.1 Definicja operatora implikacji prostej
4.2 Definicja operatora implikacji odwrotnej
4.3 Równanie ogólne dla operatorów implikacji

5.0 Równoważność
6.0 ŚFIŃSKIE definicje implikacji i równoważności

7.0 Algebra Kubusia w służbie lingwistyki
7.1 Obietnica
7.2 Groźba


1.0 Notacja

1 – prawda, zawsze i wszędzie, niezależnie od logiki dodatniej i ujemnej
0 – fałsz, zawsze i wszędzie, niezależnie od logiki dodatniej i ujemnej
~ - symbol przeczenia NIE
Prawo podwójnego przeczenia:
p=~(~p)
Przykład:
Jestem uczciwy = Nieprawdą jest ~(…), że jestem nieuczciwy
U = ~(~U)

Spójniki logiczne
W całej matematyce mamy zaledwie pięć spójników logicznych.
Operatory OR i AND:
* - spójnik „i” w mowie potocznej
+ - spójnik „lub” w mowie potocznej
Operatory implikacji i równoważności:
=> - warunek wystarczający, spójnik „musi” w całym obszarze matematyki
~> - warunek konieczny, spójnik „może” w implikacji (nie w równoważności !)
~~> - naturalny spójnik „może” wystarczy pokazać jeden przypadek prawdziwy


1.1 Podstawowe definicje teorii zbiorów w algebrze Kubusia

Pojęcie zbioru jako zbioru przypadkowych elementów jest matematycznie bez sensu.

Jednorodność zbioru:
Zbiór musi być jednorodny w określonej dziedzinie

Oznacza to, że dla dowolnego zbioru p musi istnieć zbiór ~p będący dopełnieniem zbioru p do określonej dziedziny.

Implikacja:
p=>q
Jeśli p to q
p – poprzednik
q - następnik

Równoważność
p<=>q
p wtedy i tylko wtedy gdy q

Definicja dziedziny:
Dziedzina to kompletny zbiór na którym operuje implikacja lub równoważność

W algebrze Kubusia musi być spełnione:
p+~p=1 – zbiór ~p jest dopełnieniem do dziedziny zbioru p
p*~p=0 – żaden element zbioru ~p nie należy do zbioru p
q+~q=1 – zbiór ~q jest dopełnieniem do dziedziny zbioru q
q*~q=0 - żaden element zbioru ~q nie należy do zbioru q
oraz:
Oba zbiory p i q muszą należeć do tej samej dziedziny

Przykład:
Jeśli zwierzę jest psem to na pewno => ma cztery łapy
P=>4L

Dziedzina po stronie p:
P + ~P=1
P*~P=0
P – zbiór wszystkich psów
~P – zbiór pozostałych zwierząt
Dziedzina: zbiór wszystkich zwierząt

Dziedzina po stronie q:
4L+~4L=1
4L*~4L=0
4L – zbiór zwierząt mających 4 łapy
~4L – zbiór zwierząt nie mających 4 łap
Dziedzina: zbiór wszystkich zwierząt

Doskonale widać, że wszystkie powyższe zbiory operują w tej samej dziedzinie, wtedy i tylko wtedy zdanie ma sens.

Zbiór bieżący (aktualny):
Zbiór bieżący (aktualny) to zbiór na którym aktualnie pracujemy, zdefiniowany szczegółowo w poprzedniku zdania „Jeśli p to q”

Operacje na zbiorach dla potrzeb algebry Kubusia:

1.
Zbiory tożsame = identyczne
TR = zbiór trójkątów równobocznych
KR = zbiór trójkątów o równych kątach
Oczywiście zachodzi tożsamość:
Zbiór trójkątów równobocznych = Zbiór trójkątów o równych kątach
Zbiór TR = Zbiór KR

2.
Iloczyn zbiorów = wspólna cześć zbiorów bez powtórzeń (operacja AND)
Y=A*B
A=[1,2], B=[1,2,3,4]
Y=A*B=[1,2]

3.
Suma logiczna zbiorów = wszystkie elementy zbiorów bez powtórzeń (operacja OR)
Y=A+B
A=[1,2], B=[1,2,3,4]
Y=A+B = [1,2,3,4]

4.
Różnica zbiorów A-B = elementy zbioru A pomniejszone o cześć wspólna zbiorów A i B
Y=A-B
A=[1,2,3,4], B=[1,2]
Y=A-B = [3,4]
Y=B-A = 0 – zbiór pusty !

5.
Zbiór pusty
= brak wspólnej części zbiorów w operacji AND, albo różnica zbiorów pusta jak wyżej
Y=A*B=0
A=[1,2], B=[3,4]
Y=A*B =0 – brak części wspólnej, zbiór pusty !

Prawdziwość/ fałszywość zdań twierdzących:
Zdanie twierdzące jest prawdziwe wtedy i tylko wtedy gdy zbiór który opisuje jest zbiorem niepustym

Przykład:
A.
Pies ma cztery łapy
P=>4L=1
Zbiór psów mających cztery łapy jest zbiorem niepustym – zdanie prawdziwe
B.
Pies ma trzy łapy
P=>3L=0
Zbiór psów z trzema łapami jest zbiorem pustym – zdanie fałszywe
Uwaga:
W logice pomijamy psa z trzema łapami (zdając sobie sprawę że kaleki pies to też pies), inaczej mamy ZERO logiki.


2.0 Operatory OR i AND w zbiorach

Cała filozofia operatorów OR i AND to zaledwie dwa spójniki logiczne z naturalnego języka mówionego „i”(*) oraz „lub”(+) plus prawo przejścia do logiki przeciwnej !

Zmienna binarna:
Zmienna binarna to zmienna mogąca przyjmować w osi czasu wyłącznie dwie wartości 1 albo 0

Przykłady zmiennych binarnych:
p, q, A, B … 4L, PIES, …

Funkcja logiczna:
Funkcja logiczna to funkcja n-zmiennych binarnych połączonych spójnikami „i”(*) oraz „lub”(+).
Y=p*q + p*~q + ~p*q - funkcja logiczna wielu zmiennych
Y=~p - funkcja logiczna jednej zmiennej

Zwyczajowo funkcję logiczną oznaczamy literą Y, ale nie ma tu żadnego dogmatu.

Definicja spójnika „i” (*):
Iloczyn logiczny (spójnik „i”) n-zmiennych binarnych jest równy 1 wtedy i tylko wtedy gdy wszystkie zmienne są równe 1
Y=p*q
Co matematycznie oznacza:
Dotrzymam słowa (Y=1) wtedy i tylko wtedy gdy p=1 i q=1
Y=1 <=> p=1 i q=1

Definicja spójnika „lub” (+):
Suma logiczna n-zmiennych binarnych jest równa 1 wtedy i tylko wtedy gdy którakolwiek zmienna jest równa 1.
Y=p+q
Matematycznie oznacza to:
Dotrzymam słowa (Y=1) wtedy i tylko wtedy gdy zajdzie p (p=1) lub zajdzie q (q=1)
Y=1 <=> p=1 lub q=1
gdzie:
p, q – binarne zmienne wejściowe
Y – funkcja logiczna, wyjście cyfrowe

Wystarczy że dowolna ze zmiennych p lub q przybierze wartość 1 i już funkcja Y=1, stan pozostałych zmiennych jest nieistotny.

Prawo przejścia do logiki przeciwnej:
Negujemy zmienne i wymieniamy operatory na przeciwne

Przykład:
Dana jest funkcja logiczna
A.
Y=p+q
Przejście do logiki przeciwnej:
B.
~Y=~p*~q

Związek logiki dodatniej i ujemnej:
Y=~(~Y) – prawo podwójnego przeczenia
Podstawiając A i B mamy prawo de’Morgana:
p+q = ~(~p*~q)

Definicja logiki dodatniej i ujemnej w operatorach OR i AND:
Funkcja logiczna Y zapisana jest w logice dodatniej gdy brak przeczenia (Y), w logice ujemnej gdy jest przeczenie (~Y).
gdzie:
Y=1 – dotrzymam słowa, prawdą jest (=1) że wstąpi prawda (Y)
~Y=1 – skłamię, prawdą jest (=1), że wystąpi fałsz (~Y)
Zauważmy że tu nie może być 0 bo mielibyśmy:
~Y=0 – fałszem jest (=0), że wystąpi fałsz (~Y), czyli wystąpi prawda
~Y=0 – oznacza prawdę w logice ujemnej


2.1 Definicja operatora OR

Operator OR to złożenie spójnika „lub”(+) w logice dodatniej (bo Y) ze spójnikiem „i”(*) w logice ujemnej (bo ~Y).



Definicja spójnika „lub”(+) w zbiorach w logice dodatniej (bo Y):
A.
Y=p+q
Y=1 <=> p=1 lub q=1
Definicja równoważna na podstawie powyższego diagramu:
A1.
Y=p*q + p*~q + ~p*q
Y=1 <=> (p=1 i q=1) lub (p=1 i ~q=1) lub (~p=1 i q=1)
stąd:
Y=p+q = p*q + p*~q + ~p*q



Definicja spójnika “I”(*) w zbiorach w logice ujemnej (bo ~Y)
B.
~Y=~p*~q

Zauważmy, że oba diagramy razem opisują zdanie Y=p+q w kompletnej dziedzinie.

Symboliczna definicja operatora OR:
Kod:

A.
Y=p+q
Y – dotrzymam slowa
Y=p*q+p*~q+~p*q
 p* q=Y
 p*~q=Y
~p* q=Y
… a kiedy skłamię ?
Przejście ze zdaniem A do logiki ujemnej
B.
~Y=~p*~q
~Y – skłamię
~p*~q=~Y

Związek logiki dodatniej i ujemnej:
Y=~(~Y) – prawo podwójnego przeczenia
Podstawiając A i B mamy prawo de’Morgana:
p+q = ~(~p*~q)

Możliwe są trzy równoważne kodowania zero-jedynkowe powyższej definicji symbolicznej.
Kod:

Punkt
odniesienia: Zbiory  Y=p+q         ~Y=~p*~q
                     Y=1,~Y=0      ~Y=1,Y=0
                     p=1,~p=0      ~p=1,p=0
                     q=1,~q=0      ~q=1,q=0
A: Y=p+q
 p* q=Y      1*1=1   1 1 =1         0 0 =0
 p*~q=Y      1*1=1   1 0 =1         0 1 =0
~p* q=Y      1*1=1   0 1 =1         1 0 =0
B:~Y=~p*~q
~p*~q=~Y     1*1=1   0 0 =0         1 1 =1
                     Operator       Operator
                     zero-jedynkowy zero-jedynkowy
                     OR             AND

Podsumowanie:
1. Zbiory
W diagramach wyżej doskonale widać operacje logiczne na zbiorach. Wszystkie zbiory istnieją, żaden iloczyn logiczny nie jest zbiorem pustym, stąd same jedynki w wynikach.
2. Y=p+q
Dla punktu odniesienia ustawionego na zdaniu Y=p+q otrzymujemy zero-jedynkową definicję operatora OR.
3. ~Y=~p*~q
Dla punktu odniesienia ustawionego na zdaniu ~Y=~p*~q otrzymujemy zero-jedynkową definicję operatora AND.

Wnioski:
1.
Mózg człowieka operuje wyłącznie na zbiorach, poszukując części wspólnej zbiorów, wtedy i tylko wtedy zdanie jest prawdziwe.
2.
Matematycznie, z punktu widzenia świata zewnętrznego widzimy zero-jedynkową definicje operatora OR albo AND w zależności od przyjętego punktu odniesienia.
3.
Sposób kodowania zero-jedynkowego nie wpływa na treść samych zdań, stąd wszystkie trzy kodowania zero-jedynkowe są równoważne.

Przykład:
A.
Jutro pójdę do kina lub do teatru
Y=K+T
co matematycznie oznacza:
Dotrzymam słowa (Y=1) wtedy i tylko wtedy gdy jutro pójdę do kina (K=1) lub do teatru (T=1)
Y=K+T
Y=1 <=> K=1 lub T=1
Wystarczy, że dowolna zmienna po prawej stronie zostanie ustawiona na 1 i już dotrzymałem słowa, stan drugiej zmiennej jest nieistotny.

Wszystkie możliwe przypadki jakie mogą w przyszłości wystąpić to:
Y=K+T = K*T+K*~T+~K*T
Dotrzymam słowa gdy:
K*T – pójdę do kina (K=1) i pójdę do teatru (T=1)
K*~T – pójdę do kina (K=1) i nie pójdę do teatru (~T=1)
~K*T – nie pójdę do kina (~K=1) i pójdę do teatru (T=1)

… a kiedy skłamię ?
Przejście ze zdaniem A do logiki przeciwnej poprzez negację zmiennych i wymianę spójników.
~Y=~K*~T
B.
Skłamię (~Y=1) wtedy i tylko wtedy gdy jutro nie pójdę do kina (~K=1) i nie pójdę do teatru (~T=1)
~Y=~K*~T
~Y=1 <=> ~K=1 i ~T=1


2.2 Definicja operatora AND

Operator AND to złożenie spójnika „i”(*) w logice dodatniej (bo Y) ze spójnikiem „lub”(+) w logice ujemnej (bo ~Y).



Definicja spójnika „i”(*) w zbiorach w logice dodatniej (bo Y):
A.
Y=p*q
Y=1 <=> p=1 i q=1



Definicja spójnika „lub”(+) w logice ujemnej (bo ~Y):
B.
~Y=~p+~q
~Y=1 <=> ~p=1 lub ~q=1
Definicja równoważna na podstawie powyższego diagramu:
B1.
~Y=~p*~q + ~p*q + p*~q
~Y=1 <=> (~p=1 i ~q=1) lub (~p=1 i q=1) lub (p=1 i ~q=1)
stąd:
~Y=~p+~q =~p*~q + ~p*q + p*~q

Zauważmy, że oba diagramy razem opisują zdanie Y=p*q w kompletnej dziedzinie.

Symboliczna definicja operatora AND:
Kod:

A.
Y=p*q
Y – dotrzymam slowa
 p* q= Y
… a kiedy skłamię ?
Przejście ze zdaniem A do logiki ujemnej
B.
~Y=~p+~q
~Y – skłamię
~Y=~p*~q + ~p*q + p*~q
~p*~q=~Y
~p* q=~Y
 p*~q=~Y

Związek logiki dodatniej i ujemnej:
Y=~(~Y) – prawo podwójnego przeczenia
Podstawiając A i B mamy prawo de’Morgana:
p*q = ~(~p+~q)

Możliwe są trzy równoważne kodowania zero-jedynkowe powyższej definicji symbolicznej.
Kod:

Punkt
odniesienia: Zbiory  Y=p*q         ~Y=~p+~q
                     Y=1,~Y=0      ~Y=1,Y=0
                     p=1,~p=0      ~p=1,p=0
                     q=1,~q=0      ~q=1,q=0
A: Y=p*q
 p* q= Y     1*1=1   1 1 =1         0 0 =1
B: ~Y=~p+~q
~p*~q=~Y     1*1=1   0 0 =0         1 1 =1
~p* q=~Y     1*1=1   0 1 =0         1 0 =1
 p*~q=~Y     1*1=1   1 0 =0         0 1 =1
                     Operator       Operator
                     zero-jedynkowy zero-jedynkowy
                     AND            OR

Podsumowanie:
1. Zbiory
W diagramach wyżej doskonale widać operacje logiczne na zbiorach. Wszystkie zbiory istnieją, żaden iloczyn logiczny nie jest zbiorem pustym, stąd same jedynki w wynikach.
2. Y=p*q
Dla punktu odniesienia ustawionego na zdaniu Y=p*q otrzymujemy zero-jedynkową definicję operatora AND.
3. ~Y=~p+~q
Dla punktu odniesienia ustawionego na zdaniu ~Y=~p+~q otrzymujemy zero-jedynkową definicję operatora OR.

Wnioski:
1.
Mózg człowieka operuje wyłącznie na zbiorach, poszukując części wspólnej zbiorów, wtedy i tylko wtedy zdanie jest prawdziwe.
2.
Matematycznie, z punktu widzenia świata zewnętrznego widzimy zero-jedynkową definicje operatora AND albo OR w zależności od przyjętego punktu odniesienia.
3.
Sposób kodowania zero-jedynkowego nie wpływa na treść samych zdań, stąd wszystkie trzy kodowania zero-jedynkowe są równoważne.

Przykład:
A.
Jutro pójdę do kina i do teatru
Y=K*T
co matematycznie oznacza:
Dotrzymam słowa (Y=1) wtedy i tylko wtedy gdy jutro pójdę do kina (K=1) i do teatru (T=1)
Y=K*T
Y=1 <=> K=1 i T=1

… a kiedy skłamię ?
Przejście ze zdaniem A do logiki przeciwnej poprzez negację zmiennych i wymianę spójników.
~Y=~K+~T
B.
Skłamię (~Y=1) wtedy i tylko wtedy gdy jutro nie pójdę do kina (~K=1) lub nie pójdę do teatru (~T=1)
~Y=~K+~T
~Y=1 <=> ~K=1 lub ~T=1
Wystarczy, że dowolna zmienna po prawej stronie zostanie ustawiona na 1 i już dotrzymałem słowa, stan drugiej zmiennej jest nieistotny.

Wszystkie możliwe przypadki jakie mogą w przyszłości wystąpić to:
~Y=~K+~T = ~K*~T+~K*T+K*~T
Dotrzymam słowa gdy:
~K*~T – nie pójdę do kina (~K=1) i nie pójdę do teatru (~T=1)
~K*T – nie pójdę do kina (~K=1) i pójdę do teatru (T=1)
K*~T – pójdę do kina (K=1) i nie pójdę do teatru (~T=1)


2.3 Równanie ogólne dla operatorów OR i AND

Definicja zero-jedynkowa operatora OR:
Kod:

p q Y=p+q
         /Spójnik “lub” w logice dodatniej bo Y
         /Y=p+q = p*q+p*~q+~p*q
1 1  =1  /Y=p*q
1 0  =1  /Y=p*~q
0 1  =1  /Y=~p*q
         /Spójnik „i” w logice ujemnej bo ~q
0 0  =0  /~Y=~p*~q

Wszystkie zmienne w komentarzu symbolicznym mamy sprowadzone do jedynek, czyli do teorii zbiorów !

Definicja zero-jedynkowa operatora AND:
Kod:

p q Y=p*q
         /Spójnik “i” w logice dodatniej bo q
1 1  =1  /Y=p*q
         /Spójnik „lub” w logice ujemnej bo ~Y
         /~Y=~p+~q=~p*~q+~p*q+p*~q
1 0  =0  /~Y=p*~q
0 1  =0  /~Y=~p*q
0 0  =0  /~Y=~p*~q

Wszystkie zmienne w komentarzu symbolicznym sprowadzone do jedynek, czyli do teorii zbiorów !

Na mocy definicji zachodzi:
Y=p+q ## Y=p*q
gdzie:
## - różne na mocy definicji
Oczywiście funkcja logiczna Y z lewej strony nie ma nic wspólnego z funkcją Y z prawej strony. Po obu stronach mamy dwa niezależne układy logiczne pomiędzy którymi nie zachodzą żadne tożsamości matematyczne.

Przykład:
Jutro pójdę do kina lub do teatru ## Jutro pójdę do kina i do teatru
Y=K+T ## Y=K*T

Korzystając z prawa de’Morgana mamy równanie ogólne dla operatorów OR i AND:
Y=p+q = ~(~p*~q) ## Y=p*q=~(~p+~q)
gdzie:
## - różne na mocy definicji
Dla lewej strony znaku ## możemy zapisać układ równań logicznych:
Y=p+q
Y=~(~p*~q)
Negując dwustronnie mamy:
~Y=~p*~q
Podobnie dla prawej strony znaku ## możemy zapisać:
Y=p*q
~Y=~p+~q

Stąd mamy równanie ogólne implikacji zapisane w formie układu równań logicznych.
Kod:

Dotrzymam słowa (Y)      Dotrzymam słowa (Y)
Y=p+q                ##  Y=p*q
Skłamię (~Y)             Skłamię (~Y)
~Y=~p*~q             ##  ~Y=~p+~q

Podkreślmy to jeszcze raz !
Między układami równań po obu stronach znaku ## mamy dwa totalnie niezależne układy logiczne, czyli p i q po lewej stronie znaku ## jest bez żadnego związku z p i q po prawej stronie znaku ##.
Pod zmienne formalne p i q po obu stronach możemy podstawiać co nam się żywcem podoba czyli na przykład tak:
Lewa strona:
p=K (kino)
q=T (teatr)
Prawa strona:
p=T
q=K

Formalny dowód prawa de’Morgana w tabelach zero-jedynkowych:
Kod:

p q Y=p+q ~Y=~(p+q) ~p ~q ~Y=~p*~q Y=~(~p*~q)
1 1  =1     =0       0  0   =0      =1
1 0  =1     =0       0  1   =0      =1
0 1  =1     =0       1  0   =0      =1
0 0  =0     =1       1  1   =1      =0

Tożsamość kolumn trzeciej i ostatniej jest dowodem prawa de’Morgana:
p+q = ~(~p*~q)


3.0 Zdanie zawsze prawdziwe

Definicja:
Zdanie zawsze prawdziwe to zdanie warunkowe „Jeśli p to q” pozostające prawdziwe przy wszelkich możliwych przeczeniach p i q



Definicja naturalnego spójnika „może” ~~>:
p~~>q
Jeśli zajdzie p to może ~~> zajść q
gdzie:
~~> - naturalny spójnik „może”, wystarczy znaleźć jeden przypadek prawdziwy, jedną część wspólną zbiorów p i q.

Definicja operatorowa zdania zawsze prawdziwego:
Kod:

Punkt
odniesienia:  Zbiory   p~~>q
                       p=1,~p=0
                       q=1,~q=0
p~~> q=1      1*1=1    1 1 =1
p~~>~q=1      1*1=1    1 0 =1
~p~~>~q=1     1*1=1    0 0 =1
~p~~> q=1     1*1=1    0 1 =1
                       Operator ~~>
                       zero-jedynkowy

W powyższym diagramie istnieją części wspólne wszystkich możliwych kombinacji p i q, stąd z punktu odniesienia zbiorów mamy same jedynki.
Dla punktu odniesienia p~~>q mamy tabelę zero-jedynkową operatora zdania zawsze prawdziwego. W całej logice istnieje jeden i tylko jeden operator zdania zawsze prawdziwego jak wyżej, gdzie w wyniku mamy same jedynki. Jak coś jest zawsze prawdziwe to mamy zero jakiejkolwiek logiki. W matematyce zdania typu P8~>P3 są bezwartościowymi śmieciami.
Wszelkie inne operatory zero-jedynkowe, a jest ich 16, mają w wyniku przynajmniej jedno zero, zatem jakiekolwiek sformułowania „zdanie zawsze prawdziwe” w stosunku do tych operatorów jest błędem czysto matematycznym.

Przykład:
A.
Jeśli liczba jest podzielna przez 8 to może być podzielna przez 3
P8~~>P3=1 bo 24
1 1 =1 – punkt odniesienia, zdanie wypowiedziane
Zbiory:
P8*P3=1 – istnieje wspólna cześć zbiorów P8 i P3
P8=[8,16, 24…]
P3=[3,6,18,24…]
P8*P3=1 bo 24
1*1=1
B.
Jeśli liczba jest podzielna przez 8 to może nie być podzielna przez 3
P8~~>~P3=1 bo 8
1 0 =1
Zbiory:
P8=[8,16, 24…]
~P3=[1,8…]
P8*~P3=1 bo 8
1*1=1
C,
Jeśli liczba nie jest podzielna przez 8 to może nie być podzielna przez 3
~P8~~>~P3=1 bo 5
0 0 =1
Zbiory:
~P8={3,5…]
~P3=[1,5…]
~P8*~P3=1 bo 5
1*1=1
D.
Jeśli liczba nie jest podzielna przez 8 to może być podzielna przez 3
~P8~~>P3=1 bo 3
0 1 =1
Zbiory:
~P8=[3,5…]
P3=[3,6..]
~P8*P3=1 bo 3
1*1=1


4.0 Operatory implikacji prostej i odwrotnej w zbiorach

Definicja implikacji prostej w równaniu algebry Boole’a:
p=>q = ~p~>~q

Definicja implikacji odwrotnej w równaniu algebry Boole’a:
p~>q = ~p=>~q

Definicja równoważności w równaniu algebry Boole’a:
p<=>q = (p=>q)*(~p=>~q)

Cała filozofia operatorów implikacji prostej, implikacji odwrotnej i równoważności to zaledwie dwa spójniki logiczne:
=> - warunek wystarczający, spójnik „musi” między p i q w całym obszarze logiki
~> - warunek konieczny, spójnik „może” miedzy p i q w implikacji (nie w równoważności! )

Definicja logiki dodatniej i ujemnej w operatorach implikacji i równoważności:
Zdanie wypowiedziane jest w logice dodatniej gdy q jest niezanegowane (q), w logice ujemnej gdy q jest zanegowane (~q)


4.1 Definicja operatora implikacji prostej

Implikacja prosta to złożenie warunku wystarczającego => w logice dodatniej (bo q) z warunkiem koniecznym ~> w logice ujemnej (bo ~q)

Definicja implikacji prostej w równaniu algebry Boole’a:
p=>q = ~p~>~q – prawo Kubusia
gdzie:
=> - warunek wystarczający, spójnik „musi” między p i q
~> - warunek konieczny, spójnik „może” miedzy p i q

Definicja warunku wystarczającego w logice dodatniej (bo q)
p=>q
Jeśli zajdzie p to na pewno => zajdzie q
Z czego wynika, że zbiór p musi zawierać się w całości w zbiorze q
Z czego wynika, że p musi być wystarczające dla q, jak zajdzie p to q też musi !

Stąd mamy definicję warunku wystarczającego w zbiorach:



Z wykresu odczytujemy definicje symboliczną warunku wystarczającego w logice dodatniej (bo q):
A.
Jeśli zajdzie p to na pewno => zajdzie q
p=>q=1
Zbiory:
p*q=1 – zbiór p zawiera się w całości w zbiorze q
1*1=1
stąd:
B.
Jeśli zajdzie p to na pewno => nie zajdzie q
p=>~q=0
Zbiory:
p*~q=0
1*1=0
Zbiory p i ~q istnieją (=1), ale są rozłączne, stad wynik iloczynu logicznego jest równy 0, co doskonale widać na diagramie.

Definicja symboliczna warunku wystarczającego w logice dodatniej (bo q):
Kod:

p=> q=1
p=>~q=0

p=>q
Jeśli zajdzie p to na pewno => zajdzie q

Zero-jedynkowa definicja warunku wystarczającego w logice dodatniej (bo q)
Kod:

Punkt
odniesienia: Zbiory    p=>q
                       p=1,~p=0
                       q=1,~q=0
p=> q=1      1*1=1     1 1 =1
p=>~q=0      1*1=0     1 0 =0
                       Definicja
                       zero-jedynkowa

Oczywiście wynikowe zero w iloczynie logicznym zbiorów oznacza zbiór pusty, czyli brak choćby jednego wspólnego elementu zbiorów p i ~q.

… a jeśli zajdzie ~p ?
Prawo Kubusia:
p=>q = ~p~>~q

Zobaczmy ten przypadek na diagramie.



Z wykresu odczytujemy definicję warunku koniecznego ~> w logice ujemnej (bo ~q)
C.
Jeśli zajdzie ~p to może ~> nie zajść q
~p~>~q=1
Zbiory:
~p*~q=1 – istnieje cześć wspólna
1*1=1
lub
D.
Jeśli zajdzie ~p to może ~~> zajść q
~p~~>q=1
Zbiory:
~p*q=1 – istnieje część wspólna
1*1=1
W zdaniu D nie zachodzi warunek konieczny ~> bo prawo Kubusia nie może być zgwałcone:
D: ~p~>q = B: p=>~q
Zdanie B jest fałszywe zatem w zdaniu D nie może zachodzić warunek konieczny ~>.
Zdanie D jest prawdziwe na mocy naturalnego spójnika „może” ~~>, wystarczy pokazać jeden przypadek prawdziwy.

Z powyższego mamy.

Symboliczna definicja implikacji prostej:
Kod:

Warunek wystarczający w logice dodatniej (bo q)
A: p=>q=1
B: p=>~q=0
… a jeśli zajdzie ~p ?
Prawo Kubusia:
p=>q = ~p~>~q
Warunek konieczny w logice ujemnej (bo ~q)
C: ~p~>~q=1
D: ~p~~>q=1

Definicja warunku koniecznego wynika z prawa Kubusia:
~p~>~q = p=>q
Warunek konieczny ~> miedzy p i q zachodzi wtedy i tylko wtedy gdy z zanegowanego poprzednika wynika => zanegowany następnik.
Z definicji tej wynika, że całą logikę matematyczną możemy sprowadzić do badania łatwych w dowodzeniu warunków wystarczających =>.

Zero-jedynkowa definicja implikacji prostej:
Kod:

Punkt
odniesienia:     Zbiory   p=>q       ~p~>~q
                          p=1,~p=0   ~p=1,p=0
                          q=1,~q=0   ~q=1,q=0
Warunek wystarczający
A: p=>q=1        1*1=1    1 1 =1      0 0 =1
B: p=>~q=0       1*1=0    1 0 =0      0 1 =0
Warunek konieczny
C: ~p~>~q=1      1*1=1    0 0 =1      1 1 =1
D: ~p~~>q=1      1*1=1    0 1 =1      1 0 =1
                          Definicja   Definicja
                          operatora   operatora
                          implikacji  implikacji
                          prostej     odwrotnej

Podsumowanie:
1. Zbiory
W diagramach wyżej doskonale widać operacje logiczne na zbiorach. W zdaniu B zbiory p i ~q są rozłączne stąd w wyniku mamy zero.
2. p=>q
Dla punktu odniesienia ustawionego na zdaniu p=>q otrzymujemy zero-jedynkową definicję implikacji prostej.
Zero w wyniku wtedy i tylko wtedy gdy p=1 i q=0
3. ~p~>~q
Dla punktu odniesienia ustawionego na zdaniu ~p~>~q otrzymujemy zero-jedynkową definicję implikacji odwrotnej.
Zero w wyniku wtedy i tylko wtedy gdy ~p=0 i ~q=1.

Wnioski:
1.
Mózg człowieka operuje wyłącznie na zbiorach, poszukując części wspólnej zbiorów, wtedy i tylko wtedy zdanie jest prawdziwe.
2.
Matematycznie, z punktu widzenia świata zewnętrznego widzimy zero-jedynkową definicje operatora implikacji prostej albo implikacji odwrotnej w zależności od przyjętego punktu odniesienia.
3.
Sposób kodowania zero-jedynkowego nie wpływa na treść samych zdań, stąd wszystkie trzy kodowania zero-jedynkowe są równoważne.

Przykład:
A.
Jeśli liczba jest podzielna przez 8 to na pewno => jest podzielna przez 2
P8=>P2=1 bo 8,16…
1 1 =1 – punkt odniesienia, zdanie wypowiedziane
Zbiory:
P8=[8,16…]
P2=[2,4,8,16..]
P8*P2=1 bo 8,16…
1*1=1
B.
Jeśli liczba jest podzielna przez 8 to na pewno => nie jest podzielna przez 2
P8=>~P2=0
1 0 =0
Zbiory:
P8=[8,16..]
~P2=[1,3,5…]
P8*~P2=0 – zbiory rozłączne
1*1=0
… a jeśli liczba nie jest podzielna przez 8 ?
Prawo Kubusia:
P8=>P2 = ~P8~>~P2
C.
Jeśli liczba nie jest podzielna przez 8 to może ~> nie być podzielna przez 2
~P8~>~P2=1 bo 3,5..
0 0 =1
Zbiory:
~P8=[2,3,5…]
~P2=[3,5,7…]
~P8*~P2=1 bo 3,5…
1*1=1
LUB
D.
Jeśli liczba nie jest podzielna przez 8 to może ~~> być podzielna przez 2
~P8~~>P2=1 bo 2,4…
0 1 =1
Zbiory:
~P8=[2,4,5…]
P2=[2,4,6…]
~P8*P2=1 bo 2,4…
1*1=1
W zdaniu D nie zachodzi warunek konieczny bo prawo Kubusia:
D: ~P8~>P2 = B: P8=>~P2=0 bo 8
Prawa strona jest fałszem zatem w zdaniu D nie ma prawa zachodzić warunek konieczny, prawo Kubusia nie może być zgwałcone.

Doskonale widać tabelę zero-jedynkową implikacji prostej dla kodowania zgodnego ze zdaniem wypowiedzianym A:
p=1, ~p=0
q=1, ~q=0
Kod:

A: 1 1 =1
B: 1 0 =0
C: 0 0 =1
D: 0 1 =1



4.2 Definicja operatora implikacji odwrotnej

Implikacja odwrotna to złożenie warunku koniecznego ~> w logice dodatniej (bo q) z warunkiem wystarczającym => w logice ujemnej (bo ~q)

Definicja implikacji odwrotnej w równaniu algebry Boole’a:
p~>q = ~p=>~q – prawo Kubusia
gdzie:
~> - warunek konieczny, spójnik „może” miedzy p i q
=> - warunek wystarczający, spójnik „musi” między p i q

Definicja warunku koniecznego wynika z prawa Kubusia:
p~>q= ~p=>~q
Warunek konieczny ~> między p i q zachodzi wtedy i tylko wtedy gdy z zanegowanego poprzednika wynika => zanegowany następnik.
Wynika z tego, że cała logikę matematyczną możemy sprowadzić do badania łatwych w dowodzeniu warunków wystarczających.

Warunek konieczny w diagramie logiki wygląda następująco:



p~>q

Z wykresu odczytujemy definicje symboliczną warunku koniecznego w logice dodatniej (bo q):
A.
Jeśli zajdzie p to może ~> zajść q
p~>q=1
Zbiory:
p*q=1 – istnieje cześć wspólna zbiorów p i q
1*1=1
LUB
B.
Jeśli zajdzie p to może ~~> zajść ~q
p~>~q=1
Zbiory:
p*~q=1 – istnieje część wspólna zbiorów p i ~q
1*1=1

… a jeśli nie zajdzie p ?
Prawo Kubusia:
p~>q = ~p=>~q

Zobaczmy to na diagramie logicznym:



~p=>~q

Z diagramu odczytujemy:
C.
Jeśli zajdzie ~p to na pewno => zajdzie ~q
~p=>~q=1
Zbiory:
~p*~q=1 – istnieje cześć wspólna zbiorów ~p i ~q
1*1=1
stąd:
D.
Jeśli zajdzie ~p to na pewno => zajdzie q
~p=>q=0
Zbiory:
~p*q=0
1*1=0
Zbiory ~p i q istnieją (=1), ale są rozłączne, stad wynik iloczynu logicznego jest równy 0, co doskonale widać na diagramie.

Zauważmy że w zdaniu B nie może zachodzić warunek konieczny bo prawo Kubusia:
B: p~>~q = D: ~p=>q=0
Zdanie jest fałszywe, zatem w zdaniu B nie może zachodzić warunek konieczny ~>.
Zdanie b jest prawdziwe na mocy naturalnego spójnika „może” ~~>, wystarczy pokazać jeden przypadek prawdziwy.

Definicja symboliczna warunku wystarczającego w logice ujemnej (bo q):
Kod:

~p=>~q=1
~p=>q=0

~p=>~q
Jeśli zajdzie ~p to na pewno => zajdzie ~q

Zero-jedynkowa definicja warunku wystarczającego w logice ujemnej (bo q)
Kod:

Punkt
odniesienia: Zbiory    ~p=>~q
                       ~p=1,p=0
                       ~q=1,q=0
~p=>~q=1     1*1=1     1 1 =1
~p=>q=0      1*1=0     1 0 =0
                       Definicja
                       zero-jedynkowa

Oczywiście wynikowe zero w iloczynie logicznym zbiorów oznacza zbiór pusty, czyli brak choćby jednego wspólnego elementu zbiorów ~p i q.

Z powyższego mamy.

Symboliczna definicja implikacji odwrotnej:
Kod:

Warunek konieczny w logice dodatniej (bo q)
A: p~>q=1
B: p~~>~q=1
… a jeśli zajdzie ~p ?
Prawo Kubusia:
p~>q = ~p=>~q
Warunek wystarczający w logice ujemnej (bo ~q)
C: ~p=>~q=1
D: ~p=>q=0


Zero-jedynkowa definicja implikacji odwrotnej:
Kod:

Punkt
odniesienia:     Zbiory   p~>q       ~p=>~q
                          p=1,~p=0   ~p=1,p=0
                          q=1,~q=0   ~q=1,q=0
Warunek konieczny
A: p~>q=1        1*1=1    1 1 =1      0 0 =1
B: p~~>~q=1      1*1=1    1 0 =1      0 1 =1
Warunek wystarczający
C: ~p=>~q=1      1*1=1    0 0 =1      1 1 =1
D: ~p=>q=0       1*1=0    0 1 =0      1 0 =0
                          Definicja   Definicja
                          operatora   operatora
                          implikacji  implikacji
                          odwrotnej   prostej

Podsumowanie:
1. Zbiory
W diagramach wyżej doskonale widać operacje logiczne na zbiorach. W zdaniu D zbiory ~p i q są rozłączne stąd w wyniku mamy zero.
2. p~>q
Dla punktu odniesienia ustawionego na zdaniu p~>q otrzymujemy zero-jedynkową definicję implikacji odwrotnej.
Zero w wyniku wtedy i tylko wtedy gdy p=0 i q=1
3. ~p=>~q
Dla punktu odniesienia ustawionego na zdaniu ~p=>~q otrzymujemy zero-jedynkową definicję implikacji prostej.
Zero w wyniku wtedy i tylko wtedy gdy ~p=1 i ~q=0.

Wnioski:
1.
Mózg człowieka operuje wyłącznie na zbiorach, poszukując części wspólnej zbiorów, wtedy i tylko wtedy zdanie jest prawdziwe.
2.
Matematycznie, z punktu widzenia świata zewnętrznego widzimy zero-jedynkową definicje operatora implikacji odwrotnej albo implikacji prostej w zależności od przyjętego punktu odniesienia.
3.
Sposób kodowania zero-jedynkowego nie wpływa na treść samych zdań, stąd wszystkie trzy kodowania zero-jedynkowe są równoważne.

Przykład:
A.
Jeśli liczba jest podzielna przez 2 to może ~> być podzielna przez 8
P2~>P8=1 bo 8,16…
1 1 =1 – zdanie wypowiedziane, punkt odniesienia
Zbiory:
P2=[2,4,8,16..]
P8=[8,16…]
P2*P8=1 bo 8,16…
1*1=1
LUB
B.
Jeśli liczba jest podzielna przez 2 to może ~~> nie być podzielna przez 8
P2~~>~P8=1 bo 2,4…
1 0 =1
Zbiory:
P2=[2,4,6…]
~P8=[2,4,5…]
P2*~P8=1 bo 2,4…
1*1=1
… a jeśli liczba nie jest podzielna przez 2 ?
Prawo Kubusia:
P2~>P8 = ~P2=>~P8
C.
Jeśli liczba nie jest podzielna przez 2 to na pewno => nie jest podzielna przez 8
~P2=>~P8=1 bo 3,5…
0 0 =1
Zbiory:
~P2=[3,5,7…]
~P8=[2,3,5…]
~P2*~P8=1 bo 3,5…
1*1=1
stad:
D.
Jeśli liczba nie jest podzielna przez 2 to na pewno => jest podzielna przez 8
~P2=>P8=0
0 1 =0
Zbiory:
~P2=[1,3,5…]
P8=[8,16..]
~P2*P8=0 – zbiory rozłączne
1*1=0

W zdaniu B nie zachodzi warunek konieczny bo prawo Kubusia:
B: ~P2~>P8 = D: P2=>~P8=0 bo 8
Prawa strona jest fałszem zatem w zdaniu B nie ma prawa zachodzić warunek konieczny, prawo Kubusia nie może być zgwałcone.

Doskonale widać tabelę zero-jedynkową implikacji odwrotnej dla kodowania zgodnego ze zdaniem wypowiedzianym A:
p=1, ~p=0
q=1, ~q=0
Kod:

A: 1 1 =1
B: 1 0 =1
C: 0 0 =1
D: 0 1 =0



4.3 Równanie ogólne dla operatorów implikacji

Definicja zero-jedynkowa implikacji prostej:
Kod:

p q p=>q
         /Warunek wystarczający w logice dodatniej bo q
1 1  =1  /p=>q=1
1 0  =0  /p=>~q=0
         /Warunek konieczny w logice ujemnej bo ~q
0 0  =1  /~p~>~q=1
0 1  =1  /~p~~>q=1

Wszystkie zmienne w komentarzu symbolicznym mamy sprowadzone do jedynek, czyli do teorii zbiorów !

Definicja zero-jedynkowa implikacji odwrotnej:
Kod:

p q p~>q
         /Warunek konieczny w logice dodatniej bo q
1 1  =1  /p~>q=1
1 0  =1  /p~~>~q=1
         /Warunek wystarczający w logice ujemnej bo ~q
0 0  =1  /~p=>~q=1
0 1  =0  /~p=>q=0

Wszystkie zmienne w komentarzu symbolicznym sprowadzone do jedynek, czyli do teorii zbiorów

Na mocy definicji zachodzi:
p=>q ## p~>q
gdzie:
## - różne na mocy definicji
Oczywiście warunek wystarczający p=>q z lewej strony znaku ## nie ma nic wspólnego z warunkiem koniecznym p~>q z prawej strony znaku ##. Po obu stronach mamy dwa niezależne układy logiczne pomiędzy którymi nie zachodzą żadne tożsamości matematyczne.

Przykład:
Jeśli liczba jest podzielna przez 8 to na pewno jest podzielna przez 2
P8=>P2
Jeśli liczba jest podzielna przez 2 to może ~> być podzielna przez 8
P2~>P8
Na mocy definicji zachodzi:
P8=>P2 ## P2~>P8
gdzie:
## - różne na mocy definicji

Korzystając z prawa Kubusia mamy równanie ogólne dla operatorów imlikacji:
p=>q = ~p~>~q ## p~>q = ~p=>~q
gdzie:
## - różne na mocy definicji

Dla naszego przykładu mamy:
P8=>P2 = ~P8~>~P2 ## P2~>P8 = ~P2=>~P8
gdzie:
## - rożne na mocy definicji

Podkreślmy to jeszcze raz !
Między układami równań po obu stronach znaku ## mamy dwa totalnie niezależne układy logiczne, czyli p i q po lewej stronie znaku ## jest bez żadnego związku z p i q po prawej stronie znaku ##.
Pod zmienne formalne p i q po obu stronach możemy podstawiać co nam się żywcem podoba czyli na przykład tak:
Lewa strona:
p=P8
q=P2
Prawa strona:
p=P2
q=P8

Formalny dowód prawa Kubusia w tabelach zero-jedynkowych:
Kod:

p q p=>q ~p ~q ~p~>~q
1 1  =1   0  0   =1
1 0  =0   0  1   =0
0 0  =1   1  1   =1
0 1  =1   1  0   =1

Tożsamość kolumn trzeciej i ostatniej jest dowodem prawa Kubusia:
p=>q = ~p~>~q

Formalny dowód braku przemienności argumentów w implikacji prostej:
Kod:

p q p=>q q=>p
1 1  =1   =1
1 0  =0   =1
0 0  =1   =1
0 1  =1   =0

Brak tożsamości w dwóch ostatnich kolumnach jest dowodem braku przemienności argumentów w implikacji prostej.
p=>q # q=>p
Jeśli dowolna strona jest prawdą to druga strona musi być fałszem
Przykład:
P8=>P2=1 # P2=>P8=0 bo 2

Formalny dowód braku przemienności argumentów w implikacji odwrotnej:
Kod:

p q p~>q q~>p
1 1  =1   =1
1 0  =1   =0
0 0  =1   =1
0 1  =0   =1

Brak tożsamości w dwóch ostatnich kolumnach jest dowodem braku przemienności argumentów w implikacji odwrotnej.
p~>q # q~>p
Jeśli dowolna strona jest prawdą to druga strona musi być fałszem
Przykład:
P2~>P8=1 # P8~>P2=0
Dowód prawdziwości lewej strony znaku #:
P2~>P8 = ~P2=>~P8=1 – prawo Kubusia
Prawa strona jest prawdą zatem w zdaniu P2~>P8 zachodzi warunek konieczny
cnd
Dowód fałszywości prawej strony znaku #:
P8~>P2 = ~P8=>~P2=0 bo 2
Prawa strona jest fałszem, zatem nie zachodzi warunek konieczny w zdaniu:
P8~>P2=0
cnd

Z powyższego mamy gimnazjalną definicję implikacji
Implikacja to wynikanie wyłącznie w jedną stronę
p=>q # q=>p
Jeśli stwierdzimy pewne wynikanie => wyłącznie w jedna stronę to mamy dowód iż zdanie jest implikacją prostą.


5.0 Równoważność

Definicja równoważności:
p<=>q = (p=>q)*(~p=>~q)

Równoważność to jednoczesne zachodzenie warunku wystarczającego w logice dodatniej (bo q) i warunku wystarczającego w logice ujemnej (bo ~q)

Zobaczmy to na diagramach logiki:



Warunek wystarczający w logice dodatniej:
p=>q=1
p=>~q=0
Z diagram widzimy, że zbiory p I q są dokładnie tymi samymi zbiorami:
p=q
co wymusza tożsamość zbiorów:
~p=~q



Warunek wystarczający w logice ujemnej:
~p=>~q=1
~p=>q=0
Z diagram widzimy, że zbiory ~p I ~q są dokładnie tymi samymi zbiorami:
~p=~q
co wymusza tożsamość zbiorów:
p=q

Z powyższego mamy operatorową definicję równoważności.
p<=>q = (p=>q)*(~p=>~q)

Warunek wystarczający w logice dodatniej (bo q)
A.
Jeśli zajdzie p to na pewno => zajdzie q
p=>q=1
1 1 =1
Zbiory:
p*q=1 – zbiory p i q są tymi samymi zbiorami
1*1=1
B.
Jeśli zajdzie p to na pewno => nie zajdzie q
p=>~q=0
1 0 =0
Zbiory:
p*~q=0 – zbiory rozłączne
1*1=0
… a jeśli nie zajdzie p ?
Warunek wystarczający w logice ujemnej:
C.
Jeśli nie zajdzie p to na pewno => nie zajdzie q
~p=>~q=1
0 0 =1
Zbiory:
~p*~q=1 – zbiory ~p i ~q są tymi samymi zbiorami
1*1=1
D.
Jeśli nie zajdzie p to na pewno => zajdzie q
~p=>q=0
0 1 =0
Zbiory:
~p*q=0 – zbiory rozłączne
1*1=1
Doskonale widać definicje zero-jedynkową równoważności dla kodowania zgodnego ze zdaniem A:
p=>q=1
p=1, ~p=0
q=1, ~q=0

Definicja zero-jedynkowa równoważności:
Kod:

A: 1 1 =1
B: 1 0 =0
C: 0 0 =1
D: 0 1 =0


Definicja symboliczna równoważności:
Kod:

p<=>q = (p=>q)*(~p=>~q)
Warunek wystarczający w logice dodatniej (bo q)
A: p=>q=1
B: p=>~q=0
… a jeśli zajdzie ~p ?
Warunek wystarczający w logice ujemnej (bo ~q)
C: ~p=>~q=1
D: ~p=>q=0


Zero-jedynkowa definicja równoważności:
Kod:

Punkt
odniesienia:     Zbiory   p=>q       ~p=>~q
                          p=1,~p=0   ~p=1,p=0
                          q=1,~q=0   ~q=1,q=0
Warunek wystarczający
A: p=>q=1        1*1=1    1 1 =1      0 0 =1
B: p=>~q=0       1*1=0    1 0 =0      0 1 =0
Warunek wystarczający
C: ~p=>~q=1      1*1=1    0 0 =1      1 1 =1
D: ~p=>q=0       1*1=0    0 1 =0      1 0 =0
                          Definicja   Definicja
                          operatora   operatora
                      równoważności   równoważności

Podsumowanie:
1. Zbiory
W diagramach wyżej doskonale widać operacje logiczne na zbiorach. W zdaniach B i D zbiory są rozłączne stąd w wyniku mamy zero.
2. p=>q
Dla punktu odniesienia ustawionego na zdaniu p=>q otrzymujemy zero-jedynkową definicję równoważności w logice dodatniej (bo q).
3. ~p=>~q
Dla punktu odniesienia ustawionego na zdaniu ~p=>~q otrzymujemy zero-jedynkową definicję równoważności w logice ujemnej bo ~q.

Aksjomatyczna definicja równoważności wynikająca z tabeli zero-jedynkowej:
p<=>q = (p=>q)*(~p=>~q)

W równoważności poprawne jest prawo kontrapozycji:
~p=>~q = q=>p
stąd uwielbiana przez matematyków, jedynie słuszna definicja równowaznosci:
p<=>q = (p=>q)*(q=>p)
czyli:
Równoważność to zachodzenie warunku wystarczającego => w dwie strony (nie implikacji! )

Twierdzenie Rexerexa:
Jeśli równoważność jest udowodniona to zachodzi wszystko co tylko możliwe:
p=>q = p<=>q = (p=>q)*(~p=>~q) = ~p<=>~q = (p=>q)*(q=>p) = q=>p …

Bowiem analiza zdań wynikłych ze wszystkich możliwych przeczeń p i q daje identyczną, zero-jedynkowa definicje równoważności.

Przykład:
A.
Jeśli trójkąt jest równoboczny to na pewno => ma kąty równe
TR=>KR=1 – gwarancja matematyczna
1 1 =1
B.
Jeśli trójkąt jest równoboczny to na pewno=> nie ma katów równych
TR=>~Kr=0
1 0 =0
C.
Jeśli trójkąt nie jest równoboczny to na pewno => nie ma katów równych
~Tr=>~KR=1 – gwarancja matematyczna
0 0 =1
D.
Jeśli trójkąt nie jest równoboczny to na pewno => ma kąty równe
~TR=>KR=0
0 1 =0

Doskonale widać, tabele zero-jedynkowa równoważności dla kodowania zgodnego ze zdaniem wypowiedzianym A:
TR=>KR=1
TR=1, ~TR=0
KR=1, ~KR=0
Precyzyjnie zdanie A jest wyłącznie definicja warunku wystarczającego w logice dodatniej (bo q).
Dopiero po udowodnieniu równoważności, co wyżej uczyniliśmy, możemy powiedzieć że zdanie A jest równoważnością.

Oczywiście zdanie a możemy wypowiedzieć w formie równoważności.
A.
Trójkąt jest równoboczny wtedy i tylko wtedy gdy ma kąty równe
TR<=>KR = (TR=>KR)*(~TR=>~KR)


6.0 ŚFIŃSKIE definicje implikacji i równoważności

Cała algebra Kubusia w zakresie implikacji i równoważności to jedna jedyna definicja warunku wystarczającego => plus prawa Kubusia z których wszystko wynika.

Definicja warunku wystarczającego => w logice dodatniej (bo q) w zapisie symbolicznym:
Kod:

A: p=>q=1
B: p=>~q=0

p=>q
Jeśli zajdzie p to musi zajść q
Z czego wynika że druga linia musi być twardym fałszem
Z czego wynika że p musi być wystarczające dla q

Przykład:
A.
Jeśli liczba jest podzielna przez 8 to na pewno => jest podzielna przez 2
P8=>P2=1 – twarda prawda, gwarancja matematyczna, zachodzi zawsze bez wyjątków
B.
Jeśli liczba jest podzielna przez 8 to na pewno => nie jest podzielna przez 2
P8=>~P2 =0 – twardy fałsz wynikły z powyższego

Definicja warunku wystarczającego => w logice ujemnej (bo ~q) w zapisie symbolicznym:
Kod:

A: ~p=>~q=1
B: ~p=>q=0

~p=>~q
Jeśli zajdzie ~p to musi zajść ~q
Z czego wynika że druga linia musi być twardym fałszem
Z czego wynika że ~p musi być wystarczające dla ~q

Przykład:
A.
Jeśli liczba nie jest podzielna przez 2 to na pewno => nie jest podzielna przez 8
~P2=>~P8=1 – twarda prawda, gwarancja matematyczna
B.
Jeśli liczba nie jest podzielna przez 2 to na pewno => jest podzielna przez 8
~P2=>P8=0 – twardy fałsz wynikły z powyższego

Definicja kontrprzykładu w NTI
Wynika bezpośrednio z definicji warunku wystarczającego w NTI
~~> - naturalny spójnik „może”, wystarczy znaleźć jeden przypadek prawdziwy
Kod:

p~~>q=1
p~~>~q=1

Algorytm postępowania:
A.
Znajdujemy jeden przypadek prawdziwy p~~>q=1
B.
Znajdujemy jeden przypadek prawdziwy p~~>~q=1

Wnioski:
Zajście A i B wyklucza warunek wystarczający między p i q
p=>q=0
Zajście A i brak możliwości wystąpienia B jest dowodem zachodzenia warunku wystarczającego miedzy p i q
p=>q=1

Przykład:
Jeśli liczba jest podzielna przez 2 to jest podzielna przez 8
P2~~>P8=1 bo 8
P2~~>~P8=1 bo 2
Wniosek:
P2=>P8=0
CND

Definicja warunku koniecznego obowiązująca w całej algebrze Kubusia:
p~>q = ~p=>~q – I prawo Kubusia
~p~>~q = p=>q – II prawo Kubusia
Warunek konieczny między p i q zachodzi wtedy i tylko wtedy gdy z zanegowanego poprzednika wynika zanegowany następnik.

Najważniejsza interpretacja praw Kubusia:
Udowodnienie warunku wystarczającego => z prawej strony równania Kubusia jest dowodem zachodzenia warunku koniecznego ~> z lewej strony równania Kubusia.
Wynika z tego, że całą logikę możemy sprowadzić do badania łatwych w dowodzeniu warunków wystarczających.

Definicja warunku koniecznego ~> w logice dodatniej (bo q)
I Prawo Kubusia:
p~>q = ~p=>~q
Zabieramy p wymuszając zniknięcie q
~p=>~q
Wtedy i tylko wtedy spełniony jest warunek konieczny ~> w zdaniu p~>q

Przykład:
A.
Jeśli jutro będzie pochmurno to może ~> padać
CH~>P=1
Prawo Kubusia:
CH~>P = ~CH=>~P
Zabieramy chmury wykluczając możliwość padania: ~CH=>~P
C.
Jeśli jutro nie będzie pochmurno to na pewno => nie będzie padać
~CH=>~P=1

Definicja warunku koniecznego ~> w logice ujemnej (bp ~q)
II Prawo Kubusia:
~p~>~q = p=>q
Wymuszamy p z czego musi wyniknąć q
p=>q
Wtedy i tylko wtedy spełniony jest warunek konieczny ~> w zdaniu ~p~>~q

Przykład:
A.
Jeśli jutro nie będzie padać to może ~> nie być pochmurno
~P~>~CH=1
Prawo Kubusia:
~P~>~CH = P=>CH
Wymuszając padanie deszczu wymuszamy istnienie chmur: P=>CH
C.
Jeśli jutro będzie padać to na pewno => będzie pochmurno
P=>CH=1

Definicja logiki dodatniej i ujemnej w implikacji i równoważności
p~>q = ~p=>~q
~p~>~q = p=>q
Zdanie „jeśli p to q” wyrażone jest w logice dodatniej wtedy i tylko wtedy gdy q nie jest zanegowane.


ŚFIŃSKIE definicje implikacji i równoważności wynikające bezpośrednio z praw Kubusia.

ŚFIŃSKA definicja implikacji prostej:
Zdanie „Jeśli p to q” jest implikacja prostą wtedy i tylko wtedy gdy między p i q zachodzi wyłącznie warunek wystarczający =>.
p=>q=1
p~>q=0

Przykład:
Jeśli liczba jest podzielna przez 8 to na pewno => jest podzielna przez 2
P8=>P2=1
P8~>P2 = ~P8=>~P2 =0 bo 2
Zdanie P8=>P2 jest implikacja prostą bo spełnia ŚFIŃSKĄ definicje implikacji prostej
CND

ŚFIŃSKA definicja implikacji odwrotnej:
Zdanie „Jeśli p to q” jest implikacja odwrotną wtedy i tylko wtedy gdy między p i q zachodzi wyłącznie warunek konieczny ~>.
p~>q=1
p=>q=0

Przykład:
Jeśli liczba jest podzielna przez 2 to może ~> być podzielna przez 8
P2~>P8 = ~P2=>~P8 =1 – gwarancja matematyczna
P2=>P8 = 0 bo 2
Zdanie P2~>P8 jest implikacją odwrotną bo spełnia ŚFIŃSKĄ definicje implikacji odwrotnej
CND

Spójniki zdaniowe w równoważności:
<=> - wtedy i tylko wtedy
=> - symbol równoważności w zdaniu „Jeśli p to q” o ile spełnia poniższą definicję

ŚFIŃSKA definicja równoważności:
Zdanie „Jeśli p to q” jest równoważnością wtedy i tylko wtedy gdy miedzy p i q zachodzą jednocześnie warunki wystarczający i konieczny
p=>q=1
p~>q=1
Definicja równoważności:
p<=>q = (p=>q)*(p~>q) = 1*1 =1
gdzie:
=> - warunek wystarczający, spójnik „musi” między p i q (identyczny jak w implikacji)
~> - warunek konieczny, w równoważności nie jest to spójnik „może” (rzucanie monetą) znany z implikacji !

Przykład:
Jeśli trójkąt jest równoboczny to na pewno ma kąty równe
TR=>KR=1 – twarda prawda, gwarancja matematyczna
Sprawdzamy warunek konieczny miedzy TR i KR:
TR~>KR = ~TR=>~KR=1 – twarda prawda, zachodzi zawsze bez wyjątków
Wniosek:
Zdanie TR=>KR jest ewidentną równoważnością, bo spełnia ŚFIŃSKĄ definicję równoważności
CND

ŚFIŃSKA definicja naturalnego spójnika „może” ~~>
Zdanie jest prawdziwe na mocy naturalnego spójnika „może” jeśli znajdziemy przynajmniej jeden przypadek prawdziwy, wystarczy sama możliwość.
Przykład:
Jeśli liczba jest podzielna przez 8 to może być podzielna przez 2
P8~~>P2=1 bo 8
CND


7.0 Algebra Kubusia w służbie lingwistyki

Żaden matematyk nie zakwestionuje poniższej definicji obietnicy:
Obietnica = implikacja prosta => - to jest w każdym podręczniku matematyki do I klasy LO

To wystarczy, dalej w banalny sposób można udowodnić że:
Groźba = implikacji odwrotna ~>

Wynika to po prostu z prawa Kubusia:
p=>q = ~p~>~q

Oczywiście jeśli:
q = nagroda
to
~q = kara
Na podstawie aksjomatu znanego ludziom od tysiącleci:
nagroda to brak kary
kara to brak nagrody
CND

Definicja obietnicy:
Jeśli dowolny warunek to nagroda
W=>N=1

Analiza matematyczna:
A.
Jeśli spełnię warunek nagrody to na pewno => dostane nagrodę
W=>N=1 – twarda prawda, gwarancja matematyczna
1 1 =1
stąd:
B.
Jeśli spełnię warunek nagrody to na pewno => nie dostane nagrody
W=>~N=0 – kłamstwo nadawcy, nie dotrzymał danej dobrowolnie obietnicy wyżej
1 0 =0
Prawo Kubusia:
W=>N = ~W~>~N
czyli:
C.
Jeśli nie spełnię warunku nagrody to mogę nie dostać nagrody
~W~>~N=1 – miękka prawda, może zajść ale nie musi
0 0 =1
LUB
D.
Jeśli nie spełnię warunku nagrody to mogę dostać nagrodę
~W~~>N=1 – miękka prawda.
Prawo nadawcy do wręczenia nagrody mimo nie spełnienia warunku nagrody (akt miłości)
0 1 =1
Doskonale widać definicje zero-jedynkową implikacji prostej dla kodowania zgodnego ze zdaniem wypowiedzianym:
W=1, ~W=0
N=1, ~N=0

Ze zdania C wynika, że wszelkie groźby musimy kodować implikacją odwrotną, inaczej algebra Boole’a leży w gruzach z powodu gwałcenia prawa Kubusia poprawnego zarówno w algebrze Boole’a jak i w algebrze Kubusia.


7.1 Obietnica

Typowa obietnica:
A.
Jeśli będziesz grzeczny dostaniesz czekoladę
G=>C =1
1 1 =1 - zdanie wypowiedziane
Obietnica, zatem implikacja prosta, tu wszyscy się zgadzamy.
Skoro to implikacja prosta to:
B.
Jeśli będziesz grzeczny to na pewno => nie dostaniesz czekolady
G=>~C =0
1 0 =0
… a jak będę niegrzeczny ?
Prawo Kubusia:
G=>C = ~G~>~C
Mama:
C.
Jeśli będziesz niegrzeczny to nie dostaniesz czekolady
~G~>~C
W groźbach (zdanie C) spójnik „może” ~> jest z reguły pomijany. Nie ma to znaczenia gdyż spójnik ten jest gwarantowany przez absolutna świętość algebry Boole’a, prawo Kubusia.

Z prawa Kubusia wynika tu coś fundamentalnego:
Wszelkie groźby (zdanie C) musimy kodować operatorem implikacji odwrotnej, inaczej algebra Boole’a leży w gruzach.

Matematyczne znaczenie zdania C jest oczywiście takie:
C.
Jeśli będziesz niegrzeczny to możesz ~> nie dostać czekolady
~G~>~C =1
0 0 =1
LUB
D.
Jeśli będziesz niegrzeczny to możesz ~~> dostać czekoladę
~G~~>C =1
0 1 =1 - akt miłości
gdzie:
~~> - naturalne "może", wystarczy jedna prawda, nie jest to operator implikacji odwrotnej ~>, zatem warunek konieczny tu nie zachodzi.

Doskonale tu widać tabelę zero-jedynkową implikacji prostej dla kodowania zgodnego ze zdaniem wypowiedzianym 1 1 =1 czyli:
G=1, ~G=0
C=1, ~C=0

Oczywiście z powyższej analizy matematycznej wynika, że wszelkie groźby muszą być kodowane implikacją odwrotną:
Jeśli ubrudzisz spodnie dostaniesz lanie
B~>L - implikacja odwrotna bo groźba

Z powyższego mamy definicję obietnicy i groźby …

Definicja obietnicy:
Jeśli dowolny warunek to nagroda
W=>N =1 - twarda prawda
Implikacja prosta bo dobrowolnych obietnic musimy dotrzymywać
Spełnienie warunku nagrody jest warunkiem wystarczającym dla otrzymania nagrody
Prawo Kubusia:
W=>N = ~W~>~N
Gwarancja w implikacji jest zawsze operator implikacji prostej:
W=>N
Jeśli spełnię warunek nagrody to na pewno => dostanę nagrodę z powodu że spełniłem warunek nagrody … poza tym wszystko może się zdarzyć.

W obietnicy nadawca ma nadzieję (marzenie), że odbiorca spełni warunek nagrody i będzie mógł wręczyć nagrodę. Jeśli odbiorca nie spełni warunku nagrody to nadawca może dać nagrodę lub nie zgodnie ze swoim „widzi mi się”, czyli wolną wolą.
Po stronie odbiorcy występuje nadzieja (marzenie), że nawet jeśli nie spełni warunku nagrody to może otrzymać nagrodę (akt miłości). Odbiorca może zwolnić nadawcę z obietnicy np. w przypadkach losowych.


7.2 Groźba

Definicja groźby:
Jeśli dowolny warunek to kara
W~>K =1
Implikacja odwrotna bo nadawca może ukarać, ale nie musi.
Spełnienie warunku kary jest warunkiem koniecznym ukarania z powodu spełnienia warunku kary. O tym czy będzie to warunek konieczny i wystarczający decyduje nadawca.

Gwarancja w groźbie wynika z prawa Kubusia:
W~>K = ~W => ~K
Stąd gwarancja:
~W => ~K
Jeśli nie spełnię warunku kary to na pewno => nie zostanę ukarany z powodu nie spełnienia warunku kary. Poza tym wszystko może sie zdarzyć.

W groźbie nadawca ma nadzieję (marzenie), że odbiorca nie spełni warunku kary i nie będzie musiał karać. Jeśli odbiorca spełni warunek kary to nadawca może wykonać karę lub ją darować zgodnie ze swoim „widzi mi się”, czyli wolną wolą.
Po stronie odbiorcy również występuje nadzieja (marzenie), że nawet jeśli spełni warunek kary to nadawca nie wykona kary (akt łaski). W groźbie decyzję o darowaniu kary podejmuje wyłącznie nadawca, odbiorca nie ma tu nic do powiedzenia.

Przykład:
Jeśli ubrudzisz spodnie dostaniesz lanie
B~>L - implikacja odwrotna bo groźba
Brudne spodnie są warunkiem koniecznym lania z powodu brudnych spodni, zatem implikacja odwrotna prawdziwa. O tym czy będzie to warunek konieczny i wystarczający decyduje nadawca.

W groźbach naturalny spójnik implikacji odwrotnej „może” ~> jest z reguły pomijany bo osłabiałby groźbę. Nie prowadzi to do niejednoznaczności, gdyż definicje groźby i obietnicy są bardzo proste i precyzyjne.

Analiza:
A:
Jeśli ubrudzisz spodnie to możesz ~> dostać lanie
B~>L =1
1 1 =1
LUB
B:
Jeśli ubrudzisz spodnie to możesz nie dostać lania
B ~~> ~L =1 - prawo do darowania kary (akt łaski)
1 0 =1
Zdanie prawdziwe na mocy naturalnego spójnika „może” ~~>, nie jest to implikacja odwrotna.
Nadawca ma prawo do darowania dowolnej kary (akt łaski)

… a jeśli nie ubrudzę spodni ?
B~>L = ~B => ~L - prawo Kubusia
czyli:
C:
Jeśli nie ubrudzisz spodni to na pewno => nie dostaniesz lania
~B => ~L =1 - twarda prawda (gwarancja)
0 0 =1
Na mocy definicji operatora implikacji prostej => mamy:
Jeśli nie ubrudzisz spodni to na pewno => nie dostaniesz lania z powodu czystych spodni. Poza tym wszystko może się zdarzyć. Tylko tyle i aż tyle gwarantuje operator implikacji prostej =>.
stąd:
D:
Jeśli nie ubrudzisz spodni to na pewno => dostaniesz lanie
~B => L =0 - twardy fałsz, zakaz karania niewinnego z powodu czystych spodni
0 1 =1
Doskonale widać tabelę zero-jedynkową implikacji odwrotnej dla kodowania zgodnego ze zdaniem wypowiedzianym 1 1 =1 czyli:
B=1, ~B=0
L=1, ~L=0

Dlaczego zdanie B nie może być implikacja odwrotną ?
Dowód nie wprost:
Załóżmy że zdanie B: B~>~L jest implikacja odwrotną.
Obowiązuje wówczas prawo Kubusia:
B: B~>~L = D: ~B=>L
Zdanie D: jest oczywistym fałszem, zatem zdanie B nie może być implikacją odwrotną prawdziwą.
Prawdziwość zdania B: określa wzór:
(B~~>~L)+(B~>~L) = 1+0 =1
gdzie:
~~> - naturalny spójnik może, wystarczy jedna prawda, nie jest to operator implikacji odwrotnej zatem warunek koniczny tu nie zachodzi.

Jedyne sensowne przejście z operatora implikacji odwrotnej do implikacyjnych AND(*) i OR(+) to odpowiedź na pytanie dziecka „kiedy wystąpi kłamstwo”:

Jeśli ubrudzisz spodnie dostaniesz lanie
Y=B~>L
Jaś:
… tata, a kiedy skłamiesz ?

Y=B~>L = B+~L = ~(~B*L) - dotrzymam słowa
Negujemy dwustronnie:
~Y=~(B~>L) = ~B*L - skłamię

Skłamię (~Y=1), jeśli przyjdziesz w czystych spodniach (~B) i dostaniesz lanie (z powodu czystych spodni !)
~Y=~B*L
Jaś:
… a czy może się zdarzyć że przyjdę w czystych spodniach i dostanę lanie ?
Y=~(~Y) - prawo podwójnego przeczenia, stąd:
Y=~(~B*L)
Nie może się zdarzyć że przyjdziesz w czystych spodniach (~B) i dostaniesz lanie (z powodu czystych spodni)
Y=~(~B*L)
Zauważmy, że ostatnie pytanie Jasia jest mało prawdopodobne bo odpowiedź dostał wcześniej.

W obietnicach i groźbach bardzo dobrze widać sens logiki dodatniej i ujemnej w operatorach implikacji prostej => i odwrotnej ~>.

Definicja logiki dodatniej i ujemnej w operatorach => i ~>:
Implikacja wypowiedziana jest w logice dodatniej jeśli po stronie q nie występuje negacja, inaczej mamy do czynienia z logiką ujemną.

Obietnica
Prawo Kubusia:
W=>N = ~W~>~N - prawo zamiany obietnicy => na równoważną groźbę ~>
Obietnica => w logice dodatniej (N) jest równoważna groźbie ~> w logice ujemnej (~N)

Groźba
Prawo Kubusia:
W~>K = ~W=>~K - prawo zamiany groźby ~> na równoważną obietnicę =>
Groźba ~> w logice dodatniej (K) jest równoważna obietnicy => w logice ujemnej (~K)

Piękna jest też następująca interpretacja obietnicy i groźby.
Kod:

p q p~>q p<=q
1 1  =1   =1
1 0  =1   =1
0 0  =1   =1
0 1  =0   =0

gdzie:
~> - operator implikacji odwrotnej, spójnik „może” ze spełnionym warunkiem koniecznym
Z tabeli widzimy że:
~> = <= - pod warunkiem że symbol <= będziemy czytać przeciwnie do strzałki jako spójnik „może” z warunkiem koniecznym (operator implikacji odwrotnej)

Obietnica:
W=>N - ja tego chcę, biegnę do nagrody
=> czytane zgodnie ze strzałką jako spójnik „musi” z warunkiem wystarczającym
Groźba:
W~>K = W<=K - ja tego nie chcę, uciekam od kary
gdzie:
<= - czytane przeciwnie do strzałki jako spójnik „może” z warunkiem koniecznym

Odróżnianie nagrody od kary to fundament wszelkiego życia. Zwierzątka które tego nie odróżniają, czyli wszystko co się rusza traktują jako nagrodę (ja tego chcę) skazane są na zagładę.

W Australii żyje sobie żółw błotny który na języku ma wyrostek imitujący żywego robaka, ryba która nabierze się na ten podstęp musi zginąć.


Ostatnio zmieniony przez rafal3006 dnia Wto 10:11, 01 Lis 2011, w całości zmieniany 2 razy
Powrót do góry
Zobacz profil autora
Wyświetl posty z ostatnich:   
Napisz nowy temat   Odpowiedz do tematu    Forum ŚFiNiA Strona Główna -> Metodologia / Forum Kubusia Wszystkie czasy w strefie CET (Europa)
Strona 1 z 1

 
Skocz do:  
Nie możesz pisać nowych tematów
Nie możesz odpowiadać w tematach
Nie możesz zmieniać swoich postów
Nie możesz usuwać swoich postów
Nie możesz głosować w ankietach

fora.pl - załóż własne forum dyskusyjne za darmo
Powered by phpBB © 2001, 2005 phpBB Group
Regulamin