Forum ŚFiNiA Strona Główna ŚFiNiA
ŚFiNiA - Światopoglądowe, Filozoficzne, Naukowe i Artystyczne forum - bez cenzury, regulamin promuje racjonalną i rzeczową dyskusję i ułatwia ucinanie demagogii. Forum założone przez Wuja Zbója.
 
 FAQFAQ   SzukajSzukaj   UżytkownicyUżytkownicy   GrupyGrupy   GalerieGalerie   RejestracjaRejestracja 
 ProfilProfil   Zaloguj się, by sprawdzić wiadomościZaloguj się, by sprawdzić wiadomości   ZalogujZaloguj 

Algebra Kubusia - rewolucja w logice matematycznej
Idź do strony Poprzedni  1, 2, 3 ... 32, 33, 34 ... 369, 370, 371  Następny
 
Napisz nowy temat   Odpowiedz do tematu    Forum ŚFiNiA Strona Główna -> Filozofia
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 35331
Przeczytał: 23 tematy

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Czw 11:52, 10 Cze 2021    Temat postu:

Masakra ziemskiej definicji "implikacji materialnej"!

Dosłownie prze chwilką skorygowałem post wyżej i wyszła mi tytułowa masakra - tekst niżej wyróżniony na niebiesko.

http://www.sfinia.fora.pl/forum-kubusia,12/algebra-kubusia-w-przebudowie,18899.html#593821

3.0 Operatory implikacyjne - definicje podstawowe

Definicja operatora implikacyjnego:
Operator implikacyjny, to operator definiowany zdaniami warunkowymi „Jeśli p to q”

W logice matematycznej rozróżniamy cztery podstawowe operatory implikacyjne:
p||=>q - operator implikacji prostej
p||~>q - operator implikacji odwrotnej
p|<=>q - operator równoważności
p||~~>q - operator chaosu
Dodatkowy piąty operator to mutacja operatora równoważności:
p|$q - operator „albo”(|$)

Wszystkie definicje operatorów implikacyjnych opisane są zdaniami warunkowymi „Jeśli p to q” ze spełnionymi lub nie spełnionymi warunkami wystarczającymi => i koniecznymi ~>

3.1 Implikacja prosta p|=>q

Definicja podzbioru => w algebrze Kubusia:
Zbiór p jest podzbiorem => zbioru q wtedy i tylko wtedy gdy wszystkie elementy zbioru p należą do zbioru q
p=>q =1 - gdy relacja podzbioru => jest (=1) spełniona
Inaczej:
p=>q =0 - relacja podzbioru => nie jest (=0) spełniona

Definicja nadzbioru ~> w algebrze Kubusia:
Zbiór p jest nadzbiorem ~> zbioru q wtedy i tylko wtedy gdy zawiera co najmniej wszystkie elementy zbioru q
p~>q =1 - gdy relacja nadzbioru ~> jest (=1) spełniona
Inaczej:
p~>q =0 - relacja nadzbioru ~> nie jest (=0) spełniona

W algebrze Kubusia w zbiorach zachodzi tożsamość pojęć:
Podzbiór => = relacja podzbioru =>
Nadzbiór => = relacja nadzbioru =>

W algebrze Kubusia w zbiorach zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

Przykład:
A1.
Jeśli dowolna liczba jest podzielna przez 8 to na 100% => jest podzielna przez 2
P8=>P2 =1
Zauważmy że w zdaniu warunkowym A1: „Jeśli p to q” poprzednik p definiuje nam zbiór P8:
P8=[8,16,24..] - zbiór liczb podzielnych przez 8
zaś następnik q definiuje nam zbiór P2:
P2=[2,4,6,8..] - zbiór liczb podzielnych przez 2

Zdanie A1 jest prawdziwe bo:
Definicja warunku wystarczającego => jest spełniona bo zbiór P8=[8,16,24..] jest podzbiorem => zbioru P2=[2,4,6,8..]
Innymi słowy:
Definicja warunku wystarczającego => jest spełniona wtedy i tylko wtedy gdy spełniona jest relacja podzbioru =>:
P8=>P2 =1 - zbiór P8=[8,16,24..] jest (=1) podzbiorem => zbioru P2=[2,4,6,8..]
Powyższa relacja podzbioru P8=>P2 jest spełniona (=1) co każdy ziemski matematyk łatwo udowodni.

Zauważmy, że nie wolno nam upraszczać powyższej relacji do samego zbioru P8 mówiąc:
„Zbiór P8=[8,16,24..] jest podzbiorem”
jak to czynią ziemscy pseudo-matematycy, fanatycy gówna zwanego „implikacją materialną”, gdzie w dowolnym zdaniu warunkowym „Jeśli p to q” o żadnej relacji w zbiorach między p i q z definicji mowy być nie może.

To jest błąd czysto matematyczny bo nie wiadomo w stosunku do jakiego zbioru zbiór P8 jest podzbiorem =>.
Zauważmy że:
Zbiór P8=[8,16,24..] jest podzbiorem => zbioru P2=[2,4,6,8..]
… ale równie dobrze:
Zbiór P8=[8,16,24..] jest podzbiorem => zbioru P4=[4,8,12,16..]
etc
Oczywistym jest, że zbiór P2=[2,4,6,8..] jest różny na mocy definicji ## od zbioru P4=[4,8,12,16..]
cnd
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 35331
Przeczytał: 23 tematy

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Czw 21:25, 10 Cze 2021    Temat postu:

Algebra Kubusia - ostatnie czytanie!
Część IV

Po raz ostatni przed premierą czytam od początku algebrę Kubusia likwidując literówki i udoskonalając przekaz.

Twierdzenie Smoka Wawelskiego:
Dowolny ziemski matematyk, który twierdzi iż definicja „implikacji materialnej” jest matematycznie poprawna w naszym Wszechświecie żywym i martwym (w tym w matematyce) jest pacjentem zakładu zamkniętego bez klamek.
Innymi słowy:
Ziemska interpretacja równoważności p<=>q z Wikipedii to straszliwie ciężki przypadek schizofrenii.
Dowód:
Początek punktu 3.3.

http://www.sfinia.fora.pl/forum-kubusia,12/algebra-kubusia-w-przebudowie,18899.html#593837

Algebra Kubusia
3.3 Definicje podstawowe - równoważność <=>

Spis treści
3.3 Definicja podstawowa równoważności p<=>q 1
3.3.1 Równoważność p<=>q jako tożsamość zbiorów/pojęć 9
3.3.2 Diagram równoważności w zbiorach 10
3.3.3 Definicja operatora równoważności p|<=>q 12
3.3.4 Równoważność Pitagorasa TP<=>SK 15
3.3.5 Operator równoważności Pitagorasa TP|<=>SK 18
3.3.6 Diagram równoważności Pitagorasa TP<=>SK i ~TP<=>~SK 21


3.3 Definicja podstawowa równoważności p<=>q

Definicja podzbioru => w algebrze Kubusia:
Zbiór p jest podzbiorem => zbioru q wtedy i tylko wtedy gdy wszystkie elementy zbioru p należą do zbioru q
p=>q =1 - gdy relacja podzbioru => jest (=1) spełniona
Inaczej:
p=>q =0 - relacja podzbioru => nie jest (=0) spełniona

Definicja nadzbioru ~> w algebrze Kubusia:
Zbiór p jest nadzbiorem ~> zbioru q wtedy i tylko wtedy gdy zawiera co najmniej wszystkie elementy zbioru q
p~>q =1 - gdy relacja nadzbioru ~> jest (=1) spełniona
Inaczej:
p~>q =0 - relacja nadzbioru ~> nie jest (=0) spełniona

W algebrze Kubusia w zbiorach zachodzi tożsamość pojęć:
Podzbiór => = relacja podzbioru =>
Nadzbiór => = relacja nadzbioru =>

Definicja podstawowa równoważności p<=>q w warunkach wystarczającym => i koniecznym ~>:
Równoważność p<=>q to jednoczesne zachodzenie zarówno warunku wystarczającego =>, jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
stąd:
p<=>q = (A1: p=>q)*(B1: p~>q) = 1*1 =1

W algebrze Kubusia w zbiorach zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

Stąd mamy:
Definicja tożsama równoważności p<=>q w relacjach podzbioru => i nadzbioru ~>:
Równoważność p<=>q to jednoczesne zachodzenie zarówno relacji podzbioru =>, jak i relacji nadzbioru ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 - zbiór p jest (=1) podzbiorem => zbioru q
B1: p~>q =1 - zbiór p jest (=1) nadzbiorem ~> zbioru q
stąd:
p<=>q = (A1: p=>q)*(B1: p~>q) = 1*1 =1

Na mocy definicji podzbioru => i nadzbioru ~> mamy:
Każdy zbiór jest (=1) podzbiorem => siebie samego
Każdy zbiór jest (=1) nadzbiorem ~> siebie samego

Na mocy powyższego mamy:
Definicja tożsamości zbiorów p=q:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q i jednocześnie zbiór p jest nadzbiorem ~> zbioru q (i odwrotnie)
p=q <=> (A1: p=>q)*(B1: p~>q) = p<=>q
Innymi słowy:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy prawdziwa jest równoważność p<=>q (i odwrotnie)

Dowód iż dla p=q każda równoważność p<=>q jest prawdziwa:
Definicja równoważności p<=>q:
p<=>q = (A1: p=>q)*(B1: p~>q)
stąd dla p=q mamy:
p<=>p = (A1: p=>p)*(B1: p~>p) = 1*1 =1
bo:
A1: p=>p =1 - każdy zbiór jest (=1) podzbiorem => siebie samego
B1: p~>p =1 - każdy zbiór jest (=1) nadzbiorem ~> siebie samego
cnd

Przykład:
Definicja równoważności w zapisie formalnym {p, q}:
p<=>q = (A1: p=>q)*(B1: p~>q)=1*1=1
Podstawmy następujące p=q:
p = P2=[2,4,6,8..] - zbiór liczb podzielnych przez 2
q = P2=[2,4,6,8..] - zbiór liczb podzielnych przez 2

Stąd mamy równoważność <=> prawdziwą w zapisie aktualnym {P8, P8}:
RA1B1:
Dowolna liczba jest podzielna przez 2 wtedy i tylko wtedy gdy jest podzielna przez 2
P2<=>P2 = (A1: P2=>P2)*(B1: P2~>P2) =1*1 =1
bo:
A1: P2=>P2 =1 - każdy zbiór jest (=1) podzbiorem => siebie samego
B1: P2~>P2 =1 - każdy zbiór jest (=1) nadzbiorem ~> siebie samego
cnd

Prawą stronę czytamy:
Podzielność dowolnej liczby przez 2 jest warunkiem koniecznym ~> i wystarczającym => dla jej podzielności przez 2
P2<=>P2 = (A1: P2=>P2)*(B1: P2~>P2) =1*1 =1

Podsumowując do zapamiętania!

Definicja tożsamości zbiorów p=q:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q i jednocześnie zbiór p jest nadzbiorem ~> zbioru q (i odwrotnie)
p=q <=> (A1: p=>q)*(B1: p~>q) = p<=>q
Innymi słowy:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy prawdziwa jest równoważność p<=>q (i odwrotnie)

Zauważmy, że powyższa definicja tożsamości zbiorów p=q to Armagedon ziemskiej logiki „matematycznej”!

Twierdzenie Smoka Wawelskiego:
Dowolny ziemski matematyk, który twierdzi iż definicja „implikacji materialnej” jest matematycznie poprawna w naszym Wszechświecie żywym i martwym (w tym w matematyce) jest pacjentem zakładu zamkniętego bez klamek.
Innymi słowy:
Ziemska interpretacja równoważności p<=>q z Wikipedii to straszliwie ciężki przypadek schizofrenii.

Dowód:
[link widoczny dla zalogowanych]
Wikipedia napisał:

Równoważność p<=>q (lub: ekwiwalencja) – twierdzenie, w którym poprzednik p jest zarówno warunkiem koniecznym ~>, jak i wystarczającym => dla następnika q.
To zdanie zapisuje się za pomocą spójnika wtedy i tylko wtedy (wtw), gdy...

Przykłady równoważności prawdziwych:
Trawa jest zielona wtedy i tylko wtedy gdy 2 + 2 = 4
2+2=4 wtedy i tylko wtedy gdy Płock leży nad Wisłą
etc

Zauważmy, że wytłuszczona część definicji równoważności p<=>q z Wikipedii jest poprawna i identyczna jak w algebrze Kubusia … ale przykłady równoważności prawdziwych z Wikipedii to jedno wielkie, potwornie śmierdzące gówno.

Puenta ziemskiej definicji równoważności p<=>q z Wikipedii:
Ziemska definicja równoważności p<=>q to straszliwie ciężki przypadek schizofrenii - zdradzają to przykłady z Wikipedii.

Rozważmy pierwszy przykład:
Na mocy wytłuszczonej, poprawnej definicji równoważności z Wikipedii ziemscy twardogłowi „matematycy” zapisują:
RA1B1:
Trawa jest zielona wtedy i tylko wtedy, gdy 2 + 2 = 4
TZ<=>224 <=> (A1: TZ=>224)*(B1: TZ~>224) = 1*1 =1

Jak widzimy, ziemski „matematyk” twierdząc, że powyższa równoważność RA1B1 jest prawdziwa musi udowodnić prawdziwość zdań składowych A1 i B1.

Dowód prawdziwości warunku wystarczającego => A1:
A1.
Jeśli trawa jest zielona to na 100% => 2+2=4
TZ=>224 =1
Z faktu iż trawa jest zielona wynika => że 2+2=4
Innymi słowy:
Zieloność trawy jest warunkiem wystarczającym => do tego, aby 2+2=4

Jak prawdziwość warunku wystarczającego => A1 dowodzą ziemscy „matematycy”?
Oczywiście: nie wiem!
Po odpowiedź należy się udać do zakładu zamkniętego bez klamek, będącego domem dla absolutnie wszystkich fanatyków „implikacji materialnej”, czyli ziemskich twardogłowych matematyków.

Dowód prawdziwości warunku koniecznego ~> B1:
B1.
Jeśli trawa jest zielona to na 100% ~> 2+2=4
TZ~>224 =1
Zieloność trawy jest warunkiem koniecznym ~> do tego, aby 2+2=4

Jak prawdziwość warunku koniecznego ~> B1 dowodzą ziemscy „matematycy”?
Oczywiście: nie wiem!
Po odpowiedź należy się udać do zakładu zamkniętego bez klamek, będącego domem dla absolutnie wszystkich fanatyków „implikacji materialnej”, czyli ziemskich twardogłowych matematyków.

Wróćmy ze szpitala psychiatrycznego, którym jest schizofreniczne rozumienie poprawnej definicji równoważności p<=>q w Wikipedii do algebry Kubusia, czyli do świata zdrowych na umyśle, normalnych matematyków.

W algebrze Kubusia mamy zaledwie trzy znaczki (=>, ~> i ~~>) na których zbudowana jest kompletna algebra Kubusia w obsłudze zdań warunkowych "Jeśli p to q".
1.
Warunek wystarczający =>:

p=>q =1 - gdy zajście p jest (=1) warunkiem wystarczającym => dla zajścia q
Inaczej:
p=>q =0
2.
Warunek konieczny ~>:

p~>q =1 0 gdy zajście p jest (=1) konieczne ~> dla zajścia q
Inaczej:
p~>q =0
3.
Zdarzenie możliwe ~~> lub element wspólny zbiorów ~~>

Zdarzenia:
Definicja zdarzenia możliwego ~~> w zdarzeniach:
p~~>q = p*q =1 - gdy możliwe jest (=1) jednoczesne zajście zdarzeń p i q
Inaczej:
p~~>q=p*q =0
Zbiory:
Definicja elementu wspólnego zbiorów ~~>:
p~~>q = p*q =1 - gdy zbiory p i q mają (=1) element wspólny
Inaczej:
p~~>q = p*q=0
Kod:

T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
      ##        ##           ##        ##            ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5:  p+~q

Prawa Kubusia:        | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q  | A1: p=>q  = A4:~q=>~p
B1: p~>q = B2:~p=>~q  | B2:~p=>~q = B3: q=>p

Prawa Tygryska:       | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p   | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p   | B1: p~>q  = B4:~q~>~p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


TR.
Definicja podstawowa równoważności p<=>q:

Równoważność p<=>q to jednoczesne zachodzenie zarówno warunku wystarczającego =>, jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
stąd:
p<=>q = (A1: p=>q)*(B1: p~>q) = 1*1 =1

Lewą stronę czytamy:
Zajdzie p wtedy i tylko wtedy gdy zadzie q

Prawą stronę czytamy:
Zajście p jest potrzebne ~> i wystarczające => do tego, aby zaszło q

Podstawmy tą definicję do matematycznych związków warunku wystarczającego => i koniecznego ~>:
Kod:

T1
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w równoważności p<=>q
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p =1 [=] 5: ~p+q
      ##        ##           ##        ##               ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p =1 [=] 5:  p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla udowodnienia, iż zdanie warunkowe „Jeśli p to q” wchodzi w skład równoważności p<=>q potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Ax oraz prawdziwość dowolnego zdania serii Bx.
Zauważmy, że nie ma znaczenia które zdanie będziemy brali pod uwagę, bowiem prawami logiki matematycznej (prawa Kubusia, prawa Tygryska i prawa kontrapozycji) zdanie to możemy zastąpić zdaniem logicznie tożsamym z kolumny A1B1.

Kluczowym punktem zaczepienia w wyprowadzeniu symbolicznej definicji równoważności p<=>q jest definicja kontrprzykładu rodem z algebry Kubusia działająca wyłącznie w warunku wystarczającym =>.

Definicja kontrprzykładu w zbiorach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane elementem wspólnym zbiorów p~~>~q=p*~q

Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>~q=p*~q

Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)

Uzupełnijmy naszą tabelę wykorzystując powyższe rozstrzygnięcia działające wyłącznie w warunkach wystarczających =>.
Kod:

TR:
Tabela prawdy równoważności p<=>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q =1 - p jest (=1) wystarczające => dla q
B1: p~>q =1 - p jest (=1) konieczne ~> dla q
p<=>q = (A1: p=>q)*(B1: p~>q) =1*1=1
       A1B1:         A2B2:        |     A3B3:         A4B4:
A:  1: p=>q  =1 = 2:~p~>~q=1     [=] 3: q~>p  =1 = 4:~q=>~p =1
A’: 1: p~~>~q=0 =                [=]             = 4:~q~~>p =0
       ##            ##           |     ##            ##
B:  1: p~>q  =1 = 2:~p=>~q=1     [=] 3: q=>p  =1 = 4:~q~>~p =1
B’:             = 2:~p~~>q=0     [=] 3: q~~>~p=0

Równanie operatora równoważności p|<=>q:
A1B1:                                                     A2B2:
p<=>q = (A1: p=>q)*(B2 p~>q) = (A2:~p~>~q)*(B2:~p=>~q) = ~p<=>~q

Operator równoważności p|<=>q to układ równań logicznych:
A1B1: p<=>q =(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p
A2B2:~p<=>~q=(A2:~p~>~q)*(B2:~p=>~q) - co się stanie jeśli zajdzie ~p

Układ równań logicznych jest przemienny, stąd mamy:
Operator równoważności ~p|<=>~q to układ równań logicznych:
A2B2:~p<=>~q=(A2:~p~>~q)*(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A1B1: p<=>q =(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Definicja podstawowa równoważności p<=>q w logice dodatniej (bo q):
Kolumna A1B1:
Równoważność p<=>q w logice dodatniej (bo q) to jednoczesne zachodzenie zarówno warunku wystarczającego =>, jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
stąd:
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) = 1*1 =1

Lewą stronę czytamy:
Zajdzie p wtedy i tylko wtedy gdy zajdzie q
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) = 1*1 =1

Innymi słowy:
Prawą stronę czytamy:
Zajście p jest konieczne ~> i wystarczające => dla zajścia q
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) = 1*1 =1

Definicja podstawowa równoważności p<=>q jest w praktyce doskonale znana każdemu człowiekowi.
Dowód:
Klikamy na googlach:
„konieczne i wystarczające”
Wyników: 14 500
„koniecznym i wystarczającym”
Wyników: 12 500
„potrzeba i wystarcza”
Wyników: 9890

Definicja definicji podstawowej dowolnego spójnika implikacyjnego:
Definicja podstawowa dowolnego spójnika implikacyjnego to definicja tego spójnika w logice dodatniej (bo q). Jeśli w definicji dowolnego spójnika implikacyjnego nie zaznaczamy w jakiej jest logice to domyślnie chodzi nam o definicję podstawową tego spójnika.

Mówiąc o definicji podstawowej możemy zatem pominąć sygnalizację w jakiej logice ta definicja jest wyrażona.

Definicja równoważności ~p<=>~q w logice ujemnej (bo ~q):
Kolumna A2B2:
Równoważność ~p<=>~q w logice ujemnej (bo ~q) to jednoczesne zachodzenie zarówno warunku wystarczającego =>, jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A2: ~p~>~q =1 - zajście ~p jest (=1) konieczne ~> dla zajścia ~q
B2: ~p=>~q =1 - zajście ~p jest (=1) wystarczające => dla zajścia ~q
Stąd:
A2B2: ~p<=>~q = (A2: ~p~>~q)*(B2:~p=>~q)=1*1=1

Lewą stronę czytamy:
Zajdzie ~p wtedy i tylko wtedy gdy zajdzie ~q
A2B2: ~p<=>~q = (A2: ~p~>~q)*(B2:~p=>~q)=1*1=1

Innymi słowy:
Prawą stronę czytamy:
Zajście ~p jest konieczne ~> i wystarczające => dla zajścia ~q
A2B2: ~p<=>~q = (A2: ~p~>~q)*(B2:~p=>~q)=1*1=1

Definicja dowolnego operatora implikacyjnego p||?q:
Operator implikacyjny p||?q to odpowiedź na pytanie co się stanie jeśli zajdzie p oraz co się stanie jeśli zajdzie ~p

Równanie operatora równoważności p|<=>q:
Kod:

T2.
Równanie operatora równoważności p|<=>q:
A1B1:                                                      A2B2
p<=>q = (A1: p=>q)*(B1: p~>q) = (A2:~p~>~q)*(B2:~p=>~q) = ~p<=>~q
bo prawa Kubusia:
A1: p=>q = A2: ~p~>~q
B1: p~>q = B2: ~p=>~q
cnd


Dlaczego to jest równanie operatora równoważności p|<=>q?
A1B1: W kolumnie A1B1 mamy odpowiedź na pytanie co może się wydarzyć jeśli zajdzie p
A2B2: W kolumnie A2B2 mamy odpowiedź na pytanie co może się wydarzyć jeśli zajdzie ~p

Stąd mamy:
Operator równoważności p|<=>q w logice dodatniej (bo q) to układ równań logicznych A1B1 i A2B2 dający odpowiedź na pytanie o p i ~p:
A1B1: p<=>q = (A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p?
A2B2: ~p<=>~q = (A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p?

Układ równań logicznych jest przemienny, stąd mamy:
Operator równoważności ~p|<=>~q w logice ujemnej (bo ~q) to układ równań logicznych A2B2 i A1B1 dający odpowiedź na pytanie o ~p i p:
A2B2:~p<=>~q=(A2:~p~>~q)*(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A1B1: p<=>q =(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p

Z tabeli T2 odczytujemy tożsamość logiczną:
A1B1: p<=>q = A2B2: ~p<=>~q

Definicja tożsamości logicznej:
Prawdziwość dowolnej strony tożsamości logicznej „=” wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej „=” wymusza fałszywość drugiej strony

Innymi słowy
1.
Udowodnienie iż dany układ spełnia definicję równoważności p<=>q w logice dodatniej (bo q) jest tożsame z udowodnieniem iż ten sam układ spełnia definicję równoważności ~p<=>~q w logice ujemnej (bo ~q), albo odwrotnie.
A1B1: p<=>q = A2B2: ~p<=>~q

Na mocy definicji operatorów logicznych p|<=>q i ~p|<=>~q widzimy, że udowodnienie prawdziwości 1 pociąga za sobą prawdziwość 2:
2.
p|<=>q = ~p|<=>~>q
cnd

3.3.1 Równoważność p<=>q jako tożsamość zbiorów/pojęć

TR
Definicja równoważności p<=>q:

Równoważność p<=>q to zachodzenie zarówno warunku wystarczającego => jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku.
Kolumna A1B1:
A1: p=>q =1 - p jest (=1) wystarczające => dla q
B1: p~>q =1 - p jest (=1) konieczne ~> dla q
p<=>q = (A1: p=>q)*(B2 p~>q)
Kod:

TR:
Tabela prawdy równoważności p<=>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q =1 - p jest (=1) wystarczające => dla q
B1: p~>q =1 - p jest (=1) konieczne ~> dla q
p<=>q = (A1: p=>q)*(B1: p~>q) =1*1=1
       A1B1:         A2B2:        |     A3B3:         A4B4:
A:  1: p=>q  =1 = 2:~p~>~q=1     [=] 3: q~>p  =1 = 4:~q=>~p =1
A’: 1: p~~>~q=0 =                [=]             = 4:~q~~>p =0
       ##            ##           |     ##            ##
B:  1: p~>q  =1 = 2:~p=>~q=1     [=] 3: q=>p  =1 = 4:~q~>~p =1
B’:             = 2:~p~~>q=0     [=] 3: q~~>~p=0

Równanie operatora równoważności p|<=>q:
A1B1:                                                     A2B2:
p<=>q = (A1: p=>q)*(B2 p~>q) = (A2:~p~>~q)*(B2:~p=>~q) = ~p<=>~q

Operator równoważności p|<=>q to układ równań logicznych:
A1B1: p<=>q =(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p
A2B2:~p<=>~q=(A2:~p~>~q)*(B2:~p=>~q) - co się stanie jeśli zajdzie ~p

Układ równań logicznych jest przemienny, stąd mamy:
Operator równoważności ~p|<=>~q to układ równań logicznych:
A2B2:~p<=>~q=(A2:~p~>~q)*(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A1B1: p<=>q =(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


W algebrze Kubusia w zbiorach zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

Definicja dowolnego ziemskiego twierdzenia matematycznego TM:
Dowolne ziemskie twierdzenie matematyczne TM jest tożsame z warunkiem wystarczającym p=>q.

Matematyczna definicja równoważności p<=>q:
Matematyczna definicja równoważności to relacja podzbioru => zachodząca w dwie strony.
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q, czyli zbiór p jest podzbiorem => q
B3: q=>p =1 - zajście q jest (=1) wystarczające => dla zajścia p, czyli zbiór q jest podzbiorem => p
Zajdzie p wtedy i tylko wtedy gdy zajdzie q
A1B3: p<=>q = (A1: p=>q)*(B3: q=>p)=1*1=1

Stąd mamy wyprowadzoną definicję tożsamości zbiorów p=q znaną absolutnie każdemu ziemskiemu matematykowi!

A1B3:
Definicja tożsamości zbiorów p=q:

Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy zbiór p jest (=1) podzbiorem => zbioru q i jednocześnie zbiór q jest (=1) podzbiorem => zbioru p
p=q <=> (A1: p=>q)*(B3: q=>p) = A1B3: p<=>q

Dla B3 skorzystajmy z prawa Tygryska:
B3: q=>p = B1: p~>q

Stąd mamy tożsamą definicję tożsamości zbiorów p=q zdefiniowaną kolumną A1B1.

A1B1: Zbiory
Definicja tożsamości zbiorów p=q:

Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy zbiór p jest (=1) podzbiorem => zbioru q i jednocześnie zbiór p jest (=1) nadzbiorem ~> zbioru q
p=q <=> (A1: p=>q)*(B1: p~>q) = A1B1: p<=>q

Prawo rachunku zero-jedynkowego:
A1B1: p<=>q = A2B2: ~p<=>~q

Definicja tożsamości logicznej „=”:
A1B1: p<=>q = A2B2:~p<=>~q
Prawdziwość dowolnej strony tożsamości logicznej „=” wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej „=” wymusza fałszywość drugiej strony

Innymi słowy:
Udowodnienie iż dany układ spełnia definicję równoważności A1B1: p<=>q w logice dodatniej (bo q) jest tożsame z udowodnieniem iż ten sam układ spełnia definicję równoważności A2B2:~p<=>~q w logice ujemnej (bo ~q), albo odwrotnie.

Stąd dla kolumny A2B2 mamy.
A2B2: Zbiory
Definicja tożsamości zbiorów ~p=~q:

Dwa zbiory ~p i ~q są tożsame ~p=~q wtedy i tylko wtedy gdy zbiór ~p jest (=1) podzbiorem => zbioru ~q i jednocześnie zbiór ~p jest (=1) nadzbiorem ~> zbioru ~q
~p=~q <=> (A2: ~p~>~q)*(B2:~p=>~q) = A2B2: ~p<=>~q

3.3.2 Diagram równoważności w zbiorach

Prawo rachunku zero-jedynkowego:
A1B1: p<=>q = A2B2: ~p<=>~q

Znaczenie powyższej tożsamości logicznej w przełożeniu na zbiory.
Tożsamość zbiorów p=q definiowana przez:
p=q <=> (A1: p=>q)*(B1: p~>q) = A1B1: p<=>q
wymusza tożsamość zbiorów ~p=~q definiowaną przez:
~p=~q <=> (A2: ~p~>~q)*(B2:~p=>~q) = A2B2: ~p<=>~q
(i odwrotnie)

Na tej podstawie łatwo rysujemy diagram równoważności p<=>q w zbiorach:
Kod:

 DR:
 Diagram równoważności p<=>q w zbiorach
-------------------------------------------------------------------------
| D - wspólna dziedzina dla p i q                                       |
| p+~p =D =1   | q+~q =D =1                                             |
| p*~p =[]=0   | q*~q =[]=0                                             |
-------------------------------------------------------------------------
| Zbiór: p=q                      # Zbiór: ~p=~q
| A1B1: Równoważność dla p:       | A2B2: Równoważność dla ~p           |
| p<=>q = (A1: p=>q)*(B1: p~>q)  [=] ~p<=>~q = (A2: ~p~>~q)*(B2:~p=>~q) |
| Definiuje tożsamość zbiorów:    |  Definiuje tożsamość zbiorów:       |
| p=q                             #  ~p=~q                              |
-------------------------------------------------------------------------
Gdzie:
# - różne w znaczeniu iż jedna strona jest negacją drugiej strony
[=] - tożsamość logiczna

Z diagramu widzimy że:
~p=~(p) - zbiór ~p jest zaprzeczeniem zbioru p
~q=~(q) - zbiór ~q jest zaprzeczeniem zbioru q
Prawa podwójnego przeczenia:
p = ~(~p) - zbiór p jest zaprzeczeniem zbioru ~p (prawo podwójnego przeczenia)
q = ~(~q) - zbiór q jest zaprzeczeniem zbioru ~q (prawo podwójnego przeczenia)

Dziedzina D dla zbiorów p i q musi być wspólna, bowiem wtedy i tylko wtedy między zbiorami p i q mogą zachodzić podstawowe relacje (=>, ~> i ~~>) w zbiorach.

Relacja podzbioru =>:
p=>q =1 - wtedy i tylko wtedy gdy zbiór p jest podzbiorem => q
inaczej:
p=>q =0

Relacja nadzbioru ~>:
p~>q =1 - wtedy i tylko wtedy gdy zbiór p jest nadzbiorem ~> q
Inaczej:
p~>q =0

Relacja elementu wspólnego ~~>:
p~~>q =1 - wtedy i tylko wtedy gdy zbiory p i q mają element wspólny
Inaczej:
p~~>q =0

Definicja wspólnej dziedziny D dla p:
p+~p =D =1 - zbiór ~p jest uzupełnieniem do dziedziny D dla zbioru p
p*~p =[] =0 - zbiory p i ~p są rozłączne
Definicja wspólnej dziedziny D dla q:
q+~q =D =1 - zbiór ~q jest uzupełnieniem do dziedziny dla zbioru q
q*~q =[] =0 - zbiory q i ~q są rozłączne
Stąd mamy:
~p=[D-p] = [p+~p -p] = ~p
~q=[D-q] = [q+~q -q] = ~q

3.3.3 Definicja operatora równoważności p|<=>q

TR
Definicja równoważności p<=>q:

Równoważność p<=>q to zachodzenie zarówno warunku wystarczającego => jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku.
Kolumna A1B1:
A1: p=>q =1 - p jest (=1) wystarczające => dla q
B1: p~>q =1 - p jest (=1) konieczne ~> dla q
p<=>q = (A1: p=>q)*(B1: p~>q)
Kod:

TR:
Tabela prawdy równoważności p<=>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q =1 - p jest (=1) wystarczające => dla q
B1: p~>q =1 - p jest (=1) konieczne ~> dla q
p<=>q = (A1: p=>q)*(B1: p~>q) =1*1=1
       A1B1:         A2B2:        |     A3B3:         A4B4:
A:  1: p=>q  =1 = 2:~p~>~q=1     [=] 3: q~>p  =1 = 4:~q=>~p =1
A’: 1: p~~>~q=0 =                [=]             = 4:~q~~>p =0
       ##            ##           |     ##            ##
B:  1: p~>q  =1 = 2:~p=>~q=1     [=] 3: q=>p  =1 = 4:~q~>~p =1
B’:             = 2:~p~~>q=0     [=] 3: q~~>~p=0

Równanie operatora równoważności p|<=>q:
A1B1:                                                     A2B2:
p<=>q = (A1: p=>q)*(B2 p~>q) = (A2:~p~>~q)*(B2:~p=>~q) = ~p<=>~q

Operator równoważności p|<=>q to układ równań logicznych:
A1B1: p<=>q =(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p
A2B2:~p<=>~q=(A2:~p~>~q)*(B2:~p=>~q) - co się stanie jeśli zajdzie ~p

Układ równań logicznych jest przemienny, stąd mamy:
Operator równoważności ~p|<=>~q to układ równań logicznych:
A2B2:~p<=>~q=(A2:~p~>~q)*(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A1B1: p<=>q =(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


Operator równoważności p|<=>q to układ równań logicznych A1B1 i A2B2 dający odpowiedź na pytanie o p i ~p :
A1B1: p<=>q =(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p
A2B2:~p<=>~q=(A2:~p~>~q)*(B2:~p=>~q) - co się stanie jeśli zajdzie ~p

Kolumna A1B1:
Co może się wydarzyć jeśli zajdzie p (p=1)?


Odpowiedź mamy w kolumnie A1B1:
A1: p=>q =1 - zajście p jest wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest konieczne ~> dla zajścia q
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q)=1*1=1
Stąd:
Lewą stronę czytamy:
Zajdzie p wtedy i tylko wtedy gdy zajdzie q
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q)=1*1=1
Prawą stronę czytamy:
Zajście p (p=1) jest konieczne ~> i wystarczające => dla zajścia q (q=1)
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) = 1*1 =1
Powyższa równoważność definiuje tożsamość zbiorów/pojęć:
Zbiory:
Zbiór p jest tożsamy ze zbiorem q p=q wtedy i tylko wtedy gdy zajście p jest konieczne ~> i wystarczające => dla zajścia q
p=q <=> (A1: p=>q)*(B1: p~>q) = p<=>q
Zdarzenia:
Zdarzenie p jest tożsame ze zdarzeniem q p=q wtedy i tylko wtedy gdy zajście p jest konieczne ~> i wystarczające => dla zajścia q
p=q <=> (A1: p=>q)*(B1: p~>q) = p<=>q
Tożsamość zbiorów/pojęć p=q wymusza tożsamość zbiorów/pojęć ~p=~q (albo odwrotnie)

Odpowiedź na pytanie co może się wydarzyć jest zajdzie p w rozpisce na warunek wystarczający =>.

Kolumna A1B1:
A1.
Jeśli zajdzie p (p=1) to na 100% => zajdzie q (q=1)
p=>q =1
Zajście p jest (=1) wystarczające => dla zajścia q
Zajście p daje nam (=1) gwarancję matematyczną => zajścia q
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>

Prawdziwy warunek wystarczający A1 wymusza fałszywy kontrprzykład A1’ i odwrotnie:
A1’.
Jeśli zajdzie p (p=1) to może ~~> zajść ~q (~q=1)
p~~>~q = p*~q =0
Zbiory:
Nie istnieje (=0) element wspólny zbiorów ~~>: p i ~q
Wynika to z tożsamości zbiorów/pojęć p=q która wymusza tożsamość zbiorów ~p=~q (albo odwrotnie)
Relacja matematyczna jaka tu zachodzi to:
p=q # ~p=~q
Gdzie:
# - dowolna strona znaczka # jest zaprzeczeniem drugiej strony
Zdarzenia:
Nie jest możliwe (=0) jednoczesne zajście zdarzeń ~~>: p i ~q

Kolumna A2B2:
Co może się wydarzyć jeśli zajdzie ~p (~p=1)?


Odpowiedź mamy w kolumnie A2B2:
A2: ~p~>~q =1 - zajście ~p jest (=1) konieczne ~> dla zajścia ~q
B2: ~p=>~q =1 - zajście ~p jest wystarczające => dla zajścia ~q
A2B2: ~p<=>~q = (A2: ~p~>~q)*(B2: ~p=>~q) =1*1=1
stąd:
Lewą stronę czytamy:
Zajdzie ~p wtedy i tylko wtedy gdy zajdzie ~q
A2B2: ~p<=>~q = (A2: ~p~>~q)*(B2: ~p=>~q) =1*1=1
Prawą stronę czytamy:
Zajście ~p jest konieczne ~> i wystarczające => dla zajścia ~q
A2B2: ~p<=>~q = (A2: ~p~>~q)*(B2:~p=>~q)=1*1=1
Powyższa równoważność definiuje tożsamość zbiorów/pojęć:
Zbiory:
Zbiór ~p jest tożsamy ze zbiorem ~q ~p=~q wtedy i tylko wtedy gdy zajście ~p jest konieczne ~> i wystarczające => dla zajścia ~q
~p=~q = (A2: ~p~>~q)*(B2:~p=>~q) = ~p<=>~q
Zdarzenia:
Zdarzenie ~p jest tożsame ze zdarzeniem ~q ~p=~q wtedy i tylko wtedy gdy zajście ~p jest konieczne ~> i wystarczające => dla zajścia ~q
~p=~q = (A2: ~p~>~q)*(B2:~p=>~q) = ~p<=>~q
Tożsamość zbiorów/pojęć ~p=~q wymusza tożsamość zbiorów/pojęć p=q (albo odwrotnie)

Odpowiedź na pytanie co może się wydarzyć jest zajdzie ~p w rozpisce na warunek wystarczający =>.

Kolumna A2B2:
B2.
Jeśli zajdzie ~p (~p=1) to na 100% => zajdzie ~q (~q=1)
~p=>~q =1
Zajście ~p jest (=1) wystarczające => dla zajścia ~q
Zajście ~p daje nam (=1) gwarancję matematyczną => zajścia ~q
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>

Prawdziwy warunek wystarczający B2 wymusza fałszywy kontrprzykład B2’ i odwrotnie:
B2’.
Jeśli zajdzie ~p (~p=1) to może ~~> zajść q (q=1)
~p~~>q = ~p*q =0
Zbiory:
Nie istnieje (=0) element wspólny zbiorów ~~>: ~p i q
Wynika to z tożsamości zbiorów/pojęć ~p=~q która wymusza tożsamość zbiorów p=q (albo odwrotnie)
Relacja matematyczna jaka tu zachodzi to:
~p=~q # p=q
Gdzie:
# - dowolna strona znaczka # jest zaprzeczeniem drugiej strony
Zdarzenia:
Nie jest możliwe (=0) jednoczesne zajście zdarzeń ~~>: ~p i q

Podsumowanie:
Jak widzimy, istotą operatora równoważności p|<=>q jest gwarancja matematyczna => po stronie p (zdanie A1), jak również gwarancja matematyczna => po stronie ~p (zdanie B2).
Nie ma tu mowy o jakimkolwiek „rzucaniu monetą” w sensie „na dwoje babka wróżyła” jak to mieliśmy w operatorze implikacji prostej p||=>q czy też w operatorze implikacji odwrotnej p||~>q.

Zauważmy że:
a)
Układ równań logicznych jest przemienny, stąd mamy:
Operator równoważności ~p|<=>~q to układ równań logicznych:
A2B2:~p<=>~q=(A2:~p~>~q)*(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A1B1: p<=>q =(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p
Doskonale widać, że analiza matematyczna operatora równoważności ~p|<=>~q w logice ujemnej (bo ~q) będzie identyczna jak operatora implikacji prostej p|<=>q w logice dodatniej (bo q) z tym, że zaczynamy od kolumny A2B2 kończąc na kolumnie A1B1.
b)
Także kolejność wypowiadanych zdań jest dowolna, tak więc zdania z powyższej analizy A1, A1’, B2, B2’ możemy wypowiadać w sposób losowy - matematycznie to bez znaczenia.

3.3.4 Równoważność Pitagorasa TP<=>SK

W algebrze Kubusia w zbiorach zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>
Kod:

T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
      ##        ##           ##        ##            ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5:  p+~q

Prawa Kubusia:        | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q  | A1: p=>q  = A4:~q=>~p
B1: p~>q = B2:~p=>~q  | B2:~p=>~q = B3: q=>p

Prawa Tygryska:       | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p   | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p   | B1: p~>q  = B4:~q~>~p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


Prawo śfinii:
Dowolne zdanie warunkowe od którego zaczynamy analizę matematyczną jest domyślnym punktem odniesienia, gdzie po „Jeśli ..” zapisujemy p zaś po „to..” zapisujemy q z pominięciem przeczeń.

Weźmy twierdzenie proste Pitagorasa dla trójkątów prostokątnych:
A1.
Jeśli trójkąt jest prostokątny (TP=1) to na 100% => zachodzi w nim suma kwadratów (SK=1)
TP=>SK=1
Twierdzenie proste Pitagorasa ludzkość udowodniła wieki temu.
Ten dowód oznacza, że zbiór trójkątów prostokątnych (TP=1) jest podzbiorem => zbioru trójkątów ze spełnioną sumą kwadratów (SK=1)
Na mocy prawa śfinii zdanie A1 przyjmujemy za punkt odniesienia:
p=TP
q=SK
stąd zdanie A1 w zapisie formalnym {p, q}
A1: p=>q =1

W tym momencie twierdzenie proste Pitagorasa może być już tylko częścią implikacji prostej TP|=>SK albo częścią równoważności TP<=>SK. Aby to rozstrzygnąć musimy zbadać warunek konieczny ~> między tymi samymi punktami i w tym samym kierunku.

B1.
Jeśli trójkąt jest prostokątny (TP=1) to na 100% ~> zachodzi w nim suma kwadratów (SK=1)
TP~>SK =?
to samo w zapisie formalnym:
p~>q =?

Definicja twierdzenia matematycznego:
Dowolne twierdzenie matematyczne jest tożsame z warunkiem wystarczającym =>.

W zdaniu B1 nie mamy warunku wystarczającego => ale to nie problem, bo możemy skorzystać z prawa Tygryska.
Prawo Tygryska w zapisie formalnym:
B1: p~>q = B3: q=>p
Nasz przykład:
A1: TP~>SK = B3: SK=>TP

Wniosek:
Aby udowodnić prawdziwość warunku koniecznego ~> w zdaniu B1: TP~>SK potrzeba ~> i wystarcza => udowodnić twierdzenie odwrotne Pitagorasa: B3: SK=>TP

Twierdzenie odwrotne Pitagorasa dla trójkątów prostokątnych:
B3.
Jeśli w trójkącie zachodzi suma kwadratów (SK=1) to na 100% => ten trójkąt jest prostokątny (TP=1)
SK=>TP =1
Twierdzenie odwrotne Pitagorasa ludzkość udowodniła wieki temu.
Ten dowód oznacza, że zbiór SK jest podzbiorem => zbioru TP.

Oba twierdzenia łącznie (A1 i B3) definiują znaną każdemu matematykowi tożsamości zbiorów.

Definicja tożsamości zbiorów p=q:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q i zbiór q jest podzbiorem zbioru p
p=q <=> (A1: p=>q)*(B3: q=>p) = A1B3: p<=>q

Nasz przykład:
Definicja tożsamości zbiorów TP=SK:
Dwa zbiory TP i SK są tożsame TP=SK wtedy i tylko wtedy gdy zbiór TP jest podzbiorem => zbioru SK (twierdzenie proste) i zbiór SK jest podzbiorem => zbioru TP (twierdzenie odwrotne)
TP=SK <=> (A1: TP=>SK)*(B3: SK=>TP) = TP<=>SK

Dla B3 korzystamy z prawa Tygryska:
B3: q=>p = B1: p~>q - prawo Tygryska w zapisie formalnym {p, q}
B3: SK=>TP = B1: TP~>SK - prawo Tygryska w zapisie aktualnym {p=TP, q=SK}

Stąd mamy tożsamą definicje tożsamości zbiorów TP=SK:
Dwa zbiory TP i SK są tożsame TP=SK wtedy i tylko wtedy gdy zbiór TP jest podzbiorem => zbioru SK i jednocześnie zbiór TP jest nadzbiorem ~> zbioru SK.
TP=SK <=> (A1: TP=>SK)*(B1: TP~>SK) = TP<=>SK

Stąd mamy dowód iż twierdzenie proste Pitagorasa A1: TP=>SK jest częścią równoważności Pitagorasa dla trójkątów prostokątnych TP.

Równoważność Pitagorasa TP<=>SK dla trójkątów prostokątnych:
RA1B1:
Równoważność TP<=>SK to jednoczesne zachodzenie zarówno warunku wystarczającego => jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku.
Kolumna A1B1:
A1: TP=>SK =1 - zajście TP jest (=1) wystarczające => dla zajścia SK
B1: TP~>SK =1 - zajście TP jest (=1) konieczne ~> dla zajścia SK
A1B1: TP<=>SK=(A1: TP=>SK)*(B1: TP~>SK)=1*1=1

Prawo rachunku zero-jedynkowego:
RA1B1: TP<=>SK = RA2B2: ~TP<=>~SK

Dowód:
Kod:

RA1B1:                                                           RA2B2:
TP<=>SK=(A1: TP=>SK)*(B1: TP~>SK)[=](A2:~TP~>~SK)*(B2:~TP=>~SK)=~TP<=>~SK
bo prawa Kubusia:
A1: TP=>SK = A2:~TP=>~SK
B1: TP~>SK = B2:~TP=>~SK

Stąd mamy udowodnioną tożsamość zbiorów ~TP=~SK:
Kolumna A2B2:
Zbiory ~TP i ~SK są tożsame ~TP=~SK wtedy i tylko wtedy gdy zbiór ~TP jest podzbiorem => zbioru ~SK i jednocześnie zbiór ~TP jest nadzbiorem ~> zbioru ~SK
~TP=~SK = (A2: ~TP~>~SK)*(B2: ~TP=>~SK) = ~TP<=>~SK

Z powyższego wynika, że po udowodnieniu równoważności Pitagorasa dla trójkątów prostokątnych definiującej tożsamość zbiorów TP=SK:
TP=SK <=> (A1: TP=>SK)*(B1: TP~>SK) =1*1 =1
nie musimy dowodzić równoważności Pitagorasa dla trójkątów nieprostokątnych definiującej tożsamość zbiorów ~TP=~SK:
~TP=~SK = (A2: ~TP~>~SK)*(B2: ~TP=>~S) = ~TP<=>~SK
bowiem gwarantuje nam to prawo rachunku zero-jedynkowego:
RA1B1: TP<=>SK = RA2B2: ~TP<=>~SK
To samo w zapisie formalnym:
p<=>q = ~p<=>~q
cnd

Podstawmy naszą równoważność TP<=>SK do tabeli prawdy równoważności TR.
Kod:

TR: Tabela prawdy równoważności p<=>q
Kolumna A1B1 to punkt odniesienia w zapisie formalnym {p,q}:
A1: p=>q =1 - p jest (=1) wystarczające => dla q
B1: p~>q =1 - p jest (=1) konieczne ~> dla q
p<=>q = (A1: p=>q)*(B1: p~>q) =1*1=1
Aktualny punkt odniesienia na mocy prawa śfinii:
p=TP
q=SK
Punkt odniesienia A1B1 w zapisie aktualnym {TP,SK}:
A1: TP=>SK =1 - zajście TP jest (=1) wystarczające => dla zajścia SK
B1: TP~>SK =1 - zajście TP jest (=1) konieczne ~> dla zajścia SK
A1B1: TP<=>SK=(A1: TP=>SK)*(B1: TP~>SK)=1*1=1
       A1B1:           A2B2:       |     A3B3:            A4B4:
A:  1: p=>q    =1 = 2:~p~>~q  =1  [=] 3: q~>p    =1  = 4:~q=>~p   =1
A:  1: TP=>SK  =1 = 2:~TP~>~SK=1  [=] 3: SK~>TP  =1  = 4:~SK=>~TP =1
A’: 1: p~~>~q  =0 =               [=]                = 4:~q~~>p   =0
A’: 1: TP~~>~SK=0 =               [=]                = 4:~SK~~>TP =0
       ##              ##          |     ##               ##
B:  1: p~>q    =1 = 2:~p=>~q  =1  [=] 3: q=>p    =1  = 4:~q~>~p   =1
B:  1: TP~>SK  =1 = 2:~TP=>~SK=1  [=] 3: SK=>TP  =1  = 4:~SK~>~TP =1
B’:               = 2:~p~~>q  =0  [=] 3: q~~>~p  =0
B’:               = 2:~TP~~>SK=0  [=] 3: SK~~>~TP=0

Równanie operatora równoważności p|<=>q:
A1B1:                                                     A2B2:
p<=>q = (A1: p=>q)*(B2 p~>q) = (A2:~p~>~q)*(B2:~p=>~q) = ~p<=>~q

Operator równoważności p|<=>q to układ równań logicznych:
A1B1: p<=>q =(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p
A2B2:~p<=>~q=(A2:~p~>~q)*(B2:~p=>~q) - co się stanie jeśli zajdzie ~p

Układ równań logicznych jest przemienny, stąd mamy:
Operator równoważności ~p|<=>~q to układ równań logicznych:
A2B2:~p<=>~q=(A2:~p~>~q)*(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A1B1: p<=>q =(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla poprawienia czytelności tabeli prawdy TR zmienne aktualne (TR i SK) podstawiono wyłącznie w nagłówku tabeli i jej części głównej, odpowiedzialnej za generowanie zdań warunkowych wchodzących w skład operatora równoważności p|<=>q.

3.3.5 Operator równoważności Pitagorasa TP|<=>SK

Operator równoważności Pitagorasa TP|<=>SK to układ równań logicznych A1B1 i A2B2 dający odpowiedź na pytanie o TP i ~TP:
A1B1: TP<=>SK =(A1: TP=>SK)* (B1: TP~>SK) - co się stanie jeśli zajdzie TP
A2B2:~TP<=>~SK=(A2:~TP~>~SK)*(B2:~TP=>~SK) - co się stanie jeśli zajdzie ~TP

Innymi słowy:
Operator równoważności TP|<=>SK to układ równań logicznych A1B1 i A2B2 dający odpowiedź na pytanie o TP i ~TP:

A1B1:
Co może się wydarzyć jeśli ze zbioru wszystkich trójkątów wylosujemy trójkąt prostokątny (TP=1)?


Odpowiedź mamy w kolumnie A1B1:
A1: TP=>SK =1 - zajście TP jest (=1) wystarczające => dla zajścia SK
B1: TP~>SK =1 - zajście TP jest (=1) konieczne ~> dla zajścia SK
A1B1: TP<=>SK=(A1: TP=>SK)*(B1: TP~>SK)=1*1=1
Prawą stronę czytamy:
Bycie trójkątem prostokątnym (TP) jest warunkiem koniecznym ~> i wystarczającym => do tego, by zachodziła w nim suma kwadratów (SK)
TP<=>SK = (A1: TP=>SK)*(B1: TP~>SK) =1*1 =1
Powyższa równoważność definiuje tożsamość zbiorów:
TP=SK <=> (A1: TP=>SK)*(B1: TP~>SK) = TP<=>SK
Tożsamość zbiorów TP=SK wymusza tożsamość zbiorów ~TP=~SK (albo odwrotnie)
Zachodzi relacja matematyczna:
TP=SK # ~TP=~SK
Gdzie:
# - różne w znaczeniu iż jedna strona znaczka # jest negacją drugiej strony

Kolumna A1B1:
W rozpisce na warunek wystarczający => mamy:
A1.
Jeśli trójkąt jest prostokąty (TP=1) to na 100% => zachodzi w nim suma kwadratów (SK=1)
TP=>SK =1
Bycie trójkątem prostokątnym (TP=1) jest warunkiem wystarczającym => do tego by zachodziła w nim suma kwadratów (SK=1)
Bycie trójkątem prostokątnym (TP=1) daje nam gwarancję matematyczną => iż będzie zachodziła w nim suma kwadratów (SK=1)
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>

Prawdziwy warunek wystarczający A1 wymusza fałszywy kontrprzykład A1’ i odwrotnie.
A1’.
Jeśli trójkąt jest prostokątny (TP=1) to może ~~> nie zachodzić w nim suma kwadratów (~SK=1)
TP~~>~SK = TP*~SK =0
Definicja elementu wspólnego zbiorów ~~> TP i ~SK nie jest spełniona bo zbiory TP i ~SK są rozłączne.
Wynika to z tożsamości zbiorów TP=SK która wymusza tożsamość zbiorów ~TP=~SK (albo odwrotnie)
Relacja matematyczna jaka tu zachodzi to:
TP=SK # ~TP=~SK
Gdzie:
# - dowolna strona znaczka # jest zaprzeczeniem drugiej strony

A2B2:
Co może się wydarzyć jeśli ze zbioru wszystkich trójkątów wylosujemy trójkąt nieprostokątny (~TP=1)?


Odpowiedź mamy w kolumnie A2B2:
A2: ~TP~>~SK =1 - zajście ~TP jest (=1) konieczne ~> dla zajścia ~SK
B2: ~TP=>~SK =1 - zajście ~TP jest (=1) wystarczające => dla zajścia ~SK
A2B2: ~TP<=>~SK = (A2: ~TP~>~SK)*(B2: ~TP=>~SK) =1*1 =1
Prawą stronę czytamy:
Bycie trójkątem nieprostokątnym (~TP=1) jest warunkiem koniecznym ~> i wystarczającym => do tego, aby nie zachodziła w nim suma kwadratów (~SK=1)
~TP<=>~SK = (A2: ~TP~>~SK)*(B2: ~TP=>~SK) =1*1 =1
Powyższa równoważność definiuje tożsamość zbiorów:
~TP=~SK <=> (A2: ~TP~>~SK)*(B2: ~TP=>~SK) =~TP<=>~SK
Tożsamość zbiorów ~TP=~SK wymusza tożsamość zbiorów TP=SK (albo odwrotnie)
Zachodzi relacja matematyczna:
~TP=~SK # TP=SK
Gdzie:
# - różne w znaczeniu iż jedna strona znaczka # jest negacją drugiej strony

Kolumna A2B2:
W rozpisce na warunek wystarczający => mamy:
B2.
Jeśli trójkąt nie jest prostokątny (~TP=1) to na 100% => nie zachodzi w nim suma kwadratów (~SK=1)
~TP=>~SK =1
Bycie trójkątem nieprostokątnym (~TP=1) jest warunkiem wystarczającym => do tego by nie zachodziła w nim suma kwadratów (~SK=1)
Bycie trójkątem nieprostokątnym (~TP=1) daje nam gwarancję matematyczną => iż nie będzie zachodziła w nim suma kwadratów (~SK=1)
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>

Prawdziwy warunek wystarczający B2 wymusza fałszywość kontrprzykładu B2’ i odwrotnie.
B2’.
Jeśli trójkąt nie jest prostokątny (~TP=1) to może ~~> zachodzić w nim w nim suma kwadratów (~SK=1)
~TP~~>~SK=~TP*SK =0
Definicja elementu wspólnego zbiorów ~~> ~TP i SK nie jest spełniona bo zbiory ~TP i SK są rozłączne.
Wynika to z tożsamości zbiorów ~TP=~SK która to tożsamość wymusza tożsamość zbiorów TP=SK (albo odwrotnie)

Podsumowanie:
Jak widzimy, istotą operatora równoważności TP|<=>SK jest gwarancja matematyczna => po stronie TP (zdanie A1), jak również gwarancja matematyczna => po stronie ~TP (zdanie B2).
Nie ma tu mowy o jakimkolwiek „rzucaniu monetą” w sensie „na dwoje babka wróżyła” jak to mieliśmy w operatorze implikacji prostej p||=>q czy też w operatorze implikacji odwrotnej p||~>q.

Zauważmy że:
a)
Układ równań logicznych jest przemienny, stąd mamy:
Operator równoważności ~p|<=>~q to układ równań logicznych:
A2B2:~p<=>~q=(A2:~p~>~q)*(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A1B1: p<=>q =(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p
Doskonale widać, że analiza matematyczna operatora równoważności ~TP|<=>~SK w logice ujemnej (bo ~SK) będzie identyczna jak operatora implikacji prostej TP|<=>SK w logice dodatniej (bo SK) z tym, że zaczynamy od kolumny A2B2 kończąc na kolumnie A1B1.
b)
Także kolejność wypowiadanych zdań jest dowolna, tak więc zdania z powyższej analizy A1, A1’, B2, B2’ możemy wypowiadać w sposób losowy - matematycznie to bez znaczenia.

3.3.6 Diagram równoważności Pitagorasa TP<=>SK i ~TP<=>~SK

Graficznie równoważności Pitagorasa możemy przedstawić tak
Kod:

T1:
Zbiór trójkątów prostokątnych:       |Zbiór trójkątów nieprostokątnych:
TP=SK                                |~TP=~SK
Równoważność Pitagorasa              | Równoważność Pitagorasa
dla trójkątów prostokątnych (TP)     | dla trójkątów nieprostokątnych (~TP)
TP<=>SK = (A1: TP=>SK)*(B1: TP~>SK) [=] ~TP<=>~SK = (A2: ~TP~>~SK)*(B2:~TP=>~SK)
Definiuje tożsamość zbiorów:         |  Definiuje tożsamość zbiorów:
TP=SK                                #  ~TP=~SK
# - różne w znaczeniu iż jedna strona jest negacją drugiej strony
[=] - tożsamość logiczna

Przyjmijmy dziedzinę minimalną dla równoważności Pitagorasa:
ZWT - zbiór wszystkich trójkątów
Definicja wspólnej dziedziny ZWT dla TP:
TP+~TP =D =1 - zbiór ~TP jest uzupełnieniem do dziedziny ZWT dla zbioru TP
TP*~TP =[] =0 - zbiory TP i ~TP są rozłączne
Definicja wspólnej dziedziny ZWT dla SK:
SK+~SK =D =1 - zbiór ~SK jest uzupełnieniem do dziedziny ZWT dla zbioru SK
SK*~SK =[] =0 - zbiory SK i ~SK są rozłączne
Stąd mamy:
~TP=[D-TP] = [TP+~TP -TP] =~TP
~SK=[D-SK] = [SK+~SK -SK] =~SK
Zachodzi również:
TP = ~(~TP) - zbiór TP jest zaprzeczeniem zbioru ~TP (prawo podwójnego przeczenia)
SK = ~(~SK) - zbiór SK jest zaprzeczeniem zbioru ~SK (prawo podwójnego przeczenia)
oraz:
~TP=~(TP) - zbiór ~TP jest zaprzeczeniem zbioru TP
~SK=~(SK) - zbiór ~SK jest zaprzeczeniem zbioru SK

Definicja tożsamości logicznej „=”:
A1B1: p<=>q = A2B2:~p<=>~q
Prawdziwość dowolnej strony tożsamości logicznej „=” wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej „=” wymusza fałszywość drugiej strony

Innymi słowy:
Na poziomie spójnika równoważności <=> mamy:
Udowodnienie iż dany układ spełnia definicję równoważności A1B1: p<=>q w logice dodatniej (bo q) jest tożsame z udowodnieniem iż ten sam układ spełnia definicję równoważności A2B2:~p<=>~q w logice ujemnej (bo ~q), albo odwrotnie.

Nasz przykład:
Udowodnienie równoważności Pitagorasa dla trójkątów prostokątnych:
A1B1: TP<=>SK - ta równoważność definiuje tożsamość zbiorów TP=SK
jest tożsame z udowodnieniem równoważności Pitagorasa dla trójkątów nieprostokątnych:
A2B2: ~TP<=>~SK - ta równoważność definiuje tożsamość zbiorów ~TP=~SK

Wniosek z zachodzącej tożsamości logicznej:
A1B1: TP<=>SK = A2B2:~TP<=>~SK
Udowodnienie tożsamości zbiorów TP=SK jest tożsame z udowodnieniem tożsamości zbiorów ~TP=~SK (albo odwrotnie)

Objaśnienia:
Równoważność Pitagorasa dla trójkątów prostokątnych (TP=1):
A1B1: TP<=>SK = (A1: TP=>SK)*(B1: TP~>SK) =1*1 =1
Prawo Tygryska:
B1: TP~>SK = B3: SK=>TP
stąd tożsama równoważność Pitagorasa znana każdemu matematykowi:
A1B1: TP<=>SK = (A1: TP=>SK)*(B3: SK=>TP) =1*1 =1
Gdzie:
A1: TP=>SK - twierdzenie proste Pitagorasa
A1: p=>q =1 - twierdzenie proste Pitagorasa w zapisie formalnym
B3: SK=>TP - twierdzenie odwrotne Pitagorasa
B3: q=>p =1 - twierdzenie odwrotne Pitagorasa w zapisie formalnym

Uwaga:
Więcej prostych przykładów operatora równoważności p|<=>q zarówno w zbiorach, jak i w zdarzeniach znaleźć można w punkcie 6.5


Ostatnio zmieniony przez rafal3006 dnia Pią 9:26, 11 Cze 2021, w całości zmieniany 4 razy
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 35331
Przeczytał: 23 tematy

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Pią 17:16, 11 Cze 2021    Temat postu:

Algebra Kubusia - ostatnie czytanie!
Część V

Po raz ostatni przed premierą czytam od początku algebrę Kubusia likwidując literówki i udoskonalając przekaz.

http://www.sfinia.fora.pl/forum-kubusia,12/algebra-kubusia-w-przebudowie,18899.html#593841

Algebra Kubusia
3.4 Definicje podstawowe - „albo” p$q i chaos p|~~>q

„Łatwiej jest wielbłądowi przejść przez ucho igielne, niż bogatemu wejść do królestwa niebieskiego” (Mt 19,24; por. Łk 18,25)

Twierdzenie Smoka Wawelskiego:
Łatwiej nauczyć algebry Kubusia ucznia I klasy LO który nie wie nic a nic w temacie logiki matematycznej, w szczególności nie zna potwornie śmierdzącego gówna zwanego „implikacją materialną” niż przestawić mózg twardogłowego matematyka dla którego „implikacja materialna” jest bogiem, na myślenie w algebrze Kubusia.

http://www.sfinia.fora.pl/forum-kubusia,12/p-1-i-q-1-ale-p-q-0,10575-450.html#369345
Irbisol napisał:
Ty jesteś naprawdę ograniczony - nie ma z tobą podstawowego kontaktu ... Nie wiem, jak do ciebie przemówić, bo twoja głupota przerasta wszystko, co do tej pory spotkałem na wielu forach


Spis treści
3.4 Spójnik „albo”($) 1
3.4.1 Operator „albo” p|$q w rozpisce na zdania warunkowe „Jeśli p to q” 7
3.4.2 Spójnik „albo” M$K 10
3.4.3 Operator „albo” M|$K 13
3.5 Chaos p|~~>q 15
3.5.1 Operator chaosu p||~~>q 19
3.5.2 Chaos P8|~~>P3 20
3.5.3 Operator chaosu P8||~~>P3 23



3.4 Spójnik „albo”($)

W algebrze Kubusia w zbiorach zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>
Kod:

T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
      ##        ##           ##        ##            ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5:  p+~q

Prawa Kubusia:        | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q  | A1: p=>q  = A4:~q=>~p
B1: p~>q = B2:~p=>~q  | B2:~p=>~q = B3: q=>p

Prawa Tygryska:       | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p   | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p   | B1: p~>q  = B4:~q~>~p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


W wyjaśnianiu definicji spójnika „albo” p$q i operatora „albo” p|$q wspomożemy się konkretnym przykładem z teorii zbiorów {M$K), mającym przełożenie 1:1 na logikę formalną {p$q} pozwalającym łatwo zrozumieć o co tu chodzi.

Rozważmy zdanie:
Dowolny człowiek jest mężczyzną (M=1) „albo”($) kobietą (K=1)
M$K = (A1: M=>~K)*(B1: M~>~K) =1*1 =1
Przyjmijmy dziedzinę minimalną:
C (człowiek) - zbiór wszystkich ludzi
Stąd mamy definicję dziedziny:
M+K = C =1 - bo zbiór kobiet (K) jest uzupełnieniem do dziedziny dla zbioru mężczyzn (M)
M*K =[] =0 - bo zbiór mężczyzn (M) jest rozłączny ze zbiorem kobiet (K)
Obliczamy przeczenia zbiorów rozumiane jako ich uzupełnienia do dziedziny:
~M = [C-M] = [M+K-M] =K
~K = [C-K] = [M+K-K]=M
to samo po zamianie argumentów w tożsamości zbiorów:
M = ~K - człowiek jest mężczyzną (M=1) wtedy i tylko wtedy gdy nie jest kobietą (~K=1)
K=~M - człowiek jest kobietą (K=1) wtedy i tylko wtedy gdy nie jest mężczyzną (~M=1)
Narysujmy diagram w zbiorach pasujący do tego zdania.

Diagram operatora „albo” p|$q wspomagany przykładem o mężczyźnie (M) i kobiecie (K)
Kod:

 DA:
 Diagram operatora „albo” p|$q w zbiorach/zdarzeniach
--------------------------------------------------------------------------
| D (dziedzina)                                                          |
| p+q =D =1 - zbiór q jest uzupełnieniem do dziedziny D dla zbioru p     |
| p*q =[]=0 - zbiory p i q są rozłączne                                  |
| Dla zmiennych aktualnych M (mężczyzna) i K (kobieta) mamy:             |
| C (człowiek) - zbiór wszystkich ludzi                                  |
| K+M =C =1 - zbiór M jest uzupełnieniem do dziedziny C dla K            |
| K*M =[]=0 - zbiór M jest rozłączny ze zbiorem K w dziedzinie C         |
--------------------------------------------------------------------------
: Zbiór: p=M (mężczyzna)          # Zbiór: q=K (kobieta)                 |
| A1B1: Spójnik „albo”($) dla p:  | A2B2: Spójnik „albo”($) dla ~p       |
| p$q = (A1: p=>~q)*(B1: p~>~q)  [=] ~p$~q = (A2:~p~>q)*(B2:~p=>q)       |
| M$K = (A1: M=>~K)*(B1: M~>~K)  [=] ~M$~K = (A2:~M~>K)*(B2:~M=>K)       |
| Stąd mamy:                      |  Stąd mamy:                          |
| p=~q - p jest negacją (~)q w D  #  q=~p - q jest negacją (~)p w D      |
| M=~K - M jest negacją (~)K w C  #  K=~M - K jest negacją (~)M w C      |
--------------------------------------------------------------------------
Gdzie:
# - różne w znaczeniu iż jedna strona jest negacją drugiej strony
[=] - tożsamość logiczna

Dla naszego przykładu mamy:
Definicja podstawowa spójnika „albo” M$K w logice dodatniej (bo K):
Spójnik „albo” M$K w logice dodatniej (bo K) to jednoczesne zachodzenie zarówno warunku wystarczającego =>, jak i koniecznego ~> w kierunku od M do ~K
A1: M=>~K =1 - bycie mężczyzną (M=1) jest (=1) wystarczające => by nie być kobietą (~K=1)
B1: M~>~K =1 - bycie mężczyzną (M=1) jest (=1) konieczne ~> by nie być kobietą (~K=1)
stąd:
A1B1: p$q = (A1: M=>~K)*(B1: M~>~K) = 1*1 =1
Dowody formalne (patrz diagram DA):
Dla ~K=M mamy:
A1: M=>~K = M=>M =1 - bo każdy zbiór/pojęcie jest podzbiorem => siebie samego
B1: M~>~K = M~>M =1 - bo każdy zbiór/pojęcie jest nadzbiorem ~> siebie samego
cnd
To samo w zapisie formalnym po podstawieniu:
M=p
K=q
Definicja podstawowa spójnika „albo” p$q w logice dodatniej (bo q):
Kolumna A1B1:
Spójnik „albo” p$q w logice dodatniej (bo q) to jednoczesne zachodzenie zarówno warunku wystarczającego =>, jak i koniecznego ~> w kierunku od p do ~q
A1: p=>~q =1 - zajście p jest (=1) wystarczające => dla zajścia ~q
B1: p~>~q =1 - zajście p jest (=1) konieczne ~> dla zajścia ~q
stąd:
A1B1: p$q = (A1: p=>~q)*(B1: p~>~q) = 1*1 =1
Dowody formalne (patrz diagram DA):
Dla ~q=p mamy:
A1: p=>~q = p=>p =1 - bo każdy zbiór/pojęcie jest podzbiorem => siebie samego
B1: p~>~q = p~>p =1 - bo każdy zbiór/pojęcie jest nadzbiorem ~> siebie samego
cnd

Podstawmy definicję spójnika „albo” p$q w logice dodatniej (bo q) do matematycznych związków warunku wystarczającego => i koniecznego ~>:
Kod:

T1
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w spójniku „albo” p$q w logice dodatniej (bo q)
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>~q = 2:~p~>q [=] 3: ~q~>p = 4: q=>~p =1 [=] 5: ~p+~q
      ##         ##           ##        ##               ##
B: 1: p~>~q = 2:~p=>q [=] 3: ~q=>p = 4: q~>~p =1 [=] 5:  p+q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla udowodnienia, iż zdanie warunkowe „Jeśli p to q” wchodzi w skład spójnika „albo” p$q potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Ax oraz prawdziwość dowolnego zdania serii Bx.
Zauważmy, że nie ma znaczenia które zdanie będziemy brali pod uwagę, bowiem prawami logiki matematycznej (prawa Kubusia, prawa Tygryska i prawa kontrapozycji) zdanie to możemy zastąpić zdaniem logicznie tożsamym z kolumny A1B1.

Kluczowym punktem zaczepienia w wyprowadzeniu symbolicznej definicji spójnika „albo” p$q jest definicja kontrprzykładu rodem z algebry Kubusia działająca wyłącznie w warunku wystarczającym =>.

Definicja kontrprzykładu w zbiorach:
Kontrprzykładem dla warunku wystarczającego p=>~q nazywamy to samo zdanie z zanegowanym następnikiem kodowane elementem wspólnym zbiorów p~~>q=p*q

Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>~q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>q=p*q

Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>~q=1 wmusza fałszywość kontrprzykładu p~~>q=p*q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>~q=0 wmusza prawdziwość kontrprzykładu p~~>q=p*q=1 (i odwrotnie)

Uzupełnijmy naszą tabelę wykorzystując powyższe rozstrzygnięcia działające wyłącznie w warunkach wystarczających =>.
Kod:

TA:
Tabela prawdy spójnika „albo” p$q w logice dodatniej (bo q)
Kolumna A1B1 to punkt odniesienia:
A1: p=>~q =1 - p jest (=1) wystarczające => dla ~q
B1: p~>~q =1 - p jest (=1) konieczne ~> dla ~q
p$q = (A1: p=>~q)*(B1: p~>~q) =1*1=1
       A1B1:        A2B2:       |      A3B3:         A4B4:
A:  1: p=>~q=1 = 2:~p~>q  =1   [=] 3: ~q~>p  =1 = 4: q=>~p =1
A’: 1: p~~>q=0 =               [=]              = 4: q~~>p =0
       ##           ##          |      ##            ##
B:  1: p~>~q=1 = 2:~p=>q  =1   [=] 3: ~q=>p  =1 = 4: q~>~p =1
B’:            = 2:~p~~>~q=0   [=] 3: ~q~~>~p=0

Równanie operatora „albo” p|$q:
A1B1:                                                   A2B2:
p$q = (A1: p=>~q)*(B1: p~>~q) = (A2:~p~>q)*(B2:~p=>q) = ~p$~q

Operator „albo” p|$q to układ równań logicznych:
A1B1: p$q =(A1: p=>~q)* (B1: p~>~q) - co się stanie jeśli zajdzie p
A2B2:~p$~q=(A2:~p~>q)*(B2:~p=>q) - co się stanie jeśli zajdzie ~p

Układ równań logicznych jest przemienny, stąd mamy:
Operator „albo” ~p|$~q to układ równań logicznych:
A2B2:~p$~q=(A2:~p~>q)*(B2:~p=>q) - co się stanie jeśli zajdzie ~p
A1B1: p$q =(A1: p=>~q)* (B1: p~>~q) - co się stanie jeśli zajdzie p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


Definicja podstawowa spójnika „albo” p$q w logice dodatniej (bo q):
Kolumna A1B1:
Spójnik „albo” p$q w logice dodatniej (bo q) to jednoczesne zachodzenie zarówno warunku wystarczającego =>, jak i koniecznego ~> w kierunku od p do ~q
A1: p=>~q =1 - zajście p jest (=1) wystarczające => dla zajścia ~q
B1: p~>~q =1 - zajście p jest (=1) konieczne ~> dla zajścia ~q
A1B1: p$q = (A1: p=>~q)*(B1: p~>~q) = 1*1 =1

Lewą stronę czytamy:
Zajdzie p „albo”($) zajdzie q
A1B1: p$q = (A1: p=>~q)*(B1: p~>~q) = 1*1 =1
Trzeciej możliwości brak

Nasz przykład:
Dowolny człowiek jest mężczyzną (M) albo($) kobietą (K)
A1B1: M$K = (A1: M=>~K)*(B1: M~>~K) = 1*1 =1
Trzeciej możliwości brak

Prawą stronę czytamy:
Do tego aby zaszło p potrzeba ~> i wystarcza => aby zaszło ~q
A1B1: p$q = (A1: p=>~q)*(B1: p~>~q) = 1*1 =1
Zdanie matematycznie tożsame:
Zajdzie p wtedy i tylko wtedy gdy zajdzie ~q
p<=>~q = (A1: p=>~q)*(B1: p~>~q) = p$q

Nasz przykład:
Aby dowolny człowiek był mężczyzną (M) potrzeba ~> i wystarcza => aby nie był kobietą (~K)
A1B1: M$K = (A1: M=>~K)*(B1: M~>~K) = 1*1 =1
Zdanie matematycznie tożsame:
Dowolny człowiek jest mężczyzną (M) wtedy i tylko wtedy gdy nie jest kobietą (~K)
M<=>~K = (A1: M=>~K)*(B1: M~>~K) = M$K

Definicja definicji podstawowej dowolnego spójnika implikacyjnego:
Definicja podstawowa dowolnego spójnika implikacyjnego to definicja tego spójnika w logice dodatniej (bo q). Jeśli w definicji dowolnego spójnika implikacyjnego nie zaznaczamy w jakiej jest logice to domyślnie chodzi nam o definicję podstawową tego spójnika.

Mówiąc o definicji podstawowej możemy zatem pominąć sygnalizację w jakiej logice ta definicja jest wyrażona.

Definicja spójnika „albo” ~p$~q w logice ujemnej (bo ~q):
Kolumna A2B2:
Spójnik „albo” ~p$~q w logice ujemnej (bo ~q) to jednoczesne zachodzenie zarówno warunku wystarczającego =>, jak i koniecznego ~> w kierunku od ~p do q
A2: ~p~>q =1 - zajście ~p jest konieczne ~> dla zajścia q
B2: ~p=>q =1 - zajście ~p jest wystarczające => dla zajścia q
A2B2: ~p$~q = (A2: ~p~>q)*(B2: ~p=>q) =1*1 =1

Lewą stronę czytamy:
Zajdzie ~p albo ($) zajdzie ~q
A2B2: ~p$~q = (A2: ~p~>q)*(B2: ~p=>q) =1*1 =1
Trzeciej możliwości brak

Nasz przykład:
Dowolny człowiek nie jest mężczyzną (~M) albo ($) nie jest kobietą (~K)
A2B2: ~M$~K = (A2: ~M~>K)*(B2: ~M=>K) =1*1 =1
Trzeciej możliwości brak.

Prawą stronę czytamy:
Zajście ~p jest potrzebne ~> i wystarczające => do tego, aby zaszło q
A2B2: ~p$~q = (A2: ~p~>q)*(B2: ~p=>q) =1*1 =1
Zdanie matematycznie tożsame:
Zajdzie ~p wtedy i tylko wtedy gdy zajdzie q
~p<=>q = (A2: ~p~>q)*(B2: ~p=>q) = ~p$~q

Nasz przykład:
Aby nie być mężczyzną (~M) potrzeba ~> i wystarcza => być kobietą (K)
A2B2: ~M$~K = (A2: ~M~>K)*(B2: ~M=>K) =1*1 =1
Zdanie matematycznie tożsame:
Dowolny człowiek nie jest mężczyzną (~M) wtedy i tylko wtedy gdy jest kobietą (K)
~M<=>K = (A2: ~M~>K)*(B2: ~M=>K) = ~M$~K

Definicja dowolnego operatora implikacyjnego p||?q:
Operator implikacyjny p||?q to odpowiedź na pytanie co się stanie jeśli zajdzie p oraz co się stanie jeśli zajdzie ~p
Kod:

T2.
Równanie operatora „albo” p|$q:
A1B1:                                                   A2B2:
p$q = (A1: p=>~q)*(B1: p~>~q) = (A2:~p~>q)*(B2:~p=>q) = ~p$~q
bo prawa Kubusia:
A1: p=>~q = A2: ~p~>q
B1: p~>~q = B2: ~p=>q
cnd


Dlaczego to jest równanie operatora „albo” p|$q?
A1B1: W kolumnie A1B1 mamy odpowiedź na pytanie co może się wydarzyć jeśli zajdzie p
A2B2: W kolumnie A2B2 mamy odpowiedź na pytanie co może się wydarzyć jeśli zajdzie ~p

Stąd mamy:
Operator „albo” p|$q w logice dodatniej (bo p) to układ równań logicznych A1B1 i A2B2 dających odpowiedź na pytanie o p i ~p
A1B1: p$q =(A1: p=>~q)* (B1: p~>~q) - co się stanie jeśli zajdzie p
A2B2:~p$~q=(A2:~p~>q)*(B2:~p=>q) - co się stanie jeśli zajdzie ~p

Układ równań logicznych jest przemienny, stąd mamy:
Operator „albo” ~p|$~q w logice ujemnej (bo ~p) to układ równań logicznych A2B2 i A1B1 dający odpowiedź na pytanie o ~p i p
A2B2:~p$~q=(A2:~p~>q)*(B2:~p=>q) - co się stanie jeśli zajdzie ~p
A1B1: p$q =(A1: p=>~q)* (B1: p~>~q) - co się stanie jeśli zajdzie p

Z tabeli T2 odczytujemy tożsamość logiczną:
A1B1: p$q = A2B2:~p$~q

Definicja tożsamości logicznej:
Prawdziwość dowolnej strony tożsamości logicznej „=” wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej „=” wymusza fałszywość drugiej strony

Innymi słowy
1.
Udowodnienie iż dany układ spełnia definicję spójnika „albo” p$q w logice dodatniej (bo q) jest tożsame z udowodnieniem iż ten sam układ spełnia definicję spójnika „albo” ~p$~q w logice ujemnej (bo ~q), albo odwrotnie.
A1B1: p$q = A2B2:~p$~q

Na mocy definicji operatorów logicznych p|$q i ~p|$~q widzimy, że udowodnienie prawdziwości 1 pociąga za sobą prawdziwość 2:
2.
p|$q = ~p|$~>~q
cnd

3.4.1 Operator „albo” p|$q w rozpisce na zdania warunkowe „Jeśli p to q”

Kod:

 DA:
 Diagram operatora „albo” p|$q w zbiorach/zdarzeniach
--------------------------------------------------------------------------
| D (dziedzina)                                                          |
| p+q =D =1 - zbiór q jest uzupełnieniem do dziedziny D dla zbioru p     |
| p*q =[]=0 - zbiory p i q są rozłączne                                  |
| Dla zmiennych aktualnych M (mężczyzna) i K (kobieta) mamy:             |
| C (człowiek) - zbiór wszystkich ludzi                                  |
| K+M =C =1 - zbiór M jest uzupełnieniem do dziedziny C dla K            |
| K*M =[]=0 - zbiór M jest rozłączny ze zbiorem K w dziedzinie C         |
--------------------------------------------------------------------------
: Zbiór: p=M (mężczyzna)          # Zbiór: q=K (kobieta)                 |
| A1B1: Spójnik „albo”($) dla p:  | A2B2: Spójnik „albo”($) dla ~p       |
| p$q = (A1: p=>~q)*(B1: p~>~q)  [=] ~p$~q = (A2:~p~>q)*(B2:~p=>q)       |
| M$K = (A1: M=>~K)*(B1: M~>~K)  [=] ~M$~K = (A2:~M~>K)*(B2:~M=>K)       |
| Stąd mamy:                      |  Stąd mamy:                          |
| p=~q - p jest negacją (~)q w D  #  q=~p - q jest negacją (~)p w D      |
| M=~K - M jest negacją (~)K w C  #  K=~M - K jest negacją (~)M w C      |
--------------------------------------------------------------------------
Gdzie:
# - różne w znaczeniu iż jedna strona jest negacją drugiej strony
[=] - tożsamość logiczna

Operator „albo” p|$q w logice dodatniej (bo p) to układ równań logicznych A1B1 i A2B2 dających odpowiedź na pytanie o p i ~p

Kolumna A1B1:
Co może się wydarzyć jeśli zajdzie p (p=1)?


Odpowiedź mamy w kolumnie A1B1:
A1: p=>~q =1 - zajście p jest wystarczające => dla zajścia ~q
B1: p~>~q =1 - zajście p jest konieczne ~> dla zajścia ~q
A1B1: p$q =(A1: p=>~q)* (B1: p~>~q) =1*1=1
Dowody formalne (patrz diagram DA):
Dla ~q=p mamy:
A1: p=>~q = p=>p =1 - bo każdy zbiór/pojęcie jest podzbiorem => siebie samego
B1: p~>~q = p~>p =1 - bo każdy zbiór/pojęcie jest nadzbiorem ~> siebie samego
cnd

Odpowiedź na pytanie co może się wydarzyć jest zajdzie p w rozpisce na warunek wystarczający =>.
Kolumna A1B1:
A1.
Jeśli zajdzie p (p=1) to na 100% => zajdzie ~q (~q=1)
p=>~q =1
Zajście p jest (=1) wystarczające => dla zajścia ~q
Zajście p daje nam (=1) gwarancję matematyczną => zajścia ~q
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>
Zdarzenia:
Zajście zdarzenia p jest warunkiem wystarczającym => dla zajścia zdarzenia ~q
p=>~q =1
Zbiory:
Jeśli dowolny element zbioru należy do zbioru p to na 100% => należy do zbioru ~q
p=>~q =1
Przykład:
A1.
Jeśli dowolny człowiek jest mężczyzną (M=1) to na 100% => nie jest kobietą (~K=1)
M=>~K =1
Bycie mężczyzną (M=1) daje nam gwarancję matematyczną => iż nie jesteśmy kobietą (~K=1)
Matematycznie zachodzi (patrz diagram DA):
~K=M
stąd:
A1: M=>~K = M=>M =1 - bo każdy zbiór jest podzbiorem => siebie samego
cnd

Prawdziwy warunek wystarczający A1 wymusza fałszywy kontrprzykład A1’ i odwrotnie:
A1’.
Jeśli zajdzie p (p=1) to może ~~> zajść q (q=1)
p~~>q = p*q =[] =0 - bo zbiory/zdarzenia p i q są rozłączne
Zdarzenia:
Nie jest możliwe (=0) jednoczesne zajście zdarzeń ~~>: p i q
Zbiory:
Nie istnieje (=0) element wspólny zbiorów ~~>: p i q
Przykład:
A1’
Jeśli dowolny człowiek jest mężczyzną (M=1) to może ~~> być kobietą (K=1)
M~~>K = M*K =[] =0
Nie istnieje wspólny element zbioru mężczyzna (M=1) i kobieta K (K=1)
Dowód:
K=~M - patrz diagram DA, stąd:
A1’: M~~>K = M~~>~M = M*~M =[] =0

Kolumna A2B2:
Co może się wydarzyć jeśli zajdzie ~p (~p=1)?


Odpowiedź mamy w kolumnie A2B2:
A2: ~p~>q =1 - zajście ~p jest (=1) konieczne ~> dla zajścia q
B2: ~p=>q =1 - zajście ~p jest wystarczające => dla zajścia q
A2B2: ~p$~q = (A2: ~p~>q)*(B2: ~p=>q) =1*1=1
Dowody formalne (patrz diagram DA):
Dla q=~p mamy:
A2: ~p~>q = ~p~>~p =1 - bo każdy zbiór/pojęcie jest nadzbiorem ~> siebie samego
B2: ~p=>q = ~p=>~p =1 - bo każdy zbiór/pojęcie jest podzbiorem => siebie samego
cnd

Odpowiedź na pytanie co może się wydarzyć jest zajdzie ~p w rozpisce na warunek wystarczający =>:
Kolumna A2B2:
B2.
Jeśli zajdzie ~p (~p=1) to na 100% => zajdzie q (q=1)
~p=>q =1
Zajście ~p jest (=1) wystarczające => dla zajścia q
Zajście ~p daje nam (=1) gwarancję matematyczną => zajścia q
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>
Zdarzenia:
Jeśli zajdzie zdarzenie ~p to na 100% => zajdzie zdarzenie q
~p=>q =1
Zbiory:
Jeśli dowolny element należy do zbioru ~p to na 100% => należy do zbioru q
~p=>q =1 - przynależność do ~p jest wystarczająca => dla przynależności do q
Przykład:
B2.
Jeśli człowiek nie jest mężczyzną (~M=1) to na 100% => jest kobietą (K=1)
~M=>K=1
Nie bycie mężczyzną (~M=1) daje nam gwarancję matematyczną => iż jesteśmy kobietą (K=1)
Matematycznie zachodzi tożsamość (patrz diagram DA)
~M=K
stąd:
B2: ~M=>K = K=>K =1 - bo każdy zbiór/pojęcie jest podzbiorem => siebie samego
cnd

Prawdziwy warunek wystarczający B2 wymusza fałszywy kontrprzykład B2’ i odwrotnie:
B2’.
Jeśli zajdzie ~p (~p=1) to może ~~> zajść ~q (~q=1)
~p~~>~q = ~p*~q =[] =0 - bo zbiory/zdarzenia ~p i ~q są rozłączne
Zdarzenia:
Nie jest możliwe (=0) jednoczesne zajście zdarzeń ~~>: ~p i ~q
~p~~>~q = ~p*~q =[] =0
Dowód:
Matematycznie zachodzi tożsamość (patrz diagram DA):
~q=p
stąd mamy:
B2’: ~p~~>~q = ~p~~>p = ~p*p =[] =0
cnd

Zbiory:
B2’.
Jeśli dowolny element należy do zbioru ~p to może ~~> należeć do zbioru ~q
~p~~>~q = ~p*~q =[] =0 - bo zbiory/zdarzenia ~p i ~q są rozłączne
Przykład:
Jeśli dowolny człowiek nie jest mężczyzną (~M=1) to może ~~> nie być kobietą (~K=1)
~M~~>~K = ~K*~K =[] =0
Nie istnieje wspólny element zbioru nie mężczyzna ~M i nie kobieta ~K
Dowód:
Matematycznie zachodzi tożsamość (patrz diagram DA):
~K=M
stąd mamy:
B2’: ~M~~>~K = ~M~~>M = ~M*M =[] =0
cnd

Podsumowanie:
Jak widzimy, istotą operatora „albo” p|$q jest gwarancja matematyczna => po stronie p (zdanie A1), jak również gwarancja matematyczna => po stronie ~p (zdanie B2).
Nie ma tu mowy o jakimkolwiek „rzucaniu monetą” w sensie „na dwoje babka wróżyła” jak to mieliśmy w operatorze implikacji prostej p||=>q czy też w operatorze implikacji odwrotnej p||~>q.

Zauważmy że:
a)
Układ równań logicznych jest przemienny, stąd mamy:
Operator „albo” ~p|$~q to układ równań logicznych:
A2B2:~p$~q=(A2:~p~>q)*(B2:~p=>q) - co się stanie jeśli zajdzie ~p
A1B1: p$q =(A1: p=>~q)* (B1: p~>~q) - co się stanie jeśli zajdzie p
Doskonale widać, że analiza matematyczna operatora „albo” ~p|$~q w logice ujemnej (bo ~p) będzie identyczna jak operatora „albo” p|$q w logice dodatniej (bo p) z tym, że zaczynamy od kolumny A2B2 kończąc na kolumnie A1B1.
b)
Także kolejność wypowiadanych zdań jest dowolna, tak więc zdania z powyższej analizy A1, A1’, B2, B2’ możemy wypowiadać w sposób losowy - matematycznie to bez znaczenia.

3.4.2 Spójnik „albo” M$K

W algebrze Kubusia w zbiorach zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>
Kod:

T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
      ##        ##           ##        ##            ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5:  p+~q

Prawa Kubusia:        | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q  | A1: p=>q  = A4:~q=>~p
B1: p~>q = B2:~p=>~q  | B2:~p=>~q = B3: q=>p

Prawa Tygryska:       | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p   | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p   | B1: p~>q  = B4:~q~>~p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Prawo śfinii:
Dowolne zdanie warunkowe od którego zaczynamy analizę matematyczną jest domyślnym punktem odniesienia, gdzie po „Jeśli ..” zapisujemy p zaś po „to..” zapisujemy q z pominięciem przeczeń.

Rozważmy zdanie:
$A1B1:
Dowolny człowiek jest mężczyzną (M=1) „albo”($) kobietą (K=1)
M$K = (A1: M=>~K)*(B1: M~>~K) =1*1 =1
Na mocy prawa śfinii mamy:
p=M
q=K
stąd zdanie $A1B1 w zapisie formalnym {p, q} przyjmuje postać:
p$q = (A1: p=>~q)*(B1: p~>~q)=1*1=1

Przyjmijmy dziedzinę minimalną:
C (człowiek) - zbiór wszystkich ludzi
Stąd mamy definicję dziedziny:
M+K = C =1 - bo zbiór kobiet (K) jest uzupełnieniem do dziedziny dla zbioru mężczyzn (M)
M*K =[] =0 - bo zbiór mężczyzn (M) jest rozłączny ze zbiorem kobiet (K)
Obliczamy przeczenia zbiorów rozumiane jako ich uzupełnienia do dziedziny:
~M = [C-M] = [M+K-M] =K
~K = [C-K] = [M+K-K]=M
to samo po zamianie argumentów w tożsamości zbiorów:
M = ~K
K=~M
Narysujmy diagram w zbiorach pasujący do tego zdania.

Diagram operatora „albo” p|$q wspomagany przykładem o mężczyźnie (M) i kobiecie (K)
Kod:

 DA:
 Diagram operatora „albo” p|$q w zbiorach/zdarzeniach
--------------------------------------------------------------------------
| D (dziedzina)                                                          |
| p+q =D =1 - zbiór q jest uzupełnieniem do dziedziny D dla zbioru p     |
| p*q =[]=0 - zbiory p i q są rozłączne                                  |
| Dla zmiennych aktualnych M (mężczyzna) i K (kobieta) mamy:             |
| C (człowiek) - zbiór wszystkich ludzi                                  |
| K+M =C =1 - zbiór M jest uzupełnieniem do dziedziny C dla K            |
| K*M =[]=0 - zbiór M jest rozłączny ze zbiorem K w dziedzinie C         |
--------------------------------------------------------------------------
: Zbiór: p=M (mężczyzna)          # Zbiór: q=K (kobieta)                 |
| A1B1: Spójnik „albo”($) dla p:  | A2B2: Spójnik „albo”($) dla ~p       |
| p$q = (A1: p=>~q)*(B1: p~>~q)  [=] ~p$~q = (A2:~p~>q)*(B2:~p=>q)       |
| M$K = (A1: M=>~K)*(B1: M~>~K)  [=] ~M$~K = (A2:~M~>K)*(B2:~M=>K)       |
| Stąd mamy:                      |  Stąd mamy:                          |
| p=~q - p jest negacją (~)q w D  #  q=~p - q jest negacją (~)p w D      |
| M=~K - M jest negacją (~)K w C  #  K=~M - K jest negacją (~)M w C      |
--------------------------------------------------------------------------
Gdzie:
# - różne w znaczeniu iż jedna strona jest negacją drugiej strony
[=] - tożsamość logiczna

Dla naszego przykładu mamy:
Definicja podstawowa spójnika „albo” M$K w logice dodatniej (bo K):
Spójnik „albo” M$K w logice dodatniej (bo K) to jednoczesne zachodzenie zarówno warunku wystarczającego =>, jak i koniecznego ~> w kierunku od M do ~K
A1: M=>~K =1 - bycie mężczyzną (M=1) jest (=1) wystarczające => by nie być kobietą (~K=1)
B1: M~>~K =1 - bycie mężczyzną (M=1) jest (=1) konieczne ~> by nie być kobietą (~K=1)
stąd:
A1B1: M$K = (A1: M=>~K)*(B1: M~>~K) = 1*1 =1
Dowody formalne (patrz diagram DA):
Dla ~K=M mamy:
A1: M=>~K = M=>M =1 - bo każdy zbiór/pojęcie jest podzbiorem => siebie samego
B1: M~>~K = M~>M =1 - bo każdy zbiór/pojęcie jest nadzbiorem ~> siebie samego
cnd
To samo w zapisie formalnym po podstawieniu:
M=p
K=q
Definicja podstawowa spójnika „albo” p$q w logice dodatniej (bo q):
Kolumna A1B1:
Spójnik „albo” p$q w logice dodatniej (bo q) to jednoczesne zachodzenie zarówno warunku wystarczającego =>, jak i koniecznego ~> w kierunku od p do ~q
A1: p=>~q =1 - zajście p jest (=1) wystarczające => dla zajścia ~q
B1: p~>~q =1 - zajście p jest (=1) konieczne ~> dla zajścia ~q
stąd:
A1B1: p$q = (A1: p=>~q)*(B1: p~>~q) = 1*1 =1
Dowody formalne (patrz diagram DA):
Dla ~q=p mamy:
A1: p=>~q = p=>p =1 - bo każdy zbiór/pojęcie jest podzbiorem => siebie samego
B1: p~>~q = p~>p =1 - bo każdy zbiór/pojęcie jest nadzbiorem ~> siebie samego
cnd

Podstawmy to do tabeli prawdy spójnika „albo” M$K:
Kod:

TA:
Tabela prawdy spójnika „albo”($)
Kolumna A1B1 to punkt odniesienia w zapisie formalnym {p,q}:
A1: p=>~q =1 - p jest (=1) wystarczające => dla ~q
B1: p~>~q =1 - p jest (=1) konieczne ~> dla ~q
p$q = (A1: p=>~q)*(B1: p~>~q) =1*1=1
Dla naszego przykładu mamy punkt odniesienia:
p=M (mężczyzna)
q=K (kobieta)
Kolumna A1B1 to punkt odniesienia w zapisie aktualnym {M,K}:
A1: M=>~K =1 - bycie mężczyzną jest wystarczające => by nie być kobietą
B1: M~>~K=1 - bycie mężczyzną jest konieczne ~> by nie być kobietą
A1B1: M$K = (A1: M=>~K)*(B1: M~>~K) =1*1 =1
       A1B1:        A2B2:       |      A3B3:         A4B4:
A:  1: p=>~q=1 = 2:~p~>q  =1   [=] 3: ~q~>p  =1 = 4: q=>~p =1
A:  1: M=>~K=1 = 2:~M~>K  =1   [=] 3: ~K~>M  =1 = 4: K=>~M =1
A’: 1: p~~>q=0 =               [=]              = 4: q~~>p =0
A’: 1: M~~>K=0 =               [=]              = 4: K~~>M =0
       ##           ##          |      ##            ##
B:  1: p~>~q=1 = 2:~p=>q  =1   [=] 3: ~q=>p  =1 = 4: q~>~p =1
B:  1: M~>~K=1 = 2:~M=>K  =1   [=] 3: ~K=>M  =1 = 4: K~>~M =1
B’:            = 2:~p~~>~q=0   [=] 3: ~q~~>~p=0
B’:            = 2:~M~~>~K=0   [=] 3: ~K~~>~M=0

Równanie operatora „albo” p|$q:
A1B1:                                                   A2B2:
p$q = (A1: p=>~q)*(B1: p~>~q) = (A2:~p~>q)*(B2:~p=>q) = ~p$~q

Operator „albo” p|$q to układ równań logicznych:
A1B1: p$q =(A1: p=>~q)* (B1: p~>~q) - co się stanie jeśli zajdzie p
A2B2:~p$~q=(A2:~p~>q)*(B2:~p=>q) - co się stanie jeśli zajdzie ~p

Układ równań logicznych jest przemienny, stąd mamy:
Operator „albo” ~p|$~q to układ równań logicznych:
A2B2:~p$~q=(A2:~p~>q)*(B2:~p=>q) - co się stanie jeśli zajdzie ~p
A1B1: p$q =(A1: p=>~q)* (B1: p~>~q) - co się stanie jeśli zajdzie p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla poprawienia czytelności powyższej tabeli zmienne aktualne M i K podstawiono wyłącznie w nagłówku tabeli oraz w części głównej decydującej o treści zdań warunkowych „Jeśli p to q”

3.4.3 Operator „albo” M|$K

Definicja dowolnego operatora implikacyjnego p||?q:
Operator implikacyjny p||?q to odpowiedź na pytanie co się stanie jeśli zajdzie p oraz co się stanie jeśli zajdzie ~p

Innymi słowy:
Operator „albo” p|$q to układ równań logicznych A1B1 i A2B2 dający odpowiedź na pytanie o p i ~p:
A1B1: p$q =(A1: p=>~q)* (B1: p~>~q) - co się stanie jeśli zajdzie p
A2B2:~p$~q=(A2:~p~>q)*(B2:~p=>q) - co się stanie jeśli zajdzie ~p

Układ równań logicznych jest przemienny, stąd mamy:
Operator „albo” ~p|$~q to układ równań logicznych A2B2 i A1B1 dający odpowiedź na pytanie po ~p i p:
A2B2:~p$~q=(A2:~p~>q)*(B2:~p=>q) - co się stanie jeśli zajdzie ~p
A1B1: p$q =(A1: p=>~q)* (B1: p~>~q) - co się stanie jeśli zajdzie p

Innymi słowy w przełożeniu na nasz przykład:
Operator „albo” M|$K to układ równań logicznych A1B1 i A2B2 dający odpowiedź na pytanie o M i ~M:

Kolumna A1B1:
Co może się wydarzyć jeśli człowiek jest mężczyzną (M=1)?


Odpowiedź mamy w kolumnie A1B1:
A1: M=>~K =1 - bycie mężczyzną (M=1) jest wystarczające => by nie być kobietą (~K=1)
B1: M~>~K=1 - bycie mężczyzną (M=1) jest konieczne ~> by nie być kobietą (~K=1)
A1B1: M$K = (A1: M=>~K) = (B1: M~>~K)

Odpowiedź na pytanie co może się wydarzyć jeśli ktoś jest mężczyzną (M=1) w rozpisce na warunek wystarczający =>.
Kolumna A1B1:
A1.
Jeśli ktoś jest mężczyzną (M=1) to na 100% => nie jest kobietą (~K=1)
M=>~K =1
Bycie mężczyzną (M=1) jest warunkiem wystarczającym => by nie być kobietą (~K=1)
Bycie mężczyzną (M=1) daje nam gwarancję matematyczną => iż nie jesteśmy kobietą (~K=1)
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>
Matematycznie zachodzi tożsamość (patrz diagram DA):
~K=M
stąd:
A1: M=>~K = M=>M =1 - bo każdy zbiór jest podzbiorem => siebie samego
cnd

Prawdziwy warunek wystarczający A1 wymusza fałszywy kontrprzykład A1’ i odwrotnie:
A1’.
Jeśli ktoś jest mężczyzną (M=1) to może ~~> to być kobietą (K=1)
M~~>K = M*K =[] =0
Nie jest możliwe (=0) aby jakiś człowiek był jednocześnie mężczyzną (M) i kobietą (K)
Definicja elementu wspólnego zbiorów ~~> nie jest spełniona (=0) bo zbiór mężczyzn (M=1) jest rozłączny ze zbiorem kobiet (K=1)
Dowód:
Matematycznie zachodzi tożsamość K=~M (patrz diagram DA), stąd:
A1’: M~~>K = M~~>~M = M*~M =[] =0
cnd

Kolumna A2B2:
Co może się wydarzyć jeśli człowiek nie jest mężczyzną (~M=1)?


Odpowiedź mamy w kolumnie A2B2:
A2: ~M~>K =1 - nie bycie mężczyzną (~M=1) jest warunkiem koniecznym ~> aby być kobietą (K=1)
B2: ~M=>K =1 - nie bycie mężczyzną (~M=1) jest warunkiem wystarczającym => by nie być kobietą
A2B2: ~M$~K = (A2: ~M~>K)*(B2: ~M=>K)

Odpowiedź na pytanie co może się wydarzyć jeśli ktoś nie jest mężczyzną (~M=1) w rozpisce na warunek wystarczający =>.
Kolumna A2B2:
B2.
Jeśli ktoś nie jest mężczyzną (~M=1) to na 100% => jest kobietą (K=1)
~M=>K =1
Nie bycie mężczyzną (~M=1) jest warunkiem wystarczającym => by być kobietą (K=1)
Nie bycie mężczyzną (~M=1) daje nam gwarancję matematyczną => iż jesteśmy kobietą (K=1)
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>
Matematycznie zachodzi tożsamość:
~M=K
stąd:
B2: ~M=>K = K=>K =1 - bo każdy zbiór jest podzbiorem => siebie samego
cnd

Prawdziwy warunek wystarczający B2 wymusza fałszywy kontrprzykład B2’ i odwrotnie:
B2’.
Jeśli ktoś nie jest mężczyzną (~M=1) to może ~~> nie być kobietą (~K=1)
~M~~>~K = ~M*~K =[] =0
Nie jest możliwe ~~> aby ktokolwiek nie był mężczyzną (~M=1) i nie był kobietą (~K=1)
Dowód:
Matematycznie zachodzi tożsamość pojęć (patrz diagram DA):
~K =M
B2’: ~M~~>~K = ~M*M =[] =0
cnd

Podsumowanie:
Jak widzimy, istotą operatora „albo”($) M|$K jest gwarancja matematyczna => po stronie M (zdanie A1), jak również gwarancja matematyczna => po stronie ~M (zdanie B2).
Nie ma tu mowy o jakimkolwiek „rzucaniu monetą” w sensie „na dwoje babka wróżyła” jak to mieliśmy w operatorze implikacji prostej p||=>q czy też w operatorze implikacji odwrotnej p||~>q.

Zauważmy że:
a)
Układ równań logicznych jest przemienny, stąd mamy:
Operator „albo” ~p|$~q to układ równań logicznych:
A2B2:~p$~q=(A2:~p~>q)*(B2:~p=>q) - co się stanie jeśli zajdzie ~p
A1B1: p$q =(A1: p=>~q)* (B1: p~>~q) - co się stanie jeśli zajdzie p
Doskonale widać, że analiza matematyczna operatora „albo” ~p|$~q w logice ujemnej (bo ~p) będzie identyczna jak operatora „albo” p|$q w logice dodatniej (bo p) z tym, że zaczynamy od kolumny A2B2 kończąc na kolumnie A1B1.
b)
Także kolejność wypowiadanych zdań jest dowolna, tak więc zdania z powyższej analizy A1, A1’, B2, B2’ możemy wypowiadać w sposób losowy - matematycznie to bez znaczenia.

Uwaga:
Więcej prostych przykładów operatora „albo” p|$q znajdziemy w punkcie 7.5
Gorąco polecam.

3.5 Chaos p|~~>q

W algebrze Kubusia w zbiorach zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>
Kod:

T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
      ##        ##           ##        ##            ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5:  p+~q

Prawa Kubusia:        | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q  | A1: p=>q  = A4:~q=>~p
B1: p~>q = B2:~p=>~q  | B2:~p=>~q = B3: q=>p

Prawa Tygryska:       | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p   | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>q   | B1: p~>q  = B4:~q~>~p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


CH.
Definicja podstawowa chaosu p|~~>q:

Kolumna A1B1:
Chaos p|~~>q to nie zachodzenie ani warunku koniecznego ~> ani też warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
A1B1: p|~~>q = ~(A1: p=>q)*~(B1: p~>q) =~(0)*~(0) = 1*1 =1

Podstawmy tą definicję do matematycznych związków warunku wystarczającego => i koniecznego ~>:
Kod:

T1
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w chaosie p|~~>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla q
A1B1: p|~~>q=~(A1: p=>q)*~(B1: p~>q)=~(0)*~(0)=1*1=1
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p =0 [=] 5: ~p+q
      ##        ##           ##        ##               ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p =0 [=] 5:  p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla udowodnienia, iż zdanie warunkowe „Jeśli p to q” wchodzi w skład chaosu p|~~>q potrzeba i wystarcza udowodnić fałszywość dowolnego zdania serii Ax i fałszywość dowolnego zdania serii Bx.
Zauważmy, że nie ma znaczenia które zdanie będziemy brali pod uwagę, bowiem prawami logiki matematycznej (prawa Kubusia, prawa Tygryska i prawa kontrapozycji) zdanie to możemy zastąpić zdaniem logicznie tożsamym z kolumny A1B1.

Kluczowym punktem zaczepienia w wprowadzeniu symbolicznej definicji chaosu p|~~>q będzie definicja kontrprzykładu rodem z algebry Kubusia działająca wyłącznie w warunku wystarczającym =>.

Definicja kontrprzykładu w zbiorach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane elementem wspólnym zbiorów p~~>~q=p*~q

Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>~q=p*~q

Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)
Kod:

CH
Kolumna A1B1 to punkt odniesienia:
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla q
A1B1: p|~~>q=~(A1: p=>q)*~(B1: p~>q)=~(0)*~(0)=1*1=1
       A1B1:         A2B2:        |     A3B3:         A4B4:
A:  1: p=>q  =0 = 2:~p~>~q =0    [=] 3: q~>p  =0 = 4:~q=>~p =0
A’: 1: p~~>~q=1 =                [=]             = 4:~q~~>p =1
A”: 1: p~~>q =1                  [=]               4:~q~~>~p=1
       ##            ##           |     ##            ##
B:  1: p~>q  =0 = 2:~p=>~q =0    [=] 3: q=>p  =0 = 4:~q~>~p =0
B’:             = 2:~p~~>q =1    [=] 3: q~~>~p=1
B”:               2:~p~~>~q=1    [=] 3: q~~>p =1

Równanie operatora chaosu p||~~>q:
A1B1:                                                           A2B2:
p|~~>q = ~(A1: p=>q)*~(B1: p~>q) = ~(A2:~p~>~q)*~(B2:~p=>~q) = ~p|~~>~q

Operator chaosu p||~~>q to układ równań logicznych:
A1B1: p|~~>q  =~(A1: p=> q)*~(B1: p~>q) - co się stanie jeśli zajdzie p?
A2B2:~p|~~>~q =~(A2:~p~>~q)*~(B2:~p=>~q)- co się stanie jeśli zajdzie ~p?

Układ równań logicznych jest przemienny, stąd mamy:
Operator chaosu ~p||~~>~q to układ równań logicznych:
A2B2:~p|~~>~q =~(A2:~p~>~q)*~(B2:~p=>~q)- co się stanie jeśli zajdzie ~p?
A1B1: p|~~>q  =~(A1: p=> q)*~(B1: p~>q) - co się stanie jeśli zajdzie p?

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Uwaga:
Zdania A1” i B2” kodowane zdarzeniem możliwym ~~> muszą być prawdziwe, bowiem wtedy i tylko wtedy będziemy mieli do czynienia z chaosem p|~~>q.
Dowód nie wprost:
Załóżmy, że zdanie A1” jest fałszywe:
A1”: p~~>q =0
Wówczas na mocy definicji kontrprzykładu prawdziwy byłby warunek wystarczający =>:
A1S: p=>~q =1
co prowadzi do sprzeczności z definicją chaosu p|~~>q gdzie o żadnym spełnionym warunku wystarczającym => mowy być nie może.
cnd
Identyczny dowód nie wprost możemy przeprowadzić w stosunku do zdania prawdziwego B2” oraz do zdań B3” i A4”.

CH.
Definicja podstawowa chaosu p|~~>q w logice dodatniej (bo q):

Kolumna A1B1:
Chaos p|~~>q w logice dodatniej (bo q) to nie zachodzenie ani warunku koniecznego ~> ani też warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
A1B1: p|~~>q = ~(A1: p=>q)*~(B1: p~>q) =~(0)*~(0) = 1*1 =1

Definicja definicji podstawowej dowolnego spójnika implikacyjnego:
Definicja podstawowa dowolnego spójnika implikacyjnego to definicja tego spójnika w logice dodatniej (bo q). Jeśli w definicji dowolnego spójnika implikacyjnego nie zaznaczamy w jakiej jest logice to domyślnie chodzi nam o definicję podstawową tego spójnika.

Mówiąc o definicji podstawowej możemy zatem pominąć sygnalizację w jakiej logice ta definicja jest wyrażona.

CH.
Definicja chaosu ~p|~~>~q w logice ujemnej (bo ~q):

Kolumna A2B2:
Chaos ~p|~~>~q w logice ujemnej (bo ~q) to nie zachodzenie ani warunku koniecznego ~> ani też warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
A2: ~p~>~q =0 - zajście ~p nie jest (=0) konieczne ~> dla zajścia ~q
B2: ~p=>~q =0 - zajście ~p nie jest (=0) wystarczające => dla zajścia ~q
A2B2: ~p|~~>~q = ~(A2: ~p~>~q)*~(B2: ~p=>~q) = ~(0)*~(0) =1*1 =1

Definicja dowolnego operatora implikacyjnego p||?q:
Operator implikacyjny p||?q to odpowiedź na pytanie co się stanie jeśli zajdzie p oraz co się stanie jeśli zajdzie ~p
Kod:

T2.
Równanie operatora chaosu p||~~>q:
A1B1:                                                           A2B2:
p|~~>q = ~(A1: p=>q)*~(B1: p~>q) = ~(A2:~p~>~q)*~(B2:~p=>~q) = ~p|~~>~q
bo prawa Kubusia:
A1: p=>q = A2:~p~>~q
B1: p~>q = B2:~p=>~q
cnd

Dlaczego to jest równanie operatora chaosu p||~~>q?
A1B1: W kolumnie A1B1 mamy odpowiedź na pytanie co może się wydarzyć jeśli zajdzie p
A2B2: W kolumnie A2B2 mamy odpowiedź na pytanie co może się wydarzyć jeśli zajdzie ~p

Operator chaosu p||~~>q w logice dodatniej (bo q) to układ równań logicznych A1B1 i A2B2 dający odpowiedź na pytanie o p i ~p:
A1B1: p|~~>q =~(A1: p=> q)*~(B1: p~>q) - co się stanie jeśli zajdzie p?
A2B2:~p|~~>~q =~(A2:~p~>~q)*~(B2:~p=>~q)- co się stanie jeśli zajdzie ~p?

Układ równań logicznych jest przemienny, stąd mamy:
Operator chaosu ~p||~~>~q w logice ujemnej (bo ~q) to układ równań logicznych A2B2 i A1B1 dający odpowiedź na pytanie o ~p i p:
A2B2:~p|~~>~q =~(A2:~p~>~q)*~(B2:~p=>~q)- co się stanie jeśli zajdzie ~p?
A1B1: p|~~>q =~(A1: p=> q)*~(B1: p~>q) - co się stanie jeśli zajdzie p?

Z tabeli T2 odczytujemy tożsamość logiczną:
A1B1: p|~~>q = A2B2: ~p|~~>~q

Definicja tożsamości logicznej:
Prawdziwość dowolnej strony tożsamości logicznej „=” wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej „=” wymusza fałszywość drugiej strony

Innymi słowy
1.
Udowodnienie iż dany układ spełnia definicję chaosu p|~~>q w logice dodatniej (bo q) jest tożsame z udowodnieniem iż ten sam układ spełnia definicję chaosu ~p|~~>~q w logice ujemnej (bo ~q), albo odwrotnie.
A1B1: p|~~>q = A2B2: ~p|~~>~q

Na mocy definicji operatorów logicznych p||~~>q i ~p||~~>~q widzimy, że udowodnienie prawdziwości 1 pociąga za sobą prawdziwość 2:
2.
p||~~>q = ~p||~~>~q
cnd

3.5.1 Operator chaosu p||~~>q

Definicja operatora chaosu p||~~>q to układ równań logicznych A1B1 i A2B2 dający odpowiedź na pytania o p i ~p:

A1B1:
Co się stanie jeśli zajdzie p (p=1)?


Kolumna A1B1:
Definicja chaosu p|~~>q w logice dodatniej bo (q):
Chaos p|~~>q w logice dodatniej (bo q) to nie zachodzenie ani warunku wystarczającego => ani też koniecznego ~> między tymi samymi punktami i w tym samym kierunku.
A1: p=>q =0 - p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla zajścia q
A1B1: p|~~>q = ~(A1: p=>q)*~(B1: p~>q) = ~(0)*~(0) =1*1 =1

Kolumna A1B1:
Analiza w zdaniach warunkowych „Jeśli p to q” dla spełnionego p:
A’’.
Jeśli zajdzie p to może ~~> zajść q
p~~>q = p*q =1
Zbiory:
Istnieje (=1) element wspólny ~~> zbiorów p i q
Zdarzenia:
Możliwe jest (=1) jednoczesne zajście zdarzeń p i q

LUB

A’.
Jeśli zajdzie p to może ~~> zajść ~q
p~~>~q = p*~q =1
Zbiory:
Istnieje (=1) element wspólny ~~> zbiorów p i ~q
Zdarzenia:
Możliwe jest (=1) jednoczesne zajście zdarzeń p i ~q

A2B2:
Co się stanie jeśli zajdzie ~p (~p=1)?


Kolumna A2B2:
Definicja chaosu ~p|~~>~q w logice ujemnej bo (~q):
Chaos ~p|~~>~q w logice ujemnej (bo ~q) to nie zachodzenie ani warunku wystarczającego => ani też koniecznego ~> między tymi samymi punktami i w tym samym kierunku.
A2: ~p~>~q =0 - ~p nie jest (=0) konieczne ~> dla zajścia ~q
B2: ~p=>~q =0 - ~p nie jest (=0) wystarczające => dla zajścia ~q
A2B2: ~p|~~>~q = ~(A2:~p~>~q)*~(B2: ~p=>~q) = ~(0)*~(0) =1*1 =1

Kolumna A2B2:
Analiza w zdaniach warunkowych „Jeśli p to q” dla nie spełnionego p (~p):
B’’.
Jeśli zajdzie ~p to może ~~> zajść ~q
~p~~>~q = ~p*~q =1
Zbiory:
Istnieje (=1) element wspólny ~~> zbiorów ~p i ~q
Zdarzenia:
Możliwe jest (=1) jednoczesne zajście zdarzeń ~p i ~q

LUB

B’.
Jeśli zajdzie ~p to może ~~> zajść q
~p~~>q = ~p*q =1
Zbiory:
Istnieje (=1) element wspólny ~~> zbiorów ~p i q
Zdarzenia:
Możliwe jest (=1) jednoczesne zajście zdarzeń ~p i q

Podsumowanie:
Doskonale widać, że zarówno po stronie p jak i po stronie ~p mamy tu najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła”.

Zauważmy że:
a)
Układ równań jest przemienny, stąd mamy definicję tożsamą:
Operator chaosu ~p||~~>~q w logice ujemnej (bo ~q) to układ równań logicznych:
A2B2:~p|~~>~q =~(A2:~p~>~q)*~(B2:~p=>~q)- co się stanie jeśli zajdzie ~p?
A1B1: p|~~>q =~(A1: p=> q)*~(B1: p~>q) - co się stanie jeśli zajdzie p?
Doskonale widać, że analiza matematyczna operatora chaosu ~p||~~>~q w logice ujemnej (bo ~q) będzie identyczna jak operatora chaosu p||~~>q w logice dodatniej (bo q) z tym, że zaczynamy od kolumny A2B2 kończąc na kolumnie A1B1.
b)
Także kolejność wypowiadanych zdań jest dowolna, tak więc zdania z powyższej analizy A’’, A’, B’’, B’ możemy wypowiadać w sposób losowy - matematycznie to bez znaczenia.

3.5.2 Chaos P8|~~>P3

W algebrze Kubusia w zbiorach zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

Zadanie w I klasie LO w 100-milowym lesie:
Zbadaj w skład jakiego operatora logicznego wchodzi poniższe zdanie:
Jeśli dowolna liczba jest podzielna przez 8 to może być podzielna przez 3

Rozwiązanie:

Prawo śfinii:
Dowolne zdanie warunkowe od którego zaczynamy analizę matematyczną jest domyślnym punktem odniesienia, gdzie po „Jeśli ..” zapisujemy p zaś po „to..” zapisujemy q z pominięciem przeczeń.

Prawo Kobry dla zbiorów:
Warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q” jest jego prawdziwość przy kodowaniu elementem wspólnym zbiorów ~~>.
Innymi słowy:
Jeśli prawdziwe jest zdanie kodowane warunkiem wystarczającym => lub koniecznym ~> to na 100% prawdziwe jest to samo zdanie kodowane elementem wspólnym zbiorów ~~> (odwrotnie nie zachodzi)

Na początek korzystając z prawa Kobry badamy, czy zdanie które mamy analizować ma szansę być prawdziwym, kodując to zdanie elementem wspólnym zbiorów ~~>.

W.
Jeśli dowolna liczba jest podzielna przez 8 to może być podzielna przez 3
P8~~>P3 = P8*P3 =1 bo 24
Na mocy prawa śfinii mamy:
p = P8=[8,16,24..] - zbiór liczb podzielnych przez 8
q = P3=[3,6,9..] - zbiór liczb podzielnych przez 3
Przyjmujemy dziedzinę minimalną:
LN=[1,2,3,4,5,6,7,8,9..] - zbiór liczb naturalnych
Stąd mamy przeczenia zbiorów rozumiane jako uzupełnienia do dziedziny LN:
~P8 = [LN-P8] = [1,2,3,4,5,6,7..9..]
~P3 = [LN-P3] = [1,2..4,5..7,8..]

Krok 1
Badamy warunek wystarczający =>:
A1.
Jeśli dowolna liczba jest podzielna przez 8 to na 100% => jest podzielna przez 3
P8=>P3 =0
Definicja warunku wystarczającego => nie jest spełniona (=0) bo zbiór P8=[8,16,24..] nie jest podzbiorem => zbioru P3=[3,6,9..]
cnd

Krok 2
Badamy warunek konieczny ~> między tymi samymi punktami:
B1.
Jeśli dowolna liczba jest podzielna przez 8 to może ~> być podzielna przez 3
P8~>P3 =0
Definicja warunku koniecznego ~> nie jest spełniona (=0) bo zbiór P8=[8,16,24..] nie jest nadzbiorem ~> zbioru P3=[3,6,9..]

Stąd mamy dowód iż mamy tu do czynienia z chaosem.
Definicja chaosu p|~~>q:
Definicja chaosu p|~~>q jest spełniona wtedy i tylko wtedy gdy zajście p nie jest wystarczające => dla q i jednocześnie zajście p nie jest konieczne ~> dla q
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla q
A1B1: p|~~>q=~(A1: p=>q)*~(B1: p~>q)=~(0)*~(0)=1*1=1

Nasz przykład:
Definicja chaosu P8|~~>P3:
A1: P8=>P3 =0 - zbiór P8 nie jest (=0) podzbiorem => P3
B1: P8~>P3 =0 - zbiór P8 nie jest (=0) nadzbiorem ~> P3
A1B1: P8|~~>P3 = ~(A1: P8=>P3)*~(B1: P8~>P3)=~(0)*~(0)=1*1 =1

Podstawmy nasz przykład do szablonu chaosu:
Kod:

CH
Kolumna A1B1 to punkt odniesienia w zapisie formalnym {p,q}:
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla q
A1B1: p|~~>q=~(A1: p=>q)*~(B1: p~>q)=~(0)*~(0)=1*1=1
Aktualny punkt odniesienia:
p=P8=[8,16,24..] - zbiór liczb podzielnych przez 8
q=P3=[3,6,9..] - zbiór liczb podzielnych przez 3
Kolumna A1B1 to również punkt odniesienia w zapisie aktualnym {P8,P3}:
A1: P8=>P3 =0 - zbiór P8 nie jest (=0) podzbiorem => P3
B1: P8~>P3 =0 - zbiór P8 nie jest (=0) nadzbiorem ~> P3
A1B1: P8|~~>P3 = ~(A1: P8=>P3)*~(B1: P8~>P3)=~(0)*~(0)=1*1 =1
       A1B1:           A2B2:       |     A3B3:           A4B4:
A:  1: p=>q  =0   = 2:~p~>~q   =0 [=] 3: q~>p    =0 = 4:~q=>~p   =0
A’: 1: p~~>~q=1   =               [=]               = 4:~q~~>p   =1
A’: 1: P8~~>~P3=1 =               [=]               = 4:~P3~~>P8 =1
A”: 1: p~~>q =1                   [=]                 4:~q~~>~p  =1
A”: 1: P8~~>P3 =1                 [=]                 4:~P3~~>~P8=1
       ##              ##          |     ##              ##
B:  1: p~>q  =0   = 2:~p=>~q   =0 [=] 3: q=>p    =0 = 4:~q~>~p   =0
B’:               = 2:~p~~>q   =1 [=] 3: q~~>~p  =1
B’:               = 2:~P8~~>P3 =1 [=] 3: P3~~>~P8=1
B”:                 2:~p~~>~q  =1 [=] 3: q~~>p   =1
B”:                 2:~P8~~>~P3=1 [=] 3: P3~~>P8 =1

Równanie operatora chaosu p||~~>q:
A1B1:                                                           A2B2:
p|~~>q = ~(A1: p=>q)*~(B1: p~>q) = ~(A2:~p~>~q)*~(B2:~p=>~q) = ~p|~~>~q

Operator chaosu p||~~>q to układ równań logicznych:
A1B1: p|~~>q  =~(A1: p=> q)*~(B1: p~>q) - co się stanie jeśli zajdzie p?
A2B2:~p|~~>~q =~(A2:~p~>~q)*~(B2:~p=>~q)- co się stanie jeśli zajdzie ~p?

Układ równań logicznych jest przemienny, stąd mamy:
Operator chaosu ~p||~~>~q to układ równań logicznych:
A2B2:~p|~~>~q =~(A2:~p~>~q)*~(B2:~p=>~q)- co się stanie jeśli zajdzie ~p?
A1B1: p|~~>q  =~(A1: p=> q)*~(B1: p~>q) - co się stanie jeśli zajdzie p?

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


Operator chaosu p||~~>q w logice dodatniej (bo q) to układ równań logicznych A1B1 i A2B2 dający odpowiedź na pytanie o p i ~p:
A1B1: p|~~>q =~(A1: p=> q)*~(B1: p~>q) - co się stanie jeśli zajdzie p?
A2B2:~p|~~>~q =~(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p?

3.5.3 Operator chaosu P8||~~>P3

Nasz przykład:
Operator chaosu P8||~~>P3 to układ równań A1B1 i A2B2 dający odpowiedzi na pytanie o P8 i ~P8:

A1B1:
Co może się wydarzyć jeśli dowolna liczba będzie podzielna przez 8 (P8=1)?


Kolumna A1B1:
A1: P8=>P3 =0 - zbiór P8 nie jest (=0) podzbiorem => P3
B1: P8~>P3 =0 - zbiór P8 nie jest (=0) nadzbiorem ~> P3
A1B1: P8|~~>P3 = ~(A1: P8=>P3)*~(B1: P8~>P3)=~(0)*~(0)=1*1 =1

Z kolumny A1B1 odczytujemy:
A1”.
Jeśli dowolna liczba jest podzielna przez 8 (P8=1) to może ~~> być podzielna przez 3 (P3=1)
P8~~>P3 = P8*P3 =1 bo istnieje (=1) element wspólny ~~> np. 24
Zbiory P8=[8,16,24..] i P3=[3,6,9..24..] mają element wspólny ~~> np. 24

LUB

A1’.
Jeśli dowolna liczba jest podzielna przez 8 (P8=1) to może ~~> nie być podzielna przez 3 (~P3=1)
P8~~>~P3 = P8*~P3 =1 bo istnieje (=1) element wspólny ~~> np. 8
Zbiory P8=[8,16,24..] i ~P3=[1,2..4.5..7,8..] mają element wspólny ~~> np. 8

A2B2:
Co może się wydarzyć jeśli dowolna liczba nie będzie podzielna przez z 8 (~P8=1)?


Kolumna A2B2:
A2: ~P8~>~P3 =0 - bo zbiór ~P8=[1,2,3,4,5,6,7..9..] nie jest (=0) nadzbiorem ~> ~P3=[1,2..4,5..7,8..]
B2: ~P8=>~P3=0 - bo zbiór ~P8=[1,2,3,4,5,6,7..9..] nie jest (=0) podzbiorem => ~P3=[1,2..4,5..7,8..]
~P8|~~>~P3=~(A2: ~P8~>~P3)*~(B2: ~P8=>~P3) =~(0)*~(0) =1*1 =1

Z kolumny A2B2 odczytujemy:
B2”.
Jeśli dowolna liczba nie jest podzielna przez 8 (~P8=1) to może ~~> nie być podzielna przez 3 (~P3=1)
~P8~~>~P3 = ~P8*~P3 =1 - bo istnieje (=1) element wspólny ~~> np. 2
Zbiory ~P8=[1,2,3,4,5,6,7..9..] i ~P3=[1,2..4,5..7,8..] mają element wspólny ~~> np. 2

LUB

B2’.
Jeśli dowolna liczba nie jest podzielna przez 8 (~P8=1) to może ~~> być podzielna przez 3 (P3=1)
~P8~~>P3 = ~P8*P3 =1 - bo istnieje (=1) element wspólny ~~> np. 3
Zbiory ~P8=[1,2,3,4,5,6,7..9..] i P3=[3,6,9..24..] mają element wspólny ~~> np. 3

Podsumowanie:
Istotą operatorach chaosu P8|~~>P3 jest najzwyklejsze „rzucanie monetą” w rozumieniu „na dwoje babka wróżyła” zarówno po stronie P8 (zdania A1’’, A1’) jak i po stronie ~P8 (zdania B2’’ i B2’)

Zauważmy że:
a)
Układ równań logicznych jest przemienny, stąd mamy:
Operator chaosu ~p||~~>~q w logice ujemnej (bo ~q) to układ równań logicznych:
A2B2:~p|~~>~q =~(A2:~p~>~q)*~(B2:~p=>~q)- co się stanie jeśli zajdzie ~p?
A1B1: p|~~>q =~(A1: p=> q)*~(B1: p~>q) - co się stanie jeśli zajdzie p?
Doskonale widać, że analiza matematyczna operatora chaosu ~p||~~>~q w logice ujemnej (bo ~q) będzie identyczna jak operatora chaosu p||~>q w logice dodatniej (bo q) z tym, że zaczynamy od kolumny A2B2 kończąc na kolumnie A1B1, co matematycznie jest bez znaczenia.
b)
Także kolejność wypowiadanych zdań jest dowolna, tak więc zdania z powyższej analizy A1’’, A1’, B2’’, B2’ możemy wypowiadać w sposób losowy - matematycznie to bez znaczenia.

Uwaga:
Więcej prostych przykładów operatora chaosu p||~~>q znajdziemy w punkcie 8.3
Gorąco polecam.


Ostatnio zmieniony przez rafal3006 dnia Sob 6:58, 12 Cze 2021, w całości zmieniany 1 raz
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 35331
Przeczytał: 23 tematy

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Sob 11:19, 12 Cze 2021    Temat postu:

Algebra Kubusia - ostatnie czytanie!
Część VI

Po raz ostatni przed premierą czytam od początku algebrę Kubusia likwidując literówki i udoskonalając przekaz.

http://www.sfinia.fora.pl/forum-kubusia,12/algebra-kubusia-w-przebudowie,18899.html#593843

Algebra Kubusia - wersja rozszerzona
3.6 Dziedzina matematyczna i fizyczna, zdjęcia układów

Dlaczego ten rozdział jest wersją rozszerzoną algebry Kubusia?
Algebra Kubusia to matematyka języka potocznego, gdzie nikt nie bada matematycznych związków operatora równoważności p|<=>q ze spójnikami „i”(*) i „lub”(+) bowiem w języku potocznym ta wiedza jest zbędna, nie występuje.
Matematycznie jest jednak możliwe wyrażenie równoważności p|<=>q w spójnikach „i”(*) i „lub”(+) i o tym jest niniejszy rozdział. Nie jest to wiedza jakaś nadmiernie skomplikowana, jednak moim zdaniem w I klasie LO można tego wymagać w profilu matematycznym rozszerzonym tzn. tego typu wiedzy można nie wymagać od młodych ludzi uzdolnionych humanistycznie gdzie obowiązuje matematyka podstawowa, dla których matematyka jest „kulą u nogi”.

Spis treści
3.6 Dziedzina matematyczna i fizyczna 1
3.7 Zdjęcie układu A<=>S w zdarzeniach 2
3.7.1 Odtworzenie równoważności A<=>S ze zdjęcia układu 5
3.7.2 Tabela prawdy równoważności A<=>S 8
3.7.3 Analiza operatora równoważności A|<=>S 9
3.8 Zdjęcie twierdzenia Pitagorasa w zbiorach 11
3.8.1 Odtworzenie równoważności Pitagorasa TP<=>SK ze zdjęcia układu 15
3.8.2 Tabela prawdy równoważności Pitagorasa TP<=>SK 17
3.8.3 Operator równoważności Pitagorasa TP|<=>SK 18




3.6 Dziedzina matematyczna i fizyczna

Definicja dziedziny matematycznej DM:
Dziedzina matematyczna to suma logiczna funkcji logicznej w logice dodatniej (bo Y) i funkcji logicznej w logice ujemnej (bo ~Y)
Y+~Y =DM =1 - funkcje logiczna Y i ~Y uzupełniają się wzajemnie do dziedziny matematycznej DM
Oczywiście:
Y*~Y =[] =0 - funkcje logiczne Y i ~Y są rozłączne

Zauważmy, że z punktu widzenia dziedziny matematycznej DM funkcja logiczna Y może być dowolnie skomplikowana, byleby była w 100% znana, bo tylko i wyłącznie ten fakt umożliwia policzenie funkcji logicznej ~Y.
1: Y = f(x) - dowolna funkcja logiczna Y w logice dodatniej (bo Y)
Funkcję logiczną ~Y obliczamy negując dwustronnie funkcję logiczną 1:
2: ~Y=~f(x)

Definicja dziedziny fizycznej D:
Dziedzina fizyczna D to wyłącznie funkcja logiczna Y (w logice dodatniej bo Y) z dziedziny matematycznej DM.

Interpretacja dziedziny fizycznej w Y świecie martwym (także w fizyce i matematyce) jest następująca.

Teoria zdarzeń:
Funkcja logiczna Y (w logice dodatniej bo Y) pokazuje wszystkie możliwe kombinacje zdarzeń w których spełniona jest definicja zdarzenia możliwego ~~>.

Teoria zbiorów:
Funkcja logiczna Y (w logice dodatniej bo Y) pokazuje wszystkie możliwe kombinacje zbiorów między którymi spełniona jest definicja elementu wspólnego zbiorów ~~>

Definicja świata martwego:
Świat martwy to świat w którym prawdziwość/fałszywość dowolnego zdania nie zależy od wolnej woli istoty żywej.

Definicja wolnej woli:
Wolna wola istoty żywej to możliwość gwałcenia wszelkich praw logiki matematycznej wyznaczanej przez świat martwy (w szczególności przez fizykę i matematykę).

Jeśli istota żywa zgwałci jakiekolwiek prawo logiki matematycznej wyznaczanej przez świat martwy to zostanie matematycznym kłamcą - tylko tyle i aż tyle rozstrzyga logika matematyczna w obszarze świata żywego.

Zobaczmy na przykładach istotę dziedziny matematycznej DM i fizycznej D.

3.7 Zdjęcie układu A<=>S w zdarzeniach

Rozważmy najprostszy schemat elektryczny:
Kod:

S3 Schemat 3
Fizyczna realizacja równoważności A<=>S w zdarzeniach:
A<=>S=(A1: A=>S)*(B1: A~>S)=1*1=1
             S               A       
       -------------       ______     
  -----| Żarówka   |-------o    o-----
  |    -------------                 |
  |                                  |
______                               |
 ___    U (źródło napięcia)          |
  |                                  |
  |                                  |
  ------------------------------------
Zmienne związane definicją: A, S
Zmienna wolna: brak
Istotą równoważności jest brak zmiennych wolnych


Definicja zdjęcia układu w zdarzeniach:
Zdjęcie układu w zdarzeniach to analiza układu zdarzeniami możliwymi ~~> przez wszystkie możliwe przeczenia p i q

Definicja zdarzenia możliwego ~~>:
Jeśli zajdzie p to może ~~> zajść q
p~~>q =p*q =1
Definicja zdarzenia możliwego ~~> jest spełniona (=1) wtedy i tylko wtedy gdy możliwe jest jednoczesne zajście zdarzeń p i q.
Inaczej:
p~~>q=p*q =[] =0

Prawo śfinii:
Dowolne zdanie warunkowe od którego zaczynamy analizę matematyczną jest domyślnym punktem odniesienia, gdzie po „Jeśli ..” zapisujemy p zaś po „to..” zapisujemy q z pominięciem przeczeń.

Zdjęcie układu S3 wygląda następująco:
A.
Jeśli przyciska A jest wciśnięty (A=1) to żarówka może ~~> się świecić (S=1)
A~~>S = A*S =1
Możliwe jest (=1) zdarzenie: przyciska A wciśnięty (A=1) i żarówka świeci się (S=1)
Na mocy prawa śfinii przyjmujemy punkt odniesienia:
p=A (przycisk A)
q=S (żarówka S)
Stąd zdanie A w zapisie formalnym {p, q} przyjmuje postać:
A: p~~>q = p*q =1
B.
Jeśli przyciska A jest wciśnięty (A=1) to żarówka może ~~> się nie świecić (~S=1)
A~~>~S = A*~S =0
Niemożliwe jest (=0) zdarzenie: przycisk A jest wciśnięty (A=1) i żarówka nie świeci się (~S=1)
C.
Jeśli przycisk A nie jest wciśnięty (~A=1) to żarówka może ~~> się nie świecić (~S=1)
~A~~>~S = ~A*~S =1
Możliwe jest (=1) zdarzenie: przycisk A nie jest wciśnięty (~A=1) i żarówka nie świeci się (~S=1)
D.
Jeśli przycisk A nie jest wciśnięty (~A=1) to żarówka może ~~> się świecić (S=1)
A~~>~S = A*~S =0
Niemożliwe jest (=0) zdarzenie: przycisk A nie jest wciśnięty (~A=1) i żarówka świeci się (S=1)

Zapiszmy zrobione zdjęcie układu S3 w tabeli prawdy:
Kod:

T1
Zdjęcie układu S3
Znaczenie symbolu Y:
Y - zdarzenie Y jest możliwe (Y=1)
~Y - zdarzenie Y nie jest możliwe (~Y=1)
                 Y ~Y   Y - analiza z punktem odniesienia ustawionym na Y
A: A~~> S= A* S =1 =0 - Ya=1 - możliwe jest (=1) zdarzenie: A*S
B: A~~>~S= A*~S =0 =1 - Yb=0 - niemożliwe jest (=0) zdarzenie: A*~S
C:~A~~>~S=~A*~S =1 =0 - Yc=1 - możliwe jest (=1) zdarzenie: ~A*~S
D:~A~~> S=~A* S =0 =1 - Yd=0 - niemożliwe jest (=0) zdarzenie: ~A*S

Z tabeli T1 mamy odpowiedź na dwa kluczowe w logice matematycznej pytania o Y i ~Y:
1.
Które zdarzenia w układzie S3 są możliwe (Y=1)?
2.
Które zdarzenie w układzie S3 nie są możliwe (~Y=1)?

Odpowiedź na pytanie 1 brzmi:
1.
Które zdarzenia w układzie S3 są możliwe (Y=1)?

Zdarzenia możliwe (Y=1) w układzie S3 to suma logiczna funkcji cząstkowych z jedynką w kolumnie opisującej funkcję logiczną Y w logice dodatniej (bo Y):
Y = Ya+Yb
po rozwinięciu mamy:
Y = A: A*S + C: ~A*~S
co w logice jedynek (bo funkcja alternatywno-koniunkcyjna) oznacza:
Y=1 <=> A: A=1 i S=1 lub C: ~A=1 i ~S=1
Czytamy:
Prawą jest (=1) że zdarzenia możliwe (Y) w układzie S3 to:
A: Ya= A*S = 1*1 =1 - Ya=1 wciśnięty jest przycisk A (A=1) i żarówka świeci się (S=1)
lub
C: Yc=~A*~S=1*1 =1 - Yc=1 nie jest wciśnięty przyciska A (~A=1) i żarówka nie świeci się (~S=1)

Odpowiedź na pytanie 2 brzmi:
2.
Które zdarzenia w układzie S3 nie są możliwe (~Y=1)?

Zdarzenia niemożliwe (~Y=1) w układzie S3 to suma logiczna funkcji cząstkowych z jedynką w kolumnie opisującej funkcję logiczną ~Y w logice ujemnej (bo ~Y):
~Y = ~Yb+~Yd
po rozwinięciu mamy:
~Y = B: A*~S + D: ~A*S
co w logice jedynek (bo funkcja alternatywno-koniunkcyjna) oznacza:
~Y=1 <=> B: A=1 i ~S=1 lub D: ~A=1 i S=1
Czytamy:
Prawdą jest (=1) że zdarzenia niemożliwe (~Y) w układzie S3 to:
B: ~Yb=A*~S =1*1 =1 - ~Yb=1 wciśnięty jest przycisk A (A=1) i żarówka nie świeci się (~S=1)
lub
D: ~Yd=~A*S =1*1 =1 - ~Yb=1 nie jest wciśnięty przycisk A (~A=1) i żarówka świeci się (S=1)

Uwaga - bardzo ważne:
Notacja stosowana w algebrze Kubusia jest tu następująca:
B: ~Yb=A*~S =1*1 =1
Co rozpisce szczegółowej oznacza:
B: ~Yb=1 <=> A=1 i ~S=1
Czytamy:
Prawdą jest (=1) że nie jest możliwe (~) zdarzenie Yb (~Yb=1):
Przycisk A jest wciśnięty (A=1) i żarówka nie świeci się (~S=1)

Dla zapisu ~Yb=1 zastosujmy prawo Prosiaczka, które możemy stosować wybiórczo do dowolnego zapisu binarnego.
Prawo Prosiaczka:
(~p=1) = (p=0)
stąd tożsamy opis linii B to:
B: Yb=0 <=> A=1 i ~S=1
Czytamy:
Fałszem jest (=0), że możliwe jest zdarzenie Yb:
Przycisk A jest wciśnięty (A=1) i żarówka nie świeci się (~S=1)

Doskonale tu widać fenomenalne działania prawa Prosiaczka - szczegóły punkt 1.3 w „Nowej algebrze Boole’a”
http://www.sfinia.fora.pl/forum-kubusia,12/nowa-algebra-boole-a-w-finalna,18893.html#593677

Zapiszmy na zakończenie dziedzinę matematyczną DM dla układu S3:
a)
DM=Y+~Y =1 - funkcja logiczna ~Y jest uzupełnieniem do dziedziny DM dla funkcji Y
po rozwinięciu mamy:
DM = A: A*S + C:~A*~S + B: A*~S + D: ~A*S
Minimalizujemy:
DM = A: A*S + B: A*~S + C: ~A*~S + D: ~A*S = A*(S+~S) + ~A*(~S+S) = A+~A =1
Oczywistym jest że dla dowolnej funkcji logicznej Y musi zachodzić definicja dziedziny matematycznej DM:
DM = Y+~Y =1 - funkcja ~Y jest dopełnieniem do dziedziny DM dla funkcji Y
co dowiedziono na przykładzie schematu S3.

Oczywistym jest również, że funkcje Y i ~Y muszą być rozłączne:
b)
Y*~Y =[] =0
Nasz przykład:
Y = A*S + ~A*~S
~Y = A*~S + ~A*S
stąd mamy:
Y*~Y =[] =0 - bo funkcje Y i ~Y są matematycznie rozłączne
Widać to bezpośrednio w tabeli T1:
a) suma logiczna kolumn Y i ~Y da w wyniku same jedynki
b) wymnożenie kolumn Y i ~Y da w wyniku same zera
cnd

Dowód alternatywny to operacje dodawania i mnożenia wielomianów Y i ~Y:
Y = p*q+~p*~q
~Y = p*~q + ~p*q
a)
Y+~Y = (p*q+~p*~q)+(p*~q+~p*q)
Y+~Y = p*q + p*~q + ~p*~q + ~p*q
Y+~Y = p*(q+~q) + ~p*(~q+q)
Y+~Y = p+~p =1
cnd
b)
Y*~Y = (p*q+~p*~q)*(p*~q+~p*q)
Y*~Y = (p*q)*(p*~q) + (p*q)*(~p*q) + (~p*~q)*(p*~q) + (~p*~q)*(~p*q) =[] +[] +[] +[] =[] =0
cnd

3.7.1 Odtworzenie równoważności A<=>S ze zdjęcia układu

Jeśli uda nam się zrobić zdjęcie układu jak wyżej (nie zawsze to jest takie proste, szczególnie w zbiorach nieskończonych), to odtworzenie operatora logicznego w skład którego wchodzą wszystkie zdania A, B, C i D ze zdjęcia to bułka z masłem.

Przypomnijmy sobie fundament algebry Kubusia:
Kod:

T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
      ##        ##           ##        ##            ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5:  p+~q

Prawa Kubusia:        | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q  | A1: p=>q  = A4:~q=>~p
B1: p~>q = B2:~p=>~q  | B2:~p=>~q = B3: q=>p

Prawa Tygryska:       | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p   | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p   | B1: p~>q  = B4:~q~>~p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Do rozszyfrowania w skład jakiego operatora implikacyjnego wchodzą zdania ze zdjęcia T1 kluczowa jest definicja kontrprzykładu w zdarzeniach.

Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>~q=p*~q
Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1
(i odwrotnie)
Kod:

S3 Schemat 3
Fizyczna realizacja równoważności A<=>S w zdarzeniach:
A<=>S=(A1: A=>S)*(B1: A~>S)=1*1=1
             S               A       
       -------------       ______     
  -----| Żarówka   |-------o    o-----
  |    -------------                 |
  |                                  |
______                               |
 ___    U (źródło napięcia)          |
  |                                  |
  |                                  |
  ------------------------------------
Zmienne związane definicją: A, S
Zmienna wolna: brak
Istotą równoważności jest brak zmiennych wolnych

Zapiszmy tabelę prawdy zdjęcia układu S3 wykonanego wyżej.
Zmiana indeksowania linii na zgodną ze standardem stosowanym w algebrze Kubusia jest matematycznie bez znaczenia.
Kod:

T1
Zdjęcie układu S3
             Y          Y - analiza z punktem odniesienia ustawionym na Y
A1:  A~~> S =1 - Ya=1 - możliwe jest (=1): wciśnięty A i świeci S
A1’: A~~>~S =0 - Yb=0 - niemożliwe jest (=0): wciśnięty A i nie świeci S
B2: ~A~~>~S =1 - Yc=1 - możliwe jest (=1): nie wciśnięty A i nie świeci S
B2’:~A~~> S =0 - Yd=0 - niemożliwe jest (=0): nie wciśnięty A i świeci S

Analiza matematyczna zdjęcia T1
1.
Z fałszywości kontrprzykładu A1’:
A1’: A~~>~S =0
wynika prawdziwość warunku wystarczającego => A1:
A1: A=>S =1 - wciśnięcie A (A=1) jest wystarczające => dla świecenia S (S=1)
2.
Z fałszywości kontrprzykładu B2’:
B2’: ~A~~>S =0
wynika prawdziwość warunku wystarczającego => B2:
B2: ~A=>~S =1 - nie wciśnięcie A (~A=1) jest (=1) wystarczające => dla nie świecenia S (~S=1)

Stąd mamy tabelę T2 w warunkach wystarczających => A1 i B2:
Kod:

T2
A1:  A=> S  =1 - wciśnięcie A jest (=1) wystarczające => dla świecenia S
A1’: A~~>~S =0 - prawdziwy => A1 wymusza fałszywość kontrprzykładu A1’
B2: ~A=>~S  =1 - nie wciśnięcie A jest wystarczające => dla nie świecenia S
B2’:~A~~> S =0 - prawdziwy => B2 wymusza fałszywość kontrprzykładu B2’


Analiza matematyczna tabeli T2
3.
Prawo Kubusia:
A1: A=>S = A2: ~A~>~S
Na mocy prawa Kubusia prawdziwy warunek wystarczający w linii A1:
A1: A=>S =1 - wciśnięcie A (A=1) jest wystarczające => dla świecenia S (S=1)
wymusza prawdziwy warunek konieczny w linii A2:
A2: ~A~>~S =1 - nie wciśnięcie A (~A=1) jest konieczne ~> dla nie świecenia S (~S=1)
4.
Prawo Kubusia:
B2: ~A=>~S = B1: A~>S
Na mocy prawa Kubusia prawdziwy warunek wystarczający w linii B2:
B2: ~A=>~S =1 - nie wciśnięcie A (~A=1) jest wystarczające => dla nie świecenia S (~S=1)
wymusza prawdziwy warunek konieczny w linii B1:
B1: A~>S =1 - wciśnięcie A (A=1) jest konieczne ~> dla świecenia S (S=1)

Stąd mamy końcową tabelę T3 ze zlokalizowaną równoważnością podstawową A<=>S:
T2
A1: A=> S =1 | B1: A~>S =1
A1’: A~~>~S =0 |
B2: ~A=>~S =1 | A2:~A~>~S =1
B2’:~A~~> S =0 |
[/code]
W linii A1 mamy zlokalizowaną równoważność A<=>S w logice dodatniej (bo S):
Równoważność A<=>S to jednoczesne zachodzenie zarówno warunku wystarczającego => jak i koniecznego ~> miedzy tymi samymi punktami i w tym samym kierunku
A1: A=>S =1 - wciśnięcie A (A=1) jest wystarczające => dla świecenia S (S=1)
B1: A~>S =1 - wciśnięcie A (A=1) jest konieczne ~> dla świecenia S (S=1)
Stąd mamy:
A1B1: A<=>S = (A1: A=>S)*(B1: A~>S) =1*1 =1

W linii B2 mamy zlokalizowaną logicznie tożsamą równoważność ~A<=>~S w logice ujemnej (bo ~S):
Równoważność ~A<=>~S to jednoczesne zachodzenie zarówno warunku wystarczającego => jak i koniecznego ~> miedzy tymi samymi punktami i w tym samym kierunku
A2: ~A~>~S =1 - nie wciśnięcie A (~A=1) jest konieczne ~> dla nie świecenia S (~S=1)
B2: ~A=>~S =1 - nie wciśnięcie A (~A=1) jest wystarczające => dla nie świecenia S (~S=1)
Stąd mamy:
A2B2: ~A<=>~S = (A2: ~A~>~S)*(B2: ~A=>~S) =1*1=1

Oczywiście wystarczyło nam zapisać równoważność A<=>S aby skorzystać z gotowego szablony spójnika równoważności p<=>q

3.7.2 Tabela prawdy równoważności A<=>S
Kod:

TR: Tabela prawdy równoważności p<=>q
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w równoważności p<=>q
Punkt odniesienia A1B1 w zapisie formalnym {p,q}:
A1: p=>q =1 - p jest (=1) wystarczające => dla q
B1: p~>q =1 - p jest (=1) konieczne ~> dla q
p<=>q = (A1: p=>q)*(B1: p~>q) =1*1=1
Punkt odniesienia A1B1 w zapisie aktualnym {A,S}:
A1: A=>S =1 - wciśnięcie A jest (=1) wystarczające => dla świecenia S
B1: A~>S =1 - wciśnięcie A jest (=1) konieczne ~> dla świecenia S
A1B1: A<=>S=(A1: A=>S)*(B1: A~>S)=1*1=1
Dla punktu odniesienia A1B1 mamy:
p=A (przycisk A)
q=S (żarówka S)
       A1B1:           A2B2:          |     A3B3:            A4B4:
A:  1: p=>q  =1   = 2:~p~>~q=1       [=] 3: q~>p  =1    = 4:~q=>~p =1
A:  1: A=>S  =1   = 2:~A~>~S=1       [=] 3: S~>A  =1    = 4:~S=>~A =1
A’: 1: p~~>~q=0   =                  [=]                = 4:~q~~>p =0
A’: 1: A~~>~S=0   =                  [=]                = 4:~S~~>A =0
       ##              ##             |     ##               ##
B:  1: p~>q  =1   = 2:~p=>~q=1       [=] 3: q=>p  =1    = 4:~q~>~p =1
B:  1: A~>S  =1   = 2:~A=>~S=1       [=] 3: S=>A  =1    = 4:~S~>~A =1
B’:               = 2:~p~~>q=0       [=] 3: q~~>~p=0
B’:               = 2:~A~~>S=0       [=] 3: S~~>~A=0

Równanie operatora równoważności p|<=>q:
A1B1:                                                     A2B2:
p<=>q = (A1: p=>q)*(B2 p~>q) = (A2:~p~>~q)*(B2:~p=>~q) = ~p<=>~q

Operator równoważności p|<=>q to układ równań logicznych:
A1B1: p<=>q =(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p
A2B2:~p<=>~q=(A2:~p~>~q)*(B2:~p=>~q) - co się stanie jeśli zajdzie ~p

Układ równań logicznych jest przemienny, stąd mamy:
Operator równoważności ~p|<=>~q to układ równań logicznych:
A2B2:~p<=>~q=(A2:~p~>~q)*(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A1B1: p<=>q =(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla poprawienia czytelności tabeli prawdy TR zmienne aktualne {A i S} podstawiono wyłącznie w nagłówku tabeli i jej części głównej, odpowiedzialnej za generowanie zdań warunkowych „Jeśli p to q” wchodzących w skład operatora równoważności A|<=>S.

3.7.3 Analiza operatora równoważności A|<=>S

Kod:

S3 Schemat 3
Fizyczna realizacja równoważności A<=>S w zdarzeniach:
A<=>S=(A1: A=>S)*(B1: A~>S)=1*1=1
             S               A       
       -------------       ______     
  -----| Żarówka   |-------o    o-----
  |    -------------                 |
  |                                  |
______                               |
 ___    U (źródło napięcia)          |
  |                                  |
  |                                  |
  ------------------------------------
Zmienne związane definicją: A, S
Zmienna wolna: brak
Istotą równoważności jest brak zmiennych wolnych

Definicja operatora równoważności p|<=>q:
Operator równoważności p|<=>q to złożenie równoważności p<=>q w logice dodatniej (bo q) zdefiniowanej w kolumnie A1B1 oraz równoważności ~p<=>~q w logice ujemnej (bo ~q) zdefiniowanej w kolumnie A2B2.

Innymi słowy:
Operator równoważności A|<=>S to układ równań A1B1 i A2B2 dający odpowiedź na pytanie o A i ~A:

A1B1:
Kiedy przycisk A jest wciśnięty (A=1)?


Odpowiedź mamy w kolumnie A1B1.
RA1B1:
Wciśnięcie przycisku A (A=1) jest konieczne ~> i wystarczające => do tego, by żarówka świeciła się (S=1)
A<=>S = (A1: A=>S)*(B1: A~>S) =1*1 =1
Równoważność A<=>S definiuje tożsamość pojęć A=S:
A=S <=> (A1: A=>S)*(B1: A~>S) = A<=>S
Tożsamość pojęć A=S wymusza tożsamość pojęć ~A=~S (i odwrotnie)
Matematycznie zachodzi tu relacja:
A=S # ~A=~S
Gdzie:
# - dowolna strona znaczka # jest negacją drugiej strony

Odpowiedź na pytanie A1B1 w warunku wystarczającym => jest następująca:
A1.
Jeśli przycisk A jest wciśnięty (A=1) to żarówka na 100% => świeci się (S=1)
A=>S =1
Wciśnięcie przycisku A jest warunkiem wystarczającym => dla świecenia S
Wciśnięcie przycisku A daje nam gwarancję matematyczną => świecenia się żarówki S
Zawsze gdy wciśniemy przycisk A zaświeci się żarówka S
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>

Kontrprzykład A1’ dla warunku wystarczającego => A musi być fałszem
A1’.
Jeśli przycisk A jest wciśnięty (A=1) to żarówka może ~~> się nie świecić (~S=1)
A~~>~S = A*~S =0
Niemożliwe jest (=0) zdarzenie: przycisk A jest wciśnięty (A=1) i żarówka nie świeci się (~S=1)

A2B2:
Kiedy przycisk A nie jest wciśnięty (~A=1)?


Odpowiedź mamy w kolumnie A2B2.
RA2B2:
Brak wciśnięcia przycisku A (~A=1) jest konieczne ~> i wystarczające => dla braku świecenia się żarówki S (~S=1)
~A<=>~S = (A2: ~A~>~S)*(B2: ~A=>~S) =1*1 =1
Równoważność ~A<=>~S definiuje tożsamość pojęć ~A=~S:
~A=~S <=> (A2: ~A~>~S)*(B2: ~A=>~S) = ~A<=>~S
Tożsamość pojęć ~A=~S wymusza tożsamość pojęć A=S (i odwrotnie)
Matematycznie zachodzi tu relacja:
~A=~S # A=S
Gdzie:
# - dowolna strona znaczka # jest negacją drugiej strony

Odpowiedź na pytanie A2B2 w warunku wystarczającym => to:
B2.
Jeśli przycisk A nie jest wciśnięty (~A=1) to żarówka na 100% => nie świeci się (~S=1)
~A=>~S =1
Brak wciśnięcia przycisku A (~A=1) jest warunkiem wystarczającym => dla braku świecenia żarówki S (~S=1)
Brak wciśnięcia przycisku A (~A=1) daje nam gwarancję matematyczną => braku świecenia się żarówki S (~S=1)
Zawsze, gdy przycisk A nie jest wciśnięty (~A=1), żarówka nie świeci się (~S=1)
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>

Kontrprzykład B2’ dla prawdziwego warunku wystarczającego B2 musi być fałszem
B2’.
Jeśli przycisk A nie jest wciśnięty (~A=1) to żarówka może ~~> się świecić (S=1)
~A~~>S = ~A*S =0
Niemożliwe jest zdarzenie: przycisk A nie jest wciśnięty (~A=1) i żarówka S świeci się (S=1)

Podsumowanie:
1.
Istotą operatora równoważności A|<=>S jest gwarancja matematyczna => zarówno po stronie wciśniętego przycisku A (A=1) - zdanie A1, jak i po stronie nie wciśniętego przycisku A (~A=1) - zdanie B2.
2.
W dowolnym operatorze równoważności p|<=>q nie ma miejsca na jakiekolwiek „rzucanie monetą” w sensie „na dwoje babka wróżyła” które miało miejsce zarówno w operatorze implikacji prostej p||=>q jak i w operatorze implikacji odwrotnej p||~>q.

3.8 Zdjęcie twierdzenia Pitagorasa w zbiorach

Teoria niezbędna dla zrobienie zdjęcia dowolnego układu w zbiorach:

W algebrze Kubusia w zbiorach zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>
Kod:

T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
      ##        ##           ##        ##            ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5:  p+~q

Prawa Kubusia:        | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q  | A1: p=>q  = A4:~q=>~p
B1: p~>q = B2:~p=>~q  | B2:~p=>~q = B3: q=>p

Prawa Tygryska:       | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p   | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p   | B1: p~>q  = B4:~q~>~p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


Definicja elementu wspólnego ~~> zbiorów:
Jeśli p to q
p~~>q =p*q =1
Definicja elementu wspólnego zbiorów ~~> jest spełniona (=1) wtedy i tylko wtedy gdy zbiory p i q mają co najmniej jeden element wspólny
Inaczej:
p~~>q= p*q= [] =0 - zbiory p i q są rozłączne, nie mają (=0) elementu wspólnego ~~>
Decydujący w powyższej definicji jest znaczek elementu wspólnego zbiorów ~~>, dlatego dopuszczalny jest zapis skrócony p~~>q.

Prawo Kobry dla zbiorów:
Warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q” jest jego prawdziwość przy kodowaniu elementem wspólnym zbiorów ~~>.
Innymi słowy:
Jeśli prawdziwe jest zdanie kodowane warunkiem wystarczającym => lub koniecznym ~> to na 100% prawdziwe jest to samo zdanie kodowane elementem wspólnym zbiorów ~~> (odwrotnie nie zachodzi)

Definicja zdjęcia układu w zbiorach:
Zdjęcie układu w zbiorach to analiza układu elementem wspólnym zbiorów ~~> przez wszystkie możliwe przeczenia p i q

Prawo śfinii:
Dowolne zdanie warunkowe od którego zaczynamy analizę matematyczną jest domyślnym punktem odniesienia, gdzie po „Jeśli ..” zapisujemy p zaś po „to..” zapisujemy q z pominięciem przeczeń.

Weźmy znane każdemu uczniowi 7 klasy szkoły podstawowej twierdzenie Pitagorasa.
Twierdzenie proste Pitagorasa dla trójkątów prostokątnych:
A1.
Jeśli trójkąt jest prostokątny (TP=1) to na 100% => zachodzi w nim suma kwadratów (SK=1)
TP=>SK =1
Bycie trójkątem prostokątnym jest wystarczające => do tego aby zachodziła suma kwadratów wtedy i tylko wtedy gdy zbiór TP jest podzbiorem => zbioru SK
Twierdzenie to ludzkość udowodniła wieki temu stąd mamy pewność absolutną, że zbiór TP jest podzbiorem => zbioru SK.
Na mocy prawa śfinii zdanie A1 przyjmujemy za punkt odniesienia:
p=TP - zbiór trójkątów prostokątnych
q=SK - zbiór trójkątów ze spełnioną sumą kwadratów
Stąd zdanie A1 w zapisie formalnym {p, q}:
p=>q =1

Generujemy zdjęcie dla twierdzenia Pitagorasa:
A.
Jeśli trójkąt jest prostokątny (TP=1) to może ~~> w nim zachodzić suma kwadratów (SK=1)
TP~~>SK = TP*SK =1
Dla udowodnienia istnienia wspólnego elementu zbiorów ~~> TP i SK wystarczy pokazać jeden trójkąt prostokątny TP w którym spełniona jest suma kwadratów SK np. [3,4,5]
cnd
B.
Jeśli trójkąt jest prostokątny (TP=1) to może ~~> nie zachodzić w nim suma kwadratów (~SK=1)
TP~~>~SK = TP*~SK =[] =0
Tu mamy problem, bowiem nie jest możliwe przeiterowanie po nieskończonym zbiorze trójkątów prostokątnych (TP=1) i sprawdzanie, iż nie ma tego trójkąta w zbiorze trójkątów z niespełnioną sumą kwadratów (~SK=1)
ALE!
Wolno nam założyć, że zbiory TP i ~SK są rozłączne.
Wtedy zdanie B będzie kontrprzykładem dla twierdzenia prostego Pitagorasa w punkcie A
A: TP=>SK =1
Na mocy definicji warunku wystarczającego => w zbiorach mamy:
Definicja warunku wystarczającego => jest spełniona wtedy i tylko wtedy gdy zbiór TP jest podzbiorem => zbioru SK
Twierdzenie proste Pitagorasa A: TP=>SK zostało udowodnione wieki temu z czego wynika fałszywość kontrprzykładu B, z czego wynika iż zbiory TP i ~SK w zdaniu B są rozłączne.
cnd
C.
Jeśli trójkąt nie jest prostokątny (~TP=1) to może ~~> nie zachodzić w nim suma kwadratów (~SK=1)
~TP~~>~SK = ~TP*~SK =1
Udowodnienia istnienia wspólnego elementu zbiorów ~~> ~TP i ~SK wystarczy pokazać jeden trójkąt nieprostokątny ~TP w którym nie jest spełniona suma kwadratów ~SK np. [3,4,6]
D.
Jeśli trójkąt nie jest prostokątny (~TP=1) to może ~~> zachodzić w nim suma kwadratów (SK=1)
~TP~~>SK = ~TP*SK =[] =0
Tu mamy identyczny problem jak wyżej, bowiem nie jest możliwe przeiterowanie po nieskończonym zbiorze trójkątów nieprostokątnych (~TP=1) i sprawdzanie, iż nie ma tego trójkąta w zbiorze trójkątów ze spełnioną sumą kwadratów (SK=1)
ALE!
Wolno nam założyć, że zbiory ~TP i SK są rozłączne.
Wtedy zdanie D będzie kontrprzykładem dla prawdziwości zdania C kodowanego warunkiem wystarczającym =>
C: ~TP=>~SK =1
Jak udowodnić prawdziwość zdania C?
Bardzo prosto:
Korzystamy z prawa kontrapozycji:
C: ~TP=>~SK = TOP: SK=>TP
Jak widzimy, dla udowodnienia prawdziwości zdania C potrzeba ~> i wystarcza => udowodnić twierdzenie odwrotne Pitagorasa.
TOP:
Jeśli w trójkącie zachodzi suma kwadratów (SK=1) to ten trójkąt na 100% => jest trójkątem prostokątnym (TP=1)
SK=>TP =1
Na mocy definicji warunku wystarczającego => w zbiorach mamy:
Definicja warunku wystarczającego => jest spełniona wtedy i tylko wtedy gdy zbiór SK jest podzbiorem => zbioru TP
Twierdzenie odwrotne Pitagorasa TOP: SK=>TP zostało udowodnione wieki temu z czego wynika prawdziwość warunku wystarczającego => C:
C: ~TP=>~SK =1
Z kolei z prawdziwości warunku wystarczającego C wynika fałszywość kontrprzykładu D:
D: ~TP~~>SK = ~TP*SK =[] =0
Z fałszywości kontrprzykładu D wynika rozłączność zbiorów ~TP i SK
cnd

Zapiszmy zrobione zdjęcie twierdzenia Pitagorasa w tabeli prawdy:
Kod:

T1
Zdjęcie twierdzenia Pitagorasa
Znaczenie symbolu Y:
Y - istnieje element wspólny zbiorów ~~> (Y=1)
~Y - nie istnieje (~) element wspólny zbiorów ~~> (~Y=1)
                     Y ~Y   Y - analiza dla punktu odniesienia Y
A: TP~~> SK= TP* SK =1 =0 - Ya=1 - istnieje element wspólny TP i SK
B: TP~~>~SK= TP*~SK =0 =1 - Yb=0 - nie istnieje element wspólny TP i ~SK
C:~TP~~>~SK=~TP*~SK =1 =0 - Yc=1 - istnieje element wspólny ~TP i ~SK
D:~TP~~> SK=~TP* SK =0 =1 - Yd=0 - nie istnieje element wspólny ~TP i SK

Z tabeli T1 mamy odpowiedź na dwa kluczowe w logice matematycznej pytania o Y i ~Y:
1.
W których przypadkach istnieje element wspólny zbiorów ~~> (Y=1)?
2.
W których przypadkach nie istnieje element wspólny zbiorów ~~> (~Y=1)?

Odpowiedź na pytanie 1 brzmi:
1.
W których przypadkach istnieje element wspólny zbiorów ~~> (Y=1)?


Przypadki w których istnieje element wspólny zbiorów ~~> to suma logiczna funkcji cząstkowych z jedynką w kolumnie opisującej funkcję logiczną Y w logice dodatniej (bo Y):
Y = Ya+Yb
po rozwinięciu mamy:
Y = A: TP*SK + C: ~TP*~SK
co w logice jedynek (bo funkcja alternatywno-koniunkcyjna) oznacza:
Y=1 <=> A: TP=1 i SK=1 lub C: ~TP=1 i ~SK=1
Czytamy:
Prawdą jest (=1) że przypadki w których element wspólny zbiorów ~~> istnieje (Y=1) to:
A: Ya= TP*SK = 1*1 =1 - Ya=1 - istnieje element wspólny zbiorów TP (TP=1) i SK (SK=1)
lub
C: Yc=~TP*~SK=1*1 =1 - Yc=1 - istnieje element wspólny zbiorów ~TP (~TP=1) i ~SK (~SK=1)

Odpowiedź na pytanie 2 brzmi:
2.
W których przypadkach element wspólny zbiorów ~~> nie istnieje (~Y=1)?


Przypadki w których nie istnieje element wspólny zbiorów ~~> to suma logiczna funkcji cząstkowych z jedynką w kolumnie opisującej funkcję logiczną ~Y w logice ujemnej (bo ~Y):
~Y = ~Yb+~Yd
po rozwinięciu mamy:
~Y = B: TP*~SK + D: ~TP*SK
co w logice jedynek (bo funkcja alternatywno-koniunkcyjna) oznacza:
~Y=1 <=> B: TP=1 i ~SK=1 lub D: ~TP=1 i SK=1
Czytamy:
Prawdą jest (=1) że przypadki w których element wspólny zbiorów ~~> nie istnieje (~Y=1) to:
B: ~Yb=TP*~SK =1*1 =1 - ~Yb=1 nie istnieje element wspólny zbiorów TP (TP=1) i ~SK (~SK=1)
lub
D: ~Yd=~TP*SK =1*1 =1 - ~Yb=1 nie istnieje element wspólny zbiorów ~TP (~TP=1) i SK (SK=1)

Uwaga - bardzo ważne:
Notacja stosowana w algebrze Kubusia jest tu następująca:
B: ~Yb=TP*~SK =1*1 =1
Co rozpisce szczegółowej oznacza:
B: ~Yb=1 <=> TP=1 i ~SK=1
Czytamy:
Prawdą jest (=1) że nie jest możliwy (~) przypadek Yb (~Yb=1):
Trójkąt jest prostokątny (TP=1) i nie zachodzi w nim suma kwadratów (SK=1)

Dla zapisu ~Yb=1 zastosujmy prawo Prosiaczka, które możemy stosować wybiórczo do dowolnego zapisu binarnego.
Prawo Prosiaczka:
(~p=1) = (p=0)
stąd tożsamy opis linii B to:
B: Yb=0 <=> TP=1 i ~SK=1
Czytamy:
Fałszem jest (=0), że możliwy jest przypadek Yb:
Trójkąt jest prostokątny (TP=1) i nie zachodzi w nim suma kwadratów (SK=1)

Doskonale tu widać fenomenalne działania prawa Prosiaczka - szczegóły punkt 1.3 w „Nowej algebrze Boole’a”
http://www.sfinia.fora.pl/forum-kubusia,12/nowa-algebra-boole-a-w-finalna,18893.html#593677

Zapiszmy na zakończenie dziedzinę matematyczną DM dla tabeli T1:
a)
DM=Y+~Y
po rozwinięciu mamy:
DM = A: TP*SK + C:~TP*~SK + B: TP*~SK + D: ~TP*SK
Minimalizujemy:
DM = A: TP*SK + B: TP*~SK + C: ~TP*~SK + D: ~TP*SK = TP*(SK+~SK) + ~TP*(~SK+SK) = TP+~TP =1
Oczywistym jest że dla dowolnej funkcji logicznej Y musi zachodzić definicja dziedziny matematycznej DM:
DM = Y+~Y =1 - funkcja ~Y jest dopełnieniem do dziedziny DM dla funkcji Y
co dowiedziono wyżej.

Oczywistym jest również, że funkcje Y i ~Y muszą być rozłączne:
b)
Y*~Y =[] =0
Nasz przykład:
Y = TP*SK + ~TP*~SK
~Y = TP*~SK + ~TP*SK
stąd mamy:
Y*~Y =[] =0 - bo funkcje Y i ~Y są matematycznie rozłączne
Dowód tego faktu pozostawiam czytelnikowi.
Podpowiedź:
Widać to bezpośrednio w tabeli T1:
a) suma logiczna kolumn Y i ~Y da w wyniku same jedynki
b) iloczyn logiczny Y i ~Y da w wyniku same zera
cnd

3.8.1 Odtworzenie równoważności Pitagorasa TP<=>SK ze zdjęcia układu

Jeśli uda nam się zrobić zdjęcie układu jak wyżej (nie zawsze to jest takie proste, szczególnie w zbiorach nieskończonych), to odtworzenie operatora logicznego w skład którego wchodzą wszystkie zdania A, B, C i D ze zdjęcia to bułka z masłem.

Przypomnijmy sobie fundament algebry Kubusia:
Kod:

T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
      ##        ##           ##        ##            ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5:  p+~q

Prawa Kubusia:        | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q  | A1: p=>q  = A4:~q=>~p
B1: p~>q = B2:~p=>~q  | B2:~p=>~q = B3: q=>p

Prawa Tygryska:       | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p   | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p   | B1: p~>q  = B4:~q~>~p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Do rozszyfrowania w skład jakiego operatora implikacyjnego wchodzą zdania ze zdjęcia T1 kluczowa jest definicja kontrprzykładu w zdarzeniach.

Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>~q=p*~q
Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1
(i odwrotnie)

Zapiszmy tabelę prawdy zdjęcia twierdzenia Pitagorasa TP=>SK wykonanego wyżej.
Zmiana indeksowania linii na zgodną ze standardem stosowanym w algebrze Kubusia jest matematycznie bez znaczenia.
Kod:

T1
Zdjęcie twierdzenia Pitagorasa TP=>SK
               Y          Y - analiza z punktem odniesienia ustawionym na Y
A1:  TP~~> SK =1 - Ya=1 - istnieje element wspólny ~~> zbiorów TP i SK
A1’: TP~~>~SK =0 - Yb=0 - nie istnieje element wspólny ~~> zbiorów TP i ~SK
B2: ~TP~~>~SK =1 - Yc=1 - istnieje element wspólny ~~> zbiorów ~TP i ~SK
B2’:~TP~~> SK =0 - Yd=0 - nie istnieje element wspólny ~~> zbiorów TP i ~SK

Analiza matematyczna zdjęcia T1
1.
Z fałszywości kontrprzykładu A1’:
A1’: TP~~>~SK =0
wynika prawdziwość warunku wystarczającego => A1:
A1: TP=>SK =1 - zbiór TP jest (=1) podzbiorem => SK, w każdym TP spełniona jest suma kwadratów SK
2.
Z fałszywości kontrprzykładu B2’:
B2’: ~TP~~>SK =0
wynika prawdziwość warunku wystarczającego => B2:
B2: ~TP=>~SK =1 - zbiór ~TP jest podzbiorem => ~SK
W każdym trójkącie nieprostokątnym (~TP=1) nie jest spełniona suma kwadratów (~SK=1)

Stąd mamy tabelę T2 w warunkach wystarczających => A1 i B2:
Kod:

T2
A1:  TP=> SK  =1 - zbiór TP jest podzbiorem => zbioru SK
A1’: TP~~>~SK =0 - prawdziwy => A1 wymusza fałszywość kontrprzykładu A1’
B2: ~TP=>~SK  =1 - zbiór ~TP jest podzbiorem => zbioru ~SK
B2’:~A~~> SK  =0 - prawdziwy => B2 wymusza fałszywość kontrprzykładu B2’


Analiza matematyczna tabeli T2
3.
Prawo Kubusia:
A1: TP=>SK = A2: ~TP~>~SK
Na mocy prawa Kubusia prawdziwy warunek wystarczający w linii A1:
A1: TP=>SK =1 - TP jest wystarczające => dla SK, TP jest podzbiorem => SK
wymusza prawdziwy warunek konieczny w linii A2 (i odwrotnie):
A2: ~TP~>~SK =1 - ~TP jest konieczne ~> dla ~SK, ~TP jest nadzbiorem ~> ~SK
4.
Prawo Kubusia:
B2: ~TP=>~SK = B1: TP~>SK
Na mocy prawa Kubusia prawdziwy warunek wystarczający w linii B2:
B2: ~TP=>~SK =1 - ~TP jest wystarczające => dla ~SK, ~TP jest podzbiorem => ~SK
wymusza prawdziwy warunek konieczny ~> w linii B1 (i odwrotnie):
B1: TP~>SK =1 - TP jest konieczne ~> dla SK, TP jest nadzbiorem ~> SK

Stąd mamy końcową tabelę T3 ze zlokalizowanym operatorem równoważności TP|<=>SK:
T2
A1: TP=> SK =1 | B1: TP~>SK =1
A1’: TP~~>~SK =0 |
B2: ~TP=>~SK =1 | A2:~TP~>~SK =1
B2’:~TP~~> SK =0 |
[/code]
W linii A1 mamy zlokalizowaną równoważność TP<=>SK w logice dodatniej (bo SK):
Równoważność TP<=>SK to jednoczesne zachodzenie zarówno warunku wystarczającego => jak i koniecznego ~> miedzy tymi samymi punktami i w tym samym kierunku
A1: TP=>SK =1 - TP jest wystarczające => dla SK, TP jest podzbiorem => SK
B1: TP~>SK =1 - TP jest konieczne ~> dla SK, TP jest nadzbiorem ~> SK
Stąd mamy:
A1B1: TP<=>SK = (A1: TP=>SK)*(B1: TP~>SK) =1*1 =1

W linii B2 mamy zlokalizowaną tożsamą równoważność ~TP<=>~SK w logice ujemnej (bo ~SK):
Równoważność ~TP<=>~SK to jednoczesne zachodzenie zarówno warunku wystarczającego => jak i koniecznego ~> miedzy tymi samymi punktami i w tym samym kierunku
A2: ~TP~>~SK =1 - ~TP jest konieczne ~> dla ~SK, ~TP jest nadzbiorem ~> ~SK
B2: ~TP=>~SK =1 - ~TP jest wystarczające => dla ~SK, ~TP jest podzbiorem => ~SK
Stąd mamy:
A2B2: ~TP<=>~SK = (A2: ~TP~>~SK)*(B2: ~TP=>~SK) =1*1=1

Oczywiście wystarczyło nam zapisać równoważność TP<=>SK aby skorzystać z gotowej tabeli prawdy równoważności p<=>q.

3.8.2 Tabela prawdy równoważności Pitagorasa TP<=>SK

Kod:

TR: Tabela prawdy równoważności p<=>q
Kolumna A1B1 to punkt odniesienia w zapisie formalnym {p,q}:
A1: p=>q =1 - p jest (=1) wystarczające => dla q
B1: p~>q =1 - p jest (=1) konieczne ~> dla q
p<=>q = (A1: p=>q)*(B1: p~>q) =1*1=1
Aktualny punkt odniesienia na mocy prawa śfinii:
p=TP
q=SK
Punkt odniesienia A1B1 w zapisie aktualnym {TP,SK}:
A1: TP=>SK =1 - zajście TP jest (=1) wystarczające => dla zajścia SK
B1: TP~>SK =1 - zajście TP jest (=1) konieczne ~> dla zajścia SK
A1B1: TP<=>SK=(A1: TP=>SK)*(B1: TP~>SK)=1*1=1
       A1B1:           A2B2:       |     A3B3:            A4B4:
A:  1: p=>q    =1 = 2:~p~>~q  =1  [=] 3: q~>p    =1  = 4:~q=>~p   =1
A:  1: TP=>SK  =1 = 2:~TP~>~SK=1  [=] 3: SK~>TP  =1  = 4:~SK=>~TP =1
A’: 1: p~~>~q  =0 =               [=]                = 4:~q~~>p   =0
A’: 1: TP~~>~SK=0 =               [=]                = 4:~SK~~>TP =0
       ##              ##          |     ##               ##
B:  1: p~>q    =1 = 2:~p=>~q  =1  [=] 3: q=>p    =1  = 4:~q~>~p   =1
B:  1: TP~>SK  =1 = 2:~TP=>~SK=1  [=] 3: SK=>TP  =1  = 4:~SK~>~TP =1
B’:               = 2:~p~~>q  =0  [=] 3: q~~>~p  =0
B’:               = 2:~TP~~>SK=0  [=] 3: SK~~>~TP=0

Równanie operatora równoważności p|<=>q:
A1B1:                                                     A2B2:
p<=>q = (A1: p=>q)*(B2 p~>q) = (A2:~p~>~q)*(B2:~p=>~q) = ~p<=>~q

Operator równoważności p|<=>q to układ równań logicznych:
A1B1: p<=>q =(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p
A2B2:~p<=>~q=(A2:~p~>~q)*(B2:~p=>~q) - co się stanie jeśli zajdzie ~p

Układ równań logicznych jest przemienny, stąd mamy:
Operator równoważności ~p|<=>~q to układ równań logicznych:
A2B2:~p<=>~q=(A2:~p~>~q)*(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A1B1: p<=>q =(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla poprawienia czytelności tabeli prawdy TR zmienne aktualne (TR i SK) podstawiono wyłącznie w nagłówku tabeli i jej części głównej, odpowiedzialnej za generowanie zdań warunkowych wchodzących w skład operatora równoważności p|<=>q.

3.8.3 Operator równoważności Pitagorasa TP|<=>SK

Operator równoważności TP|<=>SK to układ równań logicznych A1B1 i A2B2 dający odpowiedź na pytanie o TP i ~TP:
A1B1: TP<=>SK =(A1: TP=>SK)* (B1: TP~>SK) - co się stanie jeśli zajdzie TP
A2B2:~TP<=>~SK=(A2:~TP~>~SK)*(B2:~TP=>~SK) - co się stanie jeśli zajdzie ~TP

A1B1:
Co może się wydarzyć jeśli ze zbioru wszystkich trójkątów wylosujemy trójkąt prostokątny (TP=1)?


Odpowiedź mamy w kolumnie A1B1:
A1: TP=>SK =1 - zajście TP jest (=1) wystarczające => dla zajścia SK
B1: TP~>SK =1 - zajście TP jest (=1) konieczne ~> dla zajścia SK
A1B1: TP<=>SK=(A1: TP=>SK)*(B1: TP~>SK)=1*1=1
Prawą stronę czytamy:
Bycie trójkątem prostokątnym jest warunkiem koniecznym ~> i wystarczającym => do tego, by zachodziła w nim suma kwadratów
TP<=>SK = (A1: TP=>SK)*(B1: TP~>SK) =1*1 =1
Powyższa równoważność definiuje tożsamość zbiorów:
TP=SK <=> (A1: TP=>SK)*(B1: TP~>SK) = TP<=>SK
Tożsamość zbiorów TP=SK wymusza tożsamość zbiorów ~TP=~SK (albo odwrotnie)
Zachodzi relacja matematyczna:
TP=SK # ~TP=~SK
Gdzie:
# - różne w znaczeniu iż jedna strona znaczka # jest negacją drugiej strony

W rozpisce na warunek wystarczający => mamy.
Kolumna A1B1:
A1.
Jeśli trójkąt jest prostokąty (TP=1) to na 100% => zachodzi w nim suma kwadratów (SK=1)
TP=>SK =1
Bycie trójkątem prostokątnym (TP=1) jest warunkiem wystarczającym => do tego by zachodziła w nim suma kwadratów (SK=1)
Bycie trójkątem prostokątnym (TP=1) daje nam gwarancję matematyczną => iż będzie zachodziła w nim suma kwadratów (SK=1)
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>

Prawdziwy warunek wystarczający A1 wymusza fałszywy kontrprzykład A1’ i odwrotnie.
A1’.
Jeśli trójkąt jest prostokątny (TP=1) to może ~~> nie zachodzić w nim suma kwadratów (~SK=1)
TP~~>~SK = TP*~SK =0
Definicja elementu wspólnego zbiorów ~~> TP i ~SK nie jest spełniona bo zbiory TP i ~SK są rozłączne.
Wynika to z tożsamości zbiorów TP=SK która wymusza tożsamość zbiorów ~TP=~SK (albo odwrotnie)
Relacja matematyczna jaka tu zachodzi to:
TP=SK # ~TP=~SK
Gdzie:
# - dowolna strona znaczka # jest zaprzeczeniem drugiej strony

A2B2:
Co może się wydarzyć jeśli ze zbioru wszystkich trójkątów wylosujemy trójkąt nieprostokątny (~TP=1)?


Odpowiedź mamy w kolumnie A2B2:
A2: ~TP~>~SK =1 - zajście ~TP jest (=1) konieczne ~> dla zajścia ~SK
B2: ~TP=>~SK =1 - zajście ~TP jest (=1) wystarczające => dla zajścia ~SK
A2B2: ~TP<=>~SK = (A2: ~TP~>~SK)*(B2: ~TP=>~SK) =1*1 =1
Prawą stronę czytamy:
Bycie trójkątem nieprostokątnym (~TP=1) jest warunkiem koniecznym ~> i wystarczającym => do tego, aby nie zachodziła w nim suma kwadratów (~SK=1)
~TP<=>~SK = (A2: ~TP~>~SK)*(B2: ~TP=>~SK) =1*1 =1
Powyższa równoważność definiuje tożsamość zbiorów:
~TP=~SK <=> (A2: ~TP~>~SK)*(B2: ~TP=>~SK) =~TP<=>~SK
Tożsamość zbiorów ~TP=~SK wymusza tożsamość zbiorów TP=SK (albo odwrotnie)
Zachodzi relacja matematyczna:
~TP=~SK # TP=SK
Gdzie:
# - różne w znaczeniu iż jedna strona znaczka # jest negacją drugiej strony

W rozpisce na warunek wystarczający => mamy.
Kolumna A2B2:
B2.
Jeśli trójkąt nie jest prostokątny (~TP=1) to na 100% => nie zachodzi w nim suma kwadratów (~SK=1)
~TP=>~SK =1
Bycie trójkątem nieprostokątnym (~TP=1) jest warunkiem wystarczającym => do tego by nie zachodziła w nim suma kwadratów (~SK=1)
Bycie trójkątem nieprostokątnym (~TP=1) daje nam gwarancję matematyczną => iż nie będzie zachodziła w nim suma kwadratów (~SK=1)
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>

Prawdziwy warunek wystarczający B2 wymusza fałszywość kontrprzykładu B2’ i odwrotnie.
B2’.
Jeśli trójkąt nie jest prostokątny (~TP=1) to może ~~> zachodzić w nim w nim suma kwadratów (~SK=1)
~TP~~>~SK=~TP*SK =0
Definicja elementu wspólnego zbiorów ~~> ~TP i SK nie jest spełniona bo zbiory ~TP i SK są rozłączne.
Wynika to z tożsamości zbiorów ~TP=~SK która to tożsamość wymusza tożsamość zbiorów TP=SK (albo odwrotnie)

Podsumowanie:
Jak widzimy, istotą operatora równoważności TP|<=>SK jest gwarancja matematyczna => po stronie TP (zdanie A1), jak również gwarancja matematyczna => po stronie ~TP (zdanie B2).
Nie ma tu mowy o jakimkolwiek „rzucaniu monetą” w sensie „na dwoje babka wróżyła” jak to mieliśmy w operatorze implikacji prostej p||=>q czy też w operatorze implikacji odwrotnej p||~>q.

Zauważmy że:
a)
Układ równań logicznych jest przemienny, stąd mamy:
Operator równoważności ~p|<=>~q to układ równań logicznych:
A2B2:~p<=>~q=(A2:~p~>~q)*(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A1B1: p<=>q =(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p
Doskonale widać, że analiza matematyczna operatora równoważności ~p|<=>~q w logice ujemnej (bo ~q) będzie identyczna jak operatora implikacji prostej p|<=>q w logice dodatniej (bo q) z tym, że zaczynamy od kolumny A2B2 kończąc na kolumnie A1B1.
b)
Także kolejność wypowiadanych zdań jest dowolna, tak więc zdania z powyższej analizy A1, A1’, B2, B2’ możemy wypowiadać w sposób losowy - matematycznie to bez znaczenia.
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 35331
Przeczytał: 23 tematy

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Sob 17:15, 12 Cze 2021    Temat postu:

Algebra Kubusia - ostatnie czytanie!
Część VII

Po raz ostatni przed premierą czytam od początku algebrę Kubusia likwidując literówki i udoskonalając przekaz.

http://www.sfinia.fora.pl/forum-kubusia,12/algebra-kubusia-w-przebudowie,18899.html#593983

Algebra Kubusia - wykład rozszerzony
4.0 Operatory implikacyjne - implikacja prosta p||=>q

Spis treści
4.0 Operatory implikacyjne - implikacja prosta p||=>q 1
4.1. Implikacji prostej p|=>q 2
4.1.1 Operator implikacji prostej p||=>q 9
4.1.2 Zero-jedynkowa definicja warunku wystarczającego => 11
4.2 Diagram implikacji prostej p|=>q w zbiorach 14
4.2.1 Odtworzenie definicji operatora implikacji prostej p||=>q z definicji ~~> 18
4.2.2 Najmniejsza możliwa liczba elementów w operatorze p||=>q 22


Dlaczego to jest wykład rozszerzony?
Wiedza podstawowa w niniejszym rozdziale w temacie operatora implikacji prostej p||=>q jest kopią rozdziału 3.1 który już przerobiliśmy. Jedyna różnica polega na wzbogaceniu znanego nam już operatora implikacji prostej p||=>q o jego związki ze spójnikami „i”(*) i „lub”(+).
W języku potocznym każdego człowieka, od 5-cio latka poczynając, ta ściśle matematyczna wiedza jest psu na budę potrzebna, czyli nie jest przez nikogo używana w praktyce. Nie oznacza to jednak, że 5-cio latek, umiejętnie prowadzony przez panią przedszkolankę nie dałby sobie z tą wiedzą rady.
Także opisana w niniejszym rozdziale wiedza w temacie skąd biorą się definicje zero-jedynkowe warunku wystarczającego => i koniecznego ~> ( punkt 4.1.2) jest zbędna, bo nie jest w języku potocznym wykorzystywana.
Opisany w punkcie 4.2 diagram implikacji prostej p|=>q w zbiorach to tylko ciekawostka matematyczna w języku potocznym nie używana, ale pozwalająca lepiej zrozumieć problem od strony czysto matematycznej. Także pozostałe punkty 4.2.1 i 4.2.2 to też tylko proste ciekawostki matematyczne w języku potocznym nie używane.
Z opisanych wyżej powodów niniejszy rozdział trafia do rozszerzonej algebry Kubusia która może być wykładana w I klasie LO w profilu matematyki rozszerzonej tzn. nie wymagajmy tej wiedzy od humanistów dla których matematyka jest „kulą u nogi”

4.0 Operatory implikacyjne - implikacja prosta p||=>q

Definicja operatora implikacyjnego:
Operator implikacyjny, to operator definiowany zdaniami warunkowymi „Jeśli p to q”

W logice matematycznej rozróżniamy cztery podstawowe operatory implikacyjne:
p||=>q - operator implikacji prostej
p||~>q - operator implikacji odwrotnej
p|<=>q - operator równoważności
p||~~>q - operator chaosu
Dodatkowy piąty operator to mutacja operatora równoważności:
p|$q - operator „albo”($)

Wszystkie definicje operatorów implikacyjnych opisane są zdaniami warunkowymi „Jeśli p to q” ze spełnionymi lub nie spełnionymi warunkami wystarczającymi => i koniecznymi ~>

4.1. Implikacji prostej p|=>q

Definicja podzbioru => w algebrze Kubusia:
Zbiór p jest podzbiorem => zbioru q wtedy i tylko wtedy gdy wszystkie elementy zbioru p należą do zbioru q
p=>q =1 - gdy relacja podzbioru => jest (=1) spełniona
Inaczej:
p=>q =0 - relacja podzbioru => nie jest (=0) spełniona

Definicja nadzbioru ~> w algebrze Kubusia:
Zbiór p jest nadzbiorem ~> zbioru q wtedy i tylko wtedy gdy zawiera co najmniej wszystkie elementy zbioru q
p~>q =1 - gdy relacja nadzbioru ~> jest (=1) spełniona
Inaczej:
p~>q =0 - relacja nadzbioru ~> nie jest (=0) spełniona

W algebrze Kubusia w zbiorach zachodzi tożsamość pojęć:
Podzbiór => = relacja podzbioru =>
Nadzbiór => = relacja nadzbioru =>

W algebrze Kubusia w zbiorach zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

Przykład:
A1.
Jeśli dowolna liczba jest podzielna przez 8 to na 100% => jest podzielna przez 2
P8=>P2 =1
Zauważmy że w zdaniu warunkowym A1: „Jeśli p to q” poprzednik p definiuje nam zbiór P8:
P8=[8,16,24..] - zbiór liczb podzielnych przez 8
zaś następnik q definiuje nam zbiór P2:
P2=[2,4,6,8..] - zbiór liczb podzielnych przez 2

Zdanie A1 jest prawdziwe bo:
Definicja warunku wystarczającego => jest spełniona bo zbiór P8=[8,16,24..] jest podzbiorem => zbioru P2=[2,4,6,8..]
Innymi słowy:
Definicja warunku wystarczającego => jest spełniona wtedy i tylko wtedy gdy spełniona jest relacja podzbioru =>:
P8=>P2 =1 - zbiór P8=[8,16,24..] jest (=1) podzbiorem => zbioru P2=[2,4,6,8..]
Powyższa relacja podzbioru P8=>P2 jest spełniona (=1) co każdy ziemski matematyk łatwo udowodni.

Zauważmy, że nie wolno nam upraszczać powyższej relacji do samego zbioru P8 mówiąc:
„Zbiór P8=[8,16,24..] jest podzbiorem”
jak to czynią ziemscy pseudo-matematycy, fanatycy gówna zwanego „implikacją materialną”, gdzie w dowolnym zdaniu warunkowym „Jeśli p to q” o żadnej relacji w zbiorach między p i q z definicji mowy być nie może.

To jest błąd czysto matematyczny bo nie wiadomo w stosunku do jakiego zbioru zbiór P8 jest podzbiorem =>.
Zauważmy że:
Zbiór P8=[8,16,24..] jest podzbiorem => zbioru P2=[2,4,6,8..]
… ale równie dobrze:
Zbiór P8=[8,16,24..] jest podzbiorem => zbioru P4=[4,8,12,16..]
etc
Oczywistym jest, że zbiór P2=[2,4,6,8..] jest różny na mocy definicji ## od zbioru P4=[4,8,12,16..]
cnd

W algebrze Kubusia mamy zaledwie trzy znaczki (=>, ~> i ~~>) na których zbudowana jest kompletna algebra Kubusia w obsłudze zdań warunkowych "Jeśli p to q".
1.
Warunek wystarczający =>:

p=>q =1 - gdy zajście p jest (=1) warunkiem wystarczającym => dla zajścia q
Inaczej:
p=>q =0
2.
Warunek konieczny ~>:

p~>q =1 0 gdy zajście p jest (=1) konieczne ~> dla zajścia q
Inaczej:
p~>q =0
3.
Zdarzenie możliwe ~~> lub element wspólny zbiorów ~~>

Zdarzenia:
Definicja zdarzenia możliwego ~~> w zdarzeniach:
p~~>q = p*q =1 - gdy możliwe jest (=1) jednoczesne zajście zdarzeń p i q
Inaczej:
p~~>q=p*q =0
Zbiory:
Definicja elementu wspólnego zbiorów ~~>:
p~~>q = p*q =1 - gdy zbiory p i q mają (=1) element wspólny
Inaczej:
p~~>q = p*q=0
Kod:

T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
      ##        ##           ##        ##            ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5:  p+~q

Prawa Kubusia:        | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q  | A1: p=>q  = A4:~q=>~p
B1: p~>q = B2:~p=>~q  | B2:~p=>~q = B3: q=>p

Prawa Tygryska:       | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p   | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p   | B1: p~>q  = B4:~q~>~p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


IP.
Definicja podstawowa implikacji prostej p|=>q:

Kolumna A1B1:
Implikacja prosta p|=>q to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku.
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
stąd:
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) =1*~(0) = 1*1 =1

Lewą stronę czytamy:
p|=>q - implikacja prosta |=> w logice dodatniej (bo q)

Prawą stronę czytamy:
Implikacja prosta p|=>q w logice dodatniej (bo q) jest spełniona (=1) wtedy i tylko wtedy gdy zajście p jest wystarczające => dla zajścia q i nigdy nie zdarzy się ~(..), że zajście p jest konieczne ~> dla zajścia q

Podstawmy tą definicję do matematycznych związków warunku wystarczającego => i koniecznego ~>:
Kod:

T1
Matematyczne związki warunku wystarczającego => i koniecznego ~> w implikacji prostej p|=>q:
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p =1 [=] 5: ~p+q
      ##        ##           ##        ##            ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p =0 [=] 5:  p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla udowodnienia, iż zdanie warunkowe „Jeśli p to q” wchodzi w skład implikacji prostej p|=>q potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Ax i fałszywość dowolnego zdania serii Bx.
Zauważmy, że nie ma znaczenia które zdanie będziemy brali pod uwagę, bowiem prawami logiki matematycznej (prawa Kubusia, prawa Tygryska i prawa kontrapozycji) zdanie to możemy zastąpić zdaniem logicznie tożsamym z kolumny A1B1.

Kluczowym punktem zaczepienia w wyprowadzeniu symbolicznej definicji implikacji prostej p|=>q jest definicja kontrprzykładu rodem z algebry Kubusia działająca wyłącznie w warunku wystarczającym =>.

Definicja kontrprzykładu w zbiorach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane elementem wspólnym zbiorów p~~>~q=p*~q

Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>~q=p*~q
Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)

Uzupełnijmy naszą tabelę wykorzystując powyższe rozstrzygnięcia działające wyłącznie w warunkach wystarczających =>.
Kod:

IP:
Tabela prawdy implikacji prostej p|=>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q =1 - p jest (=1) wystarczające => dla q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla q
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
       A1B1:         A2B2:        |     A3B3:         A4B4:
A:  1: p=>q  =1 = 2:~p~>~q=1     [=] 3: q~>p  =1 = 4:~q=>~p =1
A’: 1: p~~>~q=0 =                [=]             = 4:~q~~>p =0
       ##            ##           |     ##            ##
B:  1: p~>q  =0 = 2:~p=>~q=0     [=] 3: q=>p  =0 = 4:~q~>~p =0
B’:             = 2:~p~~>q=1     [=] 3: q~~>~p=1

Równanie operatora implikacji prostej p||=>q:
A1B1:                                                        A2B2:
p|=>q = (A1: p=>q)*~(B1: p~>q) = (A2:~p~>~q)*~(B2:~p=>~q) = ~p|~>~q

Operator implikacji prostej p||=>q to układ równań logicznych:
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p
A2B2:~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p

Układ równań logicznych jest przemienny, stąd mamy:
Operator implikacji odwrotnej ~p||~>~q to układ równań logicznych:
A2B2:~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Definicja podstawowa implikacji prostej p|=>q w logice dodatniej (bo q):
Kolumna A1B1:
Implikacja prosta p|=>q w logice dodatniej (bo q) to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku.
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
stąd:
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) =1*~(0) = 1*1 =1

Definicja warunku wystarczającego =>:
p=>q = ~p+q
Definicja warunku koniecznego ~>:
p~>q = p+~q
stąd:
p|=>q = (A1: p=>q)*~(B1: p~>q) = (~p+q)*~(p+~q) = (~p+q)*(~p*q) = ~p*q
p|=>q = ~p*q

Definicja definicji podstawowej dowolnego spójnika implikacyjnego:
Definicja podstawowa dowolnego spójnika implikacyjnego to definicja tego spójnika w logice dodatniej (bo q).

Jeśli w definicji dowolnego spójnika implikacyjnego nie zaznaczamy w jakiej jest logice to domyślnie chodzi nam o definicję podstawową tego spójnika.
Mówiąc o definicji podstawowej możemy zatem pominąć sygnalizację w jakiej logice ta definicja jest wyrażona.

Definicja implikacji odwrotnej ~p|~>~q w logice ujemnej (bo ~q):
Kolumna A2B2:
Implikacja odwrotna ~p|~>~q w logice ujemnej (bo ~q) to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A2: ~p~>~q =1 - zajście ~p jest (=1) konieczne ~> dla zajścia ~q
B2:~p=>~q =0 - zajście ~p nie jest (=0) wystarczające => dla zajścia ~q
Stąd:
A2B2: ~p|~>~q = (A2: ~p~>~q)*~(B2:~p=>~q)=1*~(0)=1*1=1

Definicja warunku wystarczającego =>:
p=>q = ~p+q
Definicja warunku koniecznego ~>:
p~>q = p+~q
Stąd:
~p|~>~q = (A2: ~p~>~q)*~(B2:~p=>~q)= (~p+q)*~(p+~q) = (~p+q)*(~p*q) = ~p*q
~p|~>~q = ~p*q

Zachodzi tożsamość logiczna:
A1B1: p|=>q =~p*q [=] A2B2: ~p|~>~q = ~p*q

Definicja tożsamości logicznej [=]:
Prawdziwość dowolnej strony tożsamości logicznej [=] wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej [=] wymusza fałszywość drugiej strony

Definicja dowolnego operatora implikacyjnego p||?q:
Operator implikacyjny p||?q to odpowiedź na pytanie co się stanie jeśli zajdzie p oraz co się stanie jeśli zajdzie ~p

Równanie operatora implikacji prostej p||=>q:
Kod:

T2:
Równanie operatora implikacji prostej p||=>q:
A1B1:                                                        A2B2
p|=>q = (A1: p=>q)*~(B1: p~>q) = (A2:~p~>~q)*~(B2:~p=>~q) = ~p|~>~q
bo prawa Kubusia:
A1: p=>q = A2: ~p~>~q
B1: p~>q = B2: ~p=>~q


Dlaczego to jest równanie operatora implikacji prostej p||=>q?
A1B1: W kolumnie A1B1 mamy odpowiedź na pytanie co może się wydarzyć jeśli zajdzie p
A2B2: W kolumnie A2B2 mamy odpowiedź na pytanie co może się wydarzyć jeśli zajdzie ~p

stąd mamy:
Operator implikacji prostej p||=>q w logice dodatniej (bo q) to układ równań logicznych A1B1 i A2B2 dający odpowiedź na pytanie o p i ~p:
A1B1: p|=>q =(A1: p=>q)* ~(B1: p~>q) - co się stanie jeśli zajdzie p?
A2B2: ~p|~>~q =(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p?

Układ równań jest przemienny, stąd mamy definicję tożsamą:
Operator implikacji odwrotnej ~p||~>~q w logice ujemnej (bo ~q) to układ równań logicznych A2B2 i A1B1 dający odpowiedź na pytanie o ~p i p:
A2B2: ~p|~>~q =(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p?
A1B1: p|=>q =(A1: p=>q)* ~(B1: p~>q) - co się stanie jeśli zajdzie p?

Z tabeli T2 odczytujemy tożsamość logiczną:
A1B1: p|=>q = A2B2: ~p|~>~q

Definicja tożsamości logicznej:
Prawdziwość dowolnej strony tożsamości logicznej „=” wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej „=” wymusza fałszywość drugiej strony

Wnioski:
1.
Udowodnienie iż dany układ spełnia definicję implikacji prostej p|=>q w logice dodatniej (bo q) jest tożsame z udowodnieniem iż ten sam układ spełnia definicję implikacji odwrotnej ~p|~>~q w logice ujemnej (bo ~q), albo odwrotnie.
A1B1: p|=>q = A2B2: ~p|~>~q

Na mocy definicji operatorów logicznych p||=>q i ~p||~>~q widzimy, że udowodnienie prawdziwości 1 pociąga za sobą prawdziwość 2:
2.
p||=>q = ~p||~>~q
cnd

Innymi słowy:
Wystarczy udowodnić, iż dany układ spełnia kolumnę A1B1:
A1: p=>q =1 - p jest (=1) wystarczające => dla q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla q
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) =1*~(0)=1*1=1
aby mieć pewność absolutną prawdziwości wszystkich pozostałych członów w tabeli T2

Warto zapamiętać różnicę:
Definicja warunku wystarczającego p=>q:
A1: p=>q = ~p+q
##
Definicja implikacji prostej p|=>q:
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) =~p*q
##
Definicja warunku koniecznego p~>q:
B1: p~>q = p+~q
Gdzie:
## - różne na mocy definicji funkcji logicznych

Definicja znaczka różne na mocy definicji ## dla funkcji logicznych:
Dwie funkcje logiczne są różne na mocy definicji ## wtedy i tylko wtedy gdy nie są tożsame i żadna z nich nie jest zaprzeczeniem drugiej

Weźmy nasze funkcje logiczne A1, A1B1 i B1:
Kod:

TA1B1:
A1:   Y= (p=>q)=~p+q  ## A1B1:  Y=(p|=>q)=~p*q  ## B1:  Y=(p~>q) =p+~q
      #                         #                       #
A1N: ~Y=~(p=>q)= p*~q ## A1B1N:~Y=~(p|=>q)=p+~q ## B1N:~Y=~(p~>q)=~p*q
Gdzie:
# - różne w znaczeniu iż jedna strona jest negacją drugiej strony
## - różne na mocy definicji funkcji logicznych
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Doskonale widać, że dowolna funkcja logiczna z jednej strony znaczka różne na mocy definicji ## nie jest tożsama z funkcją po przeciwnej stronie ani też nie jest jej zaprzeczeniem.

Katastrofalny błąd ziemskich matematyków w rachunku zero-jedynkowym

Ziemscy matematycy nie znają poprawnego rachunku zero-jedynkowego, ponieważ nigdy w tym rachunku nie uwzględniają funkcji logicznych w logice dodatniej (bo Y) i ujemnej (bo ~Y).
Tabela prawdy TA1B1 bez funkcji logicznych Y i ~Y przybierze postać:
Kod:

TA1B1’:
A1:  ~p+q   ## A1B1: ~p*q  ## B1:   p+~q
      #               #             #
A1N:  p*~q  ## A1B1N: p+~q ## B1N: ~p*q
Gdzie:
# - różne w znaczeniu iż jedna strona jest negacją drugiej strony
## - różne na mocy definicji funkcji logicznych
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Definicja znaczka różne na mocy definicji ## dla funkcji logicznych:
Dwie funkcje logiczne są różne na mocy definicji ## wtedy i tylko wtedy gdy nie są tożsame i żadna z nich nie jest zaprzeczeniem drugiej

Doskonale widać, że w tabeli TA1B1’ definicja znaczka różne na mocy definicji funkcji logicznych ## legła w gruzach, bo ewidentnie zachodzą tożsamości logiczne [=] po przekątnych.
A1B1: ~p*q [=] B1N: ~p*q
oraz
B1: p+~q [=] A1B1N: p+~q
cnd
Wniosek:
Miejsce ziemskiego rachunku zero-jedynkowego, który w kolumnach wynikowych nie uwzględnia funkcji logicznych w logice dodatniej (bo Y) i ujemnej (bo ~Y) jest w piekle, na wiecznych piekielnych mękach.
Innymi słowy:
Ziemski rachunek zero-jedynkowy jest wewnętrznie sprzeczny - dowód wyżej.

4.1.1 Operator implikacji prostej p||=>q

W algebrze Kubusia w zbiorach zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

IP.
Definicja podstawowa implikacji prostej p|=>q:

Implikacja prosta p|=>q to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku.
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
stąd:
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) =1*~(0) = 1*1 =1

Kod:

IP:
Tabela prawdy implikacji prostej p|=>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q =1 - p jest (=1) wystarczające => dla q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla q
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
       A1B1:         A2B2:        |     A3B3:         A4B4:
A:  1: p=>q  =1 = 2:~p~>~q=1     [=] 3: q~>p  =1 = 4:~q=>~p =1
A’: 1: p~~>~q=0 =                [=]             = 4:~q~~>p =0
       ##            ##           |     ##            ##
B:  1: p~>q  =0 = 2:~p=>~q=0     [=] 3: q=>p  =0 = 4:~q~>~p =0
B’:             = 2:~p~~>q=1     [=] 3: q~~>~p=1

Równanie operatora implikacji prostej p||=>q:
A1B1:                                                        A2B2:
p|=>q = (A1: p=>q)*~(B1: p~>q) = (A2:~p~>~q)*~(B2:~p=>~q) = ~p|~>~q

Operator implikacji prostej p||=>q to układ równań logicznych:
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p
A2B2:~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p

Układ równań logicznych jest przemienny, stąd mamy:
Operator implikacji odwrotnej ~p||~>~q to układ równań logicznych:
A2B2:~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Operator implikacji prostej p||=>q w logice dodatniej (bo q) to układ równań logicznych A1B1 i A2B2 dający odpowiedzi na pytania o p i ~p:

A1B1.
Co może się wydarzyć jeśli zajdzie p (p=1)?


Odpowiedź mamy w kolumnie A1B1:
A1: p=>q =1 - p jest (=1) wystarczające => dla q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla q
A1B1: p|=>q =(A1: p=>q)* ~(B1: p~>q) - co się stanie jeśli zajdzie p?
Stąd:
Jeśli zajdzie p (p=1) to mamy gwarancję matematyczną => iż zajdzie q (q=1) - mówi o tym zdanie A1

Kolumna A1B1:
A1.
Jeśli zajdzie p (p=1) to na 100% => zajdzie q (q=1)
p=>q =1
Zajście p jest (=1) wystarczające => dla zajścia q
Zajście p daje nam (=1) gwarancję matematyczną => zajścia q
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>

Prawdziwy warunek wystarczający A1 wymusza fałszywość kontrprzykładu A1’ i odwrotnie.
A1’.
Jeśli zajdzie p (p=1) to może ~~> zajść ~q (~q=1)
p~~>~q = p*~q=0
Zdarzenia:
Niemożliwe jest (=0) jednoczesne zajście zdarzeń ~~>: p i ~q
Zbiory:
Nie istnieje (=0) element wspólny zbiorów ~~>: p i ~q

A2B2.
Co może się wydarzyć jeśli zajdzie ~p (~p=1)?


Odpowiedź mamy w kolumnie A2B2:
A2: ~p~>~q =1 - zajście ~p jest (=1) konieczne ~> dla zajścia ~q
B2: ~p=>~q =0 - zajście ~p nie jest (=0) wystarczające => dla zajścia ~q
A2B2: ~p|~>~q =(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p?
Stąd:
Jeśli zajdzie ~p to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” - mówią o tym zdania A2 i B2’

Kolumna A2B2:
A2.
Jeśli zajdzie ~p (~p=1) to może ~> zajść ~q (~q=1)
~p~>~q =1
Zajście ~p jest konieczne ~> dla zajścia ~q, bo jak zajdzie p to na 100% => zajdzie q
Prawo Kubusia samo nam tu wyskoczyło:
A2: ~p~>~q = A1: p=>q

LUB

Fałszywy warunek wystarczający => B2 wymusza prawdziwość kontrprzykładu B2’ i odwrotnie:
B2’.
Jeśli zajdzie ~p (~p=1) to może ~~> zajść q (q=1)
~p~~>q = ~p*q =1
Zdarzenia:
Możliwe jest (=1) jednoczesne zajście zdarzeń ~~>: ~p i q
Zbiory:
Istnieje (=1) element wspólny zbiorów ~~>: ~p i q

Podsumowanie:
Jak widzimy, istotą operatora implikacji prostej p||=>q jest gwarancja matematyczna => po stronie p (zdanie A1), oraz „rzucanie monetą” w sensie „na dwoje babka wróżyła” po stronie ~p (zdania A2 i B2’) .

Zauważmy że:
a)
Układ równań logicznych jest przemienny, stąd mamy:
Operator implikacji odwrotnej ~p||~>~q to układ równań logicznych:
A2B2:~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p
Doskonale widać, że analiza matematyczna operatora implikacji odwrotnej ~p||~>~q w logice ujemnej (bo ~q) będzie identyczna jak operatora implikacji prostej p||=>q w logice dodatniej (bo q) z tym, że zaczynamy od kolumny A2B2 kończąc na kolumnie A1B1.
b)
Także kolejność wypowiadanych zdań jest dowolna, tak więc zdania z powyższej analizy A1, A1’, A2, B2’ możemy wypowiadać w sposób losowy - matematycznie to bez znaczenia.

4.1.2 Zero-jedynkowa definicja warunku wystarczającego =>

Zapiszmy skróconą tabelę prawdy operatora implikacji prostej p||=>q przedstawioną wyżej:
Kod:

T1:
Analiza symboliczna                              |Co w logice
operatora implikacji prostej p||=>q              |jedynek oznacza
Kolumna A1B1:
A1: p=>q =1
B1: p~>q =0
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p
A1:  p=> q =1 - zajście p wystarcza => dla q     |( p=1)=> ( q=1)=1
A1’: p~~>~q=0 - kontrprzykład dla A1 musi być 0  |( p=1)~~>(~q=1)=0
Kolumna A2B2:
A2:~p~>~q =1
B2: ~p=>~q =0
A2B2:~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A2: ~p~>~q =1 - ~p jest konieczne ~> dla ~q      |(~p=1)~> (~q=1)=1
B2’:~p~~>q =1 - kontrprzykład dla B2 musi być 1  |(~p=1)~~>( q=1)=1
     a   b  c                                       d        e    f

Z tabeli T1 możemy wyprowadzić zero-jedynkową definicję warunku wystarczającego A1: p=>q kodując analizę symboliczną względem linii A1, albo zero-jedynkową definicję warunku koniecznego A2:~p~>~q kodując analizę symboliczną względem linii A2

Przyjmijmy za punkt odniesienia warunek wystarczający => widoczny w linii A1:
A1: p=>q =1
Jedyne prawo Prosiaczka jakie będzie nam potrzebne do wygenerowania zero-jedynkowej definicji warunku wystarczającego to:
(~x=1)=(x=0)
bo zgodnie z przyjętym punktem odniesienia A1 wszystkie sygnały musimy sprowadzić do postaci niezanegowanej (bo x).
Kod:

T2:
Definicja zero-jedynkowa warunku wystarczającego A1: p=>q
w logice dodatniej (bo q)
Analiza       |Co w logice       |Kodowanie dla     |Zero-jedynkowa
symboliczna   |jedynek oznacza   |A1: p=>q =1       |definicja =>
              |                  |                  | p  q  A1: p=>q
A1:  p=> q =1 |( p=1)=> ( q=1)=1 |( p=1)=> ( q=1)=1 | 1=>1       =1
A1’: p~~>~q=0 |( p=1)~~>(~q=1)=0 |( p=1)~~>( q=0)=0 | 1=>0       =0
A2: ~p~>~q =1 |(~p=1)~> (~q=1)=1 |( p=0)~> ( q=0)=1 | 0=>0       =1
B2’:~p~~>q =1 |(~p=1)~~>( q=1)=1 |( p=0)~~>( q=1)=1 | 0=>1       =1
     a   b  c    d        e    f    g        h    i   1  2        3
                                 |Prawa Prosiaczka  |
                                 |(~p=1)=( p=0)     |
                                 |(~q=1)=( q=0)     |

Nagłówek A1: p=>q w kolumnie wynikowej 3 w tabeli zero-jedynkowej 123 wskazuje linię A1: w tabeli symbolicznej abc względem której dokonano kodowania zero-jedynkowego.
Tabela zero-jedynkowa 123 nosi nazwę zero-jedynkowej definicji warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego.

Zauważmy, że w tabeli T1 mamy również warunek konieczny ~> widniejący w linii A2.
Przyjmijmy za punkt odniesienia linię A2 i wygenerujmy tabelę zero-jedynkową warunku koniecznego ~>:
A2:~p~>~q =1
Jedyne prawo Prosiaczka jakie będzie tu nam potrzebne to:
(x=1)=(~x=0)
bo zgodnie z przyjętym punktem odniesienia A2 wszystkie sygnały musimy sprowadzić do postaci zanegowanej (bo ~x).
Kod:

T3:
Definicja zero-jedynkowa warunku koniecznego A2:~p~>~q
w logice ujemnej (bo ~q)
Analiza       |Co w logice       |Kodowanie dla     |Zero-jedynkowa
symboliczna   |jedynek oznacza   |A2:~p~>~q =1      |definicja ~>
              |                  |                  |~p ~q A2:~p~>~q
A1:  p=> q =1 |( p=1)=> ( q=1)=1 |(~p=0)=> (~q=0)=1 | 0~>0      =1
A1’: p~~>~q=0 |( p=1)~~>(~q=1)=0 |(~p=0)~~>(~q=1)=0 | 0~>1      =0
A2: ~p~>~q =1 |(~p=1)~> (~q=1)=1 |(~p=1)~> (~q=1)=1 | 1~>1      =1
B2’:~p~~>q =1 |(~p=1)~~>( q=1)=1 |(~p=1)~~>(~q=0)=1 | 1~>0      =1
     a   b  c    d        e    f    g        h    i   1  2       3
                                 |Prawa Prosiaczka  |
                                 |( p=1)=(~p=0)     |
                                 |( q=1)=(~q=0)     |

Nagłówek A2:~p~>~q w kolumnie wynikowej 3 w tabeli zero-jedynkowej 123 wskazuje linię A2: w tabeli symbolicznej abc względem której dokonano kodowania zero-jedynkowego.
Tabela zero-jedynkowa 123 nosi nazwę zero-jedynkowej definicji warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego.

Zauważmy, że analiza symboliczna (abc) w tabelach T2 i T3 jest identyczna, dzięki czemu z tożsamości kolumn wynikowych 3 w tabelach T2 i T3 wnioskujemy o zachodzącym prawie Kubusia.
Prawo Kubusia:
T2: p=>q = T3: ~p~>~q

Dokładnie ten sam dowód możemy wykonać w rachunku zero-jedynkowym korzystając z zero-jedynkowej definicji warunku wystarczającego => (T2: 123) i koniecznego ~> (T3: 123).
Oto on:
Kod:

Zero-jedynkowa definicja warunku wystarczającego =>
   p  q  p=>q
A: 1=>1  =1
B: 1=>0  =0
C: 0=>0  =1
D: 0=>1  =1

Kod:

Zero-jedynkowa definicja warunku koniecznego ~>
   p  q  p~>q
A: 1~>1  =1
B: 1~>0  =1
C: 0~>0  =1
D: 0~>1  =0

Stąd mamy:
Kod:

T4
Dowód prawa Kubusia w rachunku zero-jedynkowym:
p=>q = ~p~>~q
     p  q  p=>q ~p ~q ~p~>~q
A1:  1=>1  =1    0~>0   =1
A1’: 1=>0  =0    0~>1   =0
A2:  0=>0  =1    1~>1   =1
B2’: 0=>1  =1    1~>0   =1
     1  2   3    4  5    6

Tożsamość kolumn wynikowych 3=6 jest dowodem formalnym prawa Kubusia.
Prawo Kubusia:
p=>q = ~p~>~q
Uwaga:
Warunkiem koniecznym wnioskowania o tożsamości kolumn wynikowych 3=6 jest identyczna matryca zero-jedynkowa na wejściach p i q.
Matematycznie wiersze 456 można dowolnie przestawiać względem wierszy 123, ale wtedy wnioskowanie o zachodzącym prawie Kubusia będzie dużo trudniejsze - udowodnił to Makaron Czterojajeczny w początkach rozszyfrowywania algebry Kubusia.
Problem można tu porównać do tabliczki mnożenia do 100. Porządna tablica spotykana w literaturze jest zawsze ładnie uporządkowana. Dowcipny uczeń może jednak zapisać poprawną tabliczkę mnożenia do 100 w sposób losowy, byleby zawierała wszystkie przypadki. Pani matematyczka, od strony czysto matematycznej nie ma prawa zarzucić uczniowi iż nie zna się na matematyce, wręcz przeciwnie, doskonale wie o co tu chodzi a dowodem tego jest jego bałaganiarski dowcip.

Prawo Kubusia:
p=>q = ~p~>~q
Prawo Kubusia można też dowieść przy pomocy definicji warunku wystarczającego => i koniecznego ~> w spójnikach „i”(*) i „lub”(+)

Definicja warunku wystarczającego p=>q w spójnikach „i”(*) i „lub”(+):
p=>q = ~p+q
Definicja warunku koniecznego p~>q w spójnikach „i”(*) i „lub”(+):
p~>q = p+~q

Stąd mamy:
~p~>~q = ~p+~(~q) = ~p+q = p=>q
cnd

Prawo Kubusia to tożsamość logiczna „=”:
p=>q = ~p~>~q

Definicja tożsamości logicznej „=”:
Prawdziwość dowolnej strony tożsamości logicznej „=”wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej „=” wymusza fałszywość drugiej strony

Z powyższego wynika, że definicja tożsamości logicznej „=” jest tożsama ze spójnikiem równoważności „wtedy i tylko wtedy” <=>

Wniosek:
Tożsamość logiczna „=” jest de facto spójnikiem równoważności p<=>q o definicji:
Kod:

Zero-jedynkowa definicja równoważności <=>
   p   q p<=>q
A: 1<=>1  =1
B: 1<=>0  =0
C: 0<=>0  =1
D: 0<=>1  =0

Fakt ten możemy wykorzystać w naszym zero-jedynkowym dowodzie prawa Kubusia wyżej w następujący sposób.
Kod:

Dowód zero-jedynkowy prawa Kubusia:
p=>q = ~p~>~q
     p  q  p=>q ~p ~q ~p~>~q (p=>q)<=>(~p~>~q)
A1:  1=>1  =1    0~>0   =1          =1
A1’: 1=>0  =0    0~>1   =0          =1
A2:  0=>0  =1    1~>1   =1          =1
B2’: 0=>1  =1    1~>0   =1          =1
     1  2   3    4  5    6           7

Same jedynki w kolumnie 7 również są dowodem formalnym poprawności prawa Kubusia:
p=>q = ~p~>~q

4.2 Diagram implikacji prostej p|=>q w zbiorach

W algebrze Kubusia w zbiorach zachodzi:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

Definicja implikacji prostej p|=>q w zbiorach:
Zbiór p jest podzbiorem => zbioru q i nie jest tożsamy ze zbiorem q
Dziedzina musi być szersza do sumy logicznej zbiorów p+q bowiem wtedy i tylko wtedy wszystkie pojęcia p, ~p, q i ~q będą rozpoznawalne.
A1: p=>q =1 - zbiór p jest (=1) podzbiorem => zbioru q (z definicji)
B1: p~>q =0 - zbiór p nie (=0) jest nadzbiorem ~> zbioru q (z definicji)
p|=>q = (A1: p=>q)*~(B1: p~>q) =1*~(0) = 1*1 =1

Przedstawione wyżej zastrzeżenia dowodzimy w dwóch krokach.

Krok 1.
Dlaczego dziedzina musi być szersza od sumy logicznej zbiorów p i q?

Dla zbiorów tożsamych p=q mielibyśmy:
A1: p=>q =1 - bo każdy zbiór jest podzbiorem => siebie samego
B1: p~>q =1 - bo każdy zbiór jest nadzbiorem ~> siebie samego
Otrzymana sprzeczność z definicją implikacji prostej p|=>q w zbiorach jest dowodem, iż zbiory p i q nie mogą być tożsame.
Stąd mamy pierwszą część definicji implikacji prostej p|=>q w zbiorach:
Zbiór p jest podzbiorem => zbioru q i nie jest tożsamy ze zbiorem q
A1: p=>q =1 - zbiór p jest (=1) podzbiorem => zbioru q (z definicji)
B1: p~>q =0 - zbiór p nie (=0) jest nadzbiorem ~> zbioru q (z definicji)

Krok 2.
Dlaczego przyjęta dziedzina musi być szersza od sumy logicznej zbiorów p+q?

Przyjmijmy za dziedzinę sumę logiczną zbiorów p+q
D = p+q =q - bo na mocy definicji p|=>q zbiór p jest podzbiorem => zbioru q
Wtedy mamy:
~q=[D-q] = [q-q] =[] =0
Oznacza to że pojęcie ~q jest dla nas zbiorem pustym.

Definicja zbioru pustego [] w algebrze Kubusia:
Zbiór pusty to zbiór pojęć niezrozumiałych dla człowieka
[] =[asegft, uaytfds…]
Oczywistym jest, że nie możemy operować na pojęciach dla nas niezrozumiałych, stąd zastrzeżenie w definicji implikacji prostej p|=>q w zbiorach:
Dziedzina musi być szersza do sumy logicznej zbiorów p+q bowiem wtedy i tylko wtedy wszystkie pojęcia p, ~p, q i ~q będą rozpoznawalne.
Kod:

IP:
Tabela prawdy implikacji prostej p|=>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q =1 - p jest (=1) wystarczające => dla q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla q
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
       A1B1:         A2B2:        |     A3B3:         A4B4:
A:  1: p=>q  =1 = 2:~p~>~q=1     [=] 3: q~>p  =1 = 4:~q=>~p =1
A’: 1: p~~>~q=0 =                [=]             = 4:~q~~>p =0
       ##            ##           |     ##            ##
B:  1: p~>q  =0 = 2:~p=>~q=0     [=] 3: q=>p  =0 = 4:~q~>~p =0
B’:             = 2:~p~~>q=1     [=] 3: q~~>~p=1

Równanie operatora implikacji prostej p||=>q:
A1B1:                                                        A2B2:
p|=>q = (A1: p=>q)*~(B1: p~>q) = (A2:~p~>~q)*~(B2:~p=>~q) = ~p|~>~q

Operator implikacji prostej p||=>q to układ równań logicznych:
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p
A2B2:~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p

Układ równań logicznych jest przemienny, stąd mamy:
Operator implikacji odwrotnej ~p||~>~q to układ równań logicznych:
A2B2:~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Definicja implikacji prostej p|=>q w zbiorach:
Zbiór p jest podzbiorem => zbioru q i nie jest tożsamy ze zbiorem q
Dziedzina musi być szersza do sumy logicznej zbiorów p+q bowiem wtedy i tylko wtedy wszystkie pojęcia p, ~p, q i ~q będą rozpoznawalne.
A1: p=>q =1 - zbiór p jest (=1) podzbiorem => zbioru q (z definicji)
B1: p~>q =0 - zbiór p nie (=0) jest nadzbiorem ~> zbioru q (z definicji)
p|=>q = (A1: p=>q)*~(B1: p~>q) =1*~(0) = 1*1 =1

Na mocy powyższej definicji rysujemy diagram implikacji prostej p|=>q w zbiorach.
Kod:

D1
Diagram implikacji prostej p|=>q w zbiorach:
----------------------------------------------------------------------
|     p                     |                    ~p                  |
|---------------------------|----------------------------------------|
|     q                                      |   ~q                  |
|--------------------------------------------|-----------------------|
|                           |~p~~>q = ~p*q   | p~~>~q = p*~q =[]     |
----------------------------------------------------------------------
| Dziedzina: D =p*q+~p*~q+~p*q (suma logiczna zbiorów niepustych)    |
|--------------------------------------------------------------------|

Diagram implikacji prostej p|=>q
----------------------------------------------------------------------
I.
Przed zamianą p i q:
A1B1:
A1: p=>q =1 - zbiór p jest (=1) podzbiorem => zbioru q
B1: p~>q =0 - zbiór p nie jest (=0) nadzbiorem ~> zbioru q
A1B1: p|=>q=(A1: p=>q)*~(B1:p~>q)=1*~(0)=1*1=1
A2B2:
A2:~p~>~q=1 - zbiór ~p jest (=1) nadzbiorem ~> zbioru ~q
B2:~p=>~q=0 - zbiór ~p nie jest (=0) podzbiorem => ~q
A2B2: ~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q)=1*~(0)=1*1=1

II.
Po zamianie p i q:
A3B3:
A3: q~>p =1 - zbiór q jest (=1) nadzbiorem ~> zbioru p
B3: q=>p =0 - zbiór q nie jest (=0) podzbiorem => zbioru q
A3B3: q|~>p = (A3: q~>p)*~(B3: q=>p) =1*~(0)=1*1 =1
A4B4:
A4:~q=>~p=1 - zbiór ~q jest (=1) podzbiorem => ~p
B4:~q~>~p=0 - zbiór ~q nie jest (=0) nadzbiorem ~> ~p
A4B4: ~q|=>~p = (A4:~q=>~p)*~(~q~>~p) =1*~(0)=1*1 =1
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Operator implikacji prostej p||=>q to układ równań A1B1 i A2B2 dający odpowiedź na pytania o p i ~p:

A1B1:
Co może się wydarzyć jeśli zajdzie p (p=1)?


Odpowiedź mamy w kolumnie A1B1:
A1: p=>q =1 - zbiór p jest (=1) podzbiorem => zbioru q
B1: p~>q =0 - zbiór p nie jest (=0) nadzbiorem ~> zbioru q
Jeśli zajdzie p to mamy gwarancję matematyczną => iż zajdzie q - mówi o tym zdanie A1

Z diagramu D1 odczytujemy:
A1.
Jeśli zajdzie p (p=1) to na 100% => zajdzie q (q=1)
p=>q =1
Zajście p jest wystarczające => dla zajścia q bo zbiór p jest podzbiorem => zbioru q
Doskonale to widać na diagramie D1

Kontrprzykład A1’ dla prawdziwego warunku wystarczającego A1 musi być fałszem
A1’.
Jeśli zajdzie p (p=1) to może ~~> zajść ~q (~q=1)
p~~>~q = p*~q = [] =0
Definicja elementu wspólnego zbiorów ~~> nie jest spełniona bo zbiory p i ~q są rozłączne, co również widać na diagramie D1

A2B2:
Co może się wydarzyć jeśli zajdzie ~p (~p=1)?


Odpowiedź mamy w kolumnie A2B2:
A2:~p~>~q=1 - zbiór ~p jest (=1) nadzbiorem ~> zbioru ~q
B2:~p=>~q=0 - zbiór ~p nie jest (=0) podzbiorem => ~q
Jeśli zajdzie ~p to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” o czym mówią zdania A2 i B2’

Z diagramu D1 odczytujemy:
A2.
Jeśli zajdzie ~p (~p=1) to może ~> zajść ~q (~q=1)
~p~>~q =1
Zajście ~p jest konieczne ~> dla zajścia ~q bo zbiór ~p jest nadzbiorem ~> zbioru ~q
Wyśmienicie to widać na diagramie D1

LUB

Kontrprzykład B2’ dla fałszywego warunku wystarczającego B2:~p=>~q=0 musi być prawdą.
B2’.
Jeśli zajdzie ~p (~p=1) to może ~~> zajść q (q=1)
~p~~>q = ~p*q =1
Definicja elementu wspólnego zbiorów ~p i q jest spełniona, co doskonale widać na diagramie D1.

4.2.1 Odtworzenie definicji operatora implikacji prostej p||=>q z definicji ~~>

Weźmy diagram implikacji prostej w zbiorach p|=>q wyżej zapisany wyrażony definicją elementu wspólnego zbiorów ~~>.
Kod:

D1
Diagram operatora implikacji prostej p||=>q w zbiorach
----------------------------------------------------------------------
|     p                     |                    ~p                  |
|---------------------------|----------------------------------------|
|     q                                      |   ~q                  |
|--------------------------------------------|-----------------------|
|                           |~p~~>q = ~p*q   | p~~>~q = p*~q =[]     |
----------------------------------------------------------------------
| Dziedzina: D =p*q+~p*~q+~p*q (suma logiczna zbiorów niepustych)    |
|--------------------------------------------------------------------|
|                                                                    |
|Operator implikacji prostej p||=>q w spójnikach „i”(*) i „lub”(+)   |
----------------------------------------------------------------------
|    Ya=p~~>q=p*q           | Yd=~p~~>q=~p*q | Yc=~p~~>~q=~p*~q      |
----------------------------------------------------------------------
|                            ~Yb=p~~>~q=p*~q (zbiór pusty!)          |
----------------------------------------------------------------------

Spójniki iloczynu logicznego zbiorów „i”(*) oraz sumy logicznej zbiorów „lub”(+) z definicji nie są w stanie opisać relacji podzbioru => czy też nadzbioru ~> między dowolnymi dwoma zbiorami p i q.

Wniosek:
W opisie dowolnego diagramu w zbiorach wyrażonego spójnikami „i”(*) i „lub”(+) chodzi tylko i wyłącznie o spełnienie lub nie spełnienie definicji elementu wspólnego zbiorów ~~>.

Definicja elementu wspólnego ~~> zbiorów:
Jeśli p to q
p~~>q =p*q =1
Definicja elementu wspólnego zbiorów ~~> jest spełniona (=1) wtedy i tylko wtedy gdy zbiory p i q mają co najmniej jeden element wspólny
Inaczej:
p~~>q= p*q= [] =0 - zbiory p i q są rozłączne, nie mają (=0) elementu wspólnego ~~>

Decydujący w powyższej definicji jest znaczek elementu wspólnego zbiorów ~~>, dlatego dopuszczalny jest zapis skrócony p~~>q.
W operacji iloczynu logicznego zbiorów p*q poszukujemy tu jednego wspólnego elementu, nie wyznaczamy kompletnego zbioru p*q.

Stąd mamy tabelę prawdy operatora implikacji prostej p||=>q definiowaną elementami wspólnymi zbiorów ~~>:
Kod:

T0.
Operator p||=>q       |
w spójnikach          |Co w logice
elementu wspólnego ~~>|jedynek oznacza
                 Y ~Y |                 Y   Z diagramu D1 odczytujemy:
A: p~~>q = p* q =1  0 |( p=1)~~>( q=1) =1 - istnieje el. wspólny p i q
B: p~~>~q= p*~q =0  1 |( p=1)~~>(~q=1) =0 - nie istnieje el. wspólny p i ~q
C:~p~~>~q=~p*~q =1  0 |(~p=1)~~>(~q=1) =1 - istnieje el. wspólny ~p i ~q
D:~p~~> q=~p* q =1  0 |(~p=1)~~>( q=1) =1 - istnieje el. wspólny ~p i q

Między funkcjami logicznymi Y i ~Y zachodzi relacja spójnika „albo”($).
Dowód:
Definicja spójnika „albo”($)
p$q =p*~q + ~p*q
Podstawmy:
p=Y
q=~Y
stąd:
Y$~Y = Y*~(~Y) + ~Y*(~Y) = Y*Y + ~Y*~Y =Y+~Y =1

Oczywiście relacja równoważności p<=>q definiująca tożsamość zbiorów/pojęć p=q musi tu być fałszem.
Dowód:
Definicja równoważności p<=>q wyrażona spójnikami „i”(*) i „lub”(+):
p<=>q = p*q + ~p*~q
Podstawmy:
p=Y
q=~Y
stąd:
Y<=>~Y = Y*(~Y) + ~Y*~(~Y) = Y*~Y + ~Y*Y = []+[] =0
cnd

Zapiszmy powyższą tabelę wyłącznie w spójnikach elementu wspólnego zbiorów ~~> zmieniając indeksowanie linii do postaci zgodnej z teorią wykładaną w algebrze Kubusia - matematycznie ten ruch jest bez znaczenia.
Kod:

T1.
Operator implikacji prostej p||=>q
definiowany elementem wspólnym zbiorów ~~>
             Y   Analiza dla punktu odniesienia Y
A1:  p~~>q  =1 - istnieje (=1) el. wspólny zbiorów p i q
A1’: p~~>~q =0 - nie istnieje (=0) el. wspólny zbiorów p i ~q
A2: ~p~~>~q =1 - istnieje (=1) el. wspólny zbiorów ~p i ~q
B2’:~p~~> q =1 - istnieje (=1) el. wspólny zbiorów ~p i q

Kluczowym punktem zaczepienia do przejścia z tabelą T1 do tabeli tożsamej T2 opisującej operator implikacji prostej p||=>q w warunkach wystarczających => i koniecznych ~> będzie definicja kontrprzykładu w zbiorach działająca wyłącznie w obszarze warunku wystarczającego =>.

Dodatkowo potrzebne nam będą prawa Kubusia:
A1: p=>q = A2: ~p~>~q
##
B1: p~>q = B2: ~p=>~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Definicja tożsamości logicznej „=” na przykładzie prawa Kubusia:
A1: p=>q = A2: ~p~>~q
Prawdziwość dowolnej strony tożsamości logicznej „=” wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej „=” wymusza fałszywość drugiej strony.

Z powyższego wynika, że mając udowodnioną prawdziwość warunku wystarczającego => A1:
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
nie musimy udowadniać prawdziwości warunku koniecznego ~> A2 (i odwrotnie):
A2: ~p~>~q =1 - zajście ~p jest (=1) konieczne dla zajścia ~q
bowiem gwarantuje nam to prawo Kubusia, prawo rachunku zero-jedynkowego:
A1: p=>q = A2: ~p~>~q

W algebrze Kubusia zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

Definicja kontrprzykładu w zbiorach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane elementem wspólnym zbiorów p~~>~q=p*~q
Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)

Analiza tabeli prawdy T1 - część I
1.
Fałszywość kontrprzykładu A1’:
A1’: p~~>~q =0
wymusza prawdziwość warunku wystarczającego => A1 (i odwrotnie):
A1: p=>q =1 - zbiór p jest podzbiorem => zbioru q
2.
Prawo Kubusia:
A1: p=>q = A2:~p~>~q
Stąd:
Prawdziwość warunku wystarczającego A1:
A1: p=>q =1
wymusza prawdziwość warunku koniecznego ~> A2 (i odwrotnie):
A2: ~p~>~q =1 - zbiór ~p jest nadzbiorem ~> zbioru ~q

Nanieśmy naszą analizę do tabeli T2.
Kod:

T2.
Operator implikacji prostej p||=>q
w warunkach wystarczających => i koniecznych ~>
             Y   Analiza dla punktu odniesienia Y
A1:  p=> q  =1 - zbiór p jest podzbiorem => q
A1’: p~~>~q =0 - kontrprzykład dla A1 musi być fałszem
A2: ~p~>~q  =1 - zbiór ~p jest nadzbiorem ~> ~q
B2’:~p~~> q =1 - istnieje (=1) element wspólny zbiorów ~p i q

Analiza tabeli prawdy T1 - część II
3.
Prawdziwość kontrprzykładu B2’:
B2’: ~p~~>q =1
wymusza fałszywość warunku wystarczającego B2 (i odwrotnie):
B2: ~p=>~q =0
4.
Prawo Kubusia:
B2: ~p=>~q = B1: p~>q
stąd:
Fałszywość warunku wystarczającego B2:
B2: ~p=>~q =0
wymusza fałszywość warunku koniecznego B1 (i odwrotnie):
B1: p~>q =0

Nanieśmy naszą analizę do tabeli T2
Kod:

T3.
Operator implikacji prostej p||=>q
w warunkach wystarczających => i koniecznych ~>
A1:  p=> q  =1 | B1: p~>q=0
A1’: p~~>~q =0
A2: ~p~>~q  =1 | B2:~p=>~q=0
B2’:~p~~> q =1

Stąd mamy:
Linia A1B1:
Podstawowa definicja implikacji prostej p|=>q w zbiorach:
Implikacja prosta p|=>q to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
wtedy i tylko wtedy gdy zbiór p nie jest nadzbiorem ~> zbioru q
Stąd:
p|=>q = (A1: p=>q)*~(B1: p~>q) =1*~(0) =1*1 =1

Zdefiniowawszy implikację prostą p|=>q w zbiorach jako:
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
możemy ją podstawić do tabeli prawdy implikacji prostej p|=>q.
Kod:

IP:
Tabela prawdy implikacji prostej p|=>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q =1 - p jest (=1) wystarczające => dla q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla q
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
       A1B1:         A2B2:        |     A3B3:         A4B4:
A:  1: p=>q  =1 = 2:~p~>~q=1     [=] 3: q~>p  =1 = 4:~q=>~p =1
A’: 1: p~~>~q=0 =                [=]             = 4:~q~~>p =0
       ##            ##           |     ##            ##
B:  1: p~>q  =0 = 2:~p=>~q=0     [=] 3: q=>p  =0 = 4:~q~>~p =0
B’:             = 2:~p~~>q=1     [=] 3: q~~>~p=1

Równanie operatora implikacji prostej p||=>q:
A1B1:                                                        A2B2:
p|=>q = (A1: p=>q)*~(B1: p~>q) = (A2:~p~>~q)*~(B2:~p=>~q) = ~p|~>~q

Operator implikacji prostej p||=>q to układ równań logicznych:
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p
A2B2:~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p

Układ równań logicznych jest przemienny, stąd mamy:
Operator implikacji odwrotnej ~p||~>~q to układ równań logicznych:
A2B2:~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Stąd mamy to, co już doskonale znamy.

Definicja operatora implikacji prostej p||=>q:
Operator implikacji prostej p||=>q to odpowiedź na dwa pytania A1B1 i A2B2:

Szczegółową analizę operatora implikacji prostej p||=>q znajdziemy w punkcie 4.1.1

4.2.2 Najmniejsza możliwa liczba elementów w operatorze p||=>q

Definicja implikacji prostej p|=>q w zbiorach:
Zbiór p jest podzbiorem => zbioru q i nie jest tożsamy ze zbiorem q
Dziedzina musi być szersza do sumy logicznej zbiorów p+q bowiem wtedy i tylko wtedy wszystkie pojęcia p, ~p, q i ~q będą rozpoznawalne.
A1: p=>q =1 - zbiór p jest (=1) podzbiorem => zbioru q (z definicji)
B1: p~>q =0 - zbiór p nie (=0) jest nadzbiorem ~> zbioru q (z definicji)
p|=>q = (A1: p=>q)*~(B1: p~>q) =1*~(0) = 1*1 =1

Z definicji implikacji prostej p|=>q w zbiorach wynika, że najmniejsza liczba elementów potrzebnych do zbudowania operatora implikacji prostej p||=>q to trzy elementy.
Zdefiniujmy trzy, różne na mocy definicji elementy których będziemy używać.
K - Kubuś
T - Tygrysek
P - Prosiaczek
Zbudujmy zbiory p i q spełniające definicję implikacji prostej w zbiorach:
p=[K]
q=[K+T]
Dziedzina:
D=[K+T+P]
stąd mamy niepuste przeczenia zbiorów rozumiane jako ich uzupełnienia do wspólnej dziedziny D:
~p=[D-p]=[K+T+P-K]=[T+P]
~q=[D-q]=[K+T+P-[K+T]=[P]
Podsumujmy:
p=[K], ~p=[T+P]
q=[K+T], ~q=[P]
Zapiszmy diagram operatora implikacji p||=>q dla powyższych elementów.
Kod:

D2
Diagram operatora implikacji prostej p||=>q w zbiorach
-----------------------------------------------------------------------
|  p=[K],   ~p=[T+P]                                                  |
|  q=[K+T], ~q=[P]                                                    |
-----------------------------------------------------------------------
|     p=[K]                 |                     ~p=[T+P]            |
|---------------------------|-----------------------------------------|
|     q=[K+T]                                -|   ~q=[P]              |
|---------------------------------------------|-----------------------|
|                           |~p~~>q=~p*q=[T]  | p~~>~q = p*~q =[]     |
-----------------------------------------------------------------------
| Dziedzina fizyczna: DF =p*q+~p*~q+~p*q (suma zbiorów niepustych)    |
-----------------------------------------------------------------------

Doskonale widać, że w diagramie D2 spełniona jest definicji implikacji prostej p|=>q, a tym samym definicja operatora implikacji prostej p||=>q.

Zapiszmy pełny diagram implikacji prostej p|=>q:
Kod:

IP:
Tabela prawdy implikacji prostej p|=>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q =1 - p jest (=1) wystarczające => dla q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla q
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
       A1B1:         A2B2:        |     A3B3:         A4B4:
A:  1: p=>q  =1 = 2:~p~>~q=1     [=] 3: q~>p  =1 = 4:~q=>~p =1
A’: 1: p~~>~q=0 =                [=]             = 4:~q~~>p =0
       ##            ##           |     ##            ##
B:  1: p~>q  =0 = 2:~p=>~q=0     [=] 3: q=>p  =0 = 4:~q~>~p =0
B’:             = 2:~p~~>q=1     [=] 3: q~~>~p=1

Równanie operatora implikacji prostej p||=>q:
A1B1:                                                        A2B2:
p|=>q = (A1: p=>q)*~(B1: p~>q) = (A2:~p~>~q)*~(B2:~p=>~q) = ~p|~>~q

Operator implikacji prostej p||=>q to układ równań logicznych:
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p
A2B2:~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p

Układ równań logicznych jest przemienny, stąd mamy:
Operator implikacji odwrotnej ~p||~>~q to układ równań logicznych:
A2B2:~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


Nasze zbiory na których operujemy to:
p=[K], ~p=[T+P]
q=[K+T], ~q=[P]

Definicja operatora implikacji prostej p||=>q:
Operator implikacji prostej p||=>q to układ równań A1B1 i A2B2 dający odpowiedź na dwa pytania o p i ~p:

A1B1:
Co się stanie jeśli zajdzie p (p=1)?


Odpowiedź mamy w kolumnie A1B1:
A1: p=>q =1 - p jest (=1) wystarczające => dla q, bo p jest podzbiorem => q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla q, bo p nie jest nadzbiorem ~> q
A1B1: p|=>q =(A1: p=>q)* ~(B1: p~>q) - co się stanie jeśli zajdzie p?
Stąd:
Jeśli zajdzie p (p=1) to mamy gwarancję matematyczną => iż zajdzie q (q=1) - mówi o tym zdanie A1

A1.
Jeśli zajdzie p (p=1) to na 100% => zajdzie q (q=1)
p=>q =1
Zajście p jest warunkiem wystarczającym => dla zajścia q wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q
Sprawdzamy:
p=[K] => q=[K+T]
Definicja warunku wystarczającego => spełniona bo zbiór p=[K] jest podzbiorem => zbioru q=[K+T}
cnd

Z prawdziwości warunku wystarczającego => A1 wynika fałszywość kontrprzykładu A1’ (i odwrotnie)
A1’
Jeśli zajdzie p (p=1) to może ~~> zajść ~q (~q=1)
p~~>~q = p*~q =0
Nie istnieje (=0) wspólny element ~~> zbiorów p i ~q
Sprawdzamy:
p=[K] ~~> ~q=[P] = [K]*[P] =[] =0
Zbiory jednoelementowe Kubuś (K) i Prosiaczek (P) są rozłączne
cnd

A2B2:
Co się stanie jeśli zajdzie ~p (~p=1)?


Odpowiedź mamy w kolumnie A2B2:
A2: ~p~>~q =1 - zajście ~p jest (=1) konieczne ~> dla zajścia ~q
B2: ~p=>~q =0 - zajście ~p nie jest (=0) wystarczające => dla zajścia ~q
A2B2: ~p|~>~q =(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p?
Stąd:
Jeśli zajdzie ~p to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” - mówią o tym zdania A2 i B2’

A2.
Jeśli zajdzie ~p (~p=1) to może ~> zajść ~q (~q=1)
~p~>~q =1
Zajście ~p jest warunkiem koniecznym ~> dla zajścia ~q wtedy i tylko wtedy gdy zbiór ~p jest nadzbiorem ~> zbioru ~q
Sprawdzenie:
~p=[T+P] ~> ~q=[P] =1
Definicja warunku koniecznego ~> jest spełniona bo zbiór ~p=[T+P] jest nadzbiorem ~> zbioru ~q=[P]

LUB

Fałszywy warunek wystarczający => B2 wymusza prawdziwy kontrprzykład B2’ i odwrotnie:
B2’.
Jeśli zajdzie ~p (~p=1) to może ~~> zajść q (q=1)
~p~~>q = ~p*q =1
Istnieje (=1) wspólny element ~~> zbiorów ~p i q
Sprawdzenie:
~p=[T+P]~~>q=[K+T] = [T+K]*[K+T] =[T] =1
Istnieje element wspólny zbiorów ~p=[T+P] i q=[K+T] - to Tygrysek (T)

Doskonale tu widać, że w zdaniu B2’ nie jest spełniony ani warunek wystarczający => ani też konieczny ~>.
Dowód:
~p=[T+P] => q=[K+T] =0 - bo zbiór ~p=[T+P] nie jest (=0) podzbiorem => q=[K+T]
~p=[T+P} ~> q=[K+T] =0 - bo zbiór ~p=[T+P] nie jest (=0) nadzbiorem ~> q=[K+T]

Jak widzimy wszystko tu pięknie gra i buczy, a zabawę z implikacją prostą p|=>q można zacząć w przedszkolu dysponując trzema pluszowymi zabawkami:
K - Kubuś
T - Tygrysek
P - Prosiaczek
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 35331
Przeczytał: 23 tematy

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Nie 6:59, 13 Cze 2021    Temat postu:

Algebra Kubusia - ostatnie czytanie!
Część VIII

Po raz ostatni przed premierą czytam od początku algebrę Kubusia likwidując literówki i udoskonalając przekaz.

http://www.sfinia.fora.pl/forum-kubusia,12/algebra-kubusia-w-przebudowie,18899.html#593993

Algebra Kubusia
4.3 Przykłady operatorów implikacji prostej p||=>q

Spis treści
4.3 Implikacja prosta A|=>S w zdarzeniach 1
4.3.1 Operator implikacji prostej A||=>S w zdarzeniach 4
4.3.2 Wisienka na torcie w operatorze implikacji prostej A||=>S 6
4.4 Implikacja prosta P8|=>P2 w zbiorach 8
4.4.1 Operator implikacji prostej P8||=>P2 w zbiorach 12
4.5 Implikacja prosta P|=>4L w zbiorach w przedszkolu 13
4.5.1 Operator implikacji prostej P||=>4L w zbiorach w przedszkolu 17
4.6 Alternatywne dojście do operatora implikacji prostej P||=>4L w zbiorach 19
4.6.1 Implikacja prosta P|=>4L w zbiorach 21
4.6.2 Operator implikacji prostej P||=>4L w zbiorach 22


Przykłady zawarte w niniejszym punkcie to poziom 5-cio latka:
P||=>4L
oraz poziom ucznia I lasy LO:
A||=>S i P8||=>P2

4.3 Implikacja prosta A|=>S w zdarzeniach

Kod:

T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
      ##        ##           ##        ##            ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5:  p+~q

Prawa Kubusia:        | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q  | A1: p=>q  = A4:~q=>~p
B1: p~>q = B2:~p=>~q  | B2:~p=>~q = B3: q=>p

Prawa Tygryska:       | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p   | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p   | B1: p~>q  = B4:~q~>~p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


Sterowanie żarówką S przez różne zespoły przycisków to najprostszy sposób by zrozumieć algebrę Kubusia na poziomie I klasy LO.

Niech będzie dany schemat elektryczny:
Kod:

S1 Schemat 1
                             W
                           ______
                      -----o    o-----
             S        |      A       |
       -------------  |    ______    |
  -----| Żarówka   |-------o    o-----
  |    -------------                 |
  |                                  |
______                               |
 ___    U (źródło napięcia)          |
  |                                  |
  |                                  |
  ------------------------------------


Prawo śfinii:
Dowolne zdanie warunkowe od którego zaczynamy analizę matematyczną jest domyślnym punktem odniesienia, gdzie po „Jeśli ..” zapisujemy p zaś po „to..” zapisujemy q z pominięciem przeczeń.

Zadajmy sobie dwa podstawowe pytania:
A1.
Czy wciśnięcie przycisku A jest wystarczające => dla świecenia żarówki S?

Odpowiedź:
Tak, stan przycisku W jest tu nieistotny, może być W=x gdzie x=[1,0]
Zauważmy, że pytanie A1 nie dotyczy przycisku W.
Przycisk W tu jest zmienną wolną którą możemy zastać w dowolnej pozycji W=x gdzie x=[1,0]
Stąd mamy:
A1.
Jeśli przycisk A jest wciśnięty (A=1) to żarówka na 100% => świeci się (S=1)
A=>S =1
Przyjmijmy zdanie A1 za punkt odniesienia:
p=>q =1 - na mocy prawa śfinii
Nasz punkt odniesienia to:
p=A (przycisk A)
q=S (żarówka S)
Wciśnięcie przycisku A jest (=1) warunkiem wystarczającym => do tego, aby żarówka świeciła się
Wciśnięcie przycisku A daje nam gwarancję matematyczną => świecenia się żarówki S
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>
Zauważmy, że stan przycisku W jest bez znaczenia W=x gdzie x={0,1}

B1.
Czy wciśnięcie przycisku A jest konieczne ~> dla świecenia żarówki S?

Odpowiedź:
Nie.
Przycisk A może nie być wciśnięty (A=0), a mimo to żarówka może się świecić, gdy zmienna wolna W będzie ustawiona na W=1.
Stąd mamy:
B1.
Jeśli przycisk A jest wciśnięty (A=1) to żarówka na 100% ~> świeci się (S=1)
A~>S =0
Wciśnięcie przycisku A (A=1) nie jest (=0) konieczne ~> dla świecenia się żarówki S (S=1), bowiem może być sytuacja A=0 i W=1 i żarówka będzie się świecić
cnd

Jak widzimy na dzień dobry wyskoczyło nam prawo Kameleona.

Popatrzmy:
A1.
Jeśli przycisk A jest wciśnięty (A=1) to żarówka na 100% => świeci się (S=1)
A=>S =1
Wciśnięcie przycisku A jest (=1) warunkiem wystarczającym => do tego, aby żarówka świeciła się
##
B1.
Jeśli przycisk A jest wciśnięty (A=1) to żarówka na 100% ~> świeci się (S=1)
A~>S =0
Wciśnięcie przycisku A nie jest (=0) konieczne ~> dla świecenia się żarówki S (S=1).
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Zapiszmy zdania A1 i B1 w tabeli prawdy:
Kod:

A1: p=>q = ~p+q   ## B1: p~>q = p+~q - zapis formalny {p,q}
A1: A=>S = ~A+S   ## B1: A~>S = A+~S - zapis aktualny {A,S}
Gdzie:
## - różne na mocy definicji

Zauważmy, że zdania A1 i B1 brzmią identycznie z dokładnością do każdej literki i każdego przecinka, a mimo to nie są to zdania tożsame. Stąd mamy wyprowadzone prawo Kameleona.

Prawa Kameleona:
Dwa zdania brzmiące identycznie z dokładnością do każdej literki i każdego przecinka nie muszą być matematycznie tożsame

Różność ## zdań A1 i B1 rozpoznajemy po znaczkach warunku wystarczającego => i koniecznego ~> wbudowanych w treść zdań.

Stąd mamy rozstrzygnięcie iż zdania A1 i B1 tworzą definicję implikacji prostej A|=>S.

Definicja podstawowa implikacji prostej A|=>S:
Implikacja prosta A|=>S to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
A1: A=>S =1 - wciśnięcie klawisza A jest wystarczające => dla świecenia się żarówki S
B1: A~>S =0 - wciśnięcie klawisza A nie jest (=0) konieczne ~> dla świecenia się żarówki S
bo żarówkę S może zaświecić zmienna wolna W (W=1)
Stąd mamy:
A|=>S = (A1: A=>S)*~(B1: A~>S) =1*~(0)=1*1=1

Nanieśmy zdania A1 i B1 do tabeli prawdy implikacji prostej p|=>q
Kod:

IP:
Tabela prawdy implikacji prostej p|=>q
Kolumna A1B1 to punkt odniesienia w zapisie formalnym {p,q}:
A1: p=>q =1 - p jest (=1) wystarczające => dla q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla q
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
Punkt odniesienia na mocy prawa śfinii to:
p=A (przycisk A wciśnięty)
q=S (żarówka S świeci się)
Kolumna A1B1 to punkt odniesienia w zapisie aktualnym {A,S}:
A1: A=>S =1 - wciśnięcie A jest (=1) wystarczające => dla świecenia S
B1: A~>S =0 - wciśnięcie A nie jest (=0) konieczne ~> dla świecenia S
A1B1: A|=>S = (A1: A=>S)*~(B1: A~>S)=1*~(0)=1*1=1

       A1B1:          A2B2:       |    A3B3:          A4B4:
A:  1: p=>q   =1 = 2:~p~>~q =1  [=] 3: q~>p   =1 = 4:~q=>~p =1
A:  1: A=>S   =1 = 2:~A~>~S =1  [=] 3: S~>A   =1 = 4:~S=>~A =1
A’: 1: p~~>~q =0 =              [=]              = 4:~q~~>p =0                   
A’: 1: A~~>~S =0 =              [=]              = 4:~S~~>A =0                   
       ##             ##         |     ##            ##
B:  1: p~>q   =0 = 2:~p=>~q =0  [=] 3: q=>p   =0 = 4:~q~>~p =0
B:  1: A~>S   =0 = 2:~A=>~S =0  [=] 3: S=>A   =0 = 4:~S~>~A =0
B’:              = 2:~p~~>q =1  [=] 3: q~~>~p =1
B’:              = 2:~A~~>S =1  [=] 3: S~~>~A =1
Równanie operatora implikacji prostej p||=>q:
A1B1:                                                        A2B2:
p|=>q = (A1: p=>q)*~(B1: p~>q) = (A2:~p~>~q)*~(B2:~p=>~q) = ~p|~>~q

Operator implikacji prostej p||=>q to układ równań logicznych:
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p
A2B2:~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p

Układ równań logicznych jest przemienny, stąd mamy:
Operator implikacji odwrotnej ~p||~>~q to układ równań logicznych:
A2B2:~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

W tabeli prawdy implikacji prostej A|=>S, dla poprawienia czytelności zapisu zmienne aktualne (A, S) podstawiono wyłącznie w nagłówku tabeli oraz w części głównej decydującej o brzmieniu zdań warunkowych „Jeśli p to q”

Operator implikacji prostej p||=>q w logice dodatniej (bo q) to układ równań logicznych A1B1 i A2B2 odpowiadający na pytania o p i ~p:
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p
A2B2:~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p

Układ równań logicznych jest przemienny, stąd mamy:
Operator implikacji odwrotnej ~p||~>~q w logice ujemnej (bo ~q) to układ równań logicznych A2B2 i A1B1 odpowiadający na pytania o ~p i p:
A2B2:~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p

4.3.1 Operator implikacji prostej A||=>S w zdarzeniach
Kod:

S1 Schemat 1
                             W
                           ______
                      -----o    o-----
             S        |      A       |
       -------------  |    ______    |
  -----| Żarówka   |-------o    o-----
  |    -------------                 |
  |                                  |
______                               |
 ___    U (źródło napięcia)          |
  |                                  |
  |                                  |
  ------------------------------------


Operator implikacji prostej A||=>S w logice dodatniej (bo S) to układ równań logicznych A1B1 i A2B2 odpowiadający na pytania o A i ~A:

A1B1:
Co może się wydarzyć jeśli przycisk A będzie wciśnięty (A=1)?


Odpowiedź na to pytanie mamy w kolumnie A1B1:
A1: A=>S =1 - wciśnięcie A jest (=1) wystarczające => dla świecenia S
B1: A~>S =0 - wciśnięcie A nie jest (=0) konieczne ~> dla świecenia S
A1B1: A|=>S = (A1: A=>S)*~(B1: A~>S)=1*~(0)=1*1=1
Jeśli przycisk A będzie wciśnięty (A=1) to mamy gwarancję matematyczną => iż żarówka będzie się świecić (S=1) - mówi o tym zdanie A1

Kolumna A1B1 w zdaniach warunkowych „Jeśli p to q”:
A1.
Jeśli przycisk A jest wciśnięty (A=1) to żarówka na 100% => świeci się (S=1)
A=>S =1
Wciśnięcie przycisku A jest (=1) warunkiem wystarczającym => do tego, aby żarówka świeciła się
Wciśnięcie przycisku A daje nam gwarancję matematyczną => świecenia się żarówki S
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>
Zauważmy, że stan przycisku W jest bez znaczenia W=x gdzie x={0,1}

Z prawdziwości warunku wystarczającego => A1 wynika fałszywość kontrprzykładu A1’ (i odwrotnie)
A1’
Jeśli przycisk A będzie wciśnięty (A=1) to żarówka może ~~> się nie świecić (~S=1)
A~~>~S=A*~S=0
to samo w zapisie formalnym:
p~~>~q = p*~q =1
Niemożliwe jest (=0) zdarzenie: przycisk A jest wciśnięty (A=1) i żarówka nie świeci się (~S=1).

A2B2:
Co może się wydarzyć jeśli przycisk A nie będzie wciśnięty (~A=1)?


Odpowiedź na to pytanie mamy w kolumnie A2B2:
A2: ~A~>~S =1 - nie wciśnięcie A (~A=1) jest (=1) konieczne ~> dla nie świecenia się S (~S=1)
B2: ~A=>~S =0 - nie wciśnięcie A (~A=1) nie jest (=0) wystarczające => dla nie świecenia się S (~S=1)
A2B2:~A|~>~S=(A2:~A~>~S)*~(B2:~A=>~S) =`*~(0)=1*1=1
Jeśli przycisk A nie będzie wciśnięty (~A=1) to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” - mówią o tym zdania A2 i B2’

Kolumna A2B2 w zdaniach warunkowych „Jeśli p to q”:
A2.
Jeśli przycisk A nie będzie wciśnięty (~A=1) to żarówka może ~> się nie świecić (~S=1)
~A~>~S =1
Brak wciśnięcia przycisku A (~A=1) jest warunkiem koniecznym ~> dla nie świecenia się żarówki S (~S=1) bo jak przycisk A jest wciśnięty (A=1) to żarówka na 100% => świeci się (S=1)
Prawo Kubusia samo nam tu wyskoczyło:
A2:~A~>~S = A1: A=>S

LUB

Kontrprzykład B2’ dla fałszywego warunku wystarczającego => B2 musi być prawdą, stąd:
B2’.
Jeśli przycisk A nie będzie wciśnięty (~A=1) to żarówka może ~> się świecić (S=1)
~A~~>S = ~A*S =1
Możliwe jest (=1) zdarzenie: przycisk A nie jest wciśnięty (~A=1) i żarówka świeci się (S=1)
Gdy zmienna wolna W ustawiona jest na W=1.

Podsumowanie:
Jak widzimy, istotą operatora implikacji prostej A||=>S jest gwarancja matematyczna => po stronie A (zdanie A1), oraz „rzucanie monetą” w sensie „na dwoje babka wróżyła” po stronie ~A (zdania A2 i B2’) .

Zauważmy że:
a)
Układ równań logicznych jest przemienny, stąd mamy:
Operator implikacji odwrotnej ~p||~>~q to układ równań logicznych:
A2B2:~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p
Doskonale widać, że analiza matematyczna operatora implikacji odwrotnej ~P||~>~4L w logice ujemnej (bo ~4L) będzie identyczna jak operatora implikacji prostej P||=>4L w logice dodatniej (bo 4L) z tym, że zaczynamy od kolumny A2B2 kończąc na kolumnie A1B1.
b)
Także kolejność wypowiadanych zdań jest dowolna, tak więc zdania z powyższej analizy A1, A1’, A2, B2’ możemy wypowiadać w sposób losowy - matematycznie to bez znaczenia.

4.3.2 Wisienka na torcie w operatorze implikacji prostej A||=>S

Wisienką na torcie w operatorze implikacji prostej A||=>S jest podstawowy schemat układu realizującego implikację prostą A|=>S w zdarzeniach zrealizowany przy pomocy zespołu przycisków (wejście) i żarówki (wyjście).
Kod:

S1 Schemat 1
Fizyczny układ minimalny implikacji prostej A|=>S w zdarzeniach:
A1B1: A|=>S=(A1: A=>S)*~(B1: A~>S)=1*~(0)=1*1=1 - zapis aktualny
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1 - zapis formalny
Punkt odniesienia:
p=A - przycisk A (wejście)
q=S - żarówka S (wyjście)
                             W
                           ______
                      -----o    o-----
             S        |      A       |
       -------------  |    ______    |
  -----| Żarówka   |-------o    o-----
  |    -------------                 |
  |                                  |
______                               |
 ___    U (źródło napięcia)          |
  |                                  |
  |                                  |
  ------------------------------------
Punkt odniesienia: A1B1: p|=>q = A|=>S
Zmienne związane definicją: A, S
Zmienna wolna: W
Istotą implikacji prostej A|=>S jest istnienie zmiennej wolnej W
podłączonej równolegle do przycisku A

Definicja zmiennej związanej:
Zmienna związana to zmienna występujące w układzie uwzględniona w opisie matematycznym układu.
Zmienna związana z definicji jest ustawiana na 0 albo 1 przez człowieka.

Definicja zmiennej wolnej:
Zmienna wolna to zmienna występująca w układzie, ale nie uwzględniona w opisie matematycznym układu.
Zmienna wolna z definicji może być ustawiana na 0 albo 1 poza kontrolą człowieka.

Fizyczna interpretacja zmiennej wolnej W:
Wyobraźmy sobie dwa pokoje A i B.
W pokoju A siedzi Jaś mając do dyspozycji wyłącznie przycisk A, zaś w pokoju B siedzi Zuzia mając do dyspozycji wyłączne przycisk W. Oboje widzą dokładnie tą samą żarówkę S. Jaś nie widzi Zuzi, ani Zuzia nie widzi Jasia, ale oboje wiedzą o swoim wzajemnym istnieniu.
Zarówno Jaś jak i Zuzia dostają do ręki schemat S1, czyli są świadomi, że przycisk którego nie widzą istnieje w układzie S1, tylko nie mają do niego dostępu (zmienna wolna). Oboje są świadomi, że jako istoty żywe mają wolną wolę i mogą wciskać swój przycisk ile dusza zapragnie.
Punktem odniesienia na schemacie S1 jest Jaś siedzący w pokoju A, bowiem w równaniu opisującym układ występuje wyłącznie przycisk A - Jaś nie widzi przycisku W.

Matematycznie jest kompletnie bez znaczenia czy zmienna wolna W będzie pojedynczym przyciskiem, czy też dowolną funkcją logiczną f(w) zbudowaną z n przycisków, byleby dało się ustawić:
f(w) =1
oraz
f(w)=0
bowiem z definicji funkcja logiczna f(w) musi być układem zastępczym pojedynczego przycisku W, gdzie daje się ustawić zarówno W=1 jak i W=0.
Przykład:
f(w) = C+D*(E+~F)
Gdzie:
C, D, E - przyciski normalnie rozwarte
~F - przycisk normalnie zwarty

Także zmienna związana A nie musi być pojedynczym przyciskiem, może być zespołem n przycisków realizujących funkcję logiczną f(a) byleby dało się ustawić:
f(a) =1
oraz
f(a)=0
bowiem z definicji funkcja logiczna f(a) musi być układem zastępczym pojedynczego przycisku A, gdzie daje się ustawić zarówno A=1 jak i A=0.
Przykład:
f(a) = K+~L*~M
Gdzie:
K - przycisk normalnie rozwarty
~L, ~M - przyciski normalnie zwarte

Dokładnie z powyższego powodu w stosunku do układu S1 możemy powiedzieć, iż jest to fizyczny układ minimalny implikacji prostej A|=>S.

4.4 Implikacja prosta P8|=>P2 w zbiorach

W algebrze Kubusia w zbiorach zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

Twierdzenia matematyczne operują wyłącznie na zbiorach nieskończonych, logika matematyczna jest tu identyczna jak opisana wyżej banalna logika zdarzeń, jednak zbiory nieskończone z oczywistych powodów są trudniejsze do analizy.
Niemniej jednak możliwe są operacje na zbiorach nieskończonych zrozumiałe dla ucznia I klasy LO i do takich zbiorów ograniczymy się w wykładzie.

Definicja twierdzenia matematycznego:
Dowolne twierdzenie matematyczne prawdziwe to spełniony warunek wystarczający =>:
p=>q =1
Zajście p jest (=1) wystarczające => dla zajścia q wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q
inaczej:
p=>q =0 - twierdzenie matematyczne jest fałszywe.

Matematyczne związki warunków wystarczających => i koniecznych ~>

Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
A1: p=>q = ~p+q
##
Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
B1: p~>q = p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Na mocy rachunku zero-jedynkowego mamy matematyczne związki warunków wystarczających => i koniecznych ~>.
Kod:

T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
      ##        ##           ##        ##            ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5:  p+~q

Prawa Kubusia:        | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q  | A1: p=>q  = A4:~q=>~p
B1: p~>q = B2:~p=>~q  | B2:~p=>~q = B3: q=>p

Prawa Tygryska:       | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p   | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p   | B1: p~>q  = B4:~q~>~p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


Prawo śfinii:
Dowolne zdanie warunkowe od którego zaczynamy analizę matematyczną jest domyślnym punktem odniesienia, gdzie po „Jeśli ..” zapisujemy p zaś po „to..” zapisujemy q z pominięciem przeczeń.

Weźmy następujące twierdzenie matematyczne:
A1.
Jeśli dowolna liczba jest podzielna przez 8 (P8=1) to na 100% => jest podzielna przez 2 (P2=1)
P8=>P2 =1
Zapis formalny na mocy prawa śfinii to:
p=>q =1
p=P8 - zbiór liczb podzielnych przez 8
q=P2 - zbiór liczb podzielnych przez 2
Podzielność dowolnej liczby przez 8 jest warunkiem wystarczającym => dla jej podzielności przez 2 bo zbiór P8=[8,16,24..] jest podzbiorem zbioru P2=[2,4,6,8..]
cnd
Przyjmijmy dziedzinę LN:
LN=[2,4,6,8..] - zbiór liczb naturalnych
Poprzednik p mówi o zbirze P8, zaś następnik q o zbiorze P2:
P8=[8,16,24..] - zbiór liczb podzielnych przez 8
P2=[2,4,6,8..] - zbiór liczb podzielnych przez 2
Obliczenie przeczeń zbiorów rozumianych jako ich uzupełnienie do dziedziny:
~P8=[LN-P8]=[1,2,3,4,5,6,7..9..]
~P2=[LN-P2]=[1,3,5,7,9..]
Dla powyższych zbiorów musi być spełniona definicja wspólnej dziedziny LN.
Definicja dziedziny dla P8:
P8+~P8 =LN =1 - zbiór ~P8 jest uzupełnieniem do dziedziny LN dla zbioru P8
P8*~P8 =[] =0 - zbiory P8 i ~P8 są rozłączne
Definicja dziedziny dla P2:
P2+~P2 =LN =1 - zbiór ~P2 jest uzupełnieniem do dziedziny LN dla zbioru P2
P2*~P2 =[] =0 - zbiory P2 i ~P2 są rozłączne

Aby udowodnić w skład jakiego operatora logicznego wchodzi zdanie A1 musimy udowodnić prawdziwość/fałszywość zdania A1 kodowanego warunkiem koniecznym ~>:
B1.
Jeśli dowolna liczba jest podzielna przez 8 (P8=1) to na 100% ~> jest podzielna przez 2 (P2=1)
P8~>P2 =0
Podzielność dowolnej liczby przez 8 nie jest (=0) warunkiem koniecznym ~> dla jej podzielności przez 2 bo zbiór P8=[8,16,24..] nie jest nadzbiorem ~> zbioru P2=[2,4,6,8..]
cnd

Zauważmy, że znów kłania się nam prawo Kameleona.

Porównajmy zdania A1 i B1 wyżej:
A1.
Jeśli dowolna liczba jest podzielna przez 8 (P8=1) to na 100% => jest podzielna przez 2 (P2=1)
P8=>P2 =1
Definicja warunku wystarczającego => jest (=1) spełniona, bo zbiór P8=[8,16,24..] jest podzbiorem => zbioru P2=[2,4,6,8..]
B1.
Jeśli dowolna liczba jest podzielna przez 8 (P8=1) to na 100% ~> jest podzielna przez 2 (P2=1)
P8~>P2 =0
Definicja warunku koniecznego ~> nie jest (=0) spełniona, bo zbiór P8=[8,16,24..] nie jest nadzbiorem ~> zbioru P2=[2,4,6,8..]

Zapiszmy zdania A1 i B1 w tabeli prawdy:
Kod:

A1: p=> q  = ~p+q    ## B1: p~> q  = p+~q  - zapis formalny {p,q}
A1: P8=>P2 = ~P8+P2  ## B1: P8~>P2 = P8+~P2 - zapis aktualny {P8,P2}
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Zauważmy, że zdania A1 i B1 brzmią identycznie z dokładnością do każdej literki i każdego przecinka, a mimo to nie są to zdania tożsame. Stąd mamy wyprowadzone prawo Kameleona.

Prawa Kameleona:
Dwa zdania brzmiące identycznie z dokładnością do każdej literki i każdego przecinka nie muszą być matematycznie tożsame

Różność ## zdań A1 i B1 rozpoznajemy po znaczkach warunku wystarczającego => i koniecznego ~> wbudowanych w treść zdań.

Stąd mamy rozstrzygnięcie iż zdania A1 i B1 tworzą definicję implikacji prostej P8|=>P2.

Definicja implikacji prostej P8|=>P2:
Implikacja prosta P8|=>P2 to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
A1: P8=>P2 =1 - bo zbiór P8=[8,16,24..] jest (=1) podzbiorem => P2=[2,4,6,8..]
B1: P8~>P2 =0 - bo zbiór P8=[8,16,24..] nie jest (=0) nadzbiorem ~> P2=[2,4,6,8..]
Stąd mamy:
P8|=>P2 = (A1: P8=>P2)*~(B1: P8~>P2) = 1*~(0)=1*1 =1

Nanieśmy zdania A1 i B1 do tabeli prawdy implikacji prostej p|=>q:
Kod:

IP:
Tabela prawdy implikacji prostej p|=>q w zapisie formalnym {p,q}
Kolumna A1B1 to punkt odniesienia w zapisie formalnym {p,q}:
A1: p=>q =1 - p jest (=1) wystarczające => dla q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla q
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
Punkt odniesienia na mocy prawa śfinii to:
p=P8 - zbiór liczb podzielnych przez 8
q=P2 - zbiór liczb podzielnych przez 2
Tabela prawdy implikacji prostej P8|=>P2 w zapisie aktualnym {P8,P2}
Kolumna A1B1 to punkt odniesienia w zapisie aktualnym {P8,P2}:
A1: P8=>P2 =1 - bo zbiór P8 jest (=1) podzbiorem => P2
B1: P8~>P2 =0 - bo zbiór P8 nie jest (=0) nadzbiorem ~> P2
A1B1: P8|=>P2 = (A1: P8=>P2)*~(B1: P8~>P2) = 1*~(0)=1*1 =1

       A1B1:           A2B2:      |      A3B3:          A4B4:
A:  1: p=>q    =1 = 2:~p~>~q  =1 [=] 3: q~>p    =1 = 4:~q=>~p   =1
A:  1: P8=>P2  =1 = 2:~P8~>~P2=1 [=] 3: P2~>P8  =1 = 4:~P2=>~P8 =1
A’: 1: p~~>~q  =0 =              [=]               = 4:~q~~>p   =0                   
A’: 1: P8~~>~P2=0 =              [=]               = 4:~P2~~>P8 =0                   
       ##             ##          |     ##            ##
B:  1: p~>q    =0 = 2:~p=>~q  =0 [=] 3: q=>p    =0 = 4:~q~>~p   =0
B:  1: P8~>P2  =0 = 2:~P8=>~P2=0 [=] 3: P2=>P8  =0 = 4:~P2~>~P8 =0
B’:               = 2:~p~~>q  =1 [=] 3: q~~>~p  =1
B’:               = 2:~P8~~>P2=1 [=] 3: P2~~>~P8=1
Równanie operatora implikacji prostej p||=>q:
A1B1:                                                        A2B2:
p|=>q = (A1: p=>q)*~(B1: p~>q) = (A2:~p~>~q)*~(B2:~p=>~q) = ~p|~>~q

Operator implikacji prostej p||=>q to układ równań logicznych:
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p
A2B2:~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p

Układ równań logicznych jest przemienny, stąd mamy:
Operator implikacji odwrotnej ~p||~>~q to układ równań logicznych:
A2B2:~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla poprawienia czytelności tabeli zapisy aktualne (z konkretnego przykładu) podstawiono w nagłówku tabeli oraz w części głównej decydującej o treści zdań warunkowych „Jeśli p to q”.

Operator implikacji prostej p||=>q w logice dodatniej (bo q) to układ równań logicznych A1B1 i A2B2 dający odpowiedź na pytanie o p i ~p:
A1B1: p|=>q =(A1: p=>q)* ~(B1: p~>q) - co się stanie jeśli zajdzie p?
A2B2: ~p|~>~q =(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p?

Okład równań logicznych jest przemienny, stąd:
Operator implikacji odwrotnej ~p||~>~q w logice ujemnej (bo ~q) to układ równań logicznych A2B2 i A1B1 dający odpowiedź na pytanie o ~p i p:
A2B2:~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p

4.4.1 Operator implikacji prostej P8||=>P2 w zbiorach

Operator implikacji prostej P8||=>P2 w logice dodatniej (bo P2) to układ równań logicznych A1B1 i A2B2 dający odpowiedź na pytanie o P8 i ~P8:
A1B1: P8|=>P2 =(A1: P8=>P2)* ~(B1: P8~>P2) - Jeśli liczba jest podzielna przez 8 (P8=1) to…
A2B2: ~P8|~>~P2 =(A2:~P8~>~P2)*~(B2:~P8=>~P2) - Jeśli liczba nie jest podzielna przez 8 (~P8=1) to..

A1B1:
Co może się wydarzyć, jeśli ze zbioru liczb naturalnych LN wylosujemy liczbę podzielną przez 8 (P8=1)?


Odpowiedź mamy w kolumnie A1B1:
A1: P8=>P2 =1 - bo zbiór P8=[8,16,24..] jest (=1) podzbiorem => P2=[2,4,6,8..]
B1: P8~>P2 =0 - bo zbiór P8=[8,16,24..] nie jest (=0) nadzbiorem ~> P2=[2,4,6,8..]
P8|=>P2 =(A1: P8=>P2)* ~(B1: P8~>P2) = 1*~(0)=1*1=1
Stąd mamy:
Jeśli ze zbioru liczb naturalnych wylosujemy liczbą podzielną przez 8 to mamy gwarancję matematyczną => iż ta liczba będzie podzielna przez 2 - mówi o tym zdanie A1.

Kolumna A1B1 w zdaniach warunkowych „Jeśli p to q”:
A1.
Jeśli dowolna liczba jest podzielna przez 8 (P8=1) to na 100% => jest podzielna przez 2 (P2=1)
P8=>P2 =1
Podzielność dowolnej liczby przez 8 jest warunkiem wystarczającym => dla jej podzielności przez 2 bo zbiór P8=[8,16,24..] jest podzbiorem => zbioru P2=[2,4,6,8..]

Prawdziwość warunku wystarczającego => A1 wymusza fałszywość kontrprzykładu A1’ (i odwrotnie).
A1’.
Jeśli dowolna liczba jest podzielna przez 8 (P8=1) to może ~~> nie być podzielna przez 2 (~P2=1)
P8~~>~P2=P8*~P2 =[] =0
Definicja elementu wspólnego zbiorów ~~> nie jest (=0) spełniona bo zbiory P8=[8,16,24..] i ~P2=[1,3,5,7,9..] są rozłączne.
Tego faktu nie musimy udowadniać, bo wymusza go prawdziwość warunku wystarczającego A1.

A2B2:
Co może się wydarzyć, jeśli ze zbioru liczb naturalnych LN wylosujemy liczbę niepodzielną przez 8 (~P8=1)?


Odpowiedź mamy w kolumnie A2B2:
A2: ~P8~>~P2 =1 - bo zbiór ~P8=[1,2,3,4,5,6,7..9..] jest (=1) nadzbiorem ~> ~P2=[1,3,5,7,9..]
B2: ~P8=>~P2 =0 - bo zbiór ~P8=[1,2,3,4,5,6,7..9..] nie jest (=0) podzbiorem => ~P2=[1,3,5,7,9..]
~P8|~>~P2 =(A2:~P8~>~P2)*~(B2:~P8=>~P2)=1*~(0)=1*1=1
Stąd mamy:
Jeśli ze zbioru liczb naturalnych wylosujemy liczbę niepodzielna przez 8 to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła”, o czym mówią zdania prawdziwe A2 i B2’

Kolumna A2B2 w zdaniach warunkowych „Jeśli p to q”:
A2.
Jeśli dowolna liczba nie jest podzielna przez 8 (~P8=1) to może ~> nie być podzielna przez 2 (~P2=1)
~P8~>~P2=1
Definicja warunku koniecznego ~> jest tu spełniona bo zbiór ~P8=[1,2,3,4,5,6,7..9..] jest nadzbiorem ~> zbioru ~P2=[1,3,5,7,9..]
Tego faktu nie musimy udowadniać, gwarantuje nam to prawo Kubusia:
A2:~P8~>~P2 = A1: P8=>P2
Prawdziwość zdania A1 udowodniliśmy na samym początku.

LUB

Z fałszywości warunku wystarczającego B2 wynika prawdziwość kontrprzykładu B2’ i odwrotnie.
B2’.
Jeśli dowolna liczba nie jest podzielna przez 8 (~P8=1) to może ~~> być podzielna przez 2 (P2=1)
~P8~~>P2 = ~P8*P2 =1
Definicja elementu wspólnego ~~> zbiorów ~P8=[1,2,3,4,5,6,7..9..] i P2=[2,4,6,8..] jest spełniona bo np. 2

Podsumowanie:
Istotą operatora implikacji prostej P8||=>P2 jest gwarancja matematyczna => po stronie P8 (zdanie A1) i najzwyklejsze „rzucanie monetą” w rozumieniu „na dwoje babka wróżyła” po stronie ~P8 (zdania A2 i B2’)

Zauważmy że:
a)
Układ równań logicznych jest przemienny, stąd mamy:
Operator implikacji odwrotnej ~p||~>~q to układ równań logicznych:
A2B2:~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p
Doskonale widać, że analiza matematyczna operatora implikacji odwrotnej ~p||~>~q w logice ujemnej (bo ~q) będzie identyczna jak operatora implikacji prostej p||=>q w logice dodatniej (bo q) z tym, że zaczynamy od kolumny A2B2 kończąc na kolumnie A1B1, co matematycznie jest bez znaczenia.
b)
Kolejność zdań tworzących operator implikacji prostej p||=>q również jest bez znaczenia, tak więc zdania A1, A1’, A2, B2’ możemy wypowiadać w dowolnej kolejności.


4.5 Implikacja prosta P|=>4L w zbiorach w przedszkolu

W algebrze Kubusia w zbiorach zachodzi:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

Kod:

T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
      ##        ##           ##        ##            ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5:  p+~q

Prawa Kubusia:        | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q  | A1: p=>q  = A4:~q=>~p
B1: p~>q = B2:~p=>~q  | B2:~p=>~q = B3: q=>p

Prawa Tygryska:       | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p   | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p   | B1: p~>q  = B4:~q~>~p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


Zadanie matematyczne w 100-milowym lesie:
Zbadaj w skład jakiego operatora logicznego wchodzi zdanie:
Każdy pies ma cztery łapy
Dokonaj analizy matematycznej tego operatora

Zdanie matematycznie tożsame brzmi:
A1.
Jeśli zwierzę jest psem (P=1) to na 100% => ma cztery łapy (4L=1)
P=>4L =1
Definicja warunku wystarczającego => jest tu spełniona (=1) bo zbiór jednoelementowy P=[pies] jest podzbiorem => zbioru zwierząt z czterema łapami 4L=[pies, słoń ..]
Bycie psem jest warunkiem wystarczającym => do tego aby mieć cztery łapy
Bycie psem daje nam gwarancję matematyczną => posiadania czterech łap
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>

Uwaga:
W logice matematycznej za psa przyjmujemy zwierzę zdrowe z czterema łapami.
Pies z trzema łapami to też pies, jednak z logiki matematycznej musimy usunąć psy kalekie bowiem wówczas warunek wystarczający A1 leży w gruzach, gdyż będzie tu istniał kontrprzykład w postaci psa z trzema łapami. Jeśli uwzględnimy psy kalekie to wylądujemy w operatorze chaosu P|~~>4L bez żadnej gwarancji matematycznej =>.

Prawo śfinii:
Dowolne zdanie warunkowe od którego zaczynamy analizę matematyczną jest domyślnym punktem odniesienia, gdzie po „Jeśli ..” zapisujemy p zaś po „to..” zapisujemy q z pominięciem przeczeń.

Na mocy prawa śfinii zapis formalny zdania A1 to:
A1: p=>q =1
p=P=[pies] - jednoelementowy zbiór pies
q=4L=[pies, słoń ..] - zbiór zwierząt z czterema łapami.
A1: P=>4L =1

Aby udowodnić w skład jakiego operatora logicznego wchodzi warunek wystarczający A1: P=>4L musimy zbadać prawdziwość/fałszywość warunku koniecznego ~> B1: P~>4L między tymi samymi punktami i w tym samym kierunku.

Warunek wystarczający A1 definiuje nam dwa zbiory:
Poprzednik p:
p=P=[pies] - zbiór jednoelementowy pies
Następnik q:
q=4L=[pies, słoń ..] - zbiór zwierząt z czterema łapami.

Przyjmijmy dziedzinę minimalną:
ZWZ - zbiór wszystkich zwierząt
Stąd mamy zaprzeczenia zbiorów rozumiane jako ich uzupełnia do wspólnej dziedziny ZWZ:
~P=[ZWZ-P] =[słoń, kura ..] =1 - zbiór wszystkich zwierząt z wykluczeniem psa
~4L=[ZWZ-4L] = [kura ..] =1 - zbiór wszystkich zwierząt z wykluczeniem zwierząt z czterema łapami
Gdzie:
[słoń] - jest przedstawicielem zwierząt nie będących psami które mają cztery łapy
[kura] - jest przedstawicielem zwierząt nie mających czterech łap

Badamy teraz czy spełniony jest warunek konieczny P~>4L=?
B1.
Jeśli zwierzę jest psem (P=1) to na 100% ~> ma cztery łapy (4L=1)
P~>4L =0
Definicja warunku koniecznego ~> nie jest spełniona (=0) bo zbiór P=[pies] nie jest nadzbiorem ~> zbioru zwierząt z czterema łapami 4L=[pies, słoń ..]

Zauważmy, że zdania A1 i B1 brzmią identycznie z dokładnością do każdej literki i każdego przecinka a mimo to nie są to zdania tożsame:
A1.
Jeśli zwierzę jest psem (P=1) to na 100% => ma cztery łapy (4L=1)
P=>4L =1
Definicja warunku wystarczającego => jest tu spełniona (=1) bo zbiór jednoelementowy P=[pies] jest podzbiorem => zbioru zwierząt z czterema łapami 4L=[pies, słoń ..]
##
B1.
Jeśli zwierzę jest psem (P=1) to na 100% ~> ma cztery łapy (4L=1)
P~>4L =0
Definicja warunku koniecznego ~> nie jest spełniona bo zbiór P=[pies] nie jest nadzbiorem ~> zbioru zwierząt z czterema łapami 4L=[pies, słoń ..]
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Różność ## zdań A1 i B1 rozpoznajemy po znaczkach warunku wystarczającego => i koniecznego ~> wbudowanych w treść zdań.

Podsumowując:
W zapisie aktualnym mamy:
A1: P=>4L=~P+4L ## B1: P~>4L = P+~4L
To samo w zapisie formalnym:
A1: p=>q = ~p+q ## B1: p~>q = p+~q
gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>.
p i q muszą być tymi samymi p i q inaczej błąd podstawienia

Stąd mamy:
Prawo Kameleona:
Dwa zdania brzmiące identycznie z dokładnością do każdej literki i każdego przecinka nie muszą być matematycznie tożsame.

Stąd mamy rozstrzygnięcie iż zdanie A1: P=>4L jest częścią operatora implikacji prostej P||=>4L.

Definicja implikacji prostej P|=>4L
Implikacja prosta P=>4L to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku:
A1: P=>4L =1 - bycie psem jest (=1) wystarczające => do tego aby mieć cztery łapy
bo każdy pies ma cztery łapy
B1: P~>4L =0 - bycie psem nie jest (=0) warunkiem koniecznym ~> do tego by mieć cztery łapy
Słoń nie jest psem a mimo to ma cztery łapy.
Stąd:
P|=>4L = (A1: P=>4L)*~(B1: P~>4L) = 1*~(0)=1*1=1

Podstawmy nasze zdania A1: P=>4L=1 i B1: P~>4L=0 do tabeli prawdy implikacji prostej p||=>q.
Kod:

IP:
Tabela prawdy implikacji prostej p|=>q w zapisie formalnym {p,q}
Kolumna A1B1 to punkt odniesienia w zapisie formalnym {p,q}:
A1: p=>q =1 - p jest (=1) wystarczające => dla q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla q
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
Punkt odniesienia:
p=P=[pies] - jednoelementowy zbiór pies
q=4L=[pies, słoń ..] - zbiór zwierząt mających cztery łapy
Kolumna A1B1 to punkt odniesienia w zapisie aktualnym {P,4L}
A1: P=>4L=1 - bycie psem jest (=1) warunkiem wystarczającym => dla 4 łap
B1: P~>4L=0 - bycie psem nie jest (=0) warunkiem koniecznym ~> dla 4 łap
P|=>4L=(A1: P=>4L)*~(B1: P~>4L)=1*~(0)=1*1=1

       A1B1:          A2B2:       |      A3B3:           A4B4:
A:  1: p=>q   =1 = 2:~p~>~q =1    [=] 3: q~>p   =1  = 4:~q=>~p  =1
A:  1: P=>4L  =1 = 2:~P~>~4L=1    [=] 3: 4L~>P  =1  = 4:~4L=>~P =1
A’: 1: p~~>~q =0 =                [=]               = 4:~q~~>p  =0                   
A’: 1: P~~>~4L=0 =                [=]               = 4:~4L~~>P =0                   
       ##            ##            |     ##            ##
B:  1: p~>q   =0 = 2:~p=>~q =0    [=] 3: q=>p   =0  = 4:~q~>~p  =0
B:  1: P~>4L  =0 = 2:~P=>~4L=0    [=] 3: 4L=>P  =0  = 4:~4L~>~P =0
B’:              = 2:~p~~>q=1     [=] 3: q~~>~p =1
B’:              = 2:~P~~>4L=1    [=] 3: 4L~~>~P=1

Równanie operatora implikacji prostej p||=>q:
A1B1:                                                        A2B2:
p|=>q = (A1: p=>q)*~(B1: p~>q) = (A2:~p~>~q)*~(B2:~p=>~q) = ~p|~>~q

Operator implikacji prostej p||=>q to układ równań logicznych:
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p
A2B2:~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p

Układ równań logicznych jest przemienny, stąd mamy:
Operator implikacji odwrotnej ~p||~>~q to układ równań logicznych:
A2B2:~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla poprawienia czytelności tabeli zapisy aktualne (z konkretnego przykładu) podstawiono w nagłówku tabeli oraz w części głównej decydującej o treści zdań warunkowych „Jeśli p to q”.

4.5.1 Operator implikacji prostej P||=>4L w zbiorach w przedszkolu

Operator implikacji prostej P||=>4L w logice dodatniej (bo 4L) to układ równań logicznych:
A1B1: P|=>4L =(A1: P=>4L)* ~(B1: P~>4L) - co się stanie jeśli wylosujemy psa (P=1)?
A2B2: ~P|~>~4L =(A2:~P~>~4L)*~(B2:~P=>~4L) - co się stanie jeśli wylosujemy nie psa (~P=1)?

Innymi słowy:
Operator implikacji prostej P||=>4L w logice dodatniej (bo 4L) to układ równań logicznych A1B1 i A2B2 dający odpowiedź na pytania o P I ~P:

A1B1:
Co może się wydarzyć, jeśli ze zbioru wszystkich zwierząt ZWZ wylosujemy psa (P=1)?


Odpowiedź mamy w kolumnie A1B1:
A1: P=>4L =1 - bycie psem jest (=1) wystarczające => by mieć cztery łapy
B1: P~>4L =0 - bycie psem nie jest (=0) konieczne by mieć cztery łapy
A1B1: P|=>4L =(A1: P=>4L)* ~(B1: P~>4L) - co się stanie jeśli wylosujemy psa (P=1)?
Stąd mamy:
Jeśli ze zbioru wszystkich zwierząt (ZWZ) wylosujemy psa to mamy gwarancję matematyczną => iż będzie on miał cztery łapy - mówi o tym zdanie A1.

Kolumna A1B1 w zdaniach warunkowych „Jeśli p to q”:
A1.
Jeśli zwierzę jest psem (P=1) to na 100% => ma cztery łapy (4L=1)
P=>4L =1
to samo w zapisie formalnym:
p=>q =1
Definicja warunku wystarczającego => spełniona bo zbiór P=[pies] jest podzbiorem => zbioru zwierząt z czterema łapami 4L=[pies słoń ..]
Wylosowanie ze zbioru wszystkich zwierząt (ZWT) psa, daje nam gwarancję matematyczną => iż będzie on miał cztery łapy
Zachodzi tożsamość matematyczna pojęć:
Warunek wystarczający => = relacja podzbioru => = gwarancja matematyczna =>

Prawdziwość warunku wystarczającego => A1 wymusza fałszywość kontrprzykładu A1’ (i odwrotnie).
A1’.
Jeśli zwierzę jest psem (P=1) to może ~~> nie mieć czterech łap (~4L=1)
P~~>~4L = P*~4L =0
to samo w zapisie formalnym:
p~~>~q = p*~q =0
Definicja elementu wspólnego zbiorów ~~> nie jest spełniona bo zbiory P=[pies] i ~4L=[kura ..] są rozłączne.

A2B2:
Co może się wydarzyć, jeśli ze zbioru wszystkich zwierząt ZWZ wylosujemy zwierzę nie będące psem (~P=1)?


Odpowiedź mamy w kolumnie A2B2:
A2: ~P~>~4L =1 - nie bycie psem (~P) jest (=1) konieczne ~> aby nie mieć czterech łap (~4L)
B2: ~P=>~4L =0 - nie bycie psem (~P) nie jest (=0) wystarczające => aby nie mieć czterech łap (~4L)
A2B2: ~P|~>~4L =(A2:~P~>~4L)*~(B2:~P=>~4L) - co się stanie jeśli wylosujemy nie psa (~P=1)?
Jeśli ze zbioru wszystkich zwierząt (ZWZ) wylosujemy zwierzę nie będące psem to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła”, o czym mówią zdania prawdziwe A2 i B2’

Kolumna A2B2 w zdaniach warunkowych „Jeśli p to q”:
A2.
Jeśli zwierzę nie jest psem (~P=1) to może ~> nie mieć czterech łap (~4L=1)
~P~>~4L =1
Definicja warunku koniecznego ~> jest tu spełniona bo zbiór ~P=[słoń, kura ..] jest nadzbiorem ~> zbioru ~4L=[kura ..]
Zauważmy, że po udowodnieniu prawdziwości zdania A1: P=>4L nie musimy dowodzić wprost prawdziwości zdania A2 bo prawo Kubusia:
A1: P=>4L = A2: ~P~>~4L

LUB

Fałszywy warunek wystarczający B2 wymusza prawdziwość kontrprzykładu B2’ i odwrotnie.
Prawdziwości zdania B2’ nie musimy zatem dowodzić wprost, ale możemy dowodzić.
B2’.
Jeśli zwierzę nie jest psem (~P=1) to może ~> mieć cztery łapy (4L=1)
~P~~>4L = ~P*4L =1
Definicja elementu wspólnego ~~> zbiorów ~P=[słoń, kura ..] i 4L=[pies, słoń ..] jest spełniona bo np. słoń.
Zauważmy, że między zbiorami ~P=[słoń, kura ..] i 4L=[pies, słoń ..] nie zachodzi ani warunek wystarczający => ani też konieczny ~> w obie strony.
Dowód:
~P=[słoń, kura ..] => 4L=[pies, słoń ..] =0 - bo zbiór ~P nie jest podzbiorem => zbioru 4L (bo kura)
~P=[słoń, kura ..] ~> 4L=[pies, słoń ..] =0 - bo zbiór ~P nie jest nadzbiorem ~> zbioru 4L (bo kura)
cnd

Podsumowanie:
Jak widzimy, istotą operatora implikacji prostej P||=>4L jest gwarancja matematyczna => po stronie P (zdanie A1), oraz „rzucanie monetą” w sensie „na dwoje babka wróżyła” po stronie ~P (zdania A2 i B2’) .

Zauważmy że:
a)
Układ równań logicznych jest przemienny, stąd mamy:
Operator implikacji odwrotnej ~p||~>~q to układ równań logicznych:
A2B2:~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p
Doskonale widać, że analiza matematyczna operatora implikacji odwrotnej ~P||~>~4L w logice ujemnej (bo ~4L) będzie identyczna jak operatora implikacji prostej P||=>4L w logice dodatniej (bo 4L) z tym, że zaczynamy od kolumny A2B2 kończąc na kolumnie A1B1.
b)
Także kolejność wypowiadanych zdań jest dowolna, tak więc zdania z powyższej analizy A1, A1’, A2, B2’ możemy wypowiadać w sposób losowy - matematycznie to bez znaczenia.

4.6 Alternatywne dojście do operatora implikacji prostej P||=>4L w zbiorach

Udajmy się do przedszkola, do naszych ekspertów logiki matematycznej, algebry Kubusia.

Pani w przedszkolu:
Czy może się zdarzyć, że ze zbioru wszystkich zwierząt ZWZ wylosujemy psa (P=1) i będzie on miał cztery lapy (4L=1)?
Jaś (lat 5): TAK, np. pies
Stąd:
A1.
Jeśli zwierzę jest psem (P=1) to może ~~> mieć cztery łapy (4L=1)
P~~>4L = P*4L =1
Definicja elementu wspólnego ~~> zbiorów P=[pies] i 4L=[pies, słoń ..] jest spełniona (bo pies).
Dla udowodnienia prawdziwości zdania A1 kodowanego elementem wspólnym zbiorów ~~> wystarczy pokazać jednego pieska który ma cztery łapy. Nie trzeba tu badać, czy wszystkie psy mają cztery łapy jak to ma miejsce w warunku wystarczającym P=>4L=1.

Pani:
Czy może się zdarzyć, że ze zbioru wszystkich zwierząt ZWZ wylosujemy psa (P=1) i nie będzie on miał czterech lap (~4L=1)?
Jaś: NIE, bo wszystkie psy mają cztery łapy.
Stąd:
A1’.
Jeśli zwierzę jest psem (P=1) to może ~~> nie mieć czterech łap (~4L=1)
P~~>~4L= P*~4L =0
Definicja elementu wspólnego zbiorów ~~> nie jest spełniona bo zbiory P=[pies] i ~4L=[kura..] są rozłączne.

Pani:
Czy może się zdarzyć, że ze zbioru wszystkich zwierząt ZWZ wylosujemy zwierzę nie będące psem (~P=1) i to zwierzę nie będzie miało czterech lap (~4L=1)?
Jaś: TAK np. kura
Stąd:
A2.
Jeśli zwierzę nie jest psem (~P=1) to może ~~> nie mieć czterech łap (~4L=1)
~P~~>~4L = ~P*~4L =1
Definicja elementu wspólnego zbiorów ~~> jest spełniona bo zbiory ~P=[słoń, kura..] i ~4L=[kura..] mają co najmniej jeden element wspólny np. kurę.

Pani:
Czy może się zdarzyć, że ze zbioru wszystkich zwierząt ZWZ wylosujemy zwierzę nie będące psem (~P=1) i to zwierzę będzie miało cztery lapy (4L=1)?
Jaś: TAK np. słoń
stąd:
B2’.
Jeśli zwierzę nie jest psem (~P=1) to może ~~> mieć cztery łapy (4L=1)
~P~~>4L = ~P*4L =1
Definicja elementu wspólnego zbiorów ~~> jest spełniona bo zbiory ~P=[słoń, kura..] i 4L=[pies, słoń..] mają co najmniej jeden element wspólny np. słoń

Zapiszmy dialog pani z Jasiem w tabeli prawdy:
Kod:

T1           Y ~Y   Odpowiedzi dla Y:
A1:  P~~> 4L=1  0 - zbiory P=[pies] i 4L=[pies, słoń ..] mają el. wspólny
A1’: P~~>~4L=0  1 - zbiory P=[pies] i ~4L=[kura..] są rozłączne
A2: ~P~~>~4L=1  0 - zbiory ~P=[słoń, kura..] i ~4L=[kura] mają el. wspólny
B2’:~P~~> 4L=1  0 - ~P=[słoń, kura..] i 4L=[pies, słoń..] mają el. wspólny

Kluczową definicją umożliwiającą przejście z dialogu pani przedszkolanki do definicji operatora implikacji prostej P||=>4L jest definicja kontrprzykładu w zbiorach.

Definicja kontrprzykładu w zbiorach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane elementem wspólnym ~~> zbiorów: p~~>~q=p*~q
Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)

W zbiorach zachodzą tożsamości pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

Analiza matematyczna tabeli T1 - część I:

Na mocy definicji kontrprzykładu w zbiorach mamy:
1.
Z fałszywości kontrprzykładu A1’:
A1’: P~~>~4L=0
wynika prawdziwość warunku wystarczającego => A1 (i odwrotnie):
A1: P=>4L =1 - bycie psem jest warunkiem wystarczającym => do tego, by mieć cztery łapy.
Definicja warunku wystarczającego => jest spełniona (=1) bo zbiór P=[pies] jest podzbiorem => zbioru 4L=[pies, słoń ..]
2.
Prawo Kubusia:
A1: P=>4L = A2: ~P~>~4L
stąd:
Z prawdziwości warunku wystarczającego => A1:
A1: P=>4L =1
wynika prawdziwość warunku koniecznego ~> A2 (i odwrotnie):
A2: ~P~>~4L =1
Stąd nasza tabela T1 przybiera postać:
Kod:

T2
A1:  P=> 4L =1 - bo P=[pies] jest podzbiorem => 4L=[pies, słoń..]
A1’: P~~>~4L=0 - zbiory P=[pies] i ~4L=[kura..] są rozłączne
A2: ~P~> ~4L=1 - bo ~P=[słoń, kura..] jest nadzbiorem ~> ~4L=[kura..]
B2’:~P~~> 4L=1 - ~P=[słoń, kura..] i 4L=[pies, słoń..] mają element wspólny


Analiza matematyczna tabeli T1 - część II:

Na mocy definicji kontrprzykładu w zbiorach mamy:
3.
Z prawdziwości kontrprzykładu B2’:
B2’: ~P~~>4L =1
wynika fałszywość warunku wystarczającego => B2 (i odwrotnie):
B2: ~P=>~4L =0
Uwaga:
Z fałszywości warunku wystarczającego B2: ~P=>~4L=0 wynika prawdziwość kontrprzykładu B2’:
B2’: ~P~~>4L = ~P*4L =1 - bo np. słoń nie jest psem (~P=1) i ma cztery łapy (4L=1)
4.
Prawo Kubusia:
B2: ~P=>~4L = B1: P~>4L
stąd:
Z fałszywości warunku wystarczającego => B2:
B2: ~P=>~4L =0
wynika fałszywość warunku koniecznego ~> B1 (i odwrotnie):
B1: P~>4L =0
Nanieśmy kompletną analizę do tabeli T3.
Kod:

T3
A1:  P=> 4L =1 |B1: P~> 4L =0
A1’: P~~>~4L=0
A2: ~P~>~4L =1 |B2:~P=>~4L =0
B2’:~P~~>4L =1

Zauważmy że:
Zauważmy, że w linii A1 zapisaną mamy implikację prostą P|=>4L w logice dodatniej (bo 4L).

4.6.1 Implikacja prosta P|=>4L w zbiorach

Definicja implikacji prostej P|=>4L:
Implikacja prosta P|=>4L to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
A1: P=>4L =1 - bycie psem jest (=1) warunkiem wystarczającym => do tego, aby mieć cztery łapy
B1: P~>4L =0 - bycie psem nie jest (=0) warunkiem koniecznym ~> aby mieć cztery łapy
bo. np. słoń ma cztery łapy, a nie jest psem
Stąd mamy:
P|=>4L = (A1: P=>4L)*~(B1: P~>4L) = 1*~(0)=1*1 =1

Pozostaje nam tylko podstawić nasze odkrycie do gotowej tabeli prawdy implikacji prostej p|=>q.
Kod:

IP:
Tabela prawdy implikacji prostej p|=>q
Kolumna A1B1 to punkt odniesienia w zapisie formalnym:
A1: p=>q =1 - p jest (=1) wystarczające => dla q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla q
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
Punkt odniesienia:
p=P=[pies] - jednoelementowy zbiór pies
q=4L=[pies, słoń ..] - zbiór zwierząt mających cztery łapy
Kolumna A1B1 to punkt odniesienia w zapisie aktualnym:
A1: P=>4L=1 - bycie psem jest (=1) warunkiem wystarczającym => dla 4 łap
B1: P~>4L=0 - bycie psem nie jest (=0) warunkiem koniecznym ~> dla 4 łap
P|=>4L=(A1: P=>4L)*~(B1: P~>4L)=1*~(0)=1*1=1

       A1B1:          A2B2:       |      A3B3:           A4B4:
A:  1: p=>q   =1 = 2:~p~>~q =1    [=] 3: q~>p   =1  = 4:~q=>~p  =1
A:  1: P=>4L  =1 = 2:~P~>~4L=1    [=] 3: 4L~>P  =1  = 4:~4L=>~P =1
A’: 1: p~~>~q =0 =                [=]               = 4:~q~~>p  =0                   
A’: 1: P~~>~4L=0 =                [=]               = 4:~4L~~>P =0                   
       ##            ##            |     ##            ##
B:  1: p~>q   =0 = 2:~p=>~q =0    [=] 3: q=>p   =0  = 4:~q~>~p  =0
B:  1: P~>4L  =0 = 2:~P=>~4L=0    [=] 3: 4L=>P  =0  = 4:~4L~>~P =0
B’:              = 2:~p~~>q=1     [=] 3: q~~>~p =1
B’:              = 2:~P~~>4L=1    [=] 3: 4L~~>~P=1

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


4.6.2 Operator implikacji prostej P||=>4L w zbiorach

Teraz pozostaje nam wykonać skok do punktu 4.5.1 gdzie mamy szczegółową analizę operatora implikacji prostej P||=>4L.
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 35331
Przeczytał: 23 tematy

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Nie 11:37, 13 Cze 2021    Temat postu:

Algebra Kubusia - ostatnie czytanie!
Część IX

Po raz ostatni przed premierą czytam od początku algebrę Kubusia likwidując literówki i udoskonalając przekaz.

http://www.sfinia.fora.pl/forum-kubusia,12/algebra-kubusia-w-przebudowie,18899.html#594185

Algebra Kubusia
4.8 Zdania bazowe w operatorze implikacji prostej P||=>CH w zdarzeniach

Spis treści
4.7 Zdanie bazowe w operatorze implikacji prostej P||=>CH 2
4.7.1 Algorytm analizy zdania bazowego „Jeśli p to q” 3
4.7.2 Operator implikacji prostej p||=>q 5
4.8 Zdania bazowe w operatorze implikacji prostej P||=>CH w zdarzeniach 7
4.8.1 Zdanie bazowe P~~>CH 7
4.8.2 Zdanie bazowe P~~>~CH 10
4.8.3 Zdanie bazowe ~P~~>~CH 12
4.8.4 Zdanie bazowe ~P~~>CH 14
4.9 Tabela prawdy implikacji prostej P|=>CH 16
4.9.1 Operator implikacji prostej P||=>CH 18

Wstęp:
Wiedza zawarta w niniejszym punkcie nie jest potrzebna do obsługi języka potocznego.
Problem obsługi operatora implikacji prostej P||=>CH to wiedza na poziomie 5-cio latka tzn. każde ze zdań warunkowych „Jeśli p to q” wchodzących w skład operatora implikacji prostej P||=>CH będzie doskonale przez niego rozumiane.

Tu jest identycznie jak u humanistów w gramatyce języka polskiego:
[link widoczny dla zalogowanych]
Gramatyka w szkole podstawowej
Autor: Stopka Dorota
Praktyczny poradnik z zakresu szkoły podstawowej i gimnazjum prezentujący zasady gramatyki. Omówienie zagadnień gramatycznych krok p o kroku, jasne przykłady, ciekawe ćwiczenia, zbiór reguł gramatycznych - błyskawiczna powtórka. Mini-wersja materiału na klasówkę.

Czy znajomość trudnej gramatyki języka polskiego jest potrzebna 5-cio letniemu Polakowi do komunikacji w języku ojczystym z otoczeniem?
Oczywiście NIE!
Osobiście nigdy gramatyki j. polskiego nie znałem i do tej pory nie znam tzn. nie wiem co to jest jakiś tam podmiot, orzeczenie, przysłówek, dupówek etc.

W praktyce wiedza czysto matematyczna w skład jakiego operatora logicznego wchodzi dowolne prawdziwe zdanie warunkowe „Jeśli p to q” jest do niczego potrzebna. Każdy człowiek od 5-cio latka poczynając non stop stosuje tu poniższe prawa logiki matematycznej nie mając najmniejszego pojęcia co to jest operator logiczny np. P||=>CH.

W algebrze Kubusia mamy zaledwie trzy znaczki (=>, ~> i ~~>) na których zbudowana jest kompletna algebra Kubusia w obsłudze zdań warunkowych "Jeśli p to q".
1.
Warunek wystarczający =>:

p=>q =1 - gdy zajście p jest (=1) warunkiem wystarczającym => dla zajścia q
Inaczej:
p=>q =0
2.
Warunek konieczny ~>:

p~>q =1 0 gdy zajście p jest (=1) konieczne ~> dla zajścia q
Inaczej:
p~>q =0
3.
Zdarzenie możliwe ~~> lub element wspólny zbiorów ~~>

Zdarzenia:
Definicja zdarzenia możliwego ~~> w zdarzeniach:
p~~>q = p*q =1 - gdy możliwe jest (=1) jednoczesne zajście zdarzeń p i q
Inaczej:
p~~>q=p*q =0
Zbiory:
Definicja elementu wspólnego zbiorów ~~>:
p~~>q = p*q =1 - gdy zbiory p i q mają (=1) element wspólny
Inaczej:
p~~>q = p*q=0
Kod:

T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
      ##        ##           ##        ##            ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5:  p+~q

Prawa Kubusia:        | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q  | A1: p=>q  = A4:~q=>~p
B1: p~>q = B2:~p=>~q  | B2:~p=>~q = B3: q=>p

Prawa Tygryska:       | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p   | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p   | B1: p~>q  = B4:~q~>~p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia



4.7 Zdanie bazowe w operatorze implikacji prostej P||=>CH

Definicja zdania bazowego:
Zdanie bazowe to zdanie warunkowe „Jeśli p to q” kodowane elementem wspólnym zbiorów ~~> (zbiory) albo zdarzeniem możliwym ~~> (zdarzenia) spełniające poniższe warunki:
1.
W zdaniu warunkowym „Jeśli p to q” żadne z pojęć p, q, ~p i ~q nie może być zbiorem pustym (zdarzeniem niemożliwym), co gwarantuje rozpoznawalność tych pojęć.
2.
Poprzednik p i następnik q muszą należeć do wspólnej dziedziny.

Algorytm analizy zdania bazowego:
Algorytm analizy dowolnego zdania bazowego „Jeśli p to q” przez wszystkie możliwe przeczenia p i q pozwala na jednoznaczne rozstrzygnięcie w skład jakiego operatora logicznego wchodzi badane zdanie bazowe bez względu na jego prawdziwość/fałszywość.

Dowolne zdanie bazowe „Jeśli p to q” może wchodzić tylko i wyłącznie w skład jednego z pięciu rozłącznych operatorów logicznych.
1. p||=>q - operator implikacji prostej
2. p||~>q - operator implikacji odwrotnej
3. p|<=>q - operator równoważności
4. p||~~>q - operator chaosu
Dodatkowy piąty operator to mutacja równoważności p<=>q:
5. p|$q - operator „albo”($)

Z faktu iż powyższe operatory są rozłączne wynika, że dowolne zdanie warunkowe „Jeśli p to q” nie może należeć jednocześnie do dwóch, jakichkolwiek operatorów.
Kod:

T1
Definicje operatorów implikacyjnych które niebawem poznamy:
1: Y=(p||=>q) =(p|=>q)  = (A1: p=>q)*~(B1: p~>q)= ~p*q      # ~Y=p+~q
##
2: Y=(p||~>q) =(p|~>q)  =~(A1: p=>q)*(B1: p~>q)  = p*~q     # ~Y=~p+q
##
3: Y=(p|<=>q) =(p<=>q)  = (A1:p=>q)* (B1: p~>q)  =p*q+~p*~q # ~Y=p*~q+~p*q
##
4: Y=(p||~~>q)=(p|~~>q) =~(A1: p=>q)*~(B1: p~>q) =0         # ~Y=1
##
5: Y=(p|$q)   = (p$q)   = (A1: p=>~q)*(B1: p~>~q)=p*~q+~p*q # ~Y=p*q+~p*~q
Gdzie:
# - różne w znaczeniu iż jedna strona znaczka # jest negacją drugiej strony
## - różne na mocy definicji

Definicja tożsamości logicznej [=]:
Prawo Kubusia:
p=>q [=] ~p~>~q
Prawdziwość dowolnej strony tożsamości logicznej [=] wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej [=] wymusza fałszywość drugiej strony

Definicja znaczka różne na mocy definicji ##:
Dwie funkcje logiczna są różne na mocy definicji wtedy i tylko wtedy gdy nie są tożsame i żadna z nich nie jest zaprzeczeniem drugiej.

W tabeli T1 doskonale widać, że obie definicje znaczków # i ## są perfekcyjnie spełnione.

Kluczowe dla poprawnego działania algorytmu analizy zdania bazowego jest prawo śfinii.

Prawo śfinii:
Dowolne zdanie warunkowe od którego zaczynamy analizę matematyczną jest domyślnym punktem odniesienia, gdzie po „Jeśli ..” zapisujemy p zaś po „to..” zapisujemy q z pominięciem przeczeń.

4.7.1 Algorytm analizy zdania bazowego „Jeśli p to q”

Algorytm analizy zdania bazowego „Jeśli p to q”

START

Punkt 1

Prawo śfinii:
Dowolne zdanie bazowe od którego zaczynamy analizę matematyczną jest domyślnym punktem odniesienia, gdzie po „Jeśli ..” zapisujemy p zaś po „to..” zapisujemy q z pominięciem przeczeń.

Punkt 2
Zbiory:
Badamy elementem wspólnym zbiorów ~~> kolejne możliwe przeczenia p i q poszukując zbioru pustego (=0)
p~~>q=p*q =0
Zdarzenia:
Badamy zdarzeniem możliwym ~~> kolejne możliwe przeczenia p i q poszukując zdarzenia niemożliwego (=0)
p~~>q=p*q =0
RETURN

Punkt 3
Zbiory:
Jeśli znaleziono zbiór pusty [] idź do puntu 5
Zdarzenia:
Jeśli znaleziono zdarzenie niemożliwe ~~> idź do punktu 5

Inaczej:
Punkt 4
Zbiory:
Nie znaleziono zbioru pustego []
Zdarzenia:
Nie znaleziono zdarzenia niemożliwego ~~>
Operator logiczny zlokalizowany, to operator chaosu p||~~>q
Idź do operatora chaosu p||~~>q
STOP

Punkt 5
Na mocy prawa kontrapozycji zapisujemy prawdziwy warunek wystarczający => między tymi samymi punktami i w tym samym kierunku
(~)p=>(~)q =1

Punkt 6
Jeśli zdanie 5 jest w logice ujemnej (bo ~q) to prawem Kubusia sprowadzamy je do logiki dodatniej (bo q).
Prawo Kubusia:
~p=>~q = p~>q

Punkt 7
Badamy prawdziwość/fałszywość zdania 6 kodowanego spójnikiem przeciwnym do występującego w tym zdaniu (~> albo =>) między tymi samymi punktami i w tym samym kierunku
p (~> albo =>) q =?

Punkt 8
W punktach 6 i 7 mamy zlokalizowaną kolumnę A1B1: p|?q będącą częścią operatora logicznego p||?q

Idź do tabeli prawdy zlokalizowanego operatora logicznego
STOP

Przedstawiony wyżej algorytm to algorytm podstawowy.

Uwaga:
Matematycznie możliwy jest alternatywny algorytm przeciwny gdzie w prawie śfinii po „Jeśli ..” zapisujemy q zaś po „to…” zapisujemy p, jednak aby matematyk A dogadał się z matematykiem B obaj muszą stosować identyczny, uzgodniony wzajemnie algorytm: podstawowy albo przeciwny.
W logice matematycznej za domyślny przyjmujemy algorytm podstawowy dzięki czemu nie musimy sygnalizować światu zewnętrznemu który algorytm stosujemy.
Ponieważ algorytm podstawowy jest z definicji algorytmem domyślnym, możemy pominąć słówko „podstawowy” w „algorytmie podstawowym”.

4.7.2 Operator implikacji prostej p||=>q

W algebrze Kubusia w zbiorach zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

IP.
Definicja podstawowa implikacji prostej p|=>q:

Implikacja prosta p|=>q to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku.
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
stąd:
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) =1*~(0) = 1*1 =1
Kod:

IP:
Tabela prawdy implikacji prostej p|=>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q =1 - p jest (=1) wystarczające => dla q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla q
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
       A1B1:         A2B2:        |     A3B3:         A4B4:
A:  1: p=>q  =1 = 2:~p~>~q=1     [=] 3: q~>p  =1 = 4:~q=>~p =1
A’: 1: p~~>~q=0 =                [=]             = 4:~q~~>p =0
       ##            ##           |     ##            ##
B:  1: p~>q  =0 = 2:~p=>~q=0     [=] 3: q=>p  =0 = 4:~q~>~p =0
B’:             = 2:~p~~>q=1     [=] 3: q~~>~p=1

Równanie operatora implikacji prostej p||=>q:
A1B1:                                                        A2B2:
p|=>q = (A1: p=>q)*~(B1: p~>q) = (A2:~p~>~q)*~(B2:~p=>~q) = ~p|~>~q

Operator implikacji prostej p||=>q to układ równań logicznych:
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p
A2B2:~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p

Układ równań logicznych jest przemienny, stąd mamy:
Operator implikacji odwrotnej ~p||~>~q to układ równań logicznych:
A2B2:~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


Definicja symboliczna operatora implikacji prostej p||=>q to układ równań A1B1 i A2B2 dający odpowiedź na pytania o p i ~p:
Kod:

Kolumna A1B1:
Co może się wydarzyć jeśli zajdzie p?
A1:  p=> q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1:  p~> q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
p|=>q =(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
Stąd:
A1:  p=> q =1 - zajście p jest wystarczające => dla zajścia q
A1’: p~~>~q=0 - prawdziwy A1 wymusza fałszywy kontrprzykład A1’

Kolumna A2B2:
Co może się zdarzyć jeśli zajdzie ~p?
A2: ~p~>~q =1 - zajście ~p jest (=1) konieczne ~> dla zajścia ~q
B2: ~p=>~q =0 - zajście ~p nie jest (=0) wystarczające => dla zajścia ~q
~p|~>~q =(A2:~p~>~q)*~(B2:~p=>~q)=1*~(0)=1*1=1
Stąd:
A2: ~p~>~q =1 - zajście ~p jest konieczne ~> dla zajścia ~q
B2’:~p~~>q =1 - fałszywy B2 wymusza prawdziwy kontrprzykład B2’


Prawo Kobry dla zbiorów:
Warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q” jest jego prawdziwość przy kodowaniu elementem wspólnym zbiorów ~~>.
Innymi słowy:
Jeśli prawdziwe jest zdanie kodowane warunkiem wystarczającym => lub koniecznym ~> to na 100% prawdziwe jest to samo zdanie kodowane elementem wspólnym zbiorów ~~> (odwrotnie nie zachodzi)

Prawo Kobry dla zdarzeń:
Warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q” jest jego prawdziwość przy kodowaniu zdarzeniem możliwym ~~>.
Innymi słowy:
Jeśli prawdziwe jest zdanie kodowane warunkiem wystarczającym => lub koniecznym ~> to na 100% prawdziwe jest to samo zdanie kodowane zdarzeniem możliwym ~~> (odwrotnie nie zachodzi)

Na mocy prawa Kobry definicja operatora implikacji prostej p||=>q wyrażona zdaniami bazowymi przyjmuje postać:
Kod:

A1B1:
Co może się wydarzyć jeśli zajdzie p?
A1:  p~~>q =1 - możliwe jest (=1) jednoczesne zajście zdarzeń p i q
A1’: p~~>~q=0 - niemożliwe jest (=0) jednoczesna zajście zdarzeń p i ~q
A2B2:
Co może się zdarzyć jeśli zajdzie ~p?
A2: ~p~~>~q=1 - możliwe jest (=1) jednoczesne zajście zdarzeń ~p i ~q
B2’:~p~~>q =1 - możliwe jest (=1) jednoczesna zajście zdarzeń ~p i q


4.8 Zdania bazowe w operatorze implikacji prostej P||=>CH w zdarzeniach

W sprawdzaniu poprawności algorytmu analizy dowolnego zdania bazowego postępujemy identycznie jak w sprawdzaniu programu komputerowego. Na wejściu podajemy dane co do których jesteśmy pewni do jakiego operatora logicznego powinien nas algorytm zaprowadzić sprawdzając czy rzeczywiście tak się stanie.

Operator implikacji prostej P||=>CH omówiony został w punkcie 3.1.3.
Sprawdzenia poprawności działania algorytmu analizy dowolnego zdania bazowego w operatorze implikacji prostej P||=>CH wykonamy na konkretnym przykładzie, by łatwiej było zrozumieć.
p = P (pada)
q = CH (chmury)

Definicja operatora implikacji prostej p||=>q w zdaniach bazowych:
Kod:

A1B1:
Co może się wydarzyć jeśli będzie padało (P=1)?
A1:  P~~>CH =1 - możliwe jest (=1) zdarzenie: pada (P) i są chmury (CH)
A1’: P~~>~CH=0 - niemożliwe jest (=0) zdarzenie: pada (P) i nie ma chmur (~CH)
A2B2:
Co może się zdarzyć jeśli nie będzie padało (~P=1)?
A2: ~P~~>~CH=1 - możliwe jest zdarzenie: nie pada (~P) i nie ma chmur (~CH)
B2’:~P~~>CH =1 - możliwe jest zdarzenie: nie pada (~P) i są chmury (CH)

Jak widzimy, powyższa wiedza to matematyczny poziom 5-cio latka.

4.8.1 Zdanie bazowe P~~>CH

Zadanie 4.8.1
Dane jest zdanie bazowe:
W1.
Jeśli jutro będzie padało to może być pochmurno
Polecenie:
Zbadaj w skład jakiego operatora logicznego wchodzi to zdanie.
Zapisz analizę matematyczną zlokalizowanego operatora

Rozwiązanie:
Na początek sprawdzamy czy zdanie W1 spełnia definicję zdania bazowego:
1.
Poprzednik p definiuje stan:
p= P (pada) =1 - prawdą jest (=1), że wiem co znaczy stan „pada”
Następnik q definiuje stan:
q = CH (chmury) =1 - prawdą jest (=1), że wiem co znaczy stan „są chmury”
Negacje p i q to odpowiednio:
~p = ~P (nie pada) =1 - prawdą jest (=1), że wiem co znaczy stan „nie pada”
~q = ~CH (nie ma chmur) =1 - prawdą jest (=1), że wiem co znaczy stan „nie ma chmur”
2.
Wspólna dziedzina matematyczna to wszystkie możliwe stany na wejściu, bez rozstrzygania w temacie prawdziwości/fałszywości poszczególnych stanów:
DM = p*q + p*~q + ~p*~q + ~p*q = p*(q+~q)+ ~p*(~q+q) = p+~p =q
Wniosek:
Wspólna dziedzina matematyczna DM jest prawidłowo zdefiniowana.

Uwaga:
Jeśli nie uda nam się w sposób zrozumiały zdefiniować wszystkich możliwych stanów p, q, ~p, ~q albo nie będziemy w stanie zdefiniować wspólnej dziedziny matematycznej różnej od Uniwersum to zdanie bazowe uznajemy za fałsz absolutny, którego nie analizujemy.
Rozstrzygnięcie w tym przypadku to:
Zdanie bazowe to fałsz absolutny nie podlegający analizie.

Definicje pojęć podstawowych:

Definicja zbioru:
Zbiór to zestaw dowolnych pojęć zrozumiałych dla człowieka

Zauważmy, że w definicji zbioru nie ma zastrzeżenia, iż elementem zbioru nie może być podzbiór, czy też zbiór.

Definicja Uniwersum:
Uniwersum to zbiór wszelkich pojęć zrozumiałych dla człowieka.
Czyli:
U = [pies, miłość, krasnoludek ...] - wyłącznie pojęcia rozumiane przez człowieka (zdefiniowane)

Sprawdzenie algorytmu analizy zdań bazowych „Jeśli p to q” w zdarzeniach:

START

Punkt 1

Prawo śfinii:
Dowolne zdanie warunkowe od którego zaczynamy analizę matematyczną jest domyślnym punktem odniesienia, gdzie po „Jeśli ..” zapisujemy p zaś po „to..” zapisujemy q z pominięciem przeczeń.
W1.
Jeśli jutro będzie padało (P=1) to może ~~> być pochmurno (CH=1)
P~~>CH = P*CH =?
Na mocy prawa śfinii mamy:
p=P (pada)
q=CH (chmury)
Zapis zdania W1 w zapisie formalnym:
p~~>q = p*q =?

Punkt 2
Zdarzenia:
Badamy zdarzeniem możliwym ~~> kolejne możliwe przeczenia poszukując pierwszego zdarzenia niemożliwego.
1: P~~>CH =1 - możliwe jest (=1) zdarzenie: pada (P=1) i są chmury (CH=1)
2: P~~>~CH =0 - niemożliwe jest (=0) zdarzenie: pada (P=1) i nie ma chmur (~CH=1)
RETURN

Punkt 3
Znalezione zdarzenie niemożliwe:
P~~>~CH =0 - niemożliwe jest (=0) zdarzenie: pada (P=1) i nie ma chmur (~CH=1)
Jeśli znaleziono zdarzenie niemożliwe (=0) idź do punktu 5

Punkt 5
Na mocy prawa kontrapozycji zapisujemy prawdziwy warunek wystarczający => między tymi samymi punktami i w tym samym kierunku
5.
Jeśli jutro będzie padało (P=1) to na 100% => będzie pochmurno (CH=1)
P=>CH =1
Padanie jest (=1) warunkiem wystarczającym => dla istnienia chmur, bo zawsze gdy pada, są chmury

Punkt 6
Jeśli zdanie 5 jest w logice ujemnej (bo ~q) to prawem Kubusia sprowadzamy je do logiki dodatniej (bo q).
Prawo Kubusia:
~p=>~q = p~>q
Zdanie 5 jest w logice dodatniej (bo CH) zatem tylko przepisujemy:
6.
Jeśli jutro będzie padało (P=1) to na 100% => będzie pochmurno (CH=1)
P=>CH =1
Padanie jest (=1) warunkiem wystarczającym => dla istnienia chmur, bo zawsze gdy pada, są chmury

Punkt 7
Badamy prawdziwość/fałszywość zdania 6 kodowanego spójnikiem przeciwnym do występującego w tym zdaniu (~> albo =>) między tymi samymi punktami i w tym samym kierunku
7.
Jeśli jutro będzie padało (P=1) to na 100% ~> będzie pochmurno (CH=1)
P~>CH =0
p~>q =0 - na mocy prawa śfinii
Padanie nie jest (=0) warunkiem koniecznym ~> dla istnienia chmur, bo może nie padać, a mimo to chmury mogą istnieć.
Podpowiedź:
Jeśli ktoś ma problem ze zrozumieniem dowodu fałszywości zdania 7 to prawem Tygryska może przejść do najprostszego warunku wystarczającego =>.
Prawo Tygryska w zapisie aktualnym:
7: P~>CH = 7a: CH=>P
Prawo Tygryska w zapisie formalnym:
7: p~>q = 7a: q=>p - na mocy prawa śfinii
Zdanie po prawej stronie brzmi:
7a.
Jeśli jutro będzie pochmurno (CH=1) to na 100% => będzie padało (P=1)
CH=>P =0
Chmury nie są warunkiem wystarczającym => dla padania, bo nie zawsze gdy są chmury, pada
Na mocy prawa Tygryska fałszywość zdania 7a wymusza fałszywość zdania 7
cnd

Punkt 8
Zdania 6 i 7 lokalizują nam definicję implikacji prostej P|=>CH:
Implikacja prosta P|=>CH to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku.
A1: P=>CH =1 - padanie jest (=1) wystarczające => dla istnienia chmur
B1: P~>CH =0 - padanie nie jest (=0) konieczne ~> dla istnienia chmur
Stąd:
P|=>CH = (A1: P=>CH)*~(B1: P~>CH) = 1*~(0)=1*1 =1

Wniosek:
Idź do tabeli prawdy implikacji prostej P|=>CH zapisanej w punkcie 4.9

Komentarz:
Zdanie wejściowe to:
W1.
Jeśli jutro będzie padało to może ~~> być pochmurno
P~~>CH = P*CH =1 - możliwe jest zdarzenie ~~>: pada (P=1) i jest pochmurno (CH=1)

W punkcie 4.9.1 zlokalizowane zdanie W1 jako zdanie A1 będące częścią operatora implikacji prostej P||=>CH
A1.
Jeśli jutro będzie padało (P=1) to na 100% => będzie pochmurno (CH=1)
P=>CH =1
Padanie jest warunkiem wystarczającym => dla istnienia chmur, bo zawsze gdy pada, są chmury

Prawo Kobry dla zdarzeń:
Warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q” jest jego prawdziwość przy kodowaniu zdarzeniem możliwym ~~>.
Innymi słowy:
Jeśli prawdziwe jest zdanie kodowane warunkiem wystarczającym => lub koniecznym ~> to na 100% prawdziwe jest to samo zdanie kodowane zdarzeniem możliwym ~~> (odwrotnie nie zachodzi)

Z prawa Kobry wynika, że zdanie wejściowe W1 które analizowaliśmy wchodzi w skład warunku wystarczającego A1: P=>CH =1
cnd

4.8.2 Zdanie bazowe P~~>~CH

Zadanie 4.8.2
Dane jest zdanie bazowe:
W2.
Jeśli jutro będzie padało to może nie być pochmurno
Polecenie:
Zbadaj w skład jakiego operatora logicznego wchodzi to zdanie.
Zapisz analizę matematyczną zlokalizowanego operatora

Rozwiązanie:
Sprawdzenie definicji zdania bazowego jak w punkcie 4.8.1

Sprawdzenie algorytmu analizy zdań bazowych „Jeśli p to q” w zdarzeniach:

START

Punkt 1

Prawo śfinii:
Dowolne zdanie warunkowe od którego zaczynamy analizę matematyczną jest domyślnym punktem odniesienia, gdzie po „Jeśli ..” zapisujemy p zaś po „to..” zapisujemy q z pominięciem przeczeń.
W2.
Jeśli jutro będzie padało (P=1) to może ~~> nie być pochmurno (~CH=1)
P~~>~CH = P*~CH =?
Na mocy prawa śfinii mamy:
p=P(pada)
q=CH(chmury)
Zapis zdania W2 w zapisie formalnym:
p~~>~q = p*~q =?

Punkt 2
Zdarzenia:
Badamy zdarzeniem możliwym ~~> kolejne możliwe przeczenia poszukując pierwszego zdarzenia niemożliwego.
1: P~~>~CH =0 - niemożliwe jest (=0) zdarzenie: pada (P=1) i nie ma chmur (~CH=1)
RETURN

Punkt 3
Znalezione zdarzenie niemożliwe:
P~~>~CH =0 - niemożliwe jest (=0) zdarzenie: pada (P=1) i nie ma chmur (~CH=1)
Jeśli znaleziono zdarzenie niemożliwe (=0) idź do punktu 5

Punkt 5
Na mocy prawa kontrapozycji zapisujemy prawdziwy warunek wystarczający => między tymi samymi punktami i w tym samym kierunku
5.
Jeśli jutro będzie padało (P=1) to na 100% => będzie pochmurno (CH=1)
P=>CH =1
Padanie jest (=1) warunkiem wystarczającym => dla istnienia chmur, bo zawsze gdy pada, są chmury

Punkt 6
Jeśli zdanie 5 jest w logice ujemnej (bo ~q) to prawem Kubusia sprowadzamy je do logiki dodatniej (bo q).
Prawo Kubusia:
~p=>~q = p~>q
Zdanie 5 jest w logice dodatniej (bo CH) zatem tylko przepisujemy:
6.
Jeśli jutro będzie padało (P=1) to na 100% => będzie pochmurno (CH=1)
P=>CH =1
Padanie jest (=1) warunkiem wystarczającym => dla istnienia chmur, bo zawsze gdy pada, są chmury

Punkt 7
Badamy prawdziwość/fałszywość zdania 6 kodowanego spójnikiem przeciwnym do występującego w tym zdaniu (~> albo =>) między tymi samymi punktami i w tym samym kierunku
7.
Jeśli jutro będzie padało (P=1) to na 100% ~> będzie pochmurno (CH=1)
P~>CH =0
Padanie nie jest (=0) warunkiem koniecznym ~> dla istnienia chmur, bo może nie padać, a mimo to chmury mogą istnieć.

Punkt 8
Zdania 6 i 7 lokalizują nam definicję implikacji prostej P|=>CH:
Implikacja prosta P|=>CH to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku.
A1: P=>CH =1 - padanie jest (=1) wystarczające => dla istnienia chmur
B1: P~>CH =0 - padanie nie jest (=0) konieczne ~> dla istnienia chmur
Stąd:
P|=>CH = (A1: P=>CH)*~(B1: P~>CH) = 1*~(0)=1*1 =1

Wniosek:
Idź do tabeli prawdy implikacji prostej P|=>CH zapisanej w punkcie 4.9

Komentarz:
Zdanie wejściowe to:
W2.
Jeśli jutro będzie padało to może ~~> nie być pochmurno
P~~>~CH=P*~CH =0 - niemożliwe jest (=0) zdarzenie: pada (P=1) i nie jest pochmurno (~CH=1)

W punkcie 4.9.1 zlokalizowano zdanie W1 jako zdanie A1’ będące częścią operatora implikacji prostej P||=>CH
A1’.
Jeśli jutro będzie padało (P=1) to może ~~> nie być pochmurno (~CH=1)
P~~>~CH = P*~CH =0
Niemożliwe jest (=0) zdarzenie ~~>: pada (P=1) i nie ma chmur (~CH=1)

4.8.3 Zdanie bazowe ~P~~>~CH

Zadanie 4.8.3
Dane jest zdanie bazowe:
W3.
Jeśli jutro nie będzie padało to może nie być pochmurno
Polecenie:
Zbadaj w skład jakiego operatora logicznego wchodzi to zdanie.
Zapisz analizę matematyczną zlokalizowanego operatora

Rozwiązanie:
Sprawdzenie definicji zdania bazowego jak w punkcie 4.8.1

Sprawdzenie algorytmu analizy zdań bazowych „Jeśli p to q” w zdarzeniach:

START

Punkt 1

Prawo śfinii:
Dowolne zdanie warunkowe od którego zaczynamy analizę matematyczną jest domyślnym punktem odniesienia, gdzie po „Jeśli ..” zapisujemy p zaś po „to..” zapisujemy q z pominięciem przeczeń.
W3.
Jeśli jutro nie będzie padało to może nie być pochmurno
~P~~>~CH = ~P*~CH =?
Na mocy prawa śfinii mamy:
p=P(pada)
q=CH(chmury)
Zapis zdania W3 w zapisie formalnym:
~p~~>~q = ~p*~q =?

Punkt 2
Zdarzenia:
Badamy zdarzeniem możliwym ~~> kolejne możliwe przeczenia poszukując pierwszego zdarzenia niemożliwego.
1: ~P~~>~CH=1 - możliwe jest (=1) zdarzenie: nie pada (~P=1) i nie jest pochmurno (~CH=1)
2: ~P~~~>CH =1 - możliwe jest (=1) zdarzenie: nie pada (~P=1) i są chmury (CH=1)
3. P~~>CH =1 - możliwe jest (=1) zdarzenie: pada (P=1) i są chmury (CH=1)
4: P~~>~CH =0 - niemożliwe jest (=0) zdarzenie: pada (P=1) i są chmury (CH=1)
RETURN

Punkt 3
Znalezione zdarzenie niemożliwe:
P~~>~CH =0 - niemożliwe jest (=0) zdarzenie: pada (P=1) i nie ma chmur (~CH=1)
Jeśli znaleziono zdarzenie niemożliwe (=0) idź do punktu 5

Punkt 5
Na mocy prawa kontrapozycji zapisujemy prawdziwy warunek wystarczający => między tymi samymi punktami i w tym samym kierunku
5.
Jeśli jutro będzie padało (P=1) to na 100% => będzie pochmurno (CH=1)
P=>CH =1
Padanie jest (=1) warunkiem wystarczającym => dla istnienia chmur, bo zawsze gdy pada, są chmury

Punkt 6
Jeśli zdanie 5 jest w logice ujemnej (bo ~q) to prawem Kubusia sprowadzamy je do logiki dodatniej (bo q).
Prawo Kubusia:
~p=>~q = p~>q
Zdanie 5 jest w logice dodatniej (bo CH) zatem tylko przepisujemy:
6.
Jeśli jutro będzie padało (P=1) to na 100% => będzie pochmurno (CH=1)
P=>CH =1
Padanie jest (=1) warunkiem wystarczającym => dla istnienia chmur, bo zawsze gdy pada, są chmury

Punkt 7
Badamy prawdziwość/fałszywość zdania 6 kodowanego spójnikiem przeciwnym do występującego w tym zdaniu (~> albo =>) między tymi samymi punktami i w tym samym kierunku
7.
Jeśli jutro będzie padało (P=1) to na 100% ~> będzie pochmurno (CH=1)
P~>CH =0
Padanie nie jest (=0) warunkiem koniecznym ~> dla istnienia chmur, bo może nie padać, a mimo to chmury mogą istnieć.

Punkt 8
Zdania 6 i 7 lokalizują nam definicję implikacji prostej P|=>CH:
Implikacja prosta P|=>CH to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku.
A1: P=>CH =1 - padanie jest (=1) wystarczające => dla istnienia chmur
B1: P~>CH =0 - padanie nie jest (=0) konieczne ~> dla istnienia chmur
Stąd:
P|=>CH = (A1: P=>CH)*~(B1: P~>CH) = 1*~(0)=1*1 =1

Wniosek:
Idź do tabeli prawdy implikacji prostej P|=>CH zapisanej w punkcie 4.9

Komentarz:
Zdanie wejściowe to:
W3.
Jeśli jutro nie będzie padało to może ~~> nie być pochmurno
~P~~>~CH = ~P*~CH =1 - możliwe jest (=1) zdarzenie: nie pada (~P=1) i nie jest pochmurno (~CH=1)

W punkcie 4.9.1 zlokalizowane zdanie W3 jako zdanie A2 będące częścią operatora implikacji prostej P||=>CH
A2.
Jeśli jutro nie będzie padało (~P=1) to może ~> nie być pochmurno (~CH=1)
~P~>~CH =1
Brak opadów (~P=1) jest warunkiem koniecznym ~> do tego aby nie było pochmurno (~CH=1) bo jak pada (P=1) to na 100% => są chmury (CH=1)
Prawo Kubusia samo nam tu wyskoczyło:
A2: ~P~>~CH = A1: P=>CH

Prawo Kobry dla zdarzeń:
Warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q” jest jego prawdziwość przy kodowaniu zdarzeniem możliwym ~~>.
Innymi słowy:
Jeśli prawdziwe jest zdanie kodowane warunkiem wystarczającym => lub koniecznym ~> to na 100% prawdziwe jest to samo zdanie kodowane zdarzeniem możliwym ~~> (odwrotnie nie zachodzi)

Z prawa Kobry wynika, że zdanie wejściowe W3 które analizowaliśmy wchodzi w skład warunku koniecznego ~> A2: ~P~>~CH =1
cnd

4.8.4 Zdanie bazowe ~P~~>CH

Zadanie 4.8.4
Dane jest zdanie bazowe:
W4.
Jeśli jutro nie będzie padało to może być pochmurno
Polecenie:
Zbadaj w skład jakiego operatora logicznego wchodzi to zdanie.
Zapisz analizę matematyczną zlokalizowanego operatora

Rozwiązanie:
Sprawdzenie definicji zdania bazowego jak w punkcie 4.8.1

Sprawdzenie algorytmu analizy zdań bazowych „Jeśli p to q” w zdarzeniach:

START

Punkt 1

Prawo śfinii:
Dowolne zdanie warunkowe od którego zaczynamy analizę matematyczną jest domyślnym punktem odniesienia, gdzie po „Jeśli ..” zapisujemy p zaś po „to..” zapisujemy q z pominięciem przeczeń.
W4.
Jeśli jutro nie będzie padało to może być pochmurno
~P~~>CH = ~P*CH =?
Na mocy prawa śfinii mamy:
p=P(pada)
q=CH(chmury)
Zapis zdania W4 w zapisie formalnym:
~p~~>q = ~p*q =?

Punkt 2
Zdarzenia:
Badamy zdarzeniem możliwym ~~> kolejne możliwe przeczenia poszukując pierwszego zdarzenia niemożliwego.
1: ~P~~~>CH =1 - możliwe jest (=1) zdarzenie: nie pada (~P=1) i są chmury (CH=1)
2. P~~>CH =1 - możliwe jest (=1) zdarzenie: pada (P=1) i są chmury (CH=1)
3: P~~>~CH =0 - niemożliwe jest (=0) zdarzenie: pada (P=1) i są chmury (CH=1)
RETURN

Punkt 3
Znalezione zdarzenie niemożliwe:
P~~>~CH =0 - niemożliwe jest (=0) zdarzenie: pada (P=1) i nie ma chmur (~CH=1)
Jeśli znaleziono zdarzenie niemożliwe (=0) idź do punktu 5

Punkt 5
Na mocy prawa kontrapozycji zapisujemy prawdziwy warunek wystarczający => między tymi samymi punktami i w tym samym kierunku
5.
Jeśli jutro będzie padało (P=1) to na 100% => będzie pochmurno (CH=1)
P=>CH =1
Padanie jest (=1) warunkiem wystarczającym => dla istnienia chmur, bo zawsze gdy pada, są chmury

Punkt 6
Jeśli zdanie 5 jest w logice ujemnej (bo ~q) to prawem Kubusia sprowadzamy je do logiki dodatniej (bo q).
Prawo Kubusia:
~p=>~q = p~>q
Zdanie 5 jest w logice dodatniej (bo CH) zatem tylko przepisujemy:
6.
Jeśli jutro będzie padało (P=1) to na 100% => będzie pochmurno (CH=1)
P=>CH =1
Padanie jest (=1) warunkiem wystarczającym => dla istnienia chmur, bo zawsze gdy pada, są chmury

Punkt 7
Badamy prawdziwość/fałszywość zdania 6 kodowanego spójnikiem przeciwnym do występującego w tym zdaniu (~> albo =>) między tymi samymi punktami i w tym samym kierunku
7.
Jeśli jutro będzie padało (P=1) to na 100% ~> będzie pochmurno (CH=1)
P~>CH =0
Padanie nie jest (=0) warunkiem koniecznym ~> dla istnienia chmur, bo może nie padać, a mimo to chmury mogą istnieć.

Punkt 8
Zdania 6 i 7 lokalizują nam definicję implikacji prostej P|=>CH:
Implikacja prosta P|=>CH to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku.
A1: P=>CH =1 - padanie jest (=1) wystarczające => dla istnienia chmur
B1: P~>CH =0 - padanie nie jest (=0) konieczne ~> dla istnienia chmur
Stąd:
P|=>CH = (A1: P=>CH)*~(B1: P~>CH) = 1*~(0)=1*1 =1

Wniosek:
Idź do tabeli prawdy implikacji prostej P|=>CH zapisanej w punkcie 4.9

Komentarz:
Zdanie wejściowe to:
W4.
Jeśli jutro nie będzie padało to może ~~> być pochmurno
~P~~>CH = ~P*CH =1 - możliwe jest (=1) zdarzenie: nie pada (~P=1) i jest pochmurno (CH=1)

W punkcie 4.9.1 zlokalizowane zdanie W4 jako zdanie B2’ będące częścią operatora implikacji prostej P||=>CH
B2’.
Jeśli jutro nie będzie padało (~P=1) to może ~~> być pochmurno (CH=1)
~P~~>CH = ~P*CH =1
Możliwe jest (=1) zdarzenie ~~>: nie pada (~P=1) i jest pochmurno (CH=1)

4.9 Tabela prawdy implikacji prostej P|=>CH

IP.
Definicja podstawowa implikacji prostej p|=>q:

Implikacja prosta p|=>q to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku.
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
A1B1:
p|=>q = (A1: p=>q)*~(B1: p~>q) =1*~(0) = 1*1 =1

Nasz przykład:
IP.
Definicja podstawowa implikacji prostej P|=>CH:

Implikacja prosta P|=>CH to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku.
A1: P=>CH =1 - padanie jest (=1) wystarczające => dla istnienia chmur
B1: P~>CH =0 - padanie nie jest (=0) konieczne ~> dla istnienia chmur
A1B1: P|=>CH = (A1: P=>CH)*~(B1: p~>CH) =1*~(0)=1*1 =1

Nanieśmy zdania A1 i B1 do tabeli prawdy implikacji prostej p|=>q:
Kod:

IP:
Tabela prawdy implikacji prostej p|=>q
Definicja implikacji prostej p|=>q w zapisie formalnym {p,q}:
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
Definicja implikacji prostej P|=>CH w zapisie aktualnym {P,CH}:
Punkt odniesienia na mocy prawa śfinii to:
p=P (pada)
q=CH (chmury)
Definicja implikacji prostej P|=>CH w zapisie aktualnym:
A1: P=>CH =1 - padanie jest (=1) wystarczające => dla istnienia chmur
B1: P~>CH =0 - padanie nie jest (=0) konieczne ~> dla istnienia chmur
A1B1: P|=>CH = (A1: P=>CH)*~(B1: p~>CH) =1*~(0)=1*1 =1
       A1B1:         A2B2:        |      A3B3:          A4B4:
A:  1: p=>q   =1 = 2:~p~>~q =1    [=] 3: q~>p   =1 = 4:~q=>~p  =1
A:  1: P=>CH  =1 = 2:~P~>~CH=1    [=] 3: CH~>P  =1 = 4:~CH=>~P =1
A’: 1: p~~>~q =0 =                [=]              = 4:~q~~>p  =0
A’: 1: P~~>~CH=0 =                [=]              = 4:~CH~~>P =0
       ##             ##           |     ##            ##
B:  1: p~>q   =0 = 2:~p=>~q =0    [=] 3: q=>p   =0 = 4:~q~>~p  =0
B:  1: P~>CH  =0 = 2:~P=>~CH=0    [=] 3: CH=>P  =0 = 4:~CH~>~P =0
B’:              = 2:~p~~>q =1    [=] 3: q~~>~p =1
B’:              = 2:~P~~>CH=1    [=] 3: CH~~>~P=1
Równanie operatora implikacji prostej p||=>q:
A1B1:                                                        A2B2:
p|=>q = (A1: p=>q)*~(B1: p~>q) = (A2:~p~>~q)*~(B2:~p=>~q) = ~p|~>~q

Operator implikacji prostej p||=>q to układ równań logicznych:
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p
A2B2:~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p

Układ równań logicznych jest przemienny, stąd mamy:
Operator implikacji odwrotnej ~p||~>~q to układ równań logicznych:
A2B2:~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla poprawienia czytelności tabeli zapisy aktualne (z konkretnego przykładu) podstawiono w nagłówku tabeli oraz w części głównej decydującej o treści zdań warunkowych „Jeśli p to q”.

Operator implikacji prostej p||=>q w logice dodatniej (bo q) to układ równań logicznych A1B1 i A2B2 dający odpowiedź na pytanie o p i ~p:
A1B1: p|=>q =(A1: p=>q)* ~(B1: p~>q) - co się stanie jeśli zajdzie p?
A2B2: ~p|~>~q =(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p?

Okład równań logicznych jest przemienny, stąd:
Operator implikacji odwrotnej ~p||~>~q w logice ujemnej (bo ~q) to układ równań logicznych A2B2 i A1B1 dający odpowiedź na pytanie o ~p i p:
A2B2:~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p

4.9.1 Operator implikacji prostej P||=>CH

Operator implikacji prostej P||=>CH w logice dodatniej (bo q) to układ równań logicznych A1B1 i A2B2 dający odpowiedź na pytanie o P i ~P:
A1B1: P|=>CH =(A1: P=>CH)* ~(B1: P~>CH) - co się może się wydarzyć jeśli będzie padało?
A2B2: ~P|~>~CH =(A2:~P~>~CH)*~(B2:~P=>~CH) - co się może się wydarzyć jeśli nie będzie padało?

A1B1:
Co może się wydarzyć jeśli jutro będzie padało (P=1)?


Odpowiedź na to pytanie mamy w kolumnie A1B1:
A1: P=>CH =1 - padanie jest (=1) wystarczające => dla istnienia chmur
B1: P~>CH =0 - padanie nie jest (=0) konieczne ~> dla istnienia chmur
A1B1: P|=>CH = (A1: P=>CH)*~(B1: p~>CH) =1*~(0)=1*1 =1
Jeśli jutro będzie padało (P=1) to mamy gwarancję matematyczną => iż będzie pochmurno (CH=1) - mówi o tym zdanie A1

Kolumna A1B1 to odpowiedź w zdaniach warunkowych „Jeśli p to q”:
A1.
Jeśli jutro będzie padało (P=1) to na 100% => będzie pochmurno (CH=1)
P=>CH =1
Padanie jest warunkiem wystarczającym => dla istnienia chmur, bo zawsze gdy pada, są chmury
Padanie daje nam gwarancję matematyczną => istnienia chmur
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>

Z prawdziwości warunku wystarczającego => A1 wynika fałszywość kontrprzykładu A1’ (i odwrotnie)
A1’.
Jeśli jutro będzie padało (P=1) to może ~~> nie być pochmurno (~CH=1)
P~~>~CH = P*~CH =0
Niemożliwe jest (=0) zdarzenie ~~>: pada (P=1) i nie ma chmur (~CH=1)
Czytamy:
P=1 - prawdą jest (=1) że pada (P)
~CH=1 - prawdą jest (=1) że nie ma chmur (~CH)

A2B2.
Co może się wydarzyć jeśli jutro nie będzie padało (~P=1)?


Odpowiedź na to pytanie mamy w kolumnie A2B2:
A2: ~P~>~CH =1 - brak padania (~P) jest (=1) konieczny ~> dla braku chmur (~CH)
B2: ~P=>~CH =0 - brak padania (~P) nie jest (=0) wystarczający => dla braku chmur (~CH)
bo nie zawsze gdy nie pada, nie ma chmu.
A2B2: ~P|~>~CH = (A2:~P~>~CH)*~(B2: ~P=>~CH) =1*~(0) =1*1=1
Jeśli jutro nie będzie padało (~P=1) to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” - mówią o tym zdania A2 i B2’

Kolumna A2B2 to odpowiedź w zdaniach warunkowych „Jeśli p to q”:
A2.
Jeśli jutro nie będzie padało (~P=1) to może ~> nie być pochmurno (~CH=1)
~P~>~CH =1
Brak opadów (~P=1) jest (=1) warunkiem koniecznym ~> do tego aby nie było pochmurno (~CH=1) bo jak pada (P=1) to na 100% => są chmury (CH=1)
Prawo Kubusia samo nam tu wyskoczyło:
A2: ~P~>~CH = A1: P=>CH
Czytamy:
1: CH=1 - prawdą jest (=1) że są chmury (CH)
2: ~CH=1 - prawdą jest (=1) że nie ma chmur (~CH=1)
Prawo Prosiaczka:
(~CH=1) = (CH=0)
Stąd zdanie tożsame do 2 brzmi:
2’: CH=0 - fałszem jest (=0) iż są chmury (CH)
Jak widzimy wyłącznie sprowadzanie zmiennych do jedynek na mocy prawa Prosiaczka, czyni język potoczny przekładalny w skali 1:1 na logikę matematyczną.
Dowód:
W zdaniu 2 z języka potocznego mamy frazę:
„nie ma chmur” i tą frazę kodujemy matematycznie (~CH)
Innymi słowy:
W kodowaniu matematycznym uwzględniamy przeczenie „nie” w postaci symbolu przeczenia (~).

LUB

Kontrprzykład B2’ dla fałszywego warunku wystarczającego => B2 musi być prawdą, stąd:
B2’.
Jeśli jutro nie będzie padało (~P=1) to może ~~> być pochmurno (CH=1)
~P~~>CH = ~P*CH =1
Możliwe jest (=1) zdarzenie ~~>: nie pada (~P=1) i jest pochmurno (CH=1)
Czytamy:
~P=1 - prawdą jest (=1) że nie pada (~P)
CH=1 - prawdą jest (=1) że są chmury (CH)

Podsumowanie:
Istotą operatora implikacji prostej P||=>CH jest gwarancja matematyczna po stronie P (pada) i najzwyklejsze „rzucanie monetą” w rozumieniu „na dwoje babka wróżyła” po stronie ~P (nie pada), co widać w powyższej analizie.

Zauważmy że:
a)
Układ równań logicznych jest przemienny, stąd mamy:
Operator implikacji odwrotnej ~P||~>~CH to układ równań logicznych:
A2B2: ~P|~>~CH =(A2:~P~>~CH)*~(B2:~P=>~CH) - co się może się wydarzyć jeśli nie będzie padało?
A1B1: P|=>CH =(A1: P=>CH)* ~(B1: P~>CH) - co się może się wydarzyć jeśli będzie padało?
Doskonale widać, że analiza matematyczna operatora implikacji odwrotnej ~P||~>~CH w logice ujemnej (bo ~CH) będzie identyczna jak operatora implikacji prostej P||=>CH w logice dodatniej (bo CH) z tym, że zaczynamy od kolumny A2B2 kończąc na kolumnie A1B1, co matematycznie jest bez znaczenia.
b)
Także kolejność wypowiadanych zdań jest dowolna, tak więc zdania z powyższej analizy A1, A1’, A2, B2’ możemy wypowiadać w sposób losowy - matematycznie to bez znaczenia.


Ostatnio zmieniony przez rafal3006 dnia Nie 15:47, 13 Cze 2021, w całości zmieniany 2 razy
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 35331
Przeczytał: 23 tematy

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Nie 16:34, 13 Cze 2021    Temat postu:

Algebra Kubusia - ostatnie czytanie!
Część X

Po raz ostatni przed premierą czytam od początku algebrę Kubusia likwidując literówki i udoskonalając przekaz.

http://www.sfinia.fora.pl/forum-kubusia,12/algebra-kubusia-w-przebudowie,18899.html#594305

Algebra Kubusia
4.11 Zdania bazowe w operatorze implikacji prostej P8||=>P2 w zbiorach

Spis treści
4.10 Zdania bazowe w operatorze implikacji prostej P8||=>P2 w zbiorach 2
4.10.1 Algorytm analizy zdania bazowego „Jeśli p to q” 3
4.10.2 Operator implikacji prostej p||=>q 5
4.11 Zdania bazowe w operatorze implikacji prostej P8||=>P2 w zbiorach 6
4.11.1 Zdanie bazowe P8~~>P2 7
4.11.2 Zdanie bazowe P8~~>~P2 13
4.11.3 Zdanie bazowe ~P8~~>~P2 14
4.11.4 Zdanie bazowe ~P8~~>P2 17
4.12 Tabela prawdy implikacji prostej P8|=>P2 19
4.12.1 Operator implikacji prostej P8||=>P2 w zbiorach 20

Wstęp:
Problem budowy operatora implikacji prostej P8||=>P2 to matematyczny poziom ucznia I klasy LO.
W praktyce wiedza czysto matematyczna w skład jakiego operatora logicznego wchodzi dowolne prawdziwe zdanie warunkowe „Jeśli p to q” jest do niczego potrzebna. Każdy człowiek od 5-cio latka poczynając non stop stosuje tu poniższe prawa logiki matematycznej nie mając najmniejszego pojęcia co to jest operator logiczny np. P8||=>P2.

W algebrze Kubusia mamy zaledwie trzy znaczki (=>, ~> i ~~>) na których zbudowana jest kompletna algebra Kubusia w obsłudze zdań warunkowych "Jeśli p to q".
1.
Warunek wystarczający =>:

p=>q =1 - gdy zajście p jest (=1) warunkiem wystarczającym => dla zajścia q
Inaczej:
p=>q =0
2.
Warunek konieczny ~>:

p~>q =1 0 gdy zajście p jest (=1) konieczne ~> dla zajścia q
Inaczej:
p~>q =0
3.
Zdarzenie możliwe ~~> lub element wspólny zbiorów ~~>

Zdarzenia:
Definicja zdarzenia możliwego ~~> w zdarzeniach:
p~~>q = p*q =1 - gdy możliwe jest (=1) jednoczesne zajście zdarzeń p i q
Inaczej:
p~~>q=p*q =0
Zbiory:
Definicja elementu wspólnego zbiorów ~~>:
p~~>q = p*q =1 - gdy zbiory p i q mają (=1) element wspólny
Inaczej:
p~~>q = p*q=0
Kod:

T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
      ##        ##           ##        ##            ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5:  p+~q

Prawa Kubusia:        | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q  | A1: p=>q  = A4:~q=>~p
B1: p~>q = B2:~p=>~q  | B2:~p=>~q = B3: q=>p

Prawa Tygryska:       | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p   | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p   | B1: p~>q  = B4:~q~>~p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


4.10 Zdania bazowe w operatorze implikacji prostej P8||=>P2 w zbiorach

Definicja zdania bazowego:
Zdanie bazowe to zdanie warunkowe „Jeśli p to q” kodowane elementem wspólnym zbiorów ~~> (zbiory) albo zdarzeniem możliwym ~~> (zdarzenia) spełniające poniższe warunki:
1.
W zdaniu warunkowym „Jeśli p to q” żadne z pojęć p, q, ~p i ~q nie może być zbiorem pustym (zdarzeniem niemożliwym), co gwarantuje rozpoznawalność tych pojęć.
2.
Poprzednik p i następnik q muszą należeć do wspólnej dziedziny.

Algorytm analizy zdania bazowego:
Algorytm analizy dowolnego zdania bazowego „Jeśli p to q” przez wszystkie możliwe przeczenia p i q pozwala na jednoznaczne rozstrzygnięcie w skład jakiego operatora logicznego wchodzi badane zdanie bazowe bez względu na jego prawdziwość/fałszywość.

Dowolne zdanie bazowe „Jeśli p to q” może wchodzić tylko i wyłącznie w skład jednego z pięciu rozłącznych operatorów logicznych.
1. p||=>q - operator implikacji prostej
2. p||~>q - operator implikacji odwrotnej
3. p|<=>q - operator równoważności
4. p||~~>q - operator chaosu
Dodatkowy piąty operator to mutacja równoważności p<=>q:
5. p|$q - operator „albo”($)

Z faktu iż powyższe operatory są rozłączne wynika, że dowolne zdanie warunkowe „Jeśli p to q” nie może należeć jednocześnie do dwóch, jakichkolwiek operatorów.
Kod:

T1
Definicje operatorów implikacyjnych które niebawem poznamy:
1: Y=(p||=>q) =(p|=>q)  = (A1: p=>q)*~(B1: p~>q)= ~p*q      # ~Y=p+~q
##
2: Y=(p||~>q) =(p|~>q)  =~(A1: p=>q)*(B1: p~>q)  = p*~q     # ~Y=~p+q
##
3: Y=(p|<=>q) =(p<=>q)  = (A1:p=>q)* (B1: p~>q)  =p*q+~p*~q # ~Y=p*~q+~p*q
##
4: Y=(p||~~>q)=(p|~~>q) =~(A1: p=>q)*~(B1: p~>q) =0         # ~Y=1
##
5: Y=(p|$q)   = (p$q)   = (A1: p=>~q)*(B1: p~>~q)=p*~q+~p*q # ~Y=p*q+~p*~q
Gdzie:
# - różne w znaczeniu iż jedna strona znaczka # jest negacją drugiej strony
## - różne na mocy definicji

Definicja tożsamości logicznej [=]:
Prawo Kubusia:
p=>q [=] ~p~>~q
Prawdziwość dowolnej strony tożsamości logicznej [=] wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej [=] wymusza fałszywość drugiej strony

Definicja znaczka różne na mocy definicji ##:
Dwie funkcje logiczna są różne na mocy definicji wtedy i tylko wtedy gdy nie są tożsame i żadna z nich nie jest zaprzeczeniem drugiej.

W tabeli T1 doskonale widać, że obie definicje znaczków # i ## są perfekcyjnie spełnione.

Kluczowe dla poprawnego działania algorytmu analizy zdania bazowego jest prawo śfinii.

Prawo śfinii:
Dowolne zdanie warunkowe od którego zaczynamy analizę matematyczną jest domyślnym punktem odniesienia, gdzie po „Jeśli ..” zapisujemy p zaś po „to..” zapisujemy q z pominięciem przeczeń.

4.10.1 Algorytm analizy zdania bazowego „Jeśli p to q”

Algorytm analizy zdania bazowego „Jeśli p to q”

START

Punkt 1

Prawo śfinii:
Dowolne zdanie bazowe od którego zaczynamy analizę matematyczną jest domyślnym punktem odniesienia, gdzie po „Jeśli ..” zapisujemy p zaś po „to..” zapisujemy q z pominięciem przeczeń.

Punkt 2
Zbiory:
Badamy elementem wspólnym zbiorów ~~> kolejne możliwe przeczenia p i q poszukując zbioru pustego (=0)
p~~>q=p*q =0
Zdarzenia:
Badamy zdarzeniem możliwym ~~> kolejne możliwe przeczenia p i q poszukując zdarzenia niemożliwego (=0)
p~~>q=p*q =0
RETURN

Punkt 3
Zbiory:
Jeśli znaleziono zbiór pusty [] idź do puntu 5
Zdarzenia:
Jeśli znaleziono zdarzenie niemożliwe ~~> idź do punktu 5

Inaczej:
Punkt 4
Zbiory:
Nie znaleziono zbioru pustego []
Zdarzenia:
Nie znaleziono zdarzenia niemożliwego ~~>
Operator logiczny zlokalizowany, to operator chaosu p||~~>q
Idź do operatora chaosu p||~~>q
STOP

Punkt 5
Na mocy prawa kontrapozycji zapisujemy prawdziwy warunek wystarczający => między tymi samymi punktami i w tym samym kierunku
(~)p=>(~)q =1

Punkt 6
Jeśli zdanie 5 jest w logice ujemnej (bo ~q) to prawem Kubusia sprowadzamy je do logiki dodatniej (bo q).
Prawo Kubusia:
~p=>~q = p~>q

Punkt 7
Badamy prawdziwość/fałszywość zdania 6 kodowanego spójnikiem przeciwnym do występującego w tym zdaniu (~> albo =>) między tymi samymi punktami i w tym samym kierunku
p (~> albo =>) q =?

Punkt 8
W punktach 6 i 7 mamy zlokalizowaną kolumnę A1B1: p|?q będącą częścią operatora logicznego p||?q

Idź do tabeli prawdy zlokalizowanego operatora logicznego
STOP

Przedstawiony wyżej algorytm to algorytm podstawowy.

Uwaga:
Matematycznie możliwy jest alternatywny algorytm przeciwny gdzie w prawie śfinii po „Jeśli ..” zapisujemy q zaś po „to…” zapisujemy p, jednak aby matematyk A dogadał się z matematykiem B obaj muszą stosować identyczny, uzgodniony wzajemnie algorytm: podstawowy albo przeciwny.
W logice matematycznej za domyślny przyjmujemy algorytm podstawowy dzięki czemu nie musimy sygnalizować światu zewnętrznemu który algorytm stosujemy.
Ponieważ algorytm podstawowy jest z definicji algorytmem domyślnym, możemy pominąć słówko „podstawowy” w „algorytmie podstawowym”.

4.10.2 Operator implikacji prostej p||=>q

W algebrze Kubusia w zbiorach zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

IP.
Definicja podstawowa implikacji prostej p|=>q:

Implikacja prosta p|=>q to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku.
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
stąd:
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) =1*~(0) = 1*1 =1
Kod:

IP:
Tabela prawdy implikacji prostej p|=>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q =1 - p jest (=1) wystarczające => dla q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla q
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
       A1B1:         A2B2:        |     A3B3:         A4B4:
A:  1: p=>q  =1 = 2:~p~>~q=1     [=] 3: q~>p  =1 = 4:~q=>~p =1
A’: 1: p~~>~q=0 =                [=]             = 4:~q~~>p =0
       ##            ##           |     ##            ##
B:  1: p~>q  =0 = 2:~p=>~q=0     [=] 3: q=>p  =0 = 4:~q~>~p =0
B’:             = 2:~p~~>q=1     [=] 3: q~~>~p=1

Równanie operatora implikacji prostej p||=>q:
A1B1:                                                        A2B2:
p|=>q = (A1: p=>q)*~(B1: p~>q) = (A2:~p~>~q)*~(B2:~p=>~q) = ~p|~>~q

Operator implikacji prostej p||=>q to układ równań logicznych:
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p
A2B2:~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p

Układ równań logicznych jest przemienny, stąd mamy:
Operator implikacji odwrotnej ~p||~>~q to układ równań logicznych:
A2B2:~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


Definicja symboliczna operatora implikacji prostej p||=>q to układ równań A1B1 i A2B2 dający odpowiedź na pytania o p i ~p:
Kod:

Kolumna A1B1:
Co może się wydarzyć jeśli zajdzie p?
A1:  p=> q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1:  p~> q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
p|=>q =(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
Stąd:
A1:  p=> q =1 - zajście p jest wystarczające => dla zajścia q
A1’: p~~>~q=0 - prawdziwy A1 wymusza fałszywy kontrprzykład A1’

Kolumna A2B2:
Co może się zdarzyć jeśli zajdzie ~p?
A2: ~p~>~q =1 - zajście ~p jest (=1) konieczne ~> dla zajścia ~q
B2: ~p=>~q =0 - zajście ~p nie jest (=0) wystarczające => dla zajścia ~q
~p|~>~q =(A2:~p~>~q)*~(B2:~p=>~q)=1*~(0)=1*1=1
Stąd:
A2: ~p~>~q =1 - zajście ~p jest konieczne ~> dla zajścia ~q
B2’:~p~~>q =1 - fałszywy B2 wymusza prawdziwy kontrprzykład B2’


Prawo Kobry dla zbiorów:
Warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q” jest jego prawdziwość przy kodowaniu elementem wspólnym zbiorów ~~>.
Innymi słowy:
Jeśli prawdziwe jest zdanie kodowane warunkiem wystarczającym => lub koniecznym ~> to na 100% prawdziwe jest to samo zdanie kodowane elementem wspólnym zbiorów ~~> (odwrotnie nie zachodzi)

Prawo Kobry dla zdarzeń:
Warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q” jest jego prawdziwość przy kodowaniu zdarzeniem możliwym ~~>.
Innymi słowy:
Jeśli prawdziwe jest zdanie kodowane warunkiem wystarczającym => lub koniecznym ~> to na 100% prawdziwe jest to samo zdanie kodowane zdarzeniem możliwym ~~> (odwrotnie nie zachodzi)

Na mocy prawa Kobry definicja implikacji prostej p||=>q wyrażona zdaniami bazowymi przyjmuje postać:
Definicja operatora implikacji prostej p||=>q w zdaniach bazowych:
Kod:

A1B1:
Co może się wydarzyć jeśli zajdzie p?
A1:  p~~>q =1 - możliwe jest (=1) jednoczesne zajście zdarzeń p i q
A1’: p~~>~q=0 - niemożliwe jest (=0) jednoczesna zajście zdarzeń p i ~q
A2B2:
Co może się zdarzyć jeśli zajdzie ~p?
A2: ~p~~>~q=1 - możliwe jest (=1) jednoczesne zajście zdarzeń ~p i ~q
B2’:~p~~>q =1 - możliwe jest (=1) jednoczesna zajście zdarzeń ~p i q


4.11 Zdania bazowe w operatorze implikacji prostej P8||=>P2 w zbiorach

W sprawdzaniu poprawności algorytmu analizy dowolnego zdania bazowego postępujemy identycznie jak w sprawdzaniu programu komputerowego. Na wejściu podajemy dane co do których jesteśmy pewni do jakiego operatora logicznego powinien nas algorytm zaprowadzić sprawdzając czy rzeczywiście tak się stanie.

Operator implikacji prostej P8||=>P2 omówiony został w punkcie 4.4.1
Sprawdzenia poprawności działania algorytmu analizy dowolnego zdania bazowego w operatorze implikacji prostej P8||=>P2 wykonamy na konkretnym przykładzie, by łatwiej było zrozumieć.
p = P8 = [8,16,24..] - zbiór liczb podzielnych przez 8
q = P2 = [2,4,6,8..] - zbiór liczb podzielnych przez 2

Definicja operatora implikacji prostej P8||=>P2 w zdaniach bazowych to odpowiedź na pytania o P8 i ~P8:
Kod:

A1B1:
Co może się wydarzyć jeśli liczba będzie podzielna przez 8 (P8=1)?
A1:  P8~~>P2 =1 - istnieje (=1) element wspólny zbiorów P8 i P2 np. 8
A1’: P8~~>~P2=0 - nie istnieje (=0) element wspólny zbiorów P8 i ~P2
A2B2:
Co może się zdarzyć jeśli liczba nie będzie podzielna przez 8 (~P8=1)?
A2: ~P8~~>~P2=1 - istnieje (=1) element wspólny zbiorów ~P8 i ~P2 np. 1
B2’:~P8~~>P2 =1 - istnieje (=1) element wspólny zbiorów ~P8 i P2 np. 2


4.11.1 Zdanie bazowe P8~~>P2

Zadanie 4.11.1
Dane jest zdanie bazowe:
W1.
Jeśli dowolna liczba jest podzielna przez 8 to może być podzielna przez 2
Polecenie:
Zbadaj w skład jakiego operatora logicznego wchodzi to zdanie.
Zapisz analizę matematyczną zlokalizowanego operatora

Rozwiązanie:
Na początek sprawdzamy czy zdanie W1 spełnia definicję zdania bazowego:
1.
Poprzednik p definiuje nam zbiór liczb podzielnych przez 8:
p =P8=[8,16,24..]
Następnik q definiuje zbiór liczb podzielnych przez 2:
q = P2=[2,4,6,8..]
Przyjmujemy wspólną dziedzinę minimalną:
LN=[1,2,3,4,5,6,7,8,9..] - zbiór liczb naturalnych
Obliczamy przeczenia zbiorów rozumiane jak ich uzupełnienia do dziedziny:
~p = ~P8=[LN-P8]=[1,2,3,4,5,6,7..9..]
~q = ~P2=[LN-P2]=[1,3,5,7,9..]
2.
Matematycznie zachodzi definicja wspólnej dziedziny LN zarówno dla P8 jak i dla P2.
Definicja dziedziny dla P8:
P8+~P8 = LN =1 - zbiór ~P8 jest uzupełnieniem do dziedziny LN dla zbioru P8
P8*~P8 =[] =0 - zbiory P8 i ~P8 są rozłączne
Definicja dziedziny dla P2:
P2+~P2 = LN =1 - zbiór ~P2 jest uzupełnieniem do dziedziny LN dla zbioru P2
P2*~P2 =[] =0 - zbiory P2 i ~P2 są rozłączne

Definicja zdania bazowego:
Zdanie bazowe to zdanie warunkowe „Jeśli p to q” kodowane elementem wspólnym zbiorów ~~> (zbiory) albo zdarzeniem możliwym ~~> (zdarzenia) spełniające poniższe warunki:
1.
W zdaniu warunkowym „Jeśli p to q” żadne z pojęć p, q, ~p i ~q nie może być zbiorem pustym (zdarzeniem niemożliwym), co gwarantuje rozpoznawalność tych pojęć.
2.
Poprzednik p i następnik q muszą należeć do wspólnej dziedziny.

Doskonale widać, że zdanie W1: P8~~>P2 spełnia definicję zdania bazowego bowiem zbiory P8, P2, ~P2 i ~P8 nie są puste oraz spełniona jest definicja wspólnej dziedziny dla P8 i P2.

Sprawdzenie algorytmu analizy zdań warunkowych „Jeśli p to q” w zbiorach:

START

Punkt 1

Prawo śfinii:
Dowolne zdanie warunkowe od którego zaczynamy analizę matematyczną jest domyślnym punktem odniesienia, gdzie po „Jeśli ..” zapisujemy p zaś po „to..” zapisujemy q z pominięciem przeczeń.
W1.
Jeśli dowolna liczba jest podzielna przez 8 (P8=1) to może być podzielna przez 2 (P2=1)
P8~~>P2 = P8*P2 =?
Na mocy prawa śfinii mamy punkt odniesienia:
p=P8=[8,16,24..] - zbiór liczb podzielnych przez 8
q=P2=[2,4,6,8..] - zbiór liczb podzielnych przez 2
Zapis zdania W1 w zapisie formalnym:
p~~>q = p*q =?

Poprzednik p mówi tu o zbiorze liczb podzielnych przez 8, natomiast następnik q o zbiorze liczb podzielnych przez 2.

Na potrzeb przyszłych analiz musimy obliczyć wszystkie możliwe przeczenia zbiorów P8 i P2.
W zdaniu A1 poprzednik p definiuje nam zbiór liczb podzielnych przez 8:
p = P8=[8,16,24..] - zbiór liczb podzielnych przez 8
Zaś następnik q definiuje nam zbiór licz podzielnych przez 2:
q = P2=[2,4,6,8..] - zbiór liczb podzielnych przez 2 (zbiór liczb parzystych)
Przyjmijmy dziedzinę minimalną:
LN=[1,2,3,4,5,6,7,8,9..] - zbiór liczb naturalnych
Obliczamy przeczenia zbiorów rozumiane jako ich uzupełnienia do dziedziny LN:
~P8=[LN-P8]=[1,2,3,4,5,6,7..9..] - zbiór liczb niepodzielnych przez 8
~P2=[LN-P2]=[1,3,5,7,9..] - zbiór liczb niepodzielnych przez 2 (zbiór liczb nieparzystych)

Punkt 2
Badamy elementem wspólnym zbiorów ~~> kolejne możliwe przeczenia poszukując zbioru pustego (=0)
1: P8~~>P2 =1 - bo istnieje (=1) wspólny element ~~> zbiorów P8=[8,16,24..] i P2=[2,4,6,8..24..] np.8
2: P8~~>~P2 =0 - bo zbiory P8=[8,16,24..] i ~P2=[1,3,5,7,9..] są rozłączne
RETURN

Niezbędny komentarz:
Fałszywość punktu 2 musimy udowodnić.
Najprostszy dowód to:
Dowolny zbiór liczb parzystych (tu P8) jest rozłączny z dowolnym zbiorem liczb nieparzystych (tu ~P2)
Nie zawsze w tak prosty sposób daje się udowodnić rozłączność zbiorów nieskończonych.
Co robić gdy nie jest tak prosto?
Prawami logiki matematycznej należy poszukać najprostszego warunku wystarczającego => bo taki warunek zawsze dowodzi się najprościej.
a)
Na początek zakładamy fałszywość kontrprzykładu 2:
2: P8~~>~P2 =0
z czego wynika prawdziwość warunku wystarczającego => którą musimy tu udowodnić:
2a: P8=>P2 =?
2a.
Jeśli dowolna liczba jest podzielna przez 8 (P8=1) to na 100% => jest podzielna przez 2 (P2=1)
P8=>P2 =1
Definicja warunku wystarczającego => jest spełniona wtedy i tylko wtedy gdy zbiór P8=[8,16,24..] jest podzbiorem => P2=[2,4,6,8..]
Definicja podzbioru P8=>P2 jest tu spełniona (=1), dlatego spełniona jest definicja warunku wystarczającego =>.
cnd
Twierdzenie matematyczne 2a każdy matematyk klasyczny bez problemu udowodni, ja nie muszę bo nie jestem matematykiem klasycznym.
Moja matematyka, algebra Kubusia, to fundamentalnie co innego niż matematyka klasyczna.
Dowód:
W algebrze Kubusia mamy spójniki logiczne z języka potocznego „i”(*) oraz „lub”(+).
Znaczki „*” i „+” są tu identyczne jak w matematyce klasycznej ale znaczą fundamentalnie co innego, o czym mam nadzieję, każdy matematyk wie.
Zauważmy przykładowo, że nie da się wykonać operacji mnożenia 2*3=6 znaczkiem „i”(*) z logiki matematycznej.
Ta sama operacja w znaczku „i”(*) będzie znaczyła zupełnie co innego:
[2]*[3] =[] =0 - bo zbiory jednoelementowe [2] i [3] są rozłączne.
cnd

Udowodniona prawdziwość warunku wystarczającego:
2a: P8=>P2 =1
wymusza fałszywość kontrprzykładu 2a’:
2a’: P8~~>~P2 = P8*~P2 =0
cnd

Punkt 3
Jeśli znaleziono zbiór pusty [] idź do puntu 5
Znaleziony zbiór pusty to:
3: P8~~>~P2 =[] =0

Punkt 5
Na mocy prawa kontrapozycji zapisujemy prawdziwy warunek wystarczający => między tymi samymi punktami i w tym samym kierunku
Fałszywość kontrprzykładu 3 wymusza prawdziwość warunku wystarczającego 5
5.
Jeśli dowolna liczba jest podzielna przez 8 to na 100% => jest podzielna przez 2
P8=>P2 =1
Definicja warunku wystarczającego => jest spełniona bo zbiór P8=[8,16,24..] jest podzbiorem => P2=[2,4,6,8..]
cnd

Punkt 6
Jeśli zdanie 5 jest w logice ujemnej (bo ~q) to prawem Kubusia sprowadzamy je do logiki dodatniej (bo q).
Prawo Kubusia:
~p=>~q = p~>q
Zdanie 5 zapisane jest w logice dodatniej (bo P2) zatem je tylko przepisujemy:
6.
Jeśli dowolna liczba jest podzielna przez 8 to na 100% => jest podzielna przez 2
P8=>P2 =1
Definicja warunku wystarczającego => jest spełniona bo zbiór P8=[8,16,24..] jest podzbiorem => P2=[2,4,6,8..]

Punkt 7
Badamy prawdziwość/fałszywość zdania 6 kodowanego spójnikiem przeciwnym do występującego w tym zdaniu (~> albo =>) między tymi samymi punktami i w tym samym kierunku
7.
Jeśli dowolna liczba jest podzielna przez 8 to na 100% ~> jest podzielna przez 2
P8~>P2 =0
Definicja warunku koniecznego ~> nie jest spełniona bo zbiór P8=[8,6,24..] nie jest nadzbiorem ~> zbioru P2=[2,4,6,8..]
Dowód tożsamy:
Podzielność dowolnej liczby przez 8 nie jest (=0) warunkiem koniecznym ~> dla jej podzielności przez 2, bo liczba może nie być podzielna przez 8 (np. 2) a mimo to być podzielna przez 2.

Matematycznie warunek wystarczający => dowodzi się prościej, dlatego prawami logiki matematycznej można przejść do najprostszego warunku wystarczającego
7: p~>q = 7a: q=>p - prawo Tygryska w zapisie formalnym {p,q}
7: P8~>P2 = 7a: P2=>P8 - prawo Tygryska w zapisie aktualnym {P8,P2}
Zauważmy, że fałszywość zdania 7a dowodzi się prościej:
7a.
Jeśli dowolna liczba jest podzielna przez 2 to na 100% => jest podzielna przez 8
P2=>P8 =0 - bo kontrprzykład: 2
Ten dowód znany jest ziemskim matematykom, mimo że nie znają poprawnej, matematycznej definicji kontrprzykładu.

Dowód:
[link widoczny dla zalogowanych]
Wikipedia napisał:

Kontrprzykład to zdanie falsyfikujące, z którego wynika negacja pewnego zdania ogólnego. Kontrprzykład jest koniunkcją dwóch zdań elementarnych (tzn. takich, że jest to zdanie atomowe lub negacja zdania atomowego).
Jeżeli uda nam się znaleźć kontrprzykład to wyrażenie nie jest tautologią, ponieważ istnieje takie podstawienie wartości logicznych za konkretne zmienne w wyrażeniu, dla którego schemat jest fałszywy.
Kontrprzykładu używa się najczęściej do obalania fałszywych twierdzeń zawierających kwantyfikator ogólny ("dla każdego").


Definicja kontrprzykładu w logice „matematycznej” ziemskich matematyków to twardy dowód jak potwornie można spieprzyć matematykę!
Zauważmy, że definicja kontrprzykładu w algebrze Kubusia jest zrozumiała dla każdego 5-cio latka, oczywiście na przykładach stosownych do jego wieku … a który uczeń I klasy LO, czy nawet inżynier zrozumie jakieś brednie o zdaniu atomowym czy też o negacji zdania atomowego etc.

Kolejna tragedia ziemskiej logiki „matematycznej”:
Definicja kwantyfikatora dużego /\ ziemskich matematyków to potworny błąd czysto matematyczny!
Dowód:
W algebrze Kubusia mamy tak:
A1.
Jeśli dowolna liczba naturalna jest podzielna przez 8 to na 100% => jest podzielna przez 2
P8=>P2 =1
Definicja warunku wystarczającego => jest spełniona wtedy i tylko wtedy gdy zbiór P8=[8,16,24..] jest podzbiorem => zbioru P2=[2,4,6,8..]
Matematycznie byłoby wszystko w porządku, gdyby matematycy kwantyfikator duży rozumieli identycznie jak w algebrze Kubusia:
Dla każdego x, jeśli liczba x należy do zbioru P8(x) to na 100% => należy do zbioru P2(x)
/\x P8(x) => P2(x)
Przy takim rozumieniu kwantyfikatora dużego mamy tu gwarancję matematyczną => iż jeśli dowolna liczba należy do zbioru P8=[8,16,24..] to na 100% => należy do zbioru P2=[2,4,6,8…]
Sęk w tym, że poprawne rozumienie kwantyfikatora dużego jak w algebrze Kubusia wymusza relację podzbioru => w zdaniu warunkowym A1 co jest Armagedonem zarówno dla ziemskiego gówna zwanego „implikacją materialną” jak i absolutnie wszystkich ziemskich logik formalnych, gdzie w zdaniu warunkowych „Jeśli p to q” o żadnej relacji w zbiorach między p i q z definicji mowy być nie może.

Zauważmy na koniec iż zdania 6 i 7 brzmią identycznie z dokładnością do każdej literki i każdego przecinka a mimo to są to zdania różna na mocy definicji ##.
Porównajmy:
6.
Jeśli dowolna liczba jest podzielna przez 8 to na 100% => jest podzielna przez 2
P8=>P2 =1
Definicja warunku wystarczającego => jest spełniona bo zbiór P8=[8,16,24..] jest podzbiorem => P2=[2,4,6,8..]
##
7.
Jeśli dowolna liczba jest podzielna przez 8 to na 100% ~> jest podzielna przez 2
P8~>P2 =0
Definicja warunku koniecznego ~> nie jest spełniona bo zbiór P8=[8,6,24..] nie jest nadzbiorem ~> zbioru P2=[2,4,6,8..]
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>:

Definicja warunku wystarczającego => w spójnikach „i”(*) i „lub”(+):
p=>q = ~p+q
Definicja warunku koniecznego ~> w spójnikach „i”(*) i „lub”(+):
p=>q = ~p+q
Stąd mamy tabelę T1.
Kod:

T1
 Y= (p=>q)=~p+q  ##  Y= (p~>q)= p+~q
 #                   #
~Y=~(p=>q)= p*~q ## ~Y=~(p~>q)=~p*q
Gdzie:
# - różne w znaczeniu iż dowolna strona # jest negacją drugiej strony
## - różne na mocy definicji funkcji logicznych

Definicja znaczka różne na mocy definicji funkcji logicznych ##:
Dwie funkcje logiczne są różne na mocy definicji ## gdy nie są tożsame i żadna z nich nie jest zaprzeczeniem drugiej
Doskonale widać, że w tabeli T1 obie definicje znaczków # i ## są perfekcyjnie spełnione.

Stąd mamy:
Prawo Kameleona:
Dwa zdania brzmiące identycznie z dokładnością do każdej literki i każdego przecinka nie muszą być matematycznie tożsame.

Dowodem są tu nasze zdania 6 i 7 które rozróżniamy wyłącznie po znaczkach warunku wystarczającego => i koniecznego ~> wbudowanych w treść zdań.

Punkt 8
Zdania 6 i 7 lokalizują nam definicję implikacji prostej P8|=>P2:
Implikacja prosta P8|=>P2 to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku.
A1: P8=>P2 =1 - bo zbiór P8=[8,16,24..] jest (=1) podzbiorem => zbioru P2=[2,4,6,8..]
B1: P8~>P2 =0 - bo zbiór P8=[8,16,24..] nie jest (=0) nadzbiorem ~> zbioru P2=[2,4,6,8..]
Stąd:
P8|=>P2 = (A1: P8=>P2)*~(B1: P8~>P2) =1*~(0) =1*1 =1

Wniosek:
Idź do tabeli prawdy implikacji prostej P8|=>P2 zapisanej w punkcie 4.12

Komentarz:
Zdanie wejściowe to:
W1.
Jeśli dowolna liczba jest podzielna przez 8 (P8=1) to może ~~> być podzielna przez 2 (P2=1)
P8~~>P2 = P8*P2 =1 - bo zbiór P8=[8,16,24..] ma element wspólny ~~> ze zbiorem P2=[2,4,6,8..]

W punkcie 4.12.1 zlokalizowane zdanie W1 jako zdanie A1 będące częścią operatora implikacji prostej P8||=>P2
A1.
Jeśli dowolna liczba jest podzielna przez 8 to na 100% => jest podzielna przez 2
P8=>P2 =1
Definicja warunku wystarczającego => jest spełniona bo zbiór P8=[8,16,24..] jest podzbiorem => P2=[2,4,6,8..]

Prawo Kobry dla zbiorów:
Warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q” jest jego prawdziwość przy kodowaniu elementem wspólnym zbiorów ~~>.
Innymi słowy:
Jeśli prawdziwe jest zdanie kodowane warunkiem wystarczającym => lub koniecznym ~> to na 100% prawdziwe jest to samo zdanie kodowane elementem wspólnym zbiorów ~~> (odwrotnie nie zachodzi)

Z prawa Kobry wynika, że zdanie wejściowe W1 które analizowaliśmy wchodzi w skład warunku wystarczającego A1: P8=>P2 będącego częścią operatora implikacji prostej P8||=>P2
cnd

4.11.2 Zdanie bazowe P8~~>~P2

Zadanie 4.11.2
Dane jest zdanie bazowe:
W2.
Jeśli dowolna liczba jest podzielna przez 8 to może nie być podzielna przez 2
Polecenie:
Zbadaj w skład jakiego operatora logicznego wchodzi to zdanie.
Zapisz analizę matematyczną zlokalizowanego operatora

Rozwiązanie:
Sprawdzenie definicji zdania bazowego jak w punkcie 4.11.1

Sprawdzenie algorytmu analizy zdań warunkowych „Jeśli p to q” w zbiorach:

START

Punkt 1

Prawo śfinii:
Dowolne zdanie warunkowe od którego zaczynamy analizę matematyczną jest domyślnym punktem odniesienia, gdzie po „Jeśli ..” zapisujemy p zaś po „to..” zapisujemy q z pominięciem przeczeń.
W2.
Jeśli dowolna liczba jest podzielna przez 8 (P8=1) to może nie być podzielna przez 2 (~P2=1)
P8~~>~P2 = P8*~P2 =?
Na mocy prawa śfinii mamy punkt odniesienia:
p=P8=[8,16,24..] - zbiór liczb podzielnych przez 8
q=P2=[2,4,6,8..] - zbiór liczb podzielnych przez 2
Zapis zdania W2 w zapisie formalnym:
p~~>~q = p*~q =?

Punkt 2
Badamy elementem wspólnym zbiorów ~~> kolejne możliwe przeczenia poszukując zbioru pustego (=0)
1: P8~~>~P2 =0 - bo zbiory P8=[8,16,24..] i ~P2=[1,3,5,7,9..] są rozłączne
RETURN

Punkt 3
Jeśli znaleziono zbiór pusty [] idź do puntu 5
Znaleziony zbiór pusty to:
3: P8~~>~P2 =[] =0

Punkt 5
Na mocy prawa kontrapozycji zapisujemy prawdziwy warunek wystarczający => między tymi samymi punktami i w tym samym kierunku
Fałszywość kontrprzykładu 3 wymusza prawdziwość warunku wystarczającego 5
5.
Jeśli dowolna liczba jest podzielna przez 8 to na 100% => jest podzielna przez 2
P8=>P2 =1
Definicja warunku wystarczającego => jest spełniona bo zbiór P8=[8,16,24..] jest podzbiorem => P2=[2,4,6,8..]
cnd

Punkt 6
Jeśli zdanie 5 jest w logice ujemnej (bo ~q) to prawem Kubusia sprowadzamy je do logiki dodatniej (bo q).
Prawo Kubusia:
~p=>~q = p~>q
Zdanie 5 zapisane jest w logice dodatniej (bo P2) zatem je tylko przepisujemy:
6.
Jeśli dowolna liczba jest podzielna przez 8 to na 100% => jest podzielna przez 2
P8=>P2 =1
Definicja warunku wystarczającego => jest spełniona bo zbiór P8=[8,16,24..] jest podzbiorem => P2=[2,4,6,8..]

Punkt 7
Badamy prawdziwość/fałszywość zdania 6 kodowanego spójnikiem przeciwnym do występującego w tym zdaniu (~> albo =>) między tymi samymi punktami i w tym samym kierunku
7.
Jeśli dowolna liczba jest podzielna przez 8 (P8=1) to na 100% ~> jest podzielna przez 2 (P8=1)
P8~>P2 =0
Definicja warunku koniecznego ~> nie jest spełniona bo zbiór P8=[8,6,24..] nie jest nadzbiorem ~> zbioru P2=[2,4,6,8..]

Punkt 8
Zdania 6 i 7 lokalizują nam definicję implikacji prostej P8|=>P2:
Implikacja prosta P8|=>P2 to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku.
A1: P8=>P2 =1 - bo zbiór P8=[8,16,24..] jest (=1) podzbiorem => zbioru P2=[2,4,6,8..]
B1: P8~>P2 =0 - bo zbiór P8=[8,16,24..] nie jest (=0) nadzbiorem ~> zbioru P2=[2,4,6,8..]
Stąd:
P8|=>P1 = (A1: P8=>P2)*~(B1: P8~>P2) =1*~(0) =1*1 =1

Wniosek:
Idź do tabeli prawdy implikacji prostej P8|=>P2 zapisanej w punkcie 4.12

Komentarz:
Zdanie wejściowe to:
W2.
Jeśli dowolna liczba jest podzielna przez 8 (P8=1) to może ~~> nie być podzielna przez 2 (~P2=1)
P8~~>~P2 = P8*~P2 =0 - bo zbiory P8=[8,16,24..] i ~P2=[1,3,5,7,9..] są rozłączne.

W punkcie 4.12.1 zlokalizowane zdanie W1 jako zdanie A1’ będące częścią operatora implikacji prostej P8||=>P2
A1’.
Jeśli dowolna liczba jest podzielna przez 8 (P8=1) to może ~~> nie być podzielna przez 2 (~P2=1)
P8~~>~P2=P8*~P2 =[] =0
Definicja elementu wspólnego zbiorów ~~> nie jest (=0) spełniona bo zbiory P8=[8,16,24..] i ~P2=[1,3,5,7,9..] są rozłączne.
cnd

4.11.3 Zdanie bazowe ~P8~~>~P2

Zadanie 4.11.3
Dane jest zdanie bazowe:
W3.
Jeśli dowolna liczba nie jest podzielna przez 8 to może nie być podzielna przez 2
Polecenie:
Zbadaj w skład jakiego operatora logicznego wchodzi to zdanie.
Zapisz analizę matematyczną zlokalizowanego operatora

Rozwiązanie:
Sprawdzenie definicji zdania bazowego jak w punkcie 4.11.1

Sprawdzenie algorytmu analizy zdań warunkowych „Jeśli p to q” w zbiorach:

START

Punkt 1

Prawo śfinii:
Dowolne zdanie warunkowe od którego zaczynamy analizę matematyczną jest domyślnym punktem odniesienia, gdzie po „Jeśli ..” zapisujemy p zaś po „to..” zapisujemy q z pominięciem przeczeń.
W3.
Jeśli dowolna liczba nie jest podzielna przez 8 (~P8=1) to może nie być podzielna przez 2 (~P2=1)
~P8~~>~P2 = ~P8*~P2 =?
Na mocy prawa śfinii mamy punkt odniesienia:
p=P8=[8,16,24..] - zbiór liczb podzielnych przez 8
q=P2=[2,4,6,8..] - zbiór liczb podzielnych przez 2
Zapis zdania W3 w zapisie formalnym:
p~~>~q = p*~q =?

Punkt 2
Badamy elementem wspólnym zbiorów ~~> kolejne możliwe przeczenia poszukując zbioru pustego (=0)
1: ~P8~~>~P2 =1 - bo zbiory ~P8=[1,2,3,4,5,6,7..9..] i ~P2=[1,3,5,7,9..] mają element wspólny np. 1
2: ~P8~~>P2 =1 - bo zbiory ~P8=[1,2,3,4,5,6,7..9..] i P2=[2,4,6,8..] mają element wspólny np. 2
3: P8~~>P2 =1 - bo zbiory P8=[8,16,24 ..] i P2=[2,4,6,8..24..] mają element wspólny np. 24
4: P8~~>~P2 =0 - bo zbiory P8=[8,16,24..] i ~P2=[1,3,5,7,9..] są rozłączne
RETURN

Punkt 3
Jeśli znaleziono zbiór pusty [] idź do puntu 5
Znaleziony zbiór pusty to:
3: P8~~>~P2 =[] =0

Punkt 5
Na mocy prawa kontrapozycji zapisujemy prawdziwy warunek wystarczający => między tymi samymi punktami i w tym samym kierunku
Fałszywość kontrprzykładu 3 wymusza prawdziwość warunku wystarczającego 5
5.
Jeśli dowolna liczba jest podzielna przez 8 to na 100% => jest podzielna przez 2
P8=>P2 =1
Definicja warunku wystarczającego => jest spełniona bo zbiór P8=[8,16,24..] jest podzbiorem => P2=[2,4,6,8..]
cnd

Punkt 6
Jeśli zdanie 5 jest w logice ujemnej (bo ~q) to prawem Kubusia sprowadzamy je do logiki dodatniej (bo q).
Prawo Kubusia:
~p=>~q = p~>q
Zdanie 5 zapisane jest w logice dodatniej (bo P2) zatem je tylko przepisujemy:
6.
Jeśli dowolna liczba jest podzielna przez 8 to na 100% => jest podzielna przez 2
P8=>P2 =1
Definicja warunku wystarczającego => jest spełniona bo zbiór P8=[8,16,24..] jest podzbiorem => P2=[2,4,6,8..]

Punkt 7
Badamy prawdziwość/fałszywość zdania 6 kodowanego spójnikiem przeciwnym do występującego w tym zdaniu (~> albo =>) między tymi samymi punktami i w tym samym kierunku
7.
Jeśli dowolna liczba jest podzielna przez 8 (P8=1) to na 100% ~> jest podzielna przez 2 (P8=1)
P8~>P2 =0
Definicja warunku koniecznego ~> nie jest spełniona bo zbiór P8=[8,6,24..] nie jest nadzbiorem ~> zbioru P2=[2,4,6,8..]

Punkt 8
Zdania 6 i 7 lokalizują nam definicję implikacji prostej P8|=>P2:
Implikacja prosta P8|=>P2 to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku.
A1: P8=>P2 =1 - bo zbiór P8=[8,16,24..] jest (=1) podzbiorem => zbioru P2=[2,4,6,8..]
B1: P8~>P2 =0 - bo zbiór P8=[8,16,24..] nie jest (=0) nadzbiorem ~> zbioru P2=[2,4,6,8..]
Stąd:
P8|=>P1 = (A1: P8=>P2)*~(B1: P8~>P2) =1*~(0) =1*1 =1

Wniosek:
Idź do tabeli prawdy implikacji prostej P8|=>P2 zapisanej w punkcie 4.12

Komentarz:
Zdanie wejściowe to:
W3.
Jeśli dowolna liczba nie jest podzielna przez 8 (~P8=1) to może nie być podzielna przez 2 (~P2=1)
~P8~~>~P2 = ~P8*~P2 =1 - bo zbiory ~P8=[1,2,3,4,5,6,7..9..] i ~P2=[1,3,5,7,9..] mają element wspólny

W punkcie 4.12.1 zlokalizowane zdanie W1 jako A2 będące częścią operatora implikacji prostej P8||=>P2
A2.
Jeśli dowolna liczba nie jest podzielna przez 8 (~P8=1) to może ~> nie być podzielna przez 2 (~P2=1)
~P8~>~P2=1
Definicja warunku koniecznego ~> jest tu spełniona bo zbiór ~P8=[1,2,3,4,5,6,7..9..] jest nadzbiorem ~> zbioru ~P2=[1,3,5,7,9..]
cnd

Prawo Kobry dla zbiorów:
Warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q” jest jego prawdziwość przy kodowaniu elementem wspólnym zbiorów ~~>.
Innymi słowy:
Jeśli prawdziwe jest zdanie kodowane warunkiem wystarczającym => lub koniecznym ~> to na 100% prawdziwe jest to samo zdanie kodowane elementem wspólnym zbiorów ~~> (odwrotnie nie zachodzi)

Z prawa Kobry wynika, że zdanie wejściowe W3 które analizowaliśmy wchodzi w skład warunku koniecznego A2: ~P8~>~P2 będącego częścią operatora implikacji prostej P8||=>P2
cnd

4.11.4 Zdanie bazowe ~P8~~>P2

Zadanie 4.11.4
Dane jest zdanie bazowe:
W4.
Jeśli dowolna liczba nie jest podzielna przez 8 to może być podzielna przez 2
Polecenie:
Zbadaj w skład jakiego operatora logicznego wchodzi to zdanie.
Zapisz analizę matematyczną zlokalizowanego operatora

Rozwiązanie:
Sprawdzenie definicji zdania bazowego jak w punkcie 4.11.1

Sprawdzenie algorytmu analizy zdań bazowych „Jeśli p to q” w zbiorach:

START

Punkt 1

Prawo śfinii:
Dowolne zdanie warunkowe od którego zaczynamy analizę matematyczną jest domyślnym punktem odniesienia, gdzie po „Jeśli ..” zapisujemy p zaś po „to..” zapisujemy q z pominięciem przeczeń.
W4.
Jeśli dowolna liczba nie jest podzielna przez 8 (~P8=1) to może być podzielna przez 2 (P2=1)
~P8~~>P2 = ~P8*P2 =?
Na mocy prawa śfinii mamy punkt odniesienia:
p=P8=[8,16,24..] - zbiór liczb podzielnych przez 8
q=P2=[2,4,6,8..] - zbiór liczb podzielnych przez 2
Zapis zdania W4 w zapisie formalnym:
~p~~>q = ~p*q =?

Punkt 2
Badamy elementem wspólnym zbiorów ~~> kolejne możliwe przeczenia poszukując zbioru pustego (=0)
1: ~P8~~>P2 =1 - bo zbiory ~P8=[1,2,3,4,5,6,7..9..] i P2=[2,4,6,8..] mają element wspólny np. 2
2: P8~~>P2 =1 - bo zbiory P8=[8,16,24 ..] i P2=[2,4,6,8..24..] mają element wspólny np. 8
3: P8~~>~P2 =0 - bo zbiory P8=[8,16,24..] i ~P2=[1,3,5,7,9..] są rozłączne
RETURN

Punkt 3
Jeśli znaleziono zbiór pusty [] idź do puntu 5
Znaleziony zbiór pusty to:
3: P8~~>~P2 =[] =0

Punkt 5
Na mocy prawa kontrapozycji zapisujemy prawdziwy warunek wystarczający => między tymi samymi punktami i w tym samym kierunku
Fałszywość kontrprzykładu 3 wymusza prawdziwość warunku wystarczającego 5
5.
Jeśli dowolna liczba jest podzielna przez 8 to na 100% => jest podzielna przez 2
P8=>P2 =1
Definicja warunku wystarczającego => jest spełniona bo zbiór P8=[8,16,24..] jest podzbiorem => P2=[2,4,6,8..]
cnd

Punkt 6
Jeśli zdanie 5 jest w logice ujemnej (bo ~q) to prawem Kubusia sprowadzamy je do logiki dodatniej (bo q).
Prawo Kubusia:
~p=>~q = p~>q
Zdanie 5 zapisane jest w logice dodatniej (bo P2) zatem je tylko przepisujemy:
6.
Jeśli dowolna liczba jest podzielna przez 8 to na 100% => jest podzielna przez 2
P8=>P2 =1
Definicja warunku wystarczającego => jest spełniona bo zbiór P8=[8,16,24..] jest podzbiorem => P2=[2,4,6,8..]

Punkt 7
Badamy prawdziwość/fałszywość zdania 6 kodowanego spójnikiem przeciwnym do występującego w tym zdaniu (~> albo =>) między tymi samymi punktami i w tym samym kierunku
7.
Jeśli dowolna liczba jest podzielna przez 8 (P8=1) to na 100% ~> jest podzielna przez 2 (P8=1)
P8~>P2 =0
Definicja warunku koniecznego ~> nie jest spełniona bo zbiór P8=[8,6,24..] nie jest nadzbiorem ~> zbioru P2=[2,4,6,8..]

Punkt 8
Zdania 6 i 7 lokalizują nam definicję implikacji prostej P8|=>P2:
Implikacja prosta P8|=>P2 to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku.
A1: P8=>P2 =1 - bo zbiór P8=[8,16,24..] jest (=1) podzbiorem => zbioru P2=[2,4,6,8..]
B1: P8~>P2 =0 - bo zbiór P8=[8,16,24..] nie jest (=0) nadzbiorem ~> zbioru P2=[2,4,6,8..]
Stąd:
P8|=>P1 = (A1: P8=>P2)*~(B1: P8~>P2) =1*~(0) =1*1 =1

Wniosek:
Idź do tabeli prawdy implikacji prostej P8|=>P2 zapisanej w punkcie 4.12

Komentarz:
Zdanie wejściowe to:
W4.
Jeśli dowolna liczba nie jest podzielna przez 8 (~P8=1) to może być podzielna przez 2 (P2=1)
~P8~~>P2 =1 - bo zbiory ~P8=[1,2,3,4,5,6,7..9..] i P2=[2,4,6,8..] mają element wspólny np. 2

W punkcie 4.12.1 zlokalizowane zdanie W4 jako zdanie B2’ będące częścią operatora implikacji prostej P8||=>P2
B2’.
Jeśli dowolna liczba nie jest podzielna przez 8 (~P8=1) to może ~~> być podzielna przez 2 (P2=1)
~P8~~>P2 = ~P8*P2 =1
Definicja elementu wspólnego ~~> zbiorów ~P8=[1,2,3,4,5,6,7..9..] i P2=[2,4,6,8..] jest spełniona bo np. 2
cnd

4.12 Tabela prawdy implikacji prostej P8|=>P2

IP.
Definicja podstawowa implikacji prostej p|=>q:

Implikacja prosta p|=>q to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku.
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
A1B1:
p|=>q = (A1: p=>q)*~(B1: p~>q) =1*~(0) = 1*1 =1

Nasz przykład:
Definicja implikacji prostej P8|=>P2:
Implikacja prosta P8|=>P2 to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
A1: P8=>P2 =1 - bo zbiór P8=[8,16,24..] jest (=1) podzbiorem => P2=[2,4,6,8..]
B1: P8~>P2 =0 - bo zbiór P8=[8,16,24..] nie jest (=0) nadzbiorem ~> P2=[2,4,6,8..]
Stąd mamy:
A1B1:
P8|=>P2 = (A1: P8=>P2)*~(B1: P8~>P2) = 1*~(0)=1*1 =1

Nanieśmy zdania A1 i B1 do tabeli prawdy implikacji prostej p|=>q:
Kod:

IP:
Tabela prawdy implikacji prostej p|=>q w zapisie formalnym {p,q}.
Kolumna A1B1 to punkt odniesienia:
A1: p=>q =1 - p jest (=1) wystarczające => dla q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla q
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
Punkt odniesienia na mocy prawa śfinii to:
p=P8 - zbiór liczb podzielnych przez 8
q=P2 - zbiór liczb podzielnych przez 2
Tabela prawdy implikacji prostej P8|=>P2 w zapisie aktualnym {P8,P2}
Kolumna A1B1 to punkt odniesienia
A1: P8=>P2 =1 - bo zbiór P8 jest (=1) podzbiorem => P2
B1: P8~>P2 =0 - bo zbiór P8 nie jest (=0) nadzbiorem ~> P2
A1B1: P8|=>P2 = (A1: P8=>P2)*~(B1: P8~>P2) = 1*~(0)=1*1 =1

       A1B1:           A2B2:      |      A3B3:          A4B4:
A:  1: p=>q    =1 = 2:~p~>~q  =1 [=] 3: q~>p    =1 = 4:~q=>~p   =1
A:  1: P8=>P2  =1 = 2:~P8~>~P2=1 [=] 3: P2~>P8  =1 = 4:~P2=>~P8 =1
A’: 1: p~~>~q  =0 =              [=]               = 4:~q~~>p   =0                   
A’: 1: P8~~>~P2=0 =              [=]               = 4:~P2~~>P8 =0                   
       ##             ##          |     ##            ##
B:  1: p~>q    =0 = 2:~p=>~q  =0 [=] 3: q=>p    =0 = 4:~q~>~p   =0
B:  1: P8~>P2  =0 = 2:~P8=>~P2=0 [=] 3: P2=>P8  =0 = 4:~P2~>~P8 =0
B’:               = 2:~p~~>q  =1 [=] 3: q~~>~p  =1
B’:               = 2:~P8~~>P2=1 [=] 3: P2~~>~P8=1
Równanie operatora implikacji prostej p||=>q:
A1B1:                                                        A2B2:
p|=>q = (A1: p=>q)*~(B1: p~>q) = (A2:~p~>~q)*~(B2:~p=>~q) = ~p|~>~q

Operator implikacji prostej p||=>q to układ równań logicznych:
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p
A2B2:~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p

Układ równań logicznych jest przemienny, stąd mamy:
Operator implikacji odwrotnej ~p||~>~q to układ równań logicznych:
A2B2:~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla poprawienia czytelności tabeli zapisy aktualne (z konkretnego przykładu) podstawiono w nagłówku tabeli oraz w części głównej decydującej o treści zdań warunkowych „Jeśli p to q”.

Operator implikacji prostej p||=>q w logice dodatniej (bo q) to układ równań logicznych A1B1 i A2B2 dający odpowiedź na pytanie o p i ~p:
A1B1: p|=>q =(A1: p=>q)* ~(B1: p~>q) - co się stanie jeśli zajdzie p?
A2B2: ~p|~>~q =(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p?

Okład równań logicznych jest przemienny, stąd:
Operator implikacji odwrotnej ~p||~>~q w logice ujemnej (bo ~q) to układ równań logicznych A2B2 i A1B1 dający odpowiedź na pytanie o ~p i p:
A2B2:~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p

4.12.1 Operator implikacji prostej P8||=>P2 w zbiorach

Operator implikacji prostej P8||=>P2 w logice dodatniej (bo q) to układ równań logicznych A1B1 i A2B2 dający odpowiedź na pytanie o P8 i ~P8:
A1B1: P8|=>P2 =(A1: P8=>P2)* ~(B1: P8~>P2) - jeśli wylosujemy liczbę podzielną przez 8 to ..
A2B2: ~P8|~>~P2 =(A2:~P8~>~P2)*~(B2:~P8=>~P2) - jeśli wylosujemy liczbę niepodzielną przez 8 to ..

A1B1:
Co może się wydarzyć, jeśli ze zbioru liczb naturalnych LN wylosujemy liczbę podzielną przez 8 (P8=1)?


Odpowiedź na to pytanie mamy w kolumnie A1B1:
A1: P8=>P2 =1 - bo zbiór P8=[8,16,24..] jest (=1) podzbiorem => P2=[2,4,6,8..]
B1: P8~>P2 =0 - bo zbiór P8=[8,16,24..] nie jest (=0) nadzbiorem ~> P2=[2,4,6,8..]
P8|=>P2 =(A1: P8=>P2)* ~(B1: P8~>P2) - zapis aktualny
Jeśli ze zbioru liczb naturalnych wylosujemy liczbą podzielną przez 8 to mamy gwarancję matematyczną => iż ta liczba będzie podzielna przez 2 - mówi o tym zdanie A1.

Kolumna A1B1 to odpowiedź w zdaniach warunkowych „Jeśli p to q”:
A1.
Jeśli dowolna liczba jest podzielna przez 8 (P8=1) to na 100% => jest podzielna przez 2 (P2=1)
P8=>P2 =1
Podzielność dowolnej liczby przez 8 jest warunkiem wystarczającym => dla jej podzielności przez 2 bo zbiór P8=[8,16,24..] jest podzbiorem => zbioru P2=[2,4,6,8..]

Prawdziwość warunku wystarczającego => A1 wymusza fałszywość kontrprzykładu A1’ (i odwrotnie).
A1’.
Jeśli dowolna liczba jest podzielna przez 8 (P8=1) to może ~~> nie być podzielna przez 2 (~P2=1)
P8~~>~P2=P8*~P2 =[] =0
Definicja elementu wspólnego zbiorów ~~> nie jest (=0) spełniona bo zbiory P8=[8,16,24..] i ~P2=[1,3,5,7,9..] są rozłączne.
Tego faktu nie musimy udowadniać, bo wymusza go prawdziwość warunku wystarczającego A1.

A2B2:
Co może się wydarzyć, jeśli ze zbioru liczb naturalnych LN wylosujemy liczbę niepodzielną przez 8 (~P8=1)?


Odpowiedź na to pytanie mamy w kolumnie A2B2:
A2: ~P8~>~P2 =1 - bo zbiór ~P8=[1,2,3,4,5,6,7..9..] jest (=1) nadzbiorem ~> ~P2=[1,3,5,7,9..]
B2: ~P8=>~P2 =0 - bo zbiór ~P8=[1,2,3,4,5,6,7..9..] nie jest (=0) podzbiorem => ~P2=[1,3,5,7,9..]
~P8|~>~P2 =(A2:~P8~>~P2)*~(B2:~P8=>~P2) - zapis aktualny
Jeśli ze zbioru liczb naturalnych wylosujemy liczbę niepodzielna przez 8 to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła”, o czym mówią zdania prawdziwe A2 i B2’

Kolumna A2B2 to odpowiedź w zdaniach warunkowych „Jeśli p to q”:
A2.
Jeśli dowolna liczba nie jest podzielna przez 8 (~P8=1) to może ~> nie być podzielna przez 2 (~P2=1)
~P8~>~P2=1
Definicja warunku koniecznego ~> jest tu spełniona bo zbiór ~P8=[1,2,3,4,5,6,7..9..] jest nadzbiorem ~> zbioru ~P2=[1,3,5,7,9..]
Tego faktu nie musimy udowadniać, gwarantuje nam to prawo Kubusia:
A2:~P8~>~P2 = A1: P8=>P2
Prawdziwość zdania A1 udowodniliśmy na samym początku.

LUB

Z fałszywości warunku wystarczającego B2 wynika prawdziwość kontrprzykładu B2’ i odwrotnie.
B2’.
Jeśli dowolna liczba nie jest podzielna przez 8 (~P8=1) to może ~~> być podzielna przez 2 (P2=1)
~P8~~>P2 = ~P8*P2 =1
Definicja elementu wspólnego ~~> zbiorów ~P8=[1,2,3,4,5,6,7..9..] i P2=[2,4,6,8..] jest spełniona bo np. 2

Podsumowanie:
Istotą operatora implikacji prostej P8||=>P2 jest gwarancja matematyczna => po stronie P8 (zdanie A1) i najzwyklejsze „rzucanie monetą” w rozumieniu „na dwoje babka wróżyła” po stronie ~P8 (zdania A2 i B2’)

Zauważmy że:
a)
Układ równań logicznych jest przemienny, stąd mamy:
Operator implikacji odwrotnej ~p||~>~q to układ równań logicznych:
A2B2:~p|~>~q=(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q) - co się stanie jeśli zajdzie p
Doskonale widać, że analiza matematyczna operatora implikacji odwrotnej ~p||~>~q w logice ujemnej (bo ~q) będzie identyczna jak operatora implikacji prostej p||=>q w logice dodatniej (bo q) z tym, że zaczynamy od kolumny A2B2 kończąc na kolumnie A1B1, co matematycznie jest bez znaczenia.
b)
Kolejność zdań tworzących operator implikacji prostej p||=>q również jest bez znaczenia, tak więc zdania A1, A1’, A2, B2’ możemy wypowiadać w dowolnej kolejności.
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 35331
Przeczytał: 23 tematy

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Nie 17:48, 13 Cze 2021    Temat postu:

Algebra Kubusia - ostatnie czytanie!
Część XI

Po raz ostatni przed premierą czytam od początku algebrę Kubusia likwidując literówki i udoskonalając przekaz.

http://www.sfinia.fora.pl/forum-kubusia,12/algebra-kubusia-w-przebudowie,18899.html#594309

Algebra Kubusia - wykład rozszerzony
5.0 Operatory implikacyjne - implikacja odwrotna p||~>q


Spis treści
5.0 Operatory implikacyjne - implikacja odwrotna p||~>q 1
5.1. Implikacja odwrotna p|~>q 1
5.1.1 Operator implikacji odwrotnej p||~>q 8
5.1.2 Zero-jedynkowa definicja warunku koniecznego ~> 11
5.1.3 Matematyczne związki implikacji prostej p|=>q i odwrotnej p|~>q 14
5.2 Diagram implikacji odwrotnej p|~>q w zbiorach 15
5.2.1 Odtworzenie definicji operatora implikacji odwrotnej p||~>q z definicji ~~> 19
5.2.2 Najmniejsza możliwa liczba elementów w operatorze p||~>q 23


Dlaczego to jest wykład rozszerzony?
Wiedza podstawowa w niniejszym rozdziale w temacie operatora implikacji odwrotnej p||~>q jest kopią rozdziału 3.2 który już przerobiliśmy. Jedyna różnica polega na wzbogaceniu znanego nam już operatora implikacji odwrotnej p||~>q o jego związki ze spójnikami „i”(*) i „lub”(+).


5.0 Operatory implikacyjne - implikacja odwrotna p||~>q

Definicja operatora implikacyjnego:
Operator implikacyjny, to operator definiowany zdaniami warunkowymi „Jeśli p to q”

W logice matematycznej rozróżniamy cztery podstawowe operatory implikacyjne:
p||=>q - operator implikacji prostej
p||~>q - operator implikacji odwrotnej
p|<=>q - operator równoważności
p||~~>q - operator chaosu
Dodatkowy piąty operator to mutacja operatora równoważności:
p|$q - operator „albo”($)

Wszystkie definicje operatorów implikacyjnych opisane są zdaniami warunkowymi „Jeśli p to q” ze spełnionymi lub nie spełnionymi warunkami wystarczającymi => i koniecznymi ~>

5.1. Implikacja odwrotna p|~>q

Definicja podzbioru => w algebrze Kubusia:
Zbiór p jest podzbiorem => zbioru q wtedy i tylko wtedy gdy wszystkie elementy zbioru p należą do zbioru q
p=>q =1 - gdy relacja podzbioru => jest (=1) spełniona
Inaczej:
p=>q =0 - relacja podzbioru => nie jest (=0) spełniona

Definicja nadzbioru ~> w algebrze Kubusia:
Zbiór p jest nadzbiorem ~> zbioru q wtedy i tylko wtedy gdy zawiera co najmniej wszystkie elementy zbioru q
p~>q =1 - gdy relacja nadzbioru ~> jest (=1) spełniona
Inaczej:
p~>q =0 - relacja nadzbioru ~> nie jest (=0) spełniona

W algebrze Kubusia w zbiorach zachodzi tożsamość pojęć:
Podzbiór => = relacja podzbioru =>
Nadzbiór => = relacja nadzbioru =>

W algebrze Kubusia w zbiorach zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

Przykład:
B1.
Jeśli dowolna liczba jest podzielna przez 2 to może ~> być podzielna przez 8
P2~>P8 =1
Zauważmy, że w zdaniu warunkowym B1: „Jeśli p to q” poprzednik p definiuje nam zbiór P2:
P2=[2,4,6,8..] - zbiór liczb podzielnych przez 2
zaś następnik q definiuje nam zbiór P8:
P8=[8,16,24..] - zbiór liczb podzielnych przez 8

Zdanie B1 jest prawdziwe bo:
Definicja warunku koniecznego ~> jest spełniona (=1) bo zbiór P2=[2,4,6,8..] jest nadzbiorem ~> zbioru P8=[8,16,24..]
Innymi słowy:
Definicja warunku koniecznego ~> jest spełniona (=1) wtedy i tylko wtedy gdy spełniona jest relacja nadzbioru ~>:
P2~>P8 =1 - zbiór P2=[2,4,6,8..] jest nadzbiorem ~> zbioru P8=[8,16,24..]
Powyższa relacja nadzbioru ~> jest spełniona (=1) co każdy ziemski matematyk łatwo udowodni korzystając z prawa Tygryska:
B1: P2~>P8 = B3: P8=>P2

Zauważmy, że nie wolno nam upraszczać powyższej relacji do samego zbioru P2 mówiąc:
„Zbiór P2=[2,4,6,8..] jest nadzbiorem”
jak to czynią ziemscy pseudo-matematycy, fanatycy gówna zwanego „implikacją materialną”, gdzie w dowolnym zdaniu warunkowym „Jeśli p to q” o żadnej relacji w zbiorach między p i q z definicji mowy być nie może.

To jest błąd czysto matematyczny bo nie wiadomo w stosunku do jakiego zbioru zbiór P2 jest nadzbiorem ~>.
Zauważmy że:
Zbiór P2=[2,4,6,8..] jest nadzbiorem ~> zbioru P8=[8,16,24..]
… ale równie dobrze:
Zbiór P2=[2,4,6,8..] jest nadzbiorem ~> zbioru P4=[4,8,12,16..]
etc
Oczywistym jest, że zbiór P8=[8,16,24..] jest różny na mocy definicji ## od zbioru P4=[4,8,12,16..]
cnd

W algebrze Kubusia mamy zaledwie trzy znaczki (=>, ~> i ~~>) na których zbudowana jest kompletna algebra Kubusia w obsłudze zdań warunkowych "Jeśli p to q".
1.
Warunek wystarczający =>:

p=>q =1 - gdy zajście p jest (=1) warunkiem wystarczającym => dla zajścia q
Inaczej:
p=>q =0
2.
Warunek konieczny ~>:

p~>q =1 0 gdy zajście p jest (=1) konieczne ~> dla zajścia q
Inaczej:
p~>q =0
3.
Zdarzenie możliwe ~~> lub element wspólny zbiorów ~~>

Zdarzenia:
Definicja zdarzenia możliwego ~~> w zdarzeniach:
p~~>q = p*q =1 - gdy możliwe jest (=1) jednoczesne zajście zdarzeń p i q
Inaczej:
p~~>q=p*q =0
Zbiory:
Definicja elementu wspólnego zbiorów ~~>:
p~~>q = p*q =1 - gdy zbiory p i q mają (=1) element wspólny
Inaczej:
p~~>q = p*q=0
Kod:

T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
      ##        ##           ##        ##            ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5:  p+~q

Prawa Kubusia:        | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q  | A1: p=>q  = A4:~q=>~p
B1: p~>q = B2:~p=>~q  | B2:~p=>~q = B3: q=>p

Prawa Tygryska:       | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p   | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p   | B1: p~>q  = B4:~q~>~p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


IO.
Definicja podstawowa implikacji odwrotnej p|~>q:

Implikacja odwrotna p|~>q to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
stąd:
A1B1:
p|~>q = ~(A1: p=>q)*(B1: p~>q) =~(0)*1 = 1*1 =1

Lewą stronę czytamy:
p|~>q - implikacja odwrotna |~> w logice dodatniej (bo q)

Prawą stronę czytamy:
Implikacja odwrotne p|~>q w logice dodatniej (bo q) jest spełniona (=1) wtedy i tylko wtedy gdy zajście p jest konieczne ~> dla zajścia q i nigdy nie zdarzy się ~(..), że zajście p jest wystarczające => dla zajścia q

Podstawmy tą definicję do matematycznych związków warunku wystarczającego => i koniecznego ~>:
Kod:

T1
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji odwrotnej p|~>q
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p =0 [=] 5: ~p+q
      ##        ##           ##        ##               ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p =1 [=] 5:  p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla udowodnienia, iż zdanie warunkowe „Jeśli p to q” wchodzi w skład implikacji odwrotnej p|~>q potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Bx i fałszywość dowolnego zdania serii Ax.
Zauważmy, że nie ma znaczenia które zdanie będziemy brali pod uwagę, bowiem prawami logiki matematycznej (prawa Kubusia, prawa Tygryska i prawa kontrapozycji) zdanie to możemy zastąpić zdaniem logicznie tożsamym z kolumny A1B1.

Kluczowym punktem zaczepienia w wyprowadzeniu symbolicznej definicji implikacji odwrotnej p|~>q jest definicja kontrprzykładu rodem z algebry Kubusia działająca wyłącznie w warunku wystarczającym =>.

Definicja kontrprzykładu w zbiorach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane elementem wspólnym zbiorów p~~>~q=p*~q

Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>~q=p*~q
Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)

Uzupełnijmy naszą tabelę wykorzystując powyższe rozstrzygnięcia działające wyłącznie w warunkach wystarczających =>.
Kod:

IO:
Tabela prawdy implikacji odwrotnej p|~>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
A1B1: p|~>q =~(A1: p=>q)*(B1: p~>q)=~(0)*1=1*1=1
       A1B1:         A2B2:        |     A3B3:         A4B4:
A:  1: p=>q  =0 = 2:~p~>~q=0     [=] 3: q~>p  =0 = 4:~q=>~p =0
A’: 1: p~~>~q=1 =                [=]             = 4:~q~~>p =1                   
       ##            ##           |     ##            ##
B:  1: p~>q  =1 = 2:~p=>~q=1     [=] 3: q=>p  =1 = 4:~q~>~p =1
B’:             = 2:~p~~>q=0     [=] 3: q~~>~p=0

Równanie operatora implikacji odwrotnej p||~>q:
A1B1:                                                        A2B2:
p|~>q = ~(A1: p=>q)*(B1: p~>q) = ~(A2:~p~>~q)*(B2:~p=>~q) = ~p|=>~q

Operator implikacji odwrotnej p||~>q to układ równań logicznych:
A1B1: p|~>q  =~(A1: p=> q)* (B1: p~>q) - co się stanie jeśli zajdzie p?
A2B2:~p|=>~q =~(A2:~p~>~q)* (B2:~p=>~q)- co się stanie jeśli zajdzie ~p?

Układ równań logicznych jest przemienny, stąd mamy:
Operator implikacji prostej ~p||=>~q to układ równań logicznych:
A2B2:~p|=>~q =~(A2:~p~>~q)* (B2:~p=>~q)- co się stanie jeśli zajdzie ~p?
A1B1: p|~>q   =~(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p?

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

IO:
Definicja podstawowa implikacji odwrotnej p|~>q w logice dodatniej (bo q):

Kolumna A1B1:
Implikacja odwrotna p|~>q w logice dodatniej (bo q) to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
stąd:
A1B1: p|~>q = ~(A1: p=>q)*(B1: p~>q) =~(0)*1 = 1*1 =1

Definicja warunku wystarczającego =>:
p=>q = ~p+q
Definicja warunku koniecznego ~>:
p~>q = p+~q
stąd:
p|~>q = ~(A1: p=>q)*(B1: p~>q) = ~(~p+q)*(p+~q) = (p*~q)*(p+~q) = p*~q
p|~>q = p*~q

Definicja definicji podstawowej dowolnego spójnika implikacyjnego:
Definicja podstawowa dowolnego spójnika implikacyjnego to definicja tego spójnika w logice dodatniej (bo q).

Jeśli w definicji dowolnego spójnika implikacyjnego nie zaznaczamy w jakiej jest logice to domyślnie chodzi nam o definicję podstawową tego spójnika.
Mówiąc o definicji podstawowej możemy zatem pominąć sygnalizację w jakiej logice ta definicja jest wyrażona.

Definicja implikacji prostej ~p|=>~q w logice ujemnej (bo ~q):
Kolumna A2B2:
Implikacja prosta ~p=>~q w logice ujemnej (bo ~q) to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
A2: ~p~>~q =0 - zajście ~p nie jest (=0) konieczne ~> dla zajścia ~q
B2:~p=>~q =1 - zajście ~p jest (=1) wystarczające => dla zajścia ~q
Stąd:
A2B2: ~p|=>~q = ~(A2: ~p~>~q)*(B2:~p=>~q)=~(0)*1=1*1=1

Definicja warunku wystarczającego =>:
p=>q = ~p+q
Definicja warunku koniecznego ~>:
p~>q = p+~q
stąd:
~p|=>~q = ~(A2: ~p~>~q)*(B2:~p=>~q)= ~(~p+q)*(p+~q) = (p*~q)*(p+~q) = p*~q
~p=>~q = p*~q

Zachodzi tożsamość logiczna:
A1B1: p|~>q =p*~q [=] A2B2: ~p|=>~q = p*~q
cnd

Definicja tożsamości logicznej [=]:
Prawdziwość dowolnej strony tożsamości logicznej [=] wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej [=] wymusza fałszywość drugiej strony

Definicja dowolnego operatora implikacyjnego p||?q:
Operator implikacyjny p||?q to odpowiedź na pytanie co się stanie jeśli zajdzie p oraz co się stanie jeśli zajdzie ~p

Równanie operatora implikacji odwrotnej p||~>q:
Kod:

T2
Równanie operatora implikacji odwrotnej p||~>q:
A1B1:                                                        A2B2
p|~>q = ~(A1: p=>q)*(B1: p~>q) = ~(A2:~p~>~q)*(B2:~p=>~q) = ~p|=>~q
bo prawa Kubusia:
A1: p=>q = A2: ~p~>~q
B1: p~>q = B2: ~p=>~q


Dlaczego to jest równanie operatora implikacji odwrotnej p||~>q?
A1B1: W kolumnie A1B1 mamy odpowiedź na pytanie co może się wydarzyć jeśli zajdzie p
A2B2: W kolumnie A2B2 mamy odpowiedź na pytanie co może się wydarzyć jeśli zajdzie ~p

Stąd mamy:
Operator implikacji odwrotnej p||~>q w logice dodatniej (bo q) to układ równań logicznych A1B1 i A2B2 dający odpowiedź na pytanie o p i ~p:
A1B1: p|~>q =~(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p?
A2B2: ~p|=>~q =~(A2:~p~>~q)* (B2:~p=>~q) - co się stanie jeśli zajdzie ~p?

Układ równań jest przemienny, stąd mamy definicję tożsamą:
Operator implikacji prostej ~p||=>~q w logice ujemnej (bo ~q) to układ równań logicznych A2B2 i A1B1 dający odpowiedź na pytanie o ~p i p:
A2B2: ~p|=>~q =~(A2:~p~>~q)* (B2:~p=>~q) - co się stanie jeśli zajdzie ~p?
A1B1: p|~>q =~(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p?

Z tabeli T2 odczytujemy tożsamość logiczną:
A1B1: p|~>q = A2B2: ~p|=>~q

Definicja tożsamości logicznej:
Prawdziwość dowolnej strony tożsamości logicznej „=” wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej „=” wymusza fałszywość drugiej strony

Wnioski:
1.
Udowodnienie iż dany układ spełnia definicję implikacji odwrotnej p|~>q w logice dodatniej (bo q) jest tożsame z udowodnieniem iż ten sam układ spełnia definicję implikacji prostej ~p|=>~q w logice ujemnej (bo ~q), albo odwrotnie.
A1B1: p|~>q = A2B2: ~p|=>~q

Na mocy definicji operatorów logicznych p||~>q i ~p||=>~q widzimy, że udowodnienie prawdziwości 1 pociąga za sobą prawdziwość 2:
2.
p||~>q = ~p||=>~q
cnd

Innymi słowy:
Wystarczy udowodnić, iż dany układ spełnia kolumnę A1B1:
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
A1B1: p|~>q = ~(A1: p=>q)*(B1: p~>q) =~(0)*1 = 1*1 =1
aby mieć pewność absolutną prawdziwości wszystkich pozostałych członów w tabeli T2

Warto zapamiętać różnicę:
Definicja warunku koniecznego p~>q:
B1: p~>q = p+~q
##
Definicja implikacji odwrotnej p|~>q:
A1B1: p|~>q = ~(A1: p=>q)*(B1: p~>q) =p*~q
##
Definicja warunku wystarczającego p=>q:
A1: p=>q = ~p+q
Gdzie:
## - różne na mocy definicji funkcji logicznych

Definicja znaczka różne na mocy definicji ## dla funkcji logicznych:
Dwie funkcje logiczne są różne na mocy definicji ## wtedy i tylko wtedy gdy nie są tożsame i żadna z nich nie jest zaprzeczeniem drugiej

Weźmy nasze funkcje logiczne B1, A1B1 i A1:
Kod:

TA1B1:
B1:   Y= (p~>q)=p+~q ## A1B1:   Y= (p|~>q)=p*~q  ## A1:  Y=(p=>q) =~p+q
      #                         #                        #
B1N: ~Y=~(p~>q)=~p*q ## A1B1N: ~Y=~(p|~>q)=~p+q  ## A1N:~Y=~(p=>q)=p*~q
Gdzie:
# - różne w znaczeniu iż jedna strona jest negacją drugiej strony
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Doskonale widać, że dowolna funkcja z jednej strony znaczka różne na mocy definicji ## nie jest tożsama z funkcją po przeciwnej stronie ani też nie jest jej zaprzeczeniem.

Katastrofalny błąd ziemskich matematyków w rachunku zero-jedynkowym

Ziemscy matematycy nie znają poprawnego rachunku zero-jedynkowego, ponieważ nigdy w tym rachunku nie uwzględniają funkcji logicznych w logice dodatniej (bo Y) i ujemnej (bo ~Y).
Tabela prawdy TA1B1 bez funkcji logicznych Y i ~Y przybierze postać:
Kod:

TA1B1’:
A1:  ~p+q   ## A1B1:   p*~q  ## B1:   p+~q
      #                #              #
A1N:  p*~q  ## A1B1N: ~p+ q  ## B1N: ~p*q
Gdzie:
# - różne w znaczeniu iż jedna strona jest negacją drugiej strony
## - różne na mocy definicji funkcji logicznych
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Definicja znaczka różne na mocy definicji ## dla funkcji logicznych:
Dwie funkcje logiczne są różne na mocy definicji ## wtedy i tylko wtedy gdy nie są tożsame i żadna z nich nie jest zaprzeczeniem drugiej

Doskonale widać, że w tabeli TA1B1’ definicja znaczka różne na mocy definicji funkcji logicznych ## legła w gruzach, bo ewidentnie zachodzą tożsamości logiczne [=]:
A1: ~p+q [=] A1B1N: ~p+q
oraz
A1B1: p*~q [=] A1N: p*~q
cnd
Wniosek:
Miejsce ziemskiego rachunku zero-jedynkowego, który w kolumnach wynikowych nie uwzględnia funkcji logicznych w logice dodatniej (bo Y) i ujemnej (bo ~Y) jest w piekle, na wiecznych piekielnych mękach.
Innymi słowy:
Ziemski rachunek zero-jedynkowy jest wewnętrznie sprzeczny - dowód wyżej.

5.1.1 Operator implikacji odwrotnej p||~>q

W algebrze Kubusia w zbiorach zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

IO.
Definicja podstawowa implikacji odwrotnej p|~>q:

Implikacja odwrotna p|~>q to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
stąd:
A1B1:
p|~>q = ~(A1: p=>q)*(B1: p~>q) =~(0)*1 = 1*1 =1

Kod:

IO:
Tabela prawdy implikacji odwrotnej p|~>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
A1B1: p|~>q =~(A1: p=>q)*(B1: p~>q)=~(0)*1=1*1=1
       A1B1:         A2B2:        |     A3B3:         A4B4:
A:  1: p=>q  =0 = 2:~p~>~q=0     [=] 3: q~>p  =0 = 4:~q=>~p =0
A’: 1: p~~>~q=1 =                [=]             = 4:~q~~>p =1                   
       ##            ##           |     ##            ##
B:  1: p~>q  =1 = 2:~p=>~q=1     [=] 3: q=>p  =1 = 4:~q~>~p =1
B’:             = 2:~p~~>q=0     [=] 3: q~~>~p=0

Równanie operatora implikacji odwrotnej p||~>q:
A1B1:                                                        A2B2:
p|~>q = ~(A1: p=>q)*(B1: p~>q) = ~(A2:~p~>~q)*(B2:~p=>~q) = ~p|=>~q

Operator implikacji odwrotnej p||~>q to układ równań logicznych:
A1B1: p|~>q  =~(A1: p=> q)* (B1: p~>q) - co się stanie jeśli zajdzie p?
A2B2:~p|=>~q =~(A2:~p~>~q)* (B2:~p=>~q)- co się stanie jeśli zajdzie ~p?

Układ równań logicznych jest przemienny, stąd mamy:
Operator implikacji prostej ~p||=>~q to układ równań logicznych:
A2B2:~p|=>~q =~(A2:~p~>~q)* (B2:~p=>~q)- co się stanie jeśli zajdzie ~p?
A1B1: p|~>q   =~(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p?

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Operator implikacji odwrotnej p||~>q w logice dodatniej (bo q) to układ równań logicznych A1B1 i A2B2 dający odpowiedź na pytanie o p i ~p:
A1B1: p|~>q =~(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p?
A2B2: ~p|=>~q =~(A2:~p~>~q)*(B2:~p=>~q) - co się stanie jeśli zajdzie ~p?

A1B1.
Co może się wydarzyć jeśli zajdzie p (p=1)?


Odpowiedź mamy w kolumnie A1B1:
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
A1B1: p|~>q =~(A1: p=>q)* (B1: p~>q)=~(0)*1=1*1=1
Stąd:
Jeśli zajdzie p (p=1) to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” - mówią o tym zdania B1 i A1’

Odpowiedź w zdaniach warunkowych ‘Jeśli p to q” mamy w kolumnie A1B1:
B1.
Jeśli zajdzie p (p=1) to może ~> zajść q (q=1)
p~>q =1
Zajście p jest konieczne ~> dla zajścia q, bo jak zajdzie ~p to na 100% => zajdzie ~q
Prawo Kubusia samo nam tu wyskoczyło:
B1: p~>q = B2:~p=>~q

LUB

Fałszywy warunek wystarczający A1 wymusza prawdziwy kontrprzykład A1’ i odwrotnie.
A1’.
Jeśli zajdzie p (p=1) to może ~~> zajść ~q (~q=1)
p~~>~q = p*~q =1
Zdarzenia:
Możliwe jest (=1) jednoczesne zajście zdarzeń ~~>: p i ~q
Zbiory:
Istnieje (=1) element wspólny zbiorów ~~>: p i ~q

A2B2.
Co może się wydarzyć jeśli zajdzie ~p (~p=1)?


Odpowiedź mamy w kolumnie A2B2:
A2: ~p~>~q =0 - zajście ~p nie jest (=0) konieczne ~> dla zajścia ~q
B2: ~p=>~q =1 - zajście ~p jest (=1) wystarczające => dla zajścia ~q
A2B2: ~p|=>~q =~(A2:~p~>~q)*(B2:~p=>~q)=~(0*1=1*1=1
Stąd:
Jeśli zajdzie ~p (~p=1) to mamy gwarancję matematyczną => iż zajdzie ~q (~q=1) - mówi o tym zdanie B2

Odpowiedź w zdaniach warunkowych ‘Jeśli p to q” mamy w kolumnie A2B2:
B2.
Jeśli zajdzie ~p (~p=1) to na 100% => zajdzie ~q (~q=1)
~p=>~q =1
Zajście ~p jest (=1) wystarczające => dla zajścia ~q
Zajście ~p daje nam (=1) gwarancję matematyczną => zajścia ~q
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>

Prawdziwy warunek wystarczający B2 wymusza fałszywość kontrprzykładu B2’ i odwrotnie.
B2’.
Jeśli zajdzie ~p (~p=1) to może ~~> zajść q (q=1)
~p~~>q = ~p*q=0
Zdarzenia:
Niemożliwe jest (=0) zdarzenie ~~>: zajdzie ~p i zajdzie q
Zbiory:
Nie istnieje (=0) element wspólny zbiorów ~~>: ~p i q

Podsumowanie:
Jak widzimy, istotą operatora implikacji odwrotnej p||~>q jest „rzucanie monetą” w sensie na dwoje babka wróżyła” po stronie p (zdania B1 i A1’) , oraz gwarancja matematyczna => po stronie ~p (zdanie B2).

Zauważmy że:
a)
Układ równań jest przemienny, stąd mamy definicję tożsamą:
Operator implikacji prostej ~p||=>~q w logice ujemnej (bo ~q) to układ równań logicznych:
A2B2: ~p|=>~q =~(A2:~p~>~q)*(B2:~p=>~q) - co się stanie jeśli zajdzie ~p?
A1B1: p|~>q =~(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p?
Doskonale widać, że analiza matematyczna operatora implikacji prostej ~p||=>~q w logice ujemnej (bo ~q) będzie identyczna jak operatora implikacji odwrotnej p||~>q w logice dodatniej (bo q) z tym, że zaczynamy od kolumny A2B2 kończąc na kolumnie A1B1.
b)
Także kolejność wypowiadanych zdań jest dowolna, tak więc zdania z powyższej analizy B1, A1’ B2, B2’ możemy wypowiadać w sposób losowy - matematycznie to bez znaczenia.

5.1.2 Zero-jedynkowa definicja warunku koniecznego ~>

Zapiszmy skróconą tabelę prawdy operatora implikacji odwrotnej p||~>q przedstawioną wyżej:
Kod:

T1:
Analiza symboliczna                              |Co w logice
operatora implikacji odwrotnej p||~>q            |jedynek oznacza
Kolumna A1B1:
A1: p=>q =0
B1: p~>q =1
A1B1:  p|~>q=~(A1: p=>q)*(B1: p~>q) - co się stanie jeśli zajdzie p?
B1:  p~> q =1 - p jest konieczne ~> dla q        |( p=1)~> ( q=1)=1
A1’: p~~>~q=1 - kontrprzykład dla A1 musi być 1  |( p=1)~~>(~q=1)=1
Kolumna A2B2:
A2: ~p~>~q =0
B2: ~p=>~q =1
A2B2: ~p|=>~q=~(A2:~p~>~q)*(B2:~p=>~q) - co się stanie jeśli zajdzie ~p?
B2: ~p=>~q =1 - zajście ~p wystarcza => dla ~q   |(~p=1)=> (~q=1)=1
B2’:~p~~>q =0 - kontrprzykład dla B2 musi być 0  |(~p=1)~~>( q=1)=0
     a   b  c                                       d        e    f

Z tabeli T1 możemy wyprowadzić zero-jedynkową definicję warunku koniecznego B1: p~>q kodując analizę symboliczną względem linii B1, albo zero-jedynkową definicję warunku wystarczającego B2:~p=>~q kodując analizę symboliczną względem linii B2

Przyjmijmy za punkt odniesienia warunek konieczny ~> widoczny w linii B1:
B1: p~>q =1
Jedyne prawo Prosiaczka jakie będzie nam potrzebne do wygenerowania zero-jedynkowej definicji warunku wystarczającego to:
(~x=1)=(x=0)
bo zgodnie z przyjętym punktem odniesienia B1 wszystkie sygnały musimy sprowadzić do postaci niezanegowanej (bo x).
Kod:

T2:
Definicja zero-jedynkowa warunku koniecznego B1: p~>q
w logice dodatniej (bo q)
Analiza       |Co w logice       |Kodowanie dla     |Zero-jedynkowa
symboliczna   |jedynek oznacza   |B1: p~>q          |definicja ~>
              |                  |                  | p  q  B1: p~>q
B1:  p~> q =1 |( p=1)~> ( q=1)=1 |( p=1)~> ( q=1)=1 | 1~>1      =1
A1’: p~~>~q=1 |( p=1)~~>(~q=1)=1 |( p=1)~~>( q=0)=1 | 1~>0      =1
B2: ~p=>~q =1 |(~p=1)=> (~q=1)=1 |( p=0)=> ( q=0)=1 | 0~>0      =1
B2’:~p~~>q =0 |(~p=1)~~>( q=1)=0 |( p=0)~~>( q=1)=0 | 0~>1      =0
     a   b  c    d        e    f    g        h    i   1  2       3
                                 |Prawa Prosiaczka  |
                                 |(~p=1)=( p=0)     |
                                 |(~q=1)=( q=0)     |

Nagłówek B1: p~>q w kolumnie wynikowej 3 w tabeli zero-jedynkowej 123 wskazuje linię B1: p~>q w tabeli symbolicznej abc względem której dokonano kodowania zero-jedynkowego.
Tabela zero-jedynkowa 123 nosi nazwę zero-jedynkowej definicji warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego.

Zauważmy, że w tabeli T1 mamy również warunek wystarczający => widniejący w linii B2.
Przyjmijmy za punkt odniesienia linię B2 i wygenerujmy tabelę zero-jedynkową warunku wystarczającego =>:
B2:~p=>~q =1
Jedyne prawo Prosiaczka jakie będzie tu nam potrzebne to:
(x=1)=(~x=0)
bo zgodnie z przyjętym punktem odniesienia B2 wszystkie sygnały musimy sprowadzić do postaci zanegowanej (bo ~x).
Kod:

T3:
Definicja zero-jedynkowa warunku wystarczającego B2:~p=>~q
w logice ujemnej (bo ~q)
Analiza       |Co w logice       |Kodowanie dla     |Zero-jedynkowa
symboliczna   |jedynek oznacza   |B2:~p=>~q         |definicja =>
              |                  |                  |~p ~q B2: ~p=>~q
B1:  p~> q =1 |( p=1)~> ( q=1)=1 |(~p=0)~> (~q=0)=1 | 0=>0      =1
A1’: p~~>~q=1 |( p=1)~~>(~q=1)=1 |(~p=0)~~>(~q=1)=1 | 0=>1      =1
B2: ~p=>~q =1 |(~p=1)=> (~q=1)=1 |(~p=1)=> (~q=1)=1 | 1=>1      =1
B2’:~p~~>q =0 |(~p=1)~~>( q=1)=0 |(~p=1)~~>(~q=0)=0 | 1=>0      =0
     a   b  c    d        e    f    g        h    i   1  2       3
                                 |Prawa Prosiaczka  |
                                 |( p=1)=(~p=0)     |
                                 |( q=1)=(~q=0)     |

Nagłówek B2: ~p=>~q w kolumnie wynikowej 3 w tabeli zero-jedynkowej 123 wskazuje linię B2 w tabeli symbolicznej abc względem której dokonano kodowania zero-jedynkowego.
Tabela zero-jedynkowa 123 nosi nazwę zero-jedynkowej definicji warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego.

Zauważmy, że analiza symboliczna (abc) w tabelach T2 i T3 jest identyczna, dzięki czemu z tożsamości kolumn wynikowych 3 w tabelach T2 i T3 wnioskujemy o zachodzącym prawie Kubusia.
Prawo Kubusia:
T2: p~>q = T3: ~p=>~q

Dokładnie ten sam dowód możemy wykonać w rachunku zero-jedynkowym korzystając z zero-jedynkowej definicji warunku koniecznego ~> (T2: 123) i wystarczającego => (T3: 123).
Oto on:
Kod:

Zero-jedynkowa definicja warunku koniecznego ~>
   p  q  p~>q
A: 1~>1  =1
B: 1~>0  =1
C: 0~>0  =1
D: 0~>1  =0

Kod:

Zero-jedynkowa definicja warunku wystarczającego =>
   p  q  p=>q
A: 1=>1  =1
B: 1=>0  =0
C: 0=>0  =1
D: 0=>1  =1

Stąd mamy:
Kod:

T4
Dowód prawa Kubusia w rachunku zero-jedynkowym:
p~>q = ~p=>~q
     p  q  p~>q ~p ~q ~p=>~q
B1:  1~>1  =1    0=>0   =1
A1’: 1~>0  =1    0=>1   =1
B2:  0~>0  =1    1=>1   =1
B2’: 0~>1  =0    1=>0   =0
     1  2   3    4  5    6

Tożsamość kolumn wynikowych 3=6 jest dowodem formalnym prawa Kubusia.
Prawo Kubusia:
p~>q = ~p=>~q
Uwaga:
Warunkiem koniecznym wnioskowania o tożsamości kolumn wynikowych 3=6 jest identyczna matryca zero-jedynkowa na wejściach p i q.

Prawo Kubusia:
p~>q = ~p=>~q
Prawo Kubusia można też dowieść przy pomocy definicji warunku wystarczającego => i koniecznego ~> w spójnikach „i”(*) i „lub”(+)

Definicja warunku wystarczającego p=>q w spójnikach „i”(*) i „lub”(+):
p=>q = ~p+q
Definicja warunku koniecznego p~>q w spójnikach „i”(*) i „lub”(+):
p~>q = p+~q

Stąd mamy:
~p=>~q = ~(~p)+~q = p+~q = p~>q
cnd

Prawo Kubusia to tożsamość logiczna „=”:
p~>q = ~p=>~q

Definicja tożsamości logicznej „=”:
Prawdziwość dowolnej strony tożsamości logicznej „=”wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej „=” wymusza fałszywość drugiej strony

Z powyższego wynika, że definicja tożsamości logicznej „=” jest tożsama ze spójnikiem równoważności „wtedy i tylko wtedy” <=>

Wniosek:
Tożsamość logiczna „=” jest de facto spójnikiem równoważności p<=>q o definicji:
Kod:

Zero-jedynkowa definicja równoważności <=>
   p   q p<=>q
A: 1<=>1  =1
B: 1<=>0  =0
C: 0<=>0  =1
D: 0<=>1  =0

Fakt ten możemy wykorzystać w naszym zero-jedynkowym dowodzie prawa Kubusia wyżej w następujący sposób.
Kod:

Dowód zero-jedynkowy prawa Kubusia:
p~>q <=> ~p=>~q
     p  q  p~>q ~p ~q ~p=>~q (p~>q)<=>(~p=>~q)
B1:  1~>1  =1    0=>0   =1          1
A1’: 1~>0  =1    0=>1   =1          1
B2:  0~>0  =1    1=>1   =1          1
B2’: 0~>1  =0    1=>0   =0          1
     1  2   3    4  5    6          7

Same jedynki w kolumnie 7 również są dowodem formalnym poprawności prawa Kubusia:
p~>q = ~p=>~q

5.1.3 Matematyczne związki implikacji prostej p|=>q i odwrotnej p|~>q

IP:
Definicja podstawowa implikacji prostej p|=>q w logice dodatniej (bo q):

Kolumna A1B1:
Implikacja prosta p|=>q w logice dodatniej (bo q) to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku.
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
stąd:
A1B1: p|=>q = (A1: p=>q)*~(B1: p~>q) =1*~(0) = 1*1 =1

Definicja warunku wystarczającego =>:
p=>q = ~p+q
Definicja warunku koniecznego ~>:
p~>q = p+~q
stąd:
stąd:
p|=>q = (A1: p=>q)*~(B1: p~>q) = (~p+q)*~(p+~q) = (~p+q)*(~p*q) = ~p*q
Y = (p|=>q) = ~p*q

##

IO:
Definicja podstawowa implikacji odwrotnej p|~>q w logice dodatniej (bo q):

Kolumna A1B1:
Implikacja odwrotna p|~>q w logice dodatniej (bo q) to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
stąd:
A1B1: p|~>q = ~(A1: p=>q)*(B1: p~>q) =~(0)*1 = 1*1 =1

Definicja warunku wystarczającego =>:
p=>q = ~p+q
Definicja warunku koniecznego ~>:
p~>q = p+~q
stąd:
p|~>q = ~(A1: p=>q)*(B1: p~>q) = ~(~p+q)*(p+~q) = (p*~q)*(p+~q) = p*~q
Y = (p|~>q) = p*~q

Gdzie:
## - różna na mocy definicji funkcji logicznych

Definicja znaczka różne na mocy definicji ## dla funkcji logicznych:
Dwie funkcje logiczne są różne na mocy definicji ## wtedy i tylko wtedy gdy nie są tożsame i żadna z nich nie jest zaprzeczeniem drugiej

Zapiszmy matematyczne relacje między implikacją prostą p|=>q a implikacją odwrotną p|~>q w tabeli prawdy.
Kod:

IP: Implikacja prosta p|=>q  ## IO: Implikacja odwrotne p|~>q
 Y = (p|=>q)=~p*q            ##  Y= (p|~>q)=p*~q
 #                           ##  #
~Y =~(p|=>q)=p+~q            ## ~Y=~(p|~>q)=~p+q
Gdzie:
# - różne w znaczeniu iż dowolna strona # jest negacją drugiej strony
## - różna na mocy definicji funkcji logicznych

Doskonale widać, iż definicje obu znaczków # i ## są perfekcyjnie spełnione.
cnd

5.2 Diagram implikacji odwrotnej p|~>q w zbiorach

W algebrze Kubusia w zbiorach zachodzi:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

Definicja implikacji odwrotnej p|~>q w zbiorach:
Zbiór p jest nadzbiorem ~> zbioru q i nie jest tożsamy ze zbiorem q
Dziedzina musi być szersza do sumy logicznej zbiorów p+q bowiem wtedy i tylko wtedy wszystkie pojęcia p, ~p, q i ~q będą rozpoznawalne.
A1: p=>q =0 - zbiór p nie jest (=0) podzbiorem => zbioru q (z definicji)
B1: p~>q =1 - zbiór p jest nadzbiorem ~> zbioru q (z definicji)
p|~>q = ~(A1: p=>q)*(B1: p~>q) = ~(0)*1 = 1*1 =1

Przedstawione wyżej zastrzeżenia dowodzimy w dwóch krokach.

Krok 1.
Dlaczego dziedzina musi być szersza od sumy logicznej zbiorów p i q?

Dla zbiorów tożsamych p=q mielibyśmy:
A1: p=>q =1 - bo każdy zbiór jest podzbiorem => siebie samego
B1: p~>q =1 - bo każdy zbiór jest nadzbiorem ~> siebie samego
Otrzymana sprzeczność z definicją implikacji odwrotnej p|~>q w zbiorach jest dowodem, iż zbiory p i q nie mogą być tożsame.
Stąd mamy pierwszą część definicji implikacji odwrotnej p|~>q w zbiorach:
Zbiór p jest nadzbiorem ~> zbioru q i nie jest tożsamy ze zbiorem q
A1: p=>q =0 - zbiór p nie jest (=0) podzbiorem => zbioru q (z definicji)
B1: p~>q =1 - zbiór p jest nadzbiorem ~> zbioru q (z definicji)

Krok 2.
Dlaczego przyjęta dziedzina musi być szersza od sumy logicznej zbiorów p+q?

Przyjmijmy za dziedzinę sumę logiczną zbiorów p+q
D = p+q =p - bo na mocy definicji p|~>q zbiór p jest nadzbiorem ~> zbioru q
Wtedy mamy:
~p=[D-p] = [p-p] =[] =0
Oznacza to że pojęcie ~p jest dla nas zbiorem pustym.

Definicja zbioru pustego [] w algebrze Kubusia:
Zbiór pusty to zbiór pojęć niezrozumiałych dla człowieka
[] =[asegft, uaytfds…]
Oczywistym jest, że nie możemy operować na pojęciach dla nas niezrozumiałych, stąd zastrzeżenie w definicji implikacji odwrotnej p|~>q w zbiorach:
Dziedzina musi być szersza do sumy logicznej zbiorów p+q bowiem wtedy i tylko wtedy wszystkie pojęcia p, ~p, q i ~q będą rozpoznawalne.

Stąd mamy:
Kod:

IO:
Tabela prawdy implikacji odwrotnej p|~>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
A1B1: p|~>q =~(A1: p=>q)*(B1: p~>q)=~(0)*1=1*1=1
       A1B1:         A2B2:        |     A3B3:         A4B4:
A:  1: p=>q  =0 = 2:~p~>~q=0     [=] 3: q~>p  =0 = 4:~q=>~p =0
A’: 1: p~~>~q=1 =                [=]             = 4:~q~~>p =1                   
       ##            ##           |     ##            ##
B:  1: p~>q  =1 = 2:~p=>~q=1     [=] 3: q=>p  =1 = 4:~q~>~p =1
B’:             = 2:~p~~>q=0     [=] 3: q~~>~p=0

Równanie operatora implikacji odwrotnej p||~>q:
A1B1:                                                        A2B2:
p|~>q = ~(A1: p=>q)*(B1: p~>q) = ~(A2:~p~>~q)*(B2:~p=>~q) = ~p|=>~q

Operator implikacji odwrotnej p||~>q to układ równań logicznych:
A1B1: p|~>q  =~(A1: p=> q)* (B1: p~>q) - co się stanie jeśli zajdzie p?
A2B2:~p|=>~q =~(A2:~p~>~q)* (B2:~p=>~q)- co się stanie jeśli zajdzie ~p?

Układ równań logicznych jest przemienny, stąd mamy:
Operator implikacji prostej ~p||=>~q to układ równań logicznych:
A2B2:~p|=>~q =~(A2:~p~>~q)* (B2:~p=>~q)- co się stanie jeśli zajdzie ~p?
A1B1: p|~>q   =~(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p?

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Kod:

D2
Diagram implikacji odwrotnej p|~>q w zbiorach

----------------------------------------------------------------------
|     q                     |                    ~q                  |
|---------------------------|----------------------------------------|
|     p                                      |   ~p                  |
|--------------------------------------------|-----------------------|
|                           | p~~>~q = p*~q  | ~p~~>q = ~p*q =[]     |
----------------------------------------------------------------------
| Dziedzina: D =p*q+p*~q+~p*~q (suma logiczna zbiorów niepustych)    |
|--------------------------------------------------------------------|

Diagram implikacji odwrotnej p|~>q
---------------------------------------------------------------------
I.
Przed zamianą p i q
A1B1:
A1: p=>q =0 - zbiór p nie jest (=0) podzbiorem =>q
B1: p~>q =1 - zbiór p jest (=1) nadzbiorem ~> q
p|~>q= ~(A1:p=>q)*(B1: p~>q) =~(0)*1=1*1=1
A2B2:
A2:~p~>~q=0 - zbiór ~p nie jest (=0) nadzbiorem ~> ~q
B2:~p=>~q=1 - zbiór ~p jest (=1) podzbiorem => zbioru ~q
~p|~>~q= ~(A2:~p~>~q)*(B2: ~p=>~q)=~(0)*1=1*1=1

II.
Po zamianie p i q
A3B3:
A3: q~>p =0 - zbiór q nie jest (=0) nadzbiorem ~> p
B3: q=>p =1 - zbiór q jest (=1) podzbiorem => p
q|=>p= ~(A3: q~>p)*(B3:~q=>~p)=~(0)*1=1*1=1
A4B4:
A4:~q=>~p=0 - zbiór ~q nie jest (=0) podzbiorem => ~p
B4:~q~>~p=1 - zbiór ~q jest (=1) nadzbiorem ~> ~p
~q|~>~p= ~(A4:~q=>~p)*(B4:~q~>~p)=~(0)*1=1*1=1
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Operator implikacji odwrotnej p||~>q to układ równań A1B1 i A2B2 dający odpowiedź na pytania o p i ~p:

A1B1:
Co może się wydarzyć jeśli zajdzie p (p=1)?


Odpowiedź mamy w kolumnie A1B1:
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
A1B1: p|~>q =~(A1: p=>q)* (B1: p~>q)=~(0)*1=1*1=1
Stąd:
Jeśli zajdzie p (p=1) to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” - mówią o tym zdania B1 i A1’

Z diagramu D2 odczytujemy:
B1.
Jeśli zajdzie p (p=1) to może ~> zajść q (q=1)
p~>q =1
Zbiory:
Zajście p jest warunkiem koniecznym ~> dla zajścia q wtedy i tylko wtedy gdy zbiór p jest nadzbiorem ~> zbioru q, co widać na diagramie D2.

LUB

Fałszywy warunek wystarczający A1 wymusza prawdziwość kontrprzykładu A1’ i odwrotnie.
A1’.
Jeśli zajdzie p (p=1) to może ~~> zajść ~q (~q=1)
p~~>~q = p*~q =1
Zbiory:
Istnieje (=1) wspólny element ~~> zbiorów p i ~q
Widać to doskonale na diagramie D2

A2B2:
Co może się wydarzyć jeśli zajdzie ~p (~p=1)?


Odpowiedź mamy w kolumnie A2B2:
A2: ~p~>~q =0 - zajście ~p nie jest (=0) konieczne ~> dla zajścia ~q
B2: ~p=>~q =1 - zajście ~p jest (=1) wystarczające => dla zajścia ~q
A2B2: ~p|=>~q =~(A2:~p~>~q)*(B2:~p=>~q)=~(0*1=1*1=1
Stąd:
Jeśli zajdzie ~p (~p=1) to mamy gwarancję matematyczną => iż zajdzie ~q (~q=1) - mówi o tym zdanie B2

Z diagramu D2 odczytujemy:
B2.
Jeśli zajdzie ~p (~p=1) to na 100% => zajdzie ~q (~q=1)
~p=>~q =1
Zbiory:
Zajście ~p jest warunkiem wystarczającym => dla zajścia ~q wtedy i tylko wtedy gdy zbiór ~p jest podzbiorem => zbioru ~q, co widać na diagramie D2

Z prawdziwości warunku wystarczającego => B2 wynika fałszywość kontrprzykładu B2’ i odwrotnie.
B2’
Jeśli zajdzie ~p (~p=1) to może ~~> zajść q (q=1)
~p~~>q = ~p*q =0
Zbiory:
Nie istnieje (=0) wspólny element ~~> zbiorów ~p i q
Potwierdza to diagram D2.


5.2.1 Odtworzenie definicji operatora implikacji odwrotnej p||~>q z definicji ~~>

Weźmy diagram implikacji prostej w odwrotnej p|~>q w zbiorach wyżej zapisany.
Kod:

D2
Diagram operatora implikacji odwrotnej p||~>q w zbiorach
------------------------------------------------------------------------
|     q                     |                    ~q                    |
|---------------------------|------------------------------------------|
|     p                                      |   ~p                    |
|--------------------------------------------|-------------------------|
|                           | p~~>~q = p*~q  | ~p~~>q = ~p*q =[]       |
------------------------------------------------------------------------
| Dziedzina: D =p*q+p*~q+~p*~q (suma logiczna zbiorów niepustych)      |
|----------------------------------------------------------------------|
| Operator implikacji odwrotnej p||~>q w spójnikach „i”(*) i „lub”(+)  |
------------------------------------------------------------------------
| Ya=p~~>q=p*q              |Yb=p~~>~q=p*~q  |Yc=~p~~>~q=~p*~q         |
------------------------------------------------------------------------
|                        ~Yd=~p~~>q=~p*q (zbiór pusty!)                |
------------------------------------------------------------------------

Spójniki iloczynu logicznego zbiorów „i”(*) oraz sumy logicznej zbiorów „lub”(+) z definicji nie są w stanie opisać relacji podzbioru => czy też nadzbioru ~> między dowolnymi dwoma zbiorami p i q.

Wniosek:
W opisie dowolnego diagramu w zbiorach wyrażonego spójnikami „i”(*) i „lub”(+) chodzi tylko i wyłącznie o spełnienie lub nie spełnienie definicji elementu wspólnego zbiorów ~~>.

Definicja elementu wspólnego ~~> zbiorów:
Jeśli p to q
p~~>q =p*q =1
Definicja elementu wspólnego zbiorów ~~> jest spełniona (=1) wtedy i tylko wtedy gdy zbiory p i q mają co najmniej jeden element wspólny
Inaczej:
p~~>q= p*q= [] =0 - zbiory p i q są rozłączne, nie mają (=0) elementu wspólnego ~~>

Decydujący w powyższej definicji jest znaczek elementu wspólnego zbiorów ~~>, dlatego dopuszczalny jest zapis skrócony p~~>q.
W operacji iloczynu logicznego zbiorów p*q poszukujemy tu jednego wspólnego elementu, nie wyznaczamy kompletnego zbioru p*q.

Stąd mamy tabelę prawdy operatora implikacji odwrotnej p||~>q definiowaną elementami wspólnymi zbiorów ~~>:
Kod:

T0.
Operator p||~>q       |
w spójnikach          |Co w logice
elementu wspólnego ~~>|jedynek oznacza
                 Y ~Y |                 Y   Z diagramu D1 odczytujemy:
A: p~~>q = p* q =1  0 |( p=1)~~>( q=1) =1 - istnieje el. wspólny p i q
B: p~~>~q= p*~q =1  0 |( p=1)~~>(~q=1) =1 - istnieje el. wspólny p i ~q
C:~p~~>~q=~p*~q =1  0 |(~p=1)~~>(~q=1) =1 - istnieje el. wspólny ~p i ~q
D:~p~~> q=~p* q =0  1 |(~p=1)~~>( q=1) =0 - nie istnieje el. wspólny ~p i q

Między funkcjami logicznymi Y i ~Y zachodzi relacja spójnika „albo”($).
Dowód:
Definicja spójnika „albo”($)
p$q =p*~q + ~p*q
Podstawmy:
p=Y
q=~Y
stąd:
Y$~Y = Y*~(~Y) + ~Y*(~Y) = Y*Y + ~Y*~Y =Y+~Y =1

Oczywiście relacja równoważności p<=>q definiująca tożsamość zbiorów/pojęć p=q musi tu być fałszem.
Dowód:
Definicja równoważności p<=>q wyrażona spójnikami „i”(*) i „lub”(+):
p<=>q = p*q + ~p*~q
Podstawmy:
p=Y
q=~Y
stąd:
Y<=>~Y = Y*(~Y) + ~Y*~(~Y) = Y*~Y + ~Y*Y = []+[] =0
cnd

Zapiszmy powyższą tabelę wyłącznie w spójnikach elementu wspólnego zbiorów ~~> zmieniając indeksowanie linii do postaci zgodnej z teorią wykładaną w algebrze Kubusia - matematycznie ten ruch jest bez znaczenia.
Kod:

T1.
Operator implikacji odwrotnej p||~>q
definiowany elementem wspólnym zbiorów ~~>
             Y   Analiza dla punktu odniesienia Y
B1:  p~~>q  =1 - istnieje (=1) el. wspólny zbiorów p i q
A1’: p~~>~q =1 - istnieje (=0) el. wspólny zbiorów p i ~q
B2: ~p~~>~q =1 - istnieje (=1) el. wspólny zbiorów ~p i ~q
B2’:~p~~> q =0 - nie istnieje (=1) el. wspólny zbiorów ~p i q

Kluczowym punktem zaczepienia do przejścia z tabelą T1 do tabeli tożsamej T2 opisującej operator implikacji odwrotnej p||~>q w warunkach wystarczających => i koniecznych ~> będzie definicja kontrprzykładu w zbiorach działająca wyłącznie w obszarze warunku wystarczającego =>.

Dodatkowo potrzebne nam będą prawa Kubusia:
B1: p~>q = B2: ~p=>~q
##
A1: p=>q = A2: ~p~>~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
A1: p=>q=~p+q ## B1: p~>q=p+~q

Definicja tożsamości logicznej „=” na przykładzie prawa Kubusia:
B1: p~>q = B2: ~p=>~q
Prawdziwość dowolnej strony tożsamości logicznej „=” wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej „=” wymusza fałszywość drugiej strony.

Z powyższego wynika, że mając udowodnioną prawdziwość warunku koniecznego ~> B1:
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
nie musimy udowadniać prawdziwości warunku wystarczającego => B2 (i odwrotnie):
B2: ~p=>~q =1 - zajście ~p jest (=1) wystarczające => dla zajścia ~q
bowiem gwarantuje nam to prawo Kubusia, prawo rachunku zero-jedynkowego:
B1: p~>q = B2: ~p=>~q

W algebrze Kubusia zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

Definicja kontrprzykładu w zbiorach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane elementem wspólnym zbiorów p~~>~q=p*~q
Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)

Analiza tabeli prawdy T1 - część I
1.
Fałszywość kontrprzykładu B2’:
B2’: ~p~~>q=0
wymusza prawdziwość warunku wystarczającego => B2 (i odwrotnie):
B2: ~p=>~q =1 - zbiór ~p jest podzbiorem => zbioru ~q
2.
Prawo Kubusia:
B2: ~p=>~q = B1: p~>q
Stąd:
Prawdziwość warunku wystarczającego B2:
B2: ~p=>~q =1
wymusza prawdziwość warunku koniecznego ~> B1 (i odwrotnie):
B1: p~>q =1 - zbiór p jest nadzbiorem ~> zbioru q

Nanieśmy naszą analizę do tabeli T2.
Kod:

T2.
Operator implikacji odwrotnej p||~>q
w warunkach wystarczających => i koniecznych ~>
             Y   Analiza dla punktu odniesienia Y
B1:  p~>q   =1 - zbiór p jest (=1) nadzbiorem ~> q
A1’: p~~>~q =1 - istnieje (=0) el. wspólny zbiorów p i ~q
B2: ~p=>~q  =1 - zbiór ~p jest (=1) podzbiorem => zbioru ~q
B2’:~p~~> q =0 - kontrprzykład dla B2’ musi być fałszem

Analiza tabeli prawdy T1 - część II
3.
Prawdziwość kontrprzykładu A1’:
A1’: p~~>~q =1
wymusza fałszywość warunku wystarczającego A1 (i odwrotnie):
A1: p=>q =0
4.
Prawo Kubusia:
A1: p=>q = A2: ~p~>~q
stąd:
Fałszywość warunku wystarczającego A1:
A1: p=>q =0
wymusza fałszywość warunku koniecznego ~> A2 (i odwrotnie):
A2: ~p~>~q =0

Nanieśmy naszą analizę do tabeli T2
Kod:

T3.
Operator implikacji odwrotnej p||~>q
w warunkach wystarczających => i koniecznych ~>
B1:  p~>q   =1 | A1: p=>q =0
A1’: p~~>~q =1
B2: ~p=>~q  =1 | A2:~p~>~q =0
B2’:~p~~> q =0

Stąd mamy:
Linia B1A1:
Podstawowa definicja implikacji odwrotnej p||~>q w zbiorach:
Zbiór p jest nadzbiorem ~> zbioru q i nie jest tożsamy ze zbiorem q
Dziedzina musi być szersza do sumy logicznej zbiorów p+q bowiem wtedy i tylko wtedy wszystkie pojęcia p, ~p, q i ~q będą rozpoznawalne.
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia w
wtedy i tylko wtedy gdy zbiór p nie jest podzbiorem => zbioru q
B1: p~>q =1 - zbiór p jest (=1) konieczne ~> dla zajścia q
wtedy i tylko wtedy gdy zbiór p jest nadzbiorem ~> zbioru q
Stąd:
p|~>q = ~(A1: p=>q)*(B1: p~>q) = ~(0)*1 = 1*1 =1

Zdefiniowawszy implikację odwrotną p|~>q w zbiorach jako:
A1: p=>q =0 - zbiór p jest nie jest (=0) podzbiorem => zbioru q
B1: p~>q =1 - zbiór p jest (=1) nadzbiorem ~> zbioru q
możemy ją podstawić do tabeli prawdy implikacji odwrotnej IO.
Kod:

IO:
Tabela prawdy implikacji odwrotnej p|~>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
A1B1: p|~>q =~(A1: p=>q)*(B1: p~>q)=~(0)*1=1*1=1
       A1B1:         A2B2:        |     A3B3:         A4B4:
A:  1: p=>q  =0 = 2:~p~>~q=0     [=] 3: q~>p  =0 = 4:~q=>~p =0
A’: 1: p~~>~q=1 =                [=]             = 4:~q~~>p =1                   
       ##            ##           |     ##            ##
B:  1: p~>q  =1 = 2:~p=>~q=1     [=] 3: q=>p  =1 = 4:~q~>~p =1
B’:             = 2:~p~~>q=0     [=] 3: q~~>~p=0
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Stąd mamy to, co już doskonale znamy:

Definicja operatora implikacji odwrotnej p||~>q:
Operator implikacji odwrotnej p||~>q to odpowiedź na dwa pytania A1B1 i A2B2 o p i ~p.

Szczegółową analizę operatora implikacji odwrotnej p||~>q znajdziemy w punkcie 5.1.1

5.2.2 Najmniejsza możliwa liczba elementów w operatorze p||~>q

Definicja implikacji odwrotnej p|~>q w zbiorach:
Zbiór p jest nadzbiorem ~> zbioru q i nie jest tożsamy ze zbiorem q
Dziedzina musi być szersza do sumy logicznej zbiorów p+q bowiem wtedy i tylko wtedy wszystkie pojęcia p, ~p, q i ~q będą rozpoznawalne.
A1: p=>q =0 - zbiór p nie jest (=0) podzbiorem => zbioru q (z definicji)
B1: p~>q =1 - zbiór p jest nadzbiorem ~> zbioru q (z definicji)
p|~>q = ~(A1: p=>q)*(B1: p~>q) = ~(0)*1 = 1*1 =1

Z definicji implikacji odwrotnej p|~>q w zbiorach wynika, że najmniejsza liczba elementów potrzebnych do zbudowania operatora implikacji prostej p||=>q to trzy elementy.
Zdefiniujmy trzy, różne na mocy definicji elementy których będziemy używać.
K - Kubuś
T - Tygrysek
P - Prosiaczek
Zbudujmy zbiory p i q spełniające definicję implikacji odwrotnej p|~>q w zbiorach:
p=[K+T]
q=[K]
Dziedzina:
D=[K+T+P]
stąd mamy niepuste przeczenia zbiorów rozumiane jako ich uzupełnienia do wspólnej dziedziny D:
~p=[D-p]=[K+T+P-[K+T]]=[P]
~q=[D-q]=[K+T+P-K]=[T+P]
Podsumujmy:
p=[K+T], ~p=[P]
q=[K], ~q=[T+P]
Zapiszmy diagram operatora implikacji odwrotnej p||~>q dla powyższych elementów.
Kod:

D2
Diagram operatora implikacji odwrotnej p||~>q w zbiorach
-----------------------------------------------------------------------
|  p=[K+T], ~p=[P]                                                    |
|  q=[K],   ~q=[T+P]                                                  |
-----------------------------------------------------------------------
|     q=[K]                 |                     ~q=[T+P]            |
|---------------------------|-----------------------------------------|
|     p=[K+T]                                 |   ~p=[P]              |
|---------------------------------------------|-----------------------|
|                           |p~~>~q=p*~q=[T]  | ~p~~>q = ~p*q =[]     |
-----------------------------------------------------------------------
| Dziedzina fizyczna: DF =p*q+~p*~q+p*~q (suma zbiorów niepustych)    |
-----------------------------------------------------------------------

Doskonale widać, że w diagramie D2 spełniona jest definicji implikacji prostej p|~>q, a tym samym definicja operatora implikacji odwrotnej p||~>q.

Zapiszmy pełny diagram implikacji odwrotnej p|~>q:
Kod:

IO:
Tabela prawdy implikacji odwrotnej p|~>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
A1B1: p|~>q =~(A1: p=>q)*(B1: p~>q)=~(0)*1=1*1=1
       A1B1:         A2B2:        |     A3B3:         A4B4:
A:  1: p=>q  =0 = 2:~p~>~q=0     [=] 3: q~>p  =0 = 4:~q=>~p =0
A’: 1: p~~>~q=1 =                [=]             = 4:~q~~>p =1                   
       ##            ##           |     ##            ##
B:  1: p~>q  =1 = 2:~p=>~q=1     [=] 3: q=>p  =1 = 4:~q~>~p =1
B’:             = 2:~p~~>q=0     [=] 3: q~~>~p=0

Równanie operatora implikacji odwrotnej p||~>q:
A1B1:                                                        A2B2:
p|~>q = ~(A1: p=>q)*(B1: p~>q) = ~(A2:~p~>~q)*(B2:~p=>~q) = ~p|=>~q

Operator implikacji odwrotnej p||~>q to układ równań logicznych:
A1B1: p|~>q  =~(A1: p=> q)* (B1: p~>q) - co się stanie jeśli zajdzie p?
A2B2:~p|=>~q =~(A2:~p~>~q)* (B2:~p=>~q)- co się stanie jeśli zajdzie ~p?

Układ równań logicznych jest przemienny, stąd mamy:
Operator implikacji prostej ~p||=>~q to układ równań logicznych:
A2B2:~p|=>~q =~(A2:~p~>~q)* (B2:~p=>~q)- co się stanie jeśli zajdzie ~p?
A1B1: p|~>q   =~(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p?

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


Nasze zbiory na których operujemy to:
p=[K+T], ~p=[P]
q=[K], ~q=[T+P]

Definicja operatora implikacji odwrotnej p|~>q:
Operator implikacji odwrotnej p||~>q to układ równań A1B1 i A2B2 dający odpowiedź na dwa pytania o p i ~p:

1.
Co może się wydarzyć jeśli zajdzie p (p=1)?


Odpowiedź mamy w kolumnie A1B1:
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
A1B1: p|~>q =~(A1: p=>q)* (B1: p~>q)=~(0)*1=1*1=1
Stąd:
Jeśli zajdzie p (p=1) to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” - mówią o tym zdania B1 i A1’

Z diagramu D2 odczytujemy:
B1.
Jeśli zajdzie p (p=1) to może ~> zajść q (q=1)
p~>q =1
Zajście p jest warunkiem koniecznym ~> dla zajścia q wtedy i tylko wtedy gdy zbiór p jest nadzbiorem ~> zbioru q
Sprawdzamy:
p=[K+T] ~> q=[K] =1
Definicja warunku koniecznego ~> jest spełniona (=1) bo zbiór p=[K+T] jest nadzbiorem ~> zbioru q=[K]
cnd

LUB

Fałszywy warunek wystarczający A1 wymusza prawdziwość kontrprzykładu A1’ i odwrotnie.
A1’.
Jeśli zajdzie p (p=1) to może ~~> zajść ~q (~q=1)
p~~>~q = p*~q =1
Istnieje (=1) wspólny element ~~> zbiorów p i ~q
Sprawdzenie:
p=[K+T] ~~> ~q=[T+P] = [K+T]*[T+P] =[T]=1
Istnieje element wspólny zbiorów p i ~q, to Tygrysek (T)
Zauważmy, że miedzy p i ~q nie zachodzi ani warunek wystarczający => ani też konieczny ~>
Dowód:
p=[K+T] => ~q=[T+P] =0 - zbiór p=[K+T] nie jest (=0) podzbiorem => zbioru ~q=[T+P]
cnd
p=[K+T] ~> ~q=[T+P] =0 - zbiór p=[K+T] nie jest (=0) nadzbiorem ~> zbioru ~q=[T+P]
cnd

A2B2:
Co może się wydarzyć jeśli zajdzie ~p?


Odpowiedź mamy w kolumnie A2B2:
A2: ~p~>~q =0 - zajście ~p nie jest (=0) konieczne ~> dla zajścia ~q
B2: ~p=>~q =1 - zajście ~p jest (=1) wystarczające => dla zajścia ~q
A2B2: ~p|=>~q =~(A2:~p~>~q)*(B2:~p=>~q)=~(0*1=1*1=1
Stąd:
Jeśli zajdzie ~p (~p=1) to mamy gwarancję matematyczną => iż zajdzie ~q (~q=1) - mówi o tym zdanie B2

Z diagramu D2 odczytujemy:
B2.
Jeśli zajdzie ~p (~p=1) to na 100% => zajdzie ~q (~q=1)
~p=>~q =1
Zajście ~p jest warunkiem wystarczającym => dla zajścia ~q wtedy i tylko wtedy gdy zbiór ~p jest podzbiorem => zbioru ~q
Sprawdzenie:
~p=[P] => ~q=[T+P] =1
Definicja warunku wystarczającego => jest spełniona (=1) bo zbiór ~p=[P] jest podzbiorem => zbioru ~q=[T+P]

Z prawdziwości warunku wystarczającego => B2 wynika fałszywość kontrprzykładu B2’ i odwrotnie.
B2’
Jeśli zajdzie ~p (~p=1) to może ~~> zajść q (q=1)
~p~~>q = ~p*q =0
Nie istnieje (=0) wspólny element ~~> zbiorów ~p i q
Sprawdzenie:
~p=[P] ~~> q=[K] = [P]*[K] =[] =0
Zbiór jednoelementowy Prosiaczek (P) jest rozłączny ze zbiorem jednoelementowym Kubuś (K)
cnd
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 35331
Przeczytał: 23 tematy

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Nie 23:05, 13 Cze 2021    Temat postu:

Algebra Kubusia - ostatnie czytanie!
Część XII

Po raz ostatni przed premierą czytam od początku algebrę Kubusia likwidując literówki i udoskonalając przekaz.

http://www.sfinia.fora.pl/forum-kubusia,12/algebra-kubusia-matematyka-jezyka-potocznego-brudnopis,18263.html#582015

Algebra Kubusia
5.3 Przykłady operatorów implikacji odwrotnej p||~>q

Spis treści
5.3 Implikacja odwrotna A||~>S w zdarzeniach 1
5.3.1 Operator implikacji odwrotnej A||~>S 4
5.3.2 Wisienka na torcie w operatorze implikacji odwrotnej A||~>S 6
5.4 Implikacja odwrotna P2|~>P8 w zbiorach 7
5.4.1 Operator implikacji odwrotnej P2||~>P8 w zbiorach 11
5.5 Implikacja odwrotna 4L|~>P w zbiorach w przedszkolu 13
5.5.1 Operator implikacji odwrotnej 4L|~>P w zbiorach w przedszkolu 16
5.6 Alternatywne dojście do operatora implikacji odwrotnej 4L|~>P w zbiorach 18
5.6.1 Implikacja odwrotna 4L|~>P w zbiorach 20
5.6.2 Operator implikacji odwrotnej 4L||~>P w zbiorach 21



Przykłady zawarte w niniejszym punkcie to poziom 5-cio latka:
4L||~>P
oraz poziom ucznia I lasy LO:
A||~>S i P2||~>P8


5.3 Implikacja odwrotna A||~>S w zdarzeniach

Kod:

T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
      ##        ##           ##        ##            ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5:  p+~q

Prawa Kubusia:        | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q  | A1: p=>q  = A4:~q=>~p
B1: p~>q = B2:~p=>~q  | B2:~p=>~q = B3: q=>p

Prawa Tygryska:       | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p   | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p   | B1: p~>q  = B4:~q~>~p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


Sterowanie żarówką S przez różne zespoły przycisków to najprostszy sposób by zrozumieć algebrę Kubusia na poziomie I klasy LO.

Niech będzie dany schemat elektryczny:
Kod:

S2 Schemat 2
             S               W            A
       -------------       ______       ______
  -----| Żarówka   |-------o    o-------o    o------
  |    -------------                               |
  |                                                |
______                                             |
 ___    U (źródło napięcia)                        |
  |                                                |
  |                                                |
  --------------------------------------------------


Prawo śfinii:
Dowolne zdanie warunkowe od którego zaczynamy analizę matematyczną jest domyślnym punktem odniesienia, gdzie po „Jeśli ..” zapisujemy p zaś po „to..” zapisujemy q z pominięciem przeczeń.

Zadajmy sobie dwa podstawowe pytania:
A1.
Czy wciśnięcie przycisku A jest wystarczające => dla świecenia żarówki S?

Odpowiedź:
Nie, bo nie zawsze gdy wciśniemy przycisk A żarówka zaświeci się.
Żarówka zaświeci się wtedy i tylko wtedy gdy dodatkowo przycisk W będzie wciśnięty.
Zauważmy, że pytanie A1 nie dotyczy przycisku W.
Przycisk W tu jest zmienną wolną którą możemy zastać w dowolnej pozycji W=x gdzie x={0,1}
Stąd mamy:
A1.
Jeśli przycisk A jest wciśnięty (A=1) to żarówka na 100% => świeci się (S=1)
A=>S =0
Wciśnięcie przycisku A nie jest (=0) warunkiem wystarczającym => do tego, aby żarówka świeciła się
Wciśnięcie przycisku A nie daje nam (=0) gwarancji matematycznej => świecenia się żarówki S
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>

B1.
Czy wciśnięcie przycisku A jest konieczne ~> dla świecenia żarówki S?

Odpowiedź:
Tak
Konieczne dlatego, że dodatkowo zmienna wolna W musi być ustawiona na W=1 (przycisk wciśnięty).
Stąd mamy:
B1.
Jeśli przycisk A jest wciśnięty (A=1) to żarówka może ~> się świecić (S=1)
A~>S =1
Przyjmijmy zdanie B1 za punkt odniesienia:
p=>q =1 - na mocy prawa śfinii
Nasz punkt odniesienia to:
p=A (przycisk A)
q=S (żarówka)
Wciśnięcie przycisku A (A=1) jest (=1) konieczne ~> dla świecenia się żarówki S (S=1).
Konieczne dlatego, że dodatkowo zmienna wolna W musi być ustawiona na W=1
cnd

Zauważmy, że zdania A1 i B1 lokalizują nam implikację odwrotną A|~>S.

IO.
Definicja podstawowa implikacji odwrotnej A|~>S:

Implikacja odwrotna A|~>S to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: A=>S =0 - wciśnięcie przycisku A nie jest (=0) wystarczające => dla świecenia się żarówki S
B1: A~>S =1 - wciśnięcie przycisku A jest (=1) konieczne ~> dla świecenia żarówki S
bo dodatkowo musi być wciśnięty przycisk W (W=1)
stąd mamy:
A|~>S = ~(A1: A=>S)*(B1: A~>S) =~(0)*1 = 1*1 =1

Nanieśmy zdania A1 i B1 do tabeli prawdy implikacji odwrotnej p|~>q
Kod:

IO:
Tabela prawdy implikacji odwrotnej p|~>q
Definicja implikacji odwrotnej p|~>q w zapisie formalnym {p,q}:
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
A1B1: p|~>q= ~(A1: p=>q)*(B1: p~>q)=~(0)*1=1*1 =1
Definicja implikacji odwrotnej A|~>S w zapisie aktualnym {A,S}:
Punkt odniesienia na mocy prawa śfinii to:
p=A (przycisk)
q=S (żarówka)
Definicja implikacji odwrotnej A|~>S w zapisie aktualnym:
A1: A=>S =0 - wciśnięcie A nie jest (=0) wystarczające dla świecenia S
B1: A~>S =1 - wciśnięcie A jest (=1) konieczne ~> dla świecenia S
A1B1: A|~>S= ~(A1: A=>S)*(B1: A~>S) =~(0)*1=1*1=1
       A1B1:          A2B2:      |     A3B3:          A4B4:
A:  1: p=>q   =0 = 2:~p~>~q =0  [=] 3: q~>p   =0 = 4:~q=>~p =0
A:  1: A=>S   =0 = 2:~A~>~S =0  [=] 3: S~>A   =0 = 4:~S=>~A =0
A’: 1: p~~>~q =1 =              [=]              = 4:~q~~>p =1                   
A’: 1: A~~>~S =1 =              [=]              = 4:~S~~>A =1                   
       ##             ##         |     ##            ##
B:  1: p~>q   =1 = 2:~p=>~q =1  [=] 3: q=>p   =1 = 4:~q~>~p =1
B:  1: A~>S   =1 = 2:~A=>~S =1  [=] 3: S=>A   =1 = 4:~S~>~A =1
B’:              = 2:~p~~>q =0  [=] 3: q~~>~p =0
B’:              = 2:~A~~>S =0  [=] 3: S~~>~A =0

Równanie operatora implikacji odwrotnej p||~>q:
A1B1:                                                        A2B2:
p|~>q = ~(A1: p=>q)*(B1: p~>q) = ~(A2:~p~>~q)*(B2:~p=>~q) = ~p|=>~q

Operator implikacji odwrotnej p||~>q to układ równań logicznych:
A1B1: p|~>q  =~(A1: p=> q)* (B1: p~>q) - co się stanie jeśli zajdzie p?
A2B2:~p|=>~q =~(A2:~p~>~q)* (B2:~p=>~q)- co się stanie jeśli zajdzie ~p?

Układ równań logicznych jest przemienny, stąd mamy:
Operator implikacji prostej ~p||=>~q to układ równań logicznych:
A2B2:~p|=>~q =~(A2:~p~>~q)* (B2:~p=>~q)- co się stanie jeśli zajdzie ~p?
A1B1: p|~>q   =~(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p?

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla poprawienia czytelności tabeli zapisy aktualne (z konkretnego przykładu) podstawiono w nagłówku tabeli oraz w części głównej decydującej o treści zdań warunkowych „Jeśli p to q”.

Operator implikacji odwrotnej p||~>q w logice dodatniej (bo q) to układ równań logicznych A1B1 i A2B2 odpowiadający na pytania o p i ~p:
A1B1: p|~>q =~(A1: p=> q)* (B1: p~>q) - co się stanie jeśli zajdzie p?
A2B2:~p|=>~q =~(A2:~p~>~q)* (B2:~p=>~q)- co się stanie jeśli zajdzie ~p?

Układ równań logicznych jest przemienny, stąd mamy:
Operator implikacji prostej ~p||=>~q w logice ujemnej (bo ~q) to układ równań logicznych A2B2 i A1B1 odpowiadający na pytania o ~p i p:
A2B2:~p|=>~q =~(A2:~p~>~q)* (B2:~p=>~q)- co się stanie jeśli zajdzie ~p?
A1B1: p|~>q =~(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p?


5.3.1 Operator implikacji odwrotnej A||~>S

Kod:

S2 Schemat 2
             S               W            A
       -------------       ______       ______
  -----| Żarówka   |-------o    o-------o    o------
  |    -------------                               |
  |                                                |
______                                             |
 ___    U (źródło napięcia)                        |
  |                                                |
  |                                                |
  --------------------------------------------------


Operator implikacji odwrotnej A||~>S w logice dodatniej (bo S) to układ równań logicznych A1B1 i A2B2 odpowiadający na pytania o A i ~A:

A1B1:
Co może się wydarzyć jeśli przycisk A będzie wciśnięty (A=1)?


Odpowiedź na to pytanie mamy w kolumnie A1B1:
A1: A=>S =0 - wciśnięcie A nie jest (=1) warunkiem wystarczającym => dla świecenia S
B1: A~>S =1 - wciśnięcie A jest (=1) warunkiem koniecznym ~> dla świecenia S
A1B1: A|~>S = ~(A1: A=>S)*(B1: A~>S) = ~(0)*1=1*1=1
Stąd mamy:
Jeśli przycisk A będzie wciśnięty (A=1) to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” - mówią o tym zdania B1 i A1’

Kolumna A1B1 w zdaniach warunkowych „Jeśli p to q”:
B1.
Jeśli przycisk A będzie wciśnięty (A=1) to żarówka może ~> się świecić (S=1)
A~>S =1
Wciśnięcie przycisku A (A=1) jest warunkiem koniecznym ~> dla świecenia się żarówki S (S=1), koniecznym dlatego, że dodatkowo zmienna wolna W musi być ustawiony na W=1.
Wciśnięcie przycisku A (A=1) jest warunkiem koniecznym ~> dla świecenia się żarówki S (S=1) bo jak przycisk A nie jest wciśnięty (~A=1) to żarówka na 100% => nie świeci się (~S=1)
Prawo Kubusia samo nam tu wyskoczyło:
B1: A~>S = B2: ~A=>~S

LUB

Fałszywość warunku wystarczającego A1: A=>S=0 wymusza prawdziwość kontrprzykładu A1’ i odwrotnie.
A1’.
Jeśli przycisk A będzie wciśnięty (A=1) to żarówka może ~> się nie świecić (~S=1)
A~~>~S = A*~S =1
Możliwe jest (=1) zdarzenie: przycisk A jest wciśnięty (A=1) i żarówka nie świeci się (~S=1)
Gdy zmienna wolna W ustawiona jest na W=0.

A2B2
Co może się wydarzyć jeśli przycisk A nie będzie wciśnięty (~A=1)?


Odpowiedź mamy w kolumnie A2B2:
A2: ~A~>~S =0 - nie wciśnięcie A (~A=1) nie jest (=0) konieczne ~> dla nie świecenia S (~S=1)
B2: ~A=>~S =1 - nie wciśnięcie A (~A=1) jest (=1) wystarczające => dla nie świecenia S (~S=1)
A2B2: ~A|=>~S = ~(A2: ~A~>~S)*(B2: ~A=>~S) =~(0)*1=1*1=1
Stąd mamy:
Jeśli przycisk A nie będzie wciśnięty (~A=1) to mamy gwarancję matematyczną => iż żarówka nie będzie się świecić (~S=1) - mówi o tym zdanie B2.

Kolumna A2B2 w zdaniach warunkowych „Jeśli p to q”:
B2.
Jeśli przycisk A nie będzie wciśnięty (~A=1) to na 100% => żarówka nie będzie się świecić (~S=1)
~A=>~S =1
Brak wciśnięcia A (~A=1) jest warunkiem wystarczającym => dla nie świecenia S (~S=1), bo zawsze gdy przycisk A nie jest wciśnięty (~A=1), żarówka nie świeci się (~S=1)
Zauważmy, że prawdziwość warunku wystarczającego => B2 wynika z praw fizyczno-matematycznych i nie ma tu potrzeby, jak to robią ziemscy matematycy, wykonywać nieskończonej ilości wciśnięć przycisku A sprawdzając czy za każdym wciśnięciem, żarówka świeci się.
Brak wciśnięcie przycisku A (~A=1) daje nam gwarancję matematyczną => iż żarówka nie będzie się świecić (~S=1), bo przyciski A i W połączone są szeregowo.
Stan przycisku W jest tu bez znaczenia W=x gdzie: x={0,1}
Zachodzi tożsamość pojęć:
Gwarancja matematyczna => = Warunek wystarczający =>

Prawdziwość warunku wystarczającego => B2 wymusza fałszywość kontrprzykładu B2’ (i odwrotnie).
B2’.
Jeśli przycisk A nie będzie wciśnięty (~A=1) to żarówka może ~~> się świecić (S=1)
~A~~>S = ~A*S =0
Zauważmy, że przyciski A i W połączone są szeregowo, z czego wynika że:
Niemożliwe jest (=0) zdarzenie: przycisk A nie jest wciśnięty (~A=1) i żarówka świeci się (S=1)
Stan zmiennej wolnej W jest tu bez znaczenia: W=x gdzie: x={0,1}

Podsumowanie:
Istotą operatora implikacji odwrotnej A||~>S jest najzwyklejsze „rzucanie monetą” w rozumieniu „na dwoje babka wróżyła” po stronie wciśniętego przycisku A (A=1 - zdania B1 i A1’), oraz gwarancja matematyczna => po stronie nie wciśniętego przycisku A (~A=1 - zdanie B2).
Doskonale to widać w powyższej analizie.

Zauważmy że:
a)
Układ równań logicznych jest przemienny, stąd mamy:
Operator implikacji prostej ~p||=>~q w logice ujemnej (bo ~q) to układ równań logicznych:
A2B2:~p|=>~q =~(A2:~p~>~q)* (B2:~p=>~q)- co się stanie jeśli zajdzie ~p?
A1B1: p|~>q =~(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p?
Doskonale widać, że analiza matematyczna operatora implikacji prostej ~A||=>~S w logice ujemnej (bo ~S) będzie identyczna jak operatora implikacji odwrotnej A||~>S w logice dodatniej (bo S) z tym, że zaczynamy od kolumny A2B2 kończąc na kolumnie A1B1, co matematycznie jest bez znaczenia.
b)
Także kolejność wypowiadanych zdań jest dowolna, tak więc zdania z powyższej analizy B1, A1’ B2, B2’ możemy wypowiadać w sposób losowy - matematycznie to bez znaczenia.

5.3.2 Wisienka na torcie w operatorze implikacji odwrotnej A||~>S

Wisienką na torcie w implikacji odwrotnej A||~>S jest podstawowy schemat układu realizującego implikację odwrotną A|~>S w zdarzeniach zrealizowany przy pomocy zespołu przycisków (wejście) i żarówki (wyjście).
Kod:

S2 Schemat 2
Fizyczny układ minimalny implikacji odwrotnej A|~>S w zdarzeniach:
A|~>S=~(A1: A=>S)*(B1: A~>S)=~(0)*1=1*1=1
             S               A            W
       -------------       ______       ______
  -----| Żarówka   |-------o    o-------o    o------
  |    -------------                               |
  |                                                |
______                                             |
 ___    U (źródło napięcia)                        |
  |                                                |
  |                                                |
  --------------------------------------------------
Punkt odniesienia: przycisk A
Zmienne związane definicją: A, S
Zmienna wolna: W
Istotą implikacji odwrotnej A|~>S jest istnienie zmiennej wolnej W
podłączonej szeregowo z przyciskiem A

Definicja zmiennej związanej:
Zmienna związana to zmienna występujące w układzie uwzględniona w opisie matematycznym układu.
Zmienna związana z definicji jest ustawiana na 0 albo 1 przez człowieka.

Definicja zmiennej wolnej:
Zmienna wolna to zmienna występująca w układzie, ale nie uwzględniona w opisie matematycznym układu.
Zmienna wolna z definicji może być ustawiana na 0 albo 1 poza kontrolą człowieka.

Fizyczna interpretacja zmiennej wolnej W:
Wyobraźmy sobie dwa pokoje A i B.
W pokoju A siedzi Jaś mając do dyspozycji wyłącznie przycisk A, zaś w pokoju B siedzi Zuzia mając do dyspozycji wyłączne przycisk W. Oboje widzą dokładnie tą samą żarówkę S. Jaś nie widzi Zuzi, ani Zuzia nie widzi Jasia, ale oboje wiedzą o swoim wzajemnym istnieniu.
Zarówno Jaś jak i Zuzia dostają do ręki schemat S2, czyli są świadomi, że przycisk którego nie widzą istnieje w układzie S2, tylko nie mają do niego dostępu (zmienna wolna). Oboje są świadomi, że jako istoty żywe mają wolną wolę i mogą wciskać swój przycisk ile dusza zapragnie.
Punktem odniesienia na schemacie S2 jest Jaś siedzący w pokoju A, bowiem w równaniu opisującym układ występuje wyłącznie przycisk A - Jaś nie widzi przycisku W.

Matematycznie jest kompletnie bez znaczenia czy zmienna wolna W będzie pojedynczym przyciskiem, czy też dowolną funkcją logiczną f(w) zbudowaną z n przycisków, byleby dało się ustawić:
f(w) =1
oraz
f(w)=0
bowiem z definicji funkcja logiczna f(w) musi być układem zastępczym pojedynczego przycisku W, gdzie daje się ustawić zarówno W=1 jak i W=0.
Przykład:
f(w) = C+D*(E+~F)
Gdzie:
C, D, E - przyciski normalnie rozwarte
~F - przycisk normalnie zwarty

Także zmienna związana A nie musi być pojedynczym przyciskiem, może być zespołem n przycisków realizujących funkcję logiczną f(a) byleby dało się ustawić:
f(a) =1
oraz
f(a)=0
bowiem z definicji funkcja logiczna f(a) musi być układem zastępczym pojedynczego przycisku A, gdzie daje się ustawić zarówno A=1 jak i A=0.
Przykład:
f(a) = K+~L*~M
Gdzie:
K - przycisk normalnie rozwarty
~L, ~M - przyciski normalnie zwarte

Dokładnie z powyższego powodu w stosunku do układu S2 możemy powiedzieć, iż jest to fizyczny układ minimalny implikacji odwrotnej A|~>S

5.4 Implikacja odwrotna P2|~>P8 w zbiorach

W algebrze Kubusia w zbiorach zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

Twierdzenia matematyczne operują wyłącznie na zbiorach nieskończonych, logika matematyczna jest tu identyczna jak opisana wyżej banalna logika zdarzeń, jednak zbiory nieskończone z oczywistych powodów są trudniejsze do analizy.
Niemniej jednak możliwe są operacje na zbiorach nieskończonych zrozumiałe dla ucznia I klasy LO i do takich zbiorów ograniczymy się w wykładzie.

Definicja twierdzenia matematycznego:
Dowolne twierdzenie matematyczne prawdziwe to spełniony warunek wystarczający =>:
p=>q =1 - wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q
inaczej:
p=>q =0 - twierdzenie matematyczne jest fałszywe.

Matematyczne związki warunków wystarczających => i koniecznych ~>

Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
A1: p=>q = ~p+q
##
Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
B1: p~>q = p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Na mocy rachunku zero-jedynkowego mamy matematyczne związki warunków wystarczających => i koniecznych ~>.
Kod:

T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
      ##        ##           ##        ##            ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5:  p+~q

Prawa Kubusia:        | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q  | A1: p=>q  = A4:~q=>~p
B1: p~>q = B2:~p=>~q  | B2:~p=>~q = B3: q=>p

Prawa Tygryska:       | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p   | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p   | B1: p~>q  = B4:~q~>~p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


Prawo śfinii:
Dowolne zdanie warunkowe od którego zaczynamy analizę matematyczną jest domyślnym punktem odniesienia, gdzie po „Jeśli ..” zapisujemy p zaś po „to..” zapisujemy q z pominięciem przeczeń.

Weźmy do analizy następujące zdanie:
WK.
Jeśli dowolna liczba jest podzielna przez 2 to może ~~> być podzielna przez 8
P2~~>P8 = P2*P8 =1
Definicja elementu wspólnego ~~> zbiorów jest spełniona bo zbiory P2=[2,4,6,8..] i P8=[8,16,24..] mają co najmniej jeden element wspólny np. 8.
cnd
To samo zdanie w zapisie formalnym:
p~~>q = p*q =1 - na mocy prawa śfinii
Punkt odniesienia na mocy praw śfinii to:
p=P2 - zbiór liczb podzielnych przez 2
q=P8 - zbiór liczb podzielnych przez 8
Poprzednik p mówi tu o zbiorze P2=[2,4,6,8..], zaś następnik q o zbiorze P8=[8,16,24..]
Dla potrzeb dalszej analizy musimy obliczyć przeczenia zabiorów P2 i P8, rozumiane jako uzupełnienia do wspólnej dziedziny.
Przyjmijmy wspólną dziedzinę minimalną LN:
LN=1,2,3,4,5,6,7,8,9..] - zbiór liczb naturalnych
Zdanie WK definiuje zbiory:
P2=[2,4,6,8..] - zbiór liczb podzielnych przez 2 (zbiór liczb parzystych)
P8=[8,16,24..] - zbiór liczb podzielnych przez 8
Obliczamy przeczenia zbiorów rozumiane jako ich uzupełnienia do dziedziny LN:
~P2=[LN-P2]=[1,3,5,7,9..] - zbiór liczb niepodzielnych przez 2 (zbiór liczb nieparzystych)
~P8=[LN-P8]=[1,2,3,4,5,6,7..9..] - zbiór liczb niepodzielnych przez 8
Matematycznie zachodzi definicja wspólnej dziedziny LN zarówno dla P2 jak i dla P8.
Definicja dziedziny dla P2:
P2+~P2 = LN =1 - zbiór ~P2 jest uzupełnieniem do dziedziny LN dla zbioru P2
P2*~P2 =[] =0 - zbiory P2 i ~P2 są rozłączne
Definicja dziedziny dla P8:
P8+~P8 = LN =1 - zbiór ~P8 jest uzupełnieniem do dziedziny LN dla zbioru P8
P8*~P8 =[] =0 - zbiory P8 i ~P8 są rozłączne

Sprawdźmy czy w zdaniu WK spełniony jest warunek wystarczający =>:
A1.
Jeśli dowolna liczba jest podzielna przez 2 (P2=1) to na 100% => jest podzielna przez 8 (P8=1)
P2=>P8 =0
To samo w zapisie formalnym (na mocy prawa śfinii):
p=>q =0
Definicja warunku wystarczającego => nie jest spełniona bo zbiór P2=[2,4,6,8..] nie jest nadzbiorem ~> zbioru P8=[8,16,24..]
Indeksowanie A1 wymusza tu tabela T0.
Zauważmy bowiem, że w kolumnach A1B1 i A2B2 (tylko te nas interesują na mocy prawa śfinii) warunek wystarczający p=>q mamy wyłącznie na pozycji A1.
cnd

Aby stwierdzić w skład jakiego operatora logicznego wchodzi nasze zdanie WK musimy zbadać prawdziwość/fałszywość zdania A1 kodowanego warunkiem koniecznym ~>
B1.
Jeśli dowolna liczba jest podzielna przez 2 to może ~> być podzielna przez 8
P2~>P8 =1
to samo w zapisie formalnym (na mocy prawa śfinii):
p~>q =1
Definicja warunku koniecznego ~> jest (=1) spełniona, bo zbiór P2=[2,4,6,8..] jest nadzbiorem ~> zbioru P8=[8,16,24..]
Indeksowanie B1 wynika tu z tabeli T0.

Najprostszy warunek wystarczający zawsze łatwiej się dowodzi.
Zastosujmy zatem prawo Tygryska:
B1: p~>q = B3: q=>p - zapis formalny
B1: P2~>P8 = B3: P8=>P2 - zapis aktualny
Dowodzimy prawdziwości B3.
B3.
Jeśli dowolna liczba jest podzielna przez 8 to na 100% => jest podzielna przez 2
P8=>P2 =1
Definicja warunku wystarczającego => spełniona bo zbiór P8=[8,16,24..] jest podzbiorem => zbioru P2=[2,4,6,8…]
Z dowodem prawdziwości zdania B3 ziemski matematyk bez problemu sobie poradzi.
Prawdziwość B3, na mocy prawa Kubusia wymusza prawdziwość B1:
B1: P2~>P8 =1 - podzielność dowolnej liczny przez 2 jest warunkiem koniecznym ~> dla jej podzielności przez 8
cnd

Prawo Kobry dla zbiorów:
Warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q” jest jego prawdziwość przy kodowaniu elementem wspólnym zbiorów ~~>.
Innymi słowy:
Jeśli prawdziwe jest zdanie kodowane warunkiem wystarczającym => lub koniecznym ~> to na 100% prawdziwe jest to samo zdanie kodowane elementem wspólnym zbiorów ~~> (odwrotnie nie zachodzi)

Na mocy prawa Kobry, nasze zdanie wejściowe WK kodowane zdarzeniem możliwym ~~> jest częścią warunku koniecznego ~> B1.
Stąd mamy rozstrzygnięcie iż zdania A1 i B1 tworzą definicję implikacji odwrotnej P2|~>P8.

IO.
Definicja implikacji odwrotnej P2|~>P8:

Implikacja odwrotna P2|~>P8 w logice dodatniej (bo P8) to zachodzenie wyłącznie warunku koniecznego ~> miedzy tymi samymi punktami i w tym samym kierunku
A1: P2=>P8 =0 - podzielność liczby przez 2 nie jest (=0) wystarczająca => dla jej podzielności przez 8
B1: P2~>P8 =1 - podzielność liczby przez 2 jest (=1) konieczna ~> dla jej podzielności przez 8
P2|~>P8 = ~(A1: P2=>P8)*(B1: ~P2=>~P8) = ~(0)*1 =1*1 =1

Nanieśmy zdania A1 i B1 do tabeli prawdy implikacji odwrotnej p|~>q.
Kod:

IO:
Tabela prawdy implikacji odwrotnej p|~>q
Definicja implikacji odwrotnej p|~>q w zapisie formalnym {p,q}:
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
A1B1: p|~>q= ~(A1: p=>q)*(B1: p~>q)=~(0)*1=1*1 =1
Definicja implikacji odwrotnej P2|~>P8 w zapisie aktualnym {P2,P8}:
Punkt odniesienia na mocy prawa śfinii to:
p=P2 - zbiór liczb podzielnych przez 2
q=P8 - zbiór liczba podzielnych przez 8
Definicja implikacji odwrotnej P2|~>P8 w zapisie aktualnym:
A1: P2=>P8 =0 - bo zbiór P2 nie jest (=0) podzbiorem P8
B1: P2~>P8 =1 - bo zbiór P2 jest (=1) nadzbiorem ~>P8
A1B1: P2|~>P8= ~(A1: P2=>P8)*(B1: P2~>P8)=~(0)*1=1*1=1
       A1B1:           A2B2:      |      A3B3:          A4B4:
A:  1: p=>q   = 0 = 2:~p~>~q  =0 [=] 3: q~>p    =0 = 4:~q=>~p  =0
A:  1: P2=>P8  =0 = 2:~P2~>~P8=0 [=] 3: P8~>P2  =0 = 4:~P8=>~P2=0
A’: 1: p~~>~q  =1 =              [=]               = 4:~q~~>p  =1                   
A’: 1: P2~~>~P8=1 =              [=]               = 4:~P8~~>P2=1                   
       ##             ##          |     ##            ##
B:  1: p~>q    =1 = 2:~p=>~q  =1 [=] 3: q=>p    =1 = 4:~q~>~p  =1
B:  1: P2~>P8  =1 = 2:~P2=>~P8=1 [=] 3: P8=>P2  =1 = 4:~P8~>~P2=1
B’:               = 2:~p~~>q  =0 [=] 3: q~~>~p  =0
B’:               = 2:~P2~~>P8=0 [=] 3: P8~~>~P2=0

Równanie operatora implikacji odwrotnej p||~>q:
A1B1:                                                        A2B2:
p|~>q = ~(A1: p=>q)*(B1: p~>q) = ~(A2:~p~>~q)*(B2:~p=>~q) = ~p|=>~q

Operator implikacji odwrotnej p||~>q to układ równań logicznych:
A1B1: p|~>q  =~(A1: p=> q)* (B1: p~>q) - co się stanie jeśli zajdzie p?
A2B2:~p|=>~q =~(A2:~p~>~q)* (B2:~p=>~q)- co się stanie jeśli zajdzie ~p?

Układ równań logicznych jest przemienny, stąd mamy:
Operator implikacji prostej ~p||=>~q to układ równań logicznych:
A2B2:~p|=>~q =~(A2:~p~>~q)* (B2:~p=>~q)- co się stanie jeśli zajdzie ~p?
A1B1: p|~>q   =~(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p?

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla poprawienia czytelności tabeli zapisy aktualne (z konkretnego przykładu) podstawiono w nagłówku tabeli oraz w części głównej decydującej o treści zdań warunkowych „Jeśli p to q”.

Z tabeli prawdy implikacji odwrotnej IO odczytujemy:

Operator implikacji odwrotnej p||~>q w logice dodatniej (bo q) to układ równań logicznych A1B1 i A2B2 dający odpowiedź na pytanie o p i ~p:
A1B1: p|~>q =~(A1: p=> q)* (B1: p~>q) - co się stanie jeśli zajdzie p?
A2B2:~p|=>~q =~(A2:~p~>~q)* (B2:~p=>~q)- co się stanie jeśli zajdzie ~p?

Układ równań logicznych jest przemienny, stąd mamy:
Operator implikacji prostej ~p||=>~q w logice ujemnej (bo ~q) to układ równań logicznych A2B2 i A1B1 dający odpowiedź na pytanie o ~p i p:
A2B2:~p|=>~q =~(A2:~p~>~q)* (B2:~p=>~q)- co się stanie jeśli zajdzie ~p?
A1B1: p|~>q =~(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p?

5.4.1 Operator implikacji odwrotnej P2||~>P8 w zbiorach

Operator implikacji odwrotnej P2||~>P8 w logice dodatniej (bo P8) to układ równań logicznych A1B1 i A2B2 dający odpowiedź na pytanie o P2 i ~P2:

A1B1:
Co się stanie jeśli ze zbioru liczb naturalnych wylosujemy liczbę podzielną przez 2 (P2=1)?


Odpowiedź mamy w kolumnie A1B1:
A1: P2=>P8 =0 - bo zbiór P2=[2,4,6,8..] nie jest (=0) podzbiorem => P8=[8,16,24..]
B1: P2~>P8 =1 - bo zbiór P2=[2,4,6,8..] jest (=1) nadzbiorem ~> P8=[8,16,24..]
A1B1: P2|~>P8 = ~(A1: P2=>P8)*(B1: P2~>P8) = ~(0)*1=1*1=1
stąd mamy:
Jeśli ze zbioru liczb naturalnych wylosujemy liczbę podzielna przez 2 (P2=1) to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” - mówią o tym zdania B1 i A1’

Kolumna A1B1 w zdaniach warunkowych „Jeśli p to q”:
B1.
Jeśli dowolna liczba jest podzielna przez 2 (P2=1) to może ~> być podzielna przez 8 (P8=1)
P2~>P8 =1
Definicja warunku koniecznego ~> jest (=1) spełniona, bo zbiór P2=[2,4,6,8..] jest nadzbiorem ~> zbioru P8=[8,16,24..]

LUB

Fałszywy warunek wystarczający A1 wymusza prawdziwość kontrprzykładu A1’ i odwrotnie.
A1’
Jeśli dowolna liczba jest podzielna przez 2 (P2=1) to może ~~> nie być podzielna przez 2 (~P2=1)
P2~~>~P8=P2*~P8 =1
Definicja elementu wspólnego zbiorów ~~> jest (=1) spełniona bo zbiory P2=[2,4,6,8..] i ~P8=[1,2,3,4,5,6..9..] mają co najmniej jeden element wspólny np. 2
W zdaniu A1’ nie zachodzi ani warunek wystarczający =>, ani też konieczny ~> i tego faktu nie musimy dowodzić na mocy algebry Kubusia.

A2B2:
Co się stanie jeśli ze zbioru liczb naturalnych wylosujemy liczbę niepodzielną przez 2 (~P2=1)?


Odpowiedź mamy w kolumnie A2B2:
A2: ~P2~>~P8 =0 - zbiór ~P2=[1,3,5,7,9..] nie jest (=0) nadzbiorem ~> ~P8=[1,2,3,4,5,6,7..9..]
B2: ~P2=>~P8 =1 - zbiór ~P2=[1,3,5,7,9..] jest (=1) podzbiorem => ~P8=[1,2,3,4,5,6,7..9..]
A2B2: ~P2|=>~P8 = ~(A2: ~P2~>~P8)*(B2: ~P2=>~P8) =~(0)*1=1*1=1
stąd mamy:
Jeśli ze zbioru liczb naturalnych wylosujemy liczbę niepodzielną przez 2 to mamy gwarancję matematyczną => iż ta liczba nie będzie podzielna przez 8 - mówi o tym zdanie B2.
Uwaga:
Po udowodnieniu iż zdanie warunkowe „Jeśli P2 to P8” jest częścią operatora implikacji odwrotnej P2||~>P8 nic więcej nie musimy udowadniać - mamy zdeterminowaną prawdziwość/fałszywość wszelkich zdań warunkowych „Jeśli p to q” widniejących w tabeli prawdy implikacji odwrotnej IO.
Nie musimy, nie oznacza że nie możemy, dlatego przedstawiam dowody indywidualne dla każdego ze zdań widniejących w IO.

B2.
Jeśli dowolna liczba nie jest podzielna przez 2 (~P2=1) to na 100% => nie jest podzielna przez 8 (~P8=1)
~P2=>~P8 =1
Niepodzielność dowolnej liczby przez 2 wystarcza => dla jej niepodzielności przez 8 bo zbiór ~P2=[1,3,5,7,9..] jest podzbiorem => zbioru ~P8=[1,2,3,4,5,6,7..9..]
Oczywiście ten fakt dowodzimy korzystając z prawa kontrapozycji:
B2: ~p=>~q = B3: q=>p - zapis formalny
B2: ~P2=>~P8 = B3: P8=>P2 - zapis aktualny
Udowodnienie prawdziwości B3: P8=>P2 =1 na mocy prawa kontrapozycji gwarantuje prawdziwość zdania B2:~P2=>~P8 =1

Z prawdziwości warunku wystarczającego B2 wynika fałszywość kontrprzykładu B2’ i odwrotnie.
B2’
Jeśli dowolna liczba nie jest podzielna przez 2 (~P2=1) to może ~~> być podzielna przez 8 (P8=1)
~P2~~>P8=~P2*P8 =0
Definicja elementu wspólnego zbiorów ~~> nie jest spełniona bo zbiór ~P2=[1,3,5,7,9..] jest rozłączny ze zbiorem P8=[8,16, 24..]
Dowolny zbiór liczb nieparzystych jest rozłączny z dowolnym zbiorem liczb parzystych.
cnd

Podsumowanie:
Cechą charakterystyczną operatora implikacji odwrotnej P2||~>P8 jest najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” po stronie liczb podzielnych przez 2 (P2 - zdania B1 i A1’) oraz gwarancja matematyczna => po stronie liczb niepodzielnych przez 2 (~P8 - zdanie B2)
Doskonale to widać w analizie wyżej.

Zauważmy że:
a)
Układ równań logicznych jest przemienny, stąd mamy:
Operator implikacji prostej ~p||=>~q to układ równań logicznych:
A2B2:~p|=>~q =~(A2:~p~>~q)* (B2:~p=>~q)- co się stanie jeśli zajdzie ~p?
A1B1: p|~>q =~(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p?
Doskonale widać, że analiza matematyczna operatora implikacji prostej ~P2||=>~P8 w logice ujemnej (bo ~P8) będzie identyczna jak operatora implikacji odwrotnej P2||~>P8 w logice dodatniej (bo P8) z tym, że zaczynamy od kolumny A2B2 kończąc na kolumnie A1B1, co matematycznie jest bez znaczenia.
b)
Także kolejność wypowiadanych zdań jest dowolna, tak więc zdania z powyższej analizy B1, A1’ B2, B2’ możemy wypowiadać w sposób losowy - matematycznie to bez znaczenia.


5.5 Implikacja odwrotna 4L|~>P w zbiorach w przedszkolu

W algebrze Kubusia w zbiorach zachodzi:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

Kod:

T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
      ##        ##           ##        ##            ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5:  p+~q

Prawa Kubusia:        | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q  | A1: p=>q  = A4:~q=>~p
B1: p~>q = B2:~p=>~q  | B2:~p=>~q = B3: q=>p

Prawa Tygryska:       | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p   | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p   | B1: p~>q  = B4:~q~>~p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


Zadanie matematyczne w 100-milowym lesie:
Zbadaj w skład jakiego operatora logicznego wchodzi zdanie:
Jeśli zwierzę ma cztery łapy to może być psem
Zapisz szczegółową analizę tego operatora

Rozwiązanie:

Dane jest zdanie wejściowe:
B1.
Jeśli zwierzę ma cztery łapy (4L=1) to może ~> być psem (P=1)
4L~>P =1
Bycie zwierzęciem z czterema łapami (4L=1) jest (=1) warunkiem koniecznym ~> do tego aby być psem (P=1), bo jak się nie ma czterech łap (~4L=1) to na 100% => nie jest się psem (~P=1)
Prawo Kubusia samo nam tu wyskoczyło:
B1: 4L~>P = B2:~4L=>~P

Prawo śfinii:
Dowolne zdanie warunkowe od którego zaczynamy analizę matematyczną jest domyślnym punktem odniesienia, gdzie po „Jeśli ..” zapisujemy p zaś po „to..” zapisujemy q z pominięciem przeczeń.

Na mocy prawa śfinii zapis formalny zdania B1 to:
B1: p~>q =1
p=4L=[pies, słoń ..] - zbiór zwierząt z czterema łapami.
q=P=[pies] - jednoelementowy zbiór pies
B1: 4L~>P =1 - bo zbiór 4L=[pies, słoń ..] jest nadzbiorem ~> zbioru jednoelementowego P=[pies]

Aby udowodnić w skład jakiego operatora logicznego wchodzi warunek konieczny B1: 4L~>P musimy zbadać prawdziwość/fałszywość warunku wystarczającego A1: 4L=>P między tymi samymi punktami i w tym samym kierunku.

Warunek konieczny B1 definiuje nam dwa zbiory:
Poprzednik p:
4L=[pies, słoń ..] - zbiór zwierząt z czterema łapami.
Następnik q:
P=[pies] - zbiór jednoelementowy pies

Przyjmijmy dziedzinę minimalną:
ZWZ - zbiór wszystkich zwierząt
Stąd mamy zaprzeczenia zbiorów rozumiane jako ich uzupełnia do wspólnej dziedziny ZWZ:
~4L=[ZWZ-4L] = [kura ..] =1 - zbiór wszystkich zwierząt z wykluczeniem zwierząt z czterema łapami
~P=[ZWZ-P] =[słoń, kura ..] =1 - zbiór wszystkich zwierząt z wykluczeniem psa
Gdzie:
[słoń] - jest przedstawicielem zwierząt nie będących psami które mają cztery łapy
[kura] - jest przedstawicielem zwierząt nie mających czterech łap

Badamy teraz czy spełniony jest warunek wystarczający A1: 4L=>P=?
A1.
Jeśli zwierzę ma cztery łapy (4L=1) to na 100% => jest psem (P=1)
4L=>P =0
Bycie zwierzęciem z czterema łapami (4L=1) nie jest (=0) warunkiem wystarczającym => do tego aby być psem (P=1) bo zbiór 4L=[pies, słoń..] nie jest podzbiorem => zbioru jednoelementowego P=[pies].

Dopiero w tym momencie, po udowodnieniu prawdziwości zdania B1: 4L~>P=1 i fałszywości zdania A1: 4L=>P=0 mamy rozstrzygnięcie iż oba te zdania należą do operatora implikacji odwrotnej 4L||~>P

Definicja podstawowa implikacji odwrotnej p|~>q:
Implikacja odwrotna p|~>q to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
##
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
stąd:
p|~>q = ~(A1: p=>q)*(B1: p~>q) =~(0)*1 = 1*1 =1

Nasz przykład:
Definicja implikacji odwrotnej 4L|~>P
Implikacja odwrotna 4L|~>P to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku:
A1: 4L=>P =0 - bycie zwierzęciem z czterema łapami nie jest (=0) warunkiem wystarczającym =>
do tego by być psem, bo nie wszystkie zwierzęta mające cztery łapy, są psami
B1: 4L~>P =1 - bycie zwierzęciem z czterema łapami (4L=1) jest warunkiem koniecznym ~> do tego,
aby być psem (P=1), bo jak się nie ma czterech łap (~4L=1) to na 100% =>
nie jest się psem (~P=1).
Prawo Kubusia samo nam tu wyskoczyło:
B1: 4L~>P = B2: ~4L=>~P
Stąd:
A1B1: 4L|~>P = ~(A1: 4L=>P)*(B1: 4L~>P) =~(0)*1 =1*1 =1

Podstawmy nasze zdania A1: 4L=>P=0 i B1: 4L~>P=1 do tabeli prawdy implikacji odwrotnej 4L|~>P
Kod:

IO:
Tabela prawdy implikacji odwrotnej p|~>q
Definicja implikacji odwrotnej p|~>q w zapisie formalnym {p,q}:
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
A1B1: p|~>q= ~(A1: p=>q)*(B1: p~>q)=~(0)*1=1*1 =1
Punkt odniesienia na mocy prawa śfinii to:
p=4L=[pies, słoń ..] - zbiór zwierząt mających cztery łapy
q=P=[pies] - jednoelementowy zbiór pies
Kolumna A1B1 to punkt odniesienia w zapisie aktualnym {4L,P}
A1: 4L=>P =0 - posiadanie 4 łap nie jest (=0) wystarczające => by być psem
B1: 4L~>P =1 - posiadanie 4 łap jest  (=1) konieczne ~> by być psem
A1B1: 4L|~>P= ~(A1: 4L=>P)*(B1: 4L~>P)=~(0)*1=1*1=1
       A1B1:          A2B2:       |      A3B3:           A4B4:
A:  1: p=>q   =0 = 2:~p~>~q =0    [=] 3: q~>p   =0  = 4:~q=>~p  =0
A:  1: 4L=>P  =0 = 2:~4L~>~P=1    [=] 3: P~>4L  =0  = 4:~P=>~4L =0
A’: 1: p~~>~q =1 =                [=]               = 4:~q~~>p  =1                   
A’: 1: 4L~~>~P=1 =                [=]               = 4:~P~~>4L =1                   
       ##            ##            |     ##            ##
B:  1: p~>q   =1 = 2:~p=>~q =1    [=] 3: q=>p   =1  = 4:~q~>~p  =1
B:  1: 4L~>P  =1 = 2:~4L=>~P=1    [=] 3: P=>4L  =1  = 4:~P~>~4L =1
B’:              = 2:~p~~>q =0    [=] 3: q~~>~p =0
B’:              = 2:~4L~~>P=0    [=] 3: P~~>~4L=0

Równanie operatora implikacji odwrotnej p||~>q:
A1B1:                                                        A2B2:
p|~>q = ~(A1: p=>q)*(B1: p~>q) = ~(A2:~p~>~q)*(B2:~p=>~q) = ~p|=>~q

Operator implikacji odwrotnej p||~>q to układ równań logicznych:
A1B1: p|~>q  =~(A1: p=> q)* (B1: p~>q) - co się stanie jeśli zajdzie p?
A2B2:~p|=>~q =~(A2:~p~>~q)* (B2:~p=>~q)- co się stanie jeśli zajdzie ~p?

Układ równań logicznych jest przemienny, stąd mamy:
Operator implikacji prostej ~p||=>~q to układ równań logicznych:
A2B2:~p|=>~q =~(A2:~p~>~q)* (B2:~p=>~q)- co się stanie jeśli zajdzie ~p?
A1B1: p|~>q   =~(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p?

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla poprawienia czytelności tabeli zapisy aktualne (z konkretnego przykładu) podstawiono w nagłówku tabeli oraz w części głównej decydującej o treści zdań warunkowych „Jeśli p to q”.

5.5.1 Operator implikacji odwrotnej 4L|~>P w zbiorach w przedszkolu

Operator implikacji odwrotnej 4L||~>P w logice dodatniej (bo P) to układ równań logicznych A1B1 i A2B2 dających odpowiedź na pytania o 4L i ~4L:

A1B1:
Co może się wydarzyć, jeśli ze zbioru wszystkich zwierząt ZWZ wylosujemy zwierzę mające cztery łapy (4L=1)?


Odpowiedź mamy w kolumnie A1B1:
A1: 4L=>P =0 - bo zbiór 4L=[pies, słoń ..] nie jest (=0) podzbiorem => zbioru P=[pies]
B1: 4L~>P =1 - bo zbiór 4L=[pies, słoń ..] jest (=1) nadzbiorem ~> zbioru P=[pies]
A1B1: 4L|=>P = ~(A1: 4L=>P)*(B1: 4L~>P) =~(0)*1=1*1=1
Stąd mamy:
Jeśli ze zbioru wszystkich zwierząt (ZWZ) wylosujemy zwierzę mające cztery łapy (4L=1) to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła”, o czym mówią zdania prawdziwe B1 i A1’

Kolumna A1B1 w zdaniach warunkowych „Jeśli p to q”:
B1.
Jeśli zwierzę ma cztery lapy (4L=1) to może ~> być psem (P=1)
4L~>P =1
Posiadanie czterech łap (4L=1) jest warunkiem koniecznym ~> aby być psem (P=1) bo jak się nie ma czterech łap (~4L=1) to na 100% => nie jest się psem (~P=1)
Prawo Kubusia samo nam tu wyskoczyło:
B1: 4L~>P = B2: ~4L=>~P

LUB

Fałszywy warunek wystarczający A1: 4L=>P=0 wymusza prawdziwy kontrprzykład A1’ i odwrotnie
A1’.
Jeśli zwierzę ma cztery łapy (4L=1) to może ~~> nie być psem (~P=1)
4L~~>~P = 4L*~P =1
Istnieje (=1) element wspólny zbiorów: 4L=[pies, słoń ..] i ~P=[słoń, kura..] np. słoń
Zauważmy, że między zbiorami 4L=[pies, słoń ..] i ~P=[słoń, kura ..] nie zachodzi ani warunek wystarczający => ani też konieczny ~> w obie strony.
Dowód:
4L=[pies, słoń ..] ~> ~P=[słoń, kura ..] =0 - bo zbiór 4L nie jest nadzbiorem ~> zbioru ~P (bo kura)
4L=[pies, słoń ..] => ~P=[słoń, kura ..] =0 - bo zbiór 4L nie jest podzbiorem => zbioru ~P (bo pies)
cnd


A2B2:
Co może się wydarzyć, jeśli ze zbioru wszystkich zwierząt ZWZ wylosujemy zwierzę nie mające czterech łap (~4L=1)?


Odpowiedź mamy w kolumnie A2B2:
A2: ~4L~>~P =0 - bo zbiór ~4L=[kura..] nie jest (=0) nadzbiorem ~> zbioru ~P=[słoń, kura..]
B2: ~4L=>~P =1 - bo zbiór ~4L=[kura..] nie jest (=1) podzbiorem => zbioru ~P=[słoń, kura..]
A2B2: ~4L|=>~P = ~(A2: ~4L~>~P)*(B2: ~4L=>~P) = ~(0)*1=1*1=1
Stąd mamy:
Jeśli ze zbioru wszystkich zwierząt (ZWZ) wylosujemy zwierzę nie mające czterech łap (~4L=1) to mamy gwarancję matematyczną => iż wylosowane zwierzę nie będzie psem (~P=1) - mówi o tym zdanie B2.

Kolumna A2B2 w zdaniach warunkowych „Jeśli p to q”:
B2.
Jeśli zwierzę nie ma czterech łap (~4L=1) to na 100% => nie jest psem (~P=1)
~4L=>~P =1
U dowolnego zwierzęcia brak czterech łap (~4L=1) jest (=1) warunkiem wystarczającym => dla wnioskowania iż nie jest to pies (~P=1), bo zbiór zwierząt nie mających czterech łap ~4L=[kura..] jest podzbiorem zbioru „nie pies” ~P=[słoń, kura..]
U dowolnego zwierzęcia brak czterech łap (~4L=1) daje nam gwarancję matematyczną => iż nie jest to pies (~P=1)
Zachodzi tożsamość matematyczna pojęć:
Warunek wystarczający => = relacja podzbioru => = gwarancja matematyczna =>
Zauważmy, że prawdziwości zdania B2 nie musimy dowodzić bo wynika ona z prawa Kubusia:
B2:~4L=>~P = B1: 4L~>P

Prawdziwy warunek wystarczający B2 wymusza fałszywość kontrprzykładu B2’ i odwrotnie
Sprawdzenie:
B2’.
Jeśli zwierzę nie ma czterech łap (~4L=1) to może ~~> być psem (P=1)
~4L~~>P = ~4L*P =0
Nie istnieje (=0) element wspólny ~~> zbiorów: ~4L=[kura..] i P=[pies], bo zbiory te są rozłączne.

Podsumowanie:
Cechą charakterystyczną operatora implikacji odwrotnej 4L||~>P jest najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” po stronie 4L (zdania B1 i A1’) oraz gwarancja matematyczna => po stronie ~4L (zdanie B2)
Doskonale to widać w analizie wyżej.

Zauważmy że:
a)
Układ równań logicznych jest przemienny, stąd mamy:
Operator implikacji prostej ~p||=>~q to układ równań logicznych:
A2B2:~p|=>~q =~(A2:~p~>~q)* (B2:~p=>~q)- co się stanie jeśli zajdzie ~p?
A1B1: p|~>q =~(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p?
Doskonale widać, że analiza matematyczna operatora implikacji prostej ~4L||=>~P w logice ujemnej (bo ~P) będzie identyczna jak operatora implikacji odwrotnej 4L||~>P w logice dodatniej (bo P) z tym, że zaczynamy od kolumny A2B2 kończąc na kolumnie A1B1, co matematycznie jest bez znaczenia.
b)
Także kolejność wypowiadanych zdań jest dowolna, tak więc zdania z powyższej analizy B1, A1’ B2, B2’ możemy wypowiadać w sposób losowy - matematycznie to bez znaczenia.

5.6 Alternatywne dojście do operatora implikacji odwrotnej 4L|~>P w zbiorach

Udajmy się do przedszkola, do naszych ekspertów logiki matematycznej, algebry Kubusia.

Pani w przedszkolu:
Czy może się zdarzyć, że ze zbioru wszystkich zwierząt ZWZ wylosujemy zwierzę które ma cztery łapy (4L=1) i będzie to pies (P=1)?
Jaś (lat 5): TAK, bo pies
Stąd:
B1.
Jeśli zwierzę ma cztery łapy (4L=1) to może ~~> być psem (P=1)
4L~~>P = 4L*P =1
Definicja elementu wspólnego ~~> zbiorów 4L=[pies, słoń ..] i P=[pies] jest spełniona (bo pies).
Dla udowodnienia prawdziwości zdania A1 kodowanego elementem wspólnym zbiorów ~~> wystarczy pokazać jednego pieska który ma cztery łapy.

Pani:
Czy może się zdarzyć, że ze zbioru wszystkich zwierząt ZWZ wylosujemy zwierzę które ma cztery łapy (4L=1) i nie będzie to pies (~P=1)?
Jaś: TAK, np. słoń
Stąd:
A1’.
Jeśli zwierzę ma cztery łapy (4L=1) to może ~~> nie być psem (~P=1)
4L~~>~P = 4L*~P =1
Dla udowodnienia prawdziwości zdania kodowanego elementem wspólnym zbiorów ~~> wystarczy pokazać jedno dowolne zwierzę które ma cztery łapy (4L=1) i nie jest psem (~P=1) np. słoń

Pani:
Czy może się zdarzyć, że ze zbioru wszystkich zwierząt ZWZ wylosujemy zwierzę które nie ma czterech łap (~4L=1) i nie będzie to pies (~P=1)?
Jaś: TAK np. kura
Stąd:
B2.
Jeśli zwierzę nie ma czterech łap (~4L=1) to może ~~> nie być psem (~P=1)
~4L~~>~P = ~4L*~P =1
Istnieje zwierzę (=1) które nie ma czterech łap (~4L=1) i nie jest psem (~P=1).
Dla udowodnienia prawdziwości zdania A2 wystarczy pokazać jedno zwierzę które nie ma czterech łap (~4L=1) i nie jest psem (~P=1) np. kurę
Definicja elementu wspólnego zbiorów ~~> jest spełniona bo zbiory ~4L=[kura..] i ~P=[słoń, kura ..] mają co najmniej jeden element wspólny np. kurę.

Pani:
Czy może się zdarzyć, że ze zbioru wszystkich zwierząt ZWZ wylosujemy zwierzę które nie ma czterech łap (~4L=1) i będzie to pies (P=1)?
Jaś: NIE, bo wszystkie psy mają cztery łapy
stąd:
A2’.
Jeśli zwierzę nie ma czterech łap (~4L=1) to może ~~> być psem (P=1)
~4L~~>P = ~4L*P =[] =0
Definicja elementu wspólnego zbiorów ~~> nie jest (=0) spełniona bo zbiory ~4L=[kura ..] i zbiór jednoelementowy P=[pies] są rozłączne, zatem nie mają elementu wspólnego.

Zapiszmy dialog pani z Jasiem w tabeli prawdy:
Kod:

T1           Y ~Y   Odpowiedzi dla Y:
B1:  4L~~>P =1  0 - zbiory 4L=[pies, słoń.] i P=[pies] mają el. wspólny
A1’: 4L~~>~P=1  0 - 4L=[pies, słoń.] i ~P=[słoń, kura.] mają el. wspólny
B2: ~4L~~>~P=1  0 - ~4L=[kura..] i ~P=[słoń, kura..] mają el. wspólny
B2’:~4L~~>P =0  1 - ~4L=[kura..] i P=[pies] nie mają (=0) el. wspólnego

Kluczową definicją umożliwiającą przejście z dialogu pani przedszkolanki do definicji operatora implikacji odwrotnej 4L||~>P jest definicja kontrprzykładu w zbiorach.

Definicja kontrprzykładu w zbiorach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane elementem wspólnym ~~> zbiorów: p~~>~q=p*~q
Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)

W zbiorach zachodzą tożsamości pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

Analiza tabeli T1 - część I
1.
Z fałszywości kontrprzykładu B2’:
B2’:~4L~~>P=0
wynika prawdziwość warunku wystarczającego => B2 (i odwrotnie):
B2: ~4L=>~P =1 - brak czterech łap jest (=1) warunkiem wystarczającym => by nie być psem, bo wszystkie psy mają cztery łapy.
2.
Prawo Kubusia:
B2:~4L=>~P = B1: 4L~>P =1
Stąd mamy:
Z prawdziwości warunku wystarczającego => B2:
B2: ~4L=>~P =1
wynika prawdziwość warunku koniecznego B1 (i odwrotnie):
B1: 4L~>P =1 - posiadanie czterech łap (4L=1) jest warunkiem koniecznym ~> by być psem (P=1)
bo jak się nie ma czterech łap (~4L=1) to na 100% => nie jest się psem (~P=1)
Prawo Kubusia samo nam tu wyskoczyło:
B1: 4L~>P = B2:~4L=>~P

Nanieśmy naszą analizę do tabeli prawdy T1.
Kod:

T2.
B1:  4L~> P =1 - cztery łapy (4L=1) są konieczne ~> by być psem (P=1)
A1’: 4L~~>~P=1 - 4L=[pies, słoń ..] i ~P=[słoń, kura..] mają el. wspólny
B2: ~4L=>~P =1 - brak czterech łap jest wystarczający => by nie być psem
B2’:~4L~~> P=0 - kontrprzykład B2’ dla prawdziwego B2 musi być fałszem

Analiza tabeli T1 - część II
3.
Z prawdziwości kontrprzykładu A1’:
A1’: 4L~~>~P =1
wynika fałszywość warunku wystarczającego => A1 (i odwrotnie):
A1: 4L=>P =0 - zbiór 4L=[pies, słoń ..] nie jest (=0) podzbiorem => zbioru P=[pies]
4.
Prawo Kubusia:
A1: 4L=>P = A2:~4L~>~P
stąd mamy:
Fałszywy warunek wystarczający A1:
A1: 4L=>P =0
wymusza fałszywy warunek konieczny ~> A2 (i odwrotnie):
A2: ~4L~>~P =0 - brak czterech łap nie jest (=0) warunkiem koniecznym ~> dla nie bycia psem
bo zbiór ~4L=[kura..] nie jest nadzbiorem ~> ~P=[słoń, kura..]
Na mocy prawa Kubusia nie musimy dowodzić fałszywości zdania A2 w sposób bezpośredni, wystarczy że mamy dowód fałszywości zdania A1.

Nanieśmy część II analizy do tabeli prawdy T2.
Kod:

T3.
B1:  4L~> P =1 | A1: 4L=>P =0
A1’: 4L~~>~P=1
B2: ~4L=>~P =1 | A2:~4L~>~P =0
B2’:~4L~~> P=0

Zauważmy, że w linii B1 zapisaną mamy implikację odwrotną 4L|~>P w logice dodatniej (bo P).

5.6.1 Implikacja odwrotna 4L|~>P w zbiorach

Definicja implikacji odwrotnej 4L|~>P:
Implikacja odwrotna 4L|~>P to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: 4L=>P =0 - cztery łapy nie są (=0) wystarczające => by być psem,
bo można mieć cztery łapy i nie być psem np. słoń
B1: 4L~>P =1 - cztery łapy (4L=1) są (=1) konieczne ~> by być psem (P=1),
bo jak się nie ma czterech łap (~4L=1) to na 100% => nie jest się psem (~P=1)
Stąd:
4L|~>P = ~(A1: 4L=>P)*(B1: 4L~>P) =~(0)*1 =1*1 =1

Pozostaje nam tylko podstawić nasze odkrycie do gotowej tabeli prawdy implikacji odwrotnej p|~>q.
Kod:

IO:
Tabela prawdy implikacji odwrotnej p|~>q
Kolumna A1B1 to punkt odniesienia w zapisie formalnym:
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
A1B1: p|~>q= ~(A1: p=>q)*(B1: p~>q)=~(0)*1=1*1 =1
Punkt odniesienia na mocy prawa śfinii to:
p=4L=[pies, słoń ..] - zbiór zwierząt mających cztery łapy
q=P=[pies] - jednoelementowy zbiór pies
Kolumna A1B1 to punkt odniesienia w zapisie aktualnym:
A1: 4L=>P =0 - posiadanie 4 łap nie jest (=0) wystarczające => by być psem
B1: 4L~>P =1 - posiadanie 4 łap jest  (=1) konieczne ~> by być psem
A1B1: 4L|~>P= ~(A1: 4L=>P)*(B1: 4L~>P)=~(0)*1=1*1=1
       A1B1:          A2B2:       |      A3B3:           A4B4:
A:  1: p=>q   =0 = 2:~p~>~q =0    [=] 3: q~>p   =0  = 4:~q=>~p  =0
A:  1: 4L=>P  =0 = 2:~4L~>~P=1    [=] 3: P~>4L  =0  = 4:~P=>~4L =0
A’: 1: p~~>~q =1 =                [=]               = 4:~q~~>p  =1                   
A’: 1: 4L~~>~P=1 =                [=]               = 4:~P~~>4L =1                   
       ##            ##            |     ##            ##
B:  1: p~>q   =1 = 2:~p=>~q =1    [=] 3: q=>p   =1  = 4:~q~>~p  =1
B:  1: 4L~>P  =1 = 2:~4L=>~P=1    [=] 3: P=>4L  =1  = 4:~P~>~4L =1
B’:              = 2:~p~~>q =0    [=] 3: q~~>~p =0
B’:              = 2:~4L~~>P=0    [=] 3: P~~>~4L=0
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


5.6.2 Operator implikacji odwrotnej 4L||~>P w zbiorach

Teraz pozostaje nam wykonać skok do punktu 5.5.1 gdzie mamy szczegółową analizę operatora implikacji odwrotnej 4L||~>P.
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 35331
Przeczytał: 23 tematy

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Pon 17:03, 14 Cze 2021    Temat postu:

Algebra Kubusia - ostatnie czytanie!
Część XIII

Po raz ostatni przed premierą czytam od początku algebrę Kubusia likwidując literówki i udoskonalając przekaz.

http://www.sfinia.fora.pl/forum-kubusia,12/algebra-kubusia-matematyka-jezyka-potocznego-brudnopis,18263.html#582221

Algebra Kubusia
5.8 Zdania bazowe w operatorze implikacji odwrotnej CH||~>P w zdarzeniach

Spis treści
5.7 Zdanie bazowe w operatorze implikacji odwrotnej CH||~>P 2
5.7.1 Algorytm analizy zdania bazowego „Jeśli p to q” 3
5.7.2 Operator implikacji odwrotnej p||~>q 5
5.8 Zdania bazowe w operatorze implikacji odwrotnej CH||~>P w zdarzeniach 6
5.8.1 Zdanie bazowe CH~~>P 7
5.8.2 Zdanie bazowe CH~~>~P 10
5.8.3 Zdanie bazowe ~CH~~>~P 12
5.8.4 Zdanie bazowe ~CH~~>P 14
5.9 Tabela prawdy implikacji odwrotnej CH|~>P 16
5.9.1 Operator implikacji odwrotnej CH||~>P 18

Wstęp:
Wiedza zawarta w niniejszym punkcie nie jest potrzebna do obsługi języka potocznego.
Problem obsługi operatora implikacji odwrotnej CH|~>P to wiedza na poziomie 5-cio latka tzn. każde ze zdań warunkowych „Jeśli p to q” wchodzących w skład operatora implikacji odwrotnej CH|~>P będzie doskonale przez niego rozumiane.

Czy znajomość trudnej gramatyki języka polskiego jest potrzebna 5-cio letniemu Polakowi do komunikacji w języku ojczystym z otoczeniem?
Oczywiście NIE!
Osobiście nigdy gramatyki j. polskiego nie znałem i do tej pory nie znam tzn. nie wiem co to jest jakiś tam podmiot, orzeczenie, przysłówek, dupówek etc.

W praktyce wiedza czysto matematyczna w skład jakiego operatora logicznego wchodzi dowolne prawdziwe zdanie warunkowe „Jeśli p to q” jest do niczego potrzebna. Każdy człowiek od 5-cio latka poczynając non stop stosuje tu poniższe prawa logiki matematycznej nie mając najmniejszego pojęcia co to jest operator logiczny np. CH||~>P.

W algebrze Kubusia mamy zaledwie trzy znaczki (=>, ~> i ~~>) na których zbudowana jest kompletna algebra Kubusia w obsłudze zdań warunkowych "Jeśli p to q".
1.
Warunek wystarczający =>:

p=>q =1 - gdy zajście p jest (=1) warunkiem wystarczającym => dla zajścia q
Inaczej:
p=>q =0
2.
Warunek konieczny ~>:

p~>q =1 0 gdy zajście p jest (=1) konieczne ~> dla zajścia q
Inaczej:
p~>q =0
3.
Zdarzenie możliwe ~~> lub element wspólny zbiorów ~~>

Zdarzenia:
Definicja zdarzenia możliwego ~~> w zdarzeniach:
p~~>q = p*q =1 - gdy możliwe jest (=1) jednoczesne zajście zdarzeń p i q
Inaczej:
p~~>q=p*q =0
Zbiory:
Definicja elementu wspólnego zbiorów ~~>:
p~~>q = p*q =1 - gdy zbiory p i q mają (=1) element wspólny
Inaczej:
p~~>q = p*q=0
Kod:

T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
      ##        ##           ##        ##            ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5:  p+~q

Prawa Kubusia:        | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q  | A1: p=>q  = A4:~q=>~p
B1: p~>q = B2:~p=>~q  | B2:~p=>~q = B3: q=>p

Prawa Tygryska:       | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p   | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p   | B1: p~>q  = B4:~q~>~p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia



5.7 Zdanie bazowe w operatorze implikacji odwrotnej CH||~>P

Definicja zdania bazowego:
Zdanie bazowe to zdanie warunkowe „Jeśli p to q” kodowane elementem wspólnym zbiorów ~~> (zbiory) albo zdarzeniem możliwym ~~> (zdarzenia) spełniające poniższe warunki:
1.
W zdaniu warunkowym „Jeśli p to q” żadne z pojęć p, q, ~p i ~q nie może być zbiorem pustym, co gwarantuje rozpoznawalność tych pojęć.
2.
Poprzednik p i następnik q muszą należeć do wspólnej dziedziny.

Algorytm analizy zdania bazowego:
Algorytm analizy dowolnego zdania bazowego „Jeśli p to q” przez wszystkie możliwe przeczenia p i q pozwala na jednoznaczne rozstrzygnięcie w skład jakiego operatora logicznego wchodzi badane zdanie bazowe bez względu na jego prawdziwość/fałszywość.

Dowolne zdanie bazowe „Jeśli p to q” może wchodzić tylko i wyłącznie w skład jednego z pięciu rozłącznych operatorów logicznych.
1. p||=>q - operator implikacji prostej
2. p||~>q - operator implikacji odwrotnej
3. p|<=>q - operator równoważności
4. p||~~>q - operator chaosu
Dodatkowy piąty operator to mutacja równoważności p<=>q:
5. p|$q - operator „albo”($)

Z faktu iż powyższe operatory są rozłączne wynika, że dowolne zdanie warunkowe „Jeśli p to q” nie może należeć jednocześnie do dwóch, jakichkolwiek operatorów.
Kod:

T1
Definicje operatorów implikacyjnych które niebawem poznamy:
1: Y=(p||=>q) =(p|=>q)  = (A1: p=>q)*~(B1: p~>q)= ~p*q      # ~Y=p+~q
##
2: Y=(p||~>q) =(p|~>q)  =~(A1: p=>q)*(B1: p~>q)  = p*~q     # ~Y=~p+q
##
3: Y=(p|<=>q) =(p<=>q)  = (A1:p=>q)* (B1: p~>q)  =p*q+~p*~q # ~Y=p*~q+~p*q
##
4: Y=(p||~~>q)=(p|~~>q) =~(A1: p=>q)*~(B1: p~>q) =0         # ~Y=1
##
5: Y=(p|$q)   = (p$q)   = (A1: p=>~q)*(B1: p~>~q)=p*~q+~p*q # ~Y=p*q+~p*~q
Gdzie:
# - różne w znaczeniu iż jedna strona znaczka # jest negacją drugiej strony
## - różne na mocy definicji

Definicja tożsamości logicznej [=]:
Prawo Kubusia:
p=>q [=] ~p~>~q
Prawdziwość dowolnej strony tożsamości logicznej [=] wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej [=] wymusza fałszywość drugiej strony

Definicja znaczka różne na mocy definicji ##:
Dwie funkcje logiczna są różne na mocy definicji wtedy i tylko wtedy gdy nie są tożsame i żadna z nich nie jest zaprzeczeniem drugiej.

W tabeli T1 doskonale widać, że obie definicje znaczków # i ## są perfekcyjnie spełnione.

Kluczowe dla poprawnego działania algorytmu jest prawo śfinii.

Prawo śfinii:
Dowolne zdanie warunkowe od którego zaczynamy analizę matematyczną jest domyślnym punktem odniesienia, gdzie po „Jeśli ..” zapisujemy p zaś po „to..” zapisujemy q z pominięciem przeczeń.

5.7.1 Algorytm analizy zdania bazowego „Jeśli p to q”

Algorytm analizy zdania bazowego „Jeśli p to q”

START

Punkt 1

Prawo śfinii:
Dowolne zdanie bazowe od którego zaczynamy analizę matematyczną jest domyślnym punktem odniesienia, gdzie po „Jeśli ..” zapisujemy p zaś po „to..” zapisujemy q z pominięciem przeczeń.

Punkt 2
Zbiory:
Badamy elementem wspólnym zbiorów ~~> kolejne możliwe przeczenia p i q poszukując zbioru pustego (=0)
p~~>q=p*q =0
Zdarzenia:
Badamy zdarzeniem możliwym ~~> kolejne możliwe przeczenia p i q poszukując zdarzenia niemożliwego (=0)
p~~>q=p*q =0
RETURN

Punkt 3
Zbiory:
Jeśli znaleziono zbiór pusty [] idź do puntu 5
Zdarzenia:
Jeśli znaleziono zdarzenie niemożliwe ~~> idź do punktu 5

Inaczej:
Punkt 4
Zbiory:
Nie znaleziono zbioru pustego []
Zdarzenia:
Nie znaleziono zdarzenia niemożliwego ~~>
Operator logiczny zlokalizowany, to operator chaosu p||~~>q
Idź do operatora chaosu p||~~>q
STOP

Punkt 5
Na mocy prawa kontrapozycji zapisujemy prawdziwy warunek wystarczający => między tymi samymi punktami i w tym samym kierunku
(~)p=>(~)q =1

Punkt 6
Jeśli zdanie 5 jest w logice ujemnej (bo ~q) to prawem Kubusia sprowadzamy je do logiki dodatniej (bo q).
Prawo Kubusia:
~p=>~q = p~>q

Punkt 7
Badamy prawdziwość/fałszywość zdania 6 kodowanego spójnikiem przeciwnym do występującego w tym zdaniu (~> albo =>) między tymi samymi punktami i w tym samym kierunku
p (~> albo =>) q =?

Punkt 8
W punktach 6 i 7 mamy zlokalizowaną kolumnę A1B1: p|?q będącą częścią operatora logicznego p||?q

Idź do tabeli prawdy zlokalizowanego operatora logicznego
STOP

Przedstawiony wyżej algorytm to algorytm podstawowy.

Uwaga:
Matematycznie możliwy jest alternatywny algorytm przeciwny gdzie w prawie śfinii po „Jeśli ..” zapisujemy q zaś po „to…” zapisujemy p, jednak aby matematyk A dogadał się z matematykiem B obaj muszą stosować identyczny, uzgodniony wzajemnie algorytm: podstawowy albo przeciwny.
W logice matematycznej za domyślny przyjmujemy algorytm podstawowy dzięki czemu nie musimy sygnalizować światu zewnętrznemu który algorytm stosujemy.
Ponieważ algorytm podstawowy jest z definicji algorytmem domyślnym, możemy pominąć słówko „podstawowy” w „algorytmie podstawowym”.

5.7.2 Operator implikacji odwrotnej p||~>q

IO.
Definicja podstawowa implikacji odwrotnej p|~>q:

Implikacja odwrotna p|~>q to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
stąd:
A1B1: p|~>q = ~(A1: p=>q)*(B1: p~>q) =~(0)*1 = 1*1 =1
Kod:

IO:
Tabela prawdy implikacji odwrotnej p|~>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
A1B1: p|~>q =~(A1: p=>q)*(B1: p~>q)=~(0)*1=1*1=1
       A1B1:         A2B2:        |     A3B3:         A4B4:
A:  1: p=>q  =0 = 2:~p~>~q=0     [=] 3: q~>p  =0 = 4:~q=>~p =0
A’: 1: p~~>~q=1 =                [=]             = 4:~q~~>p =1                   
       ##            ##           |     ##            ##
B:  1: p~>q  =1 = 2:~p=>~q=1     [=] 3: q=>p  =1 = 4:~q~>~p =1
B’:             = 2:~p~~>q=0     [=] 3: q~~>~p=0

Równanie operatora implikacji odwrotnej p||~>q:
A1B1:                                                        A2B2:
p|~>q = ~(A1: p=>q)*(B1: p~>q) = ~(A2:~p~>~q)*(B2:~p=>~q) = ~p|=>~q

Operator implikacji odwrotnej p||~>q to układ równań logicznych:
A1B1: p|~>q  =~(A1: p=> q)* (B1: p~>q) - co się stanie jeśli zajdzie p?
A2B2:~p|=>~q =~(A2:~p~>~q)* (B2:~p=>~q)- co się stanie jeśli zajdzie ~p?

Układ równań logicznych jest przemienny, stąd mamy:
Operator implikacji prostej ~p||=>~q to układ równań logicznych:
A2B2:~p|=>~q =~(A2:~p~>~q)* (B2:~p=>~q)- co się stanie jeśli zajdzie ~p?
A1B1: p|~>q   =~(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p?

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


Definicja symboliczna operatora implikacji odwrotnej p||~>q to układ równań A1B1 i A2B2 dający odpowiedź na pytania o p i ~p:
Kod:

Kolumna A1B1:
Co może się wydarzyć jeśli zajdzie p?
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
p|~>q =~(A1: p=>q)*(B1: p~>q)=~(0)*1=1*1=1
Stąd:
B1:  p~> q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
A1’: p~~>~q=1 - fałszywy A1 wymusza prawdziwy kontrprzykład A1’

Kolumna A2B2:
Co może się zdarzyć jeśli zajdzie ~p?
A2: ~p~>~q =0 - zajście ~p nie jest (=0) konieczne ~> dla zajścia ~q
B2: ~p=>~q =1 - zajście ~p jest (=1) wystarczające => dla zajścia ~q
A2B2:~p|=>~q =~(A2:~p~>~q)*(B2:~p=>~q)=~(0)*1=1*1=1
Stąd:
B2: ~p=>~q =1 - zajście ~p jest (=1) wystarczające => dla zajścia ~q
B2’:~p~~>q =0 - prawdziwy B2 wymusza fałszywy kontrprzykład B2’


Prawo Kobry dla zbiorów:
Warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q” jest jego prawdziwość przy kodowaniu elementem wspólnym zbiorów ~~>.
Innymi słowy:
Jeśli prawdziwe jest zdanie kodowane warunkiem wystarczającym => lub koniecznym ~> to na 100% prawdziwe jest to samo zdanie kodowane elementem wspólnym zbiorów ~~> (odwrotnie nie zachodzi)

Prawo Kobry dla zdarzeń:
Warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q” jest jego prawdziwość przy kodowaniu zdarzeniem możliwym ~~>.
Innymi słowy:
Jeśli prawdziwe jest zdanie kodowane warunkiem wystarczającym => lub koniecznym ~> to na 100% prawdziwe jest to samo zdanie kodowane zdarzeniem możliwym ~~> (odwrotnie nie zachodzi)

Na mocy prawa Kobry definicja operatora implikacji odwrotnej p||~>q wyrażona zdaniami bazowymi przyjmuje postać.
Kod:

A1B1:
Co może się wydarzyć jeśli zajdzie p?
B1:  p~~> q=1 - możliwe jest (=1) jednoczesne zajście zdarzeń p i q
A1’: p~~>~q=1 - możliwe jest (=1) jednoczesne zajście zdarzeń p i ~q
A2B2:
Co może się zdarzyć jeśli zajdzie ~p?
B2: ~p~~>~q=1 - możliwe jest (=1) jednoczesne zajście zdarzeń ~p i ~q
B2’:~p~~>q =0 - niemożliwe jest (=0) jednoczesne zajście zdarzeń ~p i q


5.8 Zdania bazowe w operatorze implikacji odwrotnej CH||~>P w zdarzeniach

W sprawdzaniu poprawności algorytmu analizy dowolnego zdania bazowego postępujemy identycznie jak w sprawdzaniu programu komputerowego. Na wejściu podajemy dane co do których jesteśmy pewni do jakiego operatora logicznego powinien nas algorytm zaprowadzić sprawdzając czy rzeczywiście tak się stanie.

Operator implikacji odwrotnej CH||~>P omówiony został w punkcie 3.2.3.

Sprawdzenia poprawności działania algorytmu analizy dowolnego zdania bazowego w operatorze implikacji odwrotnej p||~>q wykonamy na konkretnym przykładzie, by łatwiej było zrozumieć.
p = CH (chmury)
q = P (pada)

Definicja operatora implikacji odwrotnej p||~>q w zdaniach bazowych:
Kod:

A1B1:
Co może się wydarzyć jeśli będzie pochmurno (CH=1)?
B1:  CH~~> P=1 - możliwe jest (=1) zdarzenie: są chmury (CH) i pada (P)
A1’: CH~~>~P=1 - możliwe jest zdarzenie: są chmury (CH) i nie pada (~P)
A2B2:
Co może się zdarzyć jeśli nie będzie pochmurno (~CH=1)?
B2: ~CH~~>~P=1 - możliwe jest zdarzenie: nie ma chmur (~CH) i nie pada (~P)
B2’:~CH~~>P =0 - niemożliwe jest zdarzenie: nie ma chmur (~CH) i pada (P)


5.8.1 Zdanie bazowe CH~~>P

Zadanie 5.8.1
Dane jest zdanie:
W1.
Jeśli jutro będzie pochmurno to może padać
Polecenie:
Zbadaj w skład jakiego operatora logicznego wchodzi to zdanie.
Zapisz analizę matematyczną zlokalizowanego operatora

Rozwiązanie:
Na początek sprawdzamy czy zdanie W1 spełnia definicję zdania bazowego:
1.
Poprzednik p definiuje stan:
p = CH (chmury) =1 - prawdą jest (=1), że wiem co znaczy stan „są chmury”
Następnik q definiuje stan:
q= P (pada) =1 - prawdą jest (=1), że wiem co znaczy stan „pada”
Negacje p i q to odpowiednio:
~p = ~CH (nie ma chmur) =1 - prawdą jest (=1), że wiem co znaczy stan „nie ma chmur”
~q = ~P (nie pada) =1 - prawdą jest (=1), że wiem co znaczy stan „nie pada”
2.
W teorii zdarzeń wspólna dziedzina matematyczna to wszystkie możliwe iloczyny logiczne „i”(*) stanów na wejściu połączone spójnikiem „lub”(+):
DM = p*q + p*~q + ~p*~q + ~p*q = p*(q+~q)+ ~p*(~q+q) = p+~p =1
Wniosek:
Wspólna dziedzina matematyczna DM jest prawidłowo zdefiniowana.

Uwaga:
Jeśli nie uda nam się w sposób zrozumiały zdefiniować wszystkich możliwych stanów p, q, ~p, ~q albo nie będziemy w stanie zdefiniować wspólnej dziedziny matematycznej różnej od Uniwersum to zdanie bazowe uznajemy za fałsz absolutny, którego nie analizujemy.
Rozstrzygnięcie w tym przypadku to:
Zdanie bazowe to fałsz absolutny nie podlegający analizie.

Definicje pojęć podstawowych:

Definicja zbioru:
Zbiór to zestaw dowolnych pojęć zrozumiałych dla człowieka

Zauważmy, że w definicji zbioru nie ma zastrzeżenia, iż elementem zbioru nie może być podzbiór, czy też zbiór.

Definicja Uniwersum:
Uniwersum to zbiór wszelkich pojęć zrozumiałych dla człowieka.
Czyli:
U = [pies, miłość, krasnoludek ...] - wyłącznie pojęcia rozumiane przez człowieka (zdefiniowane)

Sprawdzenie algorytmu analizy zdań bazowych „Jeśli p to q” w zdarzeniach:

START

Punkt 1

Prawo śfinii:
Dowolne zdanie warunkowe od którego zaczynamy analizę matematyczną jest domyślnym punktem odniesienia, gdzie po „Jeśli ..” zapisujemy p zaś po „to..” zapisujemy q z pominięciem przeczeń.
W1.
Jeśli jutro będzie pochmurno to może ~~> padać
CH~~>P =CH*P =?
Na mocy prawa śfinii nasz punkt odniesienia to:
p=CH (chmury)
q=P (pada)
Zapis zdania W1 w zapisie formalnym:
p~~>q = p*q =?

Punkt 2
Badamy zdarzeniem możliwym ~~> kolejne możliwe przeczenia poszukując pierwszego zdarzenia niemożliwego.
1: CH~~>P =1 - możliwe jest (=1) zdarzenie: są chmury (CH=1) i pada (P=1)
2: CH~~>~P =1 - możliwe jest (=1) zdarzenie: są chmury (CH=1) i nie pada (~P=1)
3: ~CH~~>~P =1 - możliwe jest (=1) zdarzenie: nie ma chmur (~CH=1) i nie pada (~P=1)
4: ~CH~~>P =0 - niemożliwe jest zdarzenie: nie ma chmur (~CH=1) i pada (P=1)
RETURN

Punkt 3
Jeśli znaleziono zdarzenie niemożliwe (=0) idź do punktu 5
Znalezione zdarzenie niemożliwe:
~CH~~>P =0 - niemożliwe jest zdarzenie: nie ma chmur (~CH=1) i pada (P=1)

Punkt 5
Na mocy prawa kontrapozycji zapisujemy prawdziwy warunek wystarczający => między tymi samymi punktami i w tym samym kierunku
5.
Jeśli jutro nie będzie pochmurno (~CH=1) to na 100% => nie będzie padać (~P=1)
~CH=>~P=1
Brak chmur (~CH=1) jest warunkiem wystarczającym => do tego, aby nie padało (~P=1), bo zawsze gdy nie ma chmur, nie pada.

Punkt 6
Jeśli zdanie 5 jest w logice ujemnej (bo ~q) to prawem Kubusia sprowadzamy je do logiki dodatniej (bo q).
Prawo Kubusia:
~p=>~q = p~>q
Nasz przykład:
Zdanie 5 jest w logice ujemnej (bo ~P).
Prawo Kubusia:
5: ~CH=>~P = 6: CH~>P
stąd:
6.
Jeśli jutro będzie pochmurno to może ~> padać
CH~>P =1
Chmury (CH=1) są konieczne ~> by padało (P=1) bo jak nie ma chmur (~CH=1) to na 100% => nie pada (~P=1)
Prawo Kubusia samo nam tu wyskoczyło:
6: CH~>P = 5: ~CH=>~P

Punkt 7
Badamy prawdziwość/fałszywość zdania 6 kodowanego spójnikiem przeciwnym do występującego w tym zdaniu (~> albo =>) między tymi samymi punktami i w tym samym kierunku
p (~> albo =>) q =?
7.
Jeśli jutro będzie pochmurno to na 100% => będzie padać
CH=>P =0
Istnienie chmur nie jest (=0) warunkiem wystarczającym => dla padania, bo nie zawsze gdy są chmury, pada.

Punkt 8:
Zdania 6 i 7 lokalizują nam definicję implikacji odwrotnej CH|~>P:
Implikacja odwrotna CH|~>P w logice dodatniej (bo P) to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku.
A1: CH=>P =0 - chmury nie są (=0) warunkiem wystarczającym => dla padania
B1: CH~>P =1 - chmury są (=1) warunkiem koniecznym ~> dla padania
Stąd:
CH|~>P = ~(A1: CH=>P)*(B1: CH~>P) =~(0)*1=1*1 =1

Wniosek:
Idź do tabeli prawdy implikacji odwrotnej CH|~>P omawianej w punkcie 5.9

Komentarz:
Zdanie wejściowe to:
W1.
Jeśli jutro będzie pochmurno to może ~~> padać
CH~~>P = CH*P =1 - możliwe jest (=1) zdarzenie: są chmury (CH=1) i pada (P=1)

W punkcie 5.9.1 zlokalizowane zdanie W1 jako zdanie B1 będące częścią operatora implikacji odwrotnej CH||~>P
B1.
Jeśli jutro będzie pochmurno (CH=1) to może ~> padać (P=1)
CH~>P =1
Chmury (CH=1) są konieczne ~> dla padania (P=1) bo jak nie ma chmur (~CH=1) to na 100% => nie pada (~P=1)
Prawo Kubusia samo nam tu wyskoczyło:
B1: CH~>P = B2: ~CH=>~P

Prawo Kobry dla zdarzeń:
Warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q” jest jego prawdziwość przy kodowaniu zdarzeniem możliwym ~~>.
Innymi słowy:
Jeśli prawdziwe jest zdanie kodowane warunkiem wystarczającym => lub koniecznym ~> to na 100% prawdziwe jest to samo zdanie kodowane zdarzeniem możliwym ~~> (odwrotnie nie zachodzi)

Z prawa Kobry wynika, że zdanie wejściowe W1 które analizowaliśmy wchodzi w skład warunku koniecznego B1: CH~>P będącego częścią operatora implikacji odwrotnej CH||~>P.
cnd

5.8.2 Zdanie bazowe CH~~>~P

Zadanie 5.8.2
Dane jest zdanie:
W2.
Jeśli jutro będzie pochmurno to może nie padać
Polecenie:
Zbadaj w skład jakiego operatora logicznego wchodzi to zdanie.
Zapisz analizę matematyczną zlokalizowanego operatora

Rozwiązanie:
Sprawdzenie definicji zdania bazowego jak w punkcie 5.8.1

Sprawdzenie algorytmu analizy zdań bazowych „Jeśli p to q” w zdarzeniach:

START

Punkt 1

Prawo śfinii:
Dowolne zdanie warunkowe od którego zaczynamy analizę matematyczną jest domyślnym punktem odniesienia, gdzie po „Jeśli ..” zapisujemy p zaś po „to..” zapisujemy q z pominięciem przeczeń.
W2.
Jeśli jutro będzie pochmurno to może ~~> nie padać
CH~~>~P = CH*~P =?
Na mocy prawa śfinii nasz punkt odniesienia to:
p=CH(chmury)
q=P(pada)
Zapis zdania W2 w zapisie formalnym:
p~~>~q = p*~q =?

Punkt 2
Badamy zdarzeniem możliwym ~~> kolejne możliwe przeczenia poszukując pierwszego zdarzenia niemożliwego.
1: CH~~>~P =1 - możliwe jest (=1) zdarzenie: są chmury (CH=1) i nie pada (~P=1)
2: ~CH~~>~P =1 - możliwe jest (=1) zdarzenie: nie ma chmur (~CH=1) i nie pada (~P=1)
3: ~CH~~>P =0 - niemożliwe jest zdarzenie: nie ma chmur (~CH=1) i pada (P=1)
RETURN

Punkt 3
Jeśli znaleziono zdarzenie niemożliwe (=0) idź do punktu 5
Znalezione zdarzenie niemożliwe:
~CH~~>P =0 - niemożliwe jest zdarzenie: nie ma chmur (~CH=1) i pada (P=1)

Punkt 5
Na mocy prawa kontrapozycji zapisujemy prawdziwy warunek wystarczający => między tymi samymi punktami i w tym samym kierunku
5.
Jeśli jutro nie będzie pochmurno (~CH=1) to na 100% => nie będzie padać (~P=1)
~CH=>~P=1
Brak chmur (~CH=1) jest warunkiem wystarczającym => do tego, aby nie padało (~P=1), bo zawsze gdy nie ma chmur, nie pada.

Punkt 6
Jeśli zdanie 5 jest w logice ujemnej (bo ~q) to prawem Kubusia sprowadzamy je do logiki dodatniej (bo q).
Prawo Kubusia:
~p=>~q = p~>q
Nasz przykład:
Zdanie 5 jest w logice ujemnej (bo ~P).
Prawo Kubusia:
5: ~CH=>~P = 6: CH~>P
stąd:
6.
Jeśli jutro będzie pochmurno to może ~> padać
CH~>P =1
Chmury (CH=1) są konieczne ~> by padało (P=1) bo jak nie ma chmur (~CH=1) to na 100% => nie pada (~P=1)
Prawo Kubusia samo nam tu wyskoczyło:
6: CH~>P = 5: ~CH=>~P

Punkt 7
Badamy prawdziwość/fałszywość zdania 6 kodowanego spójnikiem przeciwnym do występującego w tym zdaniu (~> albo =>) między tymi samymi punktami i w tym samym kierunku
p (~> albo =>) q =?
7.
Jeśli jutro będzie pochmurno to na 100% => będzie padać
CH=>P =0
Istnienie chmur nie jest (=0) warunkiem wystarczającym => dla padania, bo nie zawsze gdy są chmury, pada.

Punkt 8:
Zdania 6 i 7 lokalizują nam definicję implikacji odwrotnej CH|~>P:
Implikacja odwrotna CH|~>P to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku.
A1: CH=>P =0 - chmury nie są (=0) warunkiem wystarczającym => dla padania
B1: CH~>P =1 - chmury są (=1) warunkiem koniecznym ~> dla padania
Stąd:
CH|~>P = ~(A1: CH=>P)*(B1: CH~>P) =~(0)*1=1*1 =1

Wniosek:
Idź do tabeli prawdy implikacji odwrotnej CH|~>P omawianej w punkcie 5.9

Komentarz:
Zdanie wejściowe to:
W2.
Jeśli jutro będzie pochmurno to może nie padać

W punkcie 5.9.1 zlokalizowane zdanie W2 jako zdanie A1’ będące częścią operatora implikacji odwrotnej CH||~>P
A1’.
Jeśli jutro będzie pochmurno (CH=1) to może ~~> nie padać (~P=1)
CH~~>~P = CH*~P =1
Możliwe jest (=1) zdarzenie: są chmury (CH=1) i nie pada (~P=1)
cnd

5.8.3 Zdanie bazowe ~CH~~>~P

Zadanie 5.8.3
Dane jest zdanie:
W3.
Jeśli jutro nie będzie pochmurno to może nie padać
Polecenie:
Zbadaj w skład jakiego operatora logicznego wchodzi to zdanie.
Zapisz analizę matematyczną zlokalizowanego operatora

Rozwiązanie:
Sprawdzenie definicji zdania bazowego jak w punkcie 5.8.1

Sprawdzenie algorytmu analizy zdań bazowych „Jeśli p to q” w zdarzeniach:

START

Punkt 1

Prawo śfinii:
Dowolne zdanie warunkowe od którego zaczynamy analizę matematyczną jest domyślnym punktem odniesienia, gdzie po „Jeśli ..” zapisujemy p zaś po „to..” zapisujemy q z pominięciem przeczeń.
W3.
Jeśli jutro nie będzie pochmurno to może nie padać
~CH~~>~P = ~CH*~P =?
Na mocy prawa śfinii nasz punkt odniesienia to:
p=CH(chmury)
q=P(pada)
Zapis zdania W3 w zapisie formalnym:
~p~~>~q = ~p*~q =?

Punkt 2
Badamy zdarzeniem możliwym ~~> kolejne możliwe przeczenia poszukując pierwszego zdarzenia niemożliwego.
1: ~CH~~>~P =1 - możliwe jest (=1) zdarzenie: nie ma chmur (~CH=1) i nie pada (~P=1)
2: ~CH~~>P =0 - niemożliwe jest zdarzenie: nie ma chmur (~CH=1) i pada (P=1)
RETURN

Punkt 3
Jeśli znaleziono zdarzenie niemożliwe (=0) idź do punktu 5
Znalezione zdarzenie niemożliwe:
~CH~~>P =0 - niemożliwe jest zdarzenie: nie ma chmur (~CH=1) i pada (P=1)

Punkt 5
Na mocy prawa kontrapozycji zapisujemy prawdziwy warunek wystarczający => między tymi samymi punktami i w tym samym kierunku
5.
Jeśli jutro nie będzie pochmurno (~CH=1) to na 100% => nie będzie padać (~P=1)
~CH=>~P=1
Brak chmur (~CH=1) jest warunkiem wystarczającym => do tego, aby nie padało (~P=1), bo zawsze gdy nie ma chmur, nie pada.

Punkt 6
Jeśli zdanie 5 jest w logice ujemnej (bo ~q) to prawem Kubusia sprowadzamy je do logiki dodatniej (bo q).
Prawo Kubusia:
~p=>~q = p~>q
Nasz przykład:
Zdanie 5 jest w logice ujemnej (bo ~P).
Prawo Kubusia:
5: ~CH=>~P = 6: CH~>P
stąd:
6.
Jeśli jutro będzie pochmurno to może ~> padać
CH~>P =1
Chmury (CH=1) są konieczne ~> by padało (P=1) bo jak nie ma chmur (~CH=1) to na 100% => nie pada (~P=1)
Prawo Kubusia samo nam tu wyskoczyło:
6: CH~>P = 5: ~CH=>~P

Punkt 7
Badamy prawdziwość/fałszywość zdania 6 kodowanego spójnikiem przeciwnym do występującego w tym zdaniu (~> albo =>) między tymi samymi punktami i w tym samym kierunku
p (~> albo =>) q =?
7.
Jeśli jutro będzie pochmurno to na 100% => będzie padać
CH=>P =0
Istnienie chmur nie jest (=0) warunkiem wystarczającym => dla padania, bo nie zawsze gdy są chmury, pada.

Punkt 8:
Zdania 6 i 7 lokalizują nam definicję implikacji odwrotnej CH|~>P:
Implikacja odwrotna CH|~>P to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku.
A1: CH=>P =0 - chmury nie są (=0) warunkiem wystarczającym => dla padania
B1: CH~>P =1 - chmury są (=1) warunkiem koniecznym ~> dla padania
Stąd:
CH|~>P = ~(A1: CH=>P)*(B1: CH~>P) =~(0)*1=1*1 =1

Wniosek:
Idź do tabeli prawdy implikacji odwrotnej CH|~>P omawianej w punkcie 5.9

Komentarz:
Zdanie wejściowe to:
W3.
Jeśli jutro nie będzie pochmurno to może ~~> nie padać
~CH~~>~P =~CH*~P =1 - możliwe jest zdarzenie: nie ma chmur (~CH=1) i nie pada (~P=1)

W punkcie 5.9.1 zlokalizowane zdanie W3 jako zdanie B2 będące częścią operatora implikacji odwrotnej CH||~>P
B2.
Jeśli jutro nie będzie pochmurno (~CH=1) to na 100% => nie będzie padało (~P=1)
~CH=>~P=1
Brak chmur (~CH=1) jest warunkiem wystarczającym => do tego, aby jutro nie padało (~P=1) bo zawsze gdy nie ma chmur, nie pada

Prawo Kobry dla zdarzeń:
Warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q” jest jego prawdziwość przy kodowaniu zdarzeniem możliwym ~~>.
Innymi słowy:
Jeśli prawdziwe jest zdanie kodowane warunkiem wystarczającym => lub koniecznym ~> to na 100% prawdziwe jest to samo zdanie kodowane zdarzeniem możliwym ~~> (odwrotnie nie zachodzi)

Z prawa Kobry wynika, że zdanie wejściowe W3 które analizowaliśmy wchodzi w skład warunku wystarczającego => B2: ~CH=>~P
cnd

5.8.4 Zdanie bazowe ~CH~~>P

Zadanie 5.8.4
Dane jest zdanie:
W4.
Jeśli jutro nie będzie pochmurno to może padać
Polecenie:
Zbadaj w skład jakiego operatora logicznego wchodzi to zdanie.
Zapisz analizę matematyczną zlokalizowanego operatora

Rozwiązanie:
Sprawdzenie definicji zdania bazowego jak w punkcie 5.8.1

Sprawdzenie algorytmu analizy zdań bazowych „Jeśli p to q” w zdarzeniach:

START

Punkt 1

Prawo śfinii:
Dowolne zdanie warunkowe od którego zaczynamy analizę matematyczną jest domyślnym punktem odniesienia, gdzie po „Jeśli ..” zapisujemy p zaś po „to..” zapisujemy q z pominięciem przeczeń.
W4.
Jeśli jutro nie będzie pochmurno to może ~~> padać
~CH~~>P = ~CH*P =?
Na mocy prawa śfinii nasz punkt odniesienia to:
p=CH(chmury)
q=P(pada)
Zapis zdania W4 w zapisie formalnym:
~p~~>q = ~p*q =?

Punkt 2
Badamy zdarzeniem możliwym ~~> kolejne możliwe przeczenia poszukując pierwszego zdarzenia niemożliwego.
1: ~CH~~>P =0 - niemożliwe jest zdarzenie: nie ma chmur (~CH=1) i pada (P=1)
RETURN

Punkt 3
Jeśli znaleziono zdarzenie niemożliwe (=0) idź do punktu 5
Znalezione zdarzenie niemożliwe:
~CH~~>P =0 - niemożliwe jest zdarzenie: nie ma chmur (~CH=1) i pada (P=1)

Punkt 5
Na mocy prawa kontrapozycji zapisujemy prawdziwy warunek wystarczający => między tymi samymi punktami i w tym samym kierunku
5.
Jeśli jutro nie będzie pochmurno (~CH=1) to na 100% => nie będzie padać (~P=1)
~CH=>~P=1
Brak chmur (~CH=1) jest warunkiem wystarczającym => do tego, aby nie padało (~P=1), bo zawsze gdy nie ma chmur, nie pada.

Punkt 6
Jeśli zdanie 5 jest w logice ujemnej (bo ~q) to prawem Kubusia sprowadzamy je do logiki dodatniej (bo q).
Prawo Kubusia:
~p=>~q = p~>q
Nasz przykład:
Zdanie 5 jest w logice ujemnej (bo ~P).
Prawo Kubusia:
5: ~CH=>~P = 6: CH~>P
stąd:
6.
Jeśli jutro będzie pochmurno to może ~> padać
CH~>P =1
Chmury (CH=1) są konieczne ~> by padało (P=1) bo jak nie ma chmur (~CH=1) to na 100% => nie pada (~P=1)
Prawo Kubusia samo nam tu wyskoczyło:
6: CH~>P = 5: ~CH=>~P

Punkt 7
Badamy prawdziwość/fałszywość zdania 6 kodowanego spójnikiem przeciwnym do występującego w tym zdaniu (~> albo =>) między tymi samymi punktami i w tym samym kierunku
p (~> albo =>) q =?
7.
Jeśli jutro będzie pochmurno to na 100% => będzie padać
CH=>P =0
Istnienie chmur nie jest (=0) warunkiem wystarczającym => dla padania, bo nie zawsze gdy są chmury, pada.

Punkt 8:
Zdania 6 i 7 lokalizują nam definicję implikacji odwrotnej CH|~>P:
Implikacja odwrotna CH|~>P to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku.
A1: CH=>P =0 - chmury nie są (=0) warunkiem wystarczającym => dla padania
B1: CH~>P =1 - chmury są (=1) warunkiem koniecznym ~> dla padania
Stąd:
CH|~>P = ~(A1: CH=>P)*(B1: CH~>P) =~(0)*1=1*1 =1

Wniosek:
Idź do tabeli prawdy implikacji odwrotnej CH|~>P omawianej w punkcie 5.9

Komentarz:
Zdanie wejściowe to:
W4.
Jeśli jutro nie będzie pochmurno to może ~~> padać
~CH~~>P = ~CH*P =0 - niemożliwe jest (=0) zdarzenie: nie ma chmur (~CH=1) i pada (P=1)

W punkcie 5.9.1 zlokalizowane zdanie W4 jako zdanie B2’ będące częścią operatora implikacji odwrotnej CH||~>P
B2’
Jeśli jutro nie będzie pochmurno (~CH=1) to może ~~> padać (P=1)
~CH~~>P = ~CH*P =0
Niemożliwe jest (=0) zdarzenie: nie ma chmur (~CH=1) i pada (P=1)

5.9 Tabela prawdy implikacji odwrotnej CH|~>P

IO.
Implikacja odwrotna p|~>q w logice dodatniej (bo q):

Implikacja odwrotna p|~>q to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
A1B1:
p|~>q = ~(A1: p=>q)*(B1: p~>q) =~(0)*1 = 1*1 =1

Nasz przykład:
IO.
Implikacja odwrotna CH|~>P w logice dodatniej (bo P):

Implikacja odwrotna CH|~>P to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: CH=>P =0 - chmury (CH) nie są (=0) warunkiem wystarczającym => dla padania (P)
bo nie zawsze gdy są chmury, pada.
B1: CH~>P =1 - chmury (CH=1) są (=1) warunkiem koniecznym ~> dla padania (P=1)
bo zabieram chmury (~CH=1) wykluczając padanie (~P=1)
A1B1:
CH|~>P = ~(A1: CH=>P)*(B1: CH~>P) =~(0)*1 = 1*1 =1

Nanieśmy zdania A1 i B1 do tabeli prawdy implikacji odwrotnej p|~>q:
Kod:

IO:
Tabela prawdy implikacji odwrotnej p|~>q
Definicja implikacji odwrotnej p|~>q w zapisie formalnym {p, q}:
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
A1B1: p|~>q= ~(A1: p=>q)*(B1: p~>q)=~(0)*1=1*1 =1
Definicja implikacji odwrotnej CH|~>P w zapisie aktualnym {CH,P}:
Punkt odniesienia na mocy prawa śfinii to:
p=CH (chmury)
q=P (pada)
Definicja implikacji odwrotnej CH|~>P w zapisie aktualnym:
A1: CH=>P =0 - chmury nie są (=0) wystarczające => dla padania
B1: CH~>P =1 - chmury są (=1) konieczne ~> dla padania
A1B1: CH|~>P=~(A1: CH=>P)*(B1: CH~>P)=~(0)*1=1
       A1B1:          A2B2:        |     A3B3:           A4B4:
A:  1: p=>q   =0 = 2:~p~>~q  =0   [=] 3: q~>p   =0  = 4:~q=>~p  =0
A:  1: CH=>P  =0 = 2:~CH~>~P =0   [=] 3: P~>CH  =0  = 4:~P=>~CH =0
A’: 1: p~~>~q =1 =                [=]               = 4:~q~~>p  =1                   
A’: 1: CH~~>~P=1 =                [=]               = 4:~P~~>CH =1                   
       ##            ##            |     ##            ##
B:  1: p~> q  =1 = 2:~p=>~q  =1   [=] 3: q=>p   =1  = 4:~q~>~p  =1
B:  1: CH~>P  =1 = 2:~CH=>~P =1   [=] 3: P=>CH  =1  = 4:~P~>~CH =1
B’:              = 2:~p~~>q  =0   [=] 3: q~~>~p =0
B’:              = 2:~CH~~>P =0   [=] 3: P~~>~CH=0

Równanie operatora implikacji odwrotnej p||~>q:
A1B1:                                                        A2B2:
p|~>q = ~(A1: p=>q)*(B1: p~>q) = ~(A2:~p~>~q)*(B2:~p=>~q) = ~p|=>~q

Operator implikacji odwrotnej p||~>q to układ równań logicznych:
A1B1: p|~>q  =~(A1: p=> q)* (B1: p~>q) - co się stanie jeśli zajdzie p?
A2B2:~p|=>~q =~(A2:~p~>~q)* (B2:~p=>~q)- co się stanie jeśli zajdzie ~p?

Układ równań logicznych jest przemienny, stąd mamy:
Operator implikacji prostej ~p||=>~q to układ równań logicznych:
A2B2:~p|=>~q =~(A2:~p~>~q)* (B2:~p=>~q)- co się stanie jeśli zajdzie ~p?
A1B1: p|~>q   =~(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p?

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla poprawienia czytelności tabeli zapisy aktualne (z konkretnego przykładu) podstawiono w nagłówku tabeli oraz w części głównej decydującej o treści zdań warunkowych „Jeśli p to q”.

Operator implikacji odwrotnej p||~>q w logice dodatniej (bo q) to układ równań logicznych A1B1 i A2B2 dający odpowiedź na pytanie o p i ~p:
A1B1: p|~>q =~(A1: p=> q)* (B1: p~>q) - co się stanie jeśli zajdzie p?
A2B2:~p|=>~q =~(A2:~p~>~q)* (B2:~p=>~q)- co się stanie jeśli zajdzie ~p?

Układ równań logicznych jest przemienny, stąd mamy:
Operator implikacji prostej ~p||=>~q w logice ujemnej (bo ~q) to układ równań logicznych A2B2 i A1B1 dający odpowiedź na pytanie o ~p i p:
A2B2:~p|=>~q =~(A2:~p~>~q)* (B2:~p=>~q)- co się stanie jeśli zajdzie ~p?
A1B1: p|~>q =~(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p?

5.9.1 Operator implikacji odwrotnej CH||~>P

Operator implikacji odwrotnej CH||~>P w logice dodatniej (bo P) to układ równań logicznych A1B1 i A2B2 dający odpowiedź na pytanie o CH i ~CH:
A1B1: CH|~>P = ~(A1: CH=>P)*(B1: CH~>P) - co może się wydarzyć jeśli będzie pochmurno (CH=1)?
A2B2: ~CH|=>~P = ~(A2: ~CH~>~P)*(B2:~CH=>~P) - co się stanie jeśli nie będzie pochmurno (~CH=1)?

A1B1.
Co może się wydarzyć jeśli jutro będzie pochmurno (CH=1)?


Odpowiedź na to pytanie mamy w kolumnie A1B1:
A1: CH=>P =0 - chmury nie są (=0) warunkiem wystarczającym => dla padania
B1: CH~>P =1 - chmury są (=1) warunkiem koniecznym ~> dla padania
A1B1: CH|~>P = ~(A1: CH=>P)*(B1: CH~>P) = ~(0)*1=1*1=1
Stąd:
Jeśli jutro nie będzie pochmurno (CH=1) to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” - mówią o tym zdania B1 i A1’

Kolumna A1B1 to odpowiedź w zdaniach warunkowych „Jeśli p to q”:
B1.
Jeśli jutro będzie pochmurno (CH=1) to może ~> padać (P=1)
CH~>P =1
Chmury (CH=1) są konieczne ~> dla padania (P=1) bo jak nie ma chmur (~CH=1) to na 100% => nie pada (~P=1)
Prawo Kubusia samo nam tu wyskoczyło:
B1: CH~>P = B2: ~CH=>~P

LUB

Fałszywość warunku wystarczającego A1: CH=>P=0 wymusza prawdziwość kontrprzykładu A1’
A1’.
Jeśli jutro będzie pochmurno (CH=1) to może ~~> nie padać (~P=1)
CH~~>~P = CH*~P =1
Możliwe jest (=1) zdarzenie: są chmury (CH=1) i nie pada (~P=1)
Czytamy:
CH=1 - prawdą jest (=1) że są chmury (CH)
~P=1 - prawdą jest (=1) że nie pada (~P)

A2B2:
Co może się wydarzyć jeśli jutro nie będzie pochmurno (~CH=1)?


Odpowiedź na to pytanie mamy w kolumnie A2B2:
A2: ~CH~>~P =0 - brak chmur nie jest (=0) warunkiem koniecznym ~> dla nie padania
B2: ~CH=>~P =1 - brak chmur jest (=1) warunkiem wystarczającym => dla nie padania
A2B2: ~CH|=>~P = ~(A2: ~CH~>~P)*(B2:~CH=>~P) =~(0)*1=1*1=1
Stąd:
Jeśli jutro nie będzie pochmurno (~CH=1) to mamy gwarancję matematyczną => iż nie będzie padało (~P=1) - mówi o tym zdanie B2.

Kolumna A2B2 to odpowiedź w zdaniach warunkowych „Jeśli p to q”:
B2.
Jeśli jutro nie będzie pochmurno (~CH=1) to na 100% => nie będzie padało (~P=1)
~CH=>~P=1
Brak chmur (~CH=1) jest warunkiem wystarczającym => do tego, aby jutro nie padało (~P=1) bo zawsze gdy nie ma chmur, nie pada.
Brak chmur (~CH=1) daje nam gwarancję matematyczną => iż jutro nie będzie padało (~P=1)
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>

Prawdziwość warunku wystarczającego B2 wymusza fałszywość kontrprzykładu B2’ (i odwrotnie)
B2’
Jeśli jutro nie będzie pochmurno (~CH=1) to może ~~> padać (P=1)
~CH~~>P = ~CH*P =0
Niemożliwe jest (=0) zdarzenie: nie ma chmur (~CH=1) i pada (P=1)
Czytamy:
~CH=1 - prawdą jest (=1), że nie ma chmur (~CH)
P=1 - prawdą jest (=1), że pada

Podsumowanie:
Istotą operatora implikacji odwrotnej CH||~>P jest najzwyklejsze „rzucanie monetą” w rozumieniu „na dwoje babka wróżyła” po stronie CH (są chmury) i gwarancja matematyczna po stronie ~CH (nie ma chmur) co widać w powyższej analizie.

Zauważmy że:
a)
Układ równań logicznych jest przemienny, stąd mamy:
Operator implikacji prostej ~CH||=>~P to układ równań logicznych:
A2B2: ~CH|=>~P = ~(A2: ~CH~>~P)*(B2:~CH=>~P) - co się stanie jeśli nie będzie pochmurno (~CH=1)?
A1B1: CH|~>P = ~(A1: CH=>P)*(B1: CH~>P) - co może się wydarzyć jeśli będzie pochmurno (CH=1)?
Doskonale widać, że analiza matematyczna operatora implikacji prostej ~CH||=>~P w logice ujemnej (bo ~P) będzie identyczna jak operatora implikacji odwrotnej CH||~>P w logice dodatniej (bo P) z tym, że zaczynamy od kolumny A2B2 kończąc na kolumnie A1B1, co matematycznie jest bez znaczenia.
b)
Także kolejność wypowiadanych zdań jest dowolna, tak więc zdania z powyższej analizy B1, A1’ B2, B2’ możemy wypowiadać w sposób losowy - matematycznie to bez znaczenia.
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 35331
Przeczytał: 23 tematy

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Wto 6:47, 15 Cze 2021    Temat postu:

Algebra Kubusia - ostatnie czytanie!
Część XIV

Po raz ostatni przed premierą czytam od początku algebrę Kubusia likwidując literówki i udoskonalając przekaz.

http://www.sfinia.fora.pl/forum-kubusia,12/algebra-kubusia-matematyka-jezyka-potocznego-brudnopis,18263.html#582223

Algebra Kubusia
5.11 Zdania bazowe w operatorze implikacji odwrotnej P2||~>P8 w zbiorach

Spis treści
5.10 Zdanie bazowe 2
5.10.1 Algorytm analizy zdania bazowego „Jeśli p to q” 3
5.10.2 Operator implikacji odwrotnej p||~>q 5
5.11 Zdania bazowe w operatorze implikacji odwrotnej P2||~>P8 w zbiorach 6
5.11.1 Zdanie bazowe P2~~>P8 7
5.11.2 Zdanie bazowe P2~~>~P8 11
5.11.3 Zdanie bazowe ~P2~~>~P8 13
5.11.4 Zdanie bazowe ~P2~~>P8 16
5.12 Tabela prawdy implikacji prostej odwrotnej P2|~>P8 18
5.12.1 Operator implikacji odwrotnej P2||~>P8 w zbiorach 19


Wstęp:
Problem budowy operatora implikacji odwrotnej P2|~>P8 to matematyczny poziom ucznia I klasy LO.
W praktyce wiedza czysto matematyczna w skład jakiego operatora logicznego wchodzi dowolne prawdziwe zdanie warunkowe „Jeśli p to q” jest do niczego potrzebna. Każdy człowiek od 5-cio latka poczynając non stop stosuje tu poniższe prawa logiki matematycznej nie mając najmniejszego pojęcia co to jest operator logiczny np. P2||~>P8.

W algebrze Kubusia mamy zaledwie trzy znaczki (=>, ~> i ~~>) na których zbudowana jest kompletna algebra Kubusia w obsłudze zdań warunkowych "Jeśli p to q".
1.
Warunek wystarczający =>:

p=>q =1 - gdy zajście p jest (=1) warunkiem wystarczającym => dla zajścia q
Inaczej:
p=>q =0
2.
Warunek konieczny ~>:

p~>q =1 0 gdy zajście p jest (=1) konieczne ~> dla zajścia q
Inaczej:
p~>q =0
3.
Zdarzenie możliwe ~~> lub element wspólny zbiorów ~~>

Zdarzenia:
Definicja zdarzenia możliwego ~~> w zdarzeniach:
p~~>q = p*q =1 - gdy możliwe jest (=1) jednoczesne zajście zdarzeń p i q
Inaczej:
p~~>q=p*q =0
Zbiory:
Definicja elementu wspólnego zbiorów ~~>:
p~~>q = p*q =1 - gdy zbiory p i q mają (=1) element wspólny
Inaczej:
p~~>q = p*q=0
Kod:

T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
      ##        ##           ##        ##            ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5:  p+~q

Prawa Kubusia:        | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q  | A1: p=>q  = A4:~q=>~p
B1: p~>q = B2:~p=>~q  | B2:~p=>~q = B3: q=>p

Prawa Tygryska:       | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p   | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p   | B1: p~>q  = B4:~q~>~p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia



5.10 Zdanie bazowe

Definicja zdania bazowego:
Zdanie bazowe to zdanie warunkowe „Jeśli p to q” kodowane elementem wspólnym zbiorów ~~> (zbiory) albo zdarzeniem możliwym ~~> (zdarzenia) spełniające poniższe warunki:
1.
W zdaniu warunkowym „Jeśli p to q” żadne z pojęć p, q, ~p i ~q nie może być zbiorem pustym, co gwarantuje rozpoznawalność tych pojęć.
2.
Poprzednik p i następnik q muszą należeć do wspólnej dziedziny.

Algorytm analizy zdania bazowego:
Algorytm analizy dowolnego zdania bazowego „Jeśli p to q” przez wszystkie możliwe przeczenia p i q pozwala na jednoznaczne rozstrzygnięcie w skład jakiego operatora logicznego wchodzi badane zdanie bazowe bez względu na jego prawdziwość/fałszywość.

Dowolne zdanie bazowe „Jeśli p to q” może wchodzić tylko i wyłącznie w skład jednego z pięciu rozłącznych operatorów logicznych.
1. p||=>q - operator implikacji prostej
2. p||~>q - operator implikacji odwrotnej
3. p|<=>q - operator równoważności
4. p||~~>q - operator chaosu
Dodatkowy piąty operator to mutacja równoważności p<=>q:
5. p|$q - operator „albo”($)

Z faktu iż powyższe operatory są rozłączne wynika, że dowolne zdanie warunkowe „Jeśli p to q” nie może należeć jednocześnie do dwóch, jakichkolwiek operatorów.
Kod:

T1
Definicje operatorów implikacyjnych które niebawem poznamy:
1: Y=(p||=>q) =(p|=>q)  = (A1: p=>q)*~(B1: p~>q)= ~p*q      # ~Y=p+~q
##
2: Y=(p||~>q) =(p|~>q)  =~(A1: p=>q)*(B1: p~>q)  = p*~q     # ~Y=~p+q
##
3: Y=(p|<=>q) =(p<=>q)  = (A1:p=>q)* (B1: p~>q)  =p*q+~p*~q # ~Y=p*~q+~p*q
##
4: Y=(p||~~>q)=(p|~~>q) =~(A1: p=>q)*~(B1: p~>q) =0         # ~Y=1
##
5: Y=(p|$q)   = (p$q)   = (A1: p=>~q)*(B1: p~>~q)=p*~q+~p*q # ~Y=p*q+~p*~q
Gdzie:
# - różne w znaczeniu iż jedna strona znaczka # jest negacją drugiej strony
## - różne na mocy definicji

Definicja tożsamości logicznej [=]:
Prawo Kubusia:
p=>q [=] ~p~>~q
Prawdziwość dowolnej strony tożsamości logicznej [=] wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej [=] wymusza fałszywość drugiej strony

Definicja znaczka różne na mocy definicji ##:
Dwie funkcje logiczna są różne na mocy definicji wtedy i tylko wtedy gdy nie są tożsame i żadna z nich nie jest zaprzeczeniem drugiej.

W tabeli T1 doskonale widać, że obie definicje znaczków # i ## są perfekcyjnie spełnione.

Kluczowe dla poprawnego działania algorytmu jest prawo śfinii.

Prawo śfinii:
Dowolne zdanie warunkowe od którego zaczynamy analizę matematyczną jest domyślnym punktem odniesienia, gdzie po „Jeśli ..” zapisujemy p zaś po „to..” zapisujemy q z pominięciem przeczeń.

5.10.1 Algorytm analizy zdania bazowego „Jeśli p to q”

Algorytm analizy zdania bazowego „Jeśli p to q”

START

Punkt 1

Prawo śfinii:
Dowolne zdanie bazowe od którego zaczynamy analizę matematyczną jest domyślnym punktem odniesienia, gdzie po „Jeśli ..” zapisujemy p zaś po „to..” zapisujemy q z pominięciem przeczeń.

Punkt 2
Zbiory:
Badamy elementem wspólnym zbiorów ~~> kolejne możliwe przeczenia p i q poszukując zbioru pustego (=0)
p~~>q=p*q =0
Zdarzenia:
Badamy zdarzeniem możliwym ~~> kolejne możliwe przeczenia p i q poszukując zdarzenia niemożliwego (=0)
p~~>q=p*q =0
RETURN

Punkt 3
Zbiory:
Jeśli znaleziono zbiór pusty [] idź do puntu 5
Zdarzenia:
Jeśli znaleziono zdarzenie niemożliwe ~~> idź do punktu 5

Inaczej:
Punkt 4
Zbiory:
Nie znaleziono zbioru pustego []
Zdarzenia:
Nie znaleziono zdarzenia niemożliwego ~~>
Operator logiczny zlokalizowany, to operator chaosu p||~~>q
Idź do operatora chaosu p||~~>q
STOP

Punkt 5
Na mocy prawa kontrapozycji zapisujemy prawdziwy warunek wystarczający => między tymi samymi punktami i w tym samym kierunku
(~)p=>(~)q =1

Punkt 6
Jeśli zdanie 5 jest w logice ujemnej (bo ~q) to prawem Kubusia sprowadzamy je do logiki dodatniej (bo q).
Prawo Kubusia:
~p=>~q = p~>q

Punkt 7
Badamy prawdziwość/fałszywość zdania 6 kodowanego spójnikiem przeciwnym do występującego w tym zdaniu (~> albo =>) między tymi samymi punktami i w tym samym kierunku
p (~> albo =>) q =?

Punkt 8
W punktach 6 i 7 mamy zlokalizowaną kolumnę A1B1: p|?q będącą częścią operatora logicznego p||?q

Idź do tabeli prawdy zlokalizowanego operatora logicznego
STOP

Przedstawiony wyżej algorytm to algorytm podstawowy.

Uwaga:
Matematycznie możliwy jest alternatywny algorytm przeciwny gdzie w prawie śfinii po „Jeśli ..” zapisujemy q zaś po „to…” zapisujemy p, jednak aby matematyk A dogadał się z matematykiem B obaj muszą stosować identyczny, uzgodniony wzajemnie algorytm: podstawowy albo przeciwny.
W logice matematycznej za domyślny przyjmujemy algorytm podstawowy dzięki czemu nie musimy sygnalizować światu zewnętrznemu który algorytm stosujemy.
Ponieważ algorytm podstawowy jest z definicji algorytmem domyślnym, możemy pominąć słówko „podstawowy” w „algorytmie podstawowym”.

5.10.2 Operator implikacji odwrotnej p||~>q

IO.
Definicja podstawowa implikacji odwrotnej p|~>q:

Implikacja odwrotna p|~>q to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
stąd:
A1B1:
p|~>q = ~(A1: p=>q)*(B1: p~>q) =~(0)*1 = 1*1 =1
Kod:

IO:
Tabela prawdy implikacji odwrotnej p|~>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
A1B1: p|~>q =~(A1: p=>q)*(B1: p~>q)=~(0)*1=1*1=1
       A1B1:         A2B2:        |     A3B3:         A4B4:
A:  1: p=>q  =0 = 2:~p~>~q=0     [=] 3: q~>p  =0 = 4:~q=>~p =0
A’: 1: p~~>~q=1 =                [=]             = 4:~q~~>p =1                   
       ##            ##           |     ##            ##
B:  1: p~>q  =1 = 2:~p=>~q=1     [=] 3: q=>p  =1 = 4:~q~>~p =1
B’:             = 2:~p~~>q=0     [=] 3: q~~>~p=0

Równanie operatora implikacji odwrotnej p||~>q:
A1B1:                                                        A2B2:
p|~>q = ~(A1: p=>q)*(B1: p~>q) = ~(A2:~p~>~q)*(B2:~p=>~q) = ~p|=>~q

Operator implikacji odwrotnej p||~>q to układ równań logicznych:
A1B1: p|~>q  =~(A1: p=> q)* (B1: p~>q) - co się stanie jeśli zajdzie p?
A2B2:~p|=>~q =~(A2:~p~>~q)* (B2:~p=>~q)- co się stanie jeśli zajdzie ~p?

Układ równań logicznych jest przemienny, stąd mamy:
Operator implikacji prostej ~p||=>~q to układ równań logicznych:
A2B2:~p|=>~q =~(A2:~p~>~q)* (B2:~p=>~q)- co się stanie jeśli zajdzie ~p?
A1B1: p|~>q   =~(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p?

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


Definicja symboliczna operatora implikacji odwrotnej p||~>q to układ równań A1B1 i A2B2 dający odpowiedź na pytania o p i ~p:
Kod:

Kolumna A1B1:
Co może się wydarzyć jeśli zajdzie p?
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
p|~>q =~(A1: p=>q)*(B1: p~>q)=~(0)*1=1*1=1
Stąd:
B1:  p~> q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
A1’: p~~>~q=1 - fałszywy A1 wymusza prawdziwy kontrprzykład A1’

Kolumna A2B2:
Co może się zdarzyć jeśli zajdzie ~p?
A2: ~p~>~q =0 - zajście ~p nie jest (=0) konieczne ~> dla zajścia ~q
B2: ~p=>~q =1 - zajście ~p jest (=1) wystarczające => dla zajścia ~q
A2B2:~p|=>~q =~(A2:~p~>~q)*(B2:~p=>~q)=~(0)*1=1*1=1
Stąd:
B2: ~p=>~q =1 - zajście ~p jest (=1) wystarczające => dla zajścia ~q
B2’:~p~~>q =0 - prawdziwy B2 wymusza fałszywy kontrprzykład B2’


Prawo Kobry dla zbiorów:
Warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q” jest jego prawdziwość przy kodowaniu elementem wspólnym zbiorów ~~>.
Innymi słowy:
Jeśli prawdziwe jest zdanie kodowane warunkiem wystarczającym => lub koniecznym ~> to na 100% prawdziwe jest to samo zdanie kodowane elementem wspólnym zbiorów ~~> (odwrotnie nie zachodzi)

Prawo Kobry dla zdarzeń:
Warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q” jest jego prawdziwość przy kodowaniu zdarzeniem możliwym ~~>.
Innymi słowy:
Jeśli prawdziwe jest zdanie kodowane warunkiem wystarczającym => lub koniecznym ~> to na 100% prawdziwe jest to samo zdanie kodowane zdarzeniem możliwym ~~> (odwrotnie nie zachodzi)

Na mocy prawa Kobry definicja operatora implikacji odwrotnej p||~>q wyrażona zdaniami bazowymi przyjmuje postać.
Kod:

A1B1:
Co może się wydarzyć jeśli zajdzie p?
B1:  p~~> q=1 - możliwe jest (=1) jednoczesne zajście zdarzeń p i q
A1’: p~~>~q=1 - możliwe jest (=1) jednoczesne zajście zdarzeń p i ~q
A2B2:
Co może się zdarzyć jeśli zajdzie ~p?
B2: ~p~~>~q=1 - możliwe jest (=1) jednoczesne zajście zdarzeń ~p i ~q
B2’:~p~~>q =0 - niemożliwe jest (=0) jednoczesne zajście zdarzeń ~p i q


5.11 Zdania bazowe w operatorze implikacji odwrotnej P2||~>P8 w zbiorach

W sprawdzaniu poprawności algorytmu analizy dowolnego zdania bazowego postępujemy identycznie jak w sprawdzaniu programu komputerowego. Na wejściu podajemy dane co do których jesteśmy pewni do jakiego operatora logicznego powinien nas algorytm zaprowadzić sprawdzając czy rzeczywiście tak się stanie.

Operator implikacji odwrotnej P2||~>P8 omówiony został w punkcie 5.4.1

Sprawdzenia poprawności działania algorytmu analizy dowolnego zdania bazowego w operatorze implikacji odwrotnej p||~>q wykonamy na konkretnym przykładzie, by łatwiej było zrozumieć.
p = P2 = [2,4,6,8..] - zbiór liczb podzielnych przez 2
q = P8 = [8,16,24..] - zbiór liczb podzielnych przez 8

Definicja operatora implikacji odwrotnej P2||~>P* w zdaniach bazowych to odpowiedź na pytania o P2 i ~P2:
Kod:

A1B1:
Co może się wydarzyć jeśli liczba będzie podzielna przez 2 (P2=1)?
B1:  P2~~>P8 =1 - istnieje (=1) element wspólny zbiorów P2 i P8 np. 8
A1’: P2~~>~P8=1 - istnieje (=1) element wspólny zbiorów P2 i ~P8 np. 2
A2B2:
Co może się zdarzyć jeśli liczba nie będzie podzielna przez 2 (~P2=1)?
B2: ~P2~~>~P8=1 - istnieje (=1) element wspólny zbiorów ~P2 i ~P8 np. 1
B2’:~P2~~>P8 =0 - nie istnieje (=0) element wspólny zbiorów ~P2 i P8
 


5.11.1 Zdanie bazowe P2~~>P8

Zadanie 5.11.1
Dane jest zdanie bazowe:
W1.
Jeśli dowolna liczba jest podzielna przez 2 to może być podzielna przez 8
Polecenie:
Zbadaj w skład jakiego operatora logicznego wchodzi to zdanie.
Zapisz analizę matematyczną zlokalizowanego operatora

Rozwiązanie:

Prawo śfinii:
Dowolne zdanie bazowe od którego zaczynamy analizę matematyczną jest domyślnym punktem odniesienia, gdzie po „Jeśli ..” zapisujemy p zaś po „to..” zapisujemy q z pominięciem przeczeń.

Na początek sprawdzamy czy zdanie W1 spełnia definicję zdania bazowego:
W1.
Jeśli dowolna liczba jest podzielna przez 2 to może być podzielna przez 8
1.
Na mocy prawa śfinii mamy:
Poprzednik p definiuje nam zbiór liczb podzielnych przez 2:
p = P2=[2,4,6,8..]
Następnik q definiuje zbiór liczb podzielnych przez 8:
q =P8=[8,16,24..]
Przyjmujemy wspólną dziedzinę minimalną:
LN=[1,2,3,4,5,6,7,8,9..] - zbiór liczb naturalnych
Obliczamy przeczenia zbiorów rozumiane jak ich uzupełnienia do dziedziny:
~p = ~P2=[LN-P2]=[1,3,5,7,9..]
~q = ~P8=[LN-P8]=[1,2,3,4,5,6,7..9..]
2.
Matematycznie zachodzi definicja wspólnej dziedziny LN zarówno dla P2 jak i dla P8.
Definicja dziedziny dla P2:
P2+~P2 = LN =1 - zbiór ~P2 jest uzupełnieniem do dziedziny LN dla zbioru P2
P2*~P2 =[] =0 - zbiory P2 i ~P2 są rozłączne
Definicja dziedziny dla P8:
P8+~P8 = LN =1 - zbiór ~P8 jest uzupełnieniem do dziedziny LN dla zbioru P8
P8*~P8 =[] =0 - zbiory P8 i ~P8 są rozłączne

Definicja zdania bazowego:
Zdanie bazowe to zdanie warunkowe „Jeśli p to q” kodowane elementem wspólnym zbiorów ~~> (zbiory) albo zdarzeniem możliwym ~~> (zdarzenia) spełniające poniższe warunki:
1.
W zdaniu warunkowym „Jeśli p to q” żadne z pojęć p, q, ~p i ~q nie może być zbiorem pustym (zdarzeniem niemożliwym), co gwarantuje rozpoznawalność tych pojęć.
2.
Poprzednik p i następnik q muszą należeć do wspólnej dziedziny.

Doskonale widać, że zdanie W1: P2~~>P8 spełnia definicję zdania bazowego bowiem zbiory P2, P8, ~P2 i ~P8 nie są puste oraz spełniona jest definicja wspólnej dziedziny dla P2 i P8.

Sprawdzenie algorytmu analizy zdań warunkowych „Jeśli p to q” w zbiorach:

START

Punkt 1

Prawo śfinii:
Dowolne zdanie warunkowe od którego zaczynamy analizę matematyczną jest domyślnym punktem odniesienia, gdzie po „Jeśli ..” zapisujemy p zaś po „to..” zapisujemy q z pominięciem przeczeń.
W1.
Jeśli dowolna liczba jest podzielna przez 2 to może być podzielna przez 8
P2~~>P8 = P2*P8 =?
Na mocy prawa śfinii nasz punkt odniesienia to:
p=P2=[2,4,6,8..] - zbiór liczb podzielnych przez 2
q=P8=[8,16,24..] - zbiór liczb podzielnych przez 8
Zapis zdania W1 w zapisie formalnym:
p~~>q = p*q =?

Poprzednik p mówi tu o zbiorze liczb podzielnych przez 2, natomiast następnik q o zbiorze liczb podzielnych przez 8.

Na potrzeby analizy musimy obliczyć wszystkie możliwe przeczenia zbiorów.
Przyjmijmy dziedzinę minimalną:
LN=[1,2,3,4,5,6,7,8,9..] - zbiór liczb naturalnych
Stąd mamy:
P2=[2,4,6,8..] - zbiór liczb podzielnych przez 2 (zbiór liczb parzystych)
P8=[8,16,24..] - zbiór liczb podzielnych przez 8
Obliczamy przeczenia zbiorów rozumiane jako ich uzupełnienia do dziedziny LN:
~P2=[LN-P2]=[1,3,5,7,9..] - zbiór liczb niepodzielnych przez 2 (zbiór liczb nieparzystych)
~P8=[LN-P8]=[1,2,3,4,5,6,7..9..] - zbiór liczb niepodzielnych przez 8
Matematycznie zachodzi definicja wspólnej dziedziny LN zarówno dla P8 jak i dla P2.
Definicja dziedziny dla P2:
P2+~P2 = LN =1 - zbiór ~P2 jest uzupełnieniem do dziedziny LN dla zbioru P2
P2*~P2 =[] =0 - zbiory P2 i ~P2 są rozłączne
Definicja dziedziny dla P8:
P8+~P8 = LN =1 - zbiór ~P8 jest uzupełnieniem do dziedziny LN dla zbioru P8
P8*~P8 =[] =0 - zbiory P8 i ~P8 są rozłączne

Definicja zdania bazowego:
Zdanie bazowe to zdanie warunkowe „Jeśli p to q” kodowane elementem wspólnym zbiorów ~~> (zbiory) albo zdarzeniem możliwym ~~> (zdarzenia) spełniające poniższe warunki:
1.
W zdaniu warunkowym „Jeśli p to q” żadne z pojęć p, q, ~p i ~q nie może być zbiorem pustym (zdarzeniem niemożliwym), co gwarantuje rozpoznawalność tych pojęć.
2.
Poprzednik p i następnik q muszą należeć do wspólnej dziedziny.

Doskonale widać, że zdanie B1: P2~~>P8 spełnia definicję zdania bazowego bowiem zbiory P8, P2, ~P2 i ~P8 nie są puste oraz spełniona jest definicja wspólnej dziedziny dla P8 i P2.

Punkt 2
Badamy elementem wspólnym zbiorów ~~> kolejne możliwe przeczenia poszukując zbioru pustego (=0)
1: P2~~>P8 =1 - bo istnieje (=1) wspólny element ~~> zbiorów P2=[2,4,6,8..24..] i P8=[8,16,24..] np.24
2: P2~~>~P8 =1 - istnieje (=1) wspólny element ~~>: P2=[2,4,6,8..24..] i ~P8=[1,2,3,4,5,6,7..9..] np.2
3: ~P2~~>~P8=1 - Istnieje (=1) wspólny element ~~>: ~P2=[1,3,5,7,9..] i ~P8=[1,2,3,4,5,6,7..9..] np.1
4: ~P2~~>P8 =0 - bo zbiory ~P2=[1,3,5,7,9..] i P8=[8,16,24..] są rozłączne
RETURN

Niezbędny komentarz:
Fałszywość punktu 4 musimy udowodnić
Najprostszy dowód to:
Dowolny zbiór liczb nieparzystych (tu ~P2) jest rozłączny z dowolnym zbiorem liczb parzystych (tu P8)
Nie zawsze w tak prosty sposób daje się udowodnić rozłączność zbiorów nieskończonych.
Co robić gdy nie jest tak prosto?
Prawami logiki matematycznej należy poszukać najprostszego warunku wystarczającego => bo taki warunek zawsze dowodzi się najprościej.
a)
Na początek zakładamy fałszywość kontrprzykładu 4 z czego wynika prawdziwość warunku wystarczającego który musimy udowodnić tu:
4a: ~P2=>~P8 =?
4a.
Jeśli dowolna liczba nie jest podzielna przez 2 (~P2=1) to na 100% => nie jest podzielna przez 8 (~P8=1)
4a: ~P2=>~P8 =?
4a: ~p=>~q =? - to samo w zapisie formalnym:
Jak widzimy nie jest to najprostszy warunek wystarczający =>, najprostszy dostaniemy po skorzystaniu z prawa kontrapozycji:
4a: ~p=>~q = 4b: q=>p
Zdanie 4b brzmi:
4b.
Jeśli dowolna liczba jest podzielna przez 8 to na 100% => jest podzielna przez 2
P8=>P2 =1
q=>p =1 - to samo w zapisie formalnym:
Definicja warunku wystarczającego => jest spełniona (=1) bo zbiór P8=[8,16,24..] jest podzbiorem => zbioru P2=[2,4,6,8..]
Z dowodem prawdziwości zdania 4b matematyk klasyczny nie będzie już miał problemów.
Nasze prawo kontrapozycji:
4b: P8=>P2 = 4a: ~P2=>~P8
To samo w zapisie formalnym:
4b: q=>p = 4a: ~p=>~q
Prawdziwość warunku wystarczającego 4a wymusza fałszywość kontrprzykładu 4a’ a dokładnie o dowód fałszywości 4a’ nam chodziło.
4a’: ~P2~~>P8 = [] =0 - bo zbiory ~P2=[2,4,6,8..] i P8=[8,16,24..] są rozłączne
cnd

Punkt 3
Jeśli znaleziono zbiór pusty [] idź do puntu 5
Znaleziony zbiór pusty to:
~P2~~>P8 =0 - bo zbiór ~P2=1,3,5,7,9..] jest rozłączny ze zbiorem P8=[8,16,24..]

Punkt 5
Na mocy prawa kontrapozycji zapisujemy prawdziwy warunek wystarczający => między tymi samymi punktami i w tym samym kierunku
Fałszywość kontrprzykładu 3 wymusza prawdziwość warunku wystarczającego 5
5.
Jeśli dowolna liczba nie jest podzielna przez 2 to na 100% => nie jest podzielna przez 8
~P2=>~P8 =1
Definicja warunku wystarczającego => jest spełniona bo zbiór ~P2=[1,3,5,7,9..] jest podzbiorem => zbioru ~P8=[1,2,3,4,5,6,7..9..]
Prawdziwość warunku wystarczającego 5 udowodniliśmy w punkcie 2 dowodząc pośrednio fałszywość kontrprzykładu:
~P2~~>P8=~P2*P8 =[] =0 - bo zbiory ~P2=[1,3,5,7,9..] i P8=[8,16,24..] są rozłączne

Punkt 6
Jeśli zdanie 5 jest w logice ujemnej (bo ~q) to prawem Kubusia sprowadzamy je do logiki dodatniej (bo q).
Prawo Kubusia:
~p=>~q = p~>q
Zdanie 5 zapisane jest w logice ujemnej (bo ~P8) zatem korzystamy z prawa Kubusia:
5: ~P2=>~P8 = 6: P2~>P8
Stąd:
6.
Jeśli dowolna liczba jest podzielna przez 2 to może ~> być podzielna przez 8
P2~>P8=1
Na mocy prawa Kubusia tego faktu nie musimy dowodzić, ale możemy:
Definicja warunku koniecznego ~> jest spełniona (=1) bo zbiór P2=[2,4,6,8..] jest nadzbiorem => zbioru P8=[8,16,24..]

Punkt 7
Badamy prawdziwość/fałszywość zdania 6 kodowanego spójnikiem przeciwnym do występującego w tym zdaniu (~> albo =>) między tymi samymi punktami i w tym samym kierunku
7.
Jeśli dowolna liczba jest podzielna przez 2 to na 100% => jest podzielna przez 8
P2=>P8 =0
Definicja warunku wystarczającego => nie jest spełniona (=0) bo zbiór P2=[2,4,6,8..] nie jest podzbiorem => zbioru P8=[8,16,24..]
Dowód tożsamy:
Podzielność dowolnej liczby przez 2 nie jest (=0) warunkiem wystarczającym => dla jej podzielności przez 8, bo nie każda liczba podzielna przez 2 jest podzielna przez 8 (np. 2)
cnd

Punkt 8
Zdania 6 i 7 lokalizują nam definicję implikacji odwrotnej P2|~>P8:
Implikacja odwrotna P2|~>P8 to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku.
A1: P2=>P8 =0 - bo zbiór P2=[2,4,6,8..] nie jest (=0) podzbiorem => zbioru P8=[8,16,24..]
B1: P2~>P8 =1 - bo zbiór P2=[2,4,6,8..] jest (=1) nadzbiorem ~> zbioru P8=[8,16,24..]
Stąd:
P2|~>P8 = ~(A1: P2=>P8)*(B1: P2~>P8)=~(0)*1=1*1=1

Wniosek:
Idź do tabeli prawdy implikacji odwrotnej zapisanej w punkcie 5.12

Komentarz:
Zdanie wejściowe to:
W1.
Jeśli dowolna liczba jest podzielna przez 8 (P8=1) to może ~~> być podzielna przez 2 (P2=1)
P8~~>P2 = P8*P2 =1 - bo zbiór P8=[8,16,24..] ma element wspólny ~~> ze zbiorem P2=[2,4,6,8..]

W punkcie 5.12.1 lokalizujemy zdanie W1 jako zdanie B1 będące częścią operatora implikacji odwrotnej P2||~>P8.
B1.
Jeśli dowolna liczba jest podzielna przez 2 (P2=1) to może ~> być podzielna przez 8 (P8=1)
P2~>P8 =1
Definicja warunku koniecznego ~> jest (=1) spełniona, bo zbiór P2=[2,4,6,8..] jest nadzbiorem ~> zbioru P8=[8,16,24..]

Prawo Kobry dla zbiorów:
Warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q” jest jego prawdziwość przy kodowaniu elementem wspólnym zbiorów ~~>.
Innymi słowy:
Jeśli prawdziwe jest zdanie kodowane warunkiem wystarczającym => lub koniecznym ~> to na 100% prawdziwe jest to samo zdanie kodowane elementem wspólnym zbiorów ~~> (odwrotnie nie zachodzi)

Z prawa Kobry wynika, że zdanie wejściowe W1 które analizowaliśmy wchodzi w skład warunku koniecznego B1: P2~>P8 będącego częścią operatora implikacji prostej odwrotnej P2||~>P8
cnd

5.11.2 Zdanie bazowe P2~~>~P8

Zadanie 5.11.2
Dane jest zdanie bazowe:
W2.
Jeśli dowolna liczba jest podzielna przez 2 to może nie być podzielna przez 8
Polecenie:
Zbadaj w skład jakiego operatora logicznego wchodzi to zdanie.
Zapisz analizę matematyczną zlokalizowanego operatora

Rozwiązanie:
Sprawdzenie definicji zdania bazowego jak w punkcie 5.11.1

Sprawdzenie algorytmu analizy zdań warunkowych „Jeśli p to q” w zbiorach:

START

Punkt 1

Prawo śfinii:
Dowolne zdanie warunkowe od którego zaczynamy analizę matematyczną jest domyślnym punktem odniesienia, gdzie po „Jeśli ..” zapisujemy p zaś po „to..” zapisujemy q z pominięciem przeczeń.
W2.
Jeśli dowolna liczba jest podzielna przez 2 to może nie być podzielna przez 8
P2~~>~P8 = P2*~P8 =?
Na mocy prawa śfinii nasz punkt odniesienia to:
p=P2=[2,4,6,8..] - zbiór liczb podzielnych przez 2
q=P8=[8,16,24..] - zbiór liczb podzielnych przez 8
Zapis zdania W2 w zapisie formalnym:
p~~>q = p*q =?

Punkt 2
Badamy elementem wspólnym zbiorów ~~> kolejne możliwe przeczenia poszukując zbioru pustego (=0)
1: P2~~>~P8 =1 - istnieje (=1) wspólny element ~~>: P2=[2,4,6,8..24..] i ~P8=[1,2,3,4,5,6,7..9..] np.2
2: ~P2~~>~P8=1 - Istnieje (=1) wspólny element ~~>: ~P2=[1,3,5,7,9..] i ~P8=[1,2,3,4,5,6,7..9..] np.1
3: ~P2~~>P8 =0 - bo zbiory ~P2=[1,3,5,7,9..] i P8=[8,16,24..] są rozłączne
RETURN

Punkt 3
Jeśli znaleziono zbiór pusty [] idź do puntu 5
Znaleziony zbiór pusty to:
~P2~~>P8 =0 - bo zbiór ~P2=1,3,5,7,9..] jest rozłączny ze zbiorem P8=[8,16,24..]

Punkt 5
Na mocy prawa kontrapozycji zapisujemy prawdziwy warunek wystarczający => między tymi samymi punktami i w tym samym kierunku
Fałszywość kontrprzykładu 3 wymusza prawdziwość warunku wystarczającego 5
5.
Jeśli dowolna liczba nie jest podzielna przez 2 to na 100% => nie jest podzielna przez 8
~P2=>~P8 =1
Definicja warunku wystarczającego => jest spełniona bo zbiór ~P2=[1,3,5,7,9..] jest podzbiorem => zbioru ~P8=[1,2,3,4,5,6,7..9..]

Punkt 6
Jeśli zdanie 5 jest w logice ujemnej (bo ~q) to prawem Kubusia sprowadzamy je do logiki dodatniej (bo q).
Prawo Kubusia:
~p=>~q = p~>q
Zdanie 5 zapisane jest w logice ujemnej (bo ~P8) zatem korzystamy z prawa Kubusia:
5: ~P2=>~P8 = 6: P2~>P8
Stąd:
6.
Jeśli dowolna liczba jest podzielna przez 2 to może ~> być podzielna przez 8
P2~>P8=1
Na mocy prawa Kubusia tego faktu nie musimy dowodzić, ale możemy:
Definicja warunku koniecznego ~> jest spełniona (=1) bo zbiór P2=[2,4,6,8..] jest nadzbiorem => zbioru P8=[8,16,24..]

Punkt 7
Badamy prawdziwość/fałszywość zdania 6 kodowanego spójnikiem przeciwnym do występującego w tym zdaniu (~> albo =>) między tymi samymi punktami i w tym samym kierunku
7.
Jeśli dowolna liczba jest podzielna przez 2 to na 100% => jest podzielna przez 8
P2=>P8 =0
Definicja warunku wystarczającego => nie jest spełniona (=0) bo zbiór P2=[2,4,6,8..] nie jest podzbiorem => zbioru P8=[8,16,24..]
Dowód tożsamy:
Podzielność dowolnej liczby przez 2 nie jest (=0) warunkiem wystarczającym => dla jej podzielności przez 8, bo nie każda liczba podzielna przez 2 jest podzielna przez 8 (np. 2)
cnd

Punkt 8
Zdania 6 i 7 lokalizują nam definicję implikacji odwrotnej P2|~>P8:
Implikacja odwrotna P2|~>P8 to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku.
A1: P2=>P8 =0 - bo zbiór P2=[2,4,6,8..] nie jest (=0) podzbiorem => zbioru P8=[8,16,24..]
B1: P2~>P8 =1 - bo zbiór P2=[2,4,6,8..] jest (=1) nadzbiorem ~> zbioru P8=[8,16,24..]
Stąd:
P2|~>P8 = ~(A1: P2=>P8)*(B1: P2~>P8)=~(0)*1=1*1=1

Wniosek:
Idź do tabeli prawdy implikacji odwrotnej zapisanej w punkcie 5.12

Komentarz:
Zdanie wejściowe to:
W2.
Jeśli dowolna liczba jest podzielna przez 2 (P2=1) to może ~~> nie być podzielna przez 8 (~P8=1)
P2~~>~P8 = P2*~P8 =1 - bo P2=[2,4,6,8..] ma element wspólny ~~> z ~P8=[1,2,3,4,5,6,7..9..] np.2

W punkcie 5.12.1 zlokalizowane zdanie W2 jako zdanie A1’ będące częścią operatora implikacji odwrotnej P2||~>P8.
A1’
Jeśli dowolna liczba jest podzielna przez 2 (P2=1) to może ~~> nie być podzielna przez 2 (~P2=1)
P2~~>~P8=P2*~P8 =1
Definicja elementu wspólnego zbiorów ~~> jest (=1) spełniona bo zbiory P2=[2,4,6,8..] i ~P8=[1,2,3,4,5,6..9..] mają co najmniej jeden element wspólny np. 2
cnd

5.11.3 Zdanie bazowe ~P2~~>~P8

Zadanie 5.11.3
Dane jest zdanie bazowe:
W3.
Jeśli dowolna liczba nie jest podzielna przez 2 to może nie być podzielna przez 8
Polecenie:
Zbadaj w skład jakiego operatora logicznego wchodzi to zdanie.
Zapisz analizę matematyczną zlokalizowanego operatora

Rozwiązanie:
Sprawdzenie definicji zdania bazowego jak w punkcie 5.11.1

Sprawdzenie algorytmu analizy zdań warunkowych „Jeśli p to q” w zbiorach:

START

Punkt 1

Prawo śfinii:
Dowolne zdanie warunkowe od którego zaczynamy analizę matematyczną jest domyślnym punktem odniesienia, gdzie po „Jeśli ..” zapisujemy p zaś po „to..” zapisujemy q z pominięciem przeczeń.
W3.
Jeśli dowolna liczba nie jest podzielna przez 2 to może nie być podzielna przez 8
~P2~~>~P8 = ~P2*~P8 =?
Na mocy prawa śfinii nasz punkt odniesienia to:
p=P2=[2,4,6,8..] - zbiór liczb podzielnych przez 2
q=P8=[8,16,24..] - zbiór liczb podzielnych przez 8
Zapis zdania W3 w zapisie formalnym:
~p~~>~q = ~p*~q =?

Punkt 2
Badamy elementem wspólnym zbiorów ~~> kolejne możliwe przeczenia poszukując zbioru pustego (=0)
1: ~P2~~>~P8=1 - Istnieje (=1) wspólny element ~~>: ~P2=[1,3,5,7,9..] i ~P8=[1,2,3,4,5,6,7..9..] np.1
2: ~P2~~>P8 =0 - bo zbiory ~P2=[1,3,5,7,9..] i P8=[8,16,24..] są rozłączne
RETURN

Punkt 3
Jeśli znaleziono zbiór pusty [] idź do puntu 5
Znaleziony zbiór pusty to:
~P2~~>P8 =0 - bo zbiór ~P2=1,3,5,7,9..] jest rozłączny ze zbiorem P8=[8,16,24..]

Punkt 5
Na mocy prawa kontrapozycji zapisujemy prawdziwy warunek wystarczający => między tymi samymi punktami i w tym samym kierunku
Fałszywość kontrprzykładu 3 wymusza prawdziwość warunku wystarczającego 5
5.
Jeśli dowolna liczba nie jest podzielna przez 2 to na 100% => nie jest podzielna przez 8
~P2=>~P8 =1
Definicja warunku wystarczającego => jest spełniona bo zbiór ~P2=[1,3,5,7,9..] jest podzbiorem => zbioru ~P8=[1,2,3,4,5,6,7..9..]

Punkt 6
Jeśli zdanie 5 jest w logice ujemnej (bo ~q) to prawem Kubusia sprowadzamy je do logiki dodatniej (bo q).
Prawo Kubusia:
~p=>~q = p~>q
Zdanie 5 zapisane jest w logice ujemnej (bo ~P8) zatem korzystamy z prawa Kubusia:
5: ~P2=>~P8 = 6: P2~>P8
Stąd:
6.
Jeśli dowolna liczba jest podzielna przez 2 to może ~> być podzielna przez 8
P2~>P8=1
Na mocy prawa Kubusia tego faktu nie musimy dowodzić, ale możemy:
Definicja warunku koniecznego ~> jest spełniona (=1) bo zbiór P2=[2,4,6,8..] jest nadzbiorem => zbioru P8=[8,16,24..]

Punkt 7
Badamy prawdziwość/fałszywość zdania 6 kodowanego spójnikiem przeciwnym do występującego w tym zdaniu (~> albo =>) między tymi samymi punktami i w tym samym kierunku
7.
Jeśli dowolna liczba jest podzielna przez 2 to na 100% => jest podzielna przez 8
P2=>P8 =0
Definicja warunku wystarczającego => nie jest spełniona (=0) bo zbiór P2=[2,4,6,8..] nie jest podzbiorem => zbioru P8=[8,16,24..]
Dowód tożsamy:
Podzielność dowolnej liczby przez 2 nie jest (=0) warunkiem wystarczającym => dla jej podzielności przez 8, bo nie każda liczba podzielna przez 2 jest podzielna przez 8 (np. 2)
cnd

Punkt 8
Zdania 6 i 7 lokalizują nam definicję implikacji odwrotnej P2|~>P8:
Implikacja odwrotna P2|~>P8 to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku.
A1: P2=>P8 =0 - bo zbiór P2=[2,4,6,8..] nie jest (=0) podzbiorem => zbioru P8=[8,16,24..]
B1: P2~>P8 =1 - bo zbiór P2=[2,4,6,8..] jest (=1) nadzbiorem ~> zbioru P8=[8,16,24..]
Stąd:
P2|~>P8 = ~(A1: P2=>P8)*(B1: P2~>P8)=~(0)*1=1*1=1

Wniosek:
Idź do tabeli prawdy implikacji odwrotnej zapisanej w punkcie 5.12

Komentarz:
Zdanie wejściowe to:
W3.
Jeśli dowolna liczba nie jest podzielna przez 2 (~P2=1) to może ~~> nie być podzielna przez 8 (~P8=1)
~P2~~>~P8 = ~P2*~P8 =1 - bo ~P2=[1,3,5,7..] ma element wspólny ~~> z ~P8=[1,2,3,4,5,6,7..9..] np.1

W punkcie 5.12.1 lokalizujemy zdanie W3 jako zdanie B2 będące częścią operatora implikacji odwrotnej P2||~>P8.
B2.
Jeśli dowolna liczba nie jest podzielna przez 2 (~P2=1) to na 100% => nie jest podzielna przez 8 (~P8=1)
~P2=>~P8 =1
Niepodzielność dowolnej liczby przez 2 wystarcza => dla jej niepodzielności przez 8 bo zbiór ~P2=[1,3,5,7,9..] jest podzbiorem => zbioru ~P8=[1,2,3,4,5,6,7..9..]

Prawo Kobry dla zbiorów:
Warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q” jest jego prawdziwość przy kodowaniu elementem wspólnym zbiorów ~~>.
Innymi słowy:
Jeśli prawdziwe jest zdanie kodowane warunkiem wystarczającym => lub koniecznym ~> to na 100% prawdziwe jest to samo zdanie kodowane elementem wspólnym zbiorów ~~> (odwrotnie nie zachodzi)

Z prawa Kobry wynika, że zdanie wejściowe W3 które analizowaliśmy wchodzi w skład warunku wystarczającego B2: ~P2=>~P8 będącego częścią operatora implikacji prostej odwrotnej P2||~>P8
cnd

5.11.4 Zdanie bazowe ~P2~~>P8

Zadanie 5.11.4
Dane jest zdanie bazowe:
W4.
Jeśli dowolna liczba nie jest podzielna przez 2 to może być podzielna przez 8
Polecenie:
Zbadaj w skład jakiego operatora logicznego wchodzi to zdanie.
Zapisz analizę matematyczną zlokalizowanego operatora

Rozwiązanie:
Sprawdzenie definicji zdania bazowego jak w punkcie 5.11.1

Sprawdzenie algorytmu analizy zdań warunkowych „Jeśli p to q” w zbiorach:

START

Punkt 1

Prawo śfinii:
Dowolne zdanie warunkowe od którego zaczynamy analizę matematyczną jest domyślnym punktem odniesienia, gdzie po „Jeśli ..” zapisujemy p zaś po „to..” zapisujemy q z pominięciem przeczeń.
W4.
Jeśli dowolna liczba nie jest podzielna przez 2 (~P2=1) to może być podzielna przez 8 (P8=1)
~P2~~>P8 = ~P2*P8 =?
Na mocy prawa śfinii nasz punkt odniesienia to:
p=P2=[2,4,6,8..] - zbiór liczb podzielnych przez 2
q=P8=[8,16,24..] - zbiór liczb podzielnych przez 8
Zapis zdania W4 w zapisie formalnym:
~p~~>q = ~p*q =?

Punkt 2
Badamy elementem wspólnym zbiorów ~~> kolejne możliwe przeczenia poszukując zbioru pustego (=0)
1: ~P2~~>P8 =0 - bo zbiory ~P2=[1,3,5,7,9..] i P8=[8,16,24..] są rozłączne
RETURN

Punkt 3
Jeśli znaleziono zbiór pusty [] idź do puntu 5
Znaleziony zbiór pusty to:
~P2~~>P8 =0 - bo zbiór ~P2=1,3,5,7,9..] jest rozłączny ze zbiorem P8=[8,16,24..]

Punkt 5
Na mocy prawa kontrapozycji zapisujemy prawdziwy warunek wystarczający => między tymi samymi punktami i w tym samym kierunku
Fałszywość kontrprzykładu 3 wymusza prawdziwość warunku wystarczającego 5
5.
Jeśli dowolna liczba nie jest podzielna przez 2 to na 100% => nie jest podzielna przez 8
~P2=>~P8 =1
Definicja warunku wystarczającego => jest spełniona bo zbiór ~P2=[1,3,5,7,9..] jest podzbiorem => zbioru ~P8=[1,2,3,4,5,6,7..9..]

Punkt 6
Jeśli zdanie 5 jest w logice ujemnej (bo ~q) to prawem Kubusia sprowadzamy je do logiki dodatniej (bo q).
Prawo Kubusia:
~p=>~q = p~>q
Zdanie 5 zapisane jest w logice ujemnej (bo ~P8) zatem korzystamy z prawa Kubusia:
5: ~P2=>~P8 = 6: P2~>P8
Stąd:
6.
Jeśli dowolna liczba jest podzielna przez 2 to może ~> być podzielna przez 8
P2~>P8=1
Na mocy prawa Kubusia tego faktu nie musimy dowodzić, ale możemy:
Definicja warunku koniecznego ~> jest spełniona (=1) bo zbiór P2=[2,4,6,8..] jest nadzbiorem => zbioru P8=[8,16,24..]

Punkt 7
Badamy prawdziwość/fałszywość zdania 6 kodowanego spójnikiem przeciwnym do występującego w tym zdaniu (~> albo =>) między tymi samymi punktami i w tym samym kierunku
7.
Jeśli dowolna liczba jest podzielna przez 2 to na 100% => jest podzielna przez 8
P2=>P8 =0
Definicja warunku wystarczającego => nie jest spełniona (=0) bo zbiór P2=[2,4,6,8..] nie jest podzbiorem => zbioru P8=[8,16,24..]
Dowód tożsamy:
Podzielność dowolnej liczby przez 2 nie jest (=0) warunkiem wystarczającym => dla jej podzielności przez 8, bo nie każda liczba podzielna przez 2 jest podzielna przez 8 (np. 2)
cnd

Punkt 8
Zdania 6 i 7 lokalizują nam definicję implikacji odwrotnej P2|~>P8:
Implikacja odwrotna P2|~>P8 to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku.
A1: P2=>P8 =0 - bo zbiór P2=[2,4,6,8..] nie jest (=0) podzbiorem => zbioru P8=[8,16,24..]
B1: P2~>P8 =1 - bo zbiór P2=[2,4,6,8..] jest (=1) nadzbiorem ~> zbioru P8=[8,16,24..]
Stąd:
P2|~>P8 = ~(A1: P2=>P8)*(B1: P2~>P8)=~(0)*1=1*1=1

Wniosek:
Idź do tabeli prawdy implikacji odwrotnej zapisanej w punkcie 5.12

Komentarz:
Zdanie wejściowe to:
W4.
Jeśli dowolna liczba nie jest podzielna przez 2 (~P2=1) to może ~~> być podzielna przez 8 (P8=1)
~P2~~>P8 = ~P2*P8 =0 - bo ~P2=[1,3,5,7..] i P8=[8,16,24..] to zbiory rozłączne.

W punkcie 5.12.1 lokalizujemy zdanie W4 jako zdanie B2’ będące częścią operatora implikacji odwrotnej P2||~>P8.
B2’
Jeśli dowolna liczba nie jest podzielna przez 2 (~P2=1) to może ~~> być podzielna przez 8 (P8=1)
~P2~~>P8=~P2*P8 =0
Definicja elementu wspólnego zbiorów ~~> nie jest spełniona bo zbiór ~P2=[1,3,5,7,9..] jest rozłączny ze zbiorem P8=[8,16, 24..]
cnd

5.12 Tabela prawdy implikacji prostej odwrotnej P2|~>P8

IO.
Definicja podstawowa implikacji odwrotnej p|~>q:

Implikacja odwrotna p|~>q to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
stąd:
A1B1:
p|~>q = ~(A1: p=>q)*(B1: p~>q) =~(0)*1 = 1*1 =1

Nasz przykład:
IO.
Definicja podstawowa implikacji odwrotnej P2|~>P*:

Implikacja odwrotna P2|~>P8 to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: P2=>P8 =0 - bo zbiór P2 nie jest (=0) podzbiorem P8
B1: P2~>P8 =1 - bo zbiór P2 jest (=1) nadzbiorem ~>P8
Stąd mamy:
A1B1:
P2|~>P8= ~(A1: P2=>P8)*(B1: P2~>P8)=~(0)*1=1*1=1

Nanieśmy zdania A1 i B1 do tabeli prawdy implikacji odwrotnej p||~>q:
Kod:

IO:
Tabela prawdy implikacji odwrotnej p|~>q
Definicja implikacji odwrotnej p|~>q w zapisie formalnym {p,q}:
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
A1B1: p|~>q= ~(A1: p=>q)*(B1: p~>q)=~(0)*1=1*1 =1
Definicja implikacji odwrotnej P2|~>P8 w zapisie aktualnym:
Punkt odniesienia na mocy prawa śfinii to:
p=P2 - zbiór liczb podzielnych przez 2
q=P8 - zbiór liczba podzielnych przez 8
Definicja implikacji odwrotnej P2|~>P8 w zapisie aktualnym {P2,P8}:
A1: P2=>P8 =0 - bo zbiór P2 nie jest (=0) podzbiorem P8
B1: P2~>P8 =1 - bo zbiór P2 jest (=1) nadzbiorem ~>P8
A1B1: P2|~>P8= ~(A1: P2=>P8)*(B1: P2~>P8)=~(0)*1=1*1=1
       A1B1:           A2B2:      |      A3B3:          A4B4:
A:  1: p=>q   = 0 = 2:~p~>~q  =0 [=] 3: q~>p    =0 = 4:~q=>~p  =0
A:  1: P2=>P8  =0 = 2:~P2~>~P8=0 [=] 3: P8~>P2  =0 = 4:~P8=>~P2=0
A’: 1: p~~>~q  =1 =              [=]               = 4:~q~~>p  =1                   
A’: 1: P2~~>~P8=1 =              [=]               = 4:~P8~~>P2=1                   
       ##             ##          |     ##            ##
B:  1: p~>q    =1 = 2:~p=>~q  =1 [=] 3: q=>p    =1 = 4:~q~>~p  =1
B:  1: P2~>P8  =1 = 2:~P2=>~P8=1 [=] 3: P8=>P2  =1 = 4:~P8~>~P2=1
B’:               = 2:~p~~>q  =0 [=] 3: q~~>~p  =0
B’:               = 2:~P2~~>P8=0 [=] 3: P8~~>~P2=0

Równanie operatora implikacji odwrotnej p||~>q:
A1B1:                                                        A2B2:
p|~>q = ~(A1: p=>q)*(B1: p~>q) = ~(A2:~p~>~q)*(B2:~p=>~q) = ~p|=>~q

Operator implikacji odwrotnej p||~>q to układ równań logicznych:
A1B1: p|~>q  =~(A1: p=> q)* (B1: p~>q) - co się stanie jeśli zajdzie p?
A2B2:~p|=>~q =~(A2:~p~>~q)* (B2:~p=>~q)- co się stanie jeśli zajdzie ~p?

Układ równań logicznych jest przemienny, stąd mamy:
Operator implikacji prostej ~p||=>~q to układ równań logicznych:
A2B2:~p|=>~q =~(A2:~p~>~q)* (B2:~p=>~q)- co się stanie jeśli zajdzie ~p?
A1B1: p|~>q   =~(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p?

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla poprawienia czytelności tabeli zapisy aktualne (z konkretnego przykładu) podstawiono w nagłówku tabeli oraz w części głównej decydującej o treści zdań warunkowych „Jeśli p to q”.

Operator implikacji odwrotnej p||~>q w logice dodatniej (bo q) to układ równań logicznych A1B1 i A2B2 dający odpowiedź na pytanie o p i ~p:
A1B1: p|~>q =~(A1: p=> q)* (B1: p~>q) - co się stanie jeśli zajdzie p?
A2B2:~p|=>~q =~(A2:~p~>~q)* (B2:~p=>~q)- co się stanie jeśli zajdzie ~p?

Układ równań logicznych jest przemienny, stąd mamy:
Operator implikacji prostej ~p||=>~q w logice ujemnej (bo ~q) to układ równań logicznych A2B2 i A1B1 dający odpowiedź na pytanie o ~p i p:
A2B2:~p|=>~q =~(A2:~p~>~q)* (B2:~p=>~q)- co się stanie jeśli zajdzie ~p?
A1B1: p|~>q =~(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p?

5.12.1 Operator implikacji odwrotnej P2||~>P8 w zbiorach

Operator implikacji odwrotnej p||~>q w logice dodatniej (bo q) to układ równań logicznych A1B1 i A2B2 dający odpowiedź na pytanie o p i ~p:
A1B1: p|~>q =~(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p?
A2B2: ~p|=>~q =~(A2:~p~>~q)*(B2:~p=>~q) - co się stanie jeśli zajdzie ~p?

A1B1:
Co się stanie jeśli ze zbioru liczb naturalnych wylosujemy liczbę podzielną przez 2 (P2=1)?


Odpowiedź mamy w kolumnie A1B1:
A1: P2=>P8 =0 - bo zbiór P2 nie jest (=0) podzbiorem P8
B1: P2~>P8 =1 - bo zbiór P2 jest (=1) nadzbiorem ~>P8
A1B1: P2|~>P8= ~(A1: P2=>P8)*(B1: P2~>P8)=~(0)*1=1*1=1
Stąd:
Jeśli ze zbioru liczb naturalnych wylosujemy liczbę podzielna przez 2 (P2=1) to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” - mówią o tym zdania B1 i A1’

Kolumna A1B1 to odpowiedź w zdaniach warunkowych „Jeśli p to q”:
B1.
Jeśli dowolna liczba jest podzielna przez 2 (P2=1) to może ~> być podzielna przez 8 (P8=1)
P2~>P8 =1
Definicja warunku koniecznego ~> jest (=1) spełniona, bo zbiór P2=[2,4,6,8..] jest nadzbiorem ~> zbioru P8=[8,16,24..]

LUB

Kontrprzykład A1’ dla fałszywego warunku wystarczającego A1 mus być prawdą.
A1’
Jeśli dowolna liczba jest podzielna przez 2 (P2=1) to może ~~> nie być podzielna przez 2 (~P2=1)
P2~~>~P8=P2*~P8 =1
Definicja elementu wspólnego zbiorów ~~> jest (=1) spełniona bo zbiory P2=[2,4,6,8..] i ~P8=[1,2,3,4,5,6..9..] mają co najmniej jeden element wspólny np. 2
W zdaniu A1’ nie zachodzi ani warunek wystarczający =>, ani też konieczny ~> i tego faktu nie musimy dowodzić na mocy algebry Kubusia.

A2B2:
Co się stanie jeśli ze zbioru liczb naturalnych wylosujemy liczbę niepodzielną przez 2 (~P2=1)?


Odpowiedź mamy w kolumnie A2B2:
A2: ~P2~>~P8 =0 - bo ~P2=[1,3,5,7,9..] nie jest (=0) nadzbiorem ~> ~P8=[1,2,3,4,5,6,7..9..]
B2: ~P2=>~P8 =1 - bo ~P2=[1,3,5,7,9..] jest (=1) podzbiorem => ~P8=[1,2,3,4,5,6,7..9..]
A2B2: ~P2|=>~P8 = ~(A2:~P2~>~P8)*(B2: ~P2=>~P8)=~(0)*1=1*1=1
stąd:
Jeśli ze zbioru liczb naturalnych wylosujemy liczbę niepodzielną przez 2 to mamy gwarancję matematyczną => iż ta liczba nie będzie podzielna przez 8 - mówi o tym zdanie B2.

Kolumna A2B2 to odpowiedź w zdaniach warunkowych „Jeśli p to q”:
B2.
Jeśli dowolna liczba nie jest podzielna przez 2 (~P2=1) to na 100% => nie jest podzielna przez 8 (~P8=1)
~P2=>~P8 =1
Niepodzielność dowolnej liczby przez 2 wystarcza => dla jej niepodzielności przez 8 bo zbiór ~P2=[1,3,5,7,9..] jest podzbiorem => zbioru ~P8=[1,2,3,4,5,6,7..9..]

Prawdziwy warunek wystarczający B2 wymusza fałszywość kontrprzykładu B2’ i odwrotnie.
B2’
Jeśli dowolna liczba nie jest podzielna przez 2 (~P2=1) to może ~~> być podzielna przez 8 (P8=1)
~P2~~>P8=~P2*P8 =0
Definicja elementu wspólnego zbiorów ~~> nie jest spełniona bo zbiór ~P2=[1,3,5,7,9..] jest rozłączny ze zbiorem P8=[8,16, 24..]
Dowolny zbiór liczb nieparzystych jest rozłączny z dowolnym zbiorem liczb parzystych.
cnd

Podsumowanie:
Cechą charakterystyczną operatora implikacji odwrotnej P2||~>P8 jest najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” po stronie liczb podzielnych przez 2 (zdania B1 i A1’) oraz gwarancja matematyczna => po stronie liczb niepodzielnych przez 2 (zdanie B2)
Doskonale to widać w analizie wyżej.

Zauważmy że:
a)
Układ równań logicznych jest przemienny, stąd mamy:
Operator implikacji prostej ~p||=>~q to układ równań logicznych:
A2B2:~p|=>~q =~(A2:~p~>~q)* (B2:~p=>~q)- co się stanie jeśli zajdzie ~p?
A1B1: p|~>q =~(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p?
Doskonale widać, że analiza matematyczna operatora implikacji prostej ~P2||=>~P8 w logice ujemnej (bo ~P8) będzie identyczna jak operatora implikacji odwrotnej P2||~>P8 w logice dodatniej (bo P8) z tym, że zaczynamy od kolumny A2B2 kończąc na kolumnie A1B1, co matematycznie jest bez znaczenia.
b)
Kolejność zdań tworzących operator implikacji odwrotnej P2||~>P8 również jest bez znaczenia, tak więc zdania B1, A1’ B2, B2’ możemy wypowiadać w dowolnej kolejności.
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
Kubuś




Dołączył: 03 Paź 2017
Posty: 872
Przeczytał: 0 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Wto 7:03, 15 Cze 2021    Temat postu:

Mały przerywnik ...

http://www.sfinia.fora.pl/wiezienie-script-src-http-wujzboj-com-sfinia-hideu-js-script,20/mord-na-sprawiedliwym-i-jego-zmartwychwstanie,4928-31325.html#600623

Kubuś napisał:
JWP Barycki,
Czy zdaje sobie Pan sprawę że będąc fanatykiem "implikacji materialnej" jest Pan pacjentem zakładu zamkniętego bez klamek?

Bóg ŁP JWPB napisał:

..to ja w sposób ściśle matematycznie naukowy udowodnię całej ludzkości, że Płock nie leży nad Wisłą, co da ludzkości 100% gwarancji matematycznej na zwycięstwo AK nad plugawą matematyką plugawych matematyków ziemskich.


http://www.sfinia.fora.pl/forum-kubusia,12/algebra-kubusia-w-przebudowie,18899.html#593837

Twierdzenie Smoka Wawelskiego:
Dowolny ziemski matematyk, który twierdzi iż definicja „implikacji materialnej” jest matematycznie poprawna w naszym Wszechświecie żywym i martwym (w tym w matematyce) jest pacjentem zakładu zamkniętego bez klamek.
Innymi słowy:
Ziemska interpretacja równoważności p<=>q z Wikipedii to straszliwie ciężki przypadek schizofrenii.

Dowód:
[link widoczny dla zalogowanych]
Wikipedia napisał:

Równoważność p<=>q (lub: ekwiwalencja) – twierdzenie, w którym poprzednik p jest zarówno warunkiem koniecznym ~>, jak i wystarczającym => dla następnika q.
To zdanie zapisuje się za pomocą spójnika wtedy i tylko wtedy (wtw), gdy...

Przykłady równoważności prawdziwych:
Trawa jest zielona wtedy i tylko wtedy gdy 2 + 2 = 4
2+2=4 wtedy i tylko wtedy gdy Płock leży nad Wisłą
etc

Zauważmy, że wytłuszczona część definicji równoważności p<=>q z Wikipedii jest poprawna i identyczna jak w algebrze Kubusia … ale przykłady równoważności prawdziwych z Wikipedii to jedno wielkie, potwornie śmierdzące gówno.

Puenta ziemskiej definicji równoważności p<=>q z Wikipedii:
Ziemska definicja równoważności p<=>q to straszliwie ciężki przypadek schizofrenii - zdradzają to przykłady z Wikipedii.

Rozważmy pierwszy przykład:
Na mocy wytłuszczonej, poprawnej definicji równoważności z Wikipedii ziemscy twardogłowi „matematycy” zapisują:
RA1B1:
Trawa jest zielona wtedy i tylko wtedy, gdy 2 + 2 = 4
TZ<=>224 <=> (A1: TZ=>224)*(B1: TZ~>224) = 1*1 =1

Jak widzimy, ziemski „matematyk” twierdząc, że powyższa równoważność RA1B1 jest prawdziwa musi udowodnić prawdziwość zdań składowych A1 i B1.

Dowód prawdziwości warunku wystarczającego => A1:
A1.
Jeśli trawa jest zielona to na 100% => 2+2=4
TZ=>224 =1
Z faktu iż trawa jest zielona wynika => że 2+2=4
Innymi słowy:
Zieloność trawy jest warunkiem wystarczającym => do tego, aby 2+2=4

Jak prawdziwość warunku wystarczającego => A1 dowodzą ziemscy „matematycy”?
Oczywiście: nie wiem!
Po odpowiedź należy się udać do zakładu zamkniętego bez klamek, będącego domem dla absolutnie wszystkich fanatyków „implikacji materialnej”, czyli ziemskich twardogłowych matematyków.

Dowód prawdziwości warunku koniecznego ~> B1:
B1.
Jeśli trawa jest zielona to na 100% ~> 2+2=4
TZ~>224 =1
Zieloność trawy jest warunkiem koniecznym ~> do tego, aby 2+2=4

Jak prawdziwość warunku koniecznego ~> B1 dowodzą ziemscy „matematycy”?
Oczywiście: nie wiem!
Po odpowiedź należy się udać do zakładu zamkniętego bez klamek, będącego domem dla absolutnie wszystkich fanatyków „implikacji materialnej”, czyli ziemskich twardogłowych matematyków.

Wróćmy ze szpitala psychiatrycznego, którym jest schizofreniczne rozumienie poprawnej definicji równoważności p<=>q w Wikipedii do algebry Kubusia, czyli do świata zdrowych na umyśle, normalnych matematyków.
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 35331
Przeczytał: 23 tematy

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Czw 9:33, 17 Cze 2021    Temat postu:

http://www.sfinia.fora.pl/wiezienie-script-src-http-wujzboj-com-sfinia-hideu-js-script,20/mord-na-sprawiedliwym-i-jego-zmartwychwstanie,4928-31350.html#601135

Aurelka Bocianek napisał:

Kubuś napisał:
Można, pod warunkiem że nie będzie to Malina.
Jak Malina założy tu bloga i zacznie głosić swoje mądrości to...


Dziwne, oczekujesz tolerancji dla własnych poglądów kneblując usta innym.
Może nie głoś już haseł o wyjątkowości tego miejsca.

Zgadza się, to była uwaga ironiczna, bo sam w oczach ziemskich matematyków jestem płaskoziemcą wierzącym iż "ziemia jest płaska".

Mam pewnie identyczną pewność jak Malina że jeśli chodzi o logikę matematyczną to wszyscy ziemscy matematycy są pacjentami zakładu zamkniętego bez klamek - ich bóg, w postaci gówna zwanego "implikacją materialną" jest tego dowodem.

Problem w tym, że kończyłem studia elektroniczne gdzie algebra Boole'a była na najwyższym światowym poziomie, mam więc w tym kierunku wykształcenie, a jakie wykształcenie medyczne ma Malina - jakie studia kończyła.

Najśmieszniejszy jest fakt, że ludzkość nie rozumie nawet algebry Boole'a!

Dowód:
Ziemska algebra Boole'a jest wewnętrznie sprzeczna na poziomie funkcji, logicznych, czego twardy, czysto matematyczny dowód jest w tym linku:

4.0 Armagedon ziemskiej algebry Boole’a

http://www.sfinia.fora.pl/wiezienie-script-src-http-wujzboj-com-sfinia-hideu-js-script,20/mord-na-sprawiedliwym-i-jego-zmartwychwstanie,4928-31350.html#601143
Anonymous napisał:
BRAWO Kubusiu. Ty jesteś zarówno diabłem na końcu szpilki jak i szpilką. A ludzkość was nie rozumie, nie rozumie ani szpilki ani diabła.


Ostatnio zmieniony przez rafal3006 dnia Czw 9:45, 17 Cze 2021, w całości zmieniany 1 raz
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
Kubuś




Dołączył: 03 Paź 2017
Posty: 872
Przeczytał: 0 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Pią 22:03, 18 Cze 2021    Temat postu:

Jeszcze jeden przerywnik.

http://www.sfinia.fora.pl/wiezienie-script-src-http-wujzboj-com-sfinia-hideu-js-script,20/mord-na-sprawiedliwym-i-jego-zmartwychwstanie,4928-31375.html#601407

Kubuś napisał:
Bóg ŁP JWPB napisał:
desca literacca napisał:
tak na prawdę Was lubię

To, że mnie lubisz Krowo, nie jest żadną twoją zasługa, plugawa kanalio, wszyscy na tej planecie mnie lubią, a cudowne panie upojone winem, kochają mnie do szaleństwa. Musisz mnie lubić, plugawa kanalio, bo takie jest naturalne prawo naszego wszechświata, na co, nasz drogi Kubuś, daje nam 100% gwarancji matematycznej.

Naturalne prawo Wszechświata to:
Szanuj przyjaciół - bij wrogów

Innymi słowy:
To że pan siebie mianuje przyjacielem Krowy jest bez znaczenia.
Ważne jest jak Krowa pana traktuje.

Zapytajmy zatem Krowę:
Czy JWP Barycki jest twoim przyjacielem, czy wrogiem?

JWP Barycki:
Nawet jeśli Krowa zadeklaruje iż jest pan jego przyjacielem to i tak nie ma pan 100% pewności iż tak jest w istocie, bo krowa ma wolą wolę, co oznacza, że może gwałcić dowolne prawa logiki matematycznej obowiązujące w świecie martwym.

Innymi słowy:
Jeśli Krowa chce pana zabić, to korzystnie jest mu udawać iż pan jesteś jego przyjacielem - bo ufnego przyjaciela łatwiej zabić, jest bezbronny wobec bezwzględnego zabójcy np. Krowy

... i takie oto jest naturalne prawo naszego Wszechświata.

Prawo to znają wszystkie istoty żywe, nie tylko człowiek.
Fałszywe obietnice to standard w świecie żywym!

Dowód:
[link widoczny dla zalogowanych]

Żółw sępi żywi się w zasadzie wszystkim, co uda mu się upolować. Jego silne szczęki radzą sobie nawet z muszlami dużych ślimaków oraz małży). Ofiarę wabi za pomocą mięsistego wyrostka na języku. Gdy ta znajdzie się w jego zasięgu, żółw szybko rzuca się na swą zdobycz i zaciska na niej szczęki

P.S.
Krowa może Panu obiecać "złote góry" - pan skuszony obietnicą może tego chcieć, ale Krowa zamiast dać panu wymarzone "złote góry" może zdzielić pana młotkiem w makówkę ... i po panu Baryckim.
Jak się teraz panu podoba opisane wyżej na przykładach naturalne prawo Wszechświata gwarantowane przez algebrę Kubusia?


[link widoczny dla zalogowanych]

Boże, strzeż mnie od przyjaciół, z wrogami poradzę sobie sam

Armand Jean de Richelieu (1585–1642) – książę, kardynał, francuski mąż stanu, pierwszy minister Francji od 1624.

http://www.sfinia.fora.pl/wiezienie-script-src-http-wujzboj-com-sfinia-hideu-js-script,20/mord-na-sprawiedliwym-i-jego-zmartwychwstanie,4928-31400.html#601487

Kubuś napisał:

[link widoczny dla zalogowanych]

Boże, strzeż mnie od przyjaciół, z wrogami poradzę sobie sam

Armand Jean de Richelieu (1585–1642) – książę, kardynał, francuski mąż stanu, pierwszy minister Francji od 1624.

[link widoczny dla zalogowanych]

Aby zapobiec rodzinnym walkom o tron, sułtan Mehmed II zalegalizował w XV w. zabijanie rodzeństwa tureckich władców. Czas obowiązywania tego okrutnego dekretu to okres… największego rozkwitu potęgi osmańskiej.

Zwycięzcą morderczej, wieloletniej wojny o panowanie nad Turcją okazał się Mehmed, któremu udało się w końcu zjednoczyć wszystkie ziemie Osmanów. W 1413 r., po śmierci pozostałych braci, został sułtanem Mehmedem I.

Na dworze zwycięzcy mówiło się o jego zabitych braciach wyłącznie źle. W takiej atmosferze wyrastali potomkowie sułtana. Od najmłodszych lat słyszeli, że posiadanie rodzeństwa płci męskiej to prawdziwe przekleństwo dla władcy i wielkie zagrożenie dla kraju. Wnuk Mehmeda I, Mehmed II nazwany później Zdobywcą, tak sobie wziął do serca te nauki, że postanowił nadać sankcję prawną bratobójstwu, aby w ten sposób władcy mogli zabezpieczyć się przed buntami i rewoltami.

Nie było to proste, gdyż przepisy osmańskiego prawa świeckiego – kanun – musiały być zgodne z islamskim prawem szariatu. Mehmed II, zdobywca Konstantynopola (w 1453 r.) i twórca imperium osmańskiego, miał jednak tak wielki posłuch i autorytet, że nie zważał na obiekcje islamskich mędrców. Uparł się, by wprowadzić nieludzkie prawo, i uczynił to w 1477 r. „Którykolwiek z moich potomków odziedziczy z woli Allaha tron sułtana, powinien zabić swoich braci w interesie zachowania porządku na świecie. Większość ulemów zgadza się z tym, niechajże więc takoż się dzieje” – orzekł monarcha w wydanym przez siebie dekrecie kanun.


Ostatnio zmieniony przez Kubuś dnia Sob 11:04, 19 Cze 2021, w całości zmieniany 2 razy
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 35331
Przeczytał: 23 tematy

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Nie 5:49, 20 Cze 2021    Temat postu:

Algebra Kubusia - ostatnie czytanie!
Część XV

Po raz ostatni przed premierą czytam od początku algebrę Kubusia likwidując literówki i udoskonalając przekaz.
Kontynuujemy czytanie ...

http://www.sfinia.fora.pl/forum-kubusia,12/algebra-kubusia-matematyka-jezyka-potocznego-brudnopis,18263.html#582733

Algebra Kubusia - wykład rozszerzony
6.0 Operatory implikacyjne - równoważność p|<=>q


Spis treści
6.0 Operatory implikacyjne - równoważność p|<=>q 1
6.1. Definicja podstawowa równoważności p<=>q 1
6.2 Równoważność p<=>q jako tożsamość zbiorów/pojęć 10
6.2.1 Diagram równoważności w zbiorach 12
6.3 Definicja równoważności p<=>q 15
6.3.1 Definicja operatora równoważności p|<=>q 16
6.3.2 Zero-jedynkowa definicja równoważności p<=>q 18
6.4 Odtworzenie definicji operatora równoważności p|<=>q z definicji ~~> 21

Dlaczego to jest wykład rozszerzony?
Wiedza podstawowa w niniejszym rozdziale w temacie operatora równoważności p|<=>q jest kopią rozdziału 3.3 który już przerobiliśmy. Jedyna różnica polega na wzbogaceniu znanego nam już operatora równoważności p|<=>q o jego związki ze spójnikami „i”(*) i „lub”(+).
W języku potocznym żaden człowiek nie przechodzi z operatora równoważności p<=>q opisanego zdaniami warunkowymi „Jeśli p to q” do równoważności wyrażonej spójnikami „i”(*) i „lub”(+).
Z opisanego wyżej powodu niniejszy rozdział trafia do rozszerzonej algebry Kubusia.


6.0 Operatory implikacyjne - równoważność p|<=>q

Definicja operatora implikacyjnego:
Operator implikacyjny, to operator definiowany zdaniami warunkowymi „Jeśli p to q”

W logice matematycznej rozróżniamy cztery podstawowe operatory implikacyjne:
p||=>q - operator implikacji prostej
p||~>q - operator implikacji odwrotnej
p|<=>q - operator równoważności
p||~~>q - operator chaosu
Dodatkowy piąty operator to mutacja operatora równoważności:
p|$q - operator „albo”($)

Wszystkie definicje operatorów implikacyjnych opisane są zdaniami warunkowymi „Jeśli p to q” ze spełnionymi lub nie spełnionymi warunkami wystarczającymi => i koniecznymi ~>

6.1. Definicja podstawowa równoważności p<=>q

Definicja podzbioru => w algebrze Kubusia:
Zbiór p jest podzbiorem => zbioru q wtedy i tylko wtedy gdy wszystkie elementy zbioru p należą do zbioru q
p=>q =1 - gdy relacja podzbioru => jest (=1) spełniona
Inaczej:
p=>q =0 - relacja podzbioru => nie jest (=0) spełniona

Definicja nadzbioru ~> w algebrze Kubusia:
Zbiór p jest nadzbiorem ~> zbioru q wtedy i tylko wtedy gdy zawiera co najmniej wszystkie elementy zbioru q
p~>q =1 - gdy relacja nadzbioru ~> jest (=1) spełniona
Inaczej:
p~>q =0 - relacja nadzbioru ~> nie jest (=0) spełniona

W algebrze Kubusia w zbiorach zachodzi tożsamość pojęć:
Podzbiór => = relacja podzbioru =>
Nadzbiór => = relacja nadzbioru =>

Definicja podstawowa równoważności p<=>q w warunkach wystarczającym => i koniecznym ~>:
Równoważność p<=>q to jednoczesne zachodzenie zarówno warunku wystarczającego =>, jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
stąd:
p<=>q = (A1: p=>q)*(B1: p~>q) = 1*1 =1

W algebrze Kubusia w zbiorach zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

Stąd mamy:
Definicja tożsama równoważności p<=>q w relacjach podzbioru => i nadzbioru ~>:
Równoważność p<=>q to jednoczesne zachodzenie zarówno relacji podzbioru =>, jak i relacji nadzbioru ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 - zbiór p jest (=1) podzbiorem => zbioru q
B1: p~>q =1 - zbiór p jest (=1) nadzbiorem ~> zbioru q
stąd:
p<=>q = (A1: p=>q)*(B1: p~>q) = 1*1 =1

Na mocy definicji podzbioru => i nadzbioru ~> mamy:
Każdy zbiór jest (=1) podzbiorem => siebie samego
Każdy zbiór jest (=1) nadzbiorem ~> siebie samego

Na mocy powyższego mamy:
Definicja tożsamości zbiorów p=q:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q i jednocześnie zbiór p jest nadzbiorem ~> zbioru q (i odwrotnie)
p=q <=> (A1: p=>q)*(B1: p~>q) = p<=>q
Innymi słowy:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy prawdziwa jest równoważność p<=>q (i odwrotnie)

Dowód iż dla p=q każda równoważność p<=>q jest prawdziwa:
Definicja równoważności p<=>q:
p<=>q = (A1: p=>q)*(B1: p~>q)
stąd dla p=q mamy:
p<=>p = (A1: p=>p)*(B1: p~>p) = 1*1 =1
bo:
A1: p=>p =1 - każdy zbiór jest (=1) podzbiorem => siebie samego
B1: p~>p =1 - każdy zbiór jest (=1) nadzbiorem ~> siebie samego
cnd

Przykład:
Definicja równoważności w zapisie formalnym {p, q}:
p<=>q = (A1: p=>q)*(B1: p~>q)=1*1=1
Podstawmy następujące p=q:
p = P2=[2,4,6,8..] - zbiór liczb podzielnych przez 2
q = P2=[2,4,6,8..] - zbiór liczb podzielnych przez 2

Stąd mamy równoważność <=> prawdziwą w zapisie aktualnym {P8, P8}:
RA1B1:
Dowolna liczba jest podzielna przez 2 wtedy i tylko wtedy gdy jest podzielna przez 2
P2<=>P2 = (A1: P2=>P2)*(B1: P2~>P2) =1*1 =1
bo:
A1: P2=>P2 =1 - każdy zbiór jest (=1) podzbiorem => siebie samego
B1: P2~>P2 =1 - każdy zbiór jest (=1) nadzbiorem ~> siebie samego
cnd

Prawą stronę czytamy:
Podzielność dowolnej liczby przez 2 jest warunkiem koniecznym ~> i wystarczającym => dla jej podzielności przez 2
P2<=>P2 = (A1: P2=>P2)*(B1: P2~>P2) =1*1 =1

Podsumowując do zapamiętania!

Definicja tożsamości zbiorów p=q:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q i jednocześnie zbiór p jest nadzbiorem ~> zbioru q (i odwrotnie)
p=q <=> (A1: p=>q)*(B1: p~>q) = p<=>q
Innymi słowy:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy prawdziwa jest równoważność p<=>q (i odwrotnie)

Zauważmy, że powyższa definicja tożsamości zbiorów p=q to Armagedon ziemskiej logiki „matematycznej”!

Twierdzenie Smoka Wawelskiego:
Dowolny ziemski matematyk, który twierdzi iż definicja „implikacji materialnej” jest matematycznie poprawna w naszym Wszechświecie żywym i martwym (w tym w matematyce) jest pacjentem zakładu zamkniętego bez klamek.
Innymi słowy:
Ziemska interpretacja równoważności p<=>q z Wikipedii to straszliwie ciężki przypadek schizofrenii.

Dowód:
[link widoczny dla zalogowanych]
Wikipedia napisał:

Równoważność p<=>q (lub: ekwiwalencja) – twierdzenie, w którym poprzednik p jest zarówno warunkiem koniecznym ~>, jak i wystarczającym => dla następnika q.
To zdanie zapisuje się za pomocą spójnika wtedy i tylko wtedy (wtw), gdy...

Przykłady równoważności prawdziwych:
Trawa jest zielona wtedy i tylko wtedy gdy 2 + 2 = 4
2+2=4 wtedy i tylko wtedy gdy Płock leży nad Wisłą
etc

Zauważmy, że wytłuszczona część definicji równoważności p<=>q z Wikipedii jest poprawna i identyczna jak w algebrze Kubusia … ale przykłady równoważności prawdziwych z Wikipedii to jedno wielkie, potwornie śmierdzące gówno.

Puenta ziemskiej definicji równoważności p<=>q z Wikipedii:
Ziemska definicja równoważności p<=>q to straszliwie ciężki przypadek schizofrenii - zdradzają to przykłady z Wikipedii.

Rozważmy pierwszy przykład:
Na mocy wytłuszczonej, poprawnej definicji równoważności z Wikipedii ziemscy twardogłowi „matematycy” zapisują:
RA1B1:
Trawa jest zielona wtedy i tylko wtedy, gdy 2 + 2 = 4
TZ<=>224 <=> (A1: TZ=>224)*(B1: TZ~>224) = 1*1 =1

Jak widzimy, ziemski „matematyk” twierdząc, że powyższa równoważność RA1B1 jest prawdziwa musi udowodnić prawdziwość zdań składowych A1 i B1.

Dowód prawdziwości warunku wystarczającego => A1:
A1.
Jeśli trawa jest zielona to na 100% => 2+2=4
TZ=>224 =1
Z faktu iż trawa jest zielona wynika => że 2+2=4
Innymi słowy:
Zieloność trawy jest warunkiem wystarczającym => do tego, aby 2+2=4

Jak prawdziwość warunku wystarczającego => A1 dowodzą ziemscy „matematycy”?
Oczywiście: nie wiem!
Po odpowiedź należy się udać do zakładu zamkniętego bez klamek, będącego domem dla absolutnie wszystkich fanatyków „implikacji materialnej”, czyli ziemskich twardogłowych matematyków.

Dowód prawdziwości warunku koniecznego ~> B1:
B1.
Jeśli trawa jest zielona to na 100% ~> 2+2=4
TZ~>224 =1
Zieloność trawy jest warunkiem koniecznym ~> do tego, aby 2+2=4

Jak prawdziwość warunku koniecznego ~> B1 dowodzą ziemscy „matematycy”?
Oczywiście: nie wiem!
Po odpowiedź należy się udać do zakładu zamkniętego bez klamek, będącego domem dla absolutnie wszystkich fanatyków „implikacji materialnej”, czyli ziemskich twardogłowych matematyków.

Wróćmy ze szpitala psychiatrycznego, którym jest schizofreniczne rozumienie poprawnej definicji równoważności p<=>q w Wikipedii do algebry Kubusia, czyli do świata zdrowych na umyśle, normalnych matematyków.

W algebrze Kubusia mamy zaledwie trzy znaczki (=>, ~> i ~~>) na których zbudowana jest kompletna algebra Kubusia w obsłudze zdań warunkowych "Jeśli p to q".
1.
Warunek wystarczający =>:

p=>q =1 - gdy zajście p jest (=1) warunkiem wystarczającym => dla zajścia q
Inaczej:
p=>q =0
2.
Warunek konieczny ~>:

p~>q =1 0 gdy zajście p jest (=1) konieczne ~> dla zajścia q
Inaczej:
p~>q =0
3.
Zdarzenie możliwe ~~> lub element wspólny zbiorów ~~>

Zdarzenia:
Definicja zdarzenia możliwego ~~> w zdarzeniach:
p~~>q = p*q =1 - gdy możliwe jest (=1) jednoczesne zajście zdarzeń p i q
Inaczej:
p~~>q=p*q =0
Zbiory:
Definicja elementu wspólnego zbiorów ~~>:
p~~>q = p*q =1 - gdy zbiory p i q mają (=1) element wspólny
Inaczej:
p~~>q = p*q=0
Kod:

T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
      ##        ##           ##        ##            ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5:  p+~q

Prawa Kubusia:        | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q  | A1: p=>q  = A4:~q=>~p
B1: p~>q = B2:~p=>~q  | B2:~p=>~q = B3: q=>p

Prawa Tygryska:       | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p   | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p   | B1: p~>q  = B4:~q~>~p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


TR.
Definicja podstawowa równoważności p<=>q:

Równoważność p<=>q to jednoczesne zachodzenie zarówno warunku wystarczającego =>, jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
stąd:
p<=>q = (A1: p=>q)*(B1: p~>q) = 1*1 =1

Lewą stronę czytamy:
Zajdzie p wtedy i tylko wtedy gdy zadzie q

Prawą stronę czytamy:
Zajście p jest potrzebne ~> i wystarczające => do tego, aby zaszło q

Podstawmy tą definicję do matematycznych związków warunku wystarczającego => i koniecznego ~>:
Kod:

T1
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w równoważności p<=>q
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p =1 [=] 5: ~p+q
      ##        ##           ##        ##               ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p =1 [=] 5:  p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla udowodnienia, iż zdanie warunkowe „Jeśli p to q” wchodzi w skład równoważności p<=>q potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Ax oraz prawdziwość dowolnego zdania serii Bx.
Zauważmy, że nie ma znaczenia które zdanie będziemy brali pod uwagę, bowiem prawami logiki matematycznej (prawa Kubusia, prawa Tygryska i prawa kontrapozycji) zdanie to możemy zastąpić zdaniem logicznie tożsamym z kolumny A1B1.

Kluczowym punktem zaczepienia w wyprowadzeniu symbolicznej definicji równoważności p<=>q jest definicja kontrprzykładu rodem z algebry Kubusia działająca wyłącznie w warunku wystarczającym =>.

Definicja kontrprzykładu w zbiorach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane elementem wspólnym zbiorów p~~>~q=p*~q

Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>~q=p*~q

Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)

Uzupełnijmy naszą tabelę wykorzystując powyższe rozstrzygnięcia działające wyłącznie w warunkach wystarczających =>.
Kod:

TR:
Tabela prawdy równoważności p<=>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q =1 - p jest (=1) wystarczające => dla q
B1: p~>q =1 - p jest (=1) konieczne ~> dla q
p<=>q = (A1: p=>q)*(B1: p~>q) =1*1=1
       A1B1:         A2B2:        |     A3B3:         A4B4:
A:  1: p=>q  =1 = 2:~p~>~q=1     [=] 3: q~>p  =1 = 4:~q=>~p =1
A’: 1: p~~>~q=0 =                [=]             = 4:~q~~>p =0
       ##            ##           |     ##            ##
B:  1: p~>q  =1 = 2:~p=>~q=1     [=] 3: q=>p  =1 = 4:~q~>~p =1
B’:             = 2:~p~~>q=0     [=] 3: q~~>~p=0

Równanie operatora równoważności p|<=>q:
A1B1:                                                     A2B2:
p<=>q = (A1: p=>q)*(B2 p~>q) = (A2:~p~>~q)*(B2:~p=>~q) = ~p<=>~q

Operator równoważności p|<=>q to układ równań logicznych:
A1B1: p<=>q =(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p
A2B2:~p<=>~q=(A2:~p~>~q)*(B2:~p=>~q) - co się stanie jeśli zajdzie ~p

Układ równań logicznych jest przemienny, stąd mamy:
Operator równoważności ~p|<=>~q to układ równań logicznych:
A2B2:~p<=>~q=(A2:~p~>~q)*(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A1B1: p<=>q =(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Definicja podstawowa równoważności p<=>q w logice dodatniej (bo q):
Kolumna A1B1:
Równoważność p<=>q w logice dodatniej (bo q) to jednoczesne zachodzenie zarówno warunku wystarczającego =>, jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
stąd:
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) = 1*1 =1

Lewą stronę czytamy:
Zajdzie p wtedy i tylko wtedy gdy zajdzie q
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) = 1*1 =1

Innymi słowy:
Prawą stronę czytamy:
Zajście p jest konieczne ~> i wystarczające => dla zajścia q
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) = 1*1 =1

Definicja podstawowa równoważności p<=>q jest w praktyce doskonale znana każdemu człowiekowi.
Dowód:
Klikamy na googlach:
„konieczne i wystarczające”
Wyników: 14 500
„koniecznym i wystarczającym”
Wyników: 12 500
„potrzeba i wystarcza”
Wyników: 9890
„potrzebne i wystarczające”
wyników: 1 850
Zachodzi matematyczna tożsamość pojęć:
konieczne ~> = potrzebne ~>

Definicja warunku wystarczającego =>:
p=>q = ~p+q
Definicja warunku koniecznego ~>:
p~>q = p+~q
stąd:
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) = (~p+q)*(p+~q) = ~p*p+ ~p*~q+ q*p +q*~q = p*q+~p*~q
A1B1: p<=>q = p*q+~p*~q

Definicja równoważności ~p<=>~q w logice ujemnej (bo ~q):
Kolumna A2B2:
Równoważność ~p<=>~q w logice ujemnej (bo ~q) to jednoczesne zachodzenie zarówno warunku wystarczającego =>, jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A2: ~p~>~q =1 - zajście ~p jest (=1) konieczne ~> dla zajścia ~q
B2: ~p=>~q =1 - zajście ~p jest (=1) wystarczające => dla zajścia ~q
Stąd:
A2B2: ~p<=>~q = (A2: ~p~>~q)*(B2:~p=>~q)=1*1=1

Lewą stronę czytamy:
Zajdzie ~p wtedy i tylko wtedy gdy zajdzie ~q
A2B2: ~p<=>~q = (A2: ~p~>~q)*(B2:~p=>~q)=1*1=1

Innymi słowy:
Prawą stronę czytamy:
Zajście ~p jest konieczne ~> i wystarczające => dla zajścia ~q
A2B2: ~p<=>~q = (A2: ~p~>~q)*(B2:~p=>~q)=1*1=1

Definicja warunku wystarczającego =>:
p=>q = ~p+q
Definicja warunku koniecznego ~>:
p~>q = p+~q
Stąd:
A2B2: ~p<=>~q = (A2: ~p~>~q)*(B2:~p=>~q)= (~p+q)*(p+~q) = ~p*p+ ~p*~q+ q*p +q*~q = p*q+~p*~q
A2B2: ~p<=>~q = p*q+~p*~q

Zachodzi tożsamość logiczna [=]:
A1B1: p<=>q = p*q+~p*~q [=] A2B2: ~p<=>~q = p*q+~p*~q

Definicja tożsamości logicznej [=]:
Prawdziwość dowolnej strony tożsamości logicznej [=] wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej [=] wymusza fałszywość drugiej strony

Definicja dowolnego operatora implikacyjnego p||?q:
Operator implikacyjny p||?q to odpowiedź na pytanie co się stanie jeśli zajdzie p oraz co się stanie jeśli zajdzie ~p

Równanie operatora równoważności p|<=>q:
Kod:

T2.
Równanie operatora równoważności p|<=>q:
A1B1:                                                      A2B2
p<=>q = (A1: p=>q)*(B1: p~>q) = (A2:~p~>~q)*(B2:~p=>~q) = ~p|<=>~q
bo prawa Kubusia:
A1: p=>q = A2: ~p~>~q
B1: p~>q = B2: ~p=>~q
cnd


Dlaczego to jest równanie operatora równoważności p|<=>q?
A1B1: W kolumnie A1B1 mamy odpowiedź na pytanie co może się wydarzyć jeśli zajdzie p
A2B2: W kolumnie A2B2 mamy odpowiedź na pytanie co może się wydarzyć jeśli zajdzie ~p

Stąd mamy:
Operator równoważności p|<=>q w logice dodatniej (bo q) to układ równań logicznych A1B1 i A2B2 dający odpowiedź na pytanie o p i ~p:
A1B1: p<=>q = (A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p?
A2B2: ~p<=>~q = (A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p?

Układ równań logicznych jest przemienny, stąd mamy:
Operator równoważności ~p|<=>~q w logice ujemnej (bo ~q) to układ równań logicznych A2B2 i A1B1 dający odpowiedź na pytanie o ~p i p:
A2B2:~p<=>~q=(A2:~p~>~q)*(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A1B1: p<=>q =(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p

Z tabeli T2 odczytujemy tożsamość logiczną:
A1B1: p<=>q = A2B2: ~p<=>~q

Definicja tożsamości logicznej:
Prawdziwość dowolnej strony tożsamości logicznej „=” wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej „=” wymusza fałszywość drugiej strony

Innymi słowy
1.
Udowodnienie iż dany układ spełnia definicję równoważności p<=>q w logice dodatniej (bo q) jest tożsame z udowodnieniem iż ten sam układ spełnia definicję równoważności ~p<=>~q w logice ujemnej (bo ~q), albo odwrotnie.
A1B1: p<=>q = A2B2: ~p<=>~q

Na mocy definicji operatorów logicznych p|<=>q i ~p|<=>~q widzimy, że udowodnienie prawdziwości 1 pociąga za sobą prawdziwość 2:
2.
p|<=>q = ~p|<=>~>q
cnd

6.2 Równoważność p<=>q jako tożsamość zbiorów/pojęć

TR
Definicja równoważności p<=>q:

Równoważność p<=>q to zachodzenie zarówno warunku wystarczającego => jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku.
Kolumna A1B1:
A1: p=>q =1 - p jest (=1) wystarczające => dla q
B1: p~>q =1 - p jest (=1) konieczne ~> dla q
p<=>q = (A1: p=>q)*(B2 p~>q)
Kod:

TR:
Tabela prawdy równoważności p<=>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q =1 - p jest (=1) wystarczające => dla q
B1: p~>q =1 - p jest (=1) konieczne ~> dla q
p<=>q = (A1: p=>q)*(B1: p~>q) =1*1=1
       A1B1:         A2B2:        |     A3B3:         A4B4:
A:  1: p=>q  =1 = 2:~p~>~q=1     [=] 3: q~>p  =1 = 4:~q=>~p =1
A’: 1: p~~>~q=0 =                [=]             = 4:~q~~>p =0
       ##            ##           |     ##            ##
B:  1: p~>q  =1 = 2:~p=>~q=1     [=] 3: q=>p  =1 = 4:~q~>~p =1
B’:             = 2:~p~~>q=0     [=] 3: q~~>~p=0

Równanie operatora równoważności p|<=>q:
A1B1:                                                     A2B2:
p<=>q = (A1: p=>q)*(B2 p~>q) = (A2:~p~>~q)*(B2:~p=>~q) = ~p<=>~q

Operator równoważności p|<=>q to układ równań logicznych:
A1B1: p<=>q =(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p
A2B2:~p<=>~q=(A2:~p~>~q)*(B2:~p=>~q) - co się stanie jeśli zajdzie ~p

Układ równań logicznych jest przemienny, stąd mamy:
Operator równoważności ~p|<=>~q to układ równań logicznych:
A2B2:~p<=>~q=(A2:~p~>~q)*(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A1B1: p<=>q =(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


W algebrze Kubusia w zbiorach zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

Definicja dowolnego ziemskiego twierdzenia matematycznego TM:
Dowolne ziemskie twierdzenie matematyczne TM jest tożsame z warunkiem wystarczającym p=>q.

TM: Zbiory:
p=>q =1 - twierdzenie prawdziwe (=1)
Zajście p jest (=1) wystarczające => dla zajścia q wtedy i tylko wtedy gdy zbiór p jest (=1) podzbiorem => zbioru q
Inaczej:
p=>q =0 - twierdzenie fałszywe (=0)

TM: Zdarzenia:
p=>q =1 - twierdzenie prawdziwe (=1)
Zajście zdarzenia p jest (=1) wystarczające => dla zajścia zdarzenia q
Inaczej:
p=>q =0 - twierdzenie fałszywe (=0)

Z tabeli TR odczytujemy matematyczną definicję równoważności p<=>q rozumianą jako warunek wystarczający => zachodzący w dwie strony:
A1: p=>q =1 - twierdzenie proste
B3: q=>p =1 - twierdzenie odwrotne

Matematyczna definicja równoważności p<=>q:
Matematyczna definicja równoważności to relacja podzbioru => zachodząca w dwie strony.
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q, czyli zbiór p jest podzbiorem => q
B3: q=>p =1 - zajście q jest (=1) wystarczające => dla zajścia p, czyli zbiór q jest podzbiorem => p
Zajdzie p wtedy i tylko wtedy gdy zajdzie q
A1B3: p<=>q = (A1: p=>q)*(B3: q=>p)=1*1=1

Stąd mamy wyprowadzoną definicję tożsamości zbiorów p=q znaną każdemu ziemskiemu matematykowi.

A1B3:
Definicja tożsamości zbiorów p=q:

Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy zbiór p jest (=1) podzbiorem => zbioru q i jednocześnie zbiór q jest (=1) podzbiorem => zbioru p
p=q <=> (A1: p=>q)*(B3: q=>p) = A1B3: p<=>q

Dla B3 skorzystajmy z prawa Tygryska:
B3: q=>p = B1: p~>q

Stąd mamy tożsamą definicję tożsamości zbiorów p=q zdefiniowaną kolumną A1B1.

A1B1: Zbiory
Definicja tożsamości zbiorów p=q:

Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy zbiór p jest (=1) podzbiorem => zbioru q i jednocześnie zbiór p jest (=1) nadzbiorem ~> zbioru q
p=q <=> (A1: p=>q)*(B1: p~>q) = A1B1: p<=>q

A1B1: Zdarzenia
Definicja tożsamości zdarzeń p=q:

Dwa zdarzenia p i q są tożsame p=q wtedy i tylko wtedy gdy znajdują się w relacji równoważności p<=>q
p=q <=> (A1: p=>q)*(B1: p~>q) = A1B1: p<=>q

Prawo rachunku zero-jedynkowego:
A1B1: p<=>q = A2B2: ~p<=>~q

Definicja tożsamości logicznej „=”:
A1B1: p<=>q = A2B2:~p<=>~q
Prawdziwość dowolnej strony tożsamości logicznej „=” wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej „=” wymusza fałszywość drugiej strony

Innymi słowy:
Udowodnienie iż dany układ spełnia definicję równoważności A1B1: p<=>q w logice dodatniej (bo q) jest tożsame z udowodnieniem iż ten sam układ spełnia definicję równoważności A2B2:~p<=>~q w logice ujemnej (bo ~q), albo odwrotnie.

Stąd dla kolumny A2B2 mamy.
A2B2: Zbiory
Definicja tożsamości zbiorów ~p=~q:

Dwa zbiory ~p i ~q są tożsame ~p=~q wtedy i tylko wtedy gdy zbiór ~p jest (=1) podzbiorem => zbioru ~q i jednocześnie zbiór ~p jest (=1) nadzbiorem ~> zbioru ~q
~p=~q <=> (A2: ~p~>~q)*(B2:~p=>~q) = A2B2: ~p<=>~q

Analogicznie mamy:

A2B2: Zdarzenia
Definicja tożsamości zdarzeń ~p=~q:

Dwa zdarzenia ~p i ~q są tożsame ~p=~q wtedy i tylko wtedy gdy znajdują się w relacji równoważności ~p<=>~q
~p=~q <=> (A2: ~p~>~q)*(B2:~p=>~q) = A2B2: ~p<=>~q

6.2.1 Diagram równoważności w zbiorach

Prawo rachunku zero-jedynkowego:
A1B1: p<=>q = A2B2: ~p<=>~q

Znaczenie powyższej tożsamości logicznej w przełożeniu na zbiory.
Tożsamość zbiorów p=q definiowana przez:
p=q <=> (A1: p=>q)*(B1: p~>q) = A1B1: p<=>q
wymusza tożsamość zbiorów ~p=~q definiowaną przez:
~p=~q <=> (A2: ~p~>~q)*(B2:~p=>~q) = A2B2: ~p<=>~q
(i odwrotnie)

Na tej podstawie łatwo rysujemy diagram równoważności p<=>q w zbiorach:
Kod:

 DR:
 Diagram równoważności p<=>q w zbiorach
-------------------------------------------------------------------------
| D - wspólna dziedzina dla p i q                                       |
| p+~p =D =1   | q+~q =D =1                                             |
| p*~p =[]=0   | q*~q =[]=0                                             |
-------------------------------------------------------------------------
| Zbiór: p=q                      # Zbiór: ~p=~q
| A1B1: Równoważność dla p:       | A2B2: Równoważność dla ~p           |
| p<=>q = (A1: p=>q)*(B1: p~>q)  [=] ~p<=>~q = (A2: ~p~>~q)*(B2:~p=>~q) |
| Definiuje tożsamość zbiorów:    |  Definiuje tożsamość zbiorów:       |
| p=q                             #  ~p=~q                              |
-------------------------------------------------------------------------
Gdzie:
# - różne w znaczeniu iż jedna strona jest negacją drugiej strony
[=] - tożsamość logiczna

Z diagramu widzimy że:
~p=~(p) - zbiór ~p jest zaprzeczeniem zbioru p
~q=~(q) - zbiór ~q jest zaprzeczeniem zbioru q
Prawa podwójnego przeczenia:
p = ~(~p) - zbiór p jest zaprzeczeniem zbioru ~p (prawo podwójnego przeczenia)
q = ~(~q) - zbiór q jest zaprzeczeniem zbioru ~q (prawo podwójnego przeczenia)

Dziedzina D dla zbiorów p i q musi być wspólna, bowiem wtedy i tylko wtedy między zbiorami p i q mogą zachodzić podstawowe relacje (=>, ~> i ~~>) w zbiorach.

Relacja podzbioru =>:
p=>q =1 - gdy zbiór p jest podzbiorem => q
inaczej:
p=>q =0

Relacja nadzbioru ~>:
p~>q =1 - gdy zbiór p jest nadzbiorem ~> q
Inaczej:
p~>q =0

Relacja elementu wspólnego ~~>:
p~~>q =1 - gdy zbiory p i q mają element wspólny
Inaczej:
p~~>q =0

Definicja wspólnej dziedziny D dla p:
p+~p =D =1 - zbiór ~p jest uzupełnieniem do dziedziny D dla zbioru p
p*~p =[] =0 - zbiory p i ~p są rozłączne
Definicja wspólnej dziedziny D dla q:
q+~q =D =1 - zbiór ~q jest uzupełnieniem do dziedziny dla zbioru q
q*~q =[] =0 - zbiory q i ~q są rozłączne
Stąd mamy:
~p=[D-p] = [p+~p -p] = ~p
~q=[D-q] = [q+~q -q] = ~q

Z diagramu DR widzimy że:

A1B1: Zbiory
Definicja tożsamości zbiorów p=q:

Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy zbiór p jest (=1) podzbiorem => zbioru q i jednocześnie zbiór p jest (=1) nadzbiorem ~> zbioru q
p=q <=> (A1: p=>q)*(B1: p~>q) = A1B1: p<=>q

Sprawdzenie poprawności definicji tożsamości zbiorów p=q:
p=q <=> (A1: p=>q)*(B1: p~>q) = A1B1: p<=>q
dla q=p mamy:
p=p <=> (A1: p=>p)*(B1: p~>p) = 1*1 =1
cnd
Uzasadnienie:
p=>p =1 - każdy zbiór jest podzbiorem => siebie samego
p~>p =1 - każdy zbiór jest nadzbiorem ~> siebie samego
cnd

Z diagramu DR widzimy, że równoważność p<=>q dla q=~p musi być fałszem.
Sprawdzenie:
p=q <=> (A1: p=>q)*(B1: p~>q) = A1B1: p<=>q
dla q=~p mamy:
p=~p <=> (A1: p=>~p)*(B1: p~>~p) = ~p*p =0
bo:
Definicja warunku wystarczającego =>:
p=>q=~p+q
stąd mamy:
A1: p=>~p = ~p+~p = ~p+~p = ~p
Definicja warunku koniecznego ~>:
p~>q = p+~q
stąd mamy:
B1: p~>(~p) = p+~(~p) = p+p = p
stąd:
p=~p <=> (A1: p=>~p)*(B1: p~>~p) = ~p*p =0
cnd

Uwaga:
Istnieje wiele alternatywnych dowodów tego co wyżej.
Przykładowo, można skorzystać z definicji równoważności w spójnikach „i”(*) i „lub”(+):
p<=>q = ~p<=>~q = p*q+~p*~q

Podsumowując:
Jak widzimy matematyka działa doskonale bowiem poprawnie obliczyliśmy iż zachodzi (=1) tożsamość zbiorów p=q i nie zachodzi (=0) tożsamość zbiorów p=~p:
[p=p] =1 - bo zbiory p i p są tożsame
[p=~p] =0 - bo zbiory p i ~p są rozłączne

Z diagramu DR widzimy że:

A2B2: Zbiory
Definicja tożsamości zbiorów ~p=~q:

Dwa zbiory ~p i ~q są tożsame ~p=~q wtedy i tylko wtedy gdy zbiór ~p jest (=1) podzbiorem => zbioru ~q i jednocześnie zbiór ~p jest (=1) nadzbiorem ~> zbioru ~q
~p=~q <=> (A2: ~p~>~q)*(B2:~p=>~q) = A2B2: ~p<=>~q

Sprawdzenie poprawności definicji tożsamości zbiorów ~p=~q:
~p=~q <=> (A2: ~p~>~q)*(B2:~p=>~q) = A2B2: ~p<=>~q
Dla ~q=~p mamy:
~p=~p <=> (A2: ~p~>~p)*(B2: ~p=>~p) = 1*1 =1
cnd
Uzasadnienie:
~p=>~p =1 - każdy zbiór jest podzbiorem => siebie samego
~p~>~p =1 - każdy zbiór jest nadzbiorem ~> siebie samego

Z diagramu DR widzimy, że równoważność ~p<=>~q dla ~q=p musi być fałszem.
Sprawdzenie:
~p=~q <=> (A2: ~p~>~q)*(B2:~p=>~q) = A2B2: ~p<=>~q
dla ~q=p mamy:
~p=p <=> (A2: ~p~>p)*(B2:~p=>p) = ~p*p =[] =0
bo:
Definicja warunku koniecznego ~>:
p~>q = p+~q
stąd mamy:
A2: ~p~>p = ~p+~p = ~p
Definicja warunku wystarczającego =>:
p=>q=~p+q
stąd mamy:
B2: ~p=>p = ~(~p)+p =p+p =p
Stąd:
~p=p <=> (A2: ~p~>p)*(B2:~p=>p) = ~p*p =[] =0
cnd

Uwaga:
Istnieje wiele alternatywnych dowodów tego co wyżej.
Przykładowo, można skorzystać z definicji równoważności w spójnikach „i”(*) i „lub”(+):
p<=>q = ~p<=>~q = p*q+~p*~q

Podsumowując:
Jak widzimy matematyka działa doskonale bowiem poprawnie obliczyliśmy iż zachodzi tożsamość zbiorów ~p=~p i nie zachodzi (=0) tożsamość zbiorów ~p=p
[~p=~p] =1 - bo zbiory ~p i ~p są tożsame
[~p=p] =0 - bo zbiory ~p i p są rozłączne

6.3 Definicja równoważności p<=>q

TR
Definicja równoważności p<=>q:

Równoważność p<=>q to zachodzenie zarówno warunku wystarczającego => jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku.
Kolumna A1B1:
A1: p=>q =1 - p jest (=1) wystarczające => dla q
B1: p~>q =1 - p jest (=1) konieczne ~> dla q
p<=>q = (A1: p=>q)*(B2 p~>q)
Kod:

TR:
Tabela prawdy równoważności p<=>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q =1 - p jest (=1) wystarczające => dla q
B1: p~>q =1 - p jest (=1) konieczne ~> dla q
p<=>q = (A1: p=>q)*(B1: p~>q) =1*1=1
       A1B1:         A2B2:        |     A3B3:         A4B4:
A:  1: p=>q  =1 = 2:~p~>~q=1     [=] 3: q~>p  =1 = 4:~q=>~p =1
A’: 1: p~~>~q=0 =                [=]             = 4:~q~~>p =0
       ##            ##           |     ##            ##
B:  1: p~>q  =1 = 2:~p=>~q=1     [=] 3: q=>p  =1 = 4:~q~>~p =1
B’:             = 2:~p~~>q=0     [=] 3: q~~>~p=0

Równanie operatora równoważności p|<=>q:
A1B1:                                                     A2B2:
p<=>q = (A1: p=>q)*(B2 p~>q) = (A2:~p~>~q)*(B2:~p=>~q) = ~p<=>~q

Operator równoważności p|<=>q to układ równań logicznych:
A1B1: p<=>q =(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p
A2B2:~p<=>~q=(A2:~p~>~q)*(B2:~p=>~q) - co się stanie jeśli zajdzie ~p

Układ równań logicznych jest przemienny, stąd mamy:
Operator równoważności ~p|<=>~q to układ równań logicznych:
A2B2:~p<=>~q=(A2:~p~>~q)*(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A1B1: p<=>q =(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


6.3.1 Definicja operatora równoważności p|<=>q

Kolumna A1B1:
Co może się wydarzyć jeśli zajdzie p (p=1)?


Odpowiedź mamy w kolumnie A1B1:
A1: p=>q =1 - zajście p jest wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest konieczne ~> dla zajścia q
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q)=1*1=1
Stąd:
Lewą stronę czytamy:
Zajdzie p wtedy i tylko wtedy gdy zajdzie q
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q)=1*1=1
Prawą stronę czytamy:
Zajście p (p=1) jest konieczne ~> i wystarczające => dla zajścia q (q=1)
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) = 1*1 =1
Powyższa równoważność definiuje tożsamość zbiorów/pojęć:
Zbiory:
Zbiór p jest tożsamy ze zbiorem q p=q wtedy i tylko wtedy gdy zajście p jest konieczne ~> i wystarczające => dla zajścia q
p=q <=> (A1: p=>q)*(B1: p~>q) = p<=>q
Zdarzenia:
Zdarzenie p jest tożsame ze zdarzeniem q p=q wtedy i tylko wtedy gdy zajście p jest konieczne ~> i wystarczające => dla zajścia q
p=q <=> (A1: p=>q)*(B1: p~>q) = p<=>q
Tożsamość zbiorów/pojęć p=q wymusza tożsamość zbiorów/pojęć ~p=~q (albo odwrotnie)

Odpowiedź na pytanie co może się wydarzyć jest zajdzie p w rozpisce na warunek wystarczający =>:
Kolumna A1B1:
A1.
Jeśli zajdzie p (p=1) to na 100% => zajdzie q (q=1)
p=>q =1
Zajście p jest (=1) wystarczające => dla zajścia q
Zajście p daje nam (=1) gwarancję matematyczną => zajścia q
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>

Prawdziwy warunek wystarczający A1 wymusza fałszywy kontrprzykład A1’ i odwrotnie:
A1’.
Jeśli zajdzie p (p=1) to może ~~> zajść ~q (~q=1)
p~~>~q = p*~q =0
Zdarzenia:
Nie jest możliwe (=0) jednoczesne zajście zdarzeń ~~>: p i ~q
Zbiory:
Nie istnieje (=0) element wspólny zbiorów ~~>: p i ~q
Wynika to z tożsamości zbiorów/pojęć p=q która wymusza tożsamość zbiorów ~p=~q (albo odwrotnie)
Relacja matematyczna jaka tu zachodzi to:
p=q # ~p=~q
Gdzie:
# - dowolna strona znaczka # jest zaprzeczeniem drugiej strony

Kolumna A2B2:
Co może się wydarzyć jeśli zajdzie ~p (~p=1)?


Odpowiedź mamy w kolumnie A2B2:
A2: ~p~>~q =1 - zajście ~p jest (=1) konieczne ~> dla zajścia ~q
B2: ~p=>~q =1 - zajście ~p jest wystarczające => dla zajścia ~q
A2B2: ~p<=>~q = (A2: ~p~>~q)*(B2: ~p=>~q) =1*1=1
stąd:
Lewą stronę czytamy:
Zajdzie ~p wtedy i tylko wtedy gdy zajdzie ~q
A2B2: ~p<=>~q = (A2: ~p~>~q)*(B2: ~p=>~q) =1*1=1
Prawą stronę czytamy:
Zajście ~p jest konieczne ~> i wystarczające => dla zajścia ~q
A2B2: ~p<=>~q = (A2: ~p~>~q)*(B2:~p=>~q)=1*1=1
Powyższa równoważność definiuje tożsamość zbiorów/pojęć:
Zbiory:
Zbiór ~p jest tożsamy ze zbiorem ~q ~p=~q wtedy i tylko wtedy gdy zajście ~p jest konieczne ~> i wystarczające => dla zajścia ~q
~p=~q = (A2: ~p~>~q)*(B2:~p=>~q) = ~p<=>~q
Zdarzenia:
Zdarzenie ~p jest tożsame ze zdarzeniem ~q ~p=~q wtedy i tylko wtedy gdy zajście ~p jest konieczne ~> i wystarczające => dla zajścia ~q
~p=~q = (A2: ~p~>~q)*(B2:~p=>~q) = ~p<=>~q
Tożsamość zbiorów/pojęć ~p=~q wymusza tożsamość zbiorów/pojęć p=q (albo odwrotnie)

Odpowiedź na pytanie co może się wydarzyć jest zajdzie ~p w rozpisce na warunek wystarczający =>.

Kolumna A2B2:
B2.
Jeśli zajdzie ~p (~p=1) to na 100% => zajdzie ~q (~q=1)
~p=>~q =1
Zajście ~p jest (=1) wystarczające => dla zajścia ~q
Zajście ~p daje nam (=1) gwarancję matematyczną => zajścia ~q
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>

Prawdziwy warunek wystarczający B2 wymusza fałszywy kontrprzykład B2’ i odwrotnie:
B2’.
Jeśli zajdzie ~p (~p=1) to może ~~> zajść q (q=1)
~p~~>q = ~p*q =0
Zdarzenia:
Nie jest możliwe (=0) jednoczesne zajście zdarzeń ~~>: ~p i q
Zbiory:
Nie istnieje (=0) element wspólny zbiorów ~~>: ~p i q
Wynika to z tożsamości zbiorów/pojęć ~p=~q która wymusza tożsamość zbiorów p=q (albo odwrotnie)
Relacja matematyczna jaka tu zachodzi to:
~p=~q # p=q
Gdzie:
# - dowolna strona znaczka # jest zaprzeczeniem drugiej strony

Podsumowanie:
Jak widzimy, istotą operatora równoważności p|<=>q jest gwarancja matematyczna => po stronie p (zdanie A1), jak również gwarancja matematyczna => po stronie ~p (zdanie B2).
Nie ma tu mowy o jakimkolwiek „rzucaniu monetą” w sensie „na dwoje babka wróżyła” jak to mieliśmy w operatorze implikacji prostej p||=>q czy też w operatorze implikacji odwrotnej p||~>q.

Zauważmy że:
a)
Układ równań logicznych jest przemienny, stąd mamy:
Operator równoważności ~p|<=>~q to układ równań logicznych:
A2B2:~p<=>~q=(A2:~p~>~q)*(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A1B1: p<=>q =(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p
Doskonale widać, że analiza matematyczna operatora równoważności ~p|<=>~q w logice ujemnej (bo ~q) będzie identyczna jak operatora implikacji prostej p|<=>q w logice dodatniej (bo q) z tym, że zaczynamy od kolumny A2B2 kończąc na kolumnie A1B1.
b)
Także kolejność wypowiadanych zdań jest dowolna, tak więc zdania z powyższej analizy A1, A1’, B2, B2’ możemy wypowiadać w sposób losowy - matematycznie to bez znaczenia.

6.3.2 Zero-jedynkowa definicja równoważności p<=>q

Zapiszmy powyższą analizę w tabeli prawdy:
Kod:

T1
Definicja symboliczna                |Co w logice jedynek
                                     |oznacza
A1B1: p<=>q=(A1: p=>q)*(B1: p~>q)    |
A1:  p=> q =1                        |( p=1)=> ( q=1)=1
A1’: p~~>~q=0                        |( p=1)~~>(~q=1)=0
A2B2:~p<=>~q=(A2:~p~>~q)*(B2:~p=>~q) |
B2: ~p=>~q =1                        |(~p=1)=> (~q=1)=1
B2’:~p~~>q =0                        |(~p=1)~~>( q=1)=0


Zauważmy, że zero-jedynkowo tabelę T1 możemy kodować wyłącznie w odniesieniu do równoważności A1B1: p<=>q albo w odniesieniu do równoważności A2B2:~p<=>~q

Dlaczego tabeli T1 nie możemy kodować z punktem odniesienia ustawionym na warunku wystarczającym A1: p=>q?
Odpowiedź:
A1B1: p<=>q=(A1: p=>q)*(B1: p~>q)=1*1=1
Warunek wystarczający A1: p=>q nie jest jedynym członem prawdziwym w równoważności p<=>q.

Zakodujmy powyższą analizę zero-jedynkowo z punktem odniesienia ustawionym na równoważności:
A1B1: p<=>q

Prawa Prosiaczka:
(p=1)=(~p=0)
(~p=1)=(p=0)

Prawa Prosiaczka możemy stosować wybiórczo do dowolnych zmiennych binarnych.
Dla wygenerowania zero-jedynkowej definicji równoważności p<=>q jest potrzebne i wystarczające jedno z praw Prosiaczka pozwalające na eliminację przeczeń w zapisach symbolicznych, bowiem w punkcie odniesienie A1B1: p<=>q mamy sygnały p i q bez przeczeń.

Potrzebne nam prawo Prosiaczka to:
(~p=1)=(p=0)
(~q=1)=(q=0)

Zakodujmy nasza tabelę T1 zero-jedynkowo:
Kod:

T2.
Definicja      |Co w logice       |Punkt odniesienia |Tabela tożsama
symboliczna    |Jedynek oznacza   |A1B1: p<=>q       |
A1B1: p<=>q    |                  |                  | p   q  p<=>q
A1:  p=> q =1  |( p=1)=> ( q=1)=1 |( p=1)=> ( q=1)=1 | 1<=>1   =1
A1’: p~~>~q=0  |( p=1)~~>(~q=1)=0 |( p=1)~~>( q=0)=0 | 1<=>0   =0
A2B2:~p<=>~q   |                  |                  |
B2: ~p=>~q =1  |(~p=1)=> (~q=1)=1 |( p=0)=> ( q=0)=1 | 0<=>0   =1
B2’:~p~~>q =0  |(~p=1)~~>( q=1)=0 |( p=0)~~>( q=1)=0 | 0<=>1   =0
     a   b  c     d        e    f    g        h    i   1   2    3
                                  | Prawa Prosiaczka |
                                  | (~p=1)=(p=0)     |
                                  | (~q=1)=(q=0)     |

Tabela 123 to zero-jedynkowa definicja spójnika równoważności p<=>q w logice dodatniej (bo q), zwanego krótko równoważnością p<=>q

Zakodujmy zero-jedynkowo tabelę T1 z punktem odniesienia ustawionym na równoważności:
A2B2: ~p<=>~q
Prawo Kubusia z którego tu należy skorzystać to:
(p=1)=(~p=0)
(q=1)=(~q=0)
Uzasadnienie:
Wszystkie zmienne musimy sprowadzić do postaci zanegowanej ~p i ~q bowiem w punkcie odniesienia:
A2B2: ~p<=>~q
obie zmienne mamy zanegowane.
Kod:

T3.
Definicja     |Co w logice       |Punkt odniesienia |Tabela tożsama
symboliczna   |Jedynek oznacza   |A2B2: ~p<=>~q     |
A1B1: p<=>q   |                  |                  |~p  ~q ~p<=>~q
A1:  p=> q =1 |( p=1)=> ( q=1)=1 |(~p=0)=> (~q=0)=1 | 0<=>0   =1
A1’: p~~>~q=0 |( p=1)~~>(~q=1)=0 |(~p=0)~~>(~q=1)=0 | 0<=>1   =0
A2B2:~p<=>~q  |                  |                  |
B2: ~p=>~q =1 |(~p=1)=> (~q=1)=1 |(~p=1)=> (~q=1)=1 | 1<=>1   =1
B2’:~p~~>q =0 |(~p=1)~~>( q=1)=0 |(~p=1)~~>(~q=0)=0 | 1<=>0   =0
    a    b  c    d        e    f    g        h    i   1   2    3
                                 | Prawa Prosiaczka |
                                 | (p=1)=(~p=0)     |
                                 | (q=1)=(~q=0)     |

Tabela 123 to zero-jedynkowa definicja spójnika równoważności ~p<=>~q w logice ujemnej (bo ~q), zwanego krótko równoważnością ~p<=>~q

Zauważmy, że w tabelach T2 i T3 wejściowa definicja symboliczna równoważności abc jest identyczna, stąd tożsamość kolumn wynikowych 3 w tabelach zero-jedynkowych 123 jest dowodem formalnym poprawności prawa rachunku zero-jedynkowego:
T2: p<=>q = T3: ~p<=>~q

Dowód powyższego prawa bezpośrednio w rachunku zero-jedynkowym jest następujący:
Kod:

Definicja równoważności p<=>q
     p   q p<=>q
A1:  1<=>1  =1
A1’: 1<=>0  =0
B2:  0<=>0  =1
B2’: 0<=>1  =0

Prawo rachunku zero-jedynkowego:
p<=>q = ~p<=>~q
Dowód:
Kod:

Prawo rachunku zero-jedynkowego do udowodnienia:
p<=>q = ~p<=>~q
     p   q p<=>q  ~p  ~q ~p<=>~q
A1:  1<=>1  =1     0<=>0   =1
A1’: 1<=>0  =0     0<=>1   =0
B2:  0<=>0  =1     1<=>1   =1
B2’: 0<=>1  =0     1<=>0   =0
     1   2   3     4   5    6

Tożsamość kolumn wynikowych 3=6 jest dowodem formalnym prawa rachunku zero-jedynkowego:
p<=>q = ~p<=>~q

Definicja tożsamości logicznej [=]:
p<=>q [=] ~p<=>~q
Prawdziwość dowolnej strony tożsamości logicznej [=] wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej [=] wymusza fałszywość drugiej strony

Z powyższego wynika, że definicja tożsamości logicznej [=] jest tożsama ze spójnikiem równoważności „wtedy i tylko wtedy” <=>

Wniosek:
Tożsamość logiczna „=” jest de facto spójnikiem równoważności p<=>q o definicji:
Kod:

Zero-jedynkowa definicja równoważności <=>
   p   q p<=>q
A: 1<=>1  =1
B: 1<=>0  =0
C: 0<=>0  =1
D: 0<=>1  =0

Fakt ten możemy wykorzystać w naszym zero-jedynkowym dowodzie prawa rachunku zero-jedynkowego:
p<=>q = ~p<=>~q
Kod:

Prawo rachunku zero-jedynkowego do udowodnienia:
p<=>q = ~p<=>~q
     p   q p<=>q  ~p  ~q ~p<=>~q  p<=>q <=> ~p<=>~q
A1:  1<=>1  =1     0<=>0   =1            1
A1’: 1<=>0  =0     0<=>1   =0            1
B2:  0<=>0  =1     1<=>1   =1            1
B2’: 0<=>1  =0     1<=>0   =0            1
     1   2   3     4   5    6            7

Same jedynki w kolumnie wynikowej 7 również są dowodem formalnym prawa rachunku zero-jedynkowego:
p<=>q = ~p<=>~q

6.4 Odtworzenie definicji operatora równoważności p|<=>q z definicji ~~>

Weźmy diagram równoważności p<=>q w zbiorach:
Kod:

 DR:
 Diagram równoważności p<=>q w zbiorach
-------------------------------------------------------------------------
| D - wspólna dziedzina dla p i q                                       |
| p+~p =D =1   | q+~q =D =1                                             |
| p*~p =[]=0   | q*~q =[]=0                                             |
-------------------------------------------------------------------------
| A1B1: Równoważność dla p:       | A2B2: Równoważność dla ~p           |
| p<=>q = (A1: p=>q)*(B1: p~>q)  [=] ~p<=>~q = (A2: ~p~>~q)*(B2:~p=>~q) |
| Definiuje tożsamość zbiorów:    |  Definiuje tożsamość zbiorów:       |
| p=q                             #  ~p=~q                              |
-------------------------------------------------------------------------
Gdzie:
# - różne w znaczeniu iż jedna strona znaczka # jest negacją drugiej strony
[=] - tożsamość logiczna

Definicja wspólnej dziedziny D dla p:
p+~p =D =1 - zbiór ~p jest uzupełnieniem do dziedziny D dla zbioru p
p*~p =[] =0 - zbiory p i ~p są rozłączne
Definicja wspólnej dziedziny D dla q:
q+~q =D =1 - zbiór ~q jest uzupełnieniem do dziedziny dla zbioru q
q*~q =[] =0 - zbiory q i ~q są rozłączne

Przeanalizujmy diagram DR zdarzeniem możliwym ~~> przez wszystkie możliwe przeczenia p i q.
Tabela prawdy takiej analizy jest następująca:
Kod:

T1
Analiza diagramu DR równoważności elementem wspólnym ~~> zbiorów
A1B1:
p<=>q = (A1: p=>q)*(B1: p~>q)
A1:  p~~>q =1 - istnieje (=1) wspólny element ~~> zbiorów p i q (p=q)
A1’: p~~>~q=0 - nie istnieje (=0) wspólny element ~~> zbiorów p i ~q (p#~q)
A2B2:
~p<=>~q = (A2: ~p~>~q)*(B2:~p=>~q)
B2: ~p~~>~q=1 - istnieje (=1) wspólny element ~~> zbiorów ~p i ~q (~p=~q)
B2’:~p~~>q =0 - nie istnieje (=0) wspólny element ~~> zbiorów ~p i q (~p#q)
Gdzie:
# - dowolna strona znaczka # jest negacją drugiej strony (patrz diagram DR)


Analiza tabeli prawdy T1 - część I
1.
Fałszywość kontrprzykładu A1’:
A1’: p~~>~q=0
wymusza prawdziwość warunku wystarczającego => A1 (i odwrotnie):
A1: p=>q =1 - zbiór p jest podzbiorem => zbioru q

Nanieśmy naszą analizę do tabeli T2.
Kod:

T2.
A1:  p=> q =1 - zbiór p jest podzbiorem => q (p=q)
A1’: p~~>~q=0 - nie istnieje (=0) wspólny element ~~> p i ~q (p#~q)
B2: ~p~~>~q=1 - istnieje (=1) wspólny element ~~> zbiorów ~p i ~q (~p=~q)
B2’:~p~~>q =0 - nie istnieje (=0) wspólny element ~~> zbiorów ~p i q (~p#q)
Gdzie:
# - dowolna strona znaczka # jest negacją drugiej strony (patrz diagram DR)

Analiza tabeli prawdy T1 - część II
1.
Fałszywość kontrprzykładu B2’:
B2’: ~p~~>q =0
wymusza prawdziwość warunku wystarczającego => B2 (i odwrotnie):
B2: ~p=>~q =1
Nanieśmy naszą analizę do tabeli T2.
Kod:

T3.
A1:  p=> q =1 - zbiór p jest podzbiorem => q (p=q)
A1’: p~~>~q=0 - nie istnieje (=0) wspólny element ~~> p i ~q (p#~q)
B2: ~p=>~q =1 - zbiór ~p jest podzbiorem => ~q (~p=~q)
B2’:~p~~>q =0 - nie istnieje (=0) wspólny element ~~> ~p i q (~p#q)
Gdzie:
# - dowolna strona znaczka # jest negacją drugiej strony (patrz diagram DR)

Z tabeli T3 odczytujemy definicję równoważności A1B2:
A1: p=>q =1 - zbiór p jest (=1) podzbiorem => zbioru q
B2: ~p=>~q =1 - zbiór ~p jest (=1) podzbiorem => zbioru ~q
A1B2: p<=>q = (A1: p=>q)*(B2:~p=>~q) =1*1 =1

Dla B2 stosujemy prawo Kubusia:
B2: ~p=>~q = B1: p~>q
Stąd mamy:
Kolumna A1B1 w tabeli prawdy równoważności p<=>q:
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) =1*1 =1

Stąd mamy:
Podstawowa definicja równoważności p<=>q w zbiorach:
Równoważność p<=>q to jednoczesne zachodzenie zarówno warunku wystarczającego => jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku.
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
wtedy i tylko wtedy gdy zbiór p jest nadzbiorem ~> zbioru q
Stąd:
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) =1*1 =1

Zdefiniowawszy równoważność podstawową A1B1: p<=>q możemy ją podstawić do tabeli prawdy równoważności TR:
Kod:

TR:
Tabela prawdy równoważności p<=>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q =1 - p jest (=1) wystarczające => dla q
B1: p~>q =1 - p jest (=1) konieczne ~> dla q
p<=>q = (A1: p=>q)*(B1: p~>q) =1*1=1
       A1B1:         A2B2:        |     A3B3:         A4B4:
A:  1: p=>q  =1 = 2:~p~>~q=1     [=] 3: q~>p  =1 = 4:~q=>~p =1
A’: 1: p~~>~q=0 =                [=]             = 4:~q~~>p =0
       ##            ##           |     ##            ##
B:  1: p~>q  =1 = 2:~p=>~q=1     [=] 3: q=>p  =1 = 4:~q~>~p =1
B’:             = 2:~p~~>q=0     [=] 3: q~~>~p=0

Równanie operatora równoważności p|<=>q:
A1B1:                                                     A2B2:
p<=>q = (A1: p=>q)*(B2 p~>q) = (A2:~p~>~q)*(B2:~p=>~q) = ~p<=>~q

Operator równoważności p|<=>q to układ równań logicznych:
A1B1: p<=>q =(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p
A2B2:~p<=>~q=(A2:~p~>~q)*(B2:~p=>~q) - co się stanie jeśli zajdzie ~p

Układ równań logicznych jest przemienny, stąd mamy:
Operator równoważności ~p|<=>~q to układ równań logicznych:
A2B2:~p<=>~q=(A2:~p~>~q)*(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A1B1: p<=>q =(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


Szczegółową analizę operatora równoważności p|<=>q na podstawie powyższej tabeli mamy w punkcie 6.3.1


Ostatnio zmieniony przez rafal3006 dnia Nie 6:25, 20 Cze 2021, w całości zmieniany 1 raz
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 35331
Przeczytał: 23 tematy

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Nie 11:29, 20 Cze 2021    Temat postu:

Algebra Kubusia - ostatnie czytanie!
Część XVI

Po raz ostatni przed premierą czytam od początku algebrę Kubusia likwidując literówki i udoskonalając przekaz.

http://www.sfinia.fora.pl/forum-kubusia,12/algebra-kubusia-matematyka-jezyka-potocznego-brudnopis,18263.html#586591

Algebra Kubusia
6.8 Zdania bazowe w operatorze równoważności TP|<=>SK w zbiorach

Spis treści
6.7 Zdanie bazowe 2
6.7.1 Algorytm analizy zdania bazowego „Jeśli p to q” 3
6.7.2 Operator równoważności p|<=>q 5
6.8 Zdania bazowe w operatorze równoważności TP|<=>SK w zbiorach 6
6.8.1 Zdanie bazowe TP~~>SK 7
6.8.2 Zdanie bazowe TP~~>~SK 10
6.8.3 Zdanie bazowe ~TP~~>~SK 12
6.8.4 Zdanie bazowe ~TP~~>SK 15
6.9 Definicja podstawowa równoważności TP<=>SK 17
6.9.1 Operator równoważności TP|<=>SK 18


Wstęp:
Problem budowy operatora równoważności TP|<=>SK to matematyczny poziom ucznia I klasy LO.
W praktyce wiedza czysto matematyczna w skład jakiego operatora logicznego wchodzi dowolne prawdziwe zdanie warunkowe „Jeśli p to q” jest do niczego potrzebna. Każdy człowiek od 5-cio latka poczynając non stop stosuje tu poniższe prawa logiki matematycznej nie mając najmniejszego pojęcia co to jest operator logiczny np. TP|<=>SK

W algebrze Kubusia mamy zaledwie trzy znaczki (=>, ~> i ~~>) na których zbudowana jest kompletna algebra Kubusia w obsłudze zdań warunkowych "Jeśli p to q".
1.
Warunek wystarczający =>:

p=>q =1 - gdy zajście p jest (=1) warunkiem wystarczającym => dla zajścia q
Inaczej:
p=>q =0
2.
Warunek konieczny ~>:

p~>q =1 0 gdy zajście p jest (=1) konieczne ~> dla zajścia q
Inaczej:
p~>q =0
3.
Zdarzenie możliwe ~~> lub element wspólny zbiorów ~~>

Zdarzenia:
Definicja zdarzenia możliwego ~~> w zdarzeniach:
p~~>q = p*q =1 - gdy możliwe jest (=1) jednoczesne zajście zdarzeń p i q
Inaczej:
p~~>q=p*q =0
Zbiory:
Definicja elementu wspólnego zbiorów ~~>:
p~~>q = p*q =1 - gdy zbiory p i q mają (=1) element wspólny
Inaczej:
p~~>q = p*q=0
Kod:

T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
      ##        ##           ##        ##            ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5:  p+~q

Prawa Kubusia:        | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q  | A1: p=>q  = A4:~q=>~p
B1: p~>q = B2:~p=>~q  | B2:~p=>~q = B3: q=>p

Prawa Tygryska:       | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p   | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p   | B1: p~>q  = B4:~q~>~p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


6.7 Zdanie bazowe

Definicja zdania bazowego:
Zdanie bazowe to zdanie warunkowe „Jeśli p to q” kodowane elementem wspólnym zbiorów ~~> (zbiory) albo zdarzeniem możliwym ~~> (zdarzenia) spełniające poniższe warunki:
1.
W zdaniu warunkowym „Jeśli p to q” żadne z pojęć p, q, ~p i ~q nie może być zbiorem pustym (zdarzeniem niemożliwym), co gwarantuje rozpoznawalność tych pojęć.
2.
Poprzednik p i następnik q muszą należeć do wspólnej dziedziny.

Algorytm analizy zdania bazowego:
Algorytm analizy dowolnego zdania bazowego „Jeśli p to q” przez wszystkie możliwe przeczenia p i q pozwala na jednoznaczne rozstrzygnięcie w skład jakiego operatora logicznego wchodzi badane zdanie bazowe bez względu na jego prawdziwość/fałszywość.

Dowolne zdanie bazowe „Jeśli p to q” może wchodzić tylko i wyłącznie w skład jednego z pięciu rozłącznych operatorów logicznych.
1. p||=>q - operator implikacji prostej
2. p||~>q - operator implikacji odwrotnej
3. p|<=>q - operator równoważności
4. p||~~>q - operator chaosu
Dodatkowy piąty operator to mutacja równoważności p<=>q:
5. p|$q - operator „albo”($)

Z faktu iż powyższe operatory są rozłączne wynika, że dowolne zdanie warunkowe „Jeśli p to q” nie może należeć jednocześnie do dwóch rożnych na mocy definicji ## operatorów logicznych.
Kod:

T1
Definicje operatorów implikacyjnych które niebawem poznamy:
1: Y=(p||=>q) =(p|=>q)  = (A1: p=>q)*~(B1: p~>q)= ~p*q      # ~Y=p+~q
##
2: Y=(p||~>q) =(p|~>q)  =~(A1: p=>q)*(B1: p~>q)  = p*~q     # ~Y=~p+q
##
3: Y=(p|<=>q) =(p<=>q)  = (A1:p=>q)* (B1: p~>q)  =p*q+~p*~q # ~Y=p*~q+~p*q
##
4: Y=(p||~~>q)=(p|~~>q) =~(A1: p=>q)*~(B1: p~>q) =0         # ~Y=1
##
5: Y=(p|$q)   = (p$q)   = (A1: p=>~q)*(B1: p~>~q)=p*~q+~p*q # ~Y=p*q+~p*~q
Gdzie:
# - różne w znaczeniu iż jedna strona znaczka # jest negacją drugiej strony
## - różne na mocy definicji operatorów logicznych

Definicja tożsamości logicznej [=]:
Prawo Kubusia:
p=>q [=] ~p~>~q
Prawdziwość dowolnej strony tożsamości logicznej [=] wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej [=] wymusza fałszywość drugiej strony

Definicja znaczka różne na mocy definicji ##:
Dwie funkcje logiczna są różne na mocy definicji wtedy i tylko wtedy gdy nie są tożsame i żadna z nich nie jest zaprzeczeniem drugiej.

W tabeli T1 doskonale widać, że obie definicje znaczków # i ## są perfekcyjnie spełnione.

Kluczowe dla poprawnego działania algorytmu analizy zdania bazowego jest prawo śfinii.

Prawo śfinii:
Dowolne zdanie warunkowe od którego zaczynamy analizę matematyczną jest domyślnym punktem odniesienia, gdzie po „Jeśli ..” zapisujemy p zaś po „to..” zapisujemy q z pominięciem przeczeń.

6.7.1 Algorytm analizy zdania bazowego „Jeśli p to q”

Algorytm analizy zdania bazowego „Jeśli p to q”

START

Punkt 1

Prawo śfinii:
Dowolne zdanie bazowe od którego zaczynamy analizę matematyczną jest domyślnym punktem odniesienia, gdzie po „Jeśli ..” zapisujemy p zaś po „to..” zapisujemy q z pominięciem przeczeń.

Punkt 2
Zbiory:
Badamy elementem wspólnym zbiorów ~~> kolejne możliwe przeczenia p i q poszukując zbioru pustego (=0)
p~~>q=p*q =0
Zdarzenia:
Badamy zdarzeniem możliwym ~~> kolejne możliwe przeczenia p i q poszukując zdarzenia niemożliwego (=0)
p~~>q=p*q =0
RETURN

Punkt 3
Zbiory:
Jeśli znaleziono zbiór pusty [] idź do puntu 5
Zdarzenia:
Jeśli znaleziono zdarzenie niemożliwe ~~> idź do punktu 5

Inaczej:
Punkt 4
Zbiory:
Nie znaleziono zbioru pustego []
Zdarzenia:
Nie znaleziono zdarzenia niemożliwego ~~>
Operator logiczny zlokalizowany, to operator chaosu p||~~>q
Idź do operatora chaosu p||~~>q
STOP

Punkt 5
Na mocy prawa kontrapozycji zapisujemy prawdziwy warunek wystarczający => między tymi samymi punktami i w tym samym kierunku
(~)p=>(~)q =1

Punkt 6
Jeśli zdanie 5 jest w logice ujemnej (bo ~q) to prawem Kubusia sprowadzamy je do logiki dodatniej (bo q).
Prawo Kubusia:
~p=>~q = p~>q

Punkt 7
Badamy prawdziwość/fałszywość zdania 6 kodowanego spójnikiem przeciwnym do występującego w tym zdaniu (~> albo =>) między tymi samymi punktami i w tym samym kierunku
p (~> albo =>) q =?

Punkt 8
W punktach 6 i 7 mamy zlokalizowaną kolumnę A1B1: p|?q będącą częścią operatora logicznego p||?q

Idź do tabeli prawdy zlokalizowanego operatora logicznego
STOP

Przedstawiony wyżej algorytm to algorytm podstawowy.

Uwaga:
Matematycznie możliwy jest alternatywny algorytm przeciwny gdzie w prawie śfinii po „Jeśli ..” zapisujemy q zaś po „to…” zapisujemy p, jednak aby matematyk A dogadał się z matematykiem B obaj muszą stosować identyczny, uzgodniony wzajemnie algorytm: podstawowy albo przeciwny.
W logice matematycznej za domyślny przyjmujemy algorytm podstawowy dzięki czemu nie musimy sygnalizować światu zewnętrznemu który algorytm stosujemy.
Ponieważ algorytm podstawowy jest z definicji algorytmem domyślnym, możemy pominąć słówko „podstawowy” w „algorytmie podstawowym”.

6.7.2 Operator równoważności p|<=>q

W algebrze Kubusia w zbiorach zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

TR.
Definicja podstawowa równoważności p<=>q:

Równoważność p<=>q to jednoczesne zachodzenie zarówno warunku wystarczającego =>, jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
stąd:
p<=>q = (A1: p=>q)*(B1: p~>q) = 1*1 =1
Kod:

TR:
Tabela prawdy równoważności p<=>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q =1 - p jest (=1) wystarczające => dla q
B1: p~>q =1 - p jest (=1) konieczne ~> dla q
p<=>q = (A1: p=>q)*(B1: p~>q) =1*1=1
       A1B1:         A2B2:        |     A3B3:         A4B4:
A:  1: p=>q  =1 = 2:~p~>~q=1     [=] 3: q~>p  =1 = 4:~q=>~p =1
A’: 1: p~~>~q=0 =                [=]             = 4:~q~~>p =0
       ##            ##           |     ##            ##
B:  1: p~>q  =1 = 2:~p=>~q=1     [=] 3: q=>p  =1 = 4:~q~>~p =1
B’:             = 2:~p~~>q=0     [=] 3: q~~>~p=0

Równanie operatora równoważności p|<=>q:
A1B1:                                                     A2B2:
p<=>q = (A1: p=>q)*(B2 p~>q) = (A2:~p~>~q)*(B2:~p=>~q) = ~p<=>~q

Operator równoważności p|<=>q to układ równań logicznych:
A1B1: p<=>q =(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p
A2B2:~p<=>~q=(A2:~p~>~q)*(B2:~p=>~q) - co się stanie jeśli zajdzie ~p

Układ równań logicznych jest przemienny, stąd mamy:
Operator równoważności ~p|<=>~q to układ równań logicznych:
A2B2:~p<=>~q=(A2:~p~>~q)*(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A1B1: p<=>q =(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


Definicja symboliczna operatora równoważności p|<=>q to układ równań A1B1 i A2B2 dający odpowiedź na pytania o p i ~p:
Kod:

Kolumna A1B1:
Co może się wydarzyć jeśli zajdzie p?
A1:  p=> q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1:  p~> q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
p|=>q =(A1: p=>q)*(B1: p~>q)=1*1=1
Stąd:
A1:  p=> q =1 - zajście p jest wystarczające => dla zajścia q
A1’: p~~>~q=0 - prawdziwy A1 wymusza fałszywy kontrprzykład A1’

Kolumna A2B2:
Co może się zdarzyć jeśli zajdzie ~p?
A2: ~p~>~q =1 - zajście ~p jest (=1) konieczne ~> dla zajścia ~q
B2: ~p=>~q =1 - zajście ~p jest (=1) wystarczające => dla zajścia ~q
~p|~>~q =(A2:~p~>~q)*(B2:~p=>~q)=1*1=1
Stąd:
B2: ~p=>~q =1 - zajście ~p jest (=1) wystarczające => dla zajścia ~q
B2’:~p~~>q =0 - prawdziwy B2 wymusza fałszywy kontrprzykład B2’


Prawo Kobry dla zbiorów:
Warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q” jest jego prawdziwość przy kodowaniu elementem wspólnym zbiorów ~~>.
Innymi słowy:
Jeśli prawdziwe jest zdanie kodowane warunkiem wystarczającym => lub koniecznym ~> to na 100% prawdziwe jest to samo zdanie kodowane elementem wspólnym zbiorów ~~> (odwrotnie nie zachodzi)

Prawo Kobry dla zdarzeń:
Warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q” jest jego prawdziwość przy kodowaniu zdarzeniem możliwym ~~>.
Innymi słowy:
Jeśli prawdziwe jest zdanie kodowane warunkiem wystarczającym => lub koniecznym ~> to na 100% prawdziwe jest to samo zdanie kodowane zdarzeniem możliwym ~~> (odwrotnie nie zachodzi)

Na mocy prawa Kobry definicja operatora równoważności p|<=>q wyrażona zdaniami bazowymi przyjmuje postać.
Kod:

A1B1:
Co może się wydarzyć jeśli zajdzie p?
A1:  p~~>q =1 - istnieje (=1) element wspólny ~~> zbiorów p i q
A1’: p~~>~q=0 - nie istnieje (=0) element wspólny ~~> zbiorów p i ~q
A2B2:
Co może się zdarzyć jeśli zajdzie ~p?
B2: ~p~~>~q=1 - istnieje (=1) element wspólny ~~> zbiorów ~p i ~q
B2’:~p~~>q =0 - nie istnieje (=0) element wspólny ~~> zbiorów ~p i q


6.8 Zdania bazowe w operatorze równoważności TP|<=>SK w zbiorach

W sprawdzaniu poprawności algorytmu analizy dowolnego zdania bazowego postępujemy identycznie jak w sprawdzaniu programu komputerowego. Na wejściu podajemy dane co do których jesteśmy pewni do jakiego operatora logicznego powinien nas algorytm zaprowadzić sprawdzając czy rzeczywiście tak się stanie.

Operator równoważności TP|<=>SK omówiony został w punkcie 6.5.1
Sprawdzenia poprawności działania algorytmu analizy dowolnego zdania bazowego w operatorze równoważności TP|<=>SK wykonamy na konkretnym przykładzie, by łatwiej było zrozumieć.
p = TP - zbiór trójkątów prostokątnych
q = SK - zbiór trójkątów ze spełnioną sumą kwadratów

Definicja operatora równoważności TP|<=>SK kodowanego elementami wspólnymi zbiorów ~~>:
Kod:

A1B1:
Co może się wydarzyć jeśli wylosujemy trójkąt prostokątny (TP=1)?
A1:  TP~~>SK =1 - istnieje (=1) element wspólny zbiorów TP i SK np. [3,4,5]
A1’: TP~~>~SK=0 - nie istnieje (=0) element wspólny ~~> zbiorów TP i ~SK
A2B2:
Co może się zdarzyć jeśli wylosujemy trójkąt nieprostokątny (~TP=1)?
B2: ~TP~~>~SK=1 - istnieje element wspólny zbiorów ~TP i ~SK np. [3,4,6]
B2’:~TP~~>SK =0 - nie istnieje (=0) element wspólny ~~> zbiorów ~TP i SK


6.8.1 Zdanie bazowe TP~~>SK

Zadanie 6.8.1
Dane jest zdanie bazowe:
W1.
Jeśli trójkąt jest prostokątny to może zachodzić w nim suma kwadratów
Polecenie:
Zbadaj w skład jakiego operatora logicznego wchodzi to zdanie.
Zapisz analizę matematyczną zlokalizowanego operatora

Algorytm analizy zdań bazowych „Jeśli p to q” w zbiorach

START

Punkt 1

Prawo śfinii:
Dowolne zdanie warunkowe od którego zaczynamy analizę matematyczną jest domyślnym punktem odniesienia, gdzie po „Jeśli ..” zapisujemy p zaś po „to..” zapisujemy q z pominięciem przeczeń.
W1.
Jeśli trójkąt jest prostokątny to może ~~> zachodzić w nim suma kwadratów
TP~~>SK = TP*SK=?
Na mocy prawa śfinii mamy:
p=TP (trójkąt prostokątny)
q=SK (trójkąt w którym zachodzi suma kwadratów)
Zapis zdania W1 w zapisie formalnym:
p~~>q = p*q =?

Punkt 2
Zbiory:
Badamy elementem wspólnym zbiorów ~~> kolejne możliwe przeczenia poszukując zbioru pustego (=0)
1: TP~~>SK =1 - dla udowodnienia prawdziwości tego zdania wystarczy pokazać jeden trójkąt [3,4,5]
2: TP~~>~SK=[]=0 - niemożliwe jest, by w trójkącie prostokątnym nie zachodziła suma kwadratów

Tu konieczny jest komentarz
Zauważmy że:
Zbiory TP i ~SK są znane, ale nieskończone. Nie możemy zatem pobierać kolejnych trójkątów prostokątnych ze zbioru TP i sprawdzać, czy ten element jest również w zbiorze ~SK.
Jak zatem udowodnić rozłączność zbiorów TP i ~SK?

Bardzo prosto:
Zakładamy, że zbiory TP i ~SK są rozłączne, z czego wynika że:
2: TP~~>~SK = TP*~SK =0 - bo zbiory TP i ~SK są z założenia rozłączne
Stąd mamy:
Na mocy definicji kontrprzykładu prawdziwy jest zatem warunek wystarczający => który musimy udowodnić:
TP=>SK =1 - zbiór TP jest podzbiorem => zbioru SK
Twierdzenie proste Pitagorasa:
A1.
Jeśli trójkąt jest prostokątny to na 100% => zachodzi w nim suma kwadratów
TP=>SK =1
Twierdzenie proste Pitagorasa A1 udowodniono wieki temu.
Prawdziwość warunku wystarczającego => A1 wymusza fałszywość kontrprzykładu 2.
2: TP~~>~SK=[]=0 - niemożliwe jest, by w trójkącie prostokątnym nie zachodziła suma kwadratów
cnd
RETURN

Punkt 3
Jeśli znaleziono zbiór pusty [] idź do puntu 5
Znaleziono zbiór pusty []:
TP~~>~SK =[] =0 - niemożliwe jest (=0), by w trójkącie prostokątnym nie zachodziła suma kwadratów

Punkt 5
Na mocy prawa kontrapozycji zapisujemy prawdziwy warunek wystarczający => między tymi samymi punktami i w tym samym kierunku
stąd mamy:
Twierdzenie proste Pitagorasa udowodnione wieki temu
5.
Jeśli trójkąt jest prostokątny to na 100% => zachodzi w nim suma kwadratów
TP=>SK =1
Definicja warunku wystarczającego => jest spełniona wtedy i tylko wtedy gdy zbiór TP jest podzbiorem => SK

Punkt 6
Jeśli zdanie 5 jest w logice ujemnej (bo ~q) to prawem Kubusia sprowadzamy je do logiki dodatniej (bo q).
Prawo Kubusia:
~p=>~q = p~>q
Zdanie 5 jest w logice dodatniej (bo SK) zatem tylko przepisujemy:
6.
Jeśli trójkąt jest prostokątny to na 100% => zachodzi w nim suma kwadratów
TP=>SK =1
Definicja warunku wystarczającego => jest spełniona wtedy i tylko wtedy gdy zbiór TP jest podzbiorem => SK

Punkt 7
Badamy prawdziwość/fałszywość zdania 6 kodowanego spójnikiem przeciwnym do występującego w tym zdaniu (~> albo =>) między tymi samymi punktami i w tym samym kierunku
7: TP~>SK =1
Tu stosujemy prawo Tygryska:
p~>q = q=>p
7: TP~>SK = 7a: SK=>TP
Stąd mamy:
Twierdzenie odwrotne Pitagorasa udowodnione wieki temu:
7a.
Jeśli w trójkącie zachodzi suma kwadratów to na 100% ~> ten trójkąt jest prostokątny
SK=>TP =1
Na mocy prawa Tygryska:
7: TP~>SK = 7a: SK=>TP
Mamy wymuszoną prawdziwość zdania 7 kodowanego warunkiem koniecznym ~>:
7.
Jeśli trójkąt jest prostokątny to na 100% ~> zachodzi w nim suma kwadratów
TP~>SK =1
Definicja warunku koniecznego ~> jest spełniona wtedy i tylko wtedy gdy zbiór TP jest nadzbiorem ~> SK.
Zauważmy że:
Zdania 6 i 7 brzmią identycznie z dokładnością do każdej literki i każdego przecinka a mimo to, zdania te nie są tożsame.
6: TP=>SK = ~TP+SK ## 7: TP~>SK = TP+~SK
To samo w zapisie formalnym:
6: p=>q = ~p+q ## 7: p~>q = p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
Stąd mamy:
Prawo Kameleona
Dwa zdania brzmiące identycznie z dokładnością do każdej literki i każdego przecinka nie muszą być matematycznie tożsame.
Różność zdań 6 i 7 rozpoznajemy po znaczkach => i ~> wbudowanych w treść zdań

Punkt 8
W punktach 6 i 7 mamy zlokalizowaną kolumnę równoważności A1B1: TP<=>SK będącą częścią operatora równoważności TP|<=>SK
A1: TP=>SK =1 - zbiór TP jest podzbiorem => zbioru SK (TP jest wystarczające => dla SK)
B1: TP~>SK =1 - zbiór TP jest nadzbiorem ~> dla SK (TP jest konieczne ~> dla SK)
TP<=>SK = (A1: TP=>SK)*(B1: TP~>SK)=1*1 =1

Idź do tabeli prawdy zlokalizowanej równoważności TP<=>SK, czyli do punktu 6.9
STOP

Komentarz:
Zdanie wejściowe to:
W1.
Jeśli trójkąt jest prostokątny to może ~~> zachodzić w nim suma kwadratów
TP~~>SK = TP*SK=1 - istnieje TP w którym zachodzi SK np. [3,4,5]

W punkcie 6.9.1 zlokalizowane zdanie W1 jako zdanie A1 będące częścią operatora równoważności TP|<=>SK
A1.
Jeśli trójkąt jest prostokąty (TP=1) to na 100% => zachodzi w nim suma kwadratów (SK=1)
TP=>SK =1
Bycie trójkątem prostokątnym (TP=1) jest warunkiem wystarczającym => do tego by zachodziła w nim suma kwadratów (SK=1), bo zbiór trójkątów prostokątnych (TP=1) jest podzbiorem => zbioru trójkątów ze spełnioną sumą kwadratów (SK=1)

Prawo Kobry dla zbiorów:
Warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q” jest jego prawdziwość przy kodowaniu elementem wspólnym zbiorów ~~>.
Innymi słowy:
Jeśli prawdziwe jest zdanie kodowane warunkiem wystarczającym => lub koniecznym ~> to na 100% prawdziwe jest to samo zdanie kodowane elementem wspólnym zbiorów ~~> (odwrotnie nie zachodzi)

Z prawa Kobry wynika, że zdanie wejściowe W1 które analizowaliśmy wchodzi w skład warunku wystarczającego A1: TP=>SK
cnd

Wniosek:
Zdanie W1 jest częścią operatora równoważności TP|<=>SK
cnd

6.8.2 Zdanie bazowe TP~~>~SK

Zadanie 6.8.2
Dane jest zdanie bazowe:
W2.
Jeśli trójkąt jest prostokątny to może nie zachodzić w nim suma kwadratów
Polecenie:
Zbadaj w skład jakiego operatora logicznego wchodzi to zdanie.
Zapisz analizę matematyczną zlokalizowanego operatora

Algorytm analizy zdań bazowych „Jeśli p to q” w zbiorach

START

Punkt 1

Prawo śfinii:
Dowolne zdanie warunkowe od którego zaczynamy analizę matematyczną jest domyślnym punktem odniesienia, gdzie po „Jeśli ..” zapisujemy p zaś po „to..” zapisujemy q z pominięciem przeczeń.
W2.
Jeśli trójkąt jest prostokątny to może ~~> nie zachodzić w nim suma kwadratów
TP~~>~SK = TP*~SK=?
Na mocy prawa śfinii mamy:
p=TP (trójkąt prostokątny)
q=SK (trójkąt w którym zachodzi suma kwadratów)
Zapis zdania W1 w zapisie formalnym:
p~~>~q = p*~q =?

Punkt 2
Zbiory:
Badamy elementem wspólnym zbiorów ~~> kolejne możliwe przeczenia poszukując zbioru pustego (=0)
1: TP~~>~SK=[]=0 - niemożliwe jest, by w trójkącie prostokątnym nie zachodziła suma kwadratów
Konieczny komentarz jest w punkcie 6.8.1.
RETURN

Punkt 3
Jeśli znaleziono zbiór pusty [] idź do puntu 5
Znaleziono zbiór pusty []:
TP~~>~SK =[] =0 - niemożliwe jest (=0), by w trójkącie prostokątnym nie zachodziła suma kwadratów

Punkt 5
Na mocy prawa kontrapozycji zapisujemy prawdziwy warunek wystarczający => między tymi samymi punktami i w tym samym kierunku
stąd mamy:
Twierdzenie proste Pitagorasa udowodnione wieki temu
5.
Jeśli trójkąt jest prostokątny to na 100% => zachodzi w nim suma kwadratów
TP=>SK =1
Definicja warunku wystarczającego => jest spełniona wtedy i tylko wtedy gdy zbiór TP jest podzbiorem => SK

Punkt 6
Jeśli zdanie 5 jest w logice ujemnej (bo ~q) to prawem Kubusia sprowadzamy je do logiki dodatniej (bo q).
Prawo Kubusia:
~p=>~q = p~>q
Zdanie 5 jest w logice dodatniej (bo SK) zatem tylko przepisujemy:
6.
Jeśli trójkąt jest prostokątny to na 100% => zachodzi w nim suma kwadratów
TP=>SK =1
Definicja warunku wystarczającego => jest spełniona wtedy i tylko wtedy gdy zbiór TP jest podzbiorem => SK

Punkt 7
Badamy prawdziwość/fałszywość zdania 6 kodowanego spójnikiem przeciwnym do występującego w tym zdaniu (~> albo =>) między tymi samymi punktami i w tym samym kierunku
7: TP~>SK =1
Tu stosujemy prawo Tygryska:
7: TP~>SK = 7a: SK=>TP
p~>q = q=>p
Stąd mamy:
Twierdzenie odwrotne Pitagorasa udowodnione wieki temu:
7a.
Jeśli w trójkącie zachodzi suma kwadratów to na 100% ~> ten trójkąt jest prostokątny
SK=>TP =1
Na mocy prawa Tygryska:
7: TP~>SK = 7a: SK=>TP
Mamy wymuszoną prawdziwość zdania 7 kodowanego warunkiem koniecznym ~>:
7.
Jeśli trójkąt jest prostokątny to na 100% ~> zachodzi w nim suma kwadratów
TP~>SK =1
Definicja warunku koniecznego ~> jest spełniona wtedy i tylko wtedy gdy zbiór TP jest nadzbiorem ~> SK.
Zauważmy że:
Zdania 6 i 7 brzmią identycznie z dokładnością do każdej literki i każdego przecinka a mimo to, zdania te nie są tożsame.
6: TP=>SK = ~TP+SK ## 7: TP~>SK = TP+~SK
To samo w zapisie formalnym:
6: p=>q = ~p+q ## 7: p~>q = p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
Stąd mamy:
Prawo Kameleona
Dwa zdania brzmiące identycznie z dokładnością do każdej literki i każdego przecinka nie muszą być matematycznie tożsame.
Różność zdań 6 i 7 rozpoznajemy po znaczkach => i ~> wbudowanych w treść zdań

Punkt 8
W punktach 6 i 7 mamy zlokalizowaną kolumnę równoważności A1B1: TP<=>SK będącą częścią operatora równoważności TP|<=>SK
A1: TP=>SK =1 - zbiór TP jest podzbiorem => zbioru SK (TP jest wystarczające => dla SK)
B1: TP~>SK =1 - zbiór TP jest nadzbiorem ~> dla SK (TP jest konieczne ~> dla SK)
TP<=>SK = (A1: TP=>SK)*(B1: TP~>SK)=1*1 =1

Idź do tabeli prawdy zlokalizowanej równoważności TP<=>SK, czyli do punktu 6.9
STOP

Komentarz:
Zdanie wejściowe to:
W2.
Jeśli trójkąt jest prostokątny to może ~~> nie zachodzić w nim suma kwadratów
TP~~>~SK = TP*~SK=[] =0

Zdanie W2 zlokalizowano w analizie operatora równoważności TP|<=>SK jako zdanie A1’:
A1’.
Jeśli trójkąt jest prostokątny (TP=1) to może ~~> nie zachodzić w nim suma kwadratów (~SK=1)
TP~~>~SK = TP*~SK =0
Definicja elementu wspólnego zbiorów ~~> TP i ~SK nie jest spełniona bo zbiory TP i ~SK są rozłączne.

Wniosek:
Zdanie W2 jest częścią operatora równoważności TP|<=>SK
cnd


6.8.3 Zdanie bazowe ~TP~~>~SK

Zadanie 6.8.3
Dane jest zdanie bazowe:
W3.
Jeśli trójkąt nie jest prostokątny (~TP=1) to może nie zachodzić w nim suma kwadratów (~SK=1)
Polecenie:
Zbadaj w skład jakiego operatora logicznego wchodzi to zdanie.
Zapisz analizę matematyczną zlokalizowanego operatora

Algorytm analizy zdań bazowych „Jeśli p to q” w zbiorach

START

Punkt 1

Prawo śfinii:
Dowolne zdanie warunkowe od którego zaczynamy analizę matematyczną jest domyślnym punktem odniesienia, gdzie po „Jeśli ..” zapisujemy p zaś po „to..” zapisujemy q z pominięciem przeczeń.
W3.
Jeśli trójkąt nie jest prostokątny (~TP=1) to może ~~> nie zachodzić w nim suma kwadratów (~SK=1)
~TP~~>~SK = ~TP*~SK=?
Na mocy prawa śfinii mamy:
p=TP (trójkąt prostokątny)
q=SK (trójkąt w którym zachodzi suma kwadratów)
Zapis zdania W3 w zapisie formalnym:
~p~~>~q = ~p*~q =?

Punkt 2
Zbiory:
Badamy elementem wspólnym zbiorów ~~> kolejne możliwe przeczenia poszukując zbioru pustego (=0)
1: ~TP~~>~SK =1 - tu wystarczy pokazać jeden trójkąt z niespełnioną SK np. [3,4,6]
2: ~TP~~>SK=[]=0 - niemożliwe jest, by w trójkącie nie prostokątnym zachodziła suma kwadratów

Tu konieczny jest komentarz
Zauważmy że:
Zbiory ~TP i SK są znane, ale nieskończone. Nie możemy zatem pobierać kolejnych trójkątów nieprostokątnych ze zbioru ~TP i sprawdzać, czy ten element jest również w zbiorze SK.
Jak zatem udowodnić rozłączność zbiorów ~TP i SK?

Bardzo prosto:
Zakładamy, że zbiory ~TP i SK są rozłączne.
Prawdziwy jest zatem warunek wystarczający => który musimy udowodnić:
2: ~TP=>~SK =1 - zbiór ~TP jest podzbiorem ~> zbioru ~SK
2: ~p=>~q =1 - na mocy prawa śfinii
Stosujemy prawo kontrapozycji:
2: ~TP=>~SK = 2a: SK=>TP
to samo w zapisie formalnym na mocy prawa śfinii:
2: ~p=>~q = 2a: q=>p
Twierdzenie odwrotne Pitagorasa:
2a.
Jeśli w trójkącie zachodzi suma kwadratów to na 100% => jest to trójkąt prostokątny
SK=>TP =1
Twierdzenie odwrotne Pitagorasa udowodniono wieki temu.
Na mocy prawa kontrapozycji prawdziwość 2a: SK=>TP=1 wymusza prawdziwość 2: ~TP=>~SK=1

Prawdziwość warunku wystarczającego => 2 wymusza fałszywość kontrprzykładu 2’.
2’: ~TP~~>SK=[]=0 - niemożliwe jest, by w trójkącie nieprostokątnym zachodziła suma kwadratów
cnd
RETURN

Punkt 3
Jeśli znaleziono zbiór pusty [] idź do puntu 5
Znaleziono zbiór pusty []:
~TP~~>SK =[] =0 - niemożliwe jest, by w trójkącie nieprostokątnym zachodziła suma kwadratów

Punkt 5
Na mocy prawa kontrapozycji zapisujemy prawdziwy warunek wystarczający => między tymi samymi punktami i w tym samym kierunku
5: ~TP=>~SK =1 - zbiór ~TP jest podzbiorem => ~SK
(dowód wyżej)
stąd mamy:
5.
Jeśli trójkąt nie jest prostokątny (~TP=1) to na 100% => nie zachodzi w nim suma kwadratów (~SK=1)
~TP=>~SK =1
Definicja warunku wystarczającego => jest (=1) spełniona wtedy i tylko wtedy gdy zbiór ~TP jest podzbiorem => ~SK

Punkt 6
Jeśli zdanie 5 jest w logice ujemnej (bo ~q) to prawem Kubusia sprowadzamy je do logiki dodatniej (bo q).
Prawo Kubusia:
~p=>~q = p~>q
Zdanie 5 jest w logice ujemnej (bo ~SK) zatem stosujemy prawo Kubusia:
5: ~TP=>~SK = 6: TP~>SK
stąd mamy:
6.
Jeśli trójkąt jest prostokątny (TP=1) to na 100% ~> zachodzi w nim suma kwadratów (SK=1)
TP~>SK =1
Definicja warunku koniecznego ~> jest (=1) spełniona wtedy i tylko wtedy gdy zbiór TP jest nadzbiorem ~> SK

Punkt 7
Badamy prawdziwość/fałszywość zdania 6 kodowanego spójnikiem przeciwnym do występującego w tym zdaniu (~> albo =>) między tymi samymi punktami i w tym samym kierunku
7.
Jeśli trójkąt jest prostokątny (TP=1) to na 100% => zachodzi w nim suma kwadratów (SK=1)
TP=>SK =1
Definicja warunku wystarczającego => jest (=1) spełniona wtedy i tylko wtedy gdy zbiór TP jest podzbiorem => SK
To jest twierdzenie proste Pitagorasa udowodnione wieki temu

Punkt 8
W punktach 6 i 7 mamy zlokalizowaną kolumnę równoważności A1B1: TP<=>SK będącą częścią operatora równoważności TP|<=>SK
A1: TP=>SK =1 - zbiór TP jest podzbiorem => zbioru SK (TP jest wystarczające => dla SK)
B1: TP~>SK =1 - zbiór TP jest nadzbiorem ~> dla SK (TP jest konieczne ~> dla SK)
TP<=>SK = (A1: TP=>SK)*(B1: TP~>SK)=1*1 =1

Idź do tabeli prawdy zlokalizowanej równoważności TP<=>SK, czyli do punktu 6.9
STOP

Komentarz:
Zdanie wejściowe to:
W3.
Jeśli trójkąt nie jest prostokątny (~TP=1) to może nie zachodzić w nim suma kwadratów (~SK=1)
~TP~~>~SK = ~TP*~SK=1 - istnieje ~TP (~TP=1) w którym nie zachodzi SK (~SK=1) np. [3,4,6]

W punkcie 6.9.1 zlokalizowane zdanie W3 jako zdanie B2 będące częścią operatora równoważności TP|<=>SK
B2.
Jeśli trójkąt nie jest prostokątny (~TP=1) to na 100% => nie zachodzi w nim suma kwadratów (~SK=1)
~TP=>~SK =1
Bycie trójkątem nieprostokątnym (~TP=1) jest warunkiem wystarczającym => do tego by nie zachodziła w nim suma kwadratów (~SK=1)

Prawo Kobry dla zbiorów:
Warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q” jest jego prawdziwość przy kodowaniu elementem wspólnym zbiorów ~~>.
Innymi słowy:
Jeśli prawdziwe jest zdanie kodowane warunkiem wystarczającym => lub koniecznym ~> to na 100% prawdziwe jest to samo zdanie kodowane elementem wspólnym zbiorów ~~> (odwrotnie nie zachodzi)

Z prawa Kobry wynika, że zdanie wejściowe W3 które analizowaliśmy wchodzi w skład warunku wystarczającego B2: ~TP=>~SK
cnd

Wniosek:
Zdanie W3 jest częścią operatora równoważności TP|<=>SK
cnd


6.8.4 Zdanie bazowe ~TP~~>SK

Zadanie 6.8.4
Dane jest zdanie bazowe:
W4.
Jeśli trójkąt nie jest prostokątny (~TP=1) to może zachodzić w nim suma kwadratów (SK=1)
Polecenie:
Zbadaj w skład jakiego operatora logicznego wchodzi to zdanie.
Zapisz analizę matematyczną zlokalizowanego operatora

Algorytm analizy zdań bazowych „Jeśli p to q” w zbiorach

START

Punkt 1

Prawo śfinii:
Dowolne zdanie warunkowe od którego zaczynamy analizę matematyczną jest domyślnym punktem odniesienia, gdzie po „Jeśli ..” zapisujemy p zaś po „to..” zapisujemy q z pominięciem przeczeń.
W4.
Jeśli trójkąt nie jest prostokątny (~TP=1) to może ~~> zachodzić w nim suma kwadratów (SK=1)
~TP~~>SK = ~TP*SK=?
Na mocy prawa śfinii mamy:
p=TP (trójkąt prostokątny)
q=SK (trójkąt w którym zachodzi suma kwadratów)
Zapis zdania W4 w zapisie formalnym:
~p~~>q = ~p*q =?

Punkt 2
Zbiory:
Badamy elementem wspólnym zbiorów ~~> kolejne możliwe przeczenia poszukując zbioru pustego (=0)
1: ~TP~~>SK=[]=0 - niemożliwe jest, by w trójkącie nie prostokątnym zachodziła suma kwadratów
(konieczny komentarz jest w punkcie 6.8.3)
RETURN

Punkt 3
Jeśli znaleziono zbiór pusty [] idź do puntu 5
Znaleziono zbiór pusty []:
~TP~~>SK =[] =0 - niemożliwe jest, by w trójkącie nieprostokątnym zachodziła suma kwadratów

Punkt 5
Na mocy prawa kontrapozycji zapisujemy prawdziwy warunek wystarczający => między tymi samymi punktami i w tym samym kierunku
5: ~TP=>~SK =1 - zbiór ~TP jest podzbiorem => ~SK
(dowód wyżej)
stąd mamy:
5.
Jeśli trójkąt nie jest prostokątny (~TP=1) to na 100% => nie zachodzi w nim suma kwadratów (~SK=1)
~TP=>~SK =1
Definicja warunku wystarczającego => jest (=1) spełniona wtedy i tylko wtedy gdy zbiór ~TP jest podzbiorem => ~SK

Punkt 6
Jeśli zdanie 5 jest w logice ujemnej (bo ~q) to prawem Kubusia sprowadzamy je do logiki dodatniej (bo q).
Prawo Kubusia:
~p=>~q = p~>q
Zdanie 5 jest w logice ujemnej (bo ~SK) zatem stosujemy prawo Kubusia:
5: ~TP=>~SK = 6: TP~>SK
stąd mamy:
6.
Jeśli trójkąt jest prostokątny (TP=1) to na 100% ~> zachodzi w nim suma kwadratów (SK=1)
TP~>SK =1
Definicja warunku koniecznego ~> jest (=1) spełniona wtedy i tylko wtedy gdy zbiór TP jest nadzbiorem ~> SK

Punkt 7
Badamy prawdziwość/fałszywość zdania 6 kodowanego spójnikiem przeciwnym do występującego w tym zdaniu (~> albo =>) między tymi samymi punktami i w tym samym kierunku
7.
Jeśli trójkąt jest prostokątny (TP=1) to na 100% => zachodzi w nim suma kwadratów (SK=1)
TP=>SK =1
Definicja warunku wystarczającego => jest (=1) spełniona wtedy i tylko wtedy gdy zbiór TP jest podzbiorem => SK
To jest twierdzenie proste Pitagorasa udowodnione wieki temu

Punkt 8
W punktach 6 i 7 mamy zlokalizowaną kolumnę równoważności A1B1: TP<=>SK będącą częścią operatora równoważności TP|<=>SK
A1: TP=>SK =1 - zbiór TP jest podzbiorem => zbioru SK (TP jest wystarczające => dla SK)
B1: TP~>SK =1 - zbiór TP jest nadzbiorem ~> dla SK (TP jest konieczne ~> dla SK)
TP<=>SK = (A1: TP=>SK)*(B1: TP~>SK)=1*1 =1

Idź do tabeli prawdy zlokalizowanej równoważności TP<=>SK, czyli do punktu 6.9
STOP

Komentarz:
Zdanie wejściowe to:
W4.
Jeśli trójkąt nie jest prostokątny (~TP=1) to może ~~> zachodzić w nim suma kwadratów (SK=1)
~TP~~>SK = ~TP*SK=0
bo kontrprzykład dla prawdziwego warunku wystarczającego:
B2: ~TP=>~SK=1
musi być fałszem.

W punkcie 6.9.1 zlokalizowane zdanie W4 jako zdanie B2’ będące częścią operatora równoważności TP|<=>SK
B2’.
Jeśli trójkąt nie jest prostokątny (~TP=1) to może ~~> zachodzić w nim w nim suma kwadratów (~SK=1)
~TP~~>~SK=~TP*SK =0
Definicja elementu wspólnego zbiorów ~~> ~TP i SK nie jest spełniona bo zbiory ~TP i SK są rozłączne.

Wniosek:
Zdanie W4 jest częścią operatora równoważności TP|<=>SK
cnd

6.9 Definicja podstawowa równoważności TP<=>SK

TR
Definicja równoważności p<=>q:

Równoważność p<=>q to zachodzenie zarówno warunku wystarczającego => jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku.
Kolumna A1B1:
A1: p=>q =1 - p jest (=1) wystarczające => dla q
B1: p~>q =1 - p jest (=1) konieczne ~> dla q
p<=>q = (A1: p=>q)*(B2 p~>q)
Kod:

TR: Tabela prawdy równoważności p<=>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q =1 - p jest (=1) wystarczające => dla q
B1: p~>q =1 - p jest (=1) konieczne ~> dla q
p<=>q = (A1: p=>q)*(B1: p~>q) =1*1=1
Punkt odniesienia A1B1 w zapisie aktualnym:
p=TP - zbiór trójkątów prostokątnych
q=SK - zbiór trójkątów ze spełnioną sumą kwadratów
stąd:
A1: TP=>SK =1 - zajście TP jest (=1) wystarczające => dla zajścia SK
B1: TP~>SK =1 - zajście TP jest (=1) konieczne ~> dla zajścia SK
A1B1: TP<=>SK=(A1: TP=>SK)*(B1: TP~>SK)=1*1=1
       A1B1:           A2B2:       |     A3B3:            A4B4:
A:  1: p=>q    =1 = 2:~p~>~q  =1  [=] 3: q~>p    =1  = 4:~q=>~p   =1
A:  1: TP=>SK  =1 = 2:~TP~>~SK=1  [=] 3: SK~>TP  =1  = 4:~SK=>~TP =1
A’: 1: p~~>~q  =0 =               [=]                = 4:~q~~>p   =0
A’: 1: TP~~>~SK=0 =               [=]                = 4:~SK~~>TP =0
       ##              ##          |     ##               ##
B:  1: p~>q    =1 = 2:~p=>~q  =1  [=] 3: q=>p    =1  = 4:~q~>~p   =1
B:  1: TP~>SK  =1 = 2:~TP=>~SK=1  [=] 3: SK=>TP  =1  = 4:~SK~>~TP =1
B’:               = 2:~p~~>q  =0  [=] 3: q~~>~p  =0
B’:               = 2:~TP~~>SK=0  [=] 3: SK~~>~TP=0

Równanie operatora równoważności p|<=>q:
A1B1:                                                     A2B2:
p<=>q = (A1: p=>q)*(B2 p~>q) = (A2:~p~>~q)*(B2:~p=>~q) = ~p<=>~q

Operator równoważności p|<=>q to układ równań logicznych:
A1B1: p<=>q =(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p
A2B2:~p<=>~q=(A2:~p~>~q)*(B2:~p=>~q) - co się stanie jeśli zajdzie ~p

Układ równań logicznych jest przemienny, stąd mamy:
Operator równoważności ~p|<=>~q to układ równań logicznych:
A2B2:~p<=>~q=(A2:~p~>~q)*(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A1B1: p<=>q =(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla poprawienia czytelności tabeli prawdy TR zmienne aktualne (TR i SK) podstawiono wyłącznie w nagłówku tabeli i jej części głównej, odpowiedzialnej za generowanie zdań warunkowych wchodzących w skład operatora równoważności p|<=>q.

Operator równoważności p|<=>q to układ równań logicznych A1B1 i A2B2 dający odpowiedź na pytanie o p i ~p:
A1B1: p<=>q =(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p
A2B2:~p<=>~q=(A2:~p~>~q)*(B2:~p=>~q) - co się stanie jeśli zajdzie ~p

Układ równań logicznych jest przemienny, stąd mamy:
Operator równoważności ~p|<=>~q to układ równań logicznych A2B2 i A1B1 dający odpowiedź na pytanie o ~p i p:
A2B2:~p<=>~q=(A2:~p~>~q)*(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A1B1: p<=>q =(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p


6.9.1 Operator równoważności TP|<=>SK

Operator równoważności TP|<=>SK to układ równań logicznych A1B1 i A2B2 dający odpowiedź na pytanie o TP i ~TP:
A1B1: TP<=>SK =(A1: TP=>SK)* (B1: TP~>SK) - co się stanie jeśli zajdzie TP
A2B2:~TP<=>~SK=(A2:~TP~>~SK)*(B2:~TP=>~SK) - co się stanie jeśli zajdzie ~TP

Kolumna A1B1:
Co może się wydarzyć jeśli ze zbioru wszystkich trójkątów wylosujemy trójkąt prostokątny (TP=1)?


Odpowiedź mamy w kolumnie A1B1:
A1: TP=>SK =1 - zajście TP jest (=1) wystarczające => dla zajścia SK
B1: TP~>SK =1 - zajście TP jest (=1) konieczne ~> dla zajścia SK
A1B1: TP<=>SK=(A1: TP=>SK)*(B1: TP~>SK)=1*1=1
Prawą stronę czytamy:
Bycie trójkątem prostokątnym jest warunkiem koniecznym ~> i wystarczającym => do tego, by zachodziła w nim suma kwadratów
TP<=>SK = (A1: TP=>SK)*(B1: TP~>SK) =1*1 =1
Powyższa równoważność definiuje tożsamość zbiorów:
TP=SK <=> (A1: TP=>SK)*(B1: TP~>SK) = TP<=>SK
Tożsamość zbiorów TP=SK wymusza tożsamość zbiorów ~TP=~SK (albo odwrotnie)
Zachodzi relacja matematyczna:
TP=SK # ~TP=~SK
Gdzie:
# - różne w znaczeniu iż jedna strona znaczka # jest negacją drugiej strony


Kolumna A1B1 w rozpisce na warunek wystarczający =>:
A1.
Jeśli trójkąt jest prostokąty (TP=1) to na 100% => zachodzi w nim suma kwadratów (SK=1)
TP=>SK =1
Bycie trójkątem prostokątnym (TP=1) jest warunkiem wystarczającym => do tego by zachodziła w nim suma kwadratów (SK=1)
Bycie trójkątem prostokątnym (TP=1) daje nam gwarancję matematyczną => iż będzie zachodziła w nim suma kwadratów (SK=1)
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>

Prawdziwy warunek wystarczający A1 wymusza fałszywy kontrprzykład A1’ i odwrotnie.
A1’.
Jeśli trójkąt jest prostokątny (TP=1) to może ~~> nie zachodzić w nim suma kwadratów (~SK=1)
TP~~>~SK = TP*~SK =0
Definicja elementu wspólnego zbiorów ~~> TP i ~SK nie jest spełniona bo zbiory TP i ~SK są rozłączne.
Wynika to z tożsamości zbiorów TP=SK która wymusza tożsamość zbiorów ~TP=~SK (albo odwrotnie)
Relacja matematyczna jaka tu zachodzi to:
TP=SK # ~TP=~SK
Gdzie:
# - dowolna strona znaczka # jest zaprzeczeniem drugiej strony

Kolumna A2B2:
Co może się wydarzyć jeśli ze zbioru wszystkich trójkątów wylosujemy trójkąt nieprostokątny (~TP=1)?


Odpowiedź mamy w kolumnie A2B2:
A2: ~TP~>~SK =1 - zajście ~TP jest (=1) konieczne ~> dla zajścia ~SK
B2: ~TP=>~SK =1 - zajście ~TP jest (=1) wystarczające => dla zajścia ~SK
A2B2: ~TP<=>~SK = (A2: ~TP~>~SK)*(B2: ~TP=>~SK) =1*1 =1
Prawą stronę czytamy:
Bycie trójkątem nieprostokątnym (~TP=1) jest warunkiem koniecznym ~> i wystarczającym => do tego, aby nie zachodziła w nim suma kwadratów (~SK=1)
~TP<=>~SK = (A2: ~TP~>~SK)*(B2: ~TP=>~SK) =1*1 =1
Powyższa równoważność definiuje tożsamość zbiorów:
~TP=~SK <=> (A2: ~TP~>~SK)*(B2: ~TP=>~SK) =~TP<=>~SK
Tożsamość zbiorów ~TP=~SK wymusza tożsamość zbiorów TP=SK (albo odwrotnie)
Zachodzi relacja matematyczna:
~TP=~SK # TP=SK
Gdzie:
# - różne w znaczeniu iż jedna strona znaczka # jest negacją drugiej strony

Kolumna A2B2 w rozpisce na warunek wystarczający =>:
B2.
Jeśli trójkąt nie jest prostokątny (~TP=1) to na 100% => nie zachodzi w nim suma kwadratów (~SK=1)
~TP=>~SK =1
Bycie trójkątem nieprostokątnym (~TP=1) jest warunkiem wystarczającym => do tego by nie zachodziła w nim suma kwadratów (~SK=1)
Bycie trójkątem nieprostokątnym (~TP=1) daje nam gwarancję matematyczną => iż nie będzie zachodziła w nim suma kwadratów (~SK=1)
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>

Prawdziwy warunek wystarczający B2 wymusza fałszywość kontrprzykładu B2’ i odwrotnie.
B2’.
Jeśli trójkąt nie jest prostokątny (~TP=1) to może ~~> zachodzić w nim w nim suma kwadratów (~SK=1)
~TP~~>~SK=~TP*SK =0
Definicja elementu wspólnego zbiorów ~~> ~TP i SK nie jest spełniona bo zbiory ~TP i SK są rozłączne.
Wynika to z tożsamości zbiorów ~TP=~SK która to tożsamość wymusza tożsamość zbiorów TP=SK (albo odwrotnie)

Podsumowanie:
Jak widzimy, istotą operatora równoważności TP|<=>SK jest gwarancja matematyczna => po stronie TP (zdanie A1), jak również gwarancja matematyczna => po stronie ~TP (zdanie B2).
Nie ma tu mowy o jakimkolwiek „rzucaniu monetą” w sensie „na dwoje babka wróżyła” jak to mieliśmy w operatorze implikacji prostej p||=>q czy też w operatorze implikacji odwrotnej p||~>q.

Zauważmy że:
a)
Układ równań logicznych jest przemienny, stąd mamy:
Operator równoważności ~p|<=>~q to układ równań logicznych:
A2B2:~p<=>~q=(A2:~p~>~q)*(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A1B1: p<=>q =(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p
Doskonale widać, że analiza matematyczna operatora równoważności ~p|<=>~q w logice ujemnej (bo ~q) będzie identyczna jak operatora implikacji prostej p|<=>q w logice dodatniej (bo q) z tym, że zaczynamy od kolumny A2B2 kończąc na kolumnie A1B1.
b)
Także kolejność wypowiadanych zdań jest dowolna, tak więc zdania z powyższej analizy A1, A1’, B2, B2’ możemy wypowiadać w sposób losowy - matematycznie to bez znaczenia.
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
Kubuś




Dołączył: 03 Paź 2017
Posty: 872
Przeczytał: 0 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Nie 12:18, 20 Cze 2021    Temat postu:

Proponuję przerywnik ...

http://www.sfinia.fora.pl/wiezienie-script-src-http-wujzboj-com-sfinia-hideu-js-script,20/mord-na-sprawiedliwym-i-jego-zmartwychwstanie,4928-31375.html#601645

Kubuś napisał:
agronom napisał:

Kubuś z potwornie śmierdzącym ogonkiem ucieka (od pytania o zasadność szczepień dzieci na kowid, tez z gadki adwokatka i baryckiego) udając pachnącego, co jest fałszem.

:mrgreen:

Różnica między nami jest fundamentalna.
Ty się uważasz za medycznego eksperta i już rozstrzygnąłeś:
Dzieci nie wolno szczepić na covid-19.

Ja się uważam za medycznego laika i moje rozstrzygnięcie jest takie:
Skoro rząd danego kraju decyduje się na szczepienie dzieci na covid-19 to na 100% nie decydują o tym rządzący, ale najwybitniejsi wirusolodzy żyjący na naszej planecie.

Ty se Agronomie czytasz wybiórczo jakieś tam wypociny antyszczepionkowca Zięby i na tej podstawie masz twarde stanowisko:
Szczepionka na covid-19 jest gównem i nigdy nie powinna wejść w życie.

Pytanie do Agronoma:
Czy Zięba jest twoim autorytetem w sprawie szczepionki na covid-19?
TAK/NIE

[link widoczny dla zalogowanych]

Jerzy Zygmunt Zięba (ur. 2 maja 1956)[2] – polski przedsiębiorca[3], oszust i publicysta, propagator pseudonauki, naturopatii[4][5][6] i medycyny niekonwencjonalnej. Autor bestsellerowej[7], pseudonaukowej książki Ukryte terapie. Czego ci lekarz nie powie (część 1[8] i 2[9]). Większość poglądów propagowanych przez Jerzego Ziębę jest niezgodna z aktualnym stanem medycznej wiedzy naukowej (patrz: Poglądy a wiedza naukowa) i spotyka się z krytyką środowiska akademickiego (patrz: Krytyka przez środowisko akademickie).


agronom napisał:

Ja ino zestawiam tezy, mądrości jednych ekspertów z tezami drugich albo jedne tezy, mądrości ekspertów z ich tezami drugimi. Zięba zresztą też.

Z tego co pamiętam, to ino w trzech krajach na naszy planecie chco szczepić dzieci. A inne kraje to chuj?
Jak to sie ma do wcześniejszych ustaleń, że dzieci kowid dla dzieci jest nieszkodliwy?

Jakich ekspertów przed jakimi ekspertami?!

Przykładowo, z faktu iż mam tytuł naukowy mgr inż. elektroniki nie wynika że ogarniam całą elektronikę.
Moją specjalnością naukową jest automatyka z czego wynika, że doskonale znam algebrę Boole'a której najwybitniejsi ziemscy matematycy nie rozumieją.

Algebra Boole’a ziemskich matematyków jest wewnętrznie sprzeczna na poziomie funkcji logicznych czego twardy dowód przedstawiłem tu:
4.0 Armagedon ziemskiej algebry Boole’a

Oczywistym jest że totalnie nie znam się na technologii produkcji układów scalonych, w tym mikroprocesorów, bo w mojej działalności zawodowej jest mi to psu na budę potrzebne.

Podsumowując:
Jeśli dyskusja będzie dotyczyła technologii produkcji układów scalonych to ja będę w tym temacie kompletnym laikiem i zawodowa przyzwoitość zakazuje mi wypowiadać się w tym temacie.

Podobnie:
Jedynie lekarze wirusolodzy mają prawo wypowiadać się w temacie coronoawirusowej pandemii.
[link widoczny dla zalogowanych]
Wirusologia – dział mikrobiologii zajmujący się badaniem wirusów, ich systematyką, budową, właściwościami antygenowymi i chorobotwórczymi. Wirusologia opracowuje także metody izolacji, oczyszczania, namnażania i zwalczania wirusów. W celach badawczych korzysta się z mikroskopu elektronowego.

Wszyscy inni lekarze mają zerowe pojęcie w temacie budowy i metod zwalczania wirusa sars-cov-2 i nie wolno im w tym temacie zabierać głosu … bo są po prostu laikami w tej dziedzinie.

Można oczywiście szukać lekarstwa na sars-cov-2 metodą na oślep, stając się pośmiewiskiem świata nauki …

Przykład:
[link widoczny dla zalogowanych]

Witamina C lekiem na koronawirusa? Jerzy Zięba się doigrał. Biedronka, Carrefour i Allegro wycofują jego publikacje
Główny Inspektor Sanitarny, Jarosław Pinkas, zaniepokojony rozpowszechnianymi przez Ziębę treściami wydał na ten temat oświadczenie: Informacje upowszechniane na stronach internetowych (Zięby) w związku zagrożeniem ze strony nowego koronawirusa stanowią zagrożenie dla zdrowia i życia ludzi. Stanowczo podkreślamy, iż informacje te nie są poparte badaniami naukowymi i uznaną wiedzą medyczną.
Carrefour i Biedronka zdecydowały się wycofać ze sprzedaży „Zdrowie bez leków”, a Allegro blokuje aukcje, na których sprzedawane są inne publikacje kontrowersyjnego paramedyka.
Oprócz leczenia nowotworów, koronawirusa i innych chorób witaminą C, Jerzy Zięba jest także zwolennikiem unikania szczepień.
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 35331
Przeczytał: 23 tematy

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Nie 15:39, 20 Cze 2021    Temat postu:

Algebra Kubusia - ostatnie czytanie!
Część XVII

Po raz ostatni przed premierą czytam od początku algebrę Kubusia likwidując literówki i udoskonalając przekaz.

http://www.sfinia.fora.pl/forum-kubusia,12/algebra-kubusia-matematyka-jezyka-potocznego-brudnopis,18263.html#589439

Algebra Kubusia
6.11 Zdania bazowe w operatorze równoważności A|<=>S w zdarzeniach

Spis treści
6.10 Zdania bazowe w operatorze równoważności A|<=>S 2
6.10.1 Algorytm analizy zdania bazowego „Jeśli p to q” 3
6.10.2 Operator równoważności p|<=>q 5
6.11 Zdania bazowe w operatorze równoważności A|<=>S w zdarzeniach 6
6.11.1 Zdanie bazowe A~~>S 7
6.11.2 Zdanie bazowe A~~>~S 9
6.11.3 Zdanie bazowe ~A~~>~S 11
6.11.4 Zdanie bazowe ~A~~>S 13
6.12 Tabela prawdy równoważności A<=>S 15
6.12.1 Operator równoważności A|<=>S 16


Wstęp:
Problem budowy operatora równoważności p|<=>q to matematyczny poziom ucznia I klasy LO.
W praktyce wiedza czysto matematyczna w skład jakiego operatora logicznego wchodzi dowolne prawdziwe zdanie warunkowe „Jeśli p to q” jest do niczego potrzebna. Każdy człowiek od 5-cio latka poczynając non stop stosuje tu poniższe prawa logiki matematycznej nie mając najmniejszego pojęcia co to jest operator logiczny np. p|<=>q

W algebrze Kubusia mamy zaledwie trzy znaczki (=>, ~> i ~~>) na których zbudowana jest kompletna algebra Kubusia w obsłudze zdań warunkowych "Jeśli p to q".
1.
Warunek wystarczający =>:

p=>q =1 - gdy zajście p jest (=1) warunkiem wystarczającym => dla zajścia q
Inaczej:
p=>q =0
2.
Warunek konieczny ~>:

p~>q =1 0 gdy zajście p jest (=1) konieczne ~> dla zajścia q
Inaczej:
p~>q =0
3.
Zdarzenie możliwe ~~> lub element wspólny zbiorów ~~>

Zdarzenia:
Definicja zdarzenia możliwego ~~> w zdarzeniach:
p~~>q = p*q =1 - gdy możliwe jest (=1) jednoczesne zajście zdarzeń p i q
Inaczej:
p~~>q=p*q =0
Zbiory:
Definicja elementu wspólnego zbiorów ~~>:
p~~>q = p*q =1 - gdy zbiory p i q mają (=1) element wspólny
Inaczej:
p~~>q = p*q=0
Kod:

T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
      ##        ##           ##        ##            ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5:  p+~q

Prawa Kubusia:        | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q  | A1: p=>q  = A4:~q=>~p
B1: p~>q = B2:~p=>~q  | B2:~p=>~q = B3: q=>p

Prawa Tygryska:       | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p   | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p   | B1: p~>q  = B4:~q~>~p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


6.10 Zdania bazowe w operatorze równoważności A|<=>S

Definicja zdania bazowego:
Zdanie bazowe to zdanie warunkowe „Jeśli p to q” kodowane elementem wspólnym zbiorów ~~> (zbiory) albo zdarzeniem możliwym ~~> (zdarzenia) spełniające poniższe warunki:
1.
W zdaniu warunkowym „Jeśli p to q” żadne z pojęć p, q, ~p i ~q nie może być zbiorem pustym (zdarzeniem niemożliwym), co gwarantuje rozpoznawalność tych pojęć.
2.
Poprzednik p i następnik q muszą należeć do wspólnej dziedziny.

Algorytm analizy zdania bazowego:
Algorytm analizy dowolnego zdania bazowego „Jeśli p to q” przez wszystkie możliwe przeczenia p i q pozwala na jednoznaczne rozstrzygnięcie w skład jakiego operatora logicznego wchodzi badane zdanie bazowe bez względu na jego prawdziwość/fałszywość.

Dowolne zdanie bazowe „Jeśli p to q” może wchodzić tylko i wyłącznie w skład jednego z pięciu rozłącznych operatorów logicznych.
1. p||=>q - operator implikacji prostej
2. p||~>q - operator implikacji odwrotnej
3. p|<=>q - operator równoważności
4. p||~~>q - operator chaosu
Dodatkowy piąty operator to mutacja równoważności p<=>q:
5. p|$q - operator „albo”($)

Z faktu iż powyższe operatory są rozłączne wynika, że dowolne zdanie warunkowe „Jeśli p to q” nie może należeć jednocześnie do dwóch rożnych na mocy definicji ## operatorów logicznych.
Kod:

T1
Definicje operatorów implikacyjnych które niebawem poznamy:
1: Y=(p||=>q) =(p|=>q)  = (A1: p=>q)*~(B1: p~>q)= ~p*q      # ~Y=p+~q
##
2: Y=(p||~>q) =(p|~>q)  =~(A1: p=>q)*(B1: p~>q)  = p*~q     # ~Y=~p+q
##
3: Y=(p|<=>q) =(p<=>q)  = (A1:p=>q)* (B1: p~>q)  =p*q+~p*~q # ~Y=p*~q+~p*q
##
4: Y=(p||~~>q)=(p|~~>q) =~(A1: p=>q)*~(B1: p~>q) =0         # ~Y=1
##
5: Y=(p|$q)   = (p$q)   = (A1: p=>~q)*(B1: p~>~q)=p*~q+~p*q # ~Y=p*q+~p*~q
Gdzie:
# - różne w znaczeniu iż jedna strona znaczka # jest negacją drugiej strony
## - różne na mocy definicji operatorów logicznych

Definicja tożsamości logicznej [=]:
Prawo Kubusia:
p=>q [=] ~p~>~q
Prawdziwość dowolnej strony tożsamości logicznej [=] wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej [=] wymusza fałszywość drugiej strony

Definicja znaczka różne na mocy definicji ##:
Dwie funkcje logiczna są różne na mocy definicji wtedy i tylko wtedy gdy nie są tożsame i żadna z nich nie jest zaprzeczeniem drugiej.

W tabeli T1 doskonale widać, że obie definicje znaczków # i ## są perfekcyjnie spełnione.

Kluczowe dla poprawnego działania algorytmu analizy zdania bazowego jest prawo śfinii.

Prawo śfinii:
Dowolne zdanie warunkowe od którego zaczynamy analizę matematyczną jest domyślnym punktem odniesienia, gdzie po „Jeśli ..” zapisujemy p zaś po „to..” zapisujemy q z pominięciem przeczeń.

6.10.1 Algorytm analizy zdania bazowego „Jeśli p to q”

Algorytm analizy zdania bazowego „Jeśli p to q”

START

Punkt 1

Prawo śfinii:
Dowolne zdanie bazowe od którego zaczynamy analizę matematyczną jest domyślnym punktem odniesienia, gdzie po „Jeśli ..” zapisujemy p zaś po „to..” zapisujemy q z pominięciem przeczeń.

Punkt 2
Zbiory:
Badamy elementem wspólnym zbiorów ~~> kolejne możliwe przeczenia p i q poszukując zbioru pustego (=0)
p~~>q=p*q =0
Zdarzenia:
Badamy zdarzeniem możliwym ~~> kolejne możliwe przeczenia p i q poszukując zdarzenia niemożliwego (=0)
p~~>q=p*q =0
RETURN

Punkt 3
Zbiory:
Jeśli znaleziono zbiór pusty [] idź do puntu 5
Zdarzenia:
Jeśli znaleziono zdarzenie niemożliwe ~~> idź do punktu 5

Inaczej:
Punkt 4
Zbiory:
Nie znaleziono zbioru pustego []
Zdarzenia:
Nie znaleziono zdarzenia niemożliwego ~~>
Operator logiczny zlokalizowany, to operator chaosu p||~~>q
Idź do operatora chaosu p||~~>q
STOP

Punkt 5
Na mocy prawa kontrapozycji zapisujemy prawdziwy warunek wystarczający => między tymi samymi punktami i w tym samym kierunku
(~)p=>(~)q =1

Punkt 6
Jeśli zdanie 5 jest w logice ujemnej (bo ~q) to prawem Kubusia sprowadzamy je do logiki dodatniej (bo q).
Prawo Kubusia:
~p=>~q = p~>q

Punkt 7
Badamy prawdziwość/fałszywość zdania 6 kodowanego spójnikiem przeciwnym do występującego w tym zdaniu (~> albo =>) między tymi samymi punktami i w tym samym kierunku
p (~> albo =>) q =?

Punkt 8
W punktach 6 i 7 mamy zlokalizowaną kolumnę A1B1: p|?q będącą częścią operatora logicznego p||?q

Idź do tabeli prawdy zlokalizowanego operatora logicznego
STOP

Przedstawiony wyżej algorytm to algorytm podstawowy.

Uwaga:
Matematycznie możliwy jest alternatywny algorytm przeciwny gdzie w prawie śfinii po „Jeśli ..” zapisujemy q zaś po „to…” zapisujemy p, jednak aby matematyk A dogadał się z matematykiem B obaj muszą stosować identyczny, uzgodniony wzajemnie algorytm: podstawowy albo przeciwny.
W logice matematycznej za domyślny przyjmujemy algorytm podstawowy dzięki czemu nie musimy sygnalizować światu zewnętrznemu który algorytm stosujemy.
Ponieważ algorytm podstawowy jest z definicji algorytmem domyślnym, możemy pominąć słówko „podstawowy” w „algorytmie podstawowym”.

6.10.2 Operator równoważności p|<=>q

W algebrze Kubusia w zbiorach zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

TR.
Definicja podstawowa równoważności p<=>q:

Równoważność p<=>q to jednoczesne zachodzenie zarówno warunku wystarczającego =>, jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
stąd:
p<=>q = (A1: p=>q)*(B1: p~>q) = 1*1 =1
Kod:

TR:
Tabela prawdy równoważności p<=>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q =1 - p jest (=1) wystarczające => dla q
B1: p~>q =1 - p jest (=1) konieczne ~> dla q
p<=>q = (A1: p=>q)*(B1: p~>q) =1*1=1
       A1B1:         A2B2:        |     A3B3:         A4B4:
A:  1: p=>q  =1 = 2:~p~>~q=1     [=] 3: q~>p  =1 = 4:~q=>~p =1
A’: 1: p~~>~q=0 =                [=]             = 4:~q~~>p =0
       ##            ##           |     ##            ##
B:  1: p~>q  =1 = 2:~p=>~q=1     [=] 3: q=>p  =1 = 4:~q~>~p =1
B’:             = 2:~p~~>q=0     [=] 3: q~~>~p=0

Równanie operatora równoważności p|<=>q:
A1B1:                                                     A2B2:
p<=>q = (A1: p=>q)*(B2 p~>q) = (A2:~p~>~q)*(B2:~p=>~q) = ~p<=>~q

Operator równoważności p|<=>q to układ równań logicznych:
A1B1: p<=>q =(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p
A2B2:~p<=>~q=(A2:~p~>~q)*(B2:~p=>~q) - co się stanie jeśli zajdzie ~p

Układ równań logicznych jest przemienny, stąd mamy:
Operator równoważności ~p|<=>~q to układ równań logicznych:
A2B2:~p<=>~q=(A2:~p~>~q)*(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A1B1: p<=>q =(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Definicja symboliczna operatora równoważności p|<=>q to odpowiedź na pytania A1B1 i A2B2 o p i ~p:
Kod:

Kolumna A1B1:
Co może się wydarzyć jeśli zajdzie p?
A1:  p=> q =1 - zajście p jest (=1) wystarczające => dla zajścia q
B1:  p~> q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
p|=>q =(A1: p=>q)*(B1: p~>q)=1*1=1
Stąd:
A1:  p=> q =1 - zajście p jest wystarczające => dla zajścia q
A1’: p~~>~q=0 - prawdziwy A1 wymusza fałszywy kontrprzykład A1’

Kolumna A2B2:
Co może się zdarzyć jeśli zajdzie ~p?
A2: ~p~>~q =1 - zajście ~p jest (=1) konieczne ~> dla zajścia ~q
B2: ~p=>~q =1 - zajście ~p jest (=1) wystarczające => dla zajścia ~q
~p|~>~q =(A2:~p~>~q)*(B2:~p=>~q)=1*1=1
Stąd:
B2: ~p=>~q =1 - zajście ~p jest (=1) wystarczające => dla zajścia ~q
B2’:~p~~>q =0 - prawdziwy B2 wymusza fałszywy kontrprzykład B2’


Prawo Kobry dla zbiorów:
Warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q” jest jego prawdziwość przy kodowaniu elementem wspólnym zbiorów ~~>.
Innymi słowy:
Jeśli prawdziwe jest zdanie kodowane warunkiem wystarczającym => lub koniecznym ~> to na 100% prawdziwe jest to samo zdanie kodowane elementem wspólnym zbiorów ~~> (odwrotnie nie zachodzi)

Prawo Kobry dla zdarzeń:
Warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q” jest jego prawdziwość przy kodowaniu zdarzeniem możliwym ~~>.
Innymi słowy:
Jeśli prawdziwe jest zdanie kodowane warunkiem wystarczającym => lub koniecznym ~> to na 100% prawdziwe jest to samo zdanie kodowane zdarzeniem możliwym ~~> (odwrotnie nie zachodzi)

Na mocy prawa Kobry definicja operatora równoważności p|<=>q wyrażona zdaniami bazowymi przyjmuje postać.
Kod:

A1B1:
Co może się wydarzyć jeśli zajdzie p?
A1:  p~~>q =1 - możliwe jest (=1) jednoczesne zajście zdarzeń p i q
A1’: p~~>~q=0 - niemożliwe jest (=0) jednoczesna zajście zdarzeń p i ~q
A2B2:
Co może się zdarzyć jeśli zajdzie ~p?
B2: ~p~~>~q=1 - możliwe jest (=1) jednoczesne zajście zdarzeń ~p i ~q
B2’:~p~~>q =0 - niemożliwe jest (=0) jednoczesna zajście zdarzeń ~p i q


6.11 Zdania bazowe w operatorze równoważności A|<=>S w zdarzeniach

Rozważmy fizyczną realizację równoważności:
Kod:

S3 Schemat 3
Fizyczna realizacja równoważności A<=>S w zdarzeniach:
A<=>S=(A1: A=>S)*(B1: A~>S)=1*1=1
             S               A       
       -------------       ______     
  -----| Żarówka   |-------o    o-----
  |    -------------                 |
  |                                  |
______                               |
 ___    U (źródło napięcia)          |
  |                                  |
  |                                  |
  ------------------------------------
Zmienne związane definicją: A, S
Zmienna wolna: brak
Istotą równoważności jest brak zmiennych wolnych

W sprawdzaniu poprawności algorytmu analizy dowolnego zdania bazowego postępujemy identycznie jak w sprawdzaniu programu komputerowego. Na wejściu podajemy dane co do których jesteśmy pewni do jakiego operatora logicznego powinien nas algorytm zaprowadzić sprawdzając czy rzeczywiście tak się stanie.

Operator równoważności A|<=>S omówiony został w punkcie 6.6.1
Sprawdzenia poprawności działania algorytmu analizy dowolnego zdania bazowego w operatorze równoważności A|<=>S wykonamy na konkretnym przykładzie, by łatwiej było zrozumieć.
p = A (przycisk A)
q = S ( żarówka S)

Definicja operatora równoważności A|<=>S kodowanego zdarzeniem możliwym ~~>:
Kod:

A1B1:
Co może się wydarzyć jeśli wciśniemy przycisk A (A=1)?
A1:  A~~>S =1 możliwe jest (=1): wciśnięty A (A=1) i żarówka świeci (S=1)
A1’: A~~>~S=0 niemożliwe jest (=0): wciśnięty A i żarówka nie świeci (~S=1)
A2B2:
Co może się zdarzyć jeśli nie wciśniemy przycisku A (~A=1)?
B2: ~A~~>~S=1 możliwe jest (=1): nie wciśnięty A (~A=1) i nie świeci (~S=1)
B2’:~A~~>S =0 niemożliwe jest (=0): nie wciśnięty A (~A=1) i świeci (S=1)


6.11.1 Zdanie bazowe A~~>S

Zadanie 6.11.1
Dane jest zdanie bazowe:
W1.
Jeśli przycisk A jest wciśnięty (A=1) to żarówka może się świecić (S=1)
Polecenie:
Zbadaj w skład jakiego operatora logicznego wchodzi to zdanie.
Zapisz analizę matematyczną zlokalizowanego operatora

Algorytm analizy zdań bazowych „Jeśli p to q” w S3 dla zdarzeń

START

Punkt 1

Prawo śfinii:
Dowolne zdanie warunkowe od którego zaczynamy analizę matematyczną jest domyślnym punktem odniesienia, gdzie po „Jeśli ..” zapisujemy p zaś po „to..” zapisujemy q z pominięciem przeczeń.
W1.
Jeśli przycisk A jest wciśnięty (A=1) to żarówka może się ~~> świecić (S=1)
A~~>S = A*S =?
Na mocy prawa śfinii nasz punkt odniesienia to:
p=A (przycisk)
q=S (żarówka)
Zdanie W1 w zapisie formalnym:
p~~>q = p*q =?

Punkt 2
Zdarzenia:
Badamy zdarzeniem możliwym ~~> kolejne możliwe przeczenia poszukując zdarzenia niemożliwego (=0)
1: A~~>S =1 - możliwe jest (=1) zdarzenie: przycisk A wciśnięty (A=1) i żarówka świeci (S=1)
2: A~~>~S=0 - niemożliwe jest (=0) zdarzenie: przycisk A wciśnięty (A=1) i żarówka nie świeci (~S=1)
RETURN

Punkt 3
Zdarzenia:
Jeśli znaleziono zdarzenie niemożliwe ~~> idź do punktu 5
A~~>~S=0

Punkt 5
Na mocy prawa kontrapozycji zapisujemy prawdziwy warunek wystarczający => między tymi samymi punktami i w tym samym kierunku
5: A=>S =1 - wciśnięcie A (A=1) jest (=1) wystarczające => dla świecenia S (S=1)

Punkt 6
Jeśli zdanie 5 jest w logice ujemnej (bo ~q) to prawem Kubusia sprowadzamy je do logiki dodatniej (bo q).
Prawo Kubusia:
~p=>~q = p~>q
Zdanie 5 jest w logice dodatniej (bo S), zatem tylko przepisujemy:
6: A=>S =1 - wciśnięcie A (A=1) jest (=1) wystarczające => dla świecenia S (S=1)

Punkt 7
Badamy prawdziwość/fałszywość zdania 6 kodowanego spójnikiem przeciwnym do występującego w tym zdaniu (~> albo =>) między tymi samymi punktami i w tym samym kierunku
7: A~>S =1 - wciśnięcie A (A=1) jest konieczne ~> dla świecenia S (S=1) bo to jedyny przycisk w S3

Punkt 8
W punktach 6 i 7 mamy zlokalizowaną kolumnę równoważności A1B1: A<=>S będącą częścią operatora równoważności A|<=>S:
A1: A=>S =1 - wciśnięcie A (A=1) jest (=1) wystarczające => dla świecenia S (S=1)
B1: A~>S =1 - wciśnięcie A (A=1) jest konieczne ~> dla świecenia S (S=1) bo to jedyny przycisk w S3
Stąd mamy:
A1B1:
A<=>S = (A1: A=>S)*(B1: A~>S) =1*1 =1

Idź do tabeli prawdy równoważności A1B1: A<=>S zdefiniowanej w punkcie 6.12
STOP

Komentarz:
Zdanie wejściowe to:
W1.
Jeśli przycisk A jest wciśnięty (A=1) to żarówka może ~~> się świecić (S=1)
A~~>S = A*S =1 - możliwe jest zdarzenie: przycisk A jest wciśnięty (A=1) i żarówka świeci (S=1)

W punkcie 6.12.1 zlokalizowane zdanie W1 jako zdanie A1 będące częścią operatora równoważności A|<=>S
A1.
Jeśli przycisk A jest wciśnięty (A=1) to żarówka na 100% => świeci się (S=1)
A=>S =1
Wciśnięcie przycisku A jest warunkiem wystarczającym => dla świecenia S

Prawo Kobry dla zdarzeń:
Warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q” jest jego prawdziwość przy kodowaniu zdarzeniem możliwym ~~>.
Innymi słowy:
Jeśli prawdziwe jest zdanie kodowane warunkiem wystarczającym => lub koniecznym ~> to na 100% prawdziwe jest to samo zdanie kodowane zdarzeniem możliwym ~~> (odwrotnie nie zachodzi)

Z prawa Kobry wynika, że zdanie wejściowe W1 które analizowaliśmy wchodzi w skład warunku wystarczającego A1: A=>S
cnd

Wniosek:
Zdanie W1 jest częścią operatora równoważności A|<=>S
cnd

6.11.2 Zdanie bazowe A~~>~S

Zadanie 6.11.2
Dane jest zdanie bazowe:
W2.
Jeśli przycisk A jest wciśnięty (A=1) to żarówka może się nie świecić (~S=1)
Polecenie:
Zbadaj w skład jakiego operatora logicznego wchodzi to zdanie.
Zapisz analizę matematyczną zlokalizowanego operatora

Algorytm analizy zdań bazowych „Jeśli p to q” w S3 dla zdarzeń

START

Punkt 1

Prawo śfinii:
Dowolne zdanie warunkowe od którego zaczynamy analizę matematyczną jest domyślnym punktem odniesienia, gdzie po „Jeśli ..” zapisujemy p zaś po „to..” zapisujemy q z pominięciem przeczeń.
W1.
Jeśli przycisk A jest wciśnięty (A=1) to żarówka może się nie świecić (~S=1)
A~~>~S = A*~S =?
Na mocy prawa śfinii nasz punkt odniesienia to:
p=A (przycisk)
q=S (żarówka)
Zdanie W2 w zapisie formalnym:
p~~>~q = p*~q =?

Punkt 2
Zdarzenia:
Badamy zdarzeniem możliwym ~~> kolejne możliwe przeczenia poszukując zdarzenia niemożliwego (=0)
1: A~~>~S=0 - niemożliwe jest (=0) zdarzenie: przycisk A wciśnięty (A=1) i żarówka nie świeci (~S=1)
RETURN

Punkt 3
Zdarzenia:
Jeśli znaleziono zdarzenie niemożliwe ~~> idź do punktu 5
A~~>~S=0

Punkt 5
Na mocy prawa kontrapozycji zapisujemy prawdziwy warunek wystarczający => między tymi samymi punktami i w tym samym kierunku
5: A=>S =1 - wciśnięcie A (A=1) jest (=1) wystarczające => dla świecenia S (S=1)

Punkt 6
Jeśli zdanie 5 jest w logice ujemnej (bo ~q) to prawem Kubusia sprowadzamy je do logiki dodatniej (bo q).
Prawo Kubusia:
~p=>~q = p~>q
Zdanie 5 jest w logice dodatniej (bo S), zatem tylko przepisujemy:
6: A=>S =1 - wciśnięcie A (A=1) jest (=1) wystarczające => dla świecenia S (S=1)

Punkt 7
Badamy prawdziwość/fałszywość zdania 6 kodowanego spójnikiem przeciwnym do występującego w tym zdaniu (~> albo =>) między tymi samymi punktami i w tym samym kierunku
7: A~>S =1 - wciśnięcie A (A=1) jest konieczne ~> dla świecenia S (S=1) bo to jedyny przycisk w S3

Punkt 8
W punktach 6 i 7 mamy zlokalizowaną kolumnę równoważności A1B1: A<=>S będącą częścią operatora równoważności A|<=>S:
A1: A=>S =1 - wciśnięcie A (A=1) jest (=1) wystarczające => dla świecenia S (S=1)
B1: A~>S =1 - wciśnięcie A (A=1) jest konieczne ~> dla świecenia S (S=1) bo to jedyny przycisk w S3
Stąd mamy:
A1B1:
A<=>S = (A1: A=>S)*(B1: A~>S) =1*1 =1

Idź do tabeli prawdy równoważności A1B1: A<=>S zdefiniowanej w punkcie 6.12
STOP

Komentarz:
Zdanie wejściowe to:
W2.
Jeśli przycisk A jest wciśnięty (A=1) to żarówka może się nie świecić (~S=1)

W punkcie 6.12.1 lokalizujemy to zdanie jako A1’:
A1’.
Jeśli przycisk A jest wciśnięty (A=1) to żarówka może ~~> się nie świecić (~S=1)
A~~>~S = A*~S =0
Niemożliwe jest (=0) zdarzenie: przycisk A jest wciśnięty (A=1) i żarówka nie świeci się (~S=1)

Wniosek:
Zdanie W2 jest częścią operatora równoważności A|<=>S
cnd

6.11.3 Zdanie bazowe ~A~~>~S

Zadanie 6.11.3
Dane jest zdanie:
W3.
Jeśli przycisk A nie jest wciśnięty (~A=1) to żarówka może się nie świecić (~S=1)
Polecenie:
Zbadaj w skład jakiego operatora logicznego wchodzi to zdanie.
Zapisz analizę matematyczną zlokalizowanego operatora

Algorytm analizy zdań bazowych „Jeśli p to q” w S3 dla zdarzeń

START

Punkt 1

Prawo śfinii:
Dowolne zdanie warunkowe od którego zaczynamy analizę matematyczną jest domyślnym punktem odniesienia, gdzie po „Jeśli ..” zapisujemy p zaś po „to..” zapisujemy q z pominięciem przeczeń.
W3.
Jeśli przycisk A nie jest wciśnięty (~A=1) to żarówka może się nie świecić (~S=1)
~A~~>~S = ~A*~S =?
Na mocy prawa śfinii nasz punkt odniesienia to:
p=A (przycisk)
q=S (żarówka)
Zdanie W3 w zapisie formalnym:
~p~~>~q = ~p*~q =?

Punkt 2
Zdarzenia:
Badamy zdarzeniem możliwym ~~> kolejne możliwe przeczenia poszukując zdarzenia niemożliwego (=0)
1: ~A~~>~S =1 - możliwe jest (=1) zdarzenie: przycisk A nie jest wciśnięty (~A=1) i żarówka nie świeci (~S=1)
2: ~A~~>S=0 - niemożliwe jest (=0) zdarzenie: przycisk A nie jest wciśnięty (~A=1) i żarówka świeci (S=1)
RETURN

Punkt 3
Zdarzenia:
Jeśli znaleziono zdarzenie niemożliwe ~~> idź do punktu 5
~A~~>S=0

Punkt 5
Na mocy prawa kontrapozycji zapisujemy prawdziwy warunek wystarczający => między tymi samymi punktami i w tym samym kierunku
5: ~A=>~S =1 - nie wciśnięcie A (~A=1) jest (=1) wystarczające => dla nie świecenia S (~S=1)

Punkt 6
Jeśli zdanie 5 jest w logice ujemnej (bo ~q) to prawem Kubusia sprowadzamy je do logiki dodatniej (bo q).
Prawo Kubusia:
~p=>~q = p~>q
Zdanie 5 jest w logice ujemnej (bo ~S) zatem stosujemy prawo Kubusia:
5: ~A=>~S = 6: A~>S
6: A~>S =1 - wciśnięcie przycisku A (A=1) jest konieczne ~> dla świecenia żarówki S (S=1)

Punkt 7
Badamy prawdziwość/fałszywość zdania 6 kodowanego spójnikiem przeciwnym do występującego w tym zdaniu (~> albo =>) między tymi samymi punktami i w tym samym kierunku
7: A=>S =1 - wciśnięcie A (A=1) jest wystarczające => dla świecenia S (S=1) bo zawsze gdy wciśniemy A, żarówka świeci się

Punkt 8
W punktach 6 i 7 mamy zlokalizowaną kolumnę równoważności A1B1: A<=>S będącą częścią operatora równoważności A|<=>S:
A1: A=>S =1 - wciśnięcie A (A=1) jest (=1) wystarczające => dla świecenia S (S=1)
B1: A~>S =1 - wciśnięcie A (A=1) jest konieczne ~> dla świecenia S (S=1) bo to jedyny przycisk w S3
Stąd mamy:
A1B1:
A<=>S = (A1: A=>S)*(B1: A~>S) =1*1 =1

Idź do tabeli prawdy równoważności A1B1: A<=>S zdefiniowanej w punkcie 6.12
STOP

Komentarz:
Zdanie wejściowe to:
W3.
Jeśli przycisk A nie jest wciśnięty (~A=1) to żarówka może się nie świecić (~S=1)
~A~~>~S = ~A*~S =1 - możliwe jest zdarzenie: przycisk A nie jest wciśnięty (~A=1) i żarówka nie świeci się (~S=1)
Tu wystarczy pokazać jedno załączenie przy którym żarówka świeci, nie trzeba pokazywać, że dla każdego wciśnięcia A, żarówka świeci.

W punkcie 6.12.1 zlokalizowane zdanie W3 jako zdanie B2 będące częścią operatora równoważności A|<=>S
B2.
Jeśli przycisk A nie jest wciśnięty (~A=1) to żarówka na 100% => nie świeci się (~S=1)
~A=>~S =1
Brak wciśnięcia przycisku A (~A=1) jest warunkiem wystarczającym => dla braku świecenia żarówki S (~S=1)

Prawo Kobry dla zdarzeń:
Warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q” jest jego prawdziwość przy kodowaniu zdarzeniem możliwym ~~>.
Innymi słowy:
Jeśli prawdziwe jest zdanie kodowane warunkiem wystarczającym => lub koniecznym ~> to na 100% prawdziwe jest to samo zdanie kodowane zdarzeniem możliwym ~~> (odwrotnie nie zachodzi)

Z prawa Kobry wynika, że zdanie wejściowe W3 które analizowaliśmy wchodzi w skład warunku wystarczającego B2: ~A=>~S
cnd

Wniosek:
Zdanie W3 jest częścią operatora równoważności A|<=>S
cnd


6.11.4 Zdanie bazowe ~A~~>S

Zadanie 6.11.4
Dane jest zdanie:
W4.
Jeśli przycisk A nie jest wciśnięty (~A=1) to żarówka może się świecić (S=1)
Polecenie:
Zbadaj w skład jakiego operatora logicznego wchodzi to zdanie.
Zapisz analizę matematyczną zlokalizowanego operatora

Algorytm analizy zdań bazowych „Jeśli p to q” w S3 dla zdarzeń

START

Punkt 1

Prawo śfinii:
Dowolne zdanie warunkowe od którego zaczynamy analizę matematyczną jest domyślnym punktem odniesienia, gdzie po „Jeśli ..” zapisujemy p zaś po „to..” zapisujemy q z pominięciem przeczeń.
W4.
Jeśli przycisk A nie jest wciśnięty (~A=1) to żarówka może się świecić (S=1)
~A~~>S = ~A*S =?
Na mocy prawa śfinii nasz punkt odniesienia to:
p=A (przycisk)
q=S (żarówka)
Zdanie W4 w zapisie formalnym:
~p~~>q = ~p*q =?

Punkt 2
Zdarzenia:
Badamy zdarzeniem możliwym ~~> kolejne możliwe przeczenia poszukując zdarzenia niemożliwego (=0)
1: ~A~~>S=0 - niemożliwe jest (=0) zdarzenie: przycisk A nie jest wciśnięty (~A=1) i żarówka świeci (S=1)
RETURN

Punkt 3
Zdarzenia:
Jeśli znaleziono zdarzenie niemożliwe ~~> idź do punktu 5
Znaleziono zdarzenie niemożliwe (=0):
~A~~>S=0 - niemożliwe jest (=0) zdarzenie: przycisk A nie jest wciśnięty (~A=1) i żarówka świeci (S=1)

Punkt 5
Na mocy prawa kontrapozycji zapisujemy prawdziwy warunek wystarczający => między tymi samymi punktami i w tym samym kierunku
5: ~A=>~S =1 - nie wciśnięcie A (~A=1) jest (=1) wystarczające => dla nie świecenia S (~S=1)

Punkt 6
Jeśli zdanie 5 jest w logice ujemnej (bo ~q) to prawem Kubusia sprowadzamy je do logiki dodatniej (bo q).
Prawo Kubusia:
~p=>~q = p~>q
Zdanie 5 jest w logice ujemnej (bo ~S) zatem stosujemy prawo Kubusia:
5: ~A=>~S = 6: A~>S
6: A~>S =1 - wciśnięcie przycisku A (A=1) jest konieczne ~> dla świecenia żarówki S (S=1)

Punkt 7
Badamy prawdziwość/fałszywość zdania 6 kodowanego spójnikiem przeciwnym do występującego w tym zdaniu (~> albo =>) między tymi samymi punktami i w tym samym kierunku
7: A=>S =1 - wciśnięcie A (A=1) jest wystarczające => dla świecenia S (S=1) bo zawsze gdy wciśniemy A, żarówka świeci się

Punkt 8
W punktach 6 i 7 mamy zlokalizowaną kolumnę równoważności A1B1: A<=>S będącą częścią operatora równoważności A|<=>S:
A1: A=>S =1 - wciśnięcie A (A=1) jest (=1) wystarczające => dla świecenia S (S=1)
B1: A~>S =1 - wciśnięcie A (A=1) jest konieczne ~> dla świecenia S (S=1) bo to jedyny przycisk w S3
Stąd mamy:
A1B1:
A<=>S = (A1: A=>S)*(B1: A~>S) =1*1 =1

Idź do tabeli prawdy równoważności A1B1: A<=>S zdefiniowanej w punkcie 6.12
STOP

Komentarz:
Zdanie wejściowe to:
W4.
Jeśli przycisk A nie jest wciśnięty (~A=1) to żarówka może się świecić (S=1)
~A~~>S = ~A*S =0 - nie jest (=0) możliwe zdarzenie: przycisk A nie wciśnięty (~A=1) i żarówka świeci (S=1)

W punkcie 6.12.1 lokalizujemy to zdanie jako B2’:
B2’.
Jeśli przycisk A nie jest wciśnięty (~A=1) to żarówka może ~~> się świecić (S=1)
~A~~>S = ~A*S =0
Niemożliwe jest zdarzenie: przycisk A nie jest wciśnięty (~A=1) i żarówka S świeci się (S=1)

Wniosek:
Zdanie W4 jest częścią operatora równoważności A|<=>S
cnd

6.12 Tabela prawdy równoważności A<=>S

Definicja podstawowa równoważności A<=>S:
Równoważność A<=>S to jednoczesne zachodzenie zarówno warunku wystarczającego => jak i koniecznego ~> między tymi samymi punktami i w tym samym kierunku.
A1: A=>S =1 - warunek wystarczający => spełniony (=1)
B1: A~>S =1 - warunek konieczny ~> spełniony (=1)
Stąd mamy:
A<=>S = (A1: A=>S)*(B1: A~>S) =1*1 =1
Kod:

TR: Tabela prawdy równoważności p<=>q
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w równoważności p<=>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q =1 - p jest (=1) wystarczające => dla q
B1: p~>q =1 - p jest (=1) konieczne ~> dla q
p<=>q = (A1: p=>q)*(B1: p~>q) =1*1=1
Punkt odniesienia A1B1 w zapisie aktualnym:
A1: A=>S =1 - wciśnięcie A jest (=1) wystarczające => dla świecenia S
B1: A~>S =1 - wciśnięcie A jest (=1) konieczne ~> dla świecenia S
A1B1: A<=>S=(A1: A=>S)*(B1: A~>S)=1*1=1
Dla punktu odniesienia A1B1 mamy:
p=A (przycisk A)
q=S (żarówka S)
       A1B1:           A2B2:          |     A3B3:            A4B4:
A:  1: p=>q  =1   = 2:~p~>~q=1       [=] 3: q~>p  =1    = 4:~q=>~p =1
A:  1: A=>S  =1   = 2:~A~>~S=1       [=] 3: S~>A  =1    = 4:~S=>~A =1
A’: 1: p~~>~q=0   =                  [=]                = 4:~q~~>p =0
A’: 1: A~~>~S=0   =                  [=]                = 4:~S~~>A =0
       ##              ##             |     ##               ##
B:  1: p~>q  =1   = 2:~p=>~q=1       [=] 3: q=>p  =1    = 4:~q~>~p =1
B:  1: A~>S  =1   = 2:~A=>~S=1       [=] 3: S=>A  =1    = 4:~S~>~A =1
B’:               = 2:~p~~>q=0       [=] 3: q~~>~p=0
B’:               = 2:~A~~>S=0       [=] 3: S~~>~A=0

Równanie operatora równoważności p|<=>q:
A1B1:                                                     A2B2:
p<=>q = (A1: p=>q)*(B2 p~>q) = (A2:~p~>~q)*(B2:~p=>~q) = ~p<=>~q

Operator równoważności p|<=>q to układ równań logicznych:
A1B1: p<=>q =(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p
A2B2:~p<=>~q=(A2:~p~>~q)*(B2:~p=>~q) - co się stanie jeśli zajdzie ~p

Układ równań logicznych jest przemienny, stąd mamy:
Operator równoważności ~p|<=>~q to układ równań logicznych:
A2B2:~p<=>~q=(A2:~p~>~q)*(B2:~p=>~q) - co się stanie jeśli zajdzie ~p
A1B1: p<=>q =(A1: p=>q)* (B1: p~>q) - co się stanie jeśli zajdzie p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla poprawienia czytelności tabeli prawdy TR zmienne aktualne (A i S) podstawiono wyłącznie w nagłówku tabeli i jej części głównej, odpowiedzialnej za generowanie zdań warunkowych wchodzących w skład operatora równoważności A|<=>S.

6.12.1 Operator równoważności A|<=>S

Definicja operatora równoważności p|<=>q:
Operator równoważności p|<=>q to złożenie równoważności p<=>q w logice dodatniej (bo q) zdefiniowanej w kolumnie A1B1 oraz równoważności ~p<=>~q w logice ujemnej (bo ~q) zdefiniowanej w kolumnie A2B2.

Kod:

S3 Schemat 3
Fizyczna realizacja równoważności A<=>S w zdarzeniach:
A<=>S=(A1: A=>S)*(B1: A~>S)=1*1=1
             S               A       
       -------------       ______     
  -----| Żarówka   |-------o    o-----
  |    -------------                 |
  |                                  |
______                               |
 ___    U (źródło napięcia)          |
  |                                  |
  |                                  |
  ------------------------------------
Zmienne związane definicją: A, S
Zmienna wolna: brak
Istotą równoważności jest brak zmiennych wolnych


Innymi słowy:
Operator równoważności A|<=>S to układ równań A1B1 i A2B2 dający odpowiedź na pytanie o A i ~A:

Kolumna A1B1:
Kiedy przycisk A jest wciśnięty (A=1)?


RA1B1:
Wciśnięcie przycisku A (A=1) jest konieczne ~> i wystarczające => do tego, by żarówka świeciła się (S=1)
A<=>S = (A1: A=>S)*(B1: A~>S) =1*1 =1
Równoważność A<=>S definiuje tożsamość pojęć A=S:
A=S <=> (A1: A=>S)*(B1: A~>S) = A<=>S
Tożsamość pojęć A=S wymusza tożsamość pojęć ~A=~S (i odwrotnie)
Matematycznie zachodzi tu relacja:
A=S # ~A=~S
Gdzie:
# - dowolna strona znaczka # jest negacją drugiej strony

Odpowiedź na pytanie A1B1 w warunku wystarczającym => jest następująca:
A1.
Jeśli przycisk A jest wciśnięty (A=1) to żarówka na 100% => świeci się (S=1)
A=>S =1
Wciśnięcie przycisku A jest warunkiem wystarczającym => dla świecenia S
Wciśnięcie przycisku A daje nam gwarancję matematyczną => świecenia się żarówki S
Zawsze gdy wciśniemy przycisk A zaświeci się żarówka S
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>

Prawdziwość warunku wystarczającego => A1 wymusza fałszywość kontrprzykładu A1’ i odwrotnie:
A1’.
Jeśli przycisk A jest wciśnięty (A=1) to żarówka może ~~> się nie świecić (~S=1)
A~~>~S = A*~S =0
Niemożliwe jest (=0) zdarzenie: przycisk A jest wciśnięty (A=1) i żarówka nie świeci się (~S=1)

A2B2:
Kiedy przycisk A nie jest wciśnięty (~A=1)?


RA2B2:
Brak wciśnięcia przycisku A (~A=1) jest konieczne ~> i wystarczające => dla braku świecenia się żarówki S (~S=1)
~A<=>~S = (A2: ~A~>~S)*(B2: ~A=>~S) =1*1 =1
Równoważność ~A<=>~S definiuje tożsamość pojęć ~A=~S:
~A=~S <=> (A2: ~A~>~S)*(B2: ~A=>~S) = ~A<=>~S
Tożsamość pojęć ~A=~S wymusza tożsamość pojęć A=S (i odwrotnie)
Matematycznie zachodzi tu relacja:
A=S # ~A=~S
Gdzie:
# - dowolna strona znaczka # jest negacją drugiej strony

Odpowiedź na pytanie A2B2 w warunku wystarczającym => to:
B2.
Jeśli przycisk A nie jest wciśnięty (~A=1) to żarówka na 100% => nie świeci się (~S=1)
~A=>~S =1
Brak wciśnięcia przycisku A (~A=1) jest warunkiem wystarczającym => dla braku świecenia żarówki S (~S=1)
Brak wciśnięcia przycisku A (~A=1) daje nam gwarancję matematyczną => braku świecenia się żarówki S (~S=1)
Zawsze, gdy przycisk A nie jest wciśnięty (~A=1), żarówka nie świeci się (~S=1)
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>

Prawdziwość warunku wystarczającego B2 wymusza fałszywość kontrprzykładu B2’ i odwrotnie:
B2’.
Jeśli przycisk A nie jest wciśnięty (~A=1) to żarówka może ~~> się świecić (S=1)
~A~~>S = ~A*S =0
Niemożliwe jest zdarzenie: przycisk A nie jest wciśnięty (~A=1) i żarówka S świeci się (S=1)

Podsumowanie:
1.
Istotą operatora równoważności A|<=>S jest gwarancja matematyczna => zarówno po stronie wciśniętego przycisku A (A=1) - zdanie A1, jak i po stronie nie wciśniętego przycisku A (~A=1) - zdanie B2.
2.
W dowolnym operatorze równoważności p|<=>q nie ma miejsca na jakiekolwiek „rzucanie monetą” w sensie „na dwoje babka wróżyła” które miało miejsce zarówno w operatorze implikacji prostej p||=>q jak i w operatorze implikacji odwrotnej p||~>q.
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 35331
Przeczytał: 23 tematy

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Pon 9:09, 21 Cze 2021    Temat postu:

Algebra Kubusia - ostatnie czytanie!

Po raz ostatni przed premierą czytam od początku algebrę Kubusia likwidując literówki i udoskonalając przekaz.

Przed chwilką cofnąłem się do tyłu i w sposób znaczący uprościłem opis operatora "albo" p|$q

Szczegóły niżej.

http://www.sfinia.fora.pl/forum-kubusia,12/algebra-kubusia-w-przebudowie,18899.html#593841

Algebra Kubusia
3.4 Definicje podstawowe - „albo” p$q i chaos p|~~>q

Spis treści
3.4 Spójnik „albo”($) 1
3.4.1 Operator „albo” p|$q w rozpisce na zdania warunkowe „Jeśli p to q” 7
3.5 Chaos p|~~>q 12
3.5.1 Operator chaosu p||~~>q 16
3.5.2 Chaos P8|~~>P3 17
3.5.3 Operator chaosu P8||~~>P3 20



3.4 Spójnik „albo”($)

W algebrze Kubusia w zbiorach zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>
Kod:

T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
      ##        ##           ##        ##            ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5:  p+~q

Prawa Kubusia:        | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q  | A1: p=>q  = A4:~q=>~p
B1: p~>q = B2:~p=>~q  | B2:~p=>~q = B3: q=>p

Prawa Tygryska:       | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p   | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p   | B1: p~>q  = B4:~q~>~p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


W wyjaśnianiu definicji spójnika „albo” p$q i operatora „albo” p|$q wspomożemy się konkretnym przykładem z teorii zbiorów {M$K), mającym przełożenie 1:1 na logikę formalną {p$q} pozwalającym łatwo zrozumieć o co tu chodzi.

Przykład:
Dowolny człowiek jest mężczyzną (M=1) „albo”($) kobietą (K=1)
M$K = (A1: M=>~K)*(B1: M~>~K) =1*1 =1
Przyjmijmy dziedzinę minimalną:
C (człowiek) - zbiór wszystkich ludzi
Stąd mamy definicję dziedziny:
M+K = C =1 - bo zbiór kobiet (K) jest uzupełnieniem do dziedziny dla zbioru mężczyzn (M)
M*K =[] =0 - bo zbiór mężczyzn (M) jest rozłączny ze zbiorem kobiet (K)
Obliczamy przeczenia zbiorów rozumiane jako ich uzupełnienia do dziedziny:
~M = [C-M] = [M+K-M] =K
~K = [C-K] = [M+K-K]=M
to samo po zamianie argumentów w tożsamości zbiorów:
M = ~K - człowiek jest mężczyzną (M=1) wtedy i tylko wtedy gdy nie jest kobietą (~K=1)
K=~M - człowiek jest kobietą (K=1) wtedy i tylko wtedy gdy nie jest mężczyzną (~M=1)
Narysujmy diagram w zbiorach pasujący do tego zdania.

Diagram operatora „albo” p|$q wspomagany przykładem o mężczyźnie (M) i kobiecie (K)
Kod:

 DA:
 Diagram operatora „albo” p|$q w zbiorach/zdarzeniach
--------------------------------------------------------------------------
| D (dziedzina)                                                          |
| p+q =D =1 - zbiór q jest uzupełnieniem do dziedziny D dla zbioru p     |
| p*q =[]=0 - zbiory p i q są rozłączne                                  |
| Podstawmy nasz przykład:                                               |
| p=M - zbiór wszystkich mężczyzn                                        |
| q=K - zbiór wszystkich kobiet                                          |
| Dla zmiennych aktualnych M (mężczyzna) i K (kobieta) mamy:             |
| C (człowiek) - zbiór wszystkich ludzi                                  |
| M+K =C =1 - zbiór K jest uzupełnieniem do dziedziny C dla M            |
| M*K =[]=0 - zbiór M jest rozłączny ze zbiorem K w dziedzinie C         |
--------------------------------------------------------------------------
: Zbiór: p=M (mężczyzna)          | Zbiór: q=K (kobieta)                 |
| A1B1: Spójnik „albo”($) dla p:  | A2B2: Spójnik „albo”($) dla ~p       |
| p$q = (A1: p=>~q)*(B1: p~>~q)  [=] ~p$~q = (A2:~p~>q)*(B2:~p=>q)       |
| M$K = (A1: M=>~K)*(B1: M~>~K)  [=] ~M$~K = (A2:~M~>K)*(B2:~M=>K)       |
| Dla p=M i q=K mamy:             |  Dla p=M i q=K mamy:                 |
| p=~q - p jest negacją (~)q w D  #  q=~p - q jest negacją (~)p w D      |
| M=~K - M jest negacją (~)K w C  #  K=~M - K jest negacją (~)M w C      |
--------------------------------------------------------------------------
Gdzie:
# - różne w znaczeniu iż jedna strona jest negacją drugiej strony
[=] - tożsamość logiczna
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dowód iż p i q musi być wszędzie tymi samymi p i q inaczej błąd podstawienia
Przepiszmy trzy ostatnie linie diagramu DA popełniając błąd podstawienia:
Kod:

 DA
--------------------------------------------------------------------------
| Dla p=M i q=K mamy:             |  Dla p=K i q=M (błąd podstawienia)   |
| p=~q - p jest negacją (~)q w D  #  q=~p - q jest negacją (~)p w D      |
| M=~K - M jest negacją (~)K w C  #  M=~K - M jest negacją (~)K w C      |
--------------------------------------------------------------------------

W ostatniej linii mamy tożsamość zbiorów:
M=~K [=] M=~K
Czyli:
Definicja znaczka # leży w gruzach bo popełniono błąd podstawienia co widać w diagramie
cnd

Dla naszego przykładu mamy:
Definicja podstawowa spójnika „albo” M$K w logice dodatniej (bo K):
Spójnik „albo” M$K w logice dodatniej (bo K) to jednoczesne zachodzenie zarówno warunku wystarczającego =>, jak i koniecznego ~> w kierunku od M do ~K
A1: M=>~K =1 - bycie mężczyzną (M=1) jest (=1) wystarczające => by nie być kobietą (~K=1)
B1: M~>~K =1 - bycie mężczyzną (M=1) jest (=1) konieczne ~> by nie być kobietą (~K=1)
stąd:
A1B1: M$K = (A1: M=>~K)*(B1: M~>~K) = 1*1 =1

Definicja tożsamości zbiorów p=q:
Dwa zbiory p i q są tożsame wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q i jednocześnie zbiór p jest nadzbiorem ~> zbioru q
p=q <=> (A1: p=>q)*(B1: p~>q) = p<=>q

Prawa strona definiuje tożsamość zbiorów M=~K bo zachodzi równoważność:
A1B1: M<=>~K = (A1: M=>~K)*(B1: M~>~K) = 1*1 =1

Stąd mamy tożsamość zdań [=] w języku potocznym:
Dowolny człowiek jest mężczyzną „albo”($) kobietą
A1B1: M$K = (A1: M=>~K)*(B1: M~>~K) = 1*1 =1
Zdanie matematycznie tożsame [=] to:
Człowiek jest mężczyzną (M=1) wtedy i tylko wtedy gdy nie jest kobietą (~K=1)
A1B1: M<=>~K = (A1: M=>~K)*(B1: M~>~K)

To samo w zapisie formalnym po podstawieniu:
M=p
K=q
Definicja podstawowa spójnika „albo” p$q w logice dodatniej (bo q):
Kolumna A1B1:
Spójnik „albo” p$q w logice dodatniej (bo q) to jednoczesne zachodzenie zarówno warunku wystarczającego =>, jak i koniecznego ~> w kierunku od p do ~q
A1: p=>~q =1 - zajście p jest (=1) wystarczające => dla zajścia ~q
B1: p~>~q =1 - zajście p jest (=1) konieczne ~> dla zajścia ~q
stąd:
A1B1: p$q = (A1: p=>~q)*(B1: p~>~q) = 1*1 =1

Podstawmy definicję spójnika „albo” p$q w logice dodatniej (bo q) do matematycznych związków warunku wystarczającego => i koniecznego ~>:
Kod:

T1
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w spójniku „albo” p$q w logice dodatniej (bo q)
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>~q = 2:~p~>q [=] 3: ~q~>p = 4: q=>~p =1 [=] 5: ~p+~q
      ##         ##           ##        ##               ##
B: 1: p~>~q = 2:~p=>q [=] 3: ~q=>p = 4: q~>~p =1 [=] 5:  p+q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla udowodnienia, iż zdanie warunkowe „Jeśli p to q” wchodzi w skład spójnika „albo” p$q potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Ax oraz prawdziwość dowolnego zdania serii Bx.
Zauważmy, że nie ma znaczenia które zdanie będziemy brali pod uwagę, bowiem prawami logiki matematycznej (prawa Kubusia, prawa Tygryska i prawa kontrapozycji) zdanie to możemy zastąpić zdaniem logicznie tożsamym z kolumny A1B1.

Kluczowym punktem zaczepienia w wyprowadzeniu symbolicznej definicji spójnika „albo” p$q jest definicja kontrprzykładu rodem z algebry Kubusia działająca wyłącznie w warunku wystarczającym =>.

Definicja kontrprzykładu w zbiorach:
Kontrprzykładem dla warunku wystarczającego p=>~q nazywamy to samo zdanie z zanegowanym następnikiem kodowane elementem wspólnym zbiorów p~~>q=p*q

Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>~q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>q=p*q

Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>~q=1 wmusza fałszywość kontrprzykładu p~~>q=p*q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>~q=0 wmusza prawdziwość kontrprzykładu p~~>q=p*q=1 (i odwrotnie)

Uzupełnijmy naszą tabelę wykorzystując powyższe rozstrzygnięcia działające wyłącznie w warunkach wystarczających =>.
Kod:

TA:
Tabela prawdy spójnika „albo” p$q w logice dodatniej (bo q)
Kolumna A1B1 to punkt odniesienia:
A1: p=>~q =1 - p jest (=1) wystarczające => dla ~q
B1: p~>~q =1 - p jest (=1) konieczne ~> dla ~q
p$q = (A1: p=>~q)*(B1: p~>~q) =1*1=1
       A1B1:        A2B2:       |      A3B3:         A4B4:
A:  1: p=>~q=1 = 2:~p~>q  =1   [=] 3: ~q~>p  =1 = 4: q=>~p =1
A’: 1: p~~>q=0 =               [=]              = 4: q~~>p =0
       ##           ##          |      ##            ##
B:  1: p~>~q=1 = 2:~p=>q  =1   [=] 3: ~q=>p  =1 = 4: q~>~p =1
B’:            = 2:~p~~>~q=0   [=] 3: ~q~~>~p=0

Równanie operatora „albo” p|$q:
A1B1:                                                   A2B2:
p$q = (A1: p=>~q)*(B1: p~>~q) = (A2:~p~>q)*(B2:~p=>q) = ~p$~q

Operator „albo” p|$q to układ równań logicznych:
A1B1: p$q =(A1: p=>~q)* (B1: p~>~q) - co się stanie jeśli zajdzie p
A2B2:~p$~q=(A2:~p~>q)*(B2:~p=>q) - co się stanie jeśli zajdzie ~p

Układ równań logicznych jest przemienny, stąd mamy:
Operator „albo” ~p|$~q to układ równań logicznych:
A2B2:~p$~q=(A2:~p~>q)*(B2:~p=>q) - co się stanie jeśli zajdzie ~p
A1B1: p$q =(A1: p=>~q)* (B1: p~>~q) - co się stanie jeśli zajdzie p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


Definicja podstawowa spójnika „albo” p$q w logice dodatniej (bo q):
Kolumna A1B1:
Spójnik „albo” p$q w logice dodatniej (bo q) to jednoczesne zachodzenie zarówno warunku wystarczającego =>, jak i koniecznego ~> w kierunku od p do ~q
A1: p=>~q =1 - zajście p jest (=1) wystarczające => dla zajścia ~q
B1: p~>~q =1 - zajście p jest (=1) konieczne ~> dla zajścia ~q
A1B1: p$q = (A1: p=>~q)*(B1: p~>~q) = 1*1 =1

Lewą stronę czytamy:
Zajdzie p „albo”($) zajdzie q
A1B1: p$q = (A1: p=>~q)*(B1: p~>~q) = 1*1 =1
Trzeciej możliwości brak

Nasz przykład:
Dowolny człowiek jest mężczyzną (M) albo($) kobietą (K)
A1B1: M$K = (A1: M=>~K)*(B1: M~>~K) = 1*1 =1
Trzeciej możliwości brak

Prawą stronę czytamy:
Do tego aby zaszło p potrzeba ~> i wystarcza => aby zaszło ~q
A1B1: p$q = (A1: p=>~q)*(B1: p~>~q) = 1*1 =1
Zdanie matematycznie tożsame:
Zajdzie p wtedy i tylko wtedy gdy zajdzie ~q
p<=>~q = (A1: p=>~q)*(B1: p~>~q) = p$q

Nasz przykład:
Aby dowolny człowiek był mężczyzną (M) potrzeba ~> i wystarcza => aby nie był kobietą (~K)
A1B1: M$K = (A1: M=>~K)*(B1: M~>~K) = 1*1 =1
Zdanie matematycznie tożsame:
Dowolny człowiek jest mężczyzną (M) wtedy i tylko wtedy gdy nie jest kobietą (~K)
M<=>~K = (A1: M=>~K)*(B1: M~>~K) = M$K

Definicja definicji podstawowej dowolnego spójnika implikacyjnego:
Definicja podstawowa dowolnego spójnika implikacyjnego to definicja tego spójnika w logice dodatniej (bo q). Jeśli w definicji dowolnego spójnika implikacyjnego nie zaznaczamy w jakiej jest logice to domyślnie chodzi nam o definicję podstawową tego spójnika.
Mówiąc o definicji podstawowej możemy zatem pominąć sygnalizację w jakiej logice ta definicja jest wyrażona.

Definicja spójnika „albo” ~p$~q w logice ujemnej (bo ~q):
Kolumna A2B2:
Spójnik „albo” ~p$~q w logice ujemnej (bo ~q) to jednoczesne zachodzenie zarówno warunku wystarczającego =>, jak i koniecznego ~> w kierunku od ~p do q
A2: ~p~>q =1 - zajście ~p jest konieczne ~> dla zajścia q
B2: ~p=>q =1 - zajście ~p jest wystarczające => dla zajścia q
A2B2: ~p$~q = (A2: ~p~>q)*(B2: ~p=>q) =1*1 =1

Lewą stronę czytamy:
Zajdzie ~p albo ($) zajdzie ~q
A2B2: ~p$~q = (A2: ~p~>q)*(B2: ~p=>q) =1*1 =1
Trzeciej możliwości brak

Nasz przykład:
Dowolny człowiek nie jest mężczyzną (~M) albo ($) nie jest kobietą (~K)
A2B2: ~M$~K = (A2: ~M~>K)*(B2: ~M=>K) =1*1 =1
Trzeciej możliwości brak.

Prawą stronę czytamy:
Zajście ~p jest potrzebne ~> i wystarczające => do tego, aby zaszło q
A2B2: ~p$~q = (A2: ~p~>q)*(B2: ~p=>q) =1*1 =1
Zdanie matematycznie tożsame:
Zajdzie ~p wtedy i tylko wtedy gdy zajdzie q
~p<=>q = (A2: ~p~>q)*(B2: ~p=>q) = ~p$~q

Nasz przykład:
Aby nie być mężczyzną (~M) potrzeba ~> i wystarcza => być kobietą (K)
A2B2: ~M$~K = (A2: ~M~>K)*(B2: ~M=>K) =1*1 =1
Zdanie matematycznie tożsame:
Dowolny człowiek nie jest mężczyzną (~M) wtedy i tylko wtedy gdy jest kobietą (K)
~M<=>K = (A2: ~M~>K)*(B2: ~M=>K) = ~M$~K

Definicja dowolnego operatora implikacyjnego p||?q:
Operator implikacyjny p||?q to odpowiedź na pytanie co się stanie jeśli zajdzie p oraz co się stanie jeśli zajdzie ~p
Kod:

T2.
Równanie operatora „albo” p|$q:
A1B1:                                                   A2B2:
p$q = (A1: p=>~q)*(B1: p~>~q) = (A2:~p~>q)*(B2:~p=>q) = ~p$~q
bo prawa Kubusia:
A1: p=>~q = A2: ~p~>q
B1: p~>~q = B2: ~p=>q
cnd


Dlaczego to jest równanie operatora „albo” p|$q?
A1B1: W kolumnie A1B1 mamy odpowiedź na pytanie co może się wydarzyć jeśli zajdzie p
A2B2: W kolumnie A2B2 mamy odpowiedź na pytanie co może się wydarzyć jeśli zajdzie ~p

Stąd mamy:
Operator „albo” p|$q w logice dodatniej (bo p) to układ równań logicznych A1B1 i A2B2 dających odpowiedź na pytanie o p i ~p
A1B1: p$q =(A1: p=>~q)* (B1: p~>~q) - co się stanie jeśli zajdzie p
A2B2:~p$~q=(A2:~p~>q)*(B2:~p=>q) - co się stanie jeśli zajdzie ~p

Układ równań logicznych jest przemienny, stąd mamy:
Operator „albo” ~p|$~q w logice ujemnej (bo ~p) to układ równań logicznych A2B2 i A1B1 dający odpowiedź na pytanie o ~p i p
A2B2:~p$~q=(A2:~p~>q)*(B2:~p=>q) - co się stanie jeśli zajdzie ~p
A1B1: p$q =(A1: p=>~q)* (B1: p~>~q) - co się stanie jeśli zajdzie p

Z tabeli T2 odczytujemy tożsamość logiczną:
A1B1: p$q = A2B2:~p$~q

Definicja tożsamości logicznej:
Prawdziwość dowolnej strony tożsamości logicznej „=” wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej „=” wymusza fałszywość drugiej strony

Innymi słowy
1.
Udowodnienie iż dany układ spełnia definicję spójnika „albo” p$q w logice dodatniej (bo q) jest tożsame z udowodnieniem iż ten sam układ spełnia definicję spójnika „albo” ~p$~q w logice ujemnej (bo ~q), albo odwrotnie.
A1B1: p$q = A2B2:~p$~q

Na mocy definicji operatorów logicznych p|$q i ~p|$~q widzimy, że udowodnienie prawdziwości 1 pociąga za sobą prawdziwość 2:
2.
p|$q = ~p|$~>~q
cnd

3.4.1 Operator „albo” p|$q w rozpisce na zdania warunkowe „Jeśli p to q”

Diagram operatora „albo” p|$q wspomagany przykładem o mężczyźnie (M) i kobiecie (K)
Kod:

 DA:
 Diagram operatora „albo” p|$q w zbiorach/zdarzeniach
--------------------------------------------------------------------------
| D (dziedzina)                                                          |
| p+q =D =1 - zbiór q jest uzupełnieniem do dziedziny D dla zbioru p     |
| p*q =[]=0 - zbiory p i q są rozłączne                                  |
| Podstawmy nasz przykład:                                               |
| p=M - zbiór wszystkich mężczyzn                                        |
| q=K - zbiór wszystkich kobiet                                          |
| Dla zmiennych aktualnych M (mężczyzna) i K (kobieta) mamy:             |
| C (człowiek) - zbiór wszystkich ludzi                                  |
| M+K =C =1 - zbiór K jest uzupełnieniem do dziedziny C dla M            |
| M*K =[]=0 - zbiór M jest rozłączny ze zbiorem K w dziedzinie C         |
--------------------------------------------------------------------------
: Zbiór: p=M (mężczyzna)          | Zbiór: q=K (kobieta)                 |
| A1B1: Spójnik „albo”($) dla p:  | A2B2: Spójnik „albo”($) dla ~p       |
| p$q = (A1: p=>~q)*(B1: p~>~q)  [=] ~p$~q = (A2:~p~>q)*(B2:~p=>q)       |
| M$K = (A1: M=>~K)*(B1: M~>~K)  [=] ~M$~K = (A2:~M~>K)*(B2:~M=>K)       |
| Dla p=M i q=K mamy:             |  Dla p=M i q=K mamy:                 |
| p=~q - p jest negacją (~)q w D  #  q=~p - q jest negacją (~)p w D      |
| M=~K - M jest negacją (~)K w C  #  K=~M - K jest negacją (~)M w C      |
--------------------------------------------------------------------------
Gdzie:
# - różne w znaczeniu iż jedna strona jest negacją drugiej strony
[=] - tożsamość logiczna
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Uzupełnijmy poznaną wyżej tabelę prawdy spójnika „albo”($) o nasz przykład M$K.
Kod:

TA:
Tabela prawdy spójnika „albo”($)
Kolumna A1B1 to punkt odniesienia w zapisie formalnym {p,q}:
A1: p=>~q =1 - p jest (=1) wystarczające => dla ~q
B1: p~>~q =1 - p jest (=1) konieczne ~> dla ~q
p$q = (A1: p=>~q)*(B1: p~>~q) =1*1=1
Dla naszego przykładu mamy punkt odniesienia:
p=M (mężczyzna)
q=K (kobieta)
Kolumna A1B1 to punkt odniesienia w zapisie aktualnym {M,K}:
A1: M=>~K =1 - bycie mężczyzną jest wystarczające => by nie być kobietą
B1: M~>~K=1 - bycie mężczyzną jest konieczne ~> by nie być kobietą
A1B1: M$K = (A1: M=>~K)*(B1: M~>~K) =1*1 =1
       A1B1:        A2B2:       |      A3B3:         A4B4:
A:  1: p=>~q=1 = 2:~p~>q  =1   [=] 3: ~q~>p  =1 = 4: q=>~p =1
A:  1: M=>~K=1 = 2:~M~>K  =1   [=] 3: ~K~>M  =1 = 4: K=>~M =1
A’: 1: p~~>q=0 =               [=]              = 4: q~~>p =0
A’: 1: M~~>K=0 =               [=]              = 4: K~~>M =0
       ##           ##          |      ##            ##
B:  1: p~>~q=1 = 2:~p=>q  =1   [=] 3: ~q=>p  =1 = 4: q~>~p =1
B:  1: M~>~K=1 = 2:~M=>K  =1   [=] 3: ~K=>M  =1 = 4: K~>~M =1
B’:            = 2:~p~~>~q=0   [=] 3: ~q~~>~p=0
B’:            = 2:~M~~>~K=0   [=] 3: ~K~~>~M=0

Równanie operatora „albo” p|$q:
A1B1:                                                   A2B2:
p$q = (A1: p=>~q)*(B1: p~>~q) = (A2:~p~>q)*(B2:~p=>q) = ~p$~q

Operator „albo” p|$q to układ równań logicznych:
A1B1: p$q =(A1: p=>~q)* (B1: p~>~q) - co się stanie jeśli zajdzie p
A2B2:~p$~q=(A2:~p~>q)*(B2:~p=>q) - co się stanie jeśli zajdzie ~p

Układ równań logicznych jest przemienny, stąd mamy:
Operator „albo” ~p|$~q to układ równań logicznych:
A2B2:~p$~q=(A2:~p~>q)*(B2:~p=>q) - co się stanie jeśli zajdzie ~p
A1B1: p$q =(A1: p=>~q)* (B1: p~>~q) - co się stanie jeśli zajdzie p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla poprawienia czytelności powyższej tabeli zmienne aktualne M i K podstawiono wyłącznie w nagłówku tabeli oraz w części głównej decydującej o treści zdań warunkowych „Jeśli p to q”

Operator „albo” p|$q w logice dodatniej (bo p) to układ równań logicznych A1B1 i A2B2 dających odpowiedź na pytanie o p i ~p

Kolumna A1B1:
Co może się wydarzyć jeśli zajdzie p (p=1)?


Odpowiedź mamy w kolumnie A1B1:
A1: p=>~q =1 - zajście p jest wystarczające => dla zajścia ~q
B1: p~>~q =1 - zajście p jest konieczne ~> dla zajścia ~q
A1B1: p$q =(A1: p=>~q)* (B1: p~>~q) =1*1=1
Matematycznie zachodzi tożsamość logiczna:
A1B1: p$q =(A1: p=>~q)* (B1: p~>~q) = p<=>~q
stąd mamy zdefiniowaną tożsamość zbiorów:
p=~q

Odpowiedź na pytanie co może się wydarzyć jest zajdzie p w rozpisce na warunek wystarczający =>.
Kolumna A1B1:
A1.
Jeśli zajdzie p (p=1) to na 100% => zajdzie ~q (~q=1)
p=>~q =1
Zajście p jest (=1) wystarczające => dla zajścia ~q
Zbiory:
Jeśli dowolny element należy do zbioru p to na 100 => należy do zbioru ~q
p=>q =1
Dowód:
Zachodzi tożsamość zbiorów:
p=~q
stąd:
p=>~q = p=>p =1 - bo każdy zbiór jest podzbiorem => siebie samego
cnd
Przynależność dowolnego elementu do zbioru p jest wystarczająca => do tego, aby ten element należał do zbioru ~q
Przynależność dowolnego elementu do zbioru p daje nam gwarancję matematyczną => iż ten element należy do zbioru ~q
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>

Zdarzenia:
Zajście zdarzenia p jest warunkiem wystarczającym => dla zajścia zdarzenia ~q
p=>~q =1
Dowód:
Zachodzi tożsamość pojęć:
p=~q
stąd:
p=>~q = p=>p =1 - bo każde pojęcie jest podzbiorem => siebie samego
cnd

Nasz przykład:
A1.
Jeśli dowolny człowiek jest mężczyzną (M=1) to na 100% => nie jest kobietą (~K=1)
M=>~K =1
Bycie mężczyzną (M=1) daje nam gwarancję matematyczną => iż nie jesteśmy kobietą (~K=1)

Prawdziwy warunek wystarczający A1 wymusza fałszywy kontrprzykład A1’ i odwrotnie:
A1’.
Jeśli zajdzie p (p=1) to może ~~> zajść q (q=1)
p~~>q = p*q =[] =0 - bo zbiory/zdarzenia p i q są rozłączne
Dowód:
Z diagramu DA odczytujemy:
p=~q
stąd:
p~~>q = ~q~~>q = ~q*q = [] =0
cnd
Zbiory:
A1’
Jeśli dowolny element należy do zbioru p to może ~~> należeć do zbioru q
p~~>q = p*q =[] =0 - bo zbiory/zdarzenia p i q są rozłączne
Nie istnieje (=0) element wspólny zbiorów ~~>: p i q
Nasz przykład:
A1’
Jeśli dowolny człowiek jest mężczyzną (M=1) to może ~~> być kobietą (K=1)
M~~>K = M*K =[] =0
Nie istnieje wspólny element zbioru mężczyzna (M=1) i kobieta K (K=1)

Zdarzenia:
Nie jest możliwe (=0) jednoczesne zajście zdarzeń ~~>: p i q

Kolumna A2B2:
Co może się wydarzyć jeśli zajdzie ~p (~p=1)?


Odpowiedź mamy w kolumnie A2B2:
A2: ~p~>q =1 - zajście ~p jest (=1) konieczne ~> dla zajścia q
B2: ~p=>q =1 - zajście ~p jest wystarczające => dla zajścia q
A2B2: ~p$~q = (A2: ~p~>q)*(B2: ~p=>q) =1*1=1
Matematycznie zachodzi tożsamość logiczna:
A2B2: ~p$~q = (A2: ~p~>q)*(B2: ~p=>q) = ~p<=>q
stąd mamy zdefiniowaną tożsamość zbiorów:
~p=q

Odpowiedź na pytanie co może się wydarzyć jest zajdzie ~p w rozpisce na warunek wystarczający =>.
Kolumna A2B2:
B2.
Jeśli zajdzie ~p (~p=1) to na 100% => zajdzie q (q=1)
~p=>q =1
Dowód:
Zachodzi tożsamość zbiorów:
~p=q
stąd:
~p=>q = q=>q =1 - bo każdy zbiór jest podzbiorem => siebie samego
cnd
Zbiory:
B2.
Jeśli dowolny element należy do zbioru ~p to na 100% => należy do zbioru q
~p=>q =1
Przynależność dowolnego elementu do zbioru ~p jest wystarczająca => aby ten element należał do zbioru q
Przynależność dowolnego elementu do zbioru ~p daje nam gwarancję matematyczną => iż ten element należy do zbioru q
Oczywistość wobec tożsamości zbiorów:
~p=q
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>
Nasz przykład:
B2.
Jeśli dowolny człowiek nie jest mężczyzną (~M=1) to na 100% => jest kobietą (K=1)
~M=>K=1
Nie bycie mężczyzną (~M=1) daje nam gwarancję matematyczną => iż jesteśmy kobietą (K=1)

Zdarzenia:
Jeśli zajdzie zdarzenie ~p to na 100% => zajdzie zdarzenie q
~p=>q =1
Zajście ~p jest wystarczające => dla zajścia q
Dowód:
Zachodzi tożsamość zdarzeń:
~p=q
stąd:
~p=>q = q=>q =1 - bo każde zdarzenie jest podzbiorem => siebie samego

Prawdziwy warunek wystarczający B2 wymusza fałszywy kontrprzykład B2’ i odwrotnie:
B2’.
Jeśli zajdzie ~p (~p=1) to może ~~> zajść ~q (~q=1)
~p~~>~q = ~p*~q =[] =0 - bo zbiory/zdarzenia ~p i ~q są rozłączne
Zbiory:
B2’.
Jeśli dowolny element należy do zbioru ~p to może ~~> należeć do zbioru ~q
~p~~>~q = ~p*~q =[] =0 - bo zbiory ~p i ~q są rozłączne
Dowód:
Zachodzi tożsamość zbiorów:
~p=q
stąd:
~p~~>~q = q~~>~q = q*~q =[] =0
cnd
Nasz przykład:
Jeśli dowolny człowiek nie jest mężczyzną (~M=1) to może ~~> nie być kobietą (~K=1)
~M~~>~K = ~K*~K =[] =0
Nie istnieje wspólny element zbiorów „nie mężczyzna” ~M i „nie kobieta” ~K
Dowód:
W dziedzinie C (człowiek) zachodzi tożsamość zbiorów:
~M=K
stąd mamy:
B2’: ~M~~>~K = K~~>~K = K*~K =[] =0
cnd

Zdarzenia:
Nie jest możliwe (=0) jednoczesne zajście zdarzeń ~~>: ~p i ~q
~p~~>~q = ~p*~q =[] =0
Dowód:
Zachodzi tożsamość pojęć:
~p=q
stąd:
~p~~>~q = q~~>~q = q*~q =[] =0
cnd

Podsumowanie:
Jak widzimy, istotą operatora „albo” p|$q jest gwarancja matematyczna => po stronie p (zdanie A1), jak również gwarancja matematyczna => po stronie ~p (zdanie B2).
Nie ma tu mowy o jakimkolwiek „rzucaniu monetą” w sensie „na dwoje babka wróżyła” jak to mieliśmy w operatorze implikacji prostej p||=>q czy też w operatorze implikacji odwrotnej p||~>q.

Zauważmy że:
a)
Układ równań logicznych jest przemienny, stąd mamy:
Operator „albo” ~p|$~q to układ równań logicznych:
A2B2:~p$~q=(A2:~p~>q)*(B2:~p=>q) - co się stanie jeśli zajdzie ~p
A1B1: p$q =(A1: p=>~q)* (B1: p~>~q) - co się stanie jeśli zajdzie p
Doskonale widać, że analiza matematyczna operatora „albo” ~p|$~q w logice ujemnej (bo ~p) będzie identyczna jak operatora „albo” p|$q w logice dodatniej (bo p) z tym, że zaczynamy od kolumny A2B2 kończąc na kolumnie A1B1.
b)
Także kolejność wypowiadanych zdań jest dowolna, tak więc zdania z powyższej analizy A1, A1’, B2, B2’ możemy wypowiadać w sposób losowy - matematycznie to bez znaczenia.

3.5 Chaos p|~~>q

W algebrze Kubusia w zbiorach zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>
Kod:

T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
      ##        ##           ##        ##            ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5:  p+~q

Prawa Kubusia:        | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q  | A1: p=>q  = A4:~q=>~p
B1: p~>q = B2:~p=>~q  | B2:~p=>~q = B3: q=>p

Prawa Tygryska:       | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p   | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>q   | B1: p~>q  = B4:~q~>~p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


CH.
Definicja podstawowa chaosu p|~~>q:

Kolumna A1B1:
Chaos p|~~>q to nie zachodzenie ani warunku koniecznego ~> ani też warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
A1B1: p|~~>q = ~(A1: p=>q)*~(B1: p~>q) =~(0)*~(0) = 1*1 =1

Podstawmy tą definicję do matematycznych związków warunku wystarczającego => i koniecznego ~>:
Kod:

T1
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w chaosie p|~~>q
Kolumna A1B1 to punkt odniesienia:
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla q
A1B1: p|~~>q=~(A1: p=>q)*~(B1: p~>q)=~(0)*~(0)=1*1=1
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p =0 [=] 5: ~p+q
      ##        ##           ##        ##               ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p =0 [=] 5:  p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla udowodnienia, iż zdanie warunkowe „Jeśli p to q” wchodzi w skład chaosu p|~~>q potrzeba i wystarcza udowodnić fałszywość dowolnego zdania serii Ax i fałszywość dowolnego zdania serii Bx.
Zauważmy, że nie ma znaczenia które zdanie będziemy brali pod uwagę, bowiem prawami logiki matematycznej (prawa Kubusia, prawa Tygryska i prawa kontrapozycji) zdanie to możemy zastąpić zdaniem logicznie tożsamym z kolumny A1B1.

Kluczowym punktem zaczepienia w wprowadzeniu symbolicznej definicji chaosu p|~~>q będzie definicja kontrprzykładu rodem z algebry Kubusia działająca wyłącznie w warunku wystarczającym =>.

Definicja kontrprzykładu w zbiorach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane elementem wspólnym zbiorów p~~>~q=p*~q

Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>~q=p*~q

Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)
Kod:

CH
Kolumna A1B1 to punkt odniesienia:
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla q
A1B1: p|~~>q=~(A1: p=>q)*~(B1: p~>q)=~(0)*~(0)=1*1=1
       A1B1:         A2B2:        |     A3B3:         A4B4:
A:  1: p=>q  =0 = 2:~p~>~q =0    [=] 3: q~>p  =0 = 4:~q=>~p =0
A’: 1: p~~>~q=1 =                [=]             = 4:~q~~>p =1
A”: 1: p~~>q =1                  [=]               4:~q~~>~p=1
       ##            ##           |     ##            ##
B:  1: p~>q  =0 = 2:~p=>~q =0    [=] 3: q=>p  =0 = 4:~q~>~p =0
B’:             = 2:~p~~>q =1    [=] 3: q~~>~p=1
B”:               2:~p~~>~q=1    [=] 3: q~~>p =1

Równanie operatora chaosu p||~~>q:
A1B1:                                                           A2B2:
p|~~>q = ~(A1: p=>q)*~(B1: p~>q) = ~(A2:~p~>~q)*~(B2:~p=>~q) = ~p|~~>~q

Operator chaosu p||~~>q to układ równań logicznych:
A1B1: p|~~>q  =~(A1: p=> q)*~(B1: p~>q) - co się stanie jeśli zajdzie p?
A2B2:~p|~~>~q =~(A2:~p~>~q)*~(B2:~p=>~q)- co się stanie jeśli zajdzie ~p?

Układ równań logicznych jest przemienny, stąd mamy:
Operator chaosu ~p||~~>~q to układ równań logicznych:
A2B2:~p|~~>~q =~(A2:~p~>~q)*~(B2:~p=>~q)- co się stanie jeśli zajdzie ~p?
A1B1: p|~~>q  =~(A1: p=> q)*~(B1: p~>q) - co się stanie jeśli zajdzie p?

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Uwaga:
Zdania A1” i B2” kodowane zdarzeniem możliwym ~~> muszą być prawdziwe, bowiem wtedy i tylko wtedy będziemy mieli do czynienia z chaosem p|~~>q.
Dowód nie wprost:
Załóżmy, że zdanie A1” jest fałszywe:
A1”: p~~>q =0
Wówczas na mocy definicji kontrprzykładu prawdziwy byłby warunek wystarczający =>:
A1S: p=>~q =1
co prowadzi do sprzeczności z definicją chaosu p|~~>q gdzie o żadnym spełnionym warunku wystarczającym => mowy być nie może.
cnd
Identyczny dowód nie wprost możemy przeprowadzić w stosunku do zdania prawdziwego B2” oraz do zdań B3” i A4”.

CH.
Definicja podstawowa chaosu p|~~>q w logice dodatniej (bo q):

Kolumna A1B1:
Chaos p|~~>q w logice dodatniej (bo q) to nie zachodzenie ani warunku koniecznego ~> ani też warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
A1B1: p|~~>q = ~(A1: p=>q)*~(B1: p~>q) =~(0)*~(0) = 1*1 =1

Definicja definicji podstawowej dowolnego spójnika implikacyjnego:
Definicja podstawowa dowolnego spójnika implikacyjnego to definicja tego spójnika w logice dodatniej (bo q). Jeśli w definicji dowolnego spójnika implikacyjnego nie zaznaczamy w jakiej jest logice to domyślnie chodzi nam o definicję podstawową tego spójnika.

Mówiąc o definicji podstawowej możemy zatem pominąć sygnalizację w jakiej logice ta definicja jest wyrażona.

CH.
Definicja chaosu ~p|~~>~q w logice ujemnej (bo ~q):

Kolumna A2B2:
Chaos ~p|~~>~q w logice ujemnej (bo ~q) to nie zachodzenie ani warunku koniecznego ~> ani też warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
A2: ~p~>~q =0 - zajście ~p nie jest (=0) konieczne ~> dla zajścia ~q
B2: ~p=>~q =0 - zajście ~p nie jest (=0) wystarczające => dla zajścia ~q
A2B2: ~p|~~>~q = ~(A2: ~p~>~q)*~(B2: ~p=>~q) = ~(0)*~(0) =1*1 =1

Definicja dowolnego operatora implikacyjnego p||?q:
Operator implikacyjny p||?q to odpowiedź na pytanie co się stanie jeśli zajdzie p oraz co się stanie jeśli zajdzie ~p
Kod:

T2.
Równanie operatora chaosu p||~~>q:
A1B1:                                                           A2B2:
p|~~>q = ~(A1: p=>q)*~(B1: p~>q) = ~(A2:~p~>~q)*~(B2:~p=>~q) = ~p|~~>~q
bo prawa Kubusia:
A1: p=>q = A2:~p~>~q
B1: p~>q = B2:~p=>~q
cnd

Dlaczego to jest równanie operatora chaosu p||~~>q?
A1B1: W kolumnie A1B1 mamy odpowiedź na pytanie co może się wydarzyć jeśli zajdzie p
A2B2: W kolumnie A2B2 mamy odpowiedź na pytanie co może się wydarzyć jeśli zajdzie ~p

Operator chaosu p||~~>q w logice dodatniej (bo q) to układ równań logicznych A1B1 i A2B2 dający odpowiedź na pytanie o p i ~p:
A1B1: p|~~>q =~(A1: p=> q)*~(B1: p~>q) - co się stanie jeśli zajdzie p?
A2B2:~p|~~>~q =~(A2:~p~>~q)*~(B2:~p=>~q)- co się stanie jeśli zajdzie ~p?

Układ równań logicznych jest przemienny, stąd mamy:
Operator chaosu ~p||~~>~q w logice ujemnej (bo ~q) to układ równań logicznych A2B2 i A1B1 dający odpowiedź na pytanie o ~p i p:
A2B2:~p|~~>~q =~(A2:~p~>~q)*~(B2:~p=>~q)- co się stanie jeśli zajdzie ~p?
A1B1: p|~~>q =~(A1: p=> q)*~(B1: p~>q) - co się stanie jeśli zajdzie p?

Z tabeli T2 odczytujemy tożsamość logiczną:
A1B1: p|~~>q = A2B2: ~p|~~>~q

Definicja tożsamości logicznej:
Prawdziwość dowolnej strony tożsamości logicznej „=” wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej „=” wymusza fałszywość drugiej strony

Innymi słowy
1.
Udowodnienie iż dany układ spełnia definicję chaosu p|~~>q w logice dodatniej (bo q) jest tożsame z udowodnieniem iż ten sam układ spełnia definicję chaosu ~p|~~>~q w logice ujemnej (bo ~q), albo odwrotnie.
A1B1: p|~~>q = A2B2: ~p|~~>~q

Na mocy definicji operatorów logicznych p||~~>q i ~p||~~>~q widzimy, że udowodnienie prawdziwości 1 pociąga za sobą prawdziwość 2:
2.
p||~~>q = ~p||~~>~q
cnd

3.5.1 Operator chaosu p||~~>q

Definicja operatora chaosu p||~~>q to układ równań logicznych A1B1 i A2B2 dający odpowiedź na pytania o p i ~p:

A1B1:
Co się stanie jeśli zajdzie p (p=1)?


Kolumna A1B1:
Definicja chaosu p|~~>q w logice dodatniej bo (q):
Chaos p|~~>q w logice dodatniej (bo q) to nie zachodzenie ani warunku wystarczającego => ani też koniecznego ~> między tymi samymi punktami i w tym samym kierunku.
A1: p=>q =0 - p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =0 - p nie jest (=0) konieczne ~> dla zajścia q
A1B1: p|~~>q = ~(A1: p=>q)*~(B1: p~>q) = ~(0)*~(0) =1*1 =1

Kolumna A1B1:
Analiza w zdaniach warunkowych „Jeśli p to q” dla spełnionego p:
A’’.
Jeśli zajdzie p to może ~~> zajść q
p~~>q = p*q =1
Zbiory:
Istnieje (=1) element wspólny ~~> zbiorów p i q
Zdarzenia:
Możliwe jest (=1) jednoczesne zajście zdarzeń p i q

LUB

A’.
Jeśli zajdzie p to może ~~> zajść ~q
p~~>~q = p*~q =1
Zbiory:
Istnieje (=1) element wspólny ~~> zbiorów p i ~q
Zdarzenia:
Możliwe jest (=1) jednoczesne zajście zdarzeń p i ~q

A2B2:
Co się stanie jeśli zajdzie ~p (~p=1)?


Kolumna A2B2:
Definicja chaosu ~p|~~>~q w logice ujemnej bo (~q):
Chaos ~p|~~>~q w logice ujemnej (bo ~q) to nie zachodzenie ani warunku wystarczającego => ani też koniecznego ~> między tymi samymi punktami i w tym samym kierunku.
A2: ~p~>~q =0 - ~p nie jest (=0) konieczne ~> dla zajścia ~q
B2: ~p=>~q =0 - ~p nie jest (=0) wystarczające => dla zajścia ~q
A2B2: ~p|~~>~q = ~(A2:~p~>~q)*~(B2: ~p=>~q) = ~(0)*~(0) =1*1 =1

Kolumna A2B2:
Analiza w zdaniach warunkowych „Jeśli p to q” dla nie spełnionego p (~p):
B’’.
Jeśli zajdzie ~p to może ~~> zajść ~q
~p~~>~q = ~p*~q =1
Zbiory:
Istnieje (=1) element wspólny ~~> zbiorów ~p i ~q
Zdarzenia:
Możliwe jest (=1) jednoczesne zajście zdarzeń ~p i ~q

LUB

B’.
Jeśli zajdzie ~p to może ~~> zajść q
~p~~>q = ~p*q =1
Zbiory:
Istnieje (=1) element wspólny ~~> zbiorów ~p i q
Zdarzenia:
Możliwe jest (=1) jednoczesne zajście zdarzeń ~p i q

Podsumowanie:
Doskonale widać, że zarówno po stronie p jak i po stronie ~p mamy tu najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła”.

Zauważmy że:
a)
Układ równań jest przemienny, stąd mamy definicję tożsamą:
Operator chaosu ~p||~~>~q w logice ujemnej (bo ~q) to układ równań logicznych:
A2B2:~p|~~>~q =~(A2:~p~>~q)*~(B2:~p=>~q)- co się stanie jeśli zajdzie ~p?
A1B1: p|~~>q =~(A1: p=> q)*~(B1: p~>q) - co się stanie jeśli zajdzie p?
Doskonale widać, że analiza matematyczna operatora chaosu ~p||~~>~q w logice ujemnej (bo ~q) będzie identyczna jak operatora chaosu p||~~>q w logice dodatniej (bo q) z tym, że zaczynamy od kolumny A2B2 kończąc na kolumnie A1B1.
b)
Także kolejność wypowiadanych zdań jest dowolna, tak więc zdania z powyższej analizy A’’, A’, B’’, B’ możemy wypowiadać w sposób losowy - matematycznie to bez znaczenia.

3.5.2 Chaos P8|~~>P3

W algebrze Kubusia w zbiorach zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

Zadanie w I klasie LO w 100-milowym lesie:
Zbadaj w skład jakiego operatora logicznego wchodzi poniższe zdanie:
Jeśli dowolna liczba jest podzielna przez 8 to może być podzielna przez 3

Rozwiązanie:

Prawo śfinii:
Dowolne zdanie warunkowe od którego zaczynamy analizę matematyczną jest domyślnym punktem odniesienia, gdzie po „Jeśli ..” zapisujemy p zaś po „to..” zapisujemy q z pominięciem przeczeń.

Prawo Kobry dla zbiorów:
Warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q” jest jego prawdziwość przy kodowaniu elementem wspólnym zbiorów ~~>.
Innymi słowy:
Jeśli prawdziwe jest zdanie kodowane warunkiem wystarczającym => lub koniecznym ~> to na 100% prawdziwe jest to samo zdanie kodowane elementem wspólnym zbiorów ~~> (odwrotnie nie zachodzi)

Na początek korzystając z prawa Kobry badamy, czy zdanie które mamy analizować ma szansę być prawdziwym, kodując to zdanie elementem wspólnym zbiorów ~~>.

W.
Jeśli dowolna liczba jest podzielna przez 8 to może być podzielna przez 3
P8~~>P3 = P8*P3 =1 bo 24
Na mocy prawa śfinii mamy:
p = P8=[8,16,24..] - zbiór liczb podzielnych przez 8
q = P3=[3,6,9..] - zbiór liczb podzielnych przez 3
Przyjmujemy dziedzinę minimalną:
LN=[1,2,3,4,5,6,7,8,9..] - zbiór liczb naturalnych
Stąd mamy przeczenia zbiorów rozumiane jako uzupełnienia do dziedziny LN:
~P8 = [LN-P8] = [1,2,3,4,5,6,7..9..]
~P3 = [LN-P3] = [1,2..4,5..7,8..]

Krok 1
Badamy warunek wystarczający =>:
A1.
Jeśli dowolna liczba jest podzielna przez 8 to na 100% => jest podzielna przez 3
P8=>P3 =0
Definicja warunku wystarczającego => nie jest spełniona (=0) bo zbiór P8=[8,16,24..] nie jest podzbiorem => zbioru P3=[3,6,9..]
cnd

Krok 2
Badamy warunek konieczny ~> między tymi samymi punktami:
B1.
Jeśli dowolna liczba jest podzielna przez 8 to może ~> być podzielna przez 3
P8~>P3 =0
Definicja warunku koniecznego ~> nie jest spełniona (=0) bo zbiór P8=[8,16,24..] nie jest nadzbiorem ~> zbioru P3=[3,6,9..]

Stąd mamy dowód iż mamy tu do czynienia z chaosem.
Definicja chaosu p|~~>q:
Definicja chaosu p|~~>q jest spełniona wtedy i tylko wtedy gdy zajście p nie jest wystarczające => dla q i jednocześnie zajście p nie jest konieczne ~> dla q
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla q
A1B1: p|~~>q=~(A1: p=>q)*~(B1: p~>q)=~(0)*~(0)=1*1=1

Nasz przykład:
Definicja chaosu P8|~~>P3:
A1: P8=>P3 =0 - zbiór P8 nie jest (=0) podzbiorem => P3
B1: P8~>P3 =0 - zbiór P8 nie jest (=0) nadzbiorem ~> P3
A1B1: P8|~~>P3 = ~(A1: P8=>P3)*~(B1: P8~>P3)=~(0)*~(0)=1*1 =1

Podstawmy nasz przykład do szablonu chaosu:
Kod:

CH
Kolumna A1B1 to punkt odniesienia w zapisie formalnym {p,q}:
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla q
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla q
A1B1: p|~~>q=~(A1: p=>q)*~(B1: p~>q)=~(0)*~(0)=1*1=1
Aktualny punkt odniesienia:
p=P8=[8,16,24..] - zbiór liczb podzielnych przez 8
q=P3=[3,6,9..] - zbiór liczb podzielnych przez 3
Kolumna A1B1 to również punkt odniesienia w zapisie aktualnym {P8,P3}:
A1: P8=>P3 =0 - zbiór P8 nie jest (=0) podzbiorem => P3
B1: P8~>P3 =0 - zbiór P8 nie jest (=0) nadzbiorem ~> P3
A1B1: P8|~~>P3 = ~(A1: P8=>P3)*~(B1: P8~>P3)=~(0)*~(0)=1*1 =1
       A1B1:           A2B2:       |     A3B3:           A4B4:
A:  1: p=>q  =0   = 2:~p~>~q   =0 [=] 3: q~>p    =0 = 4:~q=>~p   =0
A’: 1: p~~>~q=1   =               [=]               = 4:~q~~>p   =1
A’: 1: P8~~>~P3=1 =               [=]               = 4:~P3~~>P8 =1
A”: 1: p~~>q =1                   [=]                 4:~q~~>~p  =1
A”: 1: P8~~>P3 =1                 [=]                 4:~P3~~>~P8=1
       ##              ##          |     ##              ##
B:  1: p~>q  =0   = 2:~p=>~q   =0 [=] 3: q=>p    =0 = 4:~q~>~p   =0
B’:               = 2:~p~~>q   =1 [=] 3: q~~>~p  =1
B’:               = 2:~P8~~>P3 =1 [=] 3: P3~~>~P8=1
B”:                 2:~p~~>~q  =1 [=] 3: q~~>p   =1
B”:                 2:~P8~~>~P3=1 [=] 3: P3~~>P8 =1

Równanie operatora chaosu p||~~>q:
A1B1:                                                           A2B2:
p|~~>q = ~(A1: p=>q)*~(B1: p~>q) = ~(A2:~p~>~q)*~(B2:~p=>~q) = ~p|~~>~q

Operator chaosu p||~~>q to układ równań logicznych:
A1B1: p|~~>q  =~(A1: p=> q)*~(B1: p~>q) - co się stanie jeśli zajdzie p?
A2B2:~p|~~>~q =~(A2:~p~>~q)*~(B2:~p=>~q)- co się stanie jeśli zajdzie ~p?

Układ równań logicznych jest przemienny, stąd mamy:
Operator chaosu ~p||~~>~q to układ równań logicznych:
A2B2:~p|~~>~q =~(A2:~p~>~q)*~(B2:~p=>~q)- co się stanie jeśli zajdzie ~p?
A1B1: p|~~>q  =~(A1: p=> q)*~(B1: p~>q) - co się stanie jeśli zajdzie p?

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


Operator chaosu p||~~>q w logice dodatniej (bo q) to układ równań logicznych A1B1 i A2B2 dający odpowiedź na pytanie o p i ~p:
A1B1: p|~~>q =~(A1: p=> q)*~(B1: p~>q) - co się stanie jeśli zajdzie p?
A2B2:~p|~~>~q =~(A2:~p~>~q)*~(B2:~p=>~q) - co się stanie jeśli zajdzie ~p?

3.5.3 Operator chaosu P8||~~>P3

Nasz przykład:
Operator chaosu P8||~~>P3 to układ równań A1B1 i A2B2 dający odpowiedzi na pytanie o P8 i ~P8:

A1B1:
Co może się wydarzyć jeśli dowolna liczba będzie podzielna przez 8 (P8=1)?


Kolumna A1B1:
A1: P8=>P3 =0 - zbiór P8 nie jest (=0) podzbiorem => P3
B1: P8~>P3 =0 - zbiór P8 nie jest (=0) nadzbiorem ~> P3
A1B1: P8|~~>P3 = ~(A1: P8=>P3)*~(B1: P8~>P3)=~(0)*~(0)=1*1 =1

Z kolumny A1B1 odczytujemy:
A1”.
Jeśli dowolna liczba jest podzielna przez 8 (P8=1) to może ~~> być podzielna przez 3 (P3=1)
P8~~>P3 = P8*P3 =1 bo istnieje (=1) element wspólny ~~> np. 24
Zbiory P8=[8,16,24..] i P3=[3,6,9..24..] mają element wspólny ~~> np. 24

LUB

A1’.
Jeśli dowolna liczba jest podzielna przez 8 (P8=1) to może ~~> nie być podzielna przez 3 (~P3=1)
P8~~>~P3 = P8*~P3 =1 bo istnieje (=1) element wspólny ~~> np. 8
Zbiory P8=[8,16,24..] i ~P3=[1,2..4.5..7,8..] mają element wspólny ~~> np. 8

A2B2:
Co może się wydarzyć jeśli dowolna liczba nie będzie podzielna przez z 8 (~P8=1)?


Kolumna A2B2:
A2: ~P8~>~P3 =0 - bo zbiór ~P8=[1,2,3,4,5,6,7..9..] nie jest (=0) nadzbiorem ~> ~P3=[1,2..4,5..7,8..]
B2: ~P8=>~P3=0 - bo zbiór ~P8=[1,2,3,4,5,6,7..9..] nie jest (=0) podzbiorem => ~P3=[1,2..4,5..7,8..]
~P8|~~>~P3=~(A2: ~P8~>~P3)*~(B2: ~P8=>~P3) =~(0)*~(0) =1*1 =1

Z kolumny A2B2 odczytujemy:
B2”.
Jeśli dowolna liczba nie jest podzielna przez 8 (~P8=1) to może ~~> nie być podzielna przez 3 (~P3=1)
~P8~~>~P3 = ~P8*~P3 =1 - bo istnieje (=1) element wspólny ~~> np. 2
Zbiory ~P8=[1,2,3,4,5,6,7..9..] i ~P3=[1,2..4,5..7,8..] mają element wspólny ~~> np. 2

LUB

B2’.
Jeśli dowolna liczba nie jest podzielna przez 8 (~P8=1) to może ~~> być podzielna przez 3 (P3=1)
~P8~~>P3 = ~P8*P3 =1 - bo istnieje (=1) element wspólny ~~> np. 3
Zbiory ~P8=[1,2,3,4,5,6,7..9..] i P3=[3,6,9..24..] mają element wspólny ~~> np. 3

Podsumowanie:
Istotą operatorach chaosu P8|~~>P3 jest najzwyklejsze „rzucanie monetą” w rozumieniu „na dwoje babka wróżyła” zarówno po stronie P8 (zdania A1’’, A1’) jak i po stronie ~P8 (zdania B2’’ i B2’)

Zauważmy że:
a)
Układ równań logicznych jest przemienny, stąd mamy:
Operator chaosu ~p||~~>~q w logice ujemnej (bo ~q) to układ równań logicznych:
A2B2:~p|~~>~q =~(A2:~p~>~q)*~(B2:~p=>~q)- co się stanie jeśli zajdzie ~p?
A1B1: p|~~>q =~(A1: p=> q)*~(B1: p~>q) - co się stanie jeśli zajdzie p?
Doskonale widać, że analiza matematyczna operatora chaosu ~p||~~>~q w logice ujemnej (bo ~q) będzie identyczna jak operatora chaosu p||~>q w logice dodatniej (bo q) z tym, że zaczynamy od kolumny A2B2 kończąc na kolumnie A1B1, co matematycznie jest bez znaczenia.
b)
Także kolejność wypowiadanych zdań jest dowolna, tak więc zdania z powyższej analizy A1’’, A1’, B2’’, B2’ możemy wypowiadać w sposób losowy - matematycznie to bez znaczenia.

Uwaga:
Więcej prostych przykładów operatora chaosu p||~~>q znajdziemy w punkcie 8.3
Gorąco polecam.
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 35331
Przeczytał: 23 tematy

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Pon 23:34, 21 Cze 2021    Temat postu:

Takie sobie prymitywne zadanko zrobiłem na matematyce.pl
[link widoczny dla zalogowanych]

[quote=ola_ post_id=5630650 time=1623583484 user_id=150199]
Czy ktoś wie jak wykazać że zdanie: [latex]((( p \Rightarrow q) \Rightarrow p) \Rightarrow p)[/latex] jest tautologią bez pomocy tabelki?
[/quote]
[latex]((( p \Rightarrow q) \Rightarrow p) \Rightarrow p)[/latex]

Definicja znaczka [latex]\Rightarrow[/latex] :
[latex]p \Rightarrow q = \neg p+q[/latex]

Dla uproszczenia tworzymy wewnętrzną funkcję logiczną Y w logice dodatniej (bo [latex]Y[/latex])
1.
[latex]((Y = (( p \Rightarrow q) \Rightarrow p)) \Rightarrow p)[/latex]
2.
[latex]Y = (( p \Rightarrow q) \Rightarrow p) = ( \neg p+q) \Rightarrow p)[/latex]
[latex]Y = ( \neg p+q) \Rightarrow p)= \neg (\neg p+q)+p[/latex]
[latex]Y = \neg (\neg p+q)+p = p* \neg q + p[/latex]
[latex]Y = p* \neg q + p = p* (\neg q +1)[/latex]
[latex]Y = p[/latex]
Podstawiając do 1 mamy:
[latex]p=>p = \neg p+p =1[/latex]
cnd
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 35331
Przeczytał: 23 tematy

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Wto 6:09, 22 Cze 2021    Temat postu:

[link widoczny dla zalogowanych]

[quote="Jan Kraszewski" post_id=5630981 time=1624320284 user_id=5957]
[quote=rafal3006 post_id=5630979 time=1624314286 user_id=13710]Definicja znaczka [latex]\Rightarrow[/latex] :
[latex]p \Rightarrow q = \neg p+q[/latex]

Dla uproszczenia tworzymy wewnętrzną funkcję logiczną Y w logice dodatniej (bo [latex]Y[/latex])
1.
[latex]((Y = (( p \Rightarrow q) \Rightarrow p)) \Rightarrow p)[/latex]
2.
[latex]Y = (( p \Rightarrow q) \Rightarrow p) = ( \neg p+q) \Rightarrow p)[/latex]
[latex]Y = ( \neg p+q) \Rightarrow p)= \neg (\neg p+q)+p[/latex]
[latex]Y = \neg (\neg p+q)+p = p* \neg q + p[/latex]
[latex]Y = p* \neg q + p = p* (\neg q +1)[/latex]
[latex]Y = p[/latex]
Podstawiając do 1 mamy:
[latex]p=>p = \neg p+p =1[/latex]
cnd
[/quote]
Na wszelki wypadek zwrócę uwagę oli_, żeby raczej nie próbowała nikomu przedstawiać tego (skądinąd poprawnego, jeżeli zostanie poprawnie zapisane) rozumowania w tej wersji.

JK

[/quote]
:brawo:
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 35331
Przeczytał: 23 tematy

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Śro 5:52, 23 Cze 2021    Temat postu:

Algebra Kubusia - ostatnie czytanie!

Po raz ostatni przed premierą czytam od początku algebrę Kubusia likwidując literówki i udoskonalając przekaz.
Przed chwilką po raz kolejny w sposób znaczący uprościłem opis operatora "albo" p|$q
Kto zrozumie spójnik "albo" p$q ten bez problemu zrozumie całą algebrę Kubusia

Wierzę, że tak się stanie bowiem jest to wiedza matematyczna na poziomie 5-cio latka - oczywiście w rozumieniu zdań warunkowych "Jeśli p to q" tworzących operator "albo" p$q

Dowód:
Który 5-cio latek nie zrozumie przykładowego zdania?
Jeśli dowolny człowiek jest mężczyzną (M=1) to na 100% => nie jest kobietą (~K=1)
M=>~K =1
Oczywiście wszystkie 5-cio latki doskonale rozumieją iż powyższe zdanie jest prawdziwe bo dowolny człowiek może być wyłącznie mężczyzną "albo"($) kobietą.

Prawo Smoka Wawelskiego:
Nie jest możliwe, aby dowolny ziemski matematyk był głupszy od 5-cio latka i nie zrozumiał poniższego, matematycznego opisu spójnika "albo"($).

Chociaż...
Twardogłowi ziemscy matematycy, fanatycy gówna zwanego "implikacją materialną" mogą mieć tu poważny problem.

Tylko dwie rzeczy są nieskończone: wszechświat oraz ludzka głupota, choć nie jestem pewien co do tej pierwszej.
Albert Einstein

http://www.sfinia.fora.pl/forum-kubusia,12/algebra-kubusia-w-przebudowie,18899.html#593841

Algebra Kubusia
3.4 Definicje podstawowe - „albo” p$q i chaos p|~~>q

Spis treści
3.4 Spójnik „albo”($) p$q 1
3.4.1 Definicja spójnika „albo” p$q wsparta przykładem M$K 5
3.4.2 Operator „albo” p|$q wsparty przykładem M|$K 9
3.4.3 Operator „albo” p|$q w rozpisce na zdania warunkowe „Jeśli p to q” 12



3.4 Spójnik „albo”($) p$q

W algebrze Kubusia w zbiorach zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>
Kod:

T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
      ##        ##           ##        ##            ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5:  p+~q

Prawa Kubusia:        | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q  | A1: p=>q  = A4:~q=>~p
B1: p~>q = B2:~p=>~q  | B2:~p=>~q = B3: q=>p

Prawa Tygryska:       | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p   | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p   | B1: p~>q  = B4:~q~>~p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


W wyjaśnianiu definicji spójnika „albo” p$q i operatora „albo” p|$q wspomożemy się konkretnym przykładem z teorii zbiorów {M$K), mającym przełożenie 1:1 na logikę formalną {p$q} pozwalającym łatwo zrozumieć o co tu chodzi.

Przykład:
Dowolny człowiek jest mężczyzną (M=1) „albo”($) kobietą (K=1)
M$K = (A1: M=>~K)*(B1: M~>~K) =1*1 =1
Przyjmijmy dziedzinę minimalną:
C (człowiek) - zbiór wszystkich ludzi
Stąd mamy definicję dziedziny:
M+K = C =1 - bo zbiór kobiet (K) jest uzupełnieniem do dziedziny dla zbioru mężczyzn (M)
M*K =[] =0 - bo zbiór mężczyzn (M) jest rozłączny ze zbiorem kobiet (K)
Obliczamy przeczenia zbiorów rozumiane jako ich uzupełnienia do dziedziny:
~M = [C-M] = [M+K-M] =K
~K = [C-K] = [M+K-K]=M
to samo po zamianie argumentów w tożsamości zbiorów:
M = ~K - człowiek jest mężczyzną (M=1) wtedy i tylko wtedy gdy nie jest kobietą (~K=1)
K=~M - człowiek jest kobietą (K=1) wtedy i tylko wtedy gdy nie jest mężczyzną (~M=1)
Narysujmy diagram w zbiorach pasujący do tego zdania.

Diagram spójnika „albo” p$q wspomagany przykładem o mężczyźnie (M) i kobiecie (K)
Kod:

 DA:
 Diagram spójnika „albo” p$q w zbiorach/zdarzeniach
--------------------------------------------------------------------------
| D (dziedzina)                                                          |
| p+q =D =1 - zbiór q jest uzupełnieniem do dziedziny D dla zbioru p     |
| p*q =[]=0 - zbiory p i q są rozłączne                                  |
| Podstawmy nasz przykład:                                               |
| p=M - zbiór wszystkich mężczyzn                                        |
| q=K - zbiór wszystkich kobiet                                          |
| Dla zmiennych aktualnych M (mężczyzna) i K (kobieta) mamy:             |
| C (człowiek) - zbiór wszystkich ludzi                                  |
| M+K =C =1 - zbiór K jest uzupełnieniem do dziedziny C dla M            |
| M*K =[]=0 - zbiór M jest rozłączny ze zbiorem K w dziedzinie C         |
--------------------------------------------------------------------------
: Zbiór: p=M (mężczyzna)          | Zbiór: q=K (kobieta)                 |
| A1B1: Spójnik „albo”($) dla p:  | A2B2: Spójnik „albo”($) dla ~p       |
| p$q = (A1: p=>~q)*(B1: p~>~q)  [=] ~p$~q = (A2:~p~>q)*(B2:~p=>q)       |
| M$K = (A1: M=>~K)*(B1: M~>~K)  [=] ~M$~K = (A2:~M~>K)*(B2:~M=>K)       |
| Dla p=M i q=K mamy:             |  Dla p=M i q=K mamy:                 |
| p=~q - p jest negacją (~)q w D  #  q=~p - q jest negacją (~)p w D      |
| M=~K - M jest negacją (~)K w C  #  K=~M - K jest negacją (~)M w C      |
--------------------------------------------------------------------------
Gdzie:
# - różne w znaczeniu iż jedna strona jest negacją drugiej strony
[=] - tożsamość logiczna
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dowód iż p i q musi być wszędzie tymi samymi p i q inaczej błąd podstawienia
Przepiszmy trzy ostatnie linie diagramu DA popełniając błąd podstawienia:
Kod:

 DA
--------------------------------------------------------------------------
| Dla p=M i q=K mamy:             |  Dla p=K i q=M (błąd podstawienia)   |
| p=~q - p jest negacją (~)q w D  #  q=~p - q jest negacją (~)p w D      |
| M=~K - M jest negacją (~)K w C  #  M=~K - M jest negacją (~)K w C      |
--------------------------------------------------------------------------

W ostatniej linii mamy tożsamość zbiorów:
M=~K [=] M=~K
Czyli:
Definicja znaczka # leży w gruzach bo popełniono błąd podstawienia co widać w diagramie
cnd

Dla naszego przykładu mamy:
Definicja podstawowa spójnika „albo” M$K w logice dodatniej (bo K):
Spójnik „albo” M$K w logice dodatniej (bo K) to jednoczesne zachodzenie zarówno warunku wystarczającego =>, jak i koniecznego ~> w kierunku od M do ~K
A1: M=>~K =1 - bycie mężczyzną (M=1) jest (=1) wystarczające => by nie być kobietą (~K=1)
B1: M~>~K =1 - bycie mężczyzną (M=1) jest (=1) konieczne ~> by nie być kobietą (~K=1)
stąd:
A1B1: M$K = (A1: M=>~K)*(B1: M~>~K) = 1*1 =1

Prawa strona definiuje tożsamość zbiorów M=~K:
A1B1: M<=>~K = (A1: M=>~K)*(B1: M~>~K) = 1*1 =1
bo:
Definicja tożsamości zbiorów p=q:
Dwa zbiory p i q są tożsame wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q i jednocześnie zbiór p jest nadzbiorem ~> zbioru q
p=q <=> (A1: p=>q)*(B1: p~>q) = p<=>q

Stąd mamy tożsamość zdań [=] w języku potocznym:
Dowolny człowiek jest mężczyzną „albo”($) kobietą
A1B1: M$K = (A1: M=>~K)*(B1: M~>~K) = 1*1 =1
Zdanie matematycznie tożsame [=] to:
Człowiek jest mężczyzną (M=1) wtedy i tylko wtedy gdy nie jest kobietą (~K=1)
A1B1: M<=>~K = (A1: M=>~K)*(B1: M~>~K) =1*1 =1

To samo w zapisie formalnym po podstawieniu:
M=p
K=q
Definicja podstawowa spójnika „albo” p$q w logice dodatniej (bo q):
Kolumna A1B1:
Spójnik „albo” p$q w logice dodatniej (bo q) to jednoczesne zachodzenie zarówno warunku wystarczającego =>, jak i koniecznego ~> w kierunku od p do ~q
A1: p=>~q =1 - zajście p jest (=1) wystarczające => dla zajścia ~q
B1: p~>~q =1 - zajście p jest (=1) konieczne ~> dla zajścia ~q
stąd:
A1B1: p$q = (A1: p=>~q)*(B1: p~>~q) = 1*1 =1

Podstawmy definicję spójnika „albo” p$q w logice dodatniej (bo q) do matematycznych związków warunku wystarczającego => i koniecznego ~>:
Kod:

T1
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w spójniku „albo” p$q w logice dodatniej (bo q)
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>~q = 2:~p~>q [=] 3: ~q~>p = 4: q=>~p =1 [=] 5: ~p+~q
      ##         ##           ##        ##               ##
B: 1: p~>~q = 2:~p=>q [=] 3: ~q=>p = 4: q~>~p =1 [=] 5:  p+q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla udowodnienia, iż zdanie warunkowe „Jeśli p to q” wchodzi w skład spójnika „albo” p$q potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Ax oraz prawdziwość dowolnego zdania serii Bx.
Zauważmy, że nie ma znaczenia które zdanie będziemy brali pod uwagę, bowiem prawami logiki matematycznej (prawa Kubusia, prawa Tygryska i prawa kontrapozycji) zdanie to możemy zastąpić zdaniem logicznie tożsamym z kolumny A1B1.

Kluczowym punktem zaczepienia w wyprowadzeniu symbolicznej definicji spójnika „albo” p$q jest definicja kontrprzykładu rodem z algebry Kubusia działająca wyłącznie w warunku wystarczającym =>.

Definicja kontrprzykładu w zbiorach:
Kontrprzykładem dla warunku wystarczającego p=>~q nazywamy to samo zdanie z zanegowanym następnikiem kodowane elementem wspólnym zbiorów p~~>q=p*q

Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>~q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>q=p*q

Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>~q=1 wmusza fałszywość kontrprzykładu p~~>q=p*q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>~q=0 wmusza prawdziwość kontrprzykładu p~~>q=p*q=1 (i odwrotnie)

Uzupełnijmy naszą tabelę wykorzystując powyższe rozstrzygnięcia działające wyłącznie w warunkach wystarczających =>.
Kod:

TA:
Tabela prawdy spójnika „albo” p$q w logice dodatniej (bo q)
Kolumna A1B1 to punkt odniesienia:
A1: p=>~q =1 - p jest (=1) wystarczające => dla ~q
B1: p~>~q =1 - p jest (=1) konieczne ~> dla ~q
p$q = (A1: p=>~q)*(B1: p~>~q) =1*1=1
       A1B1:        A2B2:       |      A3B3:         A4B4:
A:  1: p=>~q=1 = 2:~p~>q  =1   [=] 3: ~q~>p  =1 = 4: q=>~p =1
A’: 1: p~~>q=0 =               [=]              = 4: q~~>p =0
       ##           ##          |      ##            ##
B:  1: p~>~q=1 = 2:~p=>q  =1   [=] 3: ~q=>p  =1 = 4: q~>~p =1
B’:            = 2:~p~~>~q=0   [=] 3: ~q~~>~p=0

Równanie operatora „albo” p|$q:
A1B1:                                                   A2B2:
p$q = (A1: p=>~q)*(B1: p~>~q) = (A2:~p~>q)*(B2:~p=>q) = ~p$~q

Operator „albo” p|$q to układ równań logicznych:
A1B1: p$q =(A1: p=>~q)* (B1: p~>~q) - co się stanie jeśli zajdzie p
A2B2:~p$~q=(A2:~p~>q)*(B2:~p=>q) - co się stanie jeśli zajdzie ~p

Układ równań logicznych jest przemienny, stąd mamy:
Operator „albo” ~p|$~q to układ równań logicznych:
A2B2:~p$~q=(A2:~p~>q)*(B2:~p=>q) - co się stanie jeśli zajdzie ~p
A1B1: p$q =(A1: p=>~q)* (B1: p~>~q) - co się stanie jeśli zajdzie p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


3.4.1 Definicja spójnika „albo” p$q wsparta przykładem M$K

Definicja podstawowa spójnika „albo” p$q w logice dodatniej (bo q):
Kolumna A1B1:
Spójnik „albo” p$q w logice dodatniej (bo q) to jednoczesne zachodzenie zarówno warunku wystarczającego =>, jak i koniecznego ~> w kierunku od p do ~q
A1: p=>~q =1 - zajście p jest (=1) wystarczające => dla zajścia ~q
B1: p~>~q =1 - zajście p jest (=1) konieczne ~> dla zajścia ~q
stąd:
A1B1: p$q = (A1: p=>~q)*(B1: p~>~q) = 1*1 =1

Diagram spójnika „albo” p$q wspomagany przykładem o mężczyźnie (M) i kobiecie (K)
Kod:

 DA:
 Diagram spójnika „albo” p$q w zbiorach/zdarzeniach
--------------------------------------------------------------------------
| D (dziedzina)                                                          |
| p+q =D =1 - zbiór q jest uzupełnieniem do dziedziny D dla zbioru p     |
| p*q =[]=0 - zbiory p i q są rozłączne                                  |
| Podstawmy nasz przykład:                                               |
| p=M - zbiór wszystkich mężczyzn                                        |
| q=K - zbiór wszystkich kobiet                                          |
| Dla zmiennych aktualnych M (mężczyzna) i K (kobieta) mamy:             |
| C (człowiek) - zbiór wszystkich ludzi                                  |
| M+K =C =1 - zbiór K jest uzupełnieniem do dziedziny C dla M            |
| M*K =[]=0 - zbiór M jest rozłączny ze zbiorem K w dziedzinie C         |
--------------------------------------------------------------------------
: Zbiór: p=M (mężczyzna)          | Zbiór: q=K (kobieta)                 |
| A1B1: Spójnik „albo”($) dla p:  | A2B2: Spójnik „albo”($) dla ~p       |
| p$q = (A1: p=>~q)*(B1: p~>~q)  [=] ~p$~q = (A2:~p~>q)*(B2:~p=>q)       |
| M$K = (A1: M=>~K)*(B1: M~>~K)  [=] ~M$~K = (A2:~M~>K)*(B2:~M=>K)       |
| Dla p=M i q=K mamy:             |  Dla p=M i q=K mamy:                 |
| p=~q - p jest negacją (~)q w D  #  q=~p - q jest negacją (~)p w D      |
| M=~K - M jest negacją (~)K w C  #  K=~M - K jest negacją (~)M w C      |
--------------------------------------------------------------------------
Gdzie:
# - różne w znaczeniu iż jedna strona jest negacją drugiej strony
[=] - tożsamość logiczna
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Tabela prawdy spójnika „albo” p$q wsparta przykładem M$K
Kod:

TA:
Tabela prawdy spójnika „albo”($)
Kolumna A1B1 to punkt odniesienia w zapisie formalnym {p,q}:
A1: p=>~q =1 - p jest (=1) wystarczające => dla ~q
B1: p~>~q =1 - p jest (=1) konieczne ~> dla ~q
p$q = (A1: p=>~q)*(B1: p~>~q) =1*1=1
Dla naszego przykładu mamy punkt odniesienia:
p=M (mężczyzna)
q=K (kobieta)
Kolumna A1B1 to punkt odniesienia w zapisie aktualnym {M,K}:
A1: M=>~K =1 - bycie mężczyzną jest wystarczające => by nie być kobietą
B1: M~>~K=1 - bycie mężczyzną jest konieczne ~> by nie być kobietą
A1B1: M$K = (A1: M=>~K)*(B1: M~>~K) =1*1 =1
       A1B1:        A2B2:       |      A3B3:         A4B4:
A:  1: p=>~q=1 = 2:~p~>q  =1   [=] 3: ~q~>p  =1 = 4: q=>~p =1
A:  1: M=>~K=1 = 2:~M~>K  =1   [=] 3: ~K~>M  =1 = 4: K=>~M =1
A’: 1: p~~>q=0 =               [=]              = 4: q~~>p =0
A’: 1: M~~>K=0 =               [=]              = 4: K~~>M =0
       ##           ##          |      ##            ##
B:  1: p~>~q=1 = 2:~p=>q  =1   [=] 3: ~q=>p  =1 = 4: q~>~p =1
B:  1: M~>~K=1 = 2:~M=>K  =1   [=] 3: ~K=>M  =1 = 4: K~>~M =1
B’:            = 2:~p~~>~q=0   [=] 3: ~q~~>~p=0
B’:            = 2:~M~~>~K=0   [=] 3: ~K~~>~M=0

Równanie operatora „albo” p|$q:
A1B1:                                                   A2B2:
p$q = (A1: p=>~q)*(B1: p~>~q) = (A2:~p~>q)*(B2:~p=>q) = ~p$~q

Operator „albo” p|$q to układ równań logicznych:
A1B1: p$q =(A1: p=>~q)* (B1: p~>~q) - co się stanie jeśli zajdzie p
A2B2:~p$~q=(A2:~p~>q)*(B2:~p=>q) - co się stanie jeśli zajdzie ~p

Układ równań logicznych jest przemienny, stąd mamy:
Operator „albo” ~p|$~q to układ równań logicznych:
A2B2:~p$~q=(A2:~p~>q)*(B2:~p=>q) - co się stanie jeśli zajdzie ~p
A1B1: p$q =(A1: p=>~q)* (B1: p~>~q) - co się stanie jeśli zajdzie p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


Definicja podstawowa spójnika „albo” p$q w logice dodatniej (bo q):
Kolumna A1B1:
Spójnik „albo” p$q w logice dodatniej (bo q) to jednoczesne zachodzenie zarówno warunku wystarczającego =>, jak i koniecznego ~> w kierunku od p do ~q
A1: p=>~q =1 - zajście p jest (=1) wystarczające => dla zajścia ~q
B1: p~>~q =1 - zajście p jest (=1) konieczne ~> dla zajścia ~q
A1B1: p$q = (A1: p=>~q)*(B1: p~>~q) = 1*1 =1

Lewą stronę czytamy:
Zajdzie p „albo”($) zajdzie q
A1B1: p$q = (A1: p=>~q)*(B1: p~>~q) = 1*1 =1
Trzeciej możliwości brak

Prawą stronę czytamy:
Do tego aby zaszło p potrzeba ~> i wystarcza => aby zaszło ~q
A1B1: p$q = (A1: p=>~q)*(B1: p~>~q) = 1*1 =1

Definicja tożsamości zbiorów:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q i jednocześnie zbiór p jest nadzbiorem ~> zbioru q
p=q <=> (A1: p=>q)*(B1: p~>q) = p<=>q

W spójniku „albo” p$q zachodzi tożsamość zbiorów:
p=~q
Stąd mamy tożsamą równoważność p<=>~q prawdziwą:
p<=>~q = (A1: p=>~q)*(B1: p~>~q) = p$q
Lewą stronę czytamy:
Zajdzie p wtedy i tylko wtedy gdy zajdzie ~q
p<=>~q = (A1: p=>~q)*(B1: p~>~q) =1*1 =1

Nasz przykład:
A1B1: M$K = (A1: M=>~K)*(B1: M~>~K) = 1*1 =1

Lewą stronę czytamy:
Dowolny człowiek jest mężczyzną (M) albo($) kobietą (K)
A1B1: M$K = (A1: M=>~K)*(B1: M~>~K) = 1*1 =1
Trzeciej możliwości brak

Prawą stronę czytamy:
Aby być mężczyzną (M=1) potrzeba ~> i wystarcza => iż nie jest się kobietą (~K=1)
A1B1: M$K = (A1: M=>~K)*(B1: M~>~K) = 1*1 =1

W spójniku „albo” M$K zachodzi tożsamość zbiorów:
M=~K - zbiór „mężczyzn” (M) jest tożsamy ze zbiorem „nie kobiet” (~K) w dziedzinie C (człowiek)
Stąd mamy tożsamą równoważność prawdziwą M<=>~K:
A1B1: M<=>~K = (A1: M=>~K)*(B1: M~>~K) = M$K
Lewą stronę czytamy:
Dowolny człowiek jest mężczyzną (M=1) wtedy i tylko wtedy gdy nie jest kobietą (~K=1)
M<=>~K = (A1: M=>~K)*(B1: M~>~K) =1*1 =1
Prawą stronę powyższej równoważności czytamy:
Aby być mężczyzną (M=1) potrzeba ~> i wystarcza => iż nie jest się kobietą (~K=1)
M<=>~K = (A1: M=>~K)*(B1: M~>~K) = 1*1 =1

Definicja definicji podstawowej dowolnego spójnika implikacyjnego:
Definicja podstawowa dowolnego spójnika implikacyjnego to definicja tego spójnika w logice dodatniej (bo q).

Jeśli w definicji dowolnego spójnika implikacyjnego nie zaznaczamy w jakiej jest logice to domyślnie chodzi nam o definicję podstawową tego spójnika.
Mówiąc o definicji podstawowej możemy zatem pominąć sygnalizację w jakiej logice ta definicja jest wyrażona.

Definicja spójnika „albo” ~p$~q w logice ujemnej (bo ~q):
Kolumna A2B2:
Spójnik „albo” ~p$~q w logice ujemnej (bo ~q) to jednoczesne zachodzenie zarówno warunku wystarczającego =>, jak i koniecznego ~> w kierunku od ~p do q
A2: ~p~>q =1 - zajście ~p jest konieczne ~> dla zajścia q
B2: ~p=>q =1 - zajście ~p jest wystarczające => dla zajścia q
A2B2: ~p$~q = (A2: ~p~>q)*(B2: ~p=>q) =1*1 =1

Lewą stronę czytamy:
Zajdzie ~p „albo”($) zajdzie ~q
A2B2: ~p$~q = (A2: ~p~>q)*(B2: ~p=>q) =1*1 =1
Trzeciej możliwości brak

Prawą stronę czytamy:
Do tego aby zaszło ~p potrzeba ~> i wystarcza => aby zaszło q
A2B2: ~p$~q = (A2: ~p~>q)*(B2: ~p=>q) =1*1 =1

Definicja tożsamości zbiorów:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q i jednocześnie zbiór p jest nadzbiorem ~> zbioru q
p=q <=> (A1: p=>q)*(B1: p~>q) = p<=>q

W spójniku „albo” ~p$~q zachodzi tożsamość zbiorów:
~p=q
Stąd mamy tożsamą równoważność ~p<=>q prawdziwą:
A2B2: ~p<=>q = (A2: ~p~>q)*(B2: ~p=>q) = p$q
Lewą stronę czytamy:
Zajdzie ~p wtedy i tylko wtedy gdy zajdzie q
A2B2: ~p<=>q = (A2: ~p~>q)*(B2: ~p=>q) =1*1 =1
Prawą stronę powyższej równoważności czytamy:
Do tego aby zaszło ~p potrzeba ~> i wystarcza => aby zaszło q
A2B2: ~p<=>q = (A2: ~p~>q)*(B2: ~p=>q) =1*1 =1

Nasz przykład:
A2B2: ~M$~K = (A2: ~M~>K)*(B2: ~M=>K) =1*1 =1

Lewą stronę czytamy:
Dowolny człowiek nie jest mężczyzną (~M=1) albo($) nie jest kobietą (~K=1)
A2B2: ~M$~K = (A2: ~M~>K)*(B2: ~M=>K) =1*1 =1
Trzeciej możliwości brak

Prawą stronę czytamy:
Aby nie być mężczyzną (~M=1) potrzeba ~> i wystarcza => iż jest się kobietą (K=1)
A1B1: M$K = (A1: M=>~K)*(B1: M~>~K) = 1*1 =1

W spójniku „albo” ~M$~K zachodzi tożsamość zbiorów:
~M=K - zbiór „nie mężczyzn” (~M) jest tożsamy ze zbiorem „kobiet” (K) w dziedzinie C (człowiek)
Stąd mamy tożsamą równoważność ~M<=>K prawdziwą:
A2B2: ~M<=>K = (A2: ~M~>K)*(B2: ~M=>K) = M$K
Lewą stronę czytamy:
Dowolny człowiek nie jest mężczyzną (~M=1) wtedy i tylko wtedy gdy jest kobietą (K=1)
A2B2: ~M<=>K = (A2: ~M~>K)*(B2: ~M=>K) =1*1 =1
Prawą stronę powyższej równoważności czytamy:
Aby nie być mężczyzną (~M=1) potrzeba ~> i wystarcza => iż jest się kobietą (K=1)
A2B2: ~M<=>K = (A2: ~M~>K)*(B2: ~M=>K) =1*1 =1

3.4.2 Operator „albo” p|$q wsparty przykładem M|$K

Zacznijmy od definicji spójnika „albo” p$q wspartego przykładem M$K

Definicja podstawowa spójnika „albo” p$q w logice dodatniej (bo q):
Kolumna A1B1:
Spójnik „albo” p$q w logice dodatniej (bo q) to jednoczesne zachodzenie zarówno warunku wystarczającego =>, jak i koniecznego ~> w kierunku od p do ~q
A1: p=>~q =1 - zajście p jest (=1) wystarczające => dla zajścia ~q
B1: p~>~q =1 - zajście p jest (=1) konieczne ~> dla zajścia ~q
stąd:
A1B1: p$q = (A1: p=>~q)*(B1: p~>~q) = 1*1 =1

Diagram spójnika „albo” p$q wspomagany przykładem o mężczyźnie (M) i kobiecie (K)
Kod:

 DA:
 Diagram spójnika „albo” p$q w zbiorach (zdarzeniach)
--------------------------------------------------------------------------
| D (dziedzina)                                                          |
| p+q =D =1 - zbiór q jest uzupełnieniem do dziedziny D dla zbioru p     |
| p*q =[]=0 - zbiory p i q są rozłączne                                  |
| Podstawmy nasz przykład:                                               |
| p=M - zbiór wszystkich mężczyzn                                        |
| q=K - zbiór wszystkich kobiet                                          |
| Dla zmiennych aktualnych M (mężczyzna) i K (kobieta) mamy:             |
| C (człowiek) - zbiór wszystkich ludzi                                  |
| M+K =C =1 - zbiór K jest uzupełnieniem do dziedziny C dla M            |
| M*K =[]=0 - zbiór M jest rozłączny ze zbiorem K w dziedzinie C         |
--------------------------------------------------------------------------
: Zbiór: p=M (mężczyzna)          | Zbiór: q=K (kobieta)                 |
| A1B1: Spójnik „albo”($) dla p:  | A2B2: Spójnik „albo”($) dla ~p       |
| p$q = (A1: p=>~q)*(B1: p~>~q)  [=] ~p$~q = (A2:~p~>q)*(B2:~p=>q)       |
| M$K = (A1: M=>~K)*(B1: M~>~K)  [=] ~M$~K = (A2:~M~>K)*(B2:~M=>K)       |
| Dla p=M i q=K mamy:             |  Dla p=M i q=K mamy:                 |
| p=~q - p jest negacją (~)q w D  #  q=~p - q jest negacją (~)p w D      |
| M=~K - M jest negacją (~)K w C  #  K=~M - K jest negacją (~)M w C      |
--------------------------------------------------------------------------
Gdzie:
# - różne w znaczeniu iż jedna strona jest negacją drugiej strony
[=] - tożsamość logiczna
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


Definicja spójnika „albo” p$q wsparta przykładem M$K
Kod:

TA:
Tabela prawdy spójnika „albo”($):
Kolumna A1B1 to punkt odniesienia w zapisie formalnym {p,q}:
A1: p=>~q =1 - p jest (=1) wystarczające => dla ~q
B1: p~>~q =1 - p jest (=1) konieczne ~> dla ~q
p$q = (A1: p=>~q)*(B1: p~>~q) =1*1=1
Dla naszego przykładu mamy punkt odniesienia:
p=M (mężczyzna)
q=K (kobieta)
Kolumna A1B1 to punkt odniesienia w zapisie aktualnym {M,K}:
A1: M=>~K =1 - bycie mężczyzną jest wystarczające => by nie być kobietą
B1: M~>~K=1 - bycie mężczyzną jest konieczne ~> by nie być kobietą
A1B1: M$K = (A1: M=>~K)*(B1: M~>~K) =1*1 =1
       A1B1:        A2B2:       |      A3B3:         A4B4:
A:  1: p=>~q=1 = 2:~p~>q  =1   [=] 3: ~q~>p  =1 = 4: q=>~p =1
A:  1: M=>~K=1 = 2:~M~>K  =1   [=] 3: ~K~>M  =1 = 4: K=>~M =1
A’: 1: p~~>q=0 =               [=]              = 4: q~~>p =0
A’: 1: M~~>K=0 =               [=]              = 4: K~~>M =0
       ##           ##          |      ##            ##
B:  1: p~>~q=1 = 2:~p=>q  =1   [=] 3: ~q=>p  =1 = 4: q~>~p =1
B:  1: M~>~K=1 = 2:~M=>K  =1   [=] 3: ~K=>M  =1 = 4: K~>~M =1
B’:            = 2:~p~~>~q=0   [=] 3: ~q~~>~p=0
B’:            = 2:~M~~>~K=0   [=] 3: ~K~~>~M=0

Równanie operatora „albo” p|$q:
A1B1:                                                   A2B2:
p$q = (A1: p=>~q)*(B1: p~>~q) = (A2:~p~>q)*(B2:~p=>q) = ~p$~q

Operator „albo” p|$q to układ równań logicznych:
A1B1: p$q =(A1: p=>~q)* (B1: p~>~q) - co się stanie jeśli zajdzie p
A2B2:~p$~q=(A2:~p~>q)*(B2:~p=>q) - co się stanie jeśli zajdzie ~p

Układ równań logicznych jest przemienny, stąd mamy:
Operator „albo” ~p|$~q to układ równań logicznych:
A2B2:~p$~q=(A2:~p~>q)*(B2:~p=>q) - co się stanie jeśli zajdzie ~p
A1B1: p$q =(A1: p=>~q)* (B1: p~>~q) - co się stanie jeśli zajdzie p

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


Definicja dowolnego operatora implikacyjnego p||?q:
Operator implikacyjny p||?q to odpowiedź na pytanie co się stanie jeśli zajdzie p oraz co się stanie jeśli zajdzie ~p
Kod:

T2.
Równanie operatora „albo” p|$q:
A1B1:                                                   A2B2:
p$q = (A1: p=>~q)*(B1: p~>~q) = (A2:~p~>q)*(B2:~p=>q) = ~p$~q
bo prawa Kubusia:
A1: p=>~q = A2: ~p~>q
B1: p~>~q = B2: ~p=>q
cnd


Dlaczego to jest równanie operatora „albo” p|$q?
A1B1: W kolumnie A1B1 mamy odpowiedź na pytanie co może się wydarzyć jeśli zajdzie p
A2B2: W kolumnie A2B2 mamy odpowiedź na pytanie co może się wydarzyć jeśli zajdzie ~p

Stąd mamy:
Operator „albo” p|$q w logice dodatniej (bo p) to układ równań logicznych A1B1 i A2B2 dających odpowiedź na pytanie o p i ~p
A1B1: p$q =(A1: p=>~q)* (B1: p~>~q) - co się stanie jeśli zajdzie p
A2B2:~p$~q=(A2:~p~>q)*(B2:~p=>q) - co się stanie jeśli zajdzie ~p

Układ równań logicznych jest przemienny, stąd mamy:
Operator „albo” ~p|$~q w logice ujemnej (bo ~p) to układ równań logicznych A2B2 i A1B1 dający odpowiedź na pytanie o ~p i p
A2B2:~p$~q=(A2:~p~>q)*(B2:~p=>q) - co się stanie jeśli zajdzie ~p
A1B1: p$q =(A1: p=>~q)* (B1: p~>~q) - co się stanie jeśli zajdzie p

Z tabeli T2 odczytujemy tożsamość logiczną:
A1B1: p$q = A2B2:~p$~q

Definicja tożsamości logicznej:
Prawdziwość dowolnej strony tożsamości logicznej „=” wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej „=” wymusza fałszywość drugiej strony

Innymi słowy
1.
Udowodnienie iż dany układ spełnia definicję spójnika „albo” p$q w logice dodatniej (bo q) jest tożsame z udowodnieniem iż ten sam układ spełnia definicję spójnika „albo” ~p$~q w logice ujemnej (bo ~q), albo odwrotnie.
A1B1: p$q = A2B2:~p$~q

Na mocy definicji operatorów logicznych p|$q i ~p|$~q widzimy, że udowodnienie prawdziwości 1 pociąga za sobą prawdziwość 2:
2.
p|$q = ~p|$~>~q
cnd

3.4.3 Operator „albo” p|$q w rozpisce na zdania warunkowe „Jeśli p to q”

W algebrze Kubusia w zbiorach zachodzi tożsamość:
Warunek wystarczający => = relacja[b] podzbioru =>
Warunek konieczny ~> = [b]relacja
nadzbioru ~>

Operator „albo” p|$q w logice dodatniej (bo p) to układ równań logicznych A1B1 i A2B2 dających odpowiedź na pytanie o p i ~p

Kolumna A1B1:
Co może się wydarzyć jeśli zajdzie p (p=1)?


Odpowiedź mamy w kolumnie A1B1:
A1: p=>~q =1 - zajście p jest wystarczające => dla zajścia ~q
B1: p~>~q =1 - zajście p jest konieczne ~> dla zajścia ~q
A1B1: p$q =(A1: p=>~q)* (B1: p~>~q) =1*1=1
Matematycznie zachodzi tożsamość logiczna:
A1B1: p$q =(A1: p=>~q)* (B1: p~>~q) = p<=>~q
Powyższe równanie logiczne definiuje tożsamość zbiorów:
p=~q

Odpowiedź na pytanie co może się wydarzyć jest zajdzie p w rozpisce na warunek wystarczający =>.
Kolumna A1B1:
A1.
Jeśli zajdzie p (p=1) to na 100% => zajdzie ~q (~q=1)
p=>~q =1
Zajście p jest (=1) wystarczające => dla zajścia ~q
Dowód:
Zachodzi tożsamość zbiorów/pojęć:
p=~q
stąd:
p=>~q = ~q=>~q =1 - bo każdy zbiór/pojęcie jest podzbiorem => siebie samego
cnd

Zbiory:
Jeśli dowolny element należy do zbioru p to na 100 => należy do zbioru ~q
p=>q =1
Dowód:
Zachodzi tożsamość zbiorów:
p=~q
stąd:
p=>~q = p=>p =1 - bo każdy zbiór jest podzbiorem => siebie samego
cnd
Przynależność dowolnego elementu do zbioru p jest wystarczająca => do tego, aby ten element należał do zbioru ~q
Przynależność dowolnego elementu do zbioru p daje nam gwarancję matematyczną => iż ten element należy do zbioru ~q
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>

Nasz przykład:
A1.
Jeśli dowolny człowiek jest mężczyzną (M=1) to na 100% => nie jest kobietą (~K=1)
M=>~K =1
Bycie mężczyzną (M=1) daje nam gwarancję matematyczną => iż nie jesteśmy kobietą (~K=1)
Oczywistość z powodu tożsamości zbiorów:
M=~K

Zdarzenia:
Zajście zdarzenia p jest warunkiem wystarczającym => dla zajścia zdarzenia ~q
p=>~q =1
Dowód:
Zachodzi tożsamość pojęć:
p=~q
stąd:
p=>~q = p=>p =1 - bo każde pojęcie jest podzbiorem => siebie samego
cnd

Prawdziwy warunek wystarczający A1 wymusza fałszywy kontrprzykład A1’ i odwrotnie:
A1’.
Jeśli zajdzie p (p=1) to może ~~> zajść q (q=1)
p~~>q = p*q =[] =0 - bo zbiory/zdarzenia p i q są rozłączne
Dowód:
Z diagramu DA odczytujemy:
p=~q
stąd:
p~~>q = ~q~~>q = ~q*q = [] =0
cnd

Zbiory:
A1’
Jeśli dowolny element należy do zbioru p to może ~~> należeć do zbioru q
p~~>q = p*q =[] =0 - bo zbiory/zdarzenia p i q są rozłączne
Nie istnieje (=0) element wspólny zbiorów ~~> p i q, bo zbiory p i q są rozłączne.

Nasz przykład:
A1’
Jeśli dowolny człowiek jest mężczyzną (M=1) to może ~~> być kobietą (K=1)
M~~>K = M*K =[] =0
Nie istnieje wspólny element zbioru mężczyzna (M=1) i kobieta K (K=1) bo zbiory M i K są rozłączne.

Zdarzenia:
Nie jest możliwe (=0) jednoczesne zajście zdarzeń ~~> p i q bo zdarzenia p i q są rozłączne

Kolumna A2B2:
Co może się wydarzyć jeśli zajdzie ~p (~p=1)?


Odpowiedź mamy w kolumnie A2B2:
A2: ~p~>q =1 - zajście ~p jest (=1) konieczne ~> dla zajścia q
B2: ~p=>q =1 - zajście ~p jest wystarczające => dla zajścia q
A2B2: ~p$~q = (A2: ~p~>q)*(B2: ~p=>q) =1*1=1
Matematycznie zachodzi tożsamość logiczna:
A2B2: ~p$~q = (A2: ~p~>q)*(B2: ~p=>q) = ~p<=>q
Powyższe równanie logiczne definiuje tożsamość zbiorów:
~p=q

Odpowiedź na pytanie co może się wydarzyć jest zajdzie ~p w rozpisce na warunek wystarczający =>.
Kolumna A2B2:
B2.
Jeśli zajdzie ~p (~p=1) to na 100% => zajdzie q (q=1)
~p=>q =1
Dowód:
Zachodzi tożsamość zbiorów/pojęć:
~p=q
stąd:
~p=>q = q=>q =1 - bo każdy zbiór/pojęcie jest podzbiorem => siebie samego
cnd

Zbiory:
B2.
Jeśli dowolny element należy do zbioru ~p to na 100% => należy do zbioru q
~p=>q =1
Przynależność dowolnego elementu do zbioru ~p jest wystarczająca => aby ten element należał do zbioru q
Przynależność dowolnego elementu do zbioru ~p daje nam gwarancję matematyczną => iż ten element należy do zbioru q
Oczywistość wobec tożsamości zbiorów:
~p=q
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>

Nasz przykład:
B2.
Jeśli dowolny człowiek nie jest mężczyzną (~M=1) to na 100% => jest kobietą (K=1)
~M=>K=1
Nie bycie mężczyzną (~M=1) daje nam gwarancję matematyczną => iż jesteśmy kobietą (K=1)

Zdarzenia:
Jeśli zajdzie zdarzenie ~p to na 100% => zajdzie zdarzenie q
~p=>q =1
Zajście ~p jest wystarczające => dla zajścia q
Dowód:
Zachodzi tożsamość zdarzeń:
~p=q
stąd:
~p=>q = q=>q =1 - bo każde zdarzenie jest podzbiorem => siebie samego

Prawdziwy warunek wystarczający B2 wymusza fałszywy kontrprzykład B2’ i odwrotnie:
B2’.
Jeśli zajdzie ~p (~p=1) to może ~~> zajść ~q (~q=1)
~p~~>~q = ~p*~q =[] =0 - bo zbiory/zdarzenia ~p i ~q są rozłączne

Zbiory:
B2’.
Jeśli dowolny element należy do zbioru ~p to może ~~> należeć do zbioru ~q
~p~~>~q = ~p*~q =[] =0 - bo zbiory ~p i ~q są rozłączne
Dowód:
Zachodzi tożsamość zbiorów:
~p=q
stąd:
~p~~>~q = q~~>~q = q*~q =[] =0
cnd

Nasz przykład:
Jeśli dowolny człowiek nie jest mężczyzną (~M=1) to może ~~> nie być kobietą (~K=1)
~M~~>~K = ~K*~K =[] =0
Nie istnieje wspólny element zbiorów „nie mężczyzna” ~M i „nie kobieta” ~K
Dowód:
W dziedzinie C (człowiek) zachodzi tożsamość zbiorów:
~M=K
stąd mamy:
B2’: ~M~~>~K = K~~>~K = K*~K =[] =0
cnd

Zdarzenia:
Nie jest możliwe (=0) jednoczesne zajście zdarzeń ~~>: ~p i ~q
~p~~>~q = ~p*~q =[] =0
Dowód:
Zachodzi tożsamość pojęć:
~p=q
stąd:
~p~~>~q = q~~>~q = q*~q =[] =0
cnd

Podsumowanie:
Jak widzimy, istotą operatora „albo” p|$q jest gwarancja matematyczna => po stronie p (zdanie A1), jak również gwarancja matematyczna => po stronie ~p (zdanie B2).
Nie ma tu mowy o jakimkolwiek „rzucaniu monetą” w sensie „na dwoje babka wróżyła” jak to mieliśmy w operatorze implikacji prostej p||=>q czy też w operatorze implikacji odwrotnej p||~>q.

Zauważmy że:
a)
Układ równań logicznych jest przemienny, stąd mamy:
Operator „albo” ~p|$~q to układ równań logicznych:
A2B2:~p$~q=(A2:~p~>q)*(B2:~p=>q) - co się stanie jeśli zajdzie ~p
A1B1: p$q =(A1: p=>~q)* (B1: p~>~q) - co się stanie jeśli zajdzie p
Doskonale widać, że analiza matematyczna operatora „albo” ~p|$~q w logice ujemnej (bo ~p) będzie identyczna jak operatora „albo” p|$q w logice dodatniej (bo p) z tym, że zaczynamy od kolumny A2B2 kończąc na kolumnie A1B1.
b)
Także kolejność wypowiadanych zdań jest dowolna, tak więc zdania z powyższej analizy A1, A1’, B2, B2’ możemy wypowiadać w sposób losowy - matematycznie to bez znaczenia.


Ostatnio zmieniony przez rafal3006 dnia Śro 6:57, 23 Cze 2021, w całości zmieniany 2 razy
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 35331
Przeczytał: 23 tematy

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Śro 8:24, 23 Cze 2021    Temat postu:

Moje drugie wejście na matematykę.pl i na razie ostatnie, bo jak wszyscy widzą non-stop modyfikuję AK aby była zrozumiała dla matematyków.

Nie jest to proste bo 100% definicji mamy sprzecznych ...

[link widoczny dla zalogowanych]

[quote=ola_ post_id=5630650 time=1623583484 user_id=150199]
Czy ktoś wie jak wykazać że zdanie: [latex]((( p \Rightarrow q) \Rightarrow p) \Rightarrow p)[/latex] jest tautologią bez pomocy tabelki?
[/quote]
Spróbuję inaczej w sposób, co do którego żaden matematyk nie ma prawa się przyczepić.

Zauważmy, że w samym przykładzie skrajne nawiasy są zbędne bo w matematyce nawiasy mają najwyższy priorytet wykonania.
Stąd:
Równie poprawny jest zapis
[latex](( p \Rightarrow q) \Rightarrow p) \Rightarrow p[/latex]

W technicznej algebrze Boole'a (jestem elektronikiem) kolejność wykonywania działań jest następująca:
nawiasy, [latex]*, +[/latex]

Definicja znaczka [latex]\Rightarrow[/latex] :
[latex]p \Rightarrow q = \neg p+q[/latex]

Zróbmy czysto matematyczne podstawienie:
[latex]Y = (p \Rightarrow q) \Rightarrow p[/latex]
Stąd mamy:
[latex](Y) \Rightarrow p[/latex]

Obliczamy [latex]Y[/latex]:
[latex]Y = (p \Rightarrow q) \Rightarrow p[/latex]
[latex]Y= ( \neg p+q) \Rightarrow p[/latex] - na mocy definicji znaczka [latex]\Rightarrow[/latex]
[latex]Y = \neg (\neg p+q) +p[/latex] - na mocy definicji znaczka [latex]\Rightarrow[/latex]
[latex]Y = p* \neg q + p[/latex] - na mocy prawa De Morgana
[latex]Y = p* \neg q + p*1[/latex] - prawo algebry Boole'a: [latex]p=p*1[/latex]
[latex]Y = p*( \neg q+1)[/latex] - wyciągnięcie zmiennej p przed nawias
[latex]Y = p*1[/latex] - bo prawo algebry Boole'a [latex]x+1 =1[/latex], gdzie x=dowolne wyrażenie algebry Boole'a
[latex]Y=p[/latex] - prawo algebry Boole'a: [latex]p=p*1[/latex]

Odtwarzając podstawienie mamy:
[latex](Y) \Rightarrow p[/latex]
[latex](p) \Rightarrow p[/latex]
[latex]p \Rightarrow p = \neg p+p =1[/latex] - na mocy definicji znaczka [latex]\Rightarrow[/latex]
oraz prawa algebry Boole'a:
[latex] \neg p+p =1[/latex]
cnd

Moje uwagi:
1.
Jestem absolwentem elektroniki specjalność automatyka na Politechnice Warszawskiej
Dla mnie, jako przybysza ze świata techniki powyższy dowód to elementarz algebry Boole'a wzbogaconej o definicję znaczka [latex]\Rightarrow [/latex] znaną każdemu ziemskiemu matematykowi.
Definicja znaczka [latex]\Rightarrow[/latex] :
[latex]p \Rightarrow q = \neg p+q[/latex]
2.
Schemat dowodu proponowany wyżej:
[quote=Dasio11 post_id=5630651 time=1623584665 user_id=41442]
Ten napis to nie zdanie, tylko formuła rachunku zdań (inaczej schemat zdaniowy), bo występują w nim zmienne [latex]p, q[/latex]. W zależności od tego co się podstawi za zmienne, napis może stać się prawdziwy lub fałszywy (teoretycznie, bo tu akurat będzie zawsze prawdziwy). Zdaniem zaś byłby taki napis, który od razu jest prawdziwy lub fałszywy bez żadnych podstawień.

Dowód można zrobić nie wprost: załóż, że dla pewnego wartościowania formuła staje się fałszywa, i dojdź do sprzeczności.
[/quote]
to dla mnie koszmar bowiem jako przybysz ze świata techniki nie wiem co to jest „implikacja materialna”, „zdanie” w rozumieniu aktualnej logiki matematycznej, „formuła rachunku zdań” etc

Ciekawostka:
Skończyłem elektronikę na PW-wa w roku 1980 gdzie algebra Boole’a wykładana była na najwyższym światowym poziomie a takie terminy jak „Klasyczny Rachunek Zdań”, „implikacja materialna”, „zdanie” w rozumieniu ziemskiej logiki matematycznej usłyszałem po raz pierwszy w życiu w roku 2006, czyli 26 lat po skończeniu studiów.
Usłyszawszy takie zdania prawdziwe w ziemskiej logice matematycznej jak:
[link widoczny dla zalogowanych]
Jeśli 2+2=5 to jestem papieżem
Jeśli 2+2=5 to 2+2=4
nie miałem wyjścia - musiałem wejść na serio w temat „logika matematyczna” i siedzę w tym od 15 lat. Mam nadzieję, że kiedyś matematycy zainteresują się tym, co zrobiłem
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 35331
Przeczytał: 23 tematy

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Śro 11:11, 23 Cze 2021    Temat postu:

[link widoczny dla zalogowanych]

Jan Kraszewski napisał:

Rafal3006 napisał:

Spróbuję inaczej w sposób, co do którego żaden matematyk nie ma prawa się przyczepić.

Ależ oczywiście, że ma.

Rafal3006 napisał:

W technicznej algebrze Boole'a (jestem elektronikiem) kolejność wykonywania działań jest następująca:
nawiasy, *, +

Ale tutaj jesteś na forum matematycznym, więc powinieneś używać terminologii matematycznej, w której nie ma działań, tylko spójniki logiczne, które mają inne priorytety. Bez tego nie pomagasz osobie, które zadała pytanie, bo produkujesz rozwiązanie, które z jej punktu widzenia jest mało przydatne.

Rafal3006 napisał:

Definicja znaczka =>:
p=>q = ~p+q

Dla matematyka to nie jest "definicja znaczka", tylko prawo eliminacji implikacji.

Nie chodzi o to, że Twoje rachunki są niepoprawne, tylko o to, że używasz innego języka (jak sam zauważasz) i w związku z tym nie jesteś pomocny.

Rafal3006 napisał:

Schemat dowodu proponowany wyżej:
(...)
to dla mnie koszmar bowiem jako przybysz ze świata techniki nie wiem co to jest „implikacja materialna”, „zdanie” w rozumieniu aktualnej logiki matematycznej, „formuła rachunku zdań” etc

No ale to Twój problem.

Rafal3006 napisał:

Mam nadzieję, że kiedyś matematycy zainteresują się tym, co zrobiłem

Ale na pewno nie w tym wątku, bo on jest poświęcony czemu innemu.

JK


Zgadzam się z powyższymi uwagami.
Póki co dziękuję, bowiem ciągle pracują nad doskonaleniem tego co robię - nie mam jeszcze gotowego produktu, na bazie którego mógłbym dyskutować z matematykami.
Jak skończę, to mam nadzieję, że w innym temacie będę mógł na matematyce.pl przedstawić inną wizję logiki matematycznej, niż obecnie obowiązująca.
Powrót do góry
Zobacz profil autora
Wyświetl posty z ostatnich:   
Napisz nowy temat   Odpowiedz do tematu    Forum ŚFiNiA Strona Główna -> Filozofia Wszystkie czasy w strefie CET (Europa)
Idź do strony Poprzedni  1, 2, 3 ... 32, 33, 34 ... 369, 370, 371  Następny
Strona 33 z 371

 
Skocz do:  
Nie możesz pisać nowych tematów
Nie możesz odpowiadać w tematach
Nie możesz zmieniać swoich postów
Nie możesz usuwać swoich postów
Nie możesz głosować w ankietach

fora.pl - załóż własne forum dyskusyjne za darmo
Powered by phpBB © 2001, 2005 phpBB Group
Regulamin