Forum ŚFiNiA Strona Główna ŚFiNiA
ŚFiNiA - Światopoglądowe, Filozoficzne, Naukowe i Artystyczne forum - bez cenzury, regulamin promuje racjonalną i rzeczową dyskusję i ułatwia ucinanie demagogii. Forum założone przez Wuja Zbója.
 
 FAQFAQ   SzukajSzukaj   UżytkownicyUżytkownicy   GrupyGrupy   GalerieGalerie   RejestracjaRejestracja 
 ProfilProfil   Zaloguj się, by sprawdzić wiadomościZaloguj się, by sprawdzić wiadomości   ZalogujZaloguj 

Algebra Kubusia - rewolucja w logice matematycznej
Idź do strony Poprzedni  1, 2, 3 ... 28, 29, 30 ... 400, 401, 402  Następny
 
Napisz nowy temat   Odpowiedz do tematu    Forum ŚFiNiA Strona Główna -> Filozofia
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 36113
Przeczytał: 10 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Pią 11:23, 29 Sty 2021    Temat postu:

http://www.sfinia.fora.pl/forum-kubusia,12/szach-mat-ktory-przejdzie-do-historii-matematyki,15663-3150.html#575807

Twardy dowód wewnętrznej sprzeczności totalnie całej logiki matematycznej ziemian!

http://www.sfinia.fora.pl/filozofia,4/algebra-kubusia-rewolucja-w-logice-matematycznej,16435-675.html#575793
lucek napisał:

otrzymałeś już wyczerpującą odpowiedź, mimo, że na nią nie zasługujesz


Niestety Ludzku, nikt na tym forum nie zna odpowiedzi na dwa pytania z cytatu niżej, bo ich nie udzieliłeś:
http://www.sfinia.fora.pl/forum-kubusia,12/szach-mat-ktory-przejdzie-do-historii-matematyki,15663-3150.html#575781
rafal3006 napisał:

Algebra Kubusia jest powszechnie znana w przedszkolu.
Dowód:
B1
Jeśli jutro będzie pochmurno to może ~> padać
CH~>P =1
Istnienie chmur (CH=1) jest warunkiem koniecznym ~> do tego aby padało (P=1) bo jak nie ma chmur (~CH=1) to na 100% => nie pada (~P=1)
Jak widzisz Lucku, prawo Kubusia samo tu 5-cio latkowi (podkreślę: 5-cio latkowi) wyskoczyło.
B1: CH~>P = B2: ~CH=>~P

Kwadratura koła dla ciebie Lucku:
1.
Czy zgadzasz się na prawdziwość matematyczną (podkreślę: matematyczną) zdania B1
2.
Czy zgadzasz się że prawo Kubusia, które jak sam widzisz, zna każdy 5-cio latek jest prawem matematycznym, prawem logiki matematycznej!

Pytanie pomocnicze:
Dlaczego ziemscy pseudo-matematycy uznają prawdziwość matematyczną zdania B2:
B2.
Jeśli jutro nie będzie pochmurno to na 100% => nie będzie padało
~CH=>~P =1
Brak chmur wystarcza => by nie padało

… a nie uznają prawdziwości matematycznej zdania B1?!

Przecież każdy 5-cio latek wie, że zdania B1 i B2 związane są prawem logiki matematycznej, czego dowód w cytacie.
Prawo Kubusia:
B1: CH~>P = B2: ~CH=>~P =1

Żaden (absolutnie żaden ziemski matematyk) nie ma prawa twierdzić że według niego prawa strona tożsamości logicznej B2: ~CH=>~P jest prawdą, natomiast o lewej stronie B1: CH~>P mówić że nie wie jaka jest wartość logiczna tego zdania.

Teraz uważaj Lucku:
Opisany tu przypadek jest twardym dowodem wewnętrznej sprzeczności logiki matematycznej ziemian która twierdzi że prawa strona tożsamości logicznej na 100% jest zdaniem prawdziwym B2:~CH=>~P =1, natomiast nic a nic nie jest w stanie z siebie wydusić na temat prawdziwości matematycznej lewej strony tożsamości logicznej B1: CH~>P =?
Taki pseudo-matematyk ewidentnie gwałci zachodzące tu prawo logiki matematycznej, prawo Kubusia:
Prawo Kubusia:
B1: CH~>P = B2: ~CH=>~P =1
Oznacza to że logika matematyczna ziemian jest wewnętrznie sprzeczna!

Nie tylko KRZ jest wewnętrznie sprzeczny, totalnie cała logika matematyczna ziemian jest wewnętrznie sprzeczna bo nie uznaje prawdziwości matematycznej (podkreślę: matematycznej) zdania B1: CH~>P =????!!!!


Ostatnio zmieniony przez rafal3006 dnia Pią 14:14, 29 Sty 2021, w całości zmieniany 1 raz
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
lucek




Dołączył: 18 Lut 2011
Posty: 9040
Przeczytał: 42 tematy


PostWysłany: Pią 15:08, 29 Sty 2021    Temat postu:

otrzymałeś już wyczerpującą odpowiedź:
lucek napisał:
rafal3006 napisał:
lucek napisał:
MaluśnaOwieczka napisał:
rafal3006 napisał:
Jaką widzisz wspólną dziedzinę dla:
p=2+2=4
q=Płock leży nad Wisłą


Żadną. Jednak jeśli Ty chcesz to stwierdzić w Algebrze Kubusia, to musisz to zrobić w sposób FORMALNY. Nie starczy, że sobie powiesz "to nie ma żadnego związku ze sobą". Musi to wynikać z formalnych zasad Algebry Kubusia, a nie z Twojej intuicji.


jak to nie widzisz żadnej :) ? nawet rafał ją widzi więc szybko wykluczył - zbiór "Uniwersum", a u nie posługujących się AK zdań logicznych tj. takich, którym można przypisać wartość logiczną.

To jest to samo co Uniwersum, bo każde pojęcie zrozumiałe przez człowieka musi być jednoznacznie zrozumiałe w obszarze Uniwersum - wtedy to pojęcie przyjmuje wartość logiczną prawda.
Prawdą jest, że rozumiem pojęcie X.

Sęk w tym że w dowolnym zdaniu warunkowym "Jeśli p to q" z definicji nie wolno ci przyjąć wspólnej dziedziny Uniwersum, musi być to dziedzina węższa zrozumiała dla człowieka.
Po prostu, w sensownej logice matematycznej, w sensownej komunikacji człowieka z człowiekiem, nie da się operować na dziedzinie Uniwersum - musi to być dziedzina węższa.
Co z tego bowiem że pojęcie "pies" i "samolot" należą do wspólnej dziedziny Uniwersum, skoro między "psem" a "samolotem" nie ma żadnego związku tzn. nie da się zdefiniować sensownej dziedziny, mniejszej od Uniwersum, rozumianej przez wszystkich ludzi, do której oba te pojęcia by należały.


ale zbiór zdań logicznych, którym można przyporządkować wartość logiczną jest dziedziną zrozumiałą dla człowieka, co więcej stosowaną przez humanistów i przedszkolaki np.

prędzej mi kaktus na dłoni wyrośnie, niż gówniarze pójdziecie do kina.

podobnie jak zdanie

2+2=4 <=> Płock leży nad Wisłą

jest zrozumiałe dla każdego, kto przyjmuje do wiadomości, że w KRZ mają jedynie znaczenie wartości logiczne zdań i tym zajmuje się KRZ, a nie ich treść, stąd powyższe zdanie jest sensowne i zrozumiałe w dziedzinie określonej przez KRZ.

zdania logiczne są też zbiorem węższym, niż zbiór wszystkich pojęć .... :wink:


na wiecej nie zasługujesz :)
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 36113
Przeczytał: 10 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Pią 19:50, 29 Sty 2021    Temat postu:

http://www.sfinia.fora.pl/forum-kubusia,12/szach-mat-ktory-przejdzie-do-historii-matematyki,15663-3150.html#575863

Prawo śfinii - największy przełom w algebrze Kubusia!
Dlaczego największy?
… bo ostatni, a ten jest zawsze najważniejszy, to taka kropka nad „i”.

http://www.sfinia.fora.pl/forum-kubusia,12/szach-mat-ktory-przejdzie-do-historii-matematyki,15663-3150.html#575779
lucek napisał:
rafal3006 napisał:
lucek napisał:
rafal3006 napisał:
lucek napisał:
MaluśnaOwieczka napisał:
rafal3006 napisał:
Jaką widzisz wspólną dziedzinę dla:
p=2+2=4
q=Płock leży nad Wisłą


Żadną. Jednak jeśli Ty chcesz to stwierdzić w Algebrze Kubusia, to musisz to zrobić w sposób FORMALNY. Nie starczy, że sobie powiesz "to nie ma żadnego związku ze sobą". Musi to wynikać z formalnych zasad Algebry Kubusia, a nie z Twojej intuicji.


jak to nie widzisz żadnej :) ? nawet rafał ją widzi więc szybko wykluczył - zbiór "Uniwersum", a u nie posługujących się AK zdań logicznych tj. takich, którym można przypisać wartość logiczną.

To jest to samo co Uniwersum, bo każde pojęcie zrozumiałe przez człowieka musi być jednoznacznie zrozumiałe w obszarze Uniwersum - wtedy to pojęcie przyjmuje wartość logiczną prawda.
Prawdą jest, że rozumiem pojęcie X.

Definicja Uniwersum:
Zbiór wszelkich pojęć zrozumiałych dla człowieka

Sęk w tym że w dowolnym zdaniu warunkowym "Jeśli p to q" z definicji nie wolno ci przyjąć wspólnej dziedziny Uniwersum.
Dziedzina musi być dziedziną węższą zrozumiałą dla człowieka:
ZWT - zbiór wszystkich trójkątów (twierdzenie Pitagorasa)
ZWZ - zbiór wszystkich zwierząt
ZWS - zbiór wszystkich ssaków
etc
Po prostu, w sensownej logice matematycznej, w sensownej komunikacji człowieka z człowiekiem, nie da się operować na dziedzinie Uniwersum - musi to być dziedzina węższa.
Co z tego bowiem że pojęcie "pies" i "samolot" należą do wspólnej dziedziny Uniwersum, skoro między "psem" a "samolotem" nie ma żadnego związku tzn. nie da się zdefiniować sensownej dziedziny, mniejszej od Uniwersum, rozumianej przez wszystkich ludzi, do której oba te pojęcia by należały.

ale zbiór zdań logicznych, którym można przyporządkować wartość logiczną jest dziedziną zrozumiałą dla człowieka, co więcej stosowaną przez humanistów i przedszkolaki np.

prędzej mi kaktus na dłoni wyrośnie, niż gówniarze pójdziecie do kina.

podobnie jak zdanie

2+2=4 <=> Płock leży nad Wisłą

jest zrozumiałe dla każdego, kto przyjmuje do wiadomości, że w KRZ mają jedynie znaczenie wartości logiczne zdań i tym zajmuje się KRZ, a nie ich treść, stąd powyższe zdanie jest sensowne i zrozumiałe w dziedzinie określonej przez KRZ.

zdania logiczne są też zbiorem węższym, niż zbiór wszystkich pojęć .... :wink:

Zdanie:
prędzej mi kaktus na dłoni wyrośnie, niż gówniarze pójdziecie do kina.
jest powszechnie znaną przenośnią.

Natomiast zdanie:
Do tego aby 2+2=4 potrzeba ~> i wystarcza => aby Płock leżał nad Wisłą
2+2=4 <=> PNW =?
jest po prostu potwornie śmierdzącym gównem.

już wykazałem, że bredzisz od rzeczy - a raczej owca ci to wykazał, więc nie ośmieszaj się dalej :)

http://www.sfinia.fora.pl/forum-kubusia,12/szach-mat-ktory-przejdzie-do-historii-matematyki,15663-3125.html#575737
MaluśnaOwieczka napisał:

Rafal3006 napisał:

Równoważność prawdziwa w gównie zwanym KRZ:
2+2=4 <=> Płock leży nad Wisłą

Kubuś, Ty mi tu udowodnij, że 2+2=4 nie należy do tej samej dziedziny, co "Płock leży nad Wisłą".

http://www.sfinia.fora.pl/forum-kubusia,12/szach-mat-ktory-przejdzie-do-historii-matematyki,15663-3150.html#575787
lucek napisał:

bez czytania mogę ci odpowiedzieć, że AK jest "śmierdzącym gównem" :) i co najwyżej nieudolnym plagiatem KRZ, algebry Boole'a, teorii zbiorów .... typowym wytworem ateizmu i lewactwa, czyli mentalności rafałka


Czemu się denerwujesz Lucku?
Gra skończona - KRZ leży w śmietniku historii, niedługo nikt nawet nie będzie pamiętał, że takie gówno ludzkość kiedykolwiek spłodziła.

Na czym polega największy przełom w algebrze Kubusia?

Prawo śfinii - prawo punktu odniesienia w zdaniach warunkowych „Jeśli p to q”:
W dowolnym zdaniu warunkowym „Jeśli a to b” zapisanym w zmiennych aktualnych a i b tzn. mających związek z językiem potocznym człowieka, zawsze po „Jeśli..” zapisujemy formalny poprzednik p zaś po „to” zapisujemy formalny następnik q.

Tylko i wyłącznie na mocy prawa Tygryska:
B1: p~>q = B3: q=>p
albo prawa kontrapozycji:
B1: p~>q = ~q~>~p
wolno nam zamieniać w wyżej wymienionym punkcie odniesienia poprzednik p z następnikiem q

Przykład:
Pani w przedszkolu:
B1:
Jeśli jutro będzie pochmurno (CH=1) to może ~> padać (P=1)
CH~>P =1
Chmury (CH=1) są warunkiem koniecznym ~> do tego aby jutro padało (P=1), bo jak nie będzie pochmurno (~CH=1) to na 100% => nie będzie padać (~P=1)
Jak widzicie drogie dzieci prawo Kubusia samo nam tu wyskoczyło:
B1: CH~>P = B2: ~CH=>~P
Stąd:
B2.
Jeśli jutro nie będzie pochmurno (~CH=1) to na 100% => nie będzie padało (~P=1)
~CH=>~P=1
Brak chmur (~CH=1) jest warunkiem wystarczającym => do tego aby nie pdało (~P=1), bo zawsze gdy nie ma chmur, nie pada.

Zdanie B1 pani przedszkolanki to punkt odniesienia.
Na mocy prawa śfinii musimy tu przyjąć:
p=CH
q=P
Stąd zdanie B1 w zapisach formalnych przyjmuje postać:
B1: CH~>P =1
B1: p~>q
Zaś prawo Kubusia w zapisach formalnych brzmi:
B1: CH~>P = B2: ~CH=>~P
B1: p~>q = B2: ~p=>~q

Zamienić poprzednik z następnikiem możemy tu tylko i wyłącznie ma mocy prawa Tygryska lub prawa kontrapozycji.

Pani przedszkolanka wypowiedziała zdanie B1.
Jaś lat 5 pyta:
Proszę pani a jeśli jutro będzie padało?

Pani przedszkolanka:
Prawo Tygryska:
B1: CH~>P = B3: P=>CH
to samo w zapisach formalnych:
B1: p~>q = B3: q=>p

Na mocy prawa Tygryska dostajemy Jasiu odpowiedź:
B3.
Jeśli jutro będzie padało (P=1) to na 100% => będzie pochmurno (CH=1)
P=>CH =1
Zapis formalny:
B3: q=>p
Definicja warunku wystarczającego => spełniona bo zawsze gdy pada, jest pochmurno

Zuzia (lat 5):
Proszę pani, a jeśli jutro nie będzie padało?

Pani:
Oczywiście w stosunku do B3 możemy skorzystać z prawa Kubusia:
B3: q=>p = B4: ~q~>~p
stąd:
B4.
Jeśli jutro nie będzie padało (~P=1) to może ~> nie być pochmurno (~CH=1)
~P~>~CH =1
Zapis formalny:
B4: ~q~>~p
Brak opadów (~P=1) jest warunkiem koniecznym ~> do tego aby jutro nie było pochmurno (~CH=1) bo jak pada (P=1) to na 100% => są chmury (CH=1)

Ponownie prawo Kubusia samo nam tu wyskoczyło:
B4: ~P~>~CH = B3: P=>CH
zapis formalny:
B4: ~q~>~p = B3: q=>p

Podsumowując:
Prawo śfinii (na część forum śfinia) jest absolutnie genialne!
Dlaczego?
Bo sprowadza wszelkie problemy w logice matematycznej do poziomu 5-cio latka.
Jakie to problemy?
Szczegóły wkrótce.

Pytanie do Lucka i MaluśnejOwieczki;
Wywieszacie białą flagę, czy dalej chcecie walczyć z algebrą Kubusia?


Ostatnio zmieniony przez rafal3006 dnia Pią 20:40, 29 Sty 2021, w całości zmieniany 4 razy
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 36113
Przeczytał: 10 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Pią 20:42, 29 Sty 2021    Temat postu:

http://www.sfinia.fora.pl/forum-kubusia,12/szach-mat-ktory-przejdzie-do-historii-matematyki,15663-3150.html#575875

MaluśnaOwieczka napisał:

rafal3006 napisał:
[] =0 - zbiór pusty (=0), zawierający zero pojęć zrozumiałych dla człowieka.


Kubuś, dla którego człowieka? Dla Ciebie? Dla mnie? Dla Einsteina? Czy dla debila?

Dla wszystkich, od 5-cio latka poczynając.
Taka jest definicja w AK mająca głębokie uzasadnienie w tekście z której ją wyrwałeś - z definicją chcesz walczyć?
Na przyszłość cytuj większy fragment mojego postu, nie baw się w Urbana.
MaluśnaOwieczka napisał:

I nie uciekaj mi po krzakach.
Miałeś wykazać formalnie, że 2+2=4 nie ma związku z "Płock leży nad Wisłą".

Warunkiem koniecznym abyś zrozumiał iż nie istnieje wspólna dziedzina dla pojęć „2+2=4” oraz pojęcia „Płock leży nad Wisłą” jest zaakceptowanie naszych WSÓLNYCH definicji startowych dotyczących zbiorów na poziomie elementarnym!

Powtórzę po raz n-ty:
http://www.sfinia.fora.pl/forum-kubusia,12/szach-mat-ktory-przejdzie-do-historii-matematyki,15663-3125.html#575733

MaluśnaOwieczka napisał:
rafal3006 napisał:
Jaką widzisz wspólną dziedzinę dla:
p=2+2=4
q=Płock leży nad Wisłą


Żadną. Jednak jeśli Ty chcesz to stwierdzić w Algebrze Kubusia, to musisz to zrobić w sposób FORMALNY. Nie starczy, że sobie powiesz "to nie ma żadnego związku ze sobą". Musi to wynikać z formalnych zasad Algebry Kubusia, a nie z Twojej intuicji.

No właśnie w sposób formalny chcę cię zmusić do przyjęcia naszych wspólnych, trywialnych definicji formalnych - a ty mi bez przerwy uciekasz po krzakach i udajesz że nie rozumiesz co się do ciebie pisze.
Powtórzę:

3.4 Relacje podzbioru => i nadzbioru ~>

Definicja podzbioru =>:
Zbiór p jest podzbiorem => zbioru q wtedy i tylko wtedy gdy każdy element zbioru p należy do zbioru q

Definicja relacji podzbioru =>:
Relacja podzbioru => jest spełniona wtedy i tylko wtedy gdy każdy element zbioru p należy do zbioru q

Z powyższego wynika że zachodzi tożsamość pojęć:
Definicja podzbioru => = relacja podzbioru =>

Pełna definicja relacji podzbioru:
Zbiór p jest podzbiorem => zbioru q wtedy i tylko wtedy gdy spełniona jest relacja podzbioru =>:
p=>q =1 - relacja podzbioru => jest (=1) spełniona
Relacja podzbioru => jest spełniona wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q
Inaczej:
p=>q =0 - relacja podzbioru => nie jest (=0) spełniona

Wniosek z powyższej definicji:
Każdy zbiór jest podzbiorem => siebie samego.
p=>p =1

Definicja równoważności w zbiorach:
Równoważność to relacja podzbioru => zachodząca w dwie strony
p<=>q = (A1: p=>q)*(B3: q=>p)

Definicja tożsamości zbiorów p=q:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q i zbiór q jest podzbiorem => zbioru p.
p=q <=> (A1: p=>q)*(B3: q=>p) =1*1 =1
Innymi słowy:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy spełniona jest relacja równoważności p<=>q:
p=q <=> (A1: p=>q)*(B3: q=>p) = p<=>q

Stąd mamy bardzo ważne w logice matematycznej prawo Słonia:

Prawo Słonia:
Każda równoważność prawdziwa p<=>q definiuje tożsamość zbiorów (pojęć) p=q i odwrotnie
p=q <=> (A1: p=>q)*(B3: q=>p) = p<=>q

Pytanie do MaluśnejOwieczki:
Czy zgadzasz się na ogólną definicję tożsamości zbiorów oraz na prawo Słonia?
Jeśli nie napisz którą z tych kilku powyższych definicji kwestionujesz?

P.S.
Musimy po prostu ustalić wspólny STARTOWY punkt odniesienia, czyli definicje z którymi obaj się zgadzamy.
Nie ma sensu dyskusja gdy ty cały czas powołujesz się na KRZ twierdząc że identycznie musi być w AK - a przecież wiesz że 100% definicji mamy sprzecznych.

Pokazać ci sprzeczność definicji powyższych z ziemskimi?

Bardzo proszę:
Definicję podzbioru mamy wspólną:
Definicja podzbioru =>:
Zbiór p jest podzbiorem => zbioru q wtedy i tylko wtedy gdy każdy element zbioru p należy do zbioru q

Problem w tym że ziemianie twierdzą iż podzbiorem jest tu goły zbiór p bez żadnego związku z q!

Tymczasem w AK mamy tak:
Definicja podzbioru => = relacja podzbioru =>

Czy już widzisz sprzeczność?

Powtórzę:
Którą z tych kilku raptem definicji kwestionujesz i dlaczego?
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 36113
Przeczytał: 10 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Pią 21:52, 29 Sty 2021    Temat postu:

Na forum Kubusia rozwinęła się bardzo ciekawa dyskusja - jak kto ciekawy zapraszam tu:
http://www.sfinia.fora.pl/forum-kubusia,12/szach-mat-ktory-przejdzie-do-historii-matematyki,15663-3150.html#575875
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 36113
Przeczytał: 10 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Sob 10:30, 30 Sty 2021    Temat postu:

Historyczny post z forum Kubusia:

http://www.sfinia.fora.pl/forum-kubusia,12/szach-mat-ktory-przejdzie-do-historii-matematyki,15663-3175.html#575967

Komentarz do definicji dziedziny rodem z algebry Kubusia!

Dzięki MaluśnaOwieczko, dokładnie takie dyskusje od 15 lat posuwają do przodu rozszyfrowywanie algebry Kubusia, której autorem jest Kubuś, stwórca naszego Wszechświata.
Już dzięki tobie stało się coś wielkiego, dopisałem kluczowy komentarz do definicji dziedziny w AK - oczywiście ten komentarz był mi znany od zawsze, ale to ty spowodowałeś iż doszedłem do wniosku że należy go podać tuż po definicji dziedziny w AK w sposób bezdyskusyjnie zrozumiały dla każdego ucznia I klasy LO, który jeszcze nie wie (na jego szczęście!) co to jest potwornie śmierdzące gówno zwane KRZ.


3.3 Dziedzina

Definicja dziedziny:
Dziedzina to dowolnie wybrany zbiór na którym operujemy
Wszystko co leży poza przyjętą dziedziną jest zbiorem pustym z definicji.

Oznacza to, że wszelkie pojęcia poza przyjętą dziedziną są dla nas nierozpoznawalne, czyli nie znamy definicji tych pojęć z założenia. Ograniczeniem dolnym w definiowaniu dziedziny jest zbiór pusty [], natomiast ograniczeniem górnym jest Uniwersum.

Przyjmijmy za dziedzinę w której operujemy Uniwersum.
D=U
Zbiór poza Uniwersum jest dla nas pusty z definicji. Nie oznacza to jednak, że poza naszym aktualnym Uniwersum nie ma już pojęć które człowiek pozna w przyszłości. Przykładowo, zaledwie 50 lat temu słówko Internet było dla ludzkości zbiorem pustym, jeszcze nie zdefiniowanym. W dniu dzisiejszym słówko Internet jest zdefiniowane i znane praktycznie każdemu człowiekowi.

Definicja dziedziny D i zbioru pustego []:
D+~D = D+[] =D =1 - zbiór pusty [] jest zbiorem zewnętrznym w stosunku do dziedziny D
D*~D = D*[] =[] =0 - iloczyn logiczny zbiorów rozłącznych D i [] jest zbiorem pustym []

Na mocy powyższego mamy:
[] = ~D
D=~[]

Matematycznie zachodzi tu prawo podwójnego przeczenia:
p=~(~p)
Stąd:
D = ~(~D) = ~([]) = ~[]
[] = ~(~[]) = ~(D) = ~D

Każdy zbiór jest podzbiorem samego siebie z definicji:
D=>D =1 - dziedzina jest (=1) podzbiorem => siebie samej
[]=>[] =1 - zbiór pusty [] jest (=1) podzbiorem siebie samego

Tabela prawdy wiążąca dziedzinę D ze zbiorem pustym []:
Kod:

A: D=>D        =1 - dziedzina D jest (=1) podzbiorem dziedziny D
B: D~~>[]=D*[] =0 - dziedzina D i zbiór pusty [] to zbiory rozłączne
C: []=>[]      =1 - zbiór pusty [] jest (=1) podzbiorem zbioru pustego []
D: []~~>D=[]*D =0 - zbiór pusty [] i dziedzina D to zbiory rozłączne


Dla D=1 i []=0 mamy tabelę prawdy równoważności D<=>D:
Kod:

   D   D D<=>D
A: 1=> 1  =1
B: 1~~>0  =0
C: 0=> 0  =1
D: 0~~>1  =0



3.3.1 Komentarz do definicji dziedziny

Definicja dziedziny:
Dziedzina to dowolnie wybrany zbiór na którym operujemy
Wszystko co leży poza przyjętą dziedziną jest zbiorem pustym z definicji.

Definicja dziedziny wymaga wyjaśnienia.
Dlaczego wszystko co jest poza dziedziną jest dla nas zbiorem pustym z definicji?

Rozważmy twierdzenie proste Pitagorasa dla trójkątów prostokątnych przyjmując za dziedzinę:
ZWT - zbiór wszystkich trójkątów
A1:
Jeśli trójkąt jest prostokątny to na 100% => zachodzi w nim suma kwadratów
TP=>SK =1
Dziedzina:
ZWT - zbiór wszystkich trójkątów
Twierdzenie to ludzkość udowodniła wieki temu.
Ten dowód oznacza iż:
Zbiór trójkątów prostokątnych jest (=1) podzbiorem => zbioru trójkątów ze spełnioną sumą kwadratów.
Oznacza to, że jeśli ze zbioru wszystkich trójkątów wylosujemy trójkąt prostokątny to na 100% => będzie zachodziła w nim suma kwadratów.
Innymi słowy:
Bycie trójkątem prostokątnym (TP) jest warunkiem wystarczającym => to tego, aby zachodziła w nim suma kwadratów (SK), bo zbiór trójkątów prostokątnych (TP) jest podzbiorem => zbioru trójkątów ze spełnioną sumą kwadratów (SK).
Z powyższego wynika że:
W AK zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>

Dla twierdzenia Pitagorasa przyjmijmy teraz dziedzinę najszerszą z możliwych Uniwersum.
Definicja Uniwersum:
Uniwersum, to wszelkie pojęcia zrozumiałe przez człowieka

W tym przypadku twierdzenie Pitagorasa przyjmuje brzmienie:
A1.
Jeśli coś jest trójkątem prostokątnym to na 100% => w tym czymś zachodzi suma kwadratów
x*TP =>SK
x=coś
Dziedzina: Uniwersum
Zapiszmy istotny tu fragment poprzednika twierdzenia Pitagorasa:
Jeśli coś jest trójkątem … (ZWT=TP+~TP)
x*T

Ze zbioru Uniwersum losujemy kolejne pojęcia zrozumiałe dla człowieka
Losowanie 1
x=kwadrat
Jeśli kwadrat (KW) jest trójkątem (T) …
x*T = [] - zbiór pusty
bo pojęcia KW i T są rozłączne
cnd
Losowanie 2
x=miłość
Jeśli miłość (M) jest trójkątem (T) …
x*TP = M*T = [] - zbiór pusty
bo pojęcia M i T są rozłączne
cnd
Doskonale tu widać, dlaczego wszelkie pojęcia poza przyjętą przez nas dziedziną ZWT są z punktu widzenia twierdzenia Pitagorasa zbiorem pustym z definicji!
Zauważmy, że z punktu odniesienia twierdzenia Pitagorasa pojęcia puste typu „kwadrat” czy „miłość” są zbiorem zewnętrznym w stosunku dziedziny minimalnej ZWT.
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 36113
Przeczytał: 10 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Sob 11:25, 30 Sty 2021    Temat postu:

http://www.sfinia.fora.pl/forum-kubusia,12/szach-mat-ktory-przejdzie-do-historii-matematyki,15663-3175.html#575995

MaluśnaOwieczka napisał:

Kubuś, czy zbiór pusty jest zbiorem?

Algebra Kubusia napisał:

3.0 Kubusiowa teoria zbiorów

Kubusiowa teoria zbiorów to nieznana ziemianom teoria zbiorów dla potrzeb logiki matematycznej, algebry Kubusia.

Definicja pojęcia:
Pojęcie to wyrażenie zrozumiałe dla człowieka

Przykłady pojęć zrozumiałych:
Pies, miłość, krasnoludek, zbiór liczb naturalnych, zbiór wszystkich zwierząt ...
Przykłady pojęć niezrozumiałych:
agstd, sdked, skdjatxz …

Definicja Uniwersum:
Uniwersum to zbiór wszelkich pojęć zrozumiałych dla człowieka.

Uniwersum człowieka jest dynamiczne tzn. rozszerza się gdy się uczymy (poznajemy nowe pojęcia) i zawęża gdy zapominamy wyuczonych kiedyś pojęć. Na mocy definicji w żadnym momencie nie możemy wyjść poza swoje, indywidualne Uniwersum.
Zauważmy, że zaledwie 50 lat temu pojęcie „Internet” było zbiorem pustym, nie istniało - ale w dniu dzisiejszym już tak nie jest, Uniwersum ludzkości rozszerzyło się o to pojęcie, znane praktycznie każdemu człowiekowi na ziemi.

Definicja elementu zbioru:
Element zbioru to dowolne pojęcie zrozumiałe przez człowieka, które umieści w swoim zbiorze

Definicja zbioru:
Zbiór to zestaw dowolnych pojęć należących do Uniwersum

Zauważmy, że w definicji zbioru nie ma zastrzeżenia, iż elementem zbioru nie może być zbiór.

Definicja zbioru pustego []:
Zbiór pusty to zbiór zawierający zero pojęć zrozumiałych dla człowieka

W definicji zboru pustego wyraźnie chodzi o zawartość worka z napisem „zbiór pusty”, a nie o sam worek.

Zbiór pusty jest zbiorem o definicji wyżej, ale zbiór pusty jest zbiorem zewnętrznym (rozłącznym) w stosunku do dowolnie wybranej dziedziny D.
Zauważ również że dziedzinę D możemy przyjąć absolutnie dowolnie, stąd wniosek iż zbiór pusty jest zbiorem zewnętrznym (rozłącznym) w stosunku do dowolnego zbioru niepustego.

Algebra Kubusia napisał:

3.3.1 Komentarz do definicji dziedziny

Definicja dziedziny:
Dziedzina to dowolnie wybrany zbiór na którym operujemy
Wszystko co leży poza przyjętą dziedziną jest zbiorem pustym z definicji.

Definicja dziedziny wymaga wyjaśnienia.
Dlaczego wszystko co jest poza dziedziną jest dla nas zbiorem pustym z definicji?

Rozważmy twierdzenie proste Pitagorasa dla trójkątów prostokątnych przyjmując za dziedzinę:
ZWT - zbiór wszystkich trójkątów
A1:
Jeśli trójkąt jest prostokątny to na 100% => zachodzi w nim suma kwadratów
TP=>SK =1
Dziedzina:
ZWT - zbiór wszystkich trójkątów
Twierdzenie to ludzkość udowodniła wieki temu.
Ten dowód oznacza iż:
Zbiór trójkątów prostokątnych jest (=1) podzbiorem => zbioru trójkątów ze spełnioną sumą kwadratów.
Oznacza to, że jeśli ze zbioru wszystkich trójkątów wylosujemy trójkąt prostokątny to na 100% => będzie zachodziła w nim suma kwadratów.
Innymi słowy:
Bycie trójkątem prostokątnym (TP) jest warunkiem wystarczającym => to tego, aby zachodziła w nim suma kwadratów (SK), bo zbiór trójkątów prostokątnych (TP) jest podzbiorem => zbioru trójkątów ze spełnioną sumą kwadratów (SK).
Z powyższego wynika że:
W AK zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>

Dla twierdzenia Pitagorasa przyjmijmy teraz dziedzinę najszerszą z możliwych Uniwersum.
Definicja Uniwersum:
Uniwersum, to wszelkie pojęcia zrozumiałe przez człowieka

W tym przypadku twierdzenie Pitagorasa przyjmuje brzmienie:
A1.
Jeśli coś jest trójkątem prostokątnym to na 100% => w tym czymś zachodzi suma kwadratów
x*TP =>SK
x=coś
Dziedzina: Uniwersum
Zapiszmy istotny tu fragment poprzednika twierdzenia Pitagorasa:
Jeśli coś jest trójkątem … (ZWT=TP+~TP)
x*T

Ze zbioru Uniwersum losujemy kolejne pojęcia zrozumiałe dla człowieka
Losowanie 1
x=kwadrat
Jeśli kwadrat (KW) jest trójkątem (T) …
x*T = KW*T = [] - zbiór pusty
bo pojęcia KW i T są rozłączne
cnd
Losowanie 2
x=miłość
Jeśli miłość (M) jest trójkątem (T) …
x*TP = M*T = [] - zbiór pusty
bo pojęcia M i T są rozłączne
cnd
Doskonale tu widać, dlaczego wszelkie pojęcia poza przyjętą przez nas dziedziną ZWT są z punktu widzenia twierdzenia Pitagorasa zbiorem pustym z definicji!
Zauważmy, że z punktu odniesienia twierdzenia Pitagorasa pojęcia puste typu „kwadrat” czy „miłość” są zbiorem zewnętrznym w stosunku dziedziny minimalnej ZWT.


Powyższy komentarz możemy przedstawić w prosty sposób graficznie:
Kod:

-------------------------------------------------------------------------
|Relacja zbioru niepustego ZWT i pustego [] w twierdzeniu Pitagorasa    |
|dla dziedziny minimalnej ZWT                                           |
-------------------------------------------------------------------------
|ZWT                              |Zbiór pusty z punktu odniesienia ZWT |
|Zbiór wszystkich trójkątów       |[] = [U-ZWT]                         |
|                                 |Uniwersum - zbiór wszystkich pojęć   |
|Zbiór niepusty dla dziedziny ZWT |zrozumiałych dla człowieka           |
|                                 |Elementy zbioru pustego []:          |
|                                 |kwadrat, miłość, mydło, powidło ..   |
-------------------------------------------------------------------------
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 36113
Przeczytał: 10 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Sob 11:43, 30 Sty 2021    Temat postu:

http://www.sfinia.fora.pl/forum-kubusia,12/szach-mat-ktory-przejdzie-do-historii-matematyki,15663-3175.html#576003

Irbisol napisał:
Zajrzałem tu po kilku miesiącach i widzę, że nasz guru się nie zmienił - nadal wypierdala się na najprostszych pytaniach z gatunku TAK/NIE.
Już przez to przechodziłem - teraz nowi niech zobaczą, z jakim betonem mają do czynienia.

MaluśnaOwieczko, Irbisol to biedny człowiek z potwornie wypranym mózgiem gównem zwanym KRZ.
Irbisol to człowiek, który położył wielki zasługi w rozszyfrowaniu algebry Kubusia.
Dlaczego?
Wystarczy prześledzić początek tego tematu z którego wynika iż:
Ja się dwoję i troję by mu wytłumaczyć algebrę Kubusia a on bez przerwy "obala" mi AK definicjami z KRZ, mimo że doskonale wie, iż 100% definicji mamy sprzecznych.

Dokładnie dzięki temu że się dwoiłem i troiłem by algebra Kubusia dotarła do Irbisola, przekaz algebry Kubusia się udoskonalał.
Nie sztuką jest znać bardzo dobrze algebrę Kubusia - sztuką jest przekazać jej treść ziemskim matematykom będąc świadomym, iż 100% definicji z AK jest sprzecznych z logika matematyczną ziemian.

Zauważ, że nawet definicję podzbioru mamy sprzeczną, dowód tego faktu masz niżej:


3.4 Relacje podzbioru => i nadzbioru ~>

Definicja podzbioru =>:
Zbiór p jest podzbiorem => zbioru q wtedy i tylko wtedy gdy każdy element zbioru p należy do zbioru q

Definicja relacji podzbioru =>:
Relacja podzbioru => jest spełniona wtedy i tylko wtedy gdy każdy element zbioru p należy do zbioru q

Z powyższego wynika że zachodzi tożsamość pojęć:
Definicja podzbioru => = relacja podzbioru =>

Pełna definicja relacji podzbioru:
Zbiór p jest podzbiorem => zbioru q wtedy i tylko wtedy gdy spełniona jest relacja podzbioru =>:
p=>q =1 - relacja podzbioru => jest (=1) spełniona
Relacja podzbioru => jest spełniona wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q
Inaczej:
p=>q =0 - relacja podzbioru => nie jest (=0) spełniona

Wniosek z powyższej definicji:
Każdy zbiór jest podzbiorem => siebie samego.
p=>p =1

Definicja równoważności w zbiorach:
Równoważność to relacja podzbioru => zachodząca w dwie strony
p<=>q = (A1: p=>q)*(B3: q=>p)

Definicja tożsamości zbiorów p=q:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q i zbiór q jest podzbiorem => zbioru p.
p=q <=> (A1: p=>q)*(B3: q=>p) =1*1 =1
Innymi słowy:
Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy spełniona jest relacja równoważności p<=>q:
p=q <=> (A1: p=>q)*(B3: q=>p) = p<=>q

Stąd mamy bardzo ważne w logice matematycznej prawo Słonia:

Prawo Słonia:
Każda równoważność prawdziwa p<=>q definiuje tożsamość zbiorów (pojęć) p=q i odwrotnie
p=q <=> (A1: p=>q)*(B3: q=>p) = p<=>q

Pytanie do MaluśnejOwieczki:
Czy zgadzasz się na ogólną definicję tożsamości zbiorów oraz na prawo Słonia?
Jeśli nie napisz którą z tych kilku powyższych definicji kwestionujesz?

P.S.
Musimy po prostu ustalić wspólny STARTOWY punkt odniesienia, czyli definicje z którymi obaj się zgadzamy.
Nie ma sensu dyskusja gdy ty cały czas powołujesz się na KRZ twierdząc że identycznie musi być w AK - a przecież wiesz że 100% definicji mamy sprzecznych.

Pokazać ci sprzeczność definicji powyższych z ziemskimi?

Bardzo proszę:
Definicję podzbioru mamy wspólną:
Definicja podzbioru =>:
Zbiór p jest podzbiorem => zbioru q wtedy i tylko wtedy gdy każdy element zbioru p należy do zbioru q

Problem w tym że ziemianie twierdzą iż podzbiorem jest tu goły zbiór p bez żadnego związku z q!

Tymczasem w AK mamy tak:
Definicja podzbioru => = relacja podzbioru =>

Czy już widzisz sprzeczność?

Powtórzę:
Którą z tych kilku raptem definicji kwestionujesz i dlaczego?


Ostatnio zmieniony przez rafal3006 dnia Sob 11:45, 30 Sty 2021, w całości zmieniany 1 raz
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 36113
Przeczytał: 10 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Sob 15:12, 30 Sty 2021    Temat postu:

http://www.sfinia.fora.pl/forum-kubusia,12/szach-mat-ktory-przejdzie-do-historii-matematyki,15663-3175.html#576047

Problem Dziedziny, Uniwersum i zbioru pustego opisany w zapisach formalnych (ogólnych)!

http://www.sfinia.fora.pl/forum-kubusia,12/szach-mat-ktory-przejdzie-do-historii-matematyki,15663-3125.html#575729

MaluśnaOwieczka napisał:
rafal3006 napisał:
Jaką widzisz wspólną dziedzinę dla:
p=2+2=4
q=Płock leży nad Wisłą


Żadną. Jednak jeśli Ty chcesz to stwierdzić w Algebrze Kubusia, to musisz to zrobić w sposób FORMALNY. Nie starczy, że sobie powiesz "to nie ma żadnego związku ze sobą". Musi to wynikać z formalnych zasad Algebry Kubusia, a nie z Twojej intuicji.


Problem Dziedziny, Uniwersum i zbioru pustego opisany w zapisach formalnych (ogólnych)!

MaluśnaOwieczko,
to jest to co Trgryski lubią najbardziej - zobacz koniec niniejszego postu - punkt. 3.3.2


3.3 Dziedzina

Definicja dziedziny:
Dziedzina to dowolnie wybrany zbiór na którym operujemy
Wszystko co leży poza przyjętą dziedziną jest zbiorem pustym z definicji.

Oznacza to, że wszelkie pojęcia poza przyjętą dziedziną są dla nas nierozpoznawalne, czyli nie znamy definicji tych pojęć z założenia. Ograniczeniem dolnym w definiowaniu dziedziny jest zbiór pusty [], natomiast ograniczeniem górnym jest Uniwersum.

Przyjmijmy za dziedzinę w której operujemy Uniwersum.
D=U
Zbiór poza Uniwersum jest dla nas pusty z definicji. Nie oznacza to jednak, że poza naszym aktualnym Uniwersum nie ma już pojęć które człowiek pozna w przyszłości. Przykładowo, zaledwie 50 lat temu słówko Internet było dla ludzkości zbiorem pustym, jeszcze nie zdefiniowanym. W dniu dzisiejszym słówko Internet jest zdefiniowane i znane praktycznie każdemu człowiekowi.

Definicja dziedziny D i zbioru pustego []:
D+~D = D+[] =D =1 - zbiór pusty [] jest zbiorem zewnętrznym w stosunku do dziedziny D
D*~D = D*[] =[] =0 - iloczyn logiczny zbiorów rozłącznych D i [] jest zbiorem pustym []

Na mocy powyższego mamy:
[] = ~D
D=~[]

Matematycznie zachodzi tu prawo podwójnego przeczenia:
p=~(~p)
Stąd:
D = ~(~D) = ~([]) = ~[]
[] = ~(~[]) = ~(D) = ~D

Każdy zbiór jest podzbiorem samego siebie z definicji:
D=>D =1 - dziedzina jest (=1) podzbiorem => siebie samej
[]=>[] =1 - zbiór pusty [] jest (=1) podzbiorem siebie samego

Tabela prawdy wiążąca dziedzinę D ze zbiorem pustym []:
Kod:

A: D=>D        =1 - dziedzina D jest (=1) podzbiorem dziedziny D
B: D~~>[]=D*[] =0 - dziedzina D i zbiór pusty [] to zbiory rozłączne
C: []=>[]      =1 - zbiór pusty [] jest (=1) podzbiorem zbioru pustego []
D: []~~>D=[]*D =0 - zbiór pusty [] i dziedzina D to zbiory rozłączne


Dla D=1 i []=0 mamy tabelę prawdy równoważności D<=>D:
Kod:

   D   D D<=>D
A: 1=> 1  =1
B: 1~~>0  =0
C: 0=> 0  =1
D: 0~~>1  =0



3.3.1 Komentarz do definicji dziedziny na przykładzie twierdzenia Pitagorsa

Definicja dziedziny:
Dziedzina to dowolnie wybrany zbiór na którym operujemy
Wszystko co leży poza przyjętą dziedziną jest zbiorem pustym z definicji.

Definicja dziedziny wymaga wyjaśnienia.
Dlaczego wszystko co jest poza dziedziną jest dla nas zbiorem pustym z definicji?

Rozważmy twierdzenie proste Pitagorasa dla trójkątów prostokątnych przyjmując za dziedzinę:
ZWT - zbiór wszystkich trójkątów
A1:
Jeśli trójkąt jest prostokątny to na 100% => zachodzi w nim suma kwadratów
TP=>SK =1
Dziedzina:
ZWT - zbiór wszystkich trójkątów
Twierdzenie to ludzkość udowodniła wieki temu.
Ten dowód oznacza iż:
Zbiór trójkątów prostokątnych jest (=1) podzbiorem => zbioru trójkątów ze spełnioną sumą kwadratów.
Oznacza to, że jeśli ze zbioru wszystkich trójkątów wylosujemy trójkąt prostokątny to na 100% => będzie zachodziła w nim suma kwadratów.
Innymi słowy:
Bycie trójkątem prostokątnym (TP) jest warunkiem wystarczającym => to tego, aby zachodziła w nim suma kwadratów (SK), bo zbiór trójkątów prostokątnych (TP) jest podzbiorem => zbioru trójkątów ze spełnioną sumą kwadratów (SK).
Z powyższego wynika że:
W AK zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>

Dla twierdzenia Pitagorasa przyjmijmy teraz dziedzinę najszerszą z możliwych Uniwersum.
Definicja Uniwersum:
Uniwersum, to wszelkie pojęcia zrozumiałe przez człowieka

W tym przypadku twierdzenie Pitagorasa przyjmuje brzmienie:
A1.
Jeśli coś jest trójkątem prostokątnym to na 100% => w tym czymś zachodzi suma kwadratów
x*TP =>SK
x=coś
Dziedzina: Uniwersum
Zapiszmy istotny tu fragment poprzednika twierdzenia Pitagorasa:
Jeśli coś jest trójkątem … (ZWT=TP+~TP)
x*T

Ze zbioru Uniwersum losujemy kolejne pojęcia zrozumiałe dla człowieka
Losowanie 1
x=kwadrat
Jeśli kwadrat (KW) jest trójkątem (T) …
x*T = KW*T = [] - zbiór pusty
bo pojęcia KW i T są rozłączne
cnd
Losowanie 2
x=miłość
Jeśli miłość (M) jest trójkątem (T) …
x*TP = M*T = [] - zbiór pusty
bo pojęcia M i T są rozłączne
cnd
Doskonale tu widać, dlaczego wszelkie pojęcia poza przyjętą przez nas dziedziną ZWT są z punktu widzenia twierdzenia Pitagorasa zbiorem pustym z definicji!
Zauważmy, że z punktu odniesienia twierdzenia Pitagorasa pojęcia puste typu „kwadrat” czy „miłość” są zbiorem zewnętrznym w stosunku dziedziny minimalnej ZWT.

Powyższy komentarz możemy przedstawić w prosty sposób graficznie:
Kod:

T1.
---------------------------------------------------------------------------
|Relacja dziedziny ZWT i zbioru pustego [] w twierdzeniu Pitagorasa       |
---------------------------------------------------------------------------
|ZWT                              |Zbiór pusty [] z punktu odniesienia    |
|Zbiór wszystkich trójkątów       |dziedziny ZWT                          |
|Zbiór przyjęty za dziedzinę      |[] = [U-ZWT]                           |
|                                 |Uniwersum (U) - zbiór wszystkich pojęć |
|                                 |zrozumiałych dla człowieka             |
|                                 |Elementy x ze zbioru pustego []:       |
|                                 |x=[kwadrat, miłość, mydło, powidło ..] |
---------------------------------------------------------------------------


3.3.2 Komentarz do ogólnej definicji dziedziny

Jak otrzymać ogólną definicję dziedziny?
Zróbmy dokładnie to samo co w twierdzeniu Pitagorasa w zapisach formalnych (ogólnych).
Podstawmy:
ZWT = D - dowolna dziedzina z Uniwersum (w tym U)
Kod:

T2.
---------------------------------------------------------------------------
|Relacja dziedziny D i zbioru pustego [] (definicja ogólna)               |
---------------------------------------------------------------------------
|D                                |Zbiór pusty [] z punktu odniesienia    |
|Zbiór przyjęty za dziedzinę      |dziedziny D                            |
|                                 |[] = [U-D]                             |
|                                 |Uniwersum (U) - zbiór wszystkich pojęć |
|                                 |zrozumiałych dla człowieka             |
|                                 |Elementy x ze zbioru pustego []:       |
|                                 |x=[U-D]                                |
---------------------------------------------------------------------------


Rozważmy przypadku szczególne z tabeli T2.

1.
Przyjmijmy za dziedzinę Uniwersum:
D=U
stąd mamy:
[] = [U-D} = [U-U] =[] - elementy zewnętrzne w stosunku do dziedziny U
Elementy zbioru pustego []:
x=[U-U] =[] - wszelkie elementy których aktualnie nie znamy (nie należą do U), które możemy poznać w przyszłości
Tu wszystko jest w porządku, w szczególności możemy za dziedzinę D przyjąć Uniwersum.

ALE!
2.
Przyjmijmy za dziedzinę zbiór pusty:
D=[]
Stąd mamy:
[] = [U-D] = [U-[]] = U - tu do zbioru pustego należy 100% elementów z Uniwersum.
Elementy zbioru pustego []:
x=[U-D] = [U-[]] =U - tu do zbioru pustego należy 100% elementów z Uniwersum.

Wniosek:
Nie wolno za dziedzinę przyjąć zbioru pustego [], bowiem taka dziedzina będzie zbiorem nierozpoznawalnym, ponieważ z założenia nie znamy definicji choćby jednego pojęcia ze zbioru pustego [].
Kolejnym argumentem iż nie wolno za dziedzinę przyjąć zbioru pustego [] jest sprzeczność czysto matematyczna zapisana w punkcie 2:

2.
Stąd mamy:
[]=U - zbiór pusty jest zbiorem zewnętrznym (rozłącznym) w stosunku do zbioru U, zatem tożsamość zbiorów nie ma prawa tu zachodzić.
Ten przypadek to odpowiednik dzielenia przez 0 w matematyce klasycznej:
„Pamiętaj cholero nie dziel przez 0”

Uwagi:
1.
Zbiór pusty [] jest zbiorem zewnętrznym (rozłącznym) w stosunku do zbioru Uniwersum
2.
Zbiór pusty [] zawiera elementy spoza zbioru Uniwersum których jeszcze nie znamy, a które możemy poznać w przyszłości
3.
Matematycznie zachodzi:
U=~[] - Uniwersum U to zaprzeczenie zbioru pustego []
[]=~U - zbiór pusty [] to zaprzeczenie Uniwersum U


Ostatnio zmieniony przez rafal3006 dnia Nie 8:34, 31 Sty 2021, w całości zmieniany 2 razy
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 36113
Przeczytał: 10 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Sob 15:34, 30 Sty 2021    Temat postu:

http://www.sfinia.fora.pl/forum-kubusia,12/szach-mat-ktory-przejdzie-do-historii-matematyki,15663-3175.html#576057

Czy gówno zwane KRZ zostanie posłane tam gdzie jego miejsce, do piekła na wieczne piekielne męki?

To już przesądzone: tak!
Kubuś

MaluśnaOwieczko, właśnie dopisałem cię do kluczowych przyjaciół Kubusia w podziękowaniu za dotychczasową dyskusję.
Dzięki tobie dopisałem wiele bardzo ważnych definicji w FUNDAMENTACH algebry Kubusia np. pkt 3.3.2 i definicję definicji.
Dla mnie nie jest ważne, czy zechcesz dalej dyskutować (chciałbym), czy też się wycofasz, nie jest nawet ważne czy kiedykolwiek zrozumiesz AK - ja po prostu liczę, iż znajdzie się jeden (słownie: jeden) ziemski autorytet matematyczny, który zrozumie i poprze AK - to wystarczy, dalej wszystko potoczy się lawinowo - gówno zwane KRZ zostanie posłane tam gdzie jego miejsce, do piekła na wieczne piekielne męki, bez prawa powrotu na Ziemię.

http://www.sfinia.fora.pl/forum-kubusia,12/algebra-kubusia-matematyka-jezyka-potocznego-2021-01-22,18263.html#574079

rafal3006 napisał:
Algebra Kubusia - matematyka języka potocznego
Matematyczny Raj: 2021-01-22
Pisana na żywo od początku nie dlatego że starsze wersje były złe, ale dlatego, że można to samo napisać lepiej tzn. w sposób bardziej zrozumiały dla ziemskich matematyków.

Autor:
Kubuś ze 100-milowego lasu

„Algebrę Kubusia” dedykuję moim wnukom Naomi i Ferencowi mając nadzieję, że zdążą uczyć się logiki matematycznej z AK w I klasie LO

Rozszyfrowali:
Rafal3006 i przyjaciele

Wszystko należy upraszczać jak tylko można, ale nie bardziej.
Albert Einstein


Dziękuję wszystkim, którzy dyskutując z Rafałem3006 przyczynili się do odkrycia algebry Kubusia:
Wuj Zbój, Miki (vel Lucek), Volrath, Macjan, Irbisol, Makaron czterojajeczny, Quebab, Windziarz, Fizyk, Idiota, Sogors (vel Dagger), Fiklit, Yorgin, Pan Barycki, Zbigniewmiller, Mar3x, Wookie, Prosiak, Andy72, Michał Dyszyński, Szaryobywatel, Jan Lewandowski, MaluśnaOwieczka i inni.

Kluczowi przyjaciele Kubusia, dzięki którym algebra Kubusia została rozszyfrowana to (cytuję w kolejności zaistnienia):
1.
Rafał3006
2.
Wuj Zbój - dzięki któremu Rafal3006 poznał istotę implikacji od strony czysto matematycznej.
3.
Fiklit - który poświęcił 8 lat życia na cierpliwe tłumaczenie Rafałowi3006 jak wygląda otaczający nas świat z punktu widzenia Klasycznego Rachunku Zdań
Bez Fiklita o rozszyfrowaniu algebry Kubusia moglibyśmy wyłącznie pomarzyć
4.
Irbisol - znakomity tester końcowej wersji algebry Kubusia, za wszelką cenę usiłujący ją obalić.
Czyż można sobie wymarzyć lepszego testera?
Finałowa dyskusja z Irbisolem!
5.
MaluśnaOwieczka - końcowy uczestnik dyskusji o algebrze Kubusia w trakcie której padło wiele bardzo ważnych definicji i uściśleń np. pkt. 3.3.2

Miejsce narodzin algebry Kubusia ze szczegółowo udokumentowaną historią jej odkrycia:
Algebra Kubusia - historia odkrycia 2006-2021
Niniejszy podręcznik jest końcowym efektem 15-letniej dyskusji na forach śfinia, ateista.pl i yrizona - to około 30 tys postów, średnio 5 postów dziennie wyłącznie na temat logiki matematycznej.
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 36113
Przeczytał: 10 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Nie 9:20, 31 Sty 2021    Temat postu:

http://www.sfinia.fora.pl/forum-kubusia,12/szach-mat-ktory-przejdzie-do-historii-matematyki,15663-3200.html#576239

Zbiory Dziedzina (D), Uniwersum (U), zbiór pusty [] w algebrze Kubusia!

Podtemat:
Tajemnica systemu pracy Rafała3006 nad rozszyfrowaniem algebry Kubusia.

lucek napisał:
Cytat:
Błędy nauki


i o czym z tobą rozmawiać? jak w tym swoim lewackim łbie nawet nie rozumiesz, że takiego bytu jak "nauka", poza lewackimi urojeniami, nie ma,

Aktualnie o zbiorach Dziedzina (D), Uniwersum (U), zbiorze pustym [] - tylko i wyłącznie o tym.
Kluczowe fragmenty AK w tym temacie cytuję niżej - punkt 3.3.1 i 3.3.2
Zapraszam do dyskusji także MaluśnąOwieczkę, bo przed chwilką poprawiłem kilka nieścisłości w diagramach T1 i T2.
Dopiero teraz te diagramy są perfekcyjne.

Tajemnica systemu pracy Rafała3006 nad rozszyfrowaniem algebry Kubusia:
Na tym przykładzie doskonale widać mój system pracy nad rozpracowaniem algebry Kubusia - najpierw wypowiadałem zdania w języku potocznym 5-cio latków a dopiero po tym fakcie szukałem potwierdzenia logiki 5-cio latka w matematyce ogólnej.
W poniższym przykładzie najpierw odrobiłem twierdzenie Pitagorasa w temacie który mnie interesował (zbiory D, U i []) i dopiero po tym fakcie zapisałem teorię ogólną która polegała tylko i wyłącznie na tym że zamiast "dziedzina ZWT" zapisałem wszędzie "dziedzina D".

Ziemscy matematycy od 2500 lat mieli inny system odwrotny w rozpracowywaniu logiki matematycznej:
Najpierw wzorki w algebrze Boole’a wynikłe z rachunku zero-jedynkowego których nie rozumieli bo nie widzieli (i nadal nie widzą) funkcji logicznej Y w logice dodatniej (bo Y) i ujemnej (bo ~Y), po czym zmuszali ludzkość do przyjęcia za prawdę objawioną gówien typu:
Jeśli 2+2=5 to jestem Papieżem
Jeśli 2+2=4 to Płock leży nad Wisłą
2+2=4 wtedy i tylko w wtedy gdy Płock leży nad Wisłą
Oczywiście cała ludzkość (łącznie z matematykami uczącymi matematyki w I klasie LO) sra na tego typu zdania a pani przedszkolanka biednego Lucka który usiłował wprowadzić KRZ do przedszkola z wciekłością wykopała przez okno krzycząc „idź precz szatanie”

Lucku, zacytuję teraz fragment AK o którym aktualnie dyskutuję z MaluśnąOwieczką.
Czy zechcesz przeczytać i skomentować?


3.3.1 Komentarz do definicji dziedziny na przykładzie twierdzenia Pitagorasa

Definicja dziedziny:
Dziedzina to dowolnie wybrany zbiór na którym operujemy
Wszystko co leży poza przyjętą dziedziną jest zbiorem pustym z definicji.

Definicja dziedziny wymaga wyjaśnienia.
Dlaczego wszystko co jest poza dziedziną jest dla nas zbiorem pustym z definicji?

Rozważmy twierdzenie proste Pitagorasa dla trójkątów prostokątnych przyjmując za dziedzinę:
ZWT - zbiór wszystkich trójkątów
A1:
Jeśli trójkąt jest prostokątny to na 100% => zachodzi w nim suma kwadratów
TP=>SK =1
Dziedzina:
ZWT - zbiór wszystkich trójkątów
Twierdzenie to ludzkość udowodniła wieki temu.
Ten dowód oznacza iż:
Zbiór trójkątów prostokątnych jest (=1) podzbiorem => zbioru trójkątów ze spełnioną sumą kwadratów.
Oznacza to, że jeśli ze zbioru wszystkich trójkątów wylosujemy trójkąt prostokątny to na 100% => będzie zachodziła w nim suma kwadratów.
Innymi słowy:
Bycie trójkątem prostokątnym (TP) jest warunkiem wystarczającym => to tego, aby zachodziła w nim suma kwadratów (SK), bo zbiór trójkątów prostokątnych (TP) jest podzbiorem => zbioru trójkątów ze spełnioną sumą kwadratów (SK).
Z powyższego wynika że:
W AK zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>

Dla twierdzenia Pitagorasa przyjmijmy teraz dziedzinę najszerszą z możliwych Uniwersum.
Definicja Uniwersum:
Uniwersum, to wszelkie pojęcia zrozumiałe przez człowieka

W tym przypadku twierdzenie Pitagorasa przyjmuje brzmienie:
A1.
Jeśli coś jest trójkątem prostokątnym to na 100% => w tym czymś zachodzi suma kwadratów
x*TP =>SK
x=coś
Dziedzina: Uniwersum
Zapiszmy istotny tu fragment poprzednika twierdzenia Pitagorasa:
Jeśli coś jest trójkątem … (ZWT=TP+~TP)
x*T

Ze zbioru Uniwersum losujemy kolejne pojęcia zrozumiałe dla człowieka
Losowanie 1
x=kwadrat
Jeśli kwadrat (KW) jest trójkątem (T) …
x*T = KW*T = [] - zbiór pusty
bo pojęcia KW i T są rozłączne
cnd
Losowanie 2
x=miłość
Jeśli miłość (M) jest trójkątem (T) …
x*TP = M*T = [] - zbiór pusty
bo pojęcia M i T są rozłączne
cnd
Doskonale tu widać, dlaczego wszelkie pojęcia poza przyjętą przez nas dziedziną ZWT są z punktu widzenia twierdzenia Pitagorasa zbiorem pustym z definicji!
Zauważmy, że z punktu odniesienia twierdzenia Pitagorasa pojęcia puste typu „kwadrat” czy „miłość” są zbiorem zewnętrznym w stosunku dziedziny minimalnej ZWT.

Powyższy komentarz możemy przedstawić w prosty sposób graficznie:
Kod:

T1.
---------------------------------------------------------------------------
|Relacja dziedziny ZWT i zbioru pustego [] w twierdzeniu Pitagorasa       |
---------------------------------------------------------------------------
|ZWT                              |Zbiór pusty [] z punktu odniesienia    |
|Zbiór wszystkich trójkątów       |dziedziny ZWT                          |
|Zbiór przyjęty za dziedzinę      |[] = [U-ZWT]                           |
|                                 |Uniwersum (U) - zbiór wszystkich pojęć |
|                                 |zrozumiałych dla człowieka             |
|                                 |Elementy x ze zbioru pustego []:       |
|                                 |x=[kwadrat, miłość, mydło, powidło ..] |
---------------------------------------------------------------------------


3.3.2 Komentarz do ogólnej definicji dziedziny

Jak otrzymać ogólną definicję dziedziny?
Zapiszmy dokładnie to samo co w twierdzeniu Pitagorasa w zapisach formalnych (ogólnych) podstawiając:
Dziedzina ZWT := dziedzina D
W miejsce „dziedzina ZWT” zapisz := „dziedzina D”
Kod:

T2.
---------------------------------------------------------------------------
|Relacja dziedziny D i zbioru pustego [] (definicja ogólna)               |
---------------------------------------------------------------------------
|D                                |Zbiór pusty [] z punktu odniesienia    |
|Zbiór przyjęty za dziedzinę      |dziedziny D                            |
|                                 |[] = [U-D]                             |
|                                 |Uniwersum (U) - zbiór wszystkich pojęć |
|                                 |zrozumiałych dla człowieka             |
|                                 |Elementy x ze zbioru pustego []:       |
|                                 |x=[U-D]                                |
---------------------------------------------------------------------------


Rozważmy przypadki szczególne z tabeli T2.

1.
Przyjmijmy za dziedzinę Uniwersum:
D=U
stąd mamy:
[] = [U-D] = [U-U] =[] - elementy zewnętrzne w stosunku do dziedziny U
Elementy zbioru pustego []:
x=[U-U] =[] - wszelkie elementy których definicji aktualnie nie znamy (nie należą do U), które możemy poznać w przyszłości
Tu wszystko jest w porządku, w szczególności możemy za dziedzinę D przyjąć Uniwersum.

ALE!
2.
Przyjmijmy za dziedzinę zbiór pusty:
D=[]
Stąd mamy:
[] = [U-D] = [U-[]] = U - z definicji zbiór pusty [] jest rozłączny z U, zatem ta tożsamość nie zachodzi.
Elementy zbioru pustego []:
x=[U-D] = [U-[]] =U - tu do zbioru pustego należy 100% elementów z Uniwersum.

Wniosek:
Nie wolno za dziedzinę przyjąć zbioru pustego [], bowiem taka dziedzina będzie zbiorem nierozpoznawalnym, ponieważ z założenia nie znamy definicji choćby jednego pojęcia ze zbioru pustego [].
Kolejnym argumentem iż nie wolno za dziedzinę przyjąć zbioru pustego [] jest sprzeczność czysto matematyczna zapisana w punkcie 2:
2: []=U - zbiór pusty jest zbiorem zewnętrznym (rozłącznym) w stosunku do zbioru U, zatem tożsamość zbiorów nie ma prawa tu zachodzić.
Ten przypadek to odpowiednik dzielenia przez 0 w matematyce klasycznej:
„Pamiętaj cholero nie dziel przez 0”

Uwagi:
1.
Zbiór pusty [] jest zbiorem zewnętrznym (rozłącznym) w stosunku do zbioru Uniwersum
2.
Zbiór pusty [] zawiera elementy spoza zbioru Uniwersum których jeszcze nie znamy, a które możemy poznać w przyszłości
3.
Matematycznie zachodzi:
U=~[] - Uniwersum U to zaprzeczenie zbioru pustego []
[]=~U - zbiór pusty [] to zaprzeczenie Uniwersum U


Ostatnio zmieniony przez rafal3006 dnia Nie 9:49, 31 Sty 2021, w całości zmieniany 2 razy
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 36113
Przeczytał: 10 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Nie 17:17, 31 Sty 2021    Temat postu:

http://www.sfinia.fora.pl/forum-kubusia,12/szach-mat-ktory-przejdzie-do-historii-matematyki,15663-3225.html#576425

Wiem gdzie się różnimy FUNDAMENTALNIE!

http://www.sfinia.fora.pl/forum-kubusia,12/szach-mat-ktory-przejdzie-do-historii-matematyki,15663-3225.html#576305
MaluśnaOwieczka napisał:

rafal3006 napisał:
Zbiór pusty nie jest zbiorem w twoim rozumieniu, czyli zbiór pusty to nie jest worek z napisem zbiór pusty.
Zbiór pusty to ZAWARTOŚĆ worka z napisem zbiór pusty.

Kubuś, ależ ja się z tym zgadzam, bo tak jest również w ziemskiej teorii zbiorów. Zbiór pusty to zawartość worka z napisem "zbiór pusty", a zbiór niepusty, to zawartość worka z napisem "zbiór niepusty".
Ani zbiór pusty, ani zbiór niepusty nie są workami, tylko ich zawartością.

Brawo, trzymam za słowo.

Wiem gdzie się różnimy FUNDAMENTALNIE!

Pozwolisz że ci krótko napiszę definicje bazowe w algebrze Kubusia w temacie zbioru pustego [] i Uniwersum U?
Algebra Kubusia napisał:


3.0 Kubusiowa teoria zbiorów

Kubusiowa teoria zbiorów to nieznana ziemianom teoria zbiorów dla potrzeb logiki matematycznej, algebry Kubusia.

Definicja pojęcia:
Pojęcie to wyrażenie zrozumiałe dla człowieka

Przykłady pojęć zrozumiałych:
Pies, miłość, krasnoludek, zbiór liczb naturalnych, zbiór wszystkich zwierząt ...
Przykłady pojęć niezrozumiałych:
agstd, sdked, skdjatxz …

Definicja Uniwersum:
Uniwersum to zbiór wszelkich pojęć zrozumiałych dla człowieka.

Uniwersum człowieka jest dynamiczne tzn. rozszerza się gdy się uczymy (poznajemy nowe pojęcia) i zawęża gdy zapominamy wyuczonych kiedyś pojęć. Na mocy definicji w żadnym momencie nie możemy wyjść poza swoje, indywidualne Uniwersum.
Zauważmy, że zaledwie 50 lat temu pojęcie „Internet” było zbiorem pustym, nie istniało - ale w dniu dzisiejszym już tak nie jest, Uniwersum ludzkości rozszerzyło się o to pojęcie, znane praktycznie każdemu człowiekowi na ziemi.

Definicja elementu zbioru:
Element zbioru to dowolne pojęcie zrozumiałe przez człowieka, które umieści w swoim zbiorze

Definicja zbioru:
Zbiór to zestaw dowolnych pojęć należących do Uniwersum

Zauważmy, że w definicji zbioru nie ma zastrzeżenia, iż elementem zbioru nie może być zbiór.

Definicja zbioru pustego []:
Zbiór pusty to zbiór zawierający zero pojęć zrozumiałych dla człowieka

W definicji zboru pustego wyraźnie chodzi o zawartość worka z napisem „zbiór pusty”, a nie o sam worek.


Po pierwsze:
Zwróć uwagę na definicję pojęcia w AK:

Definicja pojęcia:
Pojęcie to wyrażenie zrozumiałe dla człowieka

Przykłady pojęć zrozumiałych:
Pies, miłość, krasnoludek, zbiór liczb naturalnych, zbiór wszystkich zwierząt ...
Przykłady pojęć niezrozumiałych:
agstd, sdked, skdjatxz …

Po drugie:

Zwróć uwagę na definicję Uniwersum w AK:

Definicja Uniwersum:
Uniwersum to zbiór wszelkich pojęć zrozumiałych dla człowieka.

Przykładowa zawartość Uniwersum to:
U = [Pies, miłość, krasnoludek, zbiór liczb naturalnych, zbiór wszystkich zwierząt ...]

Po trzecie:

Zwróć uwagę na definicję zbioru pustego w AK:

Definicja zbioru pustego []:
Zbiór pusty to zbiór zawierający zero pojęć zrozumiałych dla człowieka

Przykładowa zawartość zbioru pustego to:
[] = [agstd, sdked, skdjatxz …]

Zauważ że w zbiorze pustym z definicji nie ma prawa być pojęcia które znajduje się w Uniwersum.
Jak widzimy pojęcie zbiór pusty w AK oznacza zbiór pojęć niezrozumiałych dla człowieka.
Innymi słowy:
Pojęcia zbioru pustego w AK są na zewnątrz Uniwersum, są to zatem pojęcia jeszcze nie zdefiniowane przez człowieka które w przyszłości mogą być zdefiniowane.
Co się stanie jak pojęcie nieznane dzisiaj przez człowieka zostanie zdefiniowane?
Takie pojęcie automatycznie przeskoczy do Uniwersum.

Przykładem takiego pojęcia które całkiem niedawno przeskoczyło ze zbioru pustego w rozumieniu AK do Uniwersum w rozumieniu AK jest np. pojęcie Internet (patrz opis wyżej)

Koncepcja Internetu
Projekt globalnej sieci komputerów opisał w 1960 roku J. Licklider[1]. Twórcą koncepcji Internetu jest Paul Baran, który w 1962 roku opublikował 12-tomową pracę, będącą projektem wytrzymałych, rozproszonych (nie gwiaździstych) sieci cyfrowych transmisji danych, zdolnych przetrwać przewidywaną wówczas III wojnę światową, wykonanym na zlecenie Amerykańskich Sił Zbrojnych[2].


Całkiem nowym pojęciem nieznanym jeszcze w roku 2018 które ze zbioru pustego automatycznie przeskoczyło do zbioru Uniwersum w rozumieniu AK jest pojęcie: COVID-19.
Praktycznie nie ma w dniu dzisiejszym człowieka na ziemi który by nie wiedział co znaczy pojęcie COVID-19 (chyba że jakiś jaskiniowiec).

Podsumowując:
Uniwersum U w AK i zbiór pusty [] w AK to zbiory rozłączne, mimo że oba zawierają nieskończoną ilość pojęć.
Ściślej mówiąc w AK w zbiorze pustym [] na 100% jest nieskończona ilość pojęć, natomiast w Uniwersum ludzkości mamy straszliwie wielką ilość pojęć, ale na pewno nie nieskończoną.

Wniosek:
MaluśnaOwieczko:
To z powyższych definicji wynikają wnioski które już zapisałem w algebrze Kubusia na bazie teorii zbiorów Dziedzina D, Uniwersum U, zbiór pusty []

Punktem startowym dzięki któremu teoria zbiorów D, U i [] powstała były definicje zbiorów Uniwersum U i zbioru pustego [] w AK wyżej skomentowane!

W uproszczeniu mamy zatem tak:
Zawartość Uniwersum w AK:
U = [Pies, miłość, krasnoludek, zbiór liczb naturalnych, zbiór wszystkich zwierząt ...]
Zawartość zbioru pustego [] w AK:
[] = [agstd, sdked, skdjatxz …]

W tym momencie zacytuję podsumowanie teorii zbiorów D, U i [] które już zapisałem wcześniej:

Podsumowując:
Zbiór pusty [] jest (=1) podzbiorem => wyłącznie zbioru pustego []
[]=>[] =1
Zbiór pusty nie jest (=0) podzbiorem zbioru niepustego
[] =>[ZWT] =0

MaluśnaOwieczko:
Czy w tym momencie zgadzasz się na prawdziwość podsumowania wyżej?
Zauważ, że w tym momencie wszystkie twoje dowody jakoby teoria zbiorów w AK była wewnętrznie sprzeczna zostały wysadzone w powietrze - jeśli udowodnisz że NIE, to kasuję calusieńką AK.

Teraz uważaj MaluśnaOwieczko - przechodzę do kontrataku:
Aktualna teoria zbiorów Ziemian na gruncie teorii zbiorów z algebry Kubusia jest wewnętrznie sprzeczna bo twierdzi że:
Zbiór pusty [] jest podzbiorem każdego zbioru, zarówno pustego [] jak i niepustego [x].

Pytanie do MalusnejOwieczki:
Czy zgadzasz się na wewnętrzną sprzeczność w teorii zbiorów ziemian przy definicjach Uniwersum U i zbioru pustego [] z algebry Kubusia wyżej zdefiniowanych i skomentowanych?

Poproszę o krótkie: TAK albo NIE

Tylko dwie rzeczy są nieskończone: wszechświat oraz ludzka głupota, choć nie jestem pewien co do tej pierwszej.
Albert Einstein

Tylko dwie rzeczy są nieskończone zawartość Uniwersum w rozumieniu AK i zawartość zbioru pustego [] w rozumieniu AK, choć nie jestem pewien co do tej pierwszej.
Kubuś

P.S.
Dokładnie takie dyskusje są dla mnie bezcenne - mam nadzieję że wszyscy rozumieją dlaczego.
Dzięki MaluśnaOwieczko.
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 36113
Przeczytał: 10 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Pon 0:09, 01 Lut 2021    Temat postu:

http://www.sfinia.fora.pl/forum-kubusia,12/szach-mat-ktory-przejdzie-do-historii-matematyki,15663-3225.html#576481

Prawo Owieczki - najbardziej zaskakujące twierdzenie w historii matematyki!
Z podziękowaniem dla MaluśnejOwieczki, bo to dzięki niemu zostało odkryte.

Wniosek:
Fałszywe jest zatem twierdzenie ziemskich matematyków, jakoby zbiór pusty [] był podzbiorem => zarówno zbioru pustego [] jak i zbioru niepustego [x].
[]=>[] =1 - bo każdy zbiór jest podzbiorem => siebie samego
[]=>[x] =0 - bo zbiory pusty [] i niepusty [x] są rozłączne

Na deser wisienka na torcie, czyli najbardziej zaskakujące twierdzenie w całej historii logiki matematycznej.

Prawo Owieczki:
Prawdziwe jest zdanie ziemskich matematyków iż „ze zbioru pustego [] wynika wszystko” wtedy i tylko wtedy gdy definicje zbioru pustego [] i Uniwersum U będą zgodne z definicjami obowiązującymi w algebrze Kubusia.

http://www.sfinia.fora.pl/forum-kubusia,12/szach-mat-ktory-przejdzie-do-historii-matematyki,15663-3150.html#575901
MaluśnaOwieczka napisał:

rafal3006 napisał:
Czy zgadzasz się z fundamentem wszelkich ziemskich logik mówiącym iż:
„z fałszu wynika wszystko”

Tak, zgadzam się.


MaluśnaOwieczko:
Nie zamierzam udowadniać fałszywości poniższych dogmatów ziemskich matematyków:
1: z fałszu wynika wszystko
2: ze zbioru pustego wynika wszystko
3: ze zdania fałszywego wynika wszystko
bowiem zdanie „ze zbioru pustego wynika wszystko” jest prawdziwe pod warunkiem przyjęcia definicji zbioru pustego [] i Uniwersum U z algebry Kubusia.

Dowód prawdziwości prawa Owieczki niżej:
http://www.sfinia.fora.pl/forum-kubusia,12/algebra-kubusia-matematyka-jezyka-potocznego-2021-01-22,18263.html#574091

3.0 Kubusiowa teoria zbiorów
Kubusiowa teoria zbiorów to nieznana ziemianom teoria zbiorów dla potrzeb logiki matematycznej, algebry Kubusia.

Definicja pojęcia:
Pojęcie to wyrażenie zrozumiałe dla człowieka

Przykłady pojęć zrozumiałych:
p = [pies, miłość, krasnoludek ...]
Przykłady pojęć niezrozumiałych:
q = [agstd, sdked …]

Definicja elementu zbioru:
Element zbioru to dowolne pojęcie zrozumiałe przez człowieka, które umieści w swoim zbiorze

Definicja zbioru:
Zbiór to zestaw dowolnych pojęć należących do Uniwersum

Zauważmy, że w definicji zbioru nie ma zastrzeżenia, iż elementem zbioru nie może być zbiór.

Definicja Uniwersum:
Uniwersum to zbiór wszelkich pojęć zrozumiałych dla człowieka.
Czyli:
U = [pies, miłość, krasnoludek ...] - wyłącznie pojęcia rozumiane przez człowieka (zdefiniowane)

Uniwersum człowieka jest dynamiczne tzn. rozszerza się gdy się uczymy (poznajemy nowe pojęcia) i zawęża gdy zapominamy wyuczonych kiedyś pojęć. Na mocy definicji w żadnym momencie nie możemy wyjść poza swoje, indywidualne Uniwersum. Zauważmy, że zaledwie 50 lat temu pojęcie „Internet” było zbiorem pustym, nie istniało - ale w dniu dzisiejszym już tak nie jest, Uniwersum ludzkości rozszerzyło się o to pojęcie, znane praktycznie każdemu człowiekowi na Ziemi.

Definicja zbioru pustego []:
Zbiór pusty to zbiór zawierający zero pojęć zrozumiałych dla człowieka
Czyli:
[] = [agstd, sdked …] - wyłącznie pojęcia niezrozumiałe dla człowieka (jeszcze nie zdefiniowane)

Zauważmy, że w zbiorze pustym [] z definicji nie ma prawa być pojęcia które znajduje się w Uniwersum bo pojęcie „zbiór pusty” oznacza zbiór pojęć niezrozumiałych dla człowieka.
Innymi słowy:
Pojęcia „zbioru pustego” leżą na zewnątrz Uniwersum, są to pojęcia jeszcze nie zdefiniowane przez człowieka które w przyszłości mogą być zdefiniowane.

Co się stanie jak pojęcie nieznane dzisiaj przez człowieka zostanie zdefiniowane?
Odpowiedź:
Takie pojęcie automatycznie przeskoczy do Uniwersum.

Przykładem pojęcia które kilkadziesiąt lat temu przeskoczyło ze zbioru pustego do Uniwersum jest np. pojęcie Internet.
Zauważmy, że zaledwie 40 lat temu pojęcie „Internet” było zbiorem pustym, nie istniało - ale w dniu dzisiejszym już tak nie jest, Uniwersum ludzkości rozszerzyło się o to pojęcie, znane praktycznie każdemu człowiekowi na ziemi.

Uniwersum U i zbiór pusty [] to zbiory rozłączne, z tym że Uniwersum jest zbiorem skończonym o przeliczalnej liczbie elementów, bo chodzi tu wyłącznie o człowieka który definiuje pojęcia.
Natomiast zbiór pusty [] zawiera nieskończoną ilość elementów, bo chodzi tu o pojęcia które człowiek jeszcze nie zdefiniował a których jest nieskończenie wiele.

Definicja podzbioru =>:
Zbiór p jest podzbiorem => zbioru q wtedy i tylko wtedy gdy każdy element zbioru p należy do zbioru q

Definicja zbiorów rozłącznych:
Dwa zbiory p i q są rozłączne wtedy i tylko wtedy gdy nie mają elementu wspólnego

Podsumowanie:
Na mocy wyłożonej wyżej teorii możemy zapisać:
1.
Zbiór pusty [] jest (=1) podzbiorem => zbioru pustego []
[] => [] =1
Na mocy definicji podzbioru:
Każdy zbiór jest podzbiorem => siebie samego
cnd
2.
Zbiór pusty nie jest (=0) podzbiorem => Uniwersum U
[]=>U =0
Zbiór pusty [] nie ma ani jednego elementu wspólnego ze zbiorem Uniwersum U, zatem zbiory te są rozłączne.
Innymi słowy:
Nie istnieje element zbioru pustego [], który należałby do zbioru Uniwersum U
cnd

Powyższe relacje zbioru pustego [] i Uniwersum U obowiązują między dowolnymi zbiorami, inaczej matematyka jest wewnętrznie sprzeczna.

Wniosek:
Fałszywe jest zatem twierdzenie ziemskich matematyków, jakoby zbiór pusty [] był podzbiorem => zarówno zbioru pustego [] jak i zbioru niepustego [x].
[]=>[] =1 - bo każdy zbiór jest podzbiorem => siebie samego
[]=>[x] =0 - bo zbiory pusty [] i niepusty [x] są rozłączne

Na deser wisienka na torcie, czyli najbardziej zaskakujące twierdzenie w całej historii logiki matematycznej.

Prawo Owieczki:
Prawdziwe jest zdanie ziemskich matematyków iż „ze zbioru pustego [] wynika wszystko” wtedy i tylko wtedy gdy definicje zbioru pustego [] i Uniwersum U będą zgodne z definicjami obowiązującymi w algebrze Kubusia.

Tylko dwie rzeczy są nieskończone: wszechświat oraz ludzka głupota, choć nie jestem pewien co do tej pierwszej.
Albert Einstein

Tylko dwie rzeczy są nieskończone zawartość Uniwersum U i zawartość zbioru pustego [], choć nie jestem pewien co do tej pierwszej.
Rafal3006
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 36113
Przeczytał: 10 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Pon 17:46, 01 Lut 2021    Temat postu:

http://www.sfinia.fora.pl/forum-kubusia,12/szach-mat-ktory-przejdzie-do-historii-matematyki,15663-3250.html#576675

Odezwa Jasia (lat 5) do ziemskich matematyków:

lucek napisał:

Cytat:
Lucek, czy to ważne czy świat ponadnaturalny istnieje czy nie istnieje?
Dla matematyki ziemian ma to zerowe znaczenie.

ta AL już całkiem z logiki mózg ci wyprała, w cytacie, do którego się odniosłeś jest: "to inna sprawa" .... i proszę do czego prowadzi mentalność lewacka - do obłędu :)


Lucku, a nie przeszło ci przez myśl, przecież jesteś ze mną od 15 lat (Miki), że będąc zwolennikiem logiki matematycznej ziemian zwanej Klasycznym Rachunkiem Zdań to ty żyjesz w zakładzie zamkniętym bez klamek?
Już zapomniałeś co zrobiła z tobą pani przedszkolaka gdy usiłowałeś uczyć 5-cio latków gówna zwanego KRZ?
KRZ:
Jeśli Kubuś jest Prosiaczkiem to Prosiaczek jest Kubusiem
Jeśli 2+2=5 to Kubuś jest Misiem
Jeśli Kubuś jest Misiem to Księżyc krąży wokół Ziemi
etc

[link widoczny dla zalogowanych]
Wikipedia napisał:

Teoria strun – model matematyczny przewidujący, że podstawowym budulcem materii nie są cząstki w postaci punktu, lecz struny wielkości 10-31 metra.

Ziemianie mieli 2500 lat czasu (od Sokraesa).
Powiedz mi Lucku, dlaczego do tej pory nie znaleziono modelu matematycznego który by wiązał matematycznie warunki wystarczające => i konieczne ~>.

http://www.sfinia.fora.pl/forum-kubusia,12/algebra-kubusia-matematyka-jezyka-potocznego-2021-01-22,18263.html#574093
Algebra Kubusia napisał:

4.3.1 Matematyczne związki warunków wystarczających => i koniecznych ~>

Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
A1: p=>q = ~p+q
##
Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
B1: p~>q = p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Na mocy rachunku zero-jedynkowego mamy matematyczne związki warunków wystarczających => i koniecznych ~>.
Kod:

Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      AB12:            |     AB34:
      AB1:     AB2:    |     AB3:     AB4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5: p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


Na mocy powyższego zapisujemy:
1.
Prawa Kubusia:
A1: p=>q = A2: ~p~>~q
##
B1: p~>q = B2: ~p=>~q
Ogólne prawo Kubusia:
Negujemy zmienne i wymieniamy spójniki na przeciwne

2.
Prawa Tygryska:
A1: p=>q = A3: q~>p
##
B1: p~>q = B3: q=>p
Ogólne prawo Tygryska:
Zamieniamy miejscami zmienne i wymieniamy spójniki na przeciwne

3.
Prawa kontrapozycji dla warunków wystarczających =>:
A1: p=>q = A4: ~q=>~p
##
B2: ~p=>~q = B3: q=>p
Ogólne prawo kontrapozycji:
Negujemy zmienne zamieniając je miejscami bez zmiany spójnika logicznego

4.
Prawa kontrapozycji dla warunków koniecznych ~>:
A2: ~p~>~q = A3: q~>p
##
B1: p~>q = B4: ~q~>~p
Ogólne prawo kontrapozycji:
Negujemy zmienne zamieniając je miejscami bez zmiany spójnika logicznego

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>


Lucku:
Powyższy model matematyczny ma w małym paluszku każdy 5-cio latek, popatrz:

Pani przedszkolanka:
B1:
Jeśli jutro będzie pochmurno to może ~> padać
Powiedzcie mi dzieci czy to zdanie jest matematycznie prawdziwe/fałszywe?

Jaś (lat 5):
B1:
Jeśli jutro będzie pochmurno (P) to może ~> padać (P)
CH~>P =1
Chmury (CH) są warunkiem koniecznym ~> aby jutro padło (P), bo jak nie ma chmur (~CH) to na 100% => nie pada (~P)
Jak wszyscy widzą, prawo Kubusia samo mi tu wyskoczyło.
Prawo Kubusia:
B1: CH~>P = B2: ~CH =>~P =1
Z prawa Kubusia wynika że prawdziwość zdania B1 wymusza prawdziwość zdania B2 i odwrotnie.
B2.
Jeśli jutro nie będzie pochmurno (~CH) to na 100% => nie będzie padało (~P)
~CH=>~P =1
Brak chmur (~CH) daje nam gwarancję matematyczną => braku deszczu (~P), bo zawsze gdy nie ma chmur (~CH), nie pada (~P).

Odezwa Jasia (lat 5) do ziemskich matematyków:
Drodzy ziemscy matematycy, w temacie „logika matematyczna” wszyscy jak jeden mąż, żyjecie w zakładzie zamkniętym bez klamek, tyko o tym nie wiecie - ale nie martwcie się, nie rozpaczajcie.
Kubuś ogłosił w 100-milowym lesie mobilizację 5-cio latków, wkrótce wyruszamy na podbój ziemi.
Naszym zadaniem będzie pogrom Szatana zwanego KRZ, który opanował wasze mózgi.
Cieszcie się i radujcie, wkrótce wyprowadzimy was z matematycznego piekła (KRZ) do matematycznego Raju (algebra Kubusia)

Podpisano:
Prosiaczek - odpowiedzialny za mobilizację 5-cio latków.


Ostatnio zmieniony przez rafal3006 dnia Pon 17:55, 01 Lut 2021, w całości zmieniany 1 raz
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 36113
Przeczytał: 10 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Wto 11:29, 02 Lut 2021    Temat postu:

http://www.sfinia.fora.pl/forum-kubusia,12/algebra-kubusia-matematyka-jezyka-potocznego-2021-01-22,18263.html#574093

Algebra Jasia!
Z dedykacją dla MaluśnejOwieczki i Lucka.

Czym jest algebra Jasia?
Algebra Jasia to podstawowy podręcznik logiki matematycznej dla 5-cio latków.

Prawo Pandy:
Dla zrozumienie logiki matematycznej pod którą podlega cały nasz Wszechświat jest potrzebna i wystarczająca znajomość algebry Jasia plus matematyczne definicje obietnicy i groźby.

Moje zdanie:
Jestem przeciwnikiem katowania humanistów (mających kłopoty z matematyką) pełną wersją algebry Kubusia - wystarczy jeśli będą znali algebrę Jasia tzn. biegle posługiwali się prawami Kubusia, Tygryska i kontrapozycji.


Spis treści
4.0 Algebra Jasia 1
4.1 Definicje warunków wystarczających => i koniecznych ~> 3
4.1.1 Definicje warunków wystarczających => i koniecznych ~> w zdarzeniach 3
4.1.2 Definicje warunków wystarczających => i koniecznych ~> w zbiorach 4
4.2 Matematyczne związki warunków wystarczających => i koniecznych ~> 4
4.3 Prawo śfinii - domyślny punktu odniesienia w zdaniach warunkowych 6
4.3.1 Prawo śfinii z punktem odniesienia ustawionym na warunku wystarczającym => 6
4.3.2 Prawo śfinii z punktem odniesienia ustawionym na warunku koniecznym ~> 8
4.3.3 Istota prawa śfinii 9



4.0 Algebra Jasia

[link widoczny dla zalogowanych]
Wikipedia napisał:

Teoria strun – model matematyczny przewidujący, że podstawowym budulcem materii nie są cząstki w postaci punktu, lecz struny wielkości 10-31 metra.
Pierwotna teoria strun, zwana teorią strun bozonowych, powstała w 1970 roku. Jednak nie jest ona teorią odzwierciedlającą stan naszego fizycznego świata, ponieważ nie zakłada istnienia fermionów. Z upływem czasu pojawiały się nowe odmiany teorii strun. Obecnie uważa się, że wszystkie te teorie są odmianami jednej teorii wyższego rzędu, M-teorii.
TS przewiduje, że przestrzeń, w której żyjemy, ma co najmniej 10 wymiarów, przy czym trzy wymiary przestrzenne oraz czas są wymiarami otwartymi, natomiast pozostałe wymiary są skompaktyfikowane do rozmiarów niedostępnych naszemu codziennemu doświadczeniu, dlatego ich nie obserwujemy.

Kontrowersje
Teoria strun nie ma do tej pory dowodów na swą słuszność. Wielu naukowców zarzuca jej brak potwierdzających ją doświadczeń.
1.
Philip Anderson twierdzi, że teoria ta jest "pierwszą od setek lat nauką, która uprawiana jest w sposób przed-baconowski, bez żadnej odpowiedniej procedury eksperymentalnej"[38].
2.
Sheldon Lee Glashow twierdzi natomiast ironicznie, że teoria ta jest "absolutnie bezpieczna", jako że nie ma żadnego sposobu, by ją zweryfikować i ewentualnie obalić.

3.
W 2006 roku Peter Woit napisał krytyczną wobec teorii książkę, w której stara się udowodnić nie tyle fałszywość teorii, ile jej absurdalność[40]. W tym samym roku również krytyczną wobec teorii strun książkę napisał Lee Smolin[41][42].
4.
Innym krytykiem TS jest Roger Penrose. Choć nie neguje TS jako nauki[43] ani nie kwestionuje tego, że podstawowym budulcem materii może być struna, a nie punkt, to nie akceptuje jednego z fundamentalnych założeń, w którym na polu TS przyjmuje się istnienie więcej niż 4 wymiarów rzeczywistych[44].


Jaka jest różnica między Teorią Strun a algebrą Jasia?
1.
Teorii Strun z definicji nie da się obalić bo jest nieweryfikowalna:
Sheldon Lee Glashow twierdzi natomiast ironicznie, że teoria ta jest "absolutnie bezpieczna", jako że nie ma żadnego sposobu, by ją zweryfikować i ewentualnie obalić.
2.
Algebrę Jasia bez problemu można obalić pokazując jeden kontrprzykład z nieskończonej ilości zdań warunkowych „Jeśli p to q” spełniających założenia algebry Jasia.
Sęk w tym że to niemożliwe.

Problem Milenijny:
Jeśli dowolny matematyk znajdzie jeden kontrprzykład obalający algebrę Jasia, to dostanie ode mnie 1 milion USD,

Definicja algebry Jasia:
Algebra Jasia to model matematycznych związków warunku wystarczającego => i koniecznego ~> wyrażonych zdaniami warunkowymi „Jeśli p to q” w świecie martwym.

Definicja świata martwego:
Dowolne zdanie warunkowe „Jeśli p to q” opisuje świat martwy wtedy i tylko wtedy gdy ani poprzednik p, ani też następnik q nie zależy od „wolnej woli” człowieka

Definicja „wolnej woli” człowieka:
„Wolna wola” to zdolność do łamania wszelkich praw logiki matematycznej wyznaczanych przez świat martwy.

1.
Przykład zdania warunkowego „Jeśli p to q” opisującego świat martwy:

A1.
Jeśli jutro będzie padało to na 100% => będzie pochmurno
P=>CH =1
Definicja warunku wystarczającego => spełniona bo zawsze gdy pada, jest pochmurno

W zdaniu A1 ani poprzednik, ani następnik nie zależą od decyzji człowieka, zatem to zdanie należy do interesującego nas świata martwego.

Prawo kontrapozycji:
A1: P=>CH = A4: ~CH=>~P
stąd:
A4.
Jeśli jutro nie będzie pochmurno (~CH) to na 100% => nie będzie padało (~P)
~CH=>~P =1
Brak chmur (~CH) jest warunkiem wystarczającym => dla nie padania (~P) bo zawsze gdy nie ma chmur (~CH), nie pada (~P).

2.
Przykład zdania warunkowego „Jeśli p to q” opisującego świat żywy:

A1.
Jeśli jutro będzie padało to na 100% => otworzę parasol
P=>OP =1
Tu człowiek obiecuje, że jak jutro będzie padało to otworzy parasol

W zdaniu A1 poprzednik p nie zależy od decyzji człowieka, ale następnik p zależy od decyzji człowieka, dlatego to zdanie jest z obszaru świata żywego.
Tego typu zdania nas nie interesują na mocy definicji algebry Jasia.

Zobaczmy co się stanie jak tu zastosujemy prawo kontrapozycji:
A1: P=>OP = A4: ~OP=>~P
A4.
Jeśli jutro nie otworzę parasola to na 100% => nie będzie padało
~OP => ~P=1
To zdanie jest prawdziwe na mocy prawa kontrapozycji, ale jak widzimy doszło tu do absurdu, bo człowiek nie ma wpływu na to czy jutro będzie padało czy nie będzie, ta decyzja należy do Boga a nie do człowieka.
Dokładnie z tego powodu w algebrze Jasia interesuje nas wyłącznie świat martwy ( w tym matematyka), który wyznacza wszelkie prawa logiki matematycznej.
Zauważmy, że świat żywy nie może wyznaczać praw logiki matematycznej ze względu na „wolną wolę” człowieka.

Definicja „wolnej woli” człowieka:
„Wolna wola” to zdolność do łamania wszelkich praw logiki matematycznej wyznaczanych przez świat martwy.

Dokładnie z powodu tu opisanego, kluczowe i najważniejsze są prawa logiki matematycznej wyznaczanej przez świat martwy.
Powtórzmy definicję algebry Jasia.

Definicja algebry Jasia:
Algebra Jasia to model matematycznych związków warunku wystarczającego => i koniecznego ~> wyrażonych zdaniami warunkowymi „Jeśli p to q” w świecie martwym.


4.1 Definicje warunków wystarczających => i koniecznych ~>

Warunki wystarczające => i konieczne ~> mogą zachodzić w zdarzeniach albo w zbiorach.
Poznajmy odpowiednie definicje.

4.1.1 Definicje warunków wystarczających => i koniecznych ~> w zdarzeniach

Definicja warunku wystarczającego => w zdarzeniach:
Jeśli zajdzie p to zajdzie q
p=>q =1
Definicja warunku wystarczającego => jest spełniona (=1) wtedy i tylko wtedy gdy zajście zdarzenia p jest wystarczające => dla zajścia zdarzenia q
Inaczej:
p=>q =0

Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
p=>q = ~p+q

Definicja warunku koniecznego ~> w zdarzeniach:
Jeśli zajdzie p to zajdzie q
p~>q =1
Definicja warunku koniecznego ~> jest spełniona (=1) wtedy i tylko wtedy gdy zajście zdarzenia p jest konieczne ~> dla zajścia zdarzenia q
Inaczej:
p~>q =0

Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
p~>q = p+~q

4.1.2 Definicje warunków wystarczających => i koniecznych ~> w zbiorach

Definicja warunku wystarczającego => w zbiorach:
Jeśli p to q
p=>q =1
Definicja warunku wystarczającego => jest spełniona (=1) wtedy i tylko wtedy gdy zbiór p jest podzbiorem => q
Inaczej:
p=>q =0 - definicja warunku wystarczającego => nie jest (=0) spełniona

Matematycznie zachodzi tożsamość:
Warunek wystarczający => = relacja podzbioru =>

Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
p=>q = ~p+q

Definicja warunku koniecznego ~> w zbiorach:
Jeśli p to q
p=>q =1
Definicja warunku koniecznego ~> jest spełniona (=1) wtedy i tylko wtedy gdy zbiór p jest nadzbiorem ~> q
Inaczej:
p~>q =0 - definicja warunku koniecznego ~> nie jest (=0) spełniona

Matematycznie zachodzi tożsamość:
Warunek konieczny ~> = relacja nadzbioru ~>

Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
p~>q = p+~q


4.2 Matematyczne związki warunków wystarczających => i koniecznych ~>

Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
A1: p=>q = ~p+q
##
Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
B1: p~>q = p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Na mocy rachunku zero-jedynkowego mamy matematyczne związki warunków wystarczających => i koniecznych ~>.
Kod:

Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      AB12:            |     AB34:
      AB1:     AB2:    |     AB3:     AB4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5: p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


Na mocy powyższego zapisujemy:
1.
Prawa Kubusia:
A1: p=>q = A2: ~p~>~q
##
B1: p~>q = B2: ~p=>~q
Ogólne prawo Kubusia:
Negujemy zmienne i wymieniamy spójniki na przeciwne

2.
Prawa Tygryska:
A1: p=>q = A3: q~>p
##
B1: p~>q = B3: q=>p
Ogólne prawo Tygryska:
Zamieniamy miejscami zmienne i wymieniamy spójniki na przeciwne

3.
Prawa kontrapozycji:
A1: p=>q = A4: ~q=>~p - prawo kontrapozycji dla warunku wystarczającego =>
##
B1: p~>q = B4: ~q~>~p - prawo kontrapozycji dla warunku koniecznego ~>
Ogólne prawo kontrapozycji:
Negujemy zmienne zamieniając je miejscami bez zmiany spójnika logicznego

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Mutacje powyższych praw logiki matematycznej:

Pod p i q w powyższych prawach możemy podstawiać zanegowane zmienne w dowolnych konfiguracjach.

Przykład:
Prawo Kubusia:
p=>q = ~p~>~q
1.
Podstawiamy:
p:=~p
q:=~q
stąd mamy także poprawne prawo Kubusia:
~p=>~q = ~(~p)~>~(~q) = p~>q
2.
Podstawiamy:
p:=p
q:=~q
stąd mamy także poprawne prawo Kubusia:
p=>~q = ~p~>~(~q) = ~p~>q
itd


4.3 Prawo śfinii - domyślny punktu odniesienia w zdaniach warunkowych

Prawo śfinii
Domyślny punkt odniesienia w zdaniach warunkowych „Jeśli p to q”:

W dowolnym zdaniu warunkowym „Jeśli a to b” zapisanym w zmiennych aktualnych a i b (mających związek z językiem potocznym człowieka), zawsze po „Jeśli..” zapisujemy formalny poprzednik p zaś po „to” zapisujemy formalny następnik q.

Zamieniać p i q w dowolnym zdaniu warunkowym z ustalonym wyżej domyślnym punktem odniesienia wolno nam tylko i wyłącznie na podstawie prawa Tygryska lub prawa kontrapozycji:

2.
Prawa Tygryska:
A1: p=>q = A3: q~>p
##
B1: p~>q = B3: q=>p
Ogólne prawo Tygryska:
Zamieniamy miejscami zmienne i wymieniamy spójniki na przeciwne

3.
Prawa kontrapozycji:
A1: p=>q = A4: ~q=>~p - prawo kontrapozycji dla warunku wystarczającego =>
##
B1: p~>q = B4: ~q~>~p - prawo kontrapozycji dla warunku koniecznego ~>
Ogólne prawo kontrapozycji:
Negujemy zmienne zamieniając je miejscami bez zmiany spójnika logicznego

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>


4.3.1 Prawo śfinii z punktem odniesienia ustawionym na warunku wystarczającym =>

Przykład:
Pani w przedszkolu:
A1.
Jeśli jutro będzie padało (P=1) to na 100% => będzie pochmurno (CH=1)
P=>CH =1
Padanie jest warunkiem wystarczającym => dla istnienia chmur, bo zawsze gdy pada, są chmury

Na mocy prawa śfinii musimy tu przyjąć:
p=P
q=CH
Stąd zdania A1 w zapisie formalnym przyjmuje postać:
p=>q =1
P=>CH =1

Dla zdania A1 skorzystajmy z prawa Kubusia:
A1: P=>H = A2: ~P~>~CH
A2.
Jeśli jutro nie będzie padało (~P=1) to może nie być pochmurno (~CH=1)
~P~>~CH =1
to samo w zapisach formalnych:
~p~>~q =1
Brak opadów (~P=1) jest warunkiem koniecznym ~> aby jutro nie było pochmurno (~CH=1), bo jak pada (P=1) to na 100% => są chmury (CH=1)
Jak widzicie drogie dzieci prawo Kubusia samo nam tu wyskoczyło.
Prawo Kubusia:
A2: ~P~>~CH = A1: P=>CH
to samo w zapisach formalnych:
A2: ~p~>~q = A1: p=>q

Znaczenie tożsamości logicznej „=”:
A2: ~P~>~CH = A1: P=>CH
Prawdziwość dowolnej strony tożsamości logicznej „=” wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej „=” wymusza fałszywość drugiej strony

Czy ktoś zechce pociągnąć dalej tą analizę, bo ziemscy matematycy nas oglądają dzięki ziemskiemu Internetowi.

Małgosia (lat 5):
Poprawną zamianę poprzednika p z następnikiem q mamy dzięki prawu Tygryska:
Prawo Tygryska:
A1: P=>CH = A3: CH~>P
to samo w zapisach formalnych:
A1: p=>q = A3: q~>p
stąd:
A3.
Jeśli jutro będzie pochmurno (CH=1) to może ~> padać (P=1)
CH~>P =1
to samo w zapisach formalnych:
q~>p =1
Chmury (CH=1) są warunkiem koniecznym ~> aby jutro padało (P=1), bo jak nie ma chmur (~CH=1) to na 100% => nie pada (~P=1)
Jak widzicie drodzy ziemianie, prawo Kubusia samo nam tu wyskoczyło.
Prawo Kubusia:
A3: CH~>P = A4: ~CH=>~P
to samo w zapisie formalnym:
A3: q~>p = A4: ~q=>~p
stąd:
A4.
Jeśli jutro nie będzie pochmurno (~CH=1) to na 100% => nie będzie padało (~P=1)
~CH=>~P =1
Brak chmur (~CH=1) jest warunkiem wystarczającym => aby nie padało (~P=1) bo zawsze gdy nie ma chmur (~CH=1), nie pada (~P=1)

Zapiszmy naszą analizę w tabeli prawdy:
Kod:

Algebra Jasia dla punktu odniesienia A1: p=>CH
A1: p=> q =1 = A2:~p~> ~q =1 [=] A3: q~> p =1 = A4:~q=> ~p =1
A1: P=>CH =1 = A2:~P~>~CH =1 [=] A3: CH~>P =1 = A4:~CH=>~P =1



4.3.2 Prawo śfinii z punktem odniesienia ustawionym na warunku koniecznym ~>

Przykład:
Pani w przedszkolu:
B1:
Jeśli jutro będzie pochmurno (CH=1) to może ~> padać (P=1)
CH~>P =1
Chmury (CH=1) są warunkiem koniecznym ~> do tego aby jutro padało (P=1), bo jak nie będzie pochmurno (~CH=1) to na 100% => nie będzie padać (~P=1)
Jak widzicie drogie dzieci prawo Kubusia samo nam tu wyskoczyło:
B1: CH~>P = B2: ~CH=>~P
Stąd:
B2.
Jeśli jutro nie będzie pochmurno (~CH=1) to na 100% => nie będzie padało (~P=1)
~CH=>~P=1
Brak chmur (~CH=1) jest warunkiem wystarczającym => do tego aby nie padało (~P=1), bo zawsze gdy nie ma chmur, nie pada.

Zdanie B1 pani przedszkolanki to punkt odniesienia.
Na mocy prawa śfinii musimy tu przyjąć:
p=CH
q=P
Stąd zdanie B1 w zapisach formalnych przyjmuje postać:
B1: CH~>P =1
B1: p~>q =1
Zaś prawo Kubusia w zapisach formalnych brzmi:
B1: CH~>P = B2: ~CH=>~P
B1: p~>q = B2: ~p=>~q

Zamienić poprzednik z następnikiem możemy tu tylko i wyłącznie ma mocy prawa Tygryska lub prawa kontrapozycji.

Pani przedszkolanka wypowiedziała zdanie B1.
Jaś lat 5 pyta:
Proszę pani a jeśli jutro będzie padało?

Pani przedszkolanka:
Prawo Tygryska:
B1: CH~>P = B3: P=>CH
to samo w zapisach formalnych:
B1: p~>q = B3: q=>p

Na mocy prawa Tygryska dostajemy Jasiu odpowiedź:
B3.
Jeśli jutro będzie padało (P=1) to na 100% => będzie pochmurno (CH=1)
P=>CH =1
Zapis formalny:
B3: q=>p
Definicja warunku wystarczającego => spełniona bo zawsze gdy pada, jest pochmurno

Zuzia (lat 5):
Proszę pani, a jeśli jutro nie będzie padało?

Pani:
Oczywiście w stosunku do B3 możemy skorzystać z prawa Kubusia:
B3: q=>p = B4: ~q~>~p
stąd:
B4.
Jeśli jutro nie będzie padało (~P=1) to może ~> nie być pochmurno (~CH=1)
~P~>~CH =1
Zapis formalny:
B4: ~q~>~p
Brak opadów (~P=1) jest warunkiem koniecznym ~> do tego aby jutro nie było pochmurno (~CH=1) bo jak pada (P=1) to na 100% => są chmury (CH=1)

Ponownie prawo Kubusia samo nam tu wyskoczyło:
B4: ~P~>~CH = B3: P=>CH
zapis formalny:
B4: ~q~>~p = B3: q=>p

Zapiszmy naszą analizę w tabeli prawdy:
Kod:

Algebra Jasia dla punktu odniesienia B1: CH~>P
B1: p~> q =1 = B2:~p =>~q =1 [=] B3: q=>p  =1 = B4:~q~>~p  =1
B1: CH~>P =1 = B2:~CH=>~P =1 [=] B3: P=>CH =1 = B4:~P~>~CH =1



4.3.3 Istota prawa śfinii

Zapiszmy tabele prawdy naszych analiz matematycznych wyżej.

I.
Prawo śfinii z punktem odniesienia ustawionym na warunku wystarczającym =>:
A1: P=>CH
Kod:

T1
Algebra Jasia dla punktu odniesienia A1: P=>CH
A1: p=> q =1 = A2:~p~> ~q =1 [=] A3: q~> p =1 = A4:~q=> ~p =1
A1: P=>CH =1 = A2:~P~>~CH =1 [=] A3: CH~>P =1 = A4:~CH=>~P =1

###
II.
Prawo śfinii z punktem odniesienia ustawionym na warunku koniecznym ~>:
B1: CH~>P =1
Kod:

T2
Algebra Jasia dla punktu odniesienia B1: CH~>P
B1: p~> q =1 = B2:~p =>~q =1 [=] B3: q=>p  =1 = B4:~q~>~p  =1
B1: CH~>P =1 = B2:~CH=>~P =1 [=] B3: P=>CH =1 = B4:~P~>~CH =1

Gdzie:
### - różne na mocy prawa śfinii

Co wynika z prawa śfinii?

Na przykład to:
Kod:

T1
Algebra Jasia dla punktu odniesienia A1: P=>CH
A1: p=> q =1
A1: P=>CH =1

###
Kod:

T2
Algebra Jasia dla punktu odniesienia B1: CH~>P
B3: q=>p  =1
B3: P=>CH =1

Gdzie:
### - różne na mocy prawa śfinii
Innymi słowy:
### - różne na mocy niezgodności punktu odniesienia
Innymi słowy:
### - różne z powodu błędu podstawienia

Zachodzi tożsamość pojęć:
Prawo śfinii = Błąd podstawienia

Zauważmy że zdanie A1: P=>CH z tabeli prawdy T1 brzmi identycznie i dowodzi się identycznie jak zdanie B3: P=>CH z tabeli prawdy T2

ALE!
Zdania te są różne z powodu błędu podstawienia ###
Zdania te są różne na mocy prawa śfinii

Zauważmy, że w tabeli T1 mamy:
p=P
q=CH
Natomiast w tabeli T2 mamy:
q=P
p=CH
Błąd podstawienia na poziomie szkoły podstawowej widać tu jak na dłoni.


Ostatnio zmieniony przez rafal3006 dnia Wto 15:41, 02 Lut 2021, w całości zmieniany 4 razy
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 36113
Przeczytał: 10 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Śro 14:09, 03 Lut 2021    Temat postu:

http://www.sfinia.fora.pl/forum-kubusia,12/algebra-kubusia-matematyka-jezyka-potocznego-2021-01-22,18263.html#574091

Wstęp do teorii zbiorów w algebrze Kubusia!
Myślę, że w dyskusji z MaluśnąOwieczką udało nam się wypracować kluczowe fundamenty teorii zbiorów.

Spis treści
3.0 Kubusiowa teoria zbiorów 1
3.1 Prawa Owcy o Owieczki 3


3.0 Kubusiowa teoria zbiorów

Kubusiowa teoria zbiorów to nieznana ziemianom teoria zbiorów dla potrzeb logiki matematycznej, algebry Kubusia.

Definicja pojęcia:
Pojęcie to wyrażenie zrozumiałe dla człowieka

Przykłady pojęć zrozumiałych:
p = [pies, miłość, krasnoludek ...]
Przykłady pojęć niezrozumiałych:
q = [agstd, sdked …]

Definicja elementu zbioru:
Element zbioru to dowolne pojęcie zrozumiałe przez człowieka, które umieści w swoim zbiorze

Definicja zbioru:
Zbiór to zestaw dowolnych pojęć należących do Uniwersum

Zauważmy, że w definicji zbioru nie ma zastrzeżenia, iż elementem zbioru nie może być zbiór.

Definicja Uniwersum:
Uniwersum to zbiór wszelkich pojęć zrozumiałych dla człowieka.
Czyli:
U = [pies, miłość, krasnoludek ...] - wyłącznie pojęcia rozumiane przez człowieka (zdefiniowane)

Uniwersum człowieka jest dynamiczne tzn. rozszerza się gdy się uczymy (poznajemy nowe pojęcia) i zawęża gdy zapominamy wyuczonych kiedyś pojęć. Na mocy definicji w żadnym momencie nie możemy wyjść poza swoje, indywidualne Uniwersum. Zauważmy, że zaledwie 40 lat temu pojęcie „Internet” było zbiorem pustym, nie istniało - ale w dniu dzisiejszym już tak nie jest, Uniwersum ludzkości rozszerzyło się o to pojęcie, znane praktycznie każdemu człowiekowi na Ziemi.

Definicja zbioru pustego []:
Zbiór pusty to zbiór zawierający zero pojęć zrozumiałych dla człowieka
Czyli:
[] = [agstd, sdked …] - wyłącznie pojęcia niezrozumiałe dla człowieka (jeszcze niezdefiniowane)

Zauważmy, że w zbiorze pustym [] z definicji nie ma prawa być pojęcia które znajduje się w Uniwersum bo pojęcie „zbiór pusty” oznacza zbiór pojęć niezrozumiałych dla człowieka.
Innymi słowy:
Pojęcia „zbioru pustego” leżą na zewnątrz Uniwersum, są to pojęcia jeszcze niezdefiniowane przez człowieka które w przyszłości mogą być zdefiniowane.

Co się stanie jak pojęcie nieznane dzisiaj zostanie zdefiniowane?
Odpowiedź:
Takie pojęcie automatycznie przeskoczy do Uniwersum.

Przykładem pojęcia które kilkadziesiąt lat temu przeskoczyło ze zbioru pustego do Uniwersum jest np. pojęcie Internet. Zauważmy, że zaledwie 40 lat temu pojęcie „Internet” było zbiorem pustym, nie istniało - ale w dniu dzisiejszym już tak nie jest, Uniwersum ludzkości rozszerzyło się o to pojęcie, znane praktycznie każdemu człowiekowi na ziemi.

Uniwersum U i zbiór pusty [] to zbiory rozłączne, z tym że Uniwersum jest zbiorem skończonym o przeliczalnej liczbie elementów, bo chodzi tu wyłącznie o człowieka który definiuje pojęcia.
Natomiast zbiór pusty [] zawiera nieskończoną ilość elementów, bo chodzi tu o pojęcia które człowiek jeszcze nie zdefiniował a których jest nieskończenie wiele.

Definicja podzbioru =>:
Zbiór p jest podzbiorem => zbioru q wtedy i tylko wtedy gdy każdy element zbioru p należy do zbioru q

Definicja zbiorów rozłącznych:
Dwa zbiory p i q są rozłączne wtedy i tylko wtedy gdy nie mają elementu wspólnego

Podsumowanie:
Na mocy wyłożonej wyżej teorii możemy zapisać:
1.
Zbiór pusty [] jest (=1) podzbiorem => zbioru pustego []
[] => [] =1
Na mocy definicji podzbioru:
Każdy zbiór jest (=1) podzbiorem => siebie samego
cnd
2.
Zbiór pusty nie jest (=0) podzbiorem => Uniwersum U
[]=>U =0
Zbiór pusty [] nie ma ani jednego elementu wspólnego ze zbiorem Uniwersum U, zatem zbiory te są rozłączne.
Innymi słowy:
Nie istnieje (=0) element zbioru pustego [], który należałby do zbioru Uniwersum U
cnd

Powyższe relacje zbioru pustego [] i Uniwersum U obowiązują między dowolnymi zbiorami, inaczej matematyka jest wewnętrznie sprzeczna.

Na deser wisienka na torcie, czyli najbardziej zaskakujące twierdzenie w całej historii logiki matematycznej.

Prawo Owieczki:
Prawdziwe jest zdanie ziemskich matematyków iż „ze zbioru pustego [] wynika wszystko” wtedy i tylko wtedy gdy definicje zbioru pustego [] i Uniwersum U będą zgodne z definicjami obowiązującymi w algebrze Kubusia.

Problem zbioru pustego [] i Uniwersum U możemy przedstawić graficznie:
Kod:

-------------------------------------------------------------------
| Zbiór pusty []                   | Uniwersum U                  |
| Pojęcia jeszcze przez człowieka  | Pojęcia przez człowieka już  |
| niezdefiniowane                  | zdefiniowane                 |
| Niezrozumiałe dla człowieka      | Zrozumiałe dla człowieka     |
|                                  |                              |
-------------------------------------------------------------------

W AK zbiór pusty [] jest rozłączny ze zbiorem Uniwersum U w każdym momencie czasowym tzn. nie istnieje chwila czasowa w której zbiory [] i U miałyby choć jeden element wspólny.
Jeśli człowiek zdefiniuje dowolne nieznane mu pojęcie to to pojęcie przeskoczy ze zbioru pustego [] do U w czasie nieskończenie krótkim.


3.1 Prawa Owcy i Owieczki

Niniejszy rozdział wyjaśniający o co chodzi w definicjach zbioru pustego [] i Uniwersum U na gruncie algebry Kubusia zawiera wiele pojęć których jeszcze nie znamy, a które za chwilkę poznamy.
Rozdział ten to wyjaśnienia dla ziemskich matematyków o co chodzi w definicjach zbioru pustego [] i Uniwersum U w algebrze Kubusia.

http://www.sfinia.fora.pl/forum-kubusia,12/szach-mat-ktory-przejdzie-do-historii-matematyki,15663-3250.html#576965
MaluśnaOwieczka napisał:

rafal3006 napisał:
Zauważ MaluśnaOwieczko, że w AK zbiór pusty [] jest rozłączny ze zbiorem Uniwersum U w każdym momencie czasowym tzn. nie istnieje chwila czasowa w której zbiory [] i U miałyby choć jeden element wspólny.


Zauważ Kubusiu, że dokładnie tak samo jest w teorii zbiorów Ziemian.
Uniwersum i zbiór pusty nie mają żadnego elementu wspólnego, ale ich częścią wspólną jest zbiór (nie element) pusty.
W teorii zbiorów Ziemian zbiory rozłączne to takie zbiory, których częścią wspólną jest zbiór pusty.
Częścią wspólną Uniwersum i zbioru pustego jest w ziemskiej teorii zbiorów zbiór pusty. A więc w ziemskiej teorii zbiorów Uniwersum i zbiór pusty również są rozłączne.
Są rozłączne i mają część wspólną, którą jest zbiór pusty. Może to nie brzmi zbyt intuicyjnie..

Zdanie wytłuszczone jest wewnętrznie sprzeczne, bowiem jeśli zbiory są rozłączne to żadnej wspólnej części nie mogą mieć z definicji.

Ja doskonale wiem jak jest u ziemian - dokładnie tak jak mówisz, ale to jest katastrofa, wykluczająca poprawne relacje zbioru pustego [] i Uniwersum U.

Fundamentalne definicje pojęcia, elementu zbioru i zbioru przypominam niżej.

Definicja pojęcia:
Pojęcie to wyrażenie zrozumiałe dla człowieka

Przykłady pojęć zrozumiałych:
p = [pies, miłość, krasnoludek ...]
Przykłady pojęć niezrozumiałych:
q = [agstd, sdked …]

Definicja elementu zbioru:
Element zbioru to dowolne pojęcie zrozumiałe przez człowieka, które umieści w swoim zbiorze

Definicja zbioru:
Zbiór to zestaw dowolnych pojęć należących do Uniwersum

Zauważmy, że w definicji zbioru nie ma zastrzeżenia, iż elementem zbioru nie może być zbiór.
Nie jest zatem prawdą, jak twierdzą ziemianie iż zbiór to pojęcie pierwotne, niedefiniowalne.

Prawo Owcy:
Dowolna logika matematyczne w której element lub zbiór x należy jednocześnie do zbioru niezaprzeczonego (bo A) i zaprzeczonego (bo ~A) jest matematycznie fałszywa.

Dowód:
Dla powyższego x dojdzie do gwałtu na fundamencie logiki matematycznej:
A*~A =x
Gdzie:
x - wspólny dla A i ~A element lub zbiór.
cnd

Zastrzeżenie w ziemskiej teorii zbiorów jakoby elementami zbiorów nie mogłyby być zbiory jest nie do obrony.

Przykład:
[link widoczny dla zalogowanych]
Wikipedia napisał:

Podział ssaków z 2018 roku:
drapieżne (Carnivora) 288 gat.
dwuprzodozębowce (Diprotodontia) 143 gat.
gryzonie (Rodentia) 2368 gat.
jeżokształtne (Erinaceomorpha) 24 gat.
naczelne (Primates) 501 gat.
nieparzystokopytne (Perissodactyla) 24 gat.
nietoperze (Chiroptera) 1308 gat.
pancernikowce (Cingulata) 21 gat.
parzystokopytne (Artiodactyla) 248 gat.
rurkozębne (Tubulidentata) 1 gat.
ryjkonosowe (Macroscelidea) 15 gat.
ryjówkokształtne (Soricomorpha) 428 gat.
torbikowce (Microbiotheria) 1 gat.
trąbowce (Proboscidea) 3 gat.
walenie (Cetacea) 91 gat.
wiewióreczniki (Scandentia) 20 gat.
włochacze (Pilosa) 10 gat.
zajęczaki (Lagomorpha) 92 gat.

Jak widzimy zbiór ssaków to suma logiczna podzbiorów pojęcia ssak, a nie pojedyncze elementy np. krowa, nietoperz, hipopotam, delfin etc.
W szczególności wytłuszczony podzbiór to jeden gatunek, czyli pojedynczy element zbioru ssaki, ale ten element również należy do zbioru wszystkich ssaków.
Wniosek:
Definicja zbioru ziemian nie dopuszczająca podzbiorów jako elementów zbioru jest nie do obrony, to jest fałszywa definicja nie mająca związku z otaczającą nas rzeczywistością.

Przy okazji mamy tu dowód iż powszechnie używany przecinek rozdzielający elementy zbioru to znaczek sumy logicznej „lub”(+)
SSAKI = [torbikowce, walenie, zajęczaki ..]
Zapis matematycznie tożsamy:
SSAKI = [torbikowce+ walenie + zajęczaki …]
Znak tożsamości logicznej „=” możemy postawić wtedy i tylko wtedy gdy w tabeli w cytacie wyliczono wszystkie elementy i podzbiory definiujące SSAKI, inaczej koniec wyliczanki musimy zakropkować „…” w znaczeniu „i inne”, jak to zrobiono w zapisie wyżej.

Różnica między zbiorem pustym [] i zbiorem „ssaki” jest następująca:
SSAKI = [torbikowce =1 + walenie =1 + zajęczaki =1 + ..] =[1 … = 1+1+1+..] =1
Wszystkie pojęcia wyżej są znane człowiekowi więc ich wartość logiczna to 1
[] = [adgers =0 + ashdgte =0 + jhcdrwyabsk =0 + ..] =[0+0+0+..] =0
W zbiorze pustym [] nie rozumiemy żadnego pojęcia zatem wartość logiczna zbioru pustego to 0

Poprawne relacje matematyczne w AK:

W algebrze Kubusia relacje między zbiorem pustym [] i Uniwersum w są takie:
Kod:

T1
Algebra Kubusia:
-------------------------------------------------------------------
| Zbiór pusty []                   | Uniwersum U                  |
| Pojęcia jeszcze przez człowieka  | Pojęcia przez człowieka już  |
| niezdefiniowane                  | zdefiniowane                 |
| Niezrozumiałe dla człowieka      | Zrozumiałe dla człowieka     |
|                                  |                              |
-------------------------------------------------------------------
Dziedzina:
U+[] =1 - to jest suma logiczna pojęć zdefiniowanych (U)
i jeszcze niezdefiniowanych []
czyli zbiór wszystkich możliwych pojęć w naszym Wszechświecie.
U*[] =0 - bo zbiory U i [] są rozłączne

W AK zachodzi:
[] = ~U - zbiór pusty to zaprzeczenie Uniwersum
U = ~[] - zbiór U to zaprzeczenie zbioru pustego

Zdefiniujmy teraz identyczną relację w obszarze Uniwersum U (pojęć zdefiniowanych).

Relacje między mężczyzną M i kobietą K są w AK takie:
Kod:

T2
Algebra Kubusia:
-------------------------------------------------------------------
| M                                | K                            |
| Zbiór mężczyzn                   | Zbiór kobiet                 |
|                                  |                              |
-------------------------------------------------------------------
Zbiór mężczyzn M jest rozłączny ze zbiorem kobiet K
W AK zachodzi tu IDENTYCZNIE jak w [] i U w tabeli T1.

Dziedzina:
C = człowiek, zbiór wszystkich ludzi
M+K =1 - suma logiczna zbioru mężczyzn M i kobiet K to dziedzina C
M*K =0 - bo zbiory M i K są rozłączne

W AK zachodzi:
1,
Człowiek jest mężczyzną wtedy i tylko wtedy gdy nie jest kobietą
M<=>~K = (M=>~K)*(~K=>M) =1*1 =1
Dowolna równoważność prawdziwa definiuje tożsamość zbiorów:
M = ~K - zbiór mężczyzn M to zaprzeczenie zbioru kobiet K w dziedzinie C
2.
Człowiek jest kobietą wtedy i tylko wtedy gdy nie jest mężczyzną
K<=>~M = (K=>~M)*(~M=>K) =1*1 =1
Dowolna równoważność prawdziwa definiuje tożsamość zbiorów:
K = ~M - zbiór kobiet K to zaprzeczenie zbioru mężczyzn M w dziedzinie C

Tabele T1 i T2 to relacje w spójniku „albo”($).
Dla lepszego zrozumienia zajmijmy się T2:

Definicja spójnika „albo”($):
p$q = p*~q + ~p*q

Wypowiedzmy zdanie:
Dowolny człowiek jest mężczyzną „albo”($) kobietą:
Podstawmy:
p=M
q=K
stąd:
M$K = M*~K+ ~M*K
Z diagramu T2 odczytujemy:
M=~K
stąd:
M$K = M*~K+ ~M*K = (~K)*~K + ~(~K)*K = ~K+K =1

Dowolna równoważność p<=>q z definicje definiuje tożsamość zbiorów p=q
p=q <=> (p=>q)*(q=>p) = p<=>q = p*q+~p*~q

Oczywiście musi być fałszywa równoważność M<=>K.
Dowód iż tak jest w istocie:
p<=>q = p*q + ~p*~q
podstawmy:
p=M
q=K
stąd:
M<=>K = M*K + ~M*~K
Z diagramu T2 odczytujemy:
M=~K
stąd:
M<=>K = M*K + ~M*~K = (~K)*K + ~(~K)*~K = ~K*K + K*~K =[] +[] =0
cnd

Popatrzmy teraz jak to jest w ziemskiej teorii zbiorów!
Kod:

T3
Teoria zbiorów ziemian:
-------------------------------------------------------------------
| A                                | B                            |
| Zbiór pusty []                   | Uniwersum U                  |
| Pojęcia jeszcze przez człowieka  | Pojęcia przez człowieka już  |
| niezdefiniowane                  | zdefiniowane                 |
| Niezrozumiałe dla człowieka      | Zrozumiałe dla człowieka     |
|                                  |                              |
|                                  | Zbiór pusty []               |
-------------------------------------------------------------------

Tabela T3 to katastrofa logiki matematycznej.
Dlaczego?
Bo ten sam zbiór [] należy zarówno do zbioru A jak i do zbioru zaprzeczonego ~A (B=~A).

W AK niemożliwym jest aby ten sam zbiór x należał do zbioru A i ~A
Dokładnie dlatego algebra zbiorów ziemian jest fałszem.

Owszem, jeśli przyjmiemy że zbiór pusty [] ma zero elementów w sensie ABSOLUTNYM, to wtedy u Ziemian zachodzi.
A=~B
[] = ~([]+U) = ~(0+U) = ~U

Problem w tym, że w AK zbiór pusty [] to nieskończona ilość elementów jeszcze niezdefiniowanych a nie zbiór pusty w sensie ABSOLUTNYM jak to jest u ziemian.

Tak więc sprawa rozbija się o poprawne definicje zbioru pustego [] i Uniwersum U w AK i logice ziemian.

Zauważmy że w logice ziemian zdanie:
„ze zbioru pustego wynika wszystko”
jest zdaniem FAŁSZYWYM, bo u ziemian zbiór pusty nie ma ani jednego elementu w sensie ABSOLUTNYM - z tak zdefiniowanego zbioru pustego nic nie może wynikać.

Natomiast w algebrze Kubusia zdanie:
„ze zbioru pustego wynika wszystko”
jest zdaniem PRAWDZIWYM.

Dowód:
Definiować elementy w naszym Wszechświecie może wyłącznie człowiek, świat martwy sam sobie nic nie definiuje.

Przed pojawieniem się człowieka zawartość zbioru pustego była taka:
[] - wszystkie elementy naszego Wszechświata w sensie ABSOLUTNYM, nie ma jeszcze człowieka który by cokolwiek definiował.

W dniu dzisiejszym sytuacja jest inna, taka:
Kod:

T1
Algebra Kubusia:
-------------------------------------------------------------------
| Zbiór pusty []                   | Uniwersum U                  |
| Pojęcia jeszcze przez człowieka  | Pojęcia przez człowieka już  |
| niezdefiniowane                  | zdefiniowane                 |
| Niezrozumiałe dla człowieka      | Zrozumiałe dla człowieka     |
|                                  |                              |
-------------------------------------------------------------------
Dziedzina:
U+[] =1 - to jest suma logiczna pojęć zdefiniowanych (U)
i jeszcze niezdefiniowanych []
czyli zbiór wszystkich możliwych pojęć w naszym Wszechświecie.
U*[] =0 - bo zbiory U i [] są rozłączne

W AK zachodzi:
[] = ~U - zbiór pusty to zaprzeczenie Uniwersum
U = ~[] - zbiór U to zaprzeczenie zbioru pustego


Podsumowanie:
Dlaczego teoria zbiorów ziemian jest do kitu?
Odpowiadam:
Bo w teorii ziemian fałszywy jest ich własny fundament logiki matematycznej:
„ze zbioru pustego wynika wszystko”
To jest fałsz - co udowodniłem wyżej.

… a jak to jest w AK?

Prawo Owieczki:
Prawdziwe jest zdanie ziemskich matematyków iż „ze zbioru pustego [] wynika wszystko” wtedy i tylko wtedy gdy definicje zbioru pustego [] i Uniwersum U będą zgodne z definicjami obowiązującymi w algebrze Kubusia.

http://www.sfinia.fora.pl/forum-kubusia,12/szach-mat-ktory-przejdzie-do-historii-matematyki,15663-3150.html#575901
MaluśnaOwieczka napisał:

rafal3006 napisał:
Czy zgadzasz się z fundamentem wszelkich ziemskich logik mówiącym iż:
„z fałszu wynika wszystko”

Tak, zgadzam się.


MaluśnaOwieczko:
Nie zamierzam udowadniać fałszywości poniższych dogmatów ziemskich matematyków:
1: z fałszu wynika wszystko
2: ze zbioru pustego wynika wszystko
3: ze zdania fałszywego wynika wszystko
bowiem zdanie „ze zbioru pustego wynika wszystko” jest prawdziwe pod warunkiem przyjęcia definicji zbioru pustego [] i Uniwersum U z algebry Kubusia.

Dowód prawdziwości prawa Owieczki mamy w poprzednim punkcie.


Ostatnio zmieniony przez rafal3006 dnia Czw 12:16, 04 Lut 2021, w całości zmieniany 4 razy
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 36113
Przeczytał: 10 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Pią 0:08, 05 Lut 2021    Temat postu:

Upraszczanie AK:
Pojęcia mają wartości logiczne!

http://www.sfinia.fora.pl/forum-kubusia,12/algebra-kubusia-matematyka-jezyka-potocznego-2021-02-05,18263.html#574091


3.0 Kubusiowa teoria zbiorów

Kubusiowa teoria zbiorów to nieznana ziemianom teoria zbiorów dla potrzeb logiki matematycznej, algebry Kubusia.

Definicja pojęcia:
Pojęcie to wyrażenie zrozumiałe dla człowieka

Przykłady pojęć zrozumiałych:
p = [pies, miłość, krasnoludek. ZWZ, LN ...]
Przykłady pojęć niezrozumiałych:
q = [agstd, sdked …]

Pojęcia mają wartości logiczne:
1 = prawda
0 = fałsz
pies=1 - bo prawdą jest (=1) iż wiem co znaczy pojęcie pies
Zbiór wszystkich zwierząt (ZWZ) - prawdą jest (=1), iż wiem co znaczy pojęcie „zbiór wszystkich zwierząt”
LN=[1,2,3,4,5,6,7,8,9..]=1 bo prawdą jest (=1) iż wiem co znaczy pojęcie „zbiór liczb naturalnych”

ALE!
agstd=0 - bo fałszem jest (=0) iż wiem co znaczy pojęcie „agstd”

Prawo Kłapouchego:
Żaden człowiek nie posługuje się w języku potocznym pojęciami których nie rozumie

Definicja elementu zbioru:
Element zbioru to dowolne pojęcie zrozumiałe przez człowieka, które umieści w swoim zbiorze

Definicja zbioru:
Zbiór to zestaw dowolnych pojęć należących do Uniwersum

Zauważmy, że w definicji zbioru nie ma zastrzeżenia, iż elementem zbioru nie może być zbiór.

Definicja Uniwersum:
Uniwersum to zbiór wszelkich pojęć zrozumiałych dla człowieka.
Czyli:
U = [pies, miłość, krasnoludek ...] - wyłącznie pojęcia rozumiane przez człowieka (zdefiniowane)

Uniwersum człowieka jest dynamiczne tzn. rozszerza się gdy się uczymy (poznajemy nowe pojęcia) i zawęża gdy zapominamy wyuczonych kiedyś pojęć. Na mocy definicji w żadnym momencie nie możemy wyjść poza swoje, indywidualne Uniwersum. Zauważmy, że zaledwie 40 lat temu pojęcie „Internet” było zbiorem pustym, nie istniało - ale w dniu dzisiejszym już tak nie jest, Uniwersum ludzkości rozszerzyło się o to pojęcie, znane praktycznie każdemu człowiekowi na Ziemi.

Definicja zbioru pustego []:
Zbiór pusty to zbiór zawierający zero pojęć zrozumiałych dla człowieka
Czyli:
[] = [agstd, sdked …] - wyłącznie pojęcia niezrozumiałe dla człowieka (jeszcze niezdefiniowane)

Zauważmy, że w zbiorze pustym [] z definicji nie ma prawa być pojęcia które znajduje się w Uniwersum bo pojęcie „zbiór pusty” oznacza zbiór pojęć niezrozumiałych dla człowieka.
Innymi słowy:
Pojęcia „zbioru pustego” leżą na zewnątrz Uniwersum, są to pojęcia jeszcze niezdefiniowane przez człowieka które w przyszłości mogą być zdefiniowane.

Co się stanie jak pojęcie nieznane dzisiaj zostanie zdefiniowane?
Odpowiedź:
Takie pojęcie automatycznie przeskoczy do Uniwersum.

Przykładem pojęcia które kilkadziesiąt lat temu przeskoczyło ze zbioru pustego do Uniwersum jest np. pojęcie Internet. Zauważmy, że zaledwie 40 lat temu pojęcie „Internet” było zbiorem pustym, nie istniało - ale w dniu dzisiejszym już tak nie jest, Uniwersum ludzkości rozszerzyło się o to pojęcie, znane praktycznie każdemu człowiekowi na ziemi.

Uniwersum U i zbiór pusty [] to zbiory rozłączne, z tym że Uniwersum jest zbiorem skończonym o przeliczalnej liczbie elementów, bo chodzi tu wyłącznie o człowieka który definiuje pojęcia.
Natomiast zbiór pusty [] zawiera nieskończoną ilość elementów, bo chodzi tu o pojęcia które człowiek jeszcze nie zdefiniował a których jest nieskończenie wiele.

Definicja podzbioru =>:
Zbiór p jest podzbiorem => zbioru q wtedy i tylko wtedy gdy każdy element zbioru p należy do zbioru q

Definicja zbiorów rozłącznych:
Dwa zbiory p i q są rozłączne wtedy i tylko wtedy gdy nie mają elementu wspólnego

Podsumowanie:
Na mocy wyłożonej wyżej teorii możemy zapisać:
1.
Zbiór pusty [] jest (=1) podzbiorem => zbioru pustego []
[] => [] =1
Na mocy definicji podzbioru:
Każdy zbiór jest (=1) podzbiorem => siebie samego
cnd
2.
Zbiór pusty nie jest (=0) podzbiorem => Uniwersum U
[]=>U =0
Zbiór pusty [] nie ma ani jednego elementu wspólnego ze zbiorem Uniwersum U, zatem zbiory te są rozłączne.
Innymi słowy:
Nie istnieje (=0) element zbioru pustego [], który należałby do zbioru Uniwersum U
cnd

Powyższe relacje zbioru pustego [] i Uniwersum U obowiązują między dowolnymi zbiorami, inaczej matematyka jest wewnętrznie sprzeczna.
Innymi słowy:
Jeśli zbiór p jest podzbiorem => zbioru q to iloczyn logiczny zbiorów p i ~q jest zbiorem pustym
p=>q =1 - zbiór p jest podzbiorem zbioru q z założenia
Wtedy:
p~~>~q = p*~q =0 - iloczyn logiczny zbiorów p i ~q jest zbiorem pustym, bo zbiory p i ~q są rozłączne.

Na deser wisienka na torcie, czyli najbardziej zaskakujące twierdzenie w całej historii logiki matematycznej.

Prawo Owieczki:
Prawdziwe jest zdanie ziemskich matematyków iż „ze zbioru pustego [] wynika wszystko” wtedy i tylko wtedy gdy definicje zbioru pustego [] i Uniwersum U będą zgodne z definicjami obowiązującymi w algebrze Kubusia.

Problem zbioru pustego [] i Uniwersum U możemy przedstawić graficznie:
Kod:

-------------------------------------------------------------------
| Zbiór pusty []                   | Uniwersum U                  |
| Pojęcia jeszcze przez człowieka  | Pojęcia przez człowieka już  |
| niezdefiniowane                  | zdefiniowane                 |
| Niezrozumiałe dla człowieka      | Zrozumiałe dla człowieka     |
|                                  |                              |
-------------------------------------------------------------------

W AK zbiór pusty [] jest rozłączny ze zbiorem Uniwersum U w każdym momencie czasowym tzn. nie istnieje chwila czasowa w której zbiory [] i U miałyby choć jeden element wspólny.
Jeśli człowiek zdefiniuje dowolne nieznane mu pojęcie to to pojęcie przeskoczy ze zbioru pustego [] do Uniwersum U w czasie nieskończenie krótkim.


Ostatnio zmieniony przez rafal3006 dnia Pią 9:33, 05 Lut 2021, w całości zmieniany 1 raz
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 36113
Przeczytał: 10 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Pią 6:18, 05 Lut 2021    Temat postu:

Upraszczanie AK:
Dziedzina matematyczna i fizyczna!

http://www.sfinia.fora.pl/forum-kubusia,12/algebra-kubusia-matematyka-jezyka-potocznego-2021-02-05,18263.html#574091


3.6 Dziedzina matematyczna i fizyczna

Rozważmy zdanie które „wydaje się” być prawdziwe:
RA1B3:
Pada wtedy i tylko wtedy gdy jest pochmurno
P<=>CH = (A1: P=>CH)*(B3: CH=>B) =1*0 =0
Sprawdzamy prawdziwość/fałszywość zdań składowych A1 i B3.
A1.
Jeśli pada to na 100% => są chmury
P=>CH =1
Padanie jest warunkiem wystarczającym dla istnienia chmur bo zawsze gdy pada, są chmury
cnd
B3.
Jeśli są chmury to na 100% => pada
CH=>P =0
Chmury nie są (=0) warunkiem wystarczającym => dla padania, bo nie zawsze gdy są chmury, pada
cnd

Stąd mamy dowód iż badana równoważność jest fałszywa (=0):
Pada wtedy i tylko wtedy gdy są chmury
P<=>CH = (A1: P=>CH)*(B3: CH=>P) =1*0 =0

Definicja równoważności w spójnikach „i”(*) i „lub”(+):
p<=>q = p*q + ~p*~q =0
Podstawiając:
p=P
q=CH
mamy:
P<=>CH = P*CH + ~P*~CH =0
Ta równoważność musi być fałszem, co udowodniono wyżej.

Pytanie podstawowe brzmi:
Dlaczego?

Odpowiedzią są tu definicje dziedziny matematycznej i fizycznej.

Definicja dziedziny matematycznej w teorii zdarzeń:
Dziedzina matematyczna to zbiór wszystkich możliwych, rozłącznych zdarzeń, jakie matematycznie mogą wystąpić.

Dla zdania RA1B3 dziedzina matematyczna to:
DM = A: P*CH + B: P*~CH + C: ~P*~CH + D: ~P*CH
Łatwo udowodnić, że powyższe cztery zdarzenia są matematycznie rozłączne i uzupełniają się wzajemnie do dziedziny matematycznej.

Dowód iż zdarzenia są rozłączne:
A*B = (P*CH)*(P*~CH) =0
A*C = (P*CH)*(~P*~CH) =0
A*D = (P*CH)*(~P*CH) =0
etc
Bo prawo algebry Boole’a:
p*~p =0

Dowód iż powyższe zdarzenia rozłączne uzupełniają się wzajemnie do dziedziny matematycznej DM.
Zapiszmy równanie DM w zapisach formalnych:
DM = p*q + p*~q + ~p*~q + ~p*q = p*(q+~q) + ~p*(~q+q) = p+~p =1
cnd

Definicja dziedziny fizycznej w teorii zdarzeń:
Dziedzina fizyczna to część dziedziny matematycznej mająca szansę wystąpić w świecie rzeczywistym.

Dla naszego przykładu mamy:
DM = A: P*CH + B: P*~CH + C: ~P*~CH + D: ~P*CH
Badamy szansę wystąpienia zdarzeń:
A: P*CH =1*1 =1 - pada (P=1) i są chmury (CH=1), zdarzenie możliwe stąd wynikowe 1
B: P*~CH=1*1 =0 - pada (P=1) i nie ma chmur (~CH=1), zdarzenie niemożliwe stąd wynikowe 0
C: ~P*~CH=1*1 =1 - nie pada (~P=1) i nie ma chmur (~CH=1), zdarzenie możliwe (=1)
D: ~P*CH =1*1 =1 - nie pada (~P=1) i są chmury (CH=1), zdarzenie możliwe (=1)

Stąd mamy wyznaczoną dziedzinę fizyczną dla pojęć „chmury” i „pada”:
DF = A: P*CH + C: ~P*~CH + D: ~P*CH
co w logice jedynek (bo równanie alternatywno-koniunkcyjne) oznacza:
DF=1 <=> A: P=1 i CH=1 lub C: ~P=1 i ~CH=1 lub D: ~P=1 i CH=1

Podsumowując:
1.
Badane zdanie brzmi:
RA1B3:
Pada wtedy i tylko wtedy gdy jest pochmurno
P<=>CH = (A1: P=>CH)*(B3: CH=>B) =1*0 =0
2.
Definicja równoważności w spójnikach „i”(*) i „lub”(+), definiująca dziedzinę fizyczną dla równoważności DFR:
DFR = p<=>q = A: p*q + C: ~p*~q
Nasz przykład:
DFR = P<=>CH = A: P*CH + ~P*~CH =0
Uzasadnienie fałszu:
Dla zdarzeń „pada” i „chmury” dziedzina fizyczna wyznaczona na mocy definicji równoważności P<=>CH (DFR) nie pokrywa się z dziedziną fizyczną DF w świecie rzeczywistym, stąd mamy:
DFR = P<=>CH = A: P*CH + ~P*~CH =0 - ta równoważność jest fałszem.
cnd


Ostatnio zmieniony przez rafal3006 dnia Pią 6:25, 05 Lut 2021, w całości zmieniany 1 raz
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 36113
Przeczytał: 10 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Pią 7:59, 05 Lut 2021    Temat postu:

Upraszczanie AK:
Pojęcia mają wartości logiczne!

http://www.sfinia.fora.pl/forum-kubusia,12/algebra-kubusia-matematyka-jezyka-potocznego-2021-02-05,18263.html#574091


3.0 Kubusiowa teoria zbiorów

Kubusiowa teoria zbiorów to nieznana ziemianom teoria zbiorów dla potrzeb logiki matematycznej, algebry Kubusia.

Definicja pojęcia:
Pojęcie to wyrażenie zrozumiałe dla człowieka

Przykłady pojęć zrozumiałych:
p = [pies, miłość, krasnoludek. ZWZ, LN ...]
Przykłady pojęć niezrozumiałych:
q = [agstd, sdked …]

Pojęcia mają wartości logiczne:
1 = prawda
0 = fałsz
pies=1 - bo prawdą jest (=1) iż wiem co znaczy pojęcie pies
Zbiór wszystkich zwierząt (ZWZ) - prawdą jest (=1), iż wiem co znaczy pojęcie „zbiór wszystkich zwierząt”
LN=[1,2,3,4,5,6,7,8,9..]=1 bo prawdą jest (=1) iż wiem co znaczy pojęcie „zbiór liczb naturalnych”

ALE!
agstd=0 - bo fałszem jest (=0) iż wiem co znaczy pojęcie „agstd”

Prawo Kłapouchego:
Żaden człowiek nie posługuje się w języku potocznym pojęciami których nie rozumie

Definicja elementu zbioru:
Element zbioru to dowolne pojęcie zrozumiałe przez człowieka, które umieści w swoim zbiorze

Definicja zbioru:
Zbiór to zestaw dowolnych pojęć należących do Uniwersum

Zauważmy, że w definicji zbioru nie ma zastrzeżenia, iż elementem zbioru nie może być zbiór.

Definicja Uniwersum:
Uniwersum to zbiór wszelkich pojęć zrozumiałych dla człowieka.
Czyli:
U = [pies, miłość, krasnoludek ...] - wyłącznie pojęcia rozumiane przez człowieka (zdefiniowane)

Uniwersum człowieka jest dynamiczne tzn. rozszerza się gdy się uczymy (poznajemy nowe pojęcia) i zawęża gdy zapominamy wyuczonych kiedyś pojęć. Na mocy definicji w żadnym momencie nie możemy wyjść poza swoje, indywidualne Uniwersum. Zauważmy, że zaledwie 40 lat temu pojęcie „Internet” było zbiorem pustym, nie istniało - ale w dniu dzisiejszym już tak nie jest, Uniwersum ludzkości rozszerzyło się o to pojęcie, znane praktycznie każdemu człowiekowi na Ziemi.

Definicja zbioru pustego []:
Zbiór pusty to zbiór zawierający zero pojęć zrozumiałych dla człowieka
Czyli:
[] = [agstd, sdked …] - wyłącznie pojęcia niezrozumiałe dla człowieka (jeszcze niezdefiniowane)

Zauważmy, że w zbiorze pustym [] z definicji nie ma prawa być pojęcia które znajduje się w Uniwersum bo pojęcie „zbiór pusty” oznacza zbiór pojęć niezrozumiałych dla człowieka.
Innymi słowy:
Pojęcia „zbioru pustego” leżą na zewnątrz Uniwersum, są to pojęcia jeszcze niezdefiniowane przez człowieka które w przyszłości mogą być zdefiniowane.

Co się stanie jak pojęcie nieznane dzisiaj zostanie zdefiniowane?
Odpowiedź:
Takie pojęcie automatycznie przeskoczy do Uniwersum.

Przykładem pojęcia które kilkadziesiąt lat temu przeskoczyło ze zbioru pustego do Uniwersum jest np. pojęcie Internet. Zauważmy, że zaledwie 40 lat temu pojęcie „Internet” było zbiorem pustym, nie istniało - ale w dniu dzisiejszym już tak nie jest, Uniwersum ludzkości rozszerzyło się o to pojęcie, znane praktycznie każdemu człowiekowi na ziemi.

Uniwersum U i zbiór pusty [] to zbiory rozłączne, z tym że Uniwersum jest zbiorem skończonym o przeliczalnej liczbie elementów, bo chodzi tu wyłącznie o człowieka który definiuje pojęcia.
Natomiast zbiór pusty [] zawiera nieskończoną ilość elementów, bo chodzi tu o pojęcia które człowiek jeszcze nie zdefiniował a których jest nieskończenie wiele.

Definicja podzbioru =>:
Zbiór p jest podzbiorem => zbioru q wtedy i tylko wtedy gdy każdy element zbioru p należy do zbioru q

Definicja zbiorów rozłącznych:
Dwa zbiory p i q są rozłączne wtedy i tylko wtedy gdy nie mają elementu wspólnego

Podsumowanie:
Na mocy wyłożonej wyżej teorii możemy zapisać:
1.
Zbiór pusty [] jest (=1) podzbiorem => zbioru pustego []
[] => [] =1
Na mocy definicji podzbioru:
Każdy zbiór jest (=1) podzbiorem => siebie samego
cnd
2.
Zbiór pusty nie jest (=0) podzbiorem => Uniwersum U
[]=>U =0
Zbiór pusty [] nie ma ani jednego elementu wspólnego ze zbiorem Uniwersum U, zatem zbiory te są rozłączne.
Innymi słowy:
Nie istnieje (=0) element zbioru pustego [], który należałby do zbioru Uniwersum U
cnd

Powyższe relacje zbioru pustego [] i Uniwersum U obowiązują między dowolnymi zbiorami, inaczej matematyka jest wewnętrznie sprzeczna.
Innymi słowy:
Jeśli zbiór p jest podzbiorem => zbioru q to iloczyn logiczny zbiorów p i ~q jest zbiorem pustym
p=>q =1 - zbiór p jest podzbiorem => zbioru q z założenia
Wtedy:
p~~>~q = p*~q =0 - iloczyn logiczny zbiorów p i ~q jest zbiorem pustym, bo zbiory p i ~q są rozłączne.
Gdzie:
~q - zbiór zewnętrzny względem zbioru q.

Na deser wisienka na torcie, czyli najbardziej zaskakujące twierdzenie w całej historii logiki matematycznej.

Prawo Owieczki:
Prawdziwe jest zdanie ziemskich matematyków iż „ze zbioru pustego [] wynika wszystko” wtedy i tylko wtedy gdy definicje zbioru pustego [] i Uniwersum U będą zgodne z definicjami obowiązującymi w algebrze Kubusia.

Problem zbioru pustego [] i Uniwersum U możemy przedstawić graficznie:
Kod:

-------------------------------------------------------------------
| Zbiór pusty []                   | Uniwersum U                  |
| Pojęcia jeszcze przez człowieka  | Pojęcia przez człowieka już  |
| niezdefiniowane                  | zdefiniowane                 |
| Niezrozumiałe dla człowieka      | Zrozumiałe dla człowieka     |
|                                  |                              |
-------------------------------------------------------------------

W AK zbiór pusty [] jest rozłączny ze zbiorem Uniwersum U w każdym momencie czasowym tzn. nie istnieje chwila czasowa w której zbiory [] i U miałyby choć jeden element wspólny.
Jeśli człowiek zdefiniuje dowolne nieznane mu pojęcie to to pojęcie przeskoczy ze zbioru pustego [] do Uniwersum U w czasie nieskończenie krótkim.


Ostatnio zmieniony przez rafal3006 dnia Pią 16:50, 05 Lut 2021, w całości zmieniany 1 raz
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 36113
Przeczytał: 10 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Nie 16:29, 07 Lut 2021    Temat postu:

Poprawiony ciąg dalszy:
http://www.sfinia.fora.pl/forum-kubusia,12/algebra-kubusia-matematyka-jezyka-potocznego-2021-02-05,18263.html#574091

3.1 Prawa Owcy i Owieczki

Niniejszy rozdział wyjaśniający o co chodzi w definicjach zbioru pustego [] i Uniwersum U na gruncie algebry Kubusia zawiera wiele pojęć których jeszcze nie znamy, a które za chwilkę poznamy.
Rozdział ten to wyjaśnienia dla ziemskich matematyków o co chodzi w definicjach zbioru pustego [] i Uniwersum U w algebrze Kubusia.

http://www.sfinia.fora.pl/forum-kubusia,12/szach-mat-ktory-przejdzie-do-historii-matematyki,15663-3250.html#576965
MaluśnaOwieczka napisał:

rafal3006 napisał:
Zauważ MaluśnaOwieczko, że w AK zbiór pusty [] jest rozłączny ze zbiorem Uniwersum U w każdym momencie czasowym tzn. nie istnieje chwila czasowa w której zbiory [] i U miałyby choć jeden element wspólny.

Zauważ Kubusiu, że dokładnie tak samo jest w teorii zbiorów Ziemian.
Uniwersum i zbiór pusty nie mają żadnego elementu wspólnego, ale ich częścią wspólną jest zbiór (nie element) pusty.
W teorii zbiorów Ziemian zbiory rozłączne to takie zbiory, których częścią wspólną jest zbiór pusty.
Częścią wspólną Uniwersum i zbioru pustego jest w ziemskiej teorii zbiorów zbiór pusty. A więc w ziemskiej teorii zbiorów Uniwersum i zbiór pusty również są rozłączne.
Są rozłączne i mają część wspólną, którą jest zbiór pusty. Może to nie brzmi zbyt intuicyjnie..

Zdanie wytłuszczone jest wewnętrznie sprzeczne, bowiem jeśli zbiory są rozłączne to żadnej wspólnej części nie mogą mieć z definicji.
Ja doskonale wiem jak jest u ziemian - dokładnie tak jak mówisz, ale to jest katastrofa, wykluczająca poprawne relacje zbioru pustego [] i Uniwersum U.

Fundamentalne definicje pojęcia, elementu zbioru i zbioru przypominam niżej.

Definicja pojęcia:
Pojęcie to wyrażenie zrozumiałe dla człowieka

Przykłady pojęć zrozumiałych:
p = [pies, miłość, krasnoludek ...]
Przykłady pojęć niezrozumiałych:
q = [agstd, sdked …]

Definicja elementu zbioru:
Element zbioru to dowolne pojęcie zrozumiałe przez człowieka, które umieści w swoim zbiorze

Definicja zbioru:
Zbiór to zestaw dowolnych pojęć należących do Uniwersum

Zauważmy, że w definicji zbioru nie ma zastrzeżenia, iż elementem zbioru nie może być zbiór.
Nie jest zatem prawdą, jak twierdzą ziemianie iż zbiór to pojęcie pierwotne, niedefiniowalne.

Prawo Owcy:
Dowolna logika matematyczne w której element lub zbiór x należy jednocześnie do zbioru niezaprzeczonego (bo A) i zaprzeczonego (bo ~A) jest matematycznie fałszywa.

Dowód:
Dla powyższego x dojdzie do gwałtu na fundamencie logiki matematycznej:
A*~A =x
Gdzie:
x - wspólny dla A i ~A element lub zbiór.
cnd

Zastrzeżenie w ziemskiej teorii zbiorów jakoby elementami zbiorów nie mogłyby być zbiory (podzbiory) jest nie do obrony, o czym będzie w kolejnym punkcie.

Poprawne relacje matematyczne w AK:

W algebrze Kubusia relacje między zbiorem pustym [] i Uniwersum w są takie:
Kod:

T1
Algebra Kubusia:
-------------------------------------------------------------------
| Zbiór pusty []                   | Uniwersum U                  |
| Pojęcia jeszcze przez człowieka  | Pojęcia przez człowieka już  |
| niezdefiniowane                  | zdefiniowane                 |
| Niezrozumiałe dla człowieka      | Zrozumiałe dla człowieka     |
|                                  |                              |
-------------------------------------------------------------------
Dziedzina:
D=U+[] =1 - to jest suma logiczna pojęć zdefiniowanych (U)
i jeszcze niezdefiniowanych []
czyli zbiór wszystkich możliwych pojęć w naszym Wszechświecie.
U*[] =0 - bo zbiory U i [] są rozłączne

W algebrze Kubusia zachodzi:
[] = ~U - zbiór pusty to zaprzeczenie Uniwersum
U = ~[] - zbiór U to zaprzeczenie zbioru pustego
Doskonale to widać na diagramie T1.

To samo można udowodnić inaczej.

Definicja zaprzeczenia zbioru:
Zaprzeczeniem zbioru p jest zbiór ~p rozumiany jako uzupełnienie zbioru p do dziedziny D

Dziedzina:
D=U+[] =1 - suma logiczna pojęć zdefiniowanych (U) i jeszcze niezdefiniowanych []

Na mocy definicji zaprzeczenia zbioru mamy:
~U = [D-U]=[U+[]-U] =[]
~[] = [D-[]] =[U+[]-[]] =U
cnd

Popatrzmy teraz jak to jest w ziemskiej teorii zbiorów!
Kod:

T3
Teoria zbiorów ziemian:
-------------------------------------------------------------------
| A                                | B                            |
| Zbiór pusty []                   | Uniwersum U                  |
| Pojęcia jeszcze przez człowieka  | Pojęcia przez człowieka już  |
| niezdefiniowane                  | zdefiniowane                 |
| Niezrozumiałe dla człowieka      | Zrozumiałe dla człowieka     |
|                                  |                              |
|                                  | Zbiór pusty []               |
-------------------------------------------------------------------

Tabela T3 to katastrofa logiki matematycznej.
Dlaczego?
Bo ten sam zbiór [] należy zarówno do zbioru A jak i do zbioru zaprzeczonego ~A (B=~A).

W AK niemożliwym jest aby ten sam zbiór x należał do zbioru A i ~A
Dokładnie dlatego algebra zbiorów ziemian jest fałszem.

Owszem, jeśli przyjmiemy że zbiór pusty [] ma zero elementów w sensie ABSOLUTNYM, to wtedy u Ziemian zachodzi.
A=~B
[] = ~([]+U) = ~(0+U) = ~U

Problem w tym, że w AK zbiór pusty [] to nieskończona ilość elementów jeszcze niezdefiniowanych a nie zbiór pusty w sensie ABSOLUTNYM jak to jest u ziemian.

Tak więc sprawa rozbija się o poprawne definicje zbioru pustego [] i Uniwersum U w AK i logice ziemian.

Zauważmy że w logice ziemian zdanie:
„ze zbioru pustego wynika wszystko”
jest zdaniem FAŁSZYWYM, bo u ziemian zbiór pusty nie ma ani jednego elementu w sensie ABSOLUTNYM - z tak zdefiniowanego zbioru pustego nic nie może wynikać.

Natomiast w algebrze Kubusia zdanie:
„ze zbioru pustego wynika wszystko”
jest zdaniem PRAWDZIWYM.

Dowód:
Definiować elementy w naszym Wszechświecie może wyłącznie człowiek, świat martwy sam sobie nic nie definiuje.

Przed pojawieniem się człowieka zawartość zbioru pustego była taka:
[] - wszystkie elementy naszego Wszechświata w sensie ABSOLUTNYM, nie ma jeszcze człowieka który by cokolwiek definiował.

W dniu dzisiejszym sytuacja jest inna, taka:
Kod:

T1
Algebra Kubusia:
-------------------------------------------------------------------
| Zbiór pusty []                   | Uniwersum U                  |
| Pojęcia jeszcze przez człowieka  | Pojęcia przez człowieka już  |
| niezdefiniowane                  | zdefiniowane                 |
| Niezrozumiałe dla człowieka      | Zrozumiałe dla człowieka     |
|                                  |                              |
-------------------------------------------------------------------
Dziedzina:
U+[] =1 - to jest suma logiczna pojęć zdefiniowanych (U)
i jeszcze niezdefiniowanych []
czyli zbiór wszystkich możliwych pojęć w naszym Wszechświecie.
U*[] =0 - bo zbiory U i [] są rozłączne

W AK zachodzi:
[] = ~U - zbiór pusty to zaprzeczenie Uniwersum
U = ~[] - zbiór U to zaprzeczenie zbioru pustego


Podsumowanie:
Dlaczego teoria zbiorów ziemian jest do kitu?
Odpowiadam:
Bo w teorii ziemian fałszywy jest ich własny fundament logiki matematycznej:
„ze zbioru pustego wynika wszystko”
To jest fałsz - co udowodniłem wyżej.

… a jak to jest w AK?

Prawo Owieczki:
Prawdziwe jest zdanie ziemskich matematyków iż „ze zbioru pustego [] wynika wszystko” wtedy i tylko wtedy gdy definicje zbioru pustego [] i Uniwersum U będą zgodne z definicjami obowiązującymi w algebrze Kubusia.

http://www.sfinia.fora.pl/forum-kubusia,12/szach-mat-ktory-przejdzie-do-historii-matematyki,15663-3150.html#575901
MaluśnaOwieczka napisał:

rafal3006 napisał:
Czy zgadzasz się z fundamentem wszelkich ziemskich logik mówiącym iż:
„z fałszu wynika wszystko”

Tak, zgadzam się.


MaluśnaOwieczko:
Nie zamierzam udowadniać fałszywości poniższych dogmatów ziemskich matematyków:
1: z fałszu wynika wszystko
2: ze zbioru pustego wynika wszystko
3: ze zdania fałszywego wynika wszystko
bowiem zdanie „ze zbioru pustego [] wynika wszystko” jest prawdziwe pod warunkiem przyjęcia definicji zbioru pustego [] i Uniwersum U z algebry Kubusia.

Dowód prawdziwości prawa Owieczki mamy w poprzednim punkcie.
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 36113
Przeczytał: 10 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Pon 0:12, 08 Lut 2021    Temat postu:

Prawo śfinii - kluczowy fragment algebry Kubusia!

http://www.sfinia.fora.pl/forum-kubusia,12/algebra-kubusia-matematyka-jezyka-potocznego-2021-02-05,18263.html#577211

Spis treści
4.3.1 Matematyczne związki warunków wystarczających => i koniecznych ~> 1
4.4 Prawo śfinii - domyślny punktu odniesienia w zdaniach warunkowych 2
4.4.1 Prawo śfinii z punktem odniesienia ustawionym na warunku wystarczającym => 3
4.4.2 Prawo śfinii z punktem odniesienia ustawionym na warunku koniecznym ~> 4
4.4.3 Istota prawa śfinii 6
4.4.4 Prawo śfinii dla zdań „Jeśli p to q” wyrażonych spójnikami „i”(*) i „lub”(+) 7


4.3.1 Matematyczne związki warunków wystarczających => i koniecznych ~>

Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
A1: p=>q = ~p+q
##
Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
B1: p~>q = p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Na mocy rachunku zero-jedynkowego mamy matematyczne związki warunków wystarczających => i koniecznych ~>.
Kod:

Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      AB12:            |     AB34:
      AB1:     AB2:    |     AB3:     AB4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5: p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


Na mocy powyższego zapisujemy:
1.
Prawa Kubusia:
A1: p=>q = A2: ~p~>~q
##
B1: p~>q = B2: ~p=>~q
Ogólne prawo Kubusia:
Negujemy zmienne i wymieniamy spójniki na przeciwne

2.
Prawa Tygryska:
A1: p=>q = A3: q~>p
##
B1: p~>q = B3: q=>p
Ogólne prawo Tygryska:
Zamieniamy miejscami zmienne i wymieniamy spójniki na przeciwne

3.
Prawa kontrapozycji:
A1: p=>q = A4: ~q=>~p - prawo kontrapozycji dla warunku wystarczającego =>
##
B1: p~>q = B4: ~q~>~p - prawo kontrapozycji dla warunku koniecznego ~>
Ogólne prawo kontrapozycji:
Negujemy zmienne zamieniając je miejscami bez zmiany spójnika logicznego

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Mutacje powyższych praw logiki matematycznej:

Pod p i q w powyższych prawach możemy podstawiać zanegowane zmienne w dowolnych konfiguracjach.

Przykład:
Prawo Kubusia:
p=>q = ~p~>~q
1.
Podstawiamy:
p:=~p - pod p podstaw := ~p
q:=~q - pod q podstaw := ~q
stąd mamy także poprawne prawo Kubusia:
~p=>~q = ~(~p)~>~(~q) = p~>q
2.
Podstawiamy:
p:=p
q:=~q
stąd mamy także poprawne prawo Kubusia:
p=>~q = ~p~>~(~q) = ~p~>q
3.
Podstawiamy:
p:=~p
q:=q
stąd mamy także poprawne prawo Kubusia:
~p=>q = ~(~p)~>~q = p~>~q

4.4 Prawo śfinii - domyślny punktu odniesienia w zdaniach warunkowych

Prawo śfinii:
Domyślny punkt odniesienia w zdaniach warunkowych „Jeśli p to q”:

W dowolnym zdaniu warunkowym „Jeśli a to b” zapisanym w zmiennych aktualnych a i b (mających związek z językiem potocznym człowieka), zawsze po „Jeśli..” zapisujemy formalny poprzednik p zaś po „to” zapisujemy formalny następnik q.

Zamieniać p i q w dowolnym zdaniu warunkowym z ustalonym wyżej domyślnym punktem odniesienia wolno nam tylko i wyłącznie na podstawie prawa Tygryska lub prawa kontrapozycji:

2.
Prawa Tygryska:
A1: p=>q = A3: q~>p
##
B1: p~>q = B3: q=>p
Ogólne prawo Tygryska:
Zamieniamy miejscami zmienne i wymieniamy spójniki na przeciwne

3.
Prawa kontrapozycji:
A1: p=>q = A4: ~q=>~p - prawo kontrapozycji dla warunku wystarczającego =>
##
B1: p~>q = B4: ~q~>~p - prawo kontrapozycji dla warunku koniecznego ~>
Ogólne prawo kontrapozycji:
Negujemy zmienne zamieniając je miejscami bez zmiany spójnika logicznego

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>


4.4.1 Prawo śfinii z punktem odniesienia ustawionym na warunku wystarczającym =>

Przykład:
Pani w przedszkolu:
A1.
Jeśli jutro będzie padało (P=1) to na 100% => będzie pochmurno (CH=1)
P=>CH =1
Padanie jest warunkiem wystarczającym => dla istnienia chmur, bo zawsze gdy pada, są chmury

Na mocy prawa śfinii musimy tu przyjąć:
p=P
q=CH
Stąd zdania A1 w zapisie formalnym przyjmuje postać:
p=>q =1
P=>CH =1

Dla zdania A1 skorzystajmy z prawa Kubusia:
A1: P=>H = A2: ~P~>~CH
A2.
Jeśli jutro nie będzie padało (~P=1) to może nie być pochmurno (~CH=1)
~P~>~CH =1
to samo w zapisach formalnych:
~p~>~q =1
Brak opadów (~P=1) jest warunkiem koniecznym ~> aby jutro nie było pochmurno (~CH=1), bo jak pada (P=1) to na 100% => są chmury (CH=1)
Jak widzicie drogie dzieci prawo Kubusia samo nam tu wyskoczyło.
Prawo Kubusia:
A2: ~P~>~CH = A1: P=>CH
to samo w zapisach formalnych:
A2: ~p~>~q = A1: p=>q

Znaczenie tożsamości logicznej „=”:
A2: ~P~>~CH = A1: P=>CH
Prawdziwość dowolnej strony tożsamości logicznej „=” wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej „=” wymusza fałszywość drugiej strony

Czy ktoś zechce pociągnąć dalej tą analizę, bo ziemscy matematycy nas oglądają dzięki ziemskiemu Internetowi.

Małgosia (lat 5):
Poprawną zamianę poprzednika p z następnikiem q mamy dzięki prawu Tygryska:
Prawo Tygryska:
A1: P=>CH = A3: CH~>P
to samo w zapisach formalnych:
A1: p=>q = A3: q~>p
(jak widzimy Małgosia podświadomie przyjęła zdanie A1 za punkt odniesienia)
stąd:
A3.
Jeśli jutro będzie pochmurno (CH=1) to może ~> padać (P=1)
CH~>P =1
to samo w zapisach formalnych:
q~>p =1
Chmury (CH=1) są warunkiem koniecznym ~> aby jutro padało (P=1), bo jak nie ma chmur (~CH=1) to na 100% => nie pada (~P=1)
Jak widzicie drodzy ziemianie, prawo Kubusia samo nam tu wyskoczyło.
Prawo Kubusia:
A3: CH~>P = A4: ~CH=>~P
to samo w zapisie formalnym:
A3: q~>p = A4: ~q=>~p
stąd:
A4.
Jeśli jutro nie będzie pochmurno (~CH=1) to na 100% => nie będzie padało (~P=1)
~CH=>~P =1
Brak chmur (~CH=1) jest warunkiem wystarczającym => aby nie padało (~P=1) bo zawsze gdy nie ma chmur (~CH=1), nie pada (~P=1)

Zapiszmy naszą analizę w tabeli prawdy:
Kod:

Tabela prawdy dla punktu odniesienia A1: P=>CH
A1: p=> q =1 = A2:~p~> ~q =1 [=] A3: q~> p =1 = A4:~q=> ~p =1
A1: P=>CH =1 = A2:~P~>~CH =1 [=] A3: CH~>P =1 = A4:~CH=>~P =1


Definicja tabeli prawdy:
Tabela prawdy pokazuje wszystkie możliwe przypadki jakie mogą zajść dla dowolnego punktu odniesienia.

4.4.2 Prawo śfinii z punktem odniesienia ustawionym na warunku koniecznym ~>

Przykład:
Pani w przedszkolu:
B1:
Jeśli jutro będzie pochmurno (CH=1) to może ~> padać (P=1)
CH~>P =1
Chmury (CH=1) są warunkiem koniecznym ~> do tego aby jutro padało (P=1), bo jak nie będzie pochmurno (~CH=1) to na 100% => nie będzie padało (~P=1)
Jak widzicie drogie dzieci prawo Kubusia samo nam tu wyskoczyło:
B1: CH~>P = B2: ~CH=>~P
Stąd:
B2.
Jeśli jutro nie będzie pochmurno (~CH=1) to na 100% => nie będzie padało (~P=1)
~CH=>~P=1
Brak chmur (~CH=1) jest warunkiem wystarczającym => do tego aby nie padało (~P=1), bo zawsze gdy nie ma chmur, nie pada.

Zdanie B1 pani przedszkolanki to punkt odniesienia.
Na mocy prawa śfinii musimy tu przyjąć:
p=CH
q=P
Stąd zdanie B1 w zapisach formalnych przyjmuje postać:
B1: CH~>P =1
B1: p~>q =1
Zaś prawo Kubusia w zapisach formalnych brzmi:
B1: CH~>P = B2: ~CH=>~P
B1: p~>q = B2: ~p=>~q

Zamienić poprzednik z następnikiem możemy tu tylko i wyłącznie ma mocy prawa Tygryska lub prawa kontrapozycji.

Pani przedszkolanka wypowiedziała zdanie B1.
Jaś (lat 5) pyta:
Proszę pani a jeśli jutro będzie padało (P=1)?

Pani przedszkolanka:
Prawo Tygryska:
B1: CH~>P = B3: P=>CH
to samo w zapisach formalnych:
B1: p~>q = B3: q=>p
(jak widzimy, swoim pytaniem Jaś wymusił na pani zamianę p i q w zdaniu warunkowym „Jeśli p to q”)

Na mocy prawa Tygryska dostajemy Jasiu odpowiedź:
B3.
Jeśli jutro będzie padało (P=1) to na 100% => będzie pochmurno (CH=1)
P=>CH =1
Zapis formalny:
B3: q=>p
Definicja warunku wystarczającego => spełniona bo zawsze gdy pada, jest pochmurno

Zuzia (lat 5):
Proszę pani, a jeśli jutro nie będzie padało?

Pani:
Oczywiście w stosunku do B3 możemy skorzystać z prawa Kubusia:
B3: q=>p = B4: ~q~>~p
stąd:
B4.
Jeśli jutro nie będzie padało (~P=1) to może ~> nie być pochmurno (~CH=1)
~P~>~CH =1
Zapis formalny:
B4: ~q~>~p
Brak opadów (~P=1) jest warunkiem koniecznym ~> do tego aby jutro nie było pochmurno (~CH=1) bo jak pada (P=1) to na 100% => są chmury (CH=1)

Ponownie prawo Kubusia samo nam tu wyskoczyło:
B4: ~P~>~CH = B3: P=>CH
zapis formalny:
B4: ~q~>~p = B3: q=>p

Zapiszmy naszą analizę w tabeli prawdy:
Kod:

Tabela prawdy dla punktu odniesienia B1: CH~>P
B1: p~> q =1 = B2:~p =>~q =1 [=] B3: q=>p  =1 = B4:~q~>~p  =1
B1: CH~>P =1 = B2:~CH=>~P =1 [=] B3: P=>CH =1 = B4:~P~>~CH =1


Definicja tabeli prawdy:
Tabela prawdy pokazuje wszystkie możliwe przypadki jakie mogą zajść dla dowolnego punktu odniesienia.

4.4.3 Istota prawa śfinii

Zapiszmy tabele prawdy naszych analiz matematycznych wyżej.

I.
Prawo śfinii z punktem odniesienia ustawionym na warunku wystarczającym =>:
A1: P=>CH
Kod:

T1
Tabela prawdy dla punktu odniesienia A1: P=>CH
A1: p=> q =1 = A2:~p~> ~q =1 [=] A3: q~> p =1 = A4:~q=> ~p =1
A1: P=>CH =1 = A2:~P~>~CH =1 [=] A3: CH~>P =1 = A4:~CH=>~P =1

###
II.
Prawo śfinii z punktem odniesienia ustawionym na warunku koniecznym ~>:
B1: CH~>P =1
Kod:

T2
Tabela prawdy dla punktu odniesienia B1: CH~>P
B1: p~> q =1 = B2:~p =>~q =1 [=] B3: q=>p  =1 = B4:~q~>~p  =1
B1: CH~>P =1 = B2:~CH=>~P =1 [=] B3: P=>CH =1 = B4:~P~>~CH =1

Gdzie:
### - różne na mocy prawa śfinii

Co wynika z prawa śfinii?

Na przykład to:
Kod:

T1
Tabela prawdy dla punktu odniesienia A1: P=>CH
A1: p=> q =1
A1: P=>CH =1

###
Kod:

T2
Tabela prawdy dla punktu odniesienia B1: CH~>P
B3: q=>p  =1
B3: P=>CH =1

Gdzie:
### - różne na mocy prawa śfinii
Innymi słowy:
### - różne na mocy niezgodności punktu odniesienia
Innymi słowy:
### - różne z powodu błędu podstawienia

Zachodzi tożsamość pojęć:
Prawo śfinii = Błąd podstawienia

Zauważmy że zdanie A1: P=>CH z tabeli prawdy T1 brzmi identycznie i dowodzi się identycznie jak zdanie B3: P=>CH z tabeli prawdy T2

ALE!
Zdania te są różne z powodu błędu podstawienia ###
Zdania te są różne na mocy prawa śfinii

Zauważmy bowiem, że w tabeli T1 mamy:
p=P
q=CH
Natomiast w tabeli T2 mamy:
q=P
p=CH
Błąd podstawienia na poziomie szkoły podstawowej widać tu jak na dłoni.

4.4.4 Prawo śfinii dla zdań „Jeśli p to q” wyrażonych spójnikami „i”(*) i „lub”(+)

Prawo śfinii:
Domyślny punkt odniesienia w zdaniach warunkowych „Jeśli p to q”:

W dowolnym zdaniu warunkowym „Jeśli a to b” zapisanym w zmiennych aktualnych a i b (mających związek z językiem potocznym człowieka), zawsze po „Jeśli..” zapisujemy formalny poprzednik p zaś po „to” zapisujemy formalny następnik q.

Zamieniać p i q w dowolnym zdaniu warunkowym z ustalonym wyżej domyślnym punktem odniesienia wolno nam tylko i wyłącznie na podstawie prawa Tygryska lub prawa kontrapozycji:

Pani w przedszkolu wypowiada zdanie:
A1.
Jeśli jutro będzie padało to na 100% => będzie pochmurno
P=>CH =1
Padanie jest warunkiem wystarczającym => dla istnienia chmur, bo zawsze gdy pada, są chmury
Definicja warunku wystarczającego => wyrażonego spójnikami „i”(*) i „lub”(+):
p=>q = ~p+q
Stąd:
Dla naszego zdania A1 mamy:
A1: P=>CH = ~P+CH
Na mocy prawa śfinii musimy tu przyjąć domyślny punkt odniesienia:
p=P
q=CH
Stąd zdanie A1 w zapisach formalnych brzmi
A1: p=>q = ~p+q

Stąd:
Tabela prawdy dla zdania A1:
Kod:

T1
Tabela prawdy dla zdania A1 wyrażonego spójnikami „i”(*) i „lub”(+)
dla punktu odniesienia A1: P=>CH
A1: P=>CH = ~P+CH
to samo w zapisie formalnym:
A1: p=>q = ~p+q


Po chwili pani wypowiada kolejne zdanie:
B1.
Jeśli jutro będzie pochmurno to może ~> padać
CH~>P =1
Chmury są warunkiem koniecznym ~> dla opadów, bo jak nie ma chmur to na 100% => nie pada.

Zauważmy, że w zdaniu B1 pani w żaden sposób nie nawiązała do zdania A1 (np. prawem Tygryska lub kontrapozycji), zatem zdanie B1 musimy przyjąć jako nowy, bieżący punkt odniesienia.
p=CH
q=P
Stąd zdanie B1 w zapisie formalnym:
B1: p~>q
Definicja warunku koniecznego ~> wyrażonego spójnikami „i”(*) i „lub”(+):
p~>q = p+~q
Stąd:
Dla naszego zdania B1 mamy:
B1: CH~>P = CH+~P
Stąd zdanie B1 w zapisach formalnych brzmi
B1: p~>q = p+~q

Stąd:
Tabela prawdy dla zdania B1:
Kod:

T2
Tabela prawdy dla zdania B1 wyrażonego spójnikami „i”(*) i „lub”(+)
dla punktu odniesienia B1: CH~>P
B1: CH~>P = CH+~P
to samo w zapisie formalnym:
B1: p~>q = p+~q

Porównajmy tabele T1 i T2:
Kod:

T1
Tabela prawdy dla zdania A1 wyrażonego spójnikami „i”(*) i „lub”(+)
dla punktu odniesienia A1: P=>CH
A1: P=>CH = ~P+CH
to samo w zapisie formalnym:
A1: p=>q = ~p+q

###
Kod:

T2
Tabela prawdy dla zdania B1 wyrażonego spójnikami „i”(*) i „lub”(+)
dla punktu odniesienia B1: CH~>P
B1: CH~>P = CH+~P
to samo w zapisie formalnym:
B1: p~>q = p+~q

Gdzie:
### - różne na mocy prawa śfinii
Innymi słowy:
### - różne na mocy niezgodności punktu odniesienia
Innymi słowy:
### - różne z powodu błędu podstawienia

Zachodzi tożsamość pojęć:
Prawo śfinii = Błąd podstawienia

Zauważmy że:
Tabela T1: A1: P=>CH = ~P+CH
Tabela T2: B1: CH~>P = CH+~P
Jak widzimy w zapisach aktualnych (mających związek ze zdaniem wypowiedzianym) prawe strony są tożsame bo spójnik „lub”(+) jest przemienny, z czego pozornie wynika tożsamość zdań A1=B1

ALE!
Zdania te są różne z powodu błędu podstawienia ###
Zdania te są różne na mocy prawa śfinii

Zauważmy bowiem, że w tabeli T1 mamy:
p=P
q=CH
Natomiast w tabeli T2 mamy:
p=CH
q=P
Błąd podstawienia na poziomie szkoły podstawowej widać tu jak na dłoni.
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 36113
Przeczytał: 10 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Śro 1:02, 10 Lut 2021    Temat postu:

Zapowiedź finałowej wersji algebry Kubusia część 5.0
Premiera w Walentynki.

5.0 Implikacja prosta p|=>q


Spis treści
5.0 Implikacja prosta p|=>q 1
5.1 Matematyczne związki warunków wystarczających => i koniecznych ~> 1
5.2 Definicja podstawowa implikacji prostej p|=>q 3
5.2.1 Implikacje tożsame dla punktu odniesienia p|=>q 4
5.3 Operator implikacji prostej p||=>q 7
5.3.1 Zero-jedynkowa definicja warunku wystarczającego p=>q 8
5.3.2 Diagram operatora implikacji prostej p||=>q w zbiorach 12



5.0 Implikacja prosta p|=>q

Definicja operatora implikacyjnego:
Operator implikacyjny to operator wyrażony zdaniami warunkowymi „Jeśli p to q”

Fundamentem wszystkich operatorów implikacyjnych są matematyczne związki warunków wystarczających => i koniecznych ~> w rachunku zero-jedynkowym

5.1 Matematyczne związki warunków wystarczających => i koniecznych ~>

Matematyczne związki warunków wystarczających => i koniecznych ~> w rachunku zero-jedynkowym:
Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
A1: p=>q = ~p+q
##
Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
B1: p~>q = p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Na mocy rachunku zero-jedynkowego mamy matematyczne związki warunków wystarczających => i koniecznych ~>.
Kod:

T0
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5: p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Na mocy powyższego zapisujemy:
1.
Prawa Kubusia:
A1: p=>q = A2: ~p~>~q
##
B1: p~>q = B2: ~p=>~q
Ogólne prawo Kubusia:
Negujemy zmienne i wymieniamy spójniki na przeciwne

2.
Prawa Tygryska:
A1: p=>q = A3: q~>p
##
B1: p~>q = B3: q=>p
Ogólne prawo Tygryska:
Zamieniamy miejscami zmienne i wymieniamy spójniki na przeciwne

3.
Prawa kontrapozycji:
A1: p=>q = A4: ~q=>~p - prawo kontrapozycji dla warunku wystarczającego =>
##
B1: p~>q = B4: ~q~>~p - prawo kontrapozycji dla warunku koniecznego ~>
Ogólne prawo kontrapozycji:
Negujemy zmienne zamieniając je miejscami bez zmiany spójnika logicznego

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Mutacje powyższych praw logiki matematycznej:

Pod p i q w powyższych prawach możemy podstawiać zanegowane zmienne w dowolnych konfiguracjach.

Przykład:
Prawo Kubusia:
p=>q = ~p~>~q
1.
Podstawiamy:
p:=~p - pod p podstaw := ~p
q:=~q - pod q podstaw := ~q
stąd mamy także poprawne prawo Kubusia:
~p=>~q = ~(~p)~>~(~q) = p~>q
2.
Podstawiamy:
p:=p
q:=~q
stąd mamy także poprawne prawo Kubusia:
p=>~q = ~p~>~(~q) = ~p~>q
3.
Podstawiamy:
p:=~p
q:=q
stąd mamy także poprawne prawo Kubusia:
~p=>q = ~(~p)~>~q = p~>~q

5.2 Definicja podstawowa implikacji prostej p|=>q

Definicja podstawowa implikacji prostej p|=>q:
Implikacja prosta to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 - zajście p jest (=1) wystarczające => dla zajścia q
##
B1: p~>q =0 - zajście p nie jest (=0) konieczne ~> dla zajścia q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
stąd:
p|=>q = (A1: p=>q)*~(B1: p~>q) =1*~(0) = 1*1 =1

W algebrze Kubusia w zbiorach zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

Podstawmy tą definicję do matematycznych związków warunku wystarczającego i koniecznego ~>:
Kod:

T1
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji prostej p|=>q
Kolumna A1B1 to punkt odniesienia:
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p =1 [=] 5: ~p+q
##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p =0 [=] 5: p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla udowodnienia, iż zdanie warunkowe „Jeśli p to q” wchodzi w skład implikacji prostej p|=>q potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Ax i fałszywość dowolnego zdania serii Bx.
Zauważmy, że nie ma znaczenia które zdanie będziemy brali pod uwagę, bowiem prawami logiki matematycznej (prawa Kubusia, prawa Tygryska i prawa kontrapozycji) zdanie to możemy zastąpić zdaniem logicznie tożsamym z kolumny A1B1.

Kluczowym punktem zaczepienia w wprowadzeniu symbolicznej definicji implikacji prostej p|=>q jest definicja kontrprzykładu rodem z algebry Kubusia działająca wyłącznie w warunku wystarczającym =>.

Definicja kontrprzykładu w zbiorach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane elementem wspólnym zbiorów p~~>~q=p*~q

Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>~q=p*~q

Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)

Uzupełnijmy naszą tabelę wykorzystując powyższe rozstrzygnięcia działające wyłącznie w warunkach wystarczających =>.
Kod:

T2
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji prostej p|=>q
Kolumna A1B1 to punkt odniesienia:
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
       A1B1:         A2B2:        |     A3B3:         A4B4:
A:  1: p=>q  =1 = 2:~p~>~q=1     [=] 3: q~>p  =1 = 4:~q=>~p =1
A’: 1: p~~>~q=0 =                [=]             = 4:~q~~>p =0                   
       ##            ##           |     ##            ##
B:  1: p~>q  =0 = 2:~p=>~q=0     [=] 3: q=>p  =0 = 4:~q~>~p =0
B’:             = 2:~p~~>q=1     [=] 3: q~~>~p=1
---------------------------------------------------------------
IP: p|=>q=~p*q  = ~p|~>~q=~p*q   [=]  q|~>p=q*~p = ~q|=>~p=q*~p
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
A1: p=>q=1 - prawdziwy A1 wymusza fałszywy kontrprzykład A1’ (i odwrotnie)
A1’: p~~>~q=p*~q=0 - fałszywy kontrprzykład A1’ wymusza prawdziwy A1
B2:~p=>~q=0 - fałszywy B2 wymusza prawdziwy kontrprzykład B2’ (i odwrotnie)
B2’:~p~~>q =~p*q=1 - prawdziwy kontrprzykład B2’ wymusza fałszywy B2
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla udowodnienia, iż zdanie warunkowe „Jeśli p to q” wchodzi w skład implikacji prostej p|=>q potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Ax i fałszywość dowolnego zdania serii Bx.
Zauważmy, że nie ma znaczenia które zdanie będziemy brali pod uwagę, bowiem prawami logiki matematycznej (prawa Kubusia, prawa Tygryska i prawa kontrapozycji) zdanie to możemy zastąpić zdaniem logicznie tożsamym z kolumny A1B1.

5.2.1 Implikacje tożsame dla punktu odniesienia p|=>q

Zapiszmy tabelę T2 w wersji uproszczonej z samymi tylko warunkami wystarczającymi => i koniecznymi ~>.
Kod:

T2
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji prostej p|=>q
Kolumna A1B1 to punkt odniesienia:
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
       A1B1:         A2B2:        |     A3B3:         A4B4:
A:  1: p=>q  =1 = 2:~p~>~q=1     [=] 3: q~>p  =1 = 4:~q=>~p =1
       ##            ##           |     ##            ##
B:  1: p~>q  =0 = 2:~p=>~q=0     [=] 3: q=>p  =0 = 4:~q~>~p =0

W tabeli T2 zachodzi tożsamość logiczna „=” warunków wystarczających => i koniecznych ~> w linii Ax.
W tabeli T2 zachodzi tożsamość logiczna „=” warunków wystarczających => i koniecznych ~> w linii Bx.

Zachodzi tożsamość znaczków:
„=” = „[=]”
Znaczek [=] sygnalizuje tylko zamianę p i q w A3B3 i A4B4 względem A1B1 i A2B2.

Znaczenie tożsamości logicznej [=]:
Przykładowe prawo Kubusia:
A1: p=>q = A2:~p~>~q
1.
Prawdziwość dowolnej strony tożsamości logicznej „=” wymusza prawdziwość drugiej strony
Ten przypadek mamy w linii Ax w tabeli T2
2.
Fałszywość dowolnej strony tożsamości logicznej „=” wymusza fałszywość drugiej strony
Ten przypadek mamy w linii Bx w tabeli T2

W tabeli T2 możemy wyróżnić następujące implikacje:

A1B1:
Punkt odniesienia:
Implikacja prosta p|=>q w logice dodatniej (bo q):

Implikacja prosta p|=>q w logice dodatniej (bo q) to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
A1: p=>q =1 - zajście p jest (=1) warunkiem wystarczającym => dla zajścia q
B1: p~>q =0 - zajście p nie jest (=0) warunkiem koniecznym ~> dla zajścia q
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
Poniższe nazwy implikacji odnoszą się do punktu odniesienia A1B1: p|=>q:
[=]
A2B2:
Implikacja odwrotna ~p|~>~q w logice ujemnej (bo ~q) w stosunku do A1B1:

Implikacja odwrotna ~p|~>~q w logice ujemnej (bo ~q) to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A2: ~p~>~q =1 - zajście ~p jest (=1) warunkiem koniecznym ~> dla zajścia ~q
B2: ~p=>~q =0 - zajście ~p nie jest (=0) warunkiem wystarczającym => dla zajścia ~q
A2B2: ~p|~>~q = (A2: ~p~>~q)*~(B2: ~p=>~q) =1*~(0)=1*1 =1
[=]
A3B3:
Implikacja odwrotna przeciwna q|~>p w logice dodatniej (bo p) w stosunku do A1B1:

Implikacja odwrotna przeciwna q|~>p w logice dodatniej (bo p) to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A3: q~>p =1 - zajście q jest (=1) konieczne ~> dla zajścia p
B3: q=>p =0 - zajście q nie jest (=0) wystarczające => dla zajścia p
A3B3: q|~>p = (A3: q~>p)*~(q=>p) = 1*~(0) =1*1 =1
[=]
A4B4:
Implikacja prosta przeciwna ~q|=>~p w logice ujemnej (bo ~p) w stosunku do A1B1:

Implikacja prosta przeciwna ~q|=>~p w logice ujemnej (bo ~p) to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
A4: ~q=>~p =1 - zajście ~q jest (=1) wystarczające => dla zajścia ~p
B4: ~q~>~q =0 - zajście ~q nie jest (=0) konieczne ~> dla zajścia ~p
A4B4: ~q|=>~p = (A4: ~q=>~p)*~(B4: ~q~>~p) =1*~(0) =1*1 =1

Na mocy tożsamości logicznych w wierszach w tabeli T2 zachodzą tożsamości logiczne [=] implikacji:
A1B1: p|=>q [=] A2B2: ~p|~>~q [=] A3B3: q|~>p [=] A4B4: ~q|=>~p
Gdzie:
[=] - tożsamość logiczna

Dokładnie to samo można udowodnić korzystając z definicji warunku wystarczającego => i koniecznego ~> wyrażonych spójnikami „i’(*) i „lub”(+).

Dowód:
Definicja warunku wystarczającego p=>q dla potrzeb rachunku zero-jedynkowego:
p=>q = ~p+q
##
Definicja warunku koniecznego p~>q dla potrzeb rachunku zero-jedynkowego:
p~>q = p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Stąd mamy:
A1B1:
Punkt odniesienia:
Implikacja prosta p|=>q w logice dodatniej (bo q):
p|=>q = (A1: p=>q)*~(B1: p~>q) = (~p+q)*~(p+~q) = (~p+q)*(~p*q) = ~p*q
[=]
A2B2:
Implikacja odwrotna ~p|~>~q w logice ujemnej (bo ~q) względem punktu odniesienia A1B1:
~p|~>~q = (A2: ~p~>~q)*~(B2: ~p=>~q) = (~p+q)*~(p+~q) = (~p+q)*(~p*q)=~p*q
[=]
A3B3:
Implikacja odwrotna przeciwna q|~>p w logice dodatniej (bo p) względem A1B1:
q|~>p = (A3: q~>p)*~(B3: q=>p) = (q+~p)*~(~q+p) = (q+~p)*(q*~p) = q*~p = ~p*q
[=]
A4B4:
Implikacja prosta przeciwna ~q|=>~p w logice ujemnej (bo ~p) względem A1B1:
~q|=>~p = (A4: ~q=>~p)*~(B4: ~q~>~p) = (q+~p)*~(~q+p) = (q+~p)*(q*~p) = q*~p = ~p*q
Gdzie:
[=] - tożsamość logiczna, bo prawe strony są identyczne (iloczyn logiczny „*” jest przemienny)
cnd

Stąd mamy skrótową tożsamość logiczną:
A1B1: p|=>q = A2B2: ~p|~>~q [=] A3B3: q|~>p = A4B4: ~q|=>~p = ~p*q

Warto zapamiętać różnicę między warunkiem wystarczającym p=>q:
A: p=>q = ~p+q
##
a implikacją prostą p|=>q:
A1B1: p|=>q = ~p*q
Gdzie:
## - różne na mocy definicji warunku wystarczającego p=>q i implikacji prostej p|=>q
p i q musi być wszędzie tymi samymi p i q.

5.3 Operator implikacji prostej p||=>q

W algebrze Kubusia w zbiorach zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>
Kod:

T2
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji prostej p|=>q
Kolumna A1B1 to punkt odniesienia:
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
       A1B1:         A2B2:        |     A3B3:         A4B4:
A:  1: p=>q  =1 = 2:~p~>~q=1     [=] 3: q~>p  =1 = 4:~q=>~p =1
A’: 1: p~~>~q=0 =                [=]             = 4:~q~~>p =0                   
       ##            ##           |     ##            ##
B:  1: p~>q  =0 = 2:~p=>~q=0     [=] 3: q=>p  =0 = 4:~q~>~p =0
B’:             = 2:~p~~>q=1     [=] 3: q~~>~p=1
---------------------------------------------------------------
IP: p|=>q=~p*q  = ~p|~>~q=~p*q   [=]  q|~>p=q*~p = ~q|=>~p=q*~p
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
A1: p=>q=1 - prawdziwy A1 wymusza fałszywy kontrprzykład A1’ (i odwrotnie)
A1’: p~~>~q=p*~q=0 - fałszywy kontrprzykład A1’ wymusza prawdziwy A1
B2:~p=>~q=0 - fałszywy B2 wymusza prawdziwy kontrprzykład B2’ (i odwrotnie)
B2’:~p~~>q =~p*q=1 - prawdziwy kontrprzykład B2’ wymusza fałszywy B2
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla udowodnienia, iż zdanie warunkowe „Jeśli p to q” wchodzi w skład implikacji prostej p|=>q potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Ax i fałszywość dowolnego zdania serii Bx.
Zauważmy, że nie ma znaczenia które zdanie będziemy brali pod uwagę, bowiem prawami logiki matematycznej (prawa Kubusia, prawa Tygryska i prawa kontrapozycji) zdanie to możemy zastąpić zdaniem logicznie tożsamym z kolumny A1B1.

Prawo śfinii:
Domyślny punkt odniesienia w zdaniach warunkowych „Jeśli p to q”:

W dowolnym zdaniu warunkowym „Jeśli a to b” zapisanym w zmiennych aktualnych a i b (mających związek z językiem potocznym człowieka), zawsze po „Jeśli..” zapisujemy formalny poprzednik p zaś po „to” zapisujemy formalny następnik q.
Zamieniać p i q w dowolnym zdaniu warunkowym z ustalonym wyżej domyślnym punktem odniesienia wolno nam tylko i wyłącznie na podstawie prawa Tygryska lub prawa kontrapozycji.

Definicja operatora implikacji prostej p||=>q:
Operator implikacji prostej p||=>q to odpowiedź na dwa pytania 1 i 2:

1.
Co może się wydarzyć jeśli zajdzie p?

Odpowiedź na to pytanie mamy w kolumnie A1B1:
Jeśli zajdzie p to mamy gwarancję matematyczną => iż zajdzie q - mówi o tym zdanie A1

A1.
Jeśli zajdzie p (p=1) to na 100% => zajdzie q (q=1)
p=>q =1
Zdarzenia:
Zajście p jest (=1) warunkiem wystarczającym => dla zajścia q
Zajście p daje nam (=1) gwarancję matematyczną => zajścia q
Zbiory:
Zajście p jest warunkiem wystarczającym => dla zajścia q wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>
Na mocy prawa śfinii zdanie A1 musimy przyjąć za punkt odniesienia, bo do tego zdania odnoszą się wszystkie dalsze rozważania.

Z prawdziwości warunku wystarczającego => A1 wynika fałszywość kontrprzykładu A1’ (i odwrotnie)
A1’
Jeśli zajdzie p (p=1) to może ~~> zajść ~q (~q=1)
p~~>~q = p*~q =0
Zdarzenia:
Niemożliwe jest (=0) jednoczesne ~~> zajście zdarzeń p i ~q
Zbiory:
Nie istnieje (=0) wspólny element ~~> zbiorów p i ~q

2.
Co może się wydarzyć jeśli zajdzie ~p?

Prawo Kubusia:
A1: p=>q = A2:~p~>~q
Odpowiedź na to pytanie mamy w kolumnie A2B2:
Jeśli zajdzie ~p to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” - mówią o tym zdania A2 i B2’

A2.
Jeśli zajdzie ~p (~p=1) to może ~> zajść ~q (~q=1)
~p~>~q =1
Zdarzenia:
Zajście ~p jest warunkiem koniecznym ~> dla zajścia ~q
Zbiory:
Zajście ~p jest warunkiem koniecznym ~> dla zajścia ~q wtedy i tylko wtedy gdy zbiór ~p jest nadzbiorem ~> zbioru ~q
LUB
Kontrprzykład B2’ dla fałszywego warunku wystarczającego => B2 musi być prawdą, stąd:
B2’.
Jeśli zajdzie ~p (~p=1) to może ~~> zajść q (q=1)
~p~~>q = ~p*q =1
Zdarzenia:
Możliwe jest (=1) jednoczesne ~~> zajście zdarzeń ~p i q
Zbiory:
Istnieje (=1) wspólny element ~~> zbiorów ~p i q


5.3.1 Zero-jedynkowa definicja warunku wystarczającego p=>q

Zapiszmy skróconą tabelę prawdy operatora implikacji prostej p||=>q przedstawioną wyżej:
Kod:

T4:
Analiza symboliczna                              |Co w logice
operatora implikacji prostej p||=>q              |jedynek oznacza
A1:  p=> q =1 - zajście p wystarcza => dla q     |( p=1)=> ( q=1)=1
A1’: p~~>~q=0 - kontrprzykład dla A1 musi być 0  |( p=1)~~>(~q=1)=0
A2: ~p~>~q =1 - ~p jest konieczne ~> dla ~q      |(~p=1)~> (~q=1)=1
B2’:~p~~>q =1 - kontrprzykład dla B2 musi być 1  |(~p=1)~~>( q=1)=1
     a   b  c                                       d        e    f

Na podstawie analizy symbolicznej możemy wygenerować dwie tabele zero-jedynkowe definiujące warunek wystarczający => (linia A1) i konieczny ~> (linia A2)

Przyjmijmy za punkt odniesienia warunek wystarczający => widoczny w linii A1:
A1: p=>q =1
Jedyne prawo Prosiaczka jakie będzie nam potrzebne do wygenerowania zero-jedynkowej definicji warunku wystarczającego to:
(~x=1)=(x=0)
bo zgodnie z przyjętym punktem odniesienia A1 wszystkie sygnały musimy sprowadzić do postaci niezanegowanej (bo x).
Kod:

T5:
Definicja zero-jedynkowa warunku wystarczającego p=>q
w logice dodatniej (bo q)
Analiza       |Co w logice       |Kodowanie dla     |
symboliczna   |jedynek oznacza   |A1: p=>q =1       |
              |                  |                  | p  q  p=>q
A1:  p=> q =1 |( p=1)=> ( q=1)=1 |( p=1)=> ( q=1)=1 | 1=>1   =1
A1’: p~~>~q=0 |( p=1)~~>(~q=1)=0 |( p=1)~~>( q=0)=0 | 1=>0   =0
A2: ~p~>~q =1 |(~p=1)~> (~q=1)=1 |( p=0)~> ( q=0)=1 | 0=>0   =1
B2’:~p~~>q =1 |(~p=1)~~>( q=1)=1 |( p=0)~~>( q=1)=1 | 0=>1   =1
     a   b  c    d        e    f    g        h    i   1  2    3
                                 |Prawa Prosiaczka  |
                                 |(~p=1)=( p=0)     |
                                 |(~q=1)=( q=0)     |

Nagłówek A1: p=>q w kolumnie wynikowej 3 w tabeli zero-jedynkowej 123 wskazuje linię A1: w tabeli symbolicznej abc względem której dokonano kodowania zero-jedynkowego.
Tabela zero-jedynkowa 123 nosi nazwę zero-jedynkowej definicji warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego.

Zauważmy, że w tabeli T4 mamy również warunek konieczny ~> widniejący w linii A2.
Przyjmijmy za punkt odniesienia linię A2 i wygenerujmy tabelę zero-jedynkową warunku koniecznego ~>:
A2:~p~>~q =1
Jedyne prawo Prosiaczka jakie będzie tu nam potrzebne to:
(x=1)=(~x=0)
bo zgodnie z przyjętym punktem odniesienia A2 wszystkie sygnały musimy sprowadzić do postaci zanegowanej (bo ~x).
Kod:

T6:
Definicja zero-jedynkowa warunku koniecznego A2:~p~>~q
w logice ujemnej (bo ~q)
Analiza       |Co w logice       |Kodowanie dla     |
symboliczna   |jedynek oznacza   |A2:~p~>~q =1      |
              |                  |                  |~p ~q ~p~>~q
A1:  p=> q =1 |( p=1)=> ( q=1)=1 |(~p=0)=> (~q=0)=1 | 0~>0   =1
A1’: p~~>~q=0 |( p=1)~~>(~q=1)=0 |(~p=0)~~>(~q=1)=0 | 0~>1   =0
A2: ~p~>~q =1 |(~p=1)~> (~q=1)=1 |(~p=1)~> (~q=1)=1 | 1~>1   =1
B2’:~p~~>q =1 |(~p=1)~~>( q=1)=1 |(~p=1)~~>(~q=0)=1 | 1~>0   =1
     a   b  c    d        e    f    g        h    i   1  2    3
                                 |Prawa Prosiaczka  |
                                 |( p=1)=(~p=0)     |
                                 |( q=1)=(~q=0)     |

Nagłówek A2:~p~>~q w kolumnie wynikowej 3 w tabeli zero-jedynkowej 123 wskazuje linię A2: w tabeli symbolicznej abc względem której dokonano kodowania zero-jedynkowego.
Tabela zero-jedynkowa 123 nosi nazwę zero-jedynkowej definicji warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego.

Zauważmy, że analiza symboliczna (abc) w tabelach T5 i T6 jest identyczna, dzięki czemu z tożsamości kolumn wynikowych 3 w tabelach T5 i T6 wnioskujemy o zachodzącym prawie Kubusia.
Prawo Kubusia:
T5: p=>q = T6: ~p~>~q

Dokładnie ten sam dowód możemy wykonać w rachunku zero-jedynkowym korzystając z zero-jedynkowej definicji warunku wystarczającego => (T5: 123) i koniecznego ~> (T6: 123).
Oto on:
Kod:

Zero-jedynkowa definicja warunku wystarczającego =>
   p  q  p=>q
A: 1=>1  =1
B: 1=>0  =0
C: 0=>0  =1
D: 0=>1  =1

Kod:

Zero-jedynkowa definicja warunku koniecznego ~>
   p  q  p~>q
A: 1~>1  =1
B: 1~>0  =1
C: 0~>0  =1
D: 0~>1  =0

Stąd mamy:
Kod:

Dowód zero-jedynkowy prawa Kubusia:
p=>q = ~p~>~q
     p  q  p=>q ~p ~q ~p~>~q
A1:  1=>1  =1    0~>0   =1
A1’: 1=>0  =0    0~>1   =0
A2:  0=>0  =1    1~>1   =1
B2’: 0=>1  =1    1~>0   =1
     1  2   3    4  5    6

Tożsamość kolumn wynikowych 3=6 jest dowodem formalnym prawa Kubusia.
Prawo Kubusia:
p=>q = ~p~>~q
Uwaga:
Warunkiem koniecznym wnioskowania o tożsamości kolumn wynikowych 3=6 jest identyczna matryca zero-jedynkowa na wejściach p i q.
Matematycznie wiersze 456 można dowolnie przestawiać względem wierszy 123, ale wtedy wnioskowanie o zachodzącym prawie Kubusia będzie dużo trudniejsze - udowodnił to Makaron Czterojajeczny w początkach rozszyfrowywania algebry Kubusia.
Problem można tu porównać do tabliczki mnożenia do 100. Porządna tablica spotykana w literaturze jest zawsze ładnie uporządkowana. Dowcipny uczeń może jednak zapisać poprawną tabliczkę mnożenia do 100 w sposób losowy, byleby zawierała wszystkie przypadki. Pani matematyczka, od strony czysto matematycznej nie ma prawa zarzucić uczniowi iż nie zna się na matematyce, wręcz przeciwnie, doskonale wie o co tu chodzi a dowodem tego jest jego bałaganiarski dowcip.

Prawo Kubusia:
p=>q = ~p~>~q
Prawo Kubusia można też dowieść przy pomocy definicji warunku wystarczającego => i koniecznego ~> w spójnikach „i”(*) i „lub”(+)

Definicja warunku wystarczającego p=>q w spójnikach „i”(*) i „lub”(+):
p=>q = ~p+q
Definicja warunku koniecznego p~>q w spójnikach „i”(*) i „lub”(+):
p~>q = p+~q

Stąd mamy:
~p~>~q = ~p+~(~q) = ~p+q = p=>q
cnd

Prawo Kubusia to tożsamość logiczna „=”:
p=>q = ~p~>~q

Definicja tożsamości logicznej „=”:
Prawdziwość dowolnej strony tożsamości logicznej „=”wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej „=” wymusza fałszywość drugiej strony

Z powyższego wynika, że definicja tożsamości logicznej „=” jest tożsama ze spójnikiem równoważności „wtedy i tylko wtedy” <=>

Wniosek:
Tożsamość logiczna „=” jest de facto spójnikiem równoważności p<=>q o definicji:
Kod:

Zero-jedynkowa definicja równoważności <=>
   p   q p<=>q
A: 1<=>1  =1
B: 1<=>0  =0
C: 0<=>0  =1
D: 0<=>1  =0

Fakt ten możemy wykorzystać w naszym zero-jedynkowym dowodzie prawa Kubusia wyżej w następujący sposób.
Kod:

Dowód zero-jedynkowy prawa Kubusia:
p=>q = ~p~>~q
     p  q  p=>q ~p ~q ~p~>~q (p=>q)<=>(~p~>~q)
A1:  1=>1  =1    0~>0   =1          =1
A1’: 1=>0  =0    0~>1   =0          =1
A2:  0=>0  =1    1~>1   =1          =1
B2’: 0=>1  =1    1~>0   =1          =1
     1  2   3    4  5    6           7

Same jedynki w kolumnie 7 również są dowodem formalnym poprawności prawa Kubusia:
p=>q = ~p~>~q

5.3.2 Diagram operatora implikacji prostej p||=>q w zbiorach

Definicja implikacji prostej p|=>q w zbiorach:
Zbiór p jest podzbiorem => zbioru q i nie jest tożsamy ze zbiorem q
Dziedzina musi być szersza do sumy logicznej zbiorów p+q bowiem wtedy i tylko wtedy wszystkie pojęcia p, ~p, q i ~q będą rozpoznawalne.
A1: p=>q =1 - zbiór p jest (=1) podzbiorem => zbioru q (z definicji)
B1: p~>q =0 - zbiór p nie (=0) jest nadzbiorem ~> zbioru q (z definicji)
p|=>q = (A1: p=>q)*~(B1: p~>q) =1*~(0) = 1*1 =1

W algebrze Kubusia w zbiorach zachodzi:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>
Kod:

D1
Diagram operatora implikacji prostej p||=>q w zbiorach

----------------------------------------------------------------------
|     p                     |                    ~p                  |
|---------------------------|----------------------------------------|
|     q                                      |   ~q                  |
|--------------------------------------------|-----------------------|
|                           |~p~~>q = ~p*q   | p~~>~q = p*~q =[]     |
----------------------------------------------------------------------
| Dziedzina: D =p*q+~p*~q+~p*q (suma logiczna zbiorów niepustych)    |
|--------------------------------------------------------------------|

Analiza implikacji prostej p||=>q w zapisach formalnych (ogólnych)
----------------------------------------------------------------------
Analiza        |Po zamianie    |Komentarz do analizy podstawowej
podstawowa     |p i q          |na podstawie diagramu D1
A1:  p=> q =1  |A3:  q~> p =1  |A1   p=> q =1 - p jest podzbiorem => q 
A1’: p~~>~q=0  |A1’:~q~~>p =0  |A1’: p~~>~q=0 - p*~q=[]=0 zbiory rozłączne
A2: ~p~>~q =1  |A4: ~q=>~p =1  |A2: ~p~>~q =1 - ~p jest nadzbiorem ~> ~q
B2’:~p~~>q =1  |B2’: q~~>~p=1  |B2’ ~p~~>q =1 - ~p*q=1 zbiór niepusty
|
B1:  p~> q =0  |B3:  q=> p =0  |B1:  p~> q =0 - p nie jest nadzbiorem ~> q
A1’  p~~>~q=0  |A1’:~q~~>p =0  |A1’: p~~>~q=0 - p*~q=[]=0 zbiory rozłączne
B2: ~p=>~q =0  |B4: ~q~>~p =0  |B2: ~p=>~q =0 - ~p nie jest podzbiorem ~q
B2’:~p~~>q =1  |B2’: q~~>~p=1  |B2’:~p~~>q =1 - ~p*q=1 zbiór niepusty
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia
Spójnik p~~>q=p*q jest przemienny.

Operator implikacji prostej p||=>q to odpowiedź na dwa pytania 1 i 2:

1.
Co może się wydarzyć jeśli zajdzie p (p=1)?

Odpowiedź:
Jeśli zajdzie p to mamy gwarancję matematyczną => iż zajdzie q - mówi o tym zdanie A1

Z diagramu D1 odczytujemy:
A1.
Jeśli zajdzie p (p=1) to na 100% => zajdzie q (q=1)
p=>q =1
Zajście p jest wystarczające => dla zajścia q bo zbiór p jest podzbiorem => zbioru q
Doskonale to widać na diagramie
A1’.
Jeśli zajdzie p (p=1) to może ~~> zajść ~q (~q=1)
p~~>~q = p*~q = [] =0
Definicja elementu wspólnego zbiorów ~~> nie jest spełniona bo zbiory p i ~q są rozłączne, co również widać na diagramie.

1.
Co może się wydarzyć jeśli zajdzie ~p (~p=1)?

Prawo Kubusia:
A1: p=>q = A2: ~p~>~q

Odpowiedź:
Jeśli zajdzie ~p to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” o czym mówią zdania A2 i B2’

A2.
Jeśli zajdzie ~p (~p=1) to może ~> zajść ~q (~q=1)
~p~>~q =1
Zajście ~p jest konieczne ~> dla zajścia ~q bo zbiór ~p jest nadzbiorem ~> zbioru ~q
Wyśmienicie to widać na diagramie.
LUB
B2’.
Jeśli zajdzie ~p (~p=1) to może ~~> zajść q (q=1)
~p~~>q = ~p*q =1
Definicja elementu wspólnego zbiorów ~p i q jest spełniona, co doskonale widać na diagramie.


Ostatnio zmieniony przez rafal3006 dnia Śro 8:28, 10 Lut 2021, w całości zmieniany 1 raz
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 36113
Przeczytał: 10 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Śro 22:30, 10 Lut 2021    Temat postu:

..

Ostatnio zmieniony przez rafal3006 dnia Śro 23:27, 10 Lut 2021, w całości zmieniany 1 raz
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 36113
Przeczytał: 10 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Pią 11:03, 12 Lut 2021    Temat postu:

Kolejna relacja na żywo z pisania końcowej wersji algebry Kubusia!

http://www.sfinia.fora.pl/forum-kubusia,12/algebra-kubusia-matematyka-jezyka-potocznego-2021-02-10,18263.html#578755


6.0 Implikacja odwrotna p|~>q


Spis treści
6.0 Implikacja odwrotna p|~>q 1
6.1 Matematyczne związki warunków wystarczających => i koniecznych ~> 1
6.2 Definicja podstawowa implikacji odwrotnej p|~>q 3
6.2.1 Implikacje tożsame dla punktu odniesienia p|~>q 4
6.3 Operator implikacji odwrotnej p||~>q 7
6.3.1 Zero-jedynkowa definicja warunku koniecznego ~> 9
6.3.2 Diagram operatora implikacji odwrotnej p||~>q w zbiorach 12




6.0 Implikacja odwrotna p|~>q

Definicja operatora implikacyjnego:
Operator implikacyjny to operator wyrażony zdaniami warunkowymi „Jeśli p to q”

Fundamentem wszystkich operatorów implikacyjnych są matematyczne związki warunków wystarczających => i koniecznych ~> w rachunku zero-jedynkowym

6.1 Matematyczne związki warunków wystarczających => i koniecznych ~>

Matematyczne związki warunków wystarczających => i koniecznych ~> w rachunku zero-jedynkowym:
Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
A1: p=>q = ~p+q
##
Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
B1: p~>q = p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Na mocy rachunku zero-jedynkowego mamy matematyczne związki warunków wystarczających => i koniecznych ~>.
Kod:

T0
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5: p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Na mocy powyższego zapisujemy:
1.
Prawa Kubusia:
A1: p=>q = A2: ~p~>~q
##
B1: p~>q = B2: ~p=>~q
Ogólne prawo Kubusia:
Negujemy zmienne i wymieniamy spójniki na przeciwne

2.
Prawa Tygryska:
A1: p=>q = A3: q~>p
##
B1: p~>q = B3: q=>p
Ogólne prawo Tygryska:
Zamieniamy miejscami zmienne i wymieniamy spójniki na przeciwne

3.
Prawa kontrapozycji:
A1: p=>q = A4: ~q=>~p - prawo kontrapozycji dla warunku wystarczającego =>
##
B1: p~>q = B4: ~q~>~p - prawo kontrapozycji dla warunku koniecznego ~>
Ogólne prawo kontrapozycji:
Negujemy zmienne zamieniając je miejscami bez zmiany spójnika logicznego

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Mutacje powyższych praw logiki matematycznej:

Pod p i q w powyższych prawach możemy podstawiać zanegowane zmienne w dowolnych konfiguracjach.

Przykład:
Prawo Kubusia:
p=>q = ~p~>~q
1.
Podstawiamy:
p:=~p - pod p podstaw := ~p
q:=~q - pod q podstaw := ~q
stąd mamy także poprawne prawo Kubusia:
~p=>~q = ~(~p)~>~(~q) = p~>q
2.
Podstawiamy:
p:=p
q:=~q
stąd mamy także poprawne prawo Kubusia:
p=>~q = ~p~>~(~q) = ~p~>q
3.
Podstawiamy:
p:=~p
q:=q
stąd mamy także poprawne prawo Kubusia:
~p=>q = ~(~p)~>~q = p~>~q

6.2 Definicja podstawowa implikacji odwrotnej p|~>q

Definicja podstawowa implikacji odwrotnej p|~>q:
Implikacja odwrotna p|~>q to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
##
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
stąd:
p|~>q = ~(A1: p=>q)*(B1: p~>q) =~(0)*1 = 1*1 =1

W algebrze Kubusia w zbiorach zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

Podstawmy tą definicję do matematycznych związków warunku wystarczającego i koniecznego ~>:
Kod:

T1
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji odwrotnej p|~>q
Kolumna A1B1 to punkt odniesienia:
A1B1: p|~>q=~(A1: p=>q)*(B1: p~>q)=~(0)*1=1*1=1
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p =0 [=] 5: ~p+q
##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p =1 [=] 5: p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla udowodnienia, iż zdanie warunkowe „Jeśli p to q” wchodzi w skład implikacji odwrotnej p|~>q potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Bx i fałszywość dowolnego zdania serii Ax.
Zauważmy, że nie ma znaczenia które zdanie będziemy brali pod uwagę, bowiem prawami logiki matematycznej (prawa Kubusia, prawa Tygryska i prawa kontrapozycji) zdanie to możemy zastąpić zdaniem logicznie tożsamym z kolumny A1B1.

Prawo Kubusia to tożsamość logiczna:
B1: p~>q = B2:~p=>~q

Definicja tożsamości logicznej „=”:
Prawdziwość zdania po dowolnej stronie tożsamości logicznej „=” wymusza prawdziwość zdania po stronie przeciwnej
Fałszywość zdania po dowolnej stronie tożsamości logicznej „=” wymusza fałszywość zdania po stronie przeciwnej

Kluczowym punktem zaczepienia w wprowadzeniu symbolicznej definicji implikacji odwrotnej p|~>q jest definicja kontrprzykładu rodem z algebry Kubusia działająca wyłącznie w warunku wystarczającym =>.

Definicja kontrprzykładu w zbiorach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane elementem wspólnym zbiorów p~~>~q=p*~q

Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>~q=p*~q

Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)

Uzupełnijmy naszą tabelę wykorzystując powyższe rozstrzygnięcia działające wyłącznie w warunkach wystarczających =>.
Kod:

T2
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji odwrotnej p|~>q
Kolumna A1B1 to punkt odniesienia:
A1B1: p|~>q=~(A1: p=>q)*(B1: p~>q)=~(0)*1=1*1=1
       A1B1:         A2B2:        |     A3B3:         A4B4:
A:  1: p=>q  =0 = 2:~p~>~q=0     [=] 3: q~>p  =0 = 4:~q=>~p =0
A’: 1: p~~>~q=1 =                [=]             = 4:~q~~>p =1                   
       ##            ##           |     ##            ##
B:  1: p~>q  =1 = 2:~p=>~q=1     [=] 3: q=>p  =1 = 4:~q~>~p =1
B’:             = 2:~p~~>q=0     [=] 3: q~~>~p=0
---------------------------------------------------------------
IP: p|~>q=p*~q  = ~p|=>~q=p*~q   [=]  q|=>p=~q*p = ~q|~>~p=~q*p
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
A1: p=>q=0 - fałszywy A1 wymusza prawdziwy kontrprzykład A1’ (i odwrotnie)
A1’: p~~>~q=p*~q=1 - prawdziwy kontrprzykład A1’ wymusza fałszywy A1
B2:~p=>~q=1 - prawdziwy B2 wymusza fałszywy kontrprzykład B2’ (i odwrotnie)
B2’:~p~~>q =~p*q=0 - fałszywy kontrprzykład B2’ wymusza prawdziwy B2
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla udowodnienia, iż zdanie warunkowe „Jeśli p to q” wchodzi w skład implikacji odwrotnej p|~>q potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Bx i fałszywość dowolnego zdania serii Ax.
Zauważmy, że nie ma znaczenia które zdanie będziemy brali pod uwagę, bowiem prawami logiki matematycznej (prawa Kubusia, prawa Tygryska i prawa kontrapozycji) zdanie to możemy zastąpić zdaniem logicznie tożsamym z kolumny A1B1.

6.2.1 Implikacje tożsame dla punktu odniesienia p|~>q

Zapiszmy tabelę T2 w wersji uproszczonej z samymi tylko warunkami wystarczającymi => i koniecznymi ~>.
Kod:

T2
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji odwrotnej p|~>q
Kolumna A1B1 to punkt odniesienia:
A1B1: p|=>q=~(A1: p=>q)*(B1: p~>q)=~(0)*1=1*1=1
       A1B1:         A2B2:        |     A3B3:         A4B4:
A:  1: p=>q  =0 = 2:~p~>~q=0     [=] 3: q~>p  =0 = 4:~q=>~p =0
       ##            ##           |     ##            ##
B:  1: p~>q  =1 = 2:~p=>~q=1     [=] 3: q=>p  =1 = 4:~q~>~p =1
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

W tabeli T2 zachodzi tożsamość logiczna „=” warunków wystarczających => i koniecznych ~> w linii Ax.
W tabeli T2 zachodzi tożsamość logiczna „=” warunków wystarczających => i koniecznych ~> w linii Bx.

Zachodzi tożsamość znaczków:
„=” = „[=]”
Znaczek [=] sygnalizuje tylko zamianę p i q w A3B3 i A4B4 względem A1B1 i A2B2.

Znaczenie tożsamości logicznej [=]:
Przykładowe prawo Kubusia:
B1: p~>q = B2:~p=>~q
1.
Prawdziwość dowolnej strony tożsamości logicznej „=” wymusza prawdziwość drugiej strony
Ten przypadek mamy w linii Bx w tabeli T2
2.
Fałszywość dowolnej strony tożsamości logicznej „=” wymusza fałszywość drugiej strony
Ten przypadek mamy w linii Ax w tabeli T2

W tabeli T2 możemy wyróżnić następujące implikacje:

A1B1:
Punkt odniesienia:
Implikacja odwrotna p|~>q w logice dodatniej (bo q):

Implikacja odwrotna p|~>q to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A1: p=>q =0 - zajście p nie jest (=0) wystarczające => dla zajścia q
B1: p~>q =1 - zajście p jest (=1) konieczne ~> dla zajścia q
A1B1: p|~>q = ~(A1: p=>q)*(B1: p~>q) =~(0)*1 = 1*1 =1

Definicja warunku wystarczającego p=>q dla potrzeb rachunku zero-jedynkowego:
p=>q = ~p+q
##
Definicja warunku koniecznego p~>q dla potrzeb rachunku zero-jedynkowego:
p~>q = p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Stąd mamy:
p|~>q = ~(A1: p=>q)*(B1: p~>q) =~(~p+q)*(p+~q) = (p*~q)*(p+~q) = p*~q

Warto zapamiętać różnicę między warunkiem koniecznym p~>q:
B1: p~>q = p+~q
##
a implikacją odwrotną p|~>q:
A1B1: p|~>q = p*~q
Gdzie:
## - różne na mocy definicji warunku koniecznego p~>q i implikacji odwrotnej p|~>q
p i q musi być wszędzie tymi samymi p i q.

Poniższe nazwy implikacji odnoszą się do punktu odniesienia A1B1: p|~>q:
[=]
A2B2:
Implikacja prosta ~p|=>~q w logice ujemnej (bo ~q) w stosunku do A1B1:

Implikacja prosta ~p|=>~q w logice ujemnej (bo ~q) to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
A2: ~p~>~q =0 - zajście ~p nie jest (=0) warunkiem koniecznym ~> dla zajścia ~q
B2: ~p=>~q =1 - zajście ~p jest (=1) warunkiem wystarczającym => dla zajścia ~q
A2B2: ~p|=>~q = ~(A2: ~p~>~q)*(B2: ~p=>~q) =~(0)*1=1*1 =1
Definicje znaczków => I ~>:
p=>q = ~p+q
p~>q = p+~q
stąd:
~p|=>~q = ~(A2: ~p~>~q)*(B2: ~p=>~q) = ~(~p+q)*(p+~q) = (p*~q)*(p+~q) = p*~q
[=]
A3B3:
Implikacja prosta przeciwna q|=>p w logice dodatniej (bo p) w stosunku do A1B1:

Implikacja prosta przeciwna q|=>p w logice dodatniej (bo p) to zachodzenie wyłącznie warunku wystarczającego => między tymi samymi punktami i w tym samym kierunku
A3: q~>p =0 - zajście q nie jest (=0) konieczne ~> dla zajścia p
B3: q=>p =1 - zajście q jest (=1) wystarczające => dla zajścia p
A3B3: q|=>p = ~(A3: q~>p)*(q=>p) = ~(0)*1 =1*1 =1
Definicje znaczków => I ~>:
p=>q = ~p+q
p~>q = p+~q
stąd:
A3B3: q|=>p = ~(A3: q~>p)*(q=>p) = ~(q+~p)*(~q+p)=(~q*p)*(~q+p) = ~q*p
[=]
A4B4:
Implikacja odwrotna przeciwna ~q|~>~p w logice ujemnej (bo ~p) w stosunku do A1B1:

Implikacja odwrotna przeciwna ~q|~>~p w logice ujemnej (bo ~p) to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A4: ~q=>~p =0 - zajście ~q nie jest (=0) wystarczające => dla zajścia ~p
B4: ~q~>~p =1 - zajście ~q jest (=1) konieczne ~> dla zajścia ~p
A4B4: ~q|~>~p = ~(A4: ~q=>~p)*(B4: ~q~>~p) =~(0)*1 =1*1 =1
Definicje znaczków => I ~>:
p=>q = ~p+q
p~>q = p+~q
stąd:
~q|=>~p = ~(A4: ~q=>~p)*(B4: ~q~>~p) = ~(q+~p)*(~q+p) = (~q*p)*(~q+p)=~q*p

Na mocy tożsamości logicznych w wierszach w tabeli T2 zachodzą tożsamości logiczne [=] implikacji:
A1B1: p|~>q [=] A2B2: ~p|=>~q [=] A3B3: q|=>p [=] A4B4: ~q|~>~p
Gdzie:
[=] - tożsamość logiczna

Dokładnie to samo można udowodnić korzystając z definicji podstawowych implikacji prostej p|=>q i odwrotnej p|~>q wyrażonych spójnikami „i’(*) i „lub”(+), co pokazano wyżej.
A1B1: p|~>q=p*~q [=] A2B2: ~p|=>~q=p*~q [=] A3B3: q|=>p=~q*p [=] A4B4: ~q|~>~p=~q*p
Gdzie:
[=] - tożsamość logiczna, bo prawe strony są identyczne (iloczyn logiczny „*” jest przemienny)
cnd

6.3 Operator implikacji odwrotnej p||~>q

W algebrze Kubusia w zbiorach zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>
Kod:

T2
Matematyczne związki warunku wystarczającego => i koniecznego ~>
w implikacji odwrotnej p|~>q
Kolumna A1B1 to punkt odniesienia:
A1B1: p|=>q=~(A1: p=>q)*(B1: p~>q)=~(0)*1=1*1=1
       A1B1:         A2B2:        |     A3B3:         A4B4:
A:  1: p=>q  =0 = 2:~p~>~q=0     [=] 3: q~>p  =0 = 4:~q=>~p =0
A’: 1: p~~>~q=1 =                [=]             = 4:~q~~>p =1                   
       ##            ##           |     ##            ##
B:  1: p~>q  =1 = 2:~p=>~q=1     [=] 3: q=>p  =1 = 4:~q~>~p =1
B’:             = 2:~p~~>q=0     [=] 3: q~~>~p=0
---------------------------------------------------------------
IP: p|~>q=p*~q  = ~p|=>~q=p*~q   [=]  q|=>p=~q*p = ~q|~>~p=~q*p
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
A1: p=>q=0 - fałszywy A1 wymusza prawdziwy kontrprzykład A1’ (i odwrotnie)
A1’: p~~>~q=p*~q=1 - prawdziwy kontrprzykład A1’ wymusza fałszywy A1
B2:~p=>~q=1 - prawdziwy B2 wymusza fałszywy kontrprzykład B2’ (i odwrotnie)
B2’:~p~~>q =~p*q=0 - fałszywy kontrprzykład B2’ wymusza prawdziwy B2
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla udowodnienia, iż zdanie warunkowe „Jeśli p to q” wchodzi w skład implikacji odwrotnej p|~>q potrzeba i wystarcza udowodnić prawdziwość dowolnego zdania serii Bx i fałszywość dowolnego zdania serii Ax.
Zauważmy, że nie ma znaczenia które zdanie będziemy brali pod uwagę, bowiem prawami logiki matematycznej (prawa Kubusia, prawa Tygryska i prawa kontrapozycji) zdanie to możemy zastąpić zdaniem logicznie tożsamym z kolumny A1B1.

Prawo śfinii:
Domyślny punkt odniesienia w zdaniach warunkowych „Jeśli p to q”:

W dowolnym zdaniu warunkowym „Jeśli a to b” zapisanym w zmiennych aktualnych a i b (mających związek z językiem potocznym człowieka), zawsze po „Jeśli..” zapisujemy formalny poprzednik p zaś po „to” zapisujemy formalny następnik q.
Zamieniać p i q w dowolnym zdaniu warunkowym z ustalonym wyżej domyślnym punktem odniesienia wolno nam tylko i wyłącznie na podstawie prawa Tygryska lub prawa kontrapozycji.

Definicja operatora implikacji odwrotnej p||~>q:
Operator implikacji odwrotnej p||~>q to odpowiedź na dwa pytania 1 i 2:

1.
Co może się wydarzyć jeśli zajdzie p?

Odpowiedź na to pytanie mamy w kolumnie A1B1:
Jeśli zajdzie p to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” - mówią o tym zdania B1 i A1’

B1
Jeśli zajdzie p (p=1) to może ~> zajść q (q=1)
p~>q =1
Zdarzenia:
Zajście p jest warunkiem koniecznym ~> dla zajścia q
Zbiory:
Zajście p jest warunkiem koniecznym ~> dla zajścia q wtedy i tylko wtedy gdy zbiór p jest nadzbiorem ~> zbioru q
Na mocy prawa śfinii zdanie B1 musimy przyjąć za punkt odniesienia, bo do tego zdania odnoszą się wszystkie dalsze rozważania.

LUB

Kontrprzykład A1’ dla fałszywego warunku wystarczającego => A1 musi być prawdą, stąd:
A1’.
Jeśli zajdzie p (p=1) to może ~~> zajść ~q (~q=1)
p~~>~q = p*~q =1
Zdarzenia:
Możliwe jest (=1) jednoczesne ~~> zajście zdarzeń p i ~q
Zbiory:
Istnieje (=1) wspólny element ~~> zbiorów p i ~q

2.
Co może się wydarzyć jeśli zajdzie ~p?

Prawo Kubusia:
B1: p~>q = B2:~p=>~q

Odpowiedź na to pytanie mamy w kolumnie A2B2:
Jeśli zajdzie ~p to mamy gwarancję matematyczną => iż zajdzie ~q - mówi o tym zdanie B2

B2.
Jeśli zajdzie ~p (~p=1) to na 100% => zajdzie ~q (~q=1)
~p=>~q =1
Zdarzenia:
Zajście ~p jest (=1) warunkiem wystarczającym => dla zajścia ~q
Zajście ~p daje nam (=1) gwarancję matematyczną => zajścia ~q
Zbiory:
Zajście ~p jest warunkiem wystarczającym => dla zajścia ~q wtedy i tylko wtedy gdy zbiór ~p jest podzbiorem => zbioru ~q
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>

Z prawdziwości warunku wystarczającego => B2 wynika fałszywość kontrprzykładu B2’ (i odwrotnie)
B2’
Jeśli zajdzie ~p (~p=1) to może ~~> zajść q (q=1)
p~~>~q = p*~q =0
Zdarzenia:
Niemożliwe jest (=0) jednoczesne ~~> zajście zdarzeń ~p i q
Zbiory:
Nie istnieje (=0) wspólny element ~~> zbiorów ~p i q

6.3.1 Zero-jedynkowa definicja warunku koniecznego ~>

Zapiszmy skróconą tabelę prawdy operatora implikacji odwrotnej p||~>q przedstawioną wyżej:
Kod:

T4:
Analiza symboliczna                              |Co w logice
operatora implikacji odwrotnej p||~>q            |jedynek oznacza
B1:  p~> q =1 - p jest konieczne ~> dla q        |( p=1)~> ( q=1)=1
A1’: p~~>~q=1 - kontrprzykład dla A1 musi być 1  |( p=1)~~>(~q=1)=1
B2: ~p=>~q =1 - zajście ~p wystarcza => dla ~q   |(~p=1)=> (~q=1)=1
B2’:~p~~>q =0 - kontrprzykład dla B2 musi być 0  |(~p=1)~~>( q=1)=0
     a   b  c                                       d        e    f

Z tabeli T4 możemy wyprowadzić zero-jedynkową definicję warunku koniecznego B1: p~>q kodując analizę symboliczną względem linii B1, albo zero-jedynkową definicję warunku wystarczającego B2:~p=>~q kodując analizę symboliczną względem linii B2

Przyjmijmy za punkt odniesienia warunek konieczny ~> widoczny w linii B1:
B1: p~>q =1
Jedyne prawo Prosiaczka jakie będzie nam potrzebne do wygenerowania zero-jedynkowej definicji warunku wystarczającego to:
(~x=1)=(x=0)
bo zgodnie z przyjętym punktem odniesienia B1 wszystkie sygnały musimy sprowadzić do postaci niezanegowanej (bo x).
Kod:

T5:
Definicja zero-jedynkowa warunku koniecznego A: p~>q
w logice dodatniej (bo q)
Analiza       |Co w logice       |Kodowanie dla     |Zero-jedynkowa
symboliczna   |jedynek oznacza   |B1: p~>q          |definicja ~>
              |                  |                  | p  q  p~>q
B1:  p~> q =1 |( p=1)~> ( q=1)=1 |( p=1)~> ( q=1)=1 | 1~>1   =1
A1’: p~~>~q=1 |( p=1)~~>(~q=1)=1 |( p=1)~~>( q=0)=1 | 1~>0   =1
B2: ~p=>~q =1 |(~p=1)=> (~q=1)=1 |( p=0)=> ( q=0)=1 | 0~>0   =1
B2’:~p~~>q =0 |(~p=1)~~>( q=1)=0 |( p=0)~~>( q=1)=0 | 0~>1   =0
     a   b  c    d        e    f    g        h    i   1  2    3
                                 |Prawa Prosiaczka  |
                                 |(~p=1)=( p=0)     |
                                 |(~q=1)=( q=0)     |

Nagłówek p~>q w kolumnie wynikowej 3 w tabeli zero-jedynkowej 123 wskazuje linię B1: p~>q w tabeli symbolicznej abc względem której dokonano kodowania zero-jedynkowego.
Tabela zero-jedynkowa 123 nosi nazwę zero-jedynkowej definicji warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego.

Nagłówek p~>q w kolumnie wynikowej 3 w tabeli zero-jedynkowej 123 wskazuje linię B1: w tabeli symbolicznej abc względem której dokonano kodowania zero-jedynkowego.
Tabela zero-jedynkowa 123 nosi nazwę zero-jedynkowej definicji warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego.

Zauważmy, że w tabeli T4 mamy również warunek wystarczający => widniejący w linii B2.
Przyjmijmy za punkt odniesienia linię B2 i wygenerujmy tabelę zero-jedynkową warunku wystarczającego =>:
B2:~p=>~q =1
Jedyne prawo Prosiaczka jakie będzie tu nam potrzebne to:
(x=1)=(~x=0)
bo zgodnie z przyjętym punktem odniesienia B2 wszystkie sygnały musimy sprowadzić do postaci zanegowanej (bo ~x).
Kod:

T6:
Definicja zero-jedynkowa warunku wystarczającego B2:~p=>~q
w logice ujemnej (bo ~q)
Analiza       |Co w logice       |Kodowanie dla     |Zero-jedynkowa
symboliczna   |jedynek oznacza   |B2:~p=>~q         |definicja =>
              |                  |                  |~p ~q ~p=>~q
B1:  p~> q =1 |( p=1)~> ( q=1)=1 |(~p=0)~> (~q=0)=1 | 0=>0   =1
A1’: p~~>~q=1 |( p=1)~~>(~q=1)=1 |(~p=0)~~>(~q=1)=1 | 0=>1   =1
B2: ~p=>~q =1 |(~p=1)=> (~q=1)=1 |(~p=1)=> (~q=1)=1 | 1=>1   =1
B2’:~p~~>q =0 |(~p=1)~~>( q=1)=0 |(~p=1)~~>(~q=0)=0 | 1=>0   =0
     a   b  c    d        e    f    g        h    i   1  2    3
                                 |Prawa Prosiaczka  |
                                 |( p=1)=(~p=0)     |
                                 |( q=1)=(~q=0)     |

Nagłówek ~p=>~q w kolumnie wynikowej 3 w tabeli zero-jedynkowej 123 wskazuje linię B2: ~p=>~q w tabeli symbolicznej abc względem której dokonano kodowania zero-jedynkowego.
Tabela zero-jedynkowa 123 nosi nazwę zero-jedynkowej definicji warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego.

Zauważmy, że analiza symboliczna (abc) w tabelach T5 i T6 jest identyczna, dzięki czemu z tożsamości kolumn wynikowych 3 w tabelach T5 i T6 wnioskujemy o zachodzącym prawie Kubusia.
Prawo Kubusia:
T5: p~>q = T6: ~p=>~q

Dokładnie ten sam dowód możemy wykonać w rachunku zero-jedynkowym korzystając z zero-jedynkowej definicji warunku koniecznego ~> (T5: 123) i wystarczającego => (T6: 123).
Oto on:
Kod:

Zero-jedynkowa definicja warunku koniecznego ~>
   p  q  p~>q
A: 1~>1  =1
B: 1~>0  =1
C: 0~>0  =1
D: 0~>1  =0

Kod:

Zero-jedynkowa definicja warunku wystarczającego =>
   p  q  p=>q
A: 1=>1  =1
B: 1=>0  =0
C: 0=>0  =1
D: 0=>1  =1

Stąd mamy:
Kod:

T7
Dowód zero-jedynkowy prawa Kubusia:
p~>q = ~p=>~q
     p  q  p~>q ~p ~q ~p=>~q
B1:  1~>1  =1    0=>0   =1
A1’: 1~>0  =1    0=>1   =1
B2:  0~>0  =1    1=>1   =1
B2’: 0~>1  =0    1=>0   =0
     1  2   3    4  5    6

Tożsamość kolumn wynikowych 3=6 jest dowodem formalnym prawa Kubusia.
Prawo Kubusia:
p~>q = ~p=>~q
Uwaga:
Warunkiem koniecznym wnioskowania o tożsamości kolumn wynikowych 3=6 jest identyczna matryca zero-jedynkowa na wejściach p i q.

Prawo Kubusia:
p~>q = ~p=>~q

Prawo Kubusia można też dowieść przy pomocy definicji warunku wystarczającego => i koniecznego ~> w spójnikach „i”(*) i „lub”(+)
Definicja warunku wystarczającego p=>q w spójnikach „i”(*) i „lub”(+):
p=>q = ~p+q
Definicja warunku koniecznego p~>q w spójnikach „i”(*) i „lub”(+):
p~>q = p+~q
Stąd mamy:
~p=>~q = ~(~p)+~q = p+~q = p~>q
cnd

Prawo Kubusia to tożsamość logiczna „=”:
p~>q = ~p=>~q

Definicja tożsamości logicznej „=”:
Prawdziwość dowolnej strony tożsamości logicznej „=”wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości logicznej „=” wymusza fałszywość drugiej strony

Z powyższego wynika, że definicja tożsamości logicznej „=” jest tożsama ze spójnikiem równoważności „wtedy i tylko wtedy” <=>

Wniosek:
Tożsamość logiczna „=” jest de facto spójnikiem równoważności p<=>q o definicji:
Kod:

Zero-jedynkowa definicja równoważności <=>
   p   q p<=>q
A: 1<=>1  =1
B: 1<=>0  =0
C: 0<=>0  =1
D: 0<=>1  =0

Fakt ten możemy wykorzystać w naszym zero-jedynkowym dowodzie prawa Kubusia wyżej w następujący sposób.
Kod:

Dowód zero-jedynkowy prawa Kubusia:
p~>q <=> ~p=>~q
     p  q  p~>q ~p ~q ~p=>~q (p~>q)<=>(~p=>~q)
B1:  1~>1  =1    0=>0   =1          1
A1’: 1~>0  =1    0=>1   =1          1
B2:  0~>0  =1    1=>1   =1          1
B2’: 0~>1  =0    1=>0   =0          1
     1  2   3    4  5    6          7

Same jedynki w kolumnie 7 również są dowodem formalnym poprawności prawa Kubusia:
p~>q = ~p=>~q

6.3.2 Diagram operatora implikacji odwrotnej p||~>q w zbiorach

Definicja implikacji odwrotnej p|~>q w zbiorach:
Zbiór p jest nadzbiorem ~> zbioru q i nie jest tożsamy ze zbiorem q
Dziedzina musi być szersza do sumy logicznej zbiorów p+q bowiem wtedy i tylko wtedy wszystkie pojęcia p, ~p, q i ~q będą rozpoznawalne.
A1: p=>q =0 - zbiór p nie jest (=0) podzbiorem => zbioru q (z definicji)
B1: p~>q =1 - zbiór p jest nadzbiorem ~> zbioru q (z definicji)
p|~>q = ~(A1: p=>q)*(B1: p~>q) = ~(0)*1 = 1*1 =1

Dlaczego dziedzina musi być szersza od sumy logicznej zbiorów p i q?

W algebrze Kubusia w zbiorach zachodzi:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>

Zobaczmy to na przykładzie:
B1.
Jeśli dowolna liczba jest podzielna przez 2 to może ~> być podzielna przez 8
P2~>P8 =1
Podzielność dowolnej liczby przez 2 jest (=1) warunkiem koniecznym ~> dla jej podzielności przez 8 wtedy i tylko wtedy gdy zbiór P2=[2,4,6,8..] jest nadzbiorem ~> zbioru P8=[8,16,24..]
Zbiór wszystkich liczb parzystych P2=[2,4,6,8..] to nadzbiór ~> zbioru P8=[8,16,24], stąd prawdziwość zdania B1.
W zdaniu B1 poprzednik p mówi o zbiorze P2, zaś następnik q o zbiorze P8
P2=[2,4,6,8..] - zbiór wszystkich liczb parzystych
P8=[8,16,24..] - zbiór liczb podzielnych przez 8
Przyjmijmy dziedzinę minimalną:
LN=[1,2,3,4,5,6,7,8,9..]
Stąd wyznaczamy zbiory zaprzeczone rozumiane jako uzupełnienia do dziedziny:
~P2=[LN-P2]=[1,3,5,7,9..] - zbiór liczb niepodzielnych przez 2 (zbiór wszystkich liczb nieparzystych)
~P8=[LN-P8]=[1,2,3,4,5,6,7..9..] - zbiór liczb niepodzielnych przez 8
Definicja dziedziny dla P8 i ~P8:
Definicja dziedziny dla P2 i ~P2:
P2+~P2=LN =1 - zbiór ~P2 jest uzupełnieniem do dziedziny dla zbioru P2
P2*~P2 =[] =0 - zbiory rozłączne
P8+~P8 =LN =1 - zbiór ~P8 jest uzupełnieniem do dziedziny dla zbioru P8
P8*~P8=[] =0 - zbiory rozłączne

Wnioski:
1.
W dowolnym zdaniu warunkowym „Jeśli p to q” dziedzina musi być wspólna dla p i q
2.
Dziedzina musi być szersza od sumy zbiorów p+q
Nasz przykład:
p+q = P2+P8 = P2 - bo P2=[2,4,6,8..] jest nadzbiorem ~> zbioru P8=[8,16,24..]
Przyjęta dziedzina:
LN=[1,2,3,4,5,6,7,8,9..]
Jest szersza od sumy logicznej zbiorów:
P2+P8=P2=[2,4,6,8..]
zatem przyjęta dziedzina jest matematycznie poprawna.
3.
Zobaczmy co się stanie jak dla naszego zdania B1 przyjmiemy za dziedzinę zbiór tożsamy z sumą zbiorów P2+P8=P2:
D=P2=[2,4,6,8..]
Wyznaczamy zbiór ~P2:
~P2 = [D-P2] = P2-P2]=[] =0
Jak widzimy pojęcie ~P2 jest nierozpoznawalne, dlatego dla zdania B1 musimy przyjąć dziedzinę szerszą od sumy zbiorów P2+P8=P2, inaczej popełniamy błąd nierozpoznawalności analizowanego pojęcia (tu ~P2)

W algebrze Kubusia w zbiorach zachodzi tożsamość pojęć:
Warunek wystarczający => = relacja podzbioru =>
Warunek konieczny ~> = relacja nadzbioru ~>
Kod:

D2
Diagram operatora implikacji odwrotnej p||~>q w zbiorach

----------------------------------------------------------------------
|     q                     |                    ~q                  |
|---------------------------|----------------------------------------|
|     p                                      |   ~p                  |
|--------------------------------------------|-----------------------|
|                           | p~~>~q = p*~q  | ~p~~>q = ~p*q =[]     |
----------------------------------------------------------------------
| Dziedzina: D =p*q+p*~q+~p*~q (suma logiczna zbiorów niepustych)    |
|--------------------------------------------------------------------|

Z powyższego diagramu w zbiorach odczytujemy:
Analiza operatora implikacji odwrotnej p||~>q
w zapisach formalnych (ogólnych)
A1:  p=> q =0 - fałszywy A1 wymusza prawdziwy kontrprzykład A1’
----------------------------------------------------------------------
A1:  p=> q =0  |A3:  q~> p =0  |A1   p=> q =0 - p nie jest podzbiorem => q 
A1’: p~~>~q=1  |A1’:~q~~>p =1  |A1’: p~~>~q=1 - p*~q zbiór niepusty
A2: ~p~>~q =0  |A4: ~q=>~p =0  |A2: ~p~>~q =0 - ~p nie jest nadzbiorem~> ~q
B2’:~p~~>q =0  |B2’: q~~>~p=0  |B2’ ~p~~>q =0 - ~p i q zbiory rozłączne
|
B1:  p~> q =1  |B3:  q=> p =1  |B1:  p~> q =1 - p jest nadzbiorem~> q
A1’  p~~>~q=1  |A1’:~q~~>p =1  |A1’: p~~>~q=1 - p*~q zbiór rozłączny
B2: ~p=>~q =1  |B4: ~q~>~p =1  |B2: ~p=>~q =1 - ~p jest podzbiorem => ~q
B2’:~p~~>q =0  |B2’: q~~>~p=0  |B2’:~p~~>q =0 - ~p i q zbiory rozłączne
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


Definicja operatora implikacji odwrotnej p||~>q:
Operator implikacji odwrotnej p||~>q to odpowiedź na dwa pytania 1 i 2:

1.
Co może się wydarzyć jeśli zajdzie p?

Z diagramu D2 odczytujemy::
Jeśli zajdzie p to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” - mówią o tym zdania B1 i A1’

B1
Jeśli zajdzie p (p=1) to może ~> zajść q (q=1)
p~>q =1
Zbiory:
Zajście p jest warunkiem koniecznym ~> dla zajścia q wtedy i tylko wtedy gdy zbiór p jest nadzbiorem ~> zbioru q
Na mocy prawa śfinii zdanie B1 musimy przyjąć za punkt odniesienia, bo do tego zdania odnoszą się wszystkie dalsze rozważania.

LUB

Kontrprzykład A1’ dla fałszywego warunku wystarczającego => A1 musi być prawdą, stąd:
A1’.
Jeśli zajdzie p (p=1) to może ~~> zajść ~q (~q=1)
p~~>~q = p*~q =1
Zbiory:
Istnieje (=1) wspólny element ~~> zbiorów p i ~q

2.
Co może się wydarzyć jeśli zajdzie ~p?

Prawo Kubusia:
B1: p~>q = B2:~p=>~q

Z diagramu D2 odczytujemy:
Jeśli zajdzie ~p to mamy gwarancję matematyczną => iż zajdzie ~q - mówi o tym zdanie B2

B2.
Jeśli zajdzie ~p (~p=1) to na 100% => zajdzie ~q (~q=1)
~p=>~q =1
Zbiory:
Zajście ~p jest warunkiem wystarczającym => dla zajścia ~q wtedy i tylko wtedy gdy zbiór ~p jest podzbiorem => zbioru ~q

Z prawdziwości warunku wystarczającego => B2 wynika fałszywość kontrprzykładu B2’ (i odwrotnie)
B2’
Jeśli zajdzie ~p (~p=1) to może ~~> zajść q (q=1)
p~~>~q = p*~q =0
Zbiory:
Nie istnieje (=0) wspólny element ~~> zbiorów ~p i q
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 36113
Przeczytał: 10 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Wto 17:19, 16 Lut 2021    Temat postu:

Dopisałem fajny rozdział algebry Kubusia widzianej oczami 5-cio latka w kierunku od zdarzeń możliwych ~~> do operatora implikacji prostej p||=>q.
http://www.sfinia.fora.pl/forum-kubusia,12/algebra-kubusia-matematyka-jezyka-potocznego-2021-02-10,18263.html#578425

5.4 Operator implikacji prostej p||=>q w przedszkolu

Niniejszą część algebry Kubusia dedykuję paniom przedszkolankom, jako podstawowy podręcznik logiki matematycznej dla 5-cio latków. Oczywiście przykłady mogą być inne, ale idea musi pozostać niezmienna, czyli mają to być przykłady zrozumiałe dla 5-cio latka.



5.4.1 Matematyczne fundamenty teorii zdarzeń dla 5-cio latków

Cała logika matematyczna w obsłudze zdań warunkowych „Jeśli p to q” stoi na zaledwie trzech znaczkach (~~>, =>, ~>) definiujących wzajemne relacje zdarzeń p i q

I.
Definicja zdarzenia możliwego ~~>:

Jeśli zajdzie p to może ~~> zajść q
p~~>q =p*q =1
Definicja zdarzenia możliwego ~~> jest spełniona (=1) wtedy i tylko wtedy gdy możliwe jest jednoczesne zajście zdarzeń p i q.
Inaczej:
p~~>q=p*q =[] =0

Decydujący w powyższej definicji jest znaczek zdarzenia możliwego ~~>, dlatego dopuszczalny jest zapis skrócony p~~>q.
Uwaga:
Na mocy definicji zdarzenia możliwego ~~> badamy możliwość zajścia jednego zdarzenia, nie analizujemy tu czy między p i q zachodzi warunek wystarczający => czy też konieczny ~>.

II.
Definicja warunku wystarczającego => w zdarzeniach:

Jeśli zajdzie p to zajdzie q
p=>q =1
Definicja warunku wystarczającego => jest spełniona (=1) wtedy i tylko wtedy gdy zajście zdarzenia p jest wystarczające => dla zajścia zdarzenia q
Inaczej:
p=>q =0

Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
p=>q = ~p+q

III.
Definicja warunku koniecznego ~> w zdarzeniach:

Jeśli zajdzie p to zajdzie q
p~>q =1
Definicja warunku koniecznego ~> jest spełniona (=1) wtedy i tylko wtedy gdy zajście zdarzenia p jest konieczne ~> dla zajścia zdarzenia q
Inaczej:
p~>q =0

Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
p~>q = p+~q

Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>~q=p*~q

Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)

Matematyczne związki warunków wystarczających => i koniecznych ~>

Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
A1: p=>q = ~p+q
##
Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
B1: p~>q = p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>

Na mocy rachunku zero-jedynkowego mamy matematyczne związki warunków wystarczających => i koniecznych ~>.
Kod:

T0
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5: p+~q
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia


Na mocy powyższego zapisujemy:
1.
Prawa Kubusia:
A1: p=>q = A2: ~p~>~q
##
B1: p~>q = B2: ~p=>~q
Ogólne prawo Kubusia:
Negujemy zmienne i wymieniamy spójniki na przeciwne

2.
Prawa Tygryska:
A1: p=>q = A3: q~>p
##
B1: p~>q = B3: q=>p
Ogólne prawo Tygryska:
Zamieniamy miejscami zmienne i wymieniamy spójniki na przeciwne

3.
Prawa kontrapozycji:
A1: p=>q = A4: ~q=>~p - prawo kontrapozycji dla warunku wystarczającego =>
##
B1: p~>q = B4: ~q~>~p - prawo kontrapozycji dla warunku koniecznego ~>
Ogólne prawo kontrapozycji:
Negujemy zmienne zamieniając je miejscami bez zmiany spójnika logicznego

Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p=>q = ~p+q ## p~>q = p+~q

5.4.2 Od teorii zdarzeń do operatora implikacji prostej P||=>CH

Z algebrą Kubusia jest identycznie jak z gramatyką języka mówionego.
Czy trzeba znać gramatykę by posługiwać się językiem ojczystym?
Czy 5-cio latek musi znać gramatykę języka by posługiwać się językiem ojczystym?
Odpowiedź jest jednoznaczna:
NIE!
Fundamentem języka mówionego jest algebra Kubusia, nigdy jakaś tam gramatyka, której osobiście nigdy nie znałem tzn. do dzisiaj nie wiem co to jest jakiś tam podmiot, orzeczenie, przysłówek, dupówek etc.
Algebra Kubusia to logika matematyczna rządząca naszym Wszechświatem, zarówno żywym, jak i martwym z matematyką włącznie. Wszyscy perfekcyjnie znamy algebrę Kubusia od momentu narodzin do śmierci i nie mamy żadnych szans, aby się od niej uwolnić.
Dowód tego faktu będzie w niniejszym punkcie.

Udajmy się do przedszkola.
A1.
Pani:
Powiedźcie mi dzieci:
Czy może się jutro zdarzyć, że będzie padało i będzie pochmurno?
Jaś (lat 5)
TAK - zdarzenie możliwe (=1)
Stąd mamy prawdziwe zdanie warunkowe:
A1.
Jeśli jutro będzie padało (P=1) to może ~~~> być pochmurno (CH=1)
P~~>CHG = P*CH =1
Możliwe jest (=1) zdarzenie: pada (P=1) i są chmury (CH=1)
O czym każdy 5-cio latek wie.
Na mocy definicji zdarzenia możliwego ~~> interesuje nas jeden taki przypadek, nie badamy tu czy zawsze gdy pada, jest pochmurno.

A1’
Pani:
Czy może się zdarzyć, że jutro będzie padało i nie będzie pochmurno?
Jaś (lat 5).
NIE - zdarzenie niemożliwe (=0)
Stąd mamy fałszywe zdanie warunkowe:
A1’
Jeśli jutro będzie padało to może ~~> nie być pochmurno
P~~>~CH = P*~CH =0
Nie może się zdarzyć (=0), że juro będzie padało (P=1) i nie będzie pochmurno (~CH=1)
O czym każdy 5-cio latek wie.

A2.
Pani:
Czy może się zdarzyć, że jutro nie będzie padało i nie będzie pochmurno?
Jaś (lat 5).
TAK - zdarzenie możliwe (=1)
Stąd mamy prawdziwe zdanie warunkowe:
A2.
Jeśli jutro nie będzie padało (~P=1) to może ~~> nie być pochmurno (~CH=1)
~P~~>~CH =~P*~CH=1
Może się zdarzyć (=1), że jutro nie będzie padało (~P=1) i nie będzie pochmurno (~CH=1)
O czym każdy 5-cio latek wie.

B2’
Pani:
Czy może się zdarzyć, że jutro nie będzie padało (~P=1) i będzie pochmurno (CH=1)?
Jaś (lat 5):
TAK - zdarzenie możliwe (=1)
Stąd mamy prawdziwe zdanie warunkowe:
B2’
Jeśli jutro nie będzie padało (~P=1) to może ~~> być pochmurno (CH=1)
~P~~>CH = ~P*CH =1
Możliwe jest zdarzenie (=1): nie pada (~P=1) i jest pochmurno (CH=1)
O czym każdy 5-cio latek wie.

5.4.3 Czarodziejska siła definicji kontrprzykładu i praw Kubusia

Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>~q=p*~q

Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)

Prawa Kubusia:
A1: p=>q = A2: ~p~>~q
##
B1: p~>q = B2: ~p=>~q
Ogólne prawo Kubusia:
Negujemy zmienne i wymieniamy spójniki na przeciwne
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p=>q = ~p+q ## p~>q = p+~q

Zapiszmy dialog pani przedszkolanki z Jasiem w tabeli prawdy:
Kod:

T1.
                    Y  Analiza z punktu odniesienia funkcji logicznej Y
A1:  P~~> CH= P* CH=1 -możliwe jest (=1) zdarzenie: pada i są chmury
A1’: P~~>~CH= P*~CH=0 -niemożliwe jest (=0) zdarzenie: pada i nie ma chmur
A2: ~P~~>~CH=~P*~CH=1 -możliwe jest (=1) zdarzenie: nie pada i nie ma chmur
B2’:~P~~> CH=~P* CH=1 -możliwe jest (=1) zdarzenia: nie pada i są chmury

W zdarzeniach możliwych kluczowy jest znaczek zdarzenia możliwego ~~>.
Uprośćmy zatem tabelę wyżej:
Kod:

T1.
             Y  Analiza z punktu odniesienia funkcji logicznej Y
A1:  P~~> CH=1 -możliwe jest (=1) zdarzenie: pada i są chmury
A1’: P~~>~CH=0 -niemożliwe jest (=0) zdarzenie: pada i nie ma chmur
A2: ~P~~>~CH=1 -możliwe jest (=1) zdarzenie: nie pada i nie ma chmur
B2’:~P~~> CH=1 -możliwe jest (=1) zdarzenia: nie pada i są chmury

W czym tkwi czarodziejska siła kontrprzykładu w zdarzeniach możliwych ~~>?
Analizujemy tabelę T1 korzystając wyłącznie z definicji kontrprzykładu i praw Kubusia.

Analiza tabeli T1 - część I
1.
Z fałszywości kontrprzykładu A1’:
A1’: P~~>~CH=0
wynika prawdziwość warunku wystarczającego => A1 (i odwrotnie):
A1: P=>CH =1 -padanie jest (=1) wystarczające => dla istnienia chmur, bo zawsze gdy pada, są chmury
O czym każdy 5-cio latek wie
2.
Prawo Kubusia:
A1: P=>CH = A2: ~P~>~CH =1
Stąd mamy:
Z prawdziwości warunku wystarczającego => A1:
A1: P=>CH=1
wynika prawdziwość warunku koniecznego A2 (i odwrotnie):
A2: ~P~>~CH=1 - brak opadów (~P=1) jest (=1) warunkiem koniecznym ~> dla braku chmur (~CH=1)
bo jak pada (P=1) to na 100% => są chmury (CH=1)
O czym każdy 5-cio latek wie.
Prawo Kubusia samo nam tu wyskoczyło:
A2: ~P~>~CH = A1: P=>CH

Nanieśmy naszą analizę do tabeli prawdy T1.
Kod:

T2.
A1:  P=> CH =1 -padanie jest (=1) wystarczające => dla istnienia chmur
A1’: P~~>~CH=0 -kontrprzykład A1’ dla prawdziwego A1 musi być fałszem
A2: ~P~> ~CH=1 -brak opadów (~P=1) jest konieczny~> dla braku chmur (~CH=1)
B2’:~P~~> CH=1 -możliwe jest (=1) zdarzenia: nie pada i są chmury

Analiza tabeli T1 - część II
3.
Z prawdziwości kontrprzykładu B2’:
B2’: ~P~~>CH =1
wynika fałszywość warunku wystarczającego => B2 (i odwrotnie):
B2: ~P=>~CH =0 - nie jest prawdą (=0), że zawsze gdy nie pada (~P=1), nie ma chmur (~CH=1)
O czym każdy 5-cio latek wie
4.
Prawo Kubusia:
B2: ~P=>~CH = B1: P~>CH =0
stąd mamy:
Fałszywy warunek wystarczający B2:
B2:~P=>~CH=0
wymusza fałszywy warunek Konieczny ~> B1 (i odwrotnie):
B1: P~>CH =0 - padanie nie jest konieczne ~> dla istnienia chmur bo może nie padać, a chmury mogą istnieć.
O czym każdy 5-cio latek wie.

Nanieśmy część II analizy do tabeli prawdy T2.
Kod:

T3.
A1:  P=> CH =1 | B1: P~>CH =0
A1’: P~~>~CH=0
A2: ~P~> ~CH=1 | B2:~P=>~CH =0
B2’:~P~~> CH=1

Uwaga 1:
Zauważmy, że w linii A1 zapisaną mamy implikację prostą P|=>CH w logice dodatniej (bo CH):
Implikacja prosta P|=>CH to zachodzenie wyłącznie warunku wystarczającego = między tymi samymi punktami i w tym samym kierunku
A1: P=>CH=1 - padanie jest (=1) wystarczające => dla istnienia chmur, bo zawsze gdy pada, są chmury
B1: P~>CH=0 - padnie nie jest (=0) konieczne ~> dla istnienia chmur, bo chmury mogą istnieć i nie musi padać.
Stąd:
P|=>CH = (A1: P=>CH)*~(B1: P~>CH) =1*~(0) =1*1 =1

Uwaga 2:
Zauważmy, że w linii A2 mamy zapisaną implikację odwrotną ~P|~>~CH w logice ujemnej (bo ~CH):
Implikacja odwrotna ~P|~>~CH to zachodzenie wyłącznie warunku koniecznego ~> między tymi samymi punktami i w tym samym kierunku
A2: ~P~>~CH =1 - brak padania (~P=1) jest (=1) warunkiem koniecznym ~> dla nie istnienia chmur (~CH=1), bo jak pada (P=1) to na 100% => są chmury (CH=1)
B2: ~P=>~CH =0 - brak padania (~P=1) nie jest (=0) warunkiem wystarczającym => dla nie istnienia chmur, bo nie zawsze gdy nie pada, nie ma chmur
~P|~>~CH = (A2: ~P~>~CH)*~(B2: ~P=>~CH) =1*~(0) =1*1 =1

Uwagi 1 i 2 możemy zapisać w tożsamej tabeli prawdy:
Kod:

T4.
Definicja implikacji prostej P|=>CH dla punktu odniesienia w kolumnie A1B1:
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
A1B1: P|=>CH=(A1: P=>CH)*~(B1: P~>CH) =1*~(0)=1*1=1
Punkt odniesienia:
p=P (pada)
q=CH (chmury)
      A1B1            A2B2
Zapis formalny:
A: 1: p=> q =1 [=] 2: ~p~>~q =1 - prawo Kubusia
Zapis aktualny:
A: 1: P=>CH =1 [=] 2: ~P~>~CH=1
      ##               ##
Zapis formalny:
B: 1: p~> q =0 [=] 2: ~p=>~q =0 - prawo Kubusia
Zapis aktualny:
B: 1: P~>CH =0 [=] 2: ~P=>~CH=0
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Dla tabeli T4 skorzystajmy po raz kolejny z definicji kontrprzykładu, działającej wyłącznie w warunkach wystarczających.

Definicja kontrprzykładu w zdarzeniach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane zdarzeniem możliwym p~~>~q=p*~q

Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)

Stąd mamy tożsamą tabelę T5:
Kod:

T5.
Definicja implikacji prostej P|=>CH dla punktu odniesienia w kolumnie A1B1:
A1B1: p|=>q=(A1: p=>q)*~(B1: p~>q)=1*~(0)=1*1=1
A1B1: P|=>CH=(A1: P=>CH)*~(B1: P~>CH) =1*~(0)=1*1=1
Punkt odniesienia:
p=P (pada)
q=CH (chmury)
      A1B1               A2B2
Zapis formalny:
A:  1: p=> q =1  [=] 2: ~p~>~q =1 - prawo Kubusia
A’: 1: p~~>~q=0
Zapis aktualny:
A:  1: P=>CH =1  [=] 2: ~P~>~CH=1
A’: 1: P~~>~CH=0
      ##               ##
Zapis formalny:
B:  1: p~> q =0  [=] 2: ~p=>~q =0 - prawo Kubusia
B’:                  2: ~p~~>q =1
Zapis aktualny:
B:  1: P~>CH =0  [=] 2: ~P=>~CH=0
B’:                  2: ~P~~>CH=1
Komentarz:
A1: P=>CH=1 - prawdziwy warunek wystarczający A1 wymusza fałszywy A1’
B2:~P=>~CH=0 - fałszywy warunek wystarczający B2 wymusza prawdziwy B2’
Gdzie:
## - różne na mocy definicji warunku wystarczającego => i koniecznego
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

Doskonale widać, że w kolumnie A1B1 mamy opis tego co może się wydarzyć jeśli jutro będzie padało (P=1), natomiast w kolumnie A2B2 opis wszystkich możliwych przypadków gdy nie będzie padało (~P=1).

W tym momencie możemy tylko powtórzyć to co już poznaliśmy wcześniej, do czego doszliśmy na bazie teorii algebry Kubusia od strony przeciwnej tzn. nie od zdarzeń możliwych ~~> jak w tym przypadku, lecz od strony definicji warunku wystarczającego => i koniecznego ~>.

Prawo śfinii:
Domyślny punkt odniesienia w zdaniach warunkowych „Jeśli p to q”:

W dowolnym zdaniu warunkowym „Jeśli a to b” zapisanym w zmiennych aktualnych a i b (mających związek z językiem potocznym człowieka), zawsze po „Jeśli..” zapisujemy formalny poprzednik p zaś po „to” zapisujemy formalny następnik q.
Zamieniać p i q w dowolnym zdaniu warunkowym z ustalonym wyżej domyślnym punktem odniesienia wolno nam tylko i wyłącznie na podstawie prawa Tygryska lub prawa kontrapozycji.

Definicja operatora implikacji prostej P||=>CH:
Operator implikacji prostej P||=>CH to odpowiedź na dwa pytania 1 i 2:

1.
Co może się wydarzyć jeśli jutro będzie padało (P=1)?

Odpowiedź na to pytanie mamy w kolumnie A1B1:
Jeśli jutro będzie padało (P=1) to mamy gwarancję matematyczną => iż będzie pochmurno (CH=1) - mówi o tym zdanie A1
A1.
Jeśli jutro będzie padało (P=1) to na 100% => będzie pochmurno (CH=1)
P=>CH =1
to samo w zapisie formalnym:
p=>q =1
p=P (pada)
q=CH (chmury)
Padanie jest warunkiem wystarczającym => dla istnienia chmur, bo zawsze gdy pada, są chmury
Padanie daje nam gwarancję matematyczną => istnienia chmur
Zachodzi tożsamość pojęć:
Warunek wystarczający => = Gwarancja matematyczna =>
Na mocy prawa śfinii zdanie A1 musimy przyjąć za punkt odniesienia bowiem wszystkie następne zdania odnoszą się do zdania A1.
Punkt odniesienia dla dalszej analizy:
A1: p=>q =1
p=P (pada)
q=CH (chmury)

Z prawdziwości warunku wystarczającego => A1 wynika fałszywość kontrprzykładu A1’ (i odwrotnie)
A1’
Jeśli jutro będzie padało (P=1) to może ~~> nie być pochmurno (~CH=1)
P~~>~CH = P*~CH =0
to samo w zapisie formalnym:
p~~>~q = p*~q =1
Niemożliwe jest (=0) zdarzenie: pada (P=1) i nie ma chmur (~CH=1)

2.
Co może się wydarzyć jeśli jutro nie będzie padało (~P=1)?

Prawo Kubusia:
A1: P=>CH = A2:~P~>~CH
Prawdziwość zdania A1 mamy udowodnioną, zatem na mocy prawa Kubusia prawdziwość zdania A2 mamy gwarantowaną.

Odpowiedź na to pytanie mamy w kolumnie A2B2:
Jeśli jutro nie będzie padało (~P=1) to mamy najzwyklejsze „rzucanie monetą” w sensie „na dwoje babka wróżyła” - mówią o tym zdania A2 i B2’

A2.
Jeśli jutro nie będzie padało (~P=1) to może ~> nie być pochmurno (~CH=1)
~P~>~CH =1
to samo w zapisie formalnym:
~p~>~q =1
Brak opadów (~P=1) jest warunkiem koniecznym ~> do tego aby nie było pochmurno (~CH=1) bo jak pada (P=1) to na 100% => są chmury (CH=1)
Prawo Kubusia samo nam tu wyskoczyło:
A2: ~P~>~CH = A1: P=>CH

LUB

Kontrprzykład B2’ dla fałszywego warunku wystarczającego => B2 musi być prawdą, stąd:
B2’.
Jeśli jutro nie będzie padało (~P=1) to może ~~> być pochmurno (CH=1)
~P~~>CH = ~P*CH =1
to samo w zapisie formalnym:
~p~~>q = ~p*q =1
Możliwe jest (=1) zdarzenie: nie pada (~P=1) i jest pochmurno (CH=1)

Podsumowanie:
Istotą operatora implikacji prostej P||=>CH jest gwarancja matematyczna po stronie P i najzwyklejsze „rzucanie monetą” w rozumieniu „na dwoje babka wróżyła” po stronie ~P

Dowód:
Zauważmy, że jeśli jutro będzie padało (P=1) to mamy gwarancję matematyczną => iż na 100% => będzie pochmurno (CH=1) - mówi o tym zdanie A1
A1.
Jeśli jutro będzie padało (P=1) to na 100% => będzie pochmurno (CH=1)
P=>CH =1

Natomiast jeśli jutro nie będzie padało (~P=1) to mamy najzwyklejsze „rzucanie monetą” w rozumieniu „na dwoje babka wróżyła” - mówią o tym zdania A2 i B2’
A2.
Jeśli jutro nie będzie padało (~P=1) to może ~> nie być pochmurno (~CH=1)
~P~>~CH =1
LUB
B2’.
Jeśli jutro nie będzie padało (~P=1) to może ~~> być pochmurno (CH=1)
~P~~>CH = ~P*CH =1


Ostatnio zmieniony przez rafal3006 dnia Wto 23:51, 16 Lut 2021, w całości zmieniany 1 raz
Powrót do góry
Zobacz profil autora
Wyświetl posty z ostatnich:   
Napisz nowy temat   Odpowiedz do tematu    Forum ŚFiNiA Strona Główna -> Filozofia Wszystkie czasy w strefie CET (Europa)
Idź do strony Poprzedni  1, 2, 3 ... 28, 29, 30 ... 400, 401, 402  Następny
Strona 29 z 402

 
Skocz do:  
Nie możesz pisać nowych tematów
Nie możesz odpowiadać w tematach
Nie możesz zmieniać swoich postów
Nie możesz usuwać swoich postów
Nie możesz głosować w ankietach

fora.pl - załóż własne forum dyskusyjne za darmo
Powered by phpBB © 2001, 2005 phpBB Group
Regulamin