|
ŚFiNiA ŚFiNiA - Światopoglądowe, Filozoficzne, Naukowe i Artystyczne forum - bez cenzury, regulamin promuje racjonalną i rzeczową dyskusję i ułatwia ucinanie demagogii. Forum założone przez Wuja Zbója.
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 35963
Przeczytał: 14 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Pon 15:49, 08 Kwi 2024 Temat postu: |
|
|
Irbisol napisał: | Cytat: | Podaj precyzyjną zero-jedynkową definicje tego twojego zasrańca zwanego funkcją tożsamościową |
Od razu napisz, ile jeszcze razy będziesz pytał o to samo. To ci napiszę tyle razy to samo, żebyś już nie zanudzał.
|
Póki co nic a nic nie wyjaśniłeś, nadal ani ja ani największy ziemski matematyk nie widzi twojej tabeli zero-jedynkowej twojego zasrańca zwanego funkcją tożsamościową.
http://www.sfinia.fora.pl/filozofia,4/algebra-kubusia-rewolucja-w-logice-matematycznej,16435-6225.html#791857
rafal3006 napisał: |
... a widzisz?
W życiu bym nie wpadł że o to ci chodzi.
http://www.sfinia.fora.pl/filozofia,4/algebra-kubusia-rewolucja-w-logice-matematycznej,16435-4925.html#779163
Irbisol napisał: | rafal3006 napisał: | Podsumowujac:
Dla dowolnej funkcji logicznej Y=f(x) prawo Małpki ma dwa nietożsame rozwiązania Y i ~Y |
OK, w takim razie mam funkcję logiczną:
Y = f(x) = x
Jakie są nietożsame rozwiązania wg małpy? |
Definicja funkcji tożsamościowej Irbisola:
Y = f(x) =x
To już sobie wyjaśniliśmy!
Po pierwsze:
Tylko i wyłacznie dzięki naszej dyskusji nazwałeś funkcję logiczną Y gównem, czym śmiertelnie obraziłeś zarówno świat techniki, jak i świat matematyki.
Po drugie:
Twoja zero-jedynkowa definicja funkcji tożsamościowej po wywaleniu Y jest aktualnie taka:
f(1)=1
f(0)=0
Coś tam wspominałeś że chodzi tu o to, że tabela zero-jedynkowa coś ci tam zwraca, ale nie wyjaśniłeś na przykładzie co i jak zwaraca, jaka to tabela etc.
Innymi słowy w temacie twojej zero-jedynkowej definicji funkcji tożsamościowej wszyscy wiemy, że nic nie wiemy.
Nie możesz żądać od kogokolwiek by rozmawiał o twojej zero-jedynkowej definicji funkcji tożsamościowej jak absolutnie nikt, łącznie z najwybitniejszymi ziemskimi matematykami nie wie co znaczy ta twoja zero-jedynkowa definicja twojej funkcji tożsamościowej:
f(1)=1
f(0)=0 |
Moja pewność absolutna jest taka że zero-jedynkowa definicja funkcji tożsamościowej z Wikipedii jest jak niżej.
Kod: |
p q Y=p*q+~p*~q
A: 1 1 =1
B: 1 0 =0
C: 0 0 =1
D: 0 1 =0
|
Wynika to z twojego własnego prawa Irbisa definiującego absolutnie wszystkie tożsamości w matematyce klasycznej:
1.
2=2 - tożsamość w matematyce klasycznej (łatwa do udowodnienia!)
2.
Tożsamość zbiorów nieskończonych w matematyce klasycznej.
Prawo Irbisa na przykładzie równoważności Pitagorasa:
A1B1: TP=SK <=> (A1: TP=>SK)*(B1: TP~>SK) = A1B1: TP<=>SK
3
Jak również tożsamości pojęć na gruncie logiki matematycznej doskonale znane każdemu 5-cio latkowi:
pies [=] zwierzę domowe, szczekające
Tożsame znaczki tożsamości logicznej:
„=”, [=], <=> (wtedy i tylko wtedy)
Kwadratura koła dla Irbisola:
Zgadzasz się że tożsamości 1,2,3 obsługuje twoje prawo Irbisa?
TAK/NIE
Jeśli tak, to powiedz to dowolnemu matematykowi - baty od niego dostaniesz.
P.S.
Nadal nie zapisałeś twojej zero-jedynkowej definicji funkcji tożsamościowej.
Ty na serio nie widzisz, że twój zapis zero-jedynkowej fujnkcji tożsamościowej jak niżej:
f(1)=1
f(0)=0
To potwornie śmierdzące gówno które nigdy na oczy nie widziało poprawnej zero-jedynkowej definicji czegokolwiek!
Ostatnio zmieniony przez rafal3006 dnia Pon 16:08, 08 Kwi 2024, w całości zmieniany 8 razy
|
|
Powrót do góry |
|
|
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
Irbisol
Dołączył: 06 Gru 2005
Posty: 15707
Przeczytał: 42 tematy
|
Wysłany: Pon 16:34, 08 Kwi 2024 Temat postu: |
|
|
Wszystko zapisałem, co potrzeba.
Jeszcze ci się pierniczy, że funkcja tożsamościowa jest dwuargumentowa.
Co z tymi matematykami, którzy nie znają prawa Irbisa tak bardzo, że to prawo jest w Wikipedii?
|
|
Powrót do góry |
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 35963
Przeczytał: 14 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Pon 17:31, 08 Kwi 2024 Temat postu: |
|
|
Irbisol napisał: |
Wszystko zapisałem, co potrzeba.
Jeszcze ci się pierniczy, że funkcja tożsamościowa jest dwuargumentowa |
Cytuję przykład funkcji tożsamościowej z Wikipedii:
[link widoczny dla zalogowanych]
Kod: | https://pl.wikipedia.org/wiki/Funkcja_to%C5%BCsamo%C5%9Bciowa |
Wikipedia napisał: |
Przykład funkcji tozsamościowej:
Funkcja liniowa postaci
x<=>x jest tożsamością na zbiorze liczb rzeczywistych. |
Kwadratura koła dla Irbisola:
Czy ten przykład fukcji tożsamościowej z Wikipedii to jest dobry przykład, czy do dupy.
Proszę o precyzyjną odpowiedź:
dobry/do dupy (niepotrzebne skreślić)
P.S.
Obejrzyj sobie jak wygląda funcja tożsamościowa x<=>x
[link widoczny dla zalogowanych]
Ostatnio zmieniony przez rafal3006 dnia Pon 17:38, 08 Kwi 2024, w całości zmieniany 4 razy
|
|
Powrót do góry |
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
Irbisol
Dołączył: 06 Gru 2005
Posty: 15707
Przeczytał: 42 tematy
|
Wysłany: Pon 18:01, 08 Kwi 2024 Temat postu: |
|
|
I masz tu jedno x.
A nie dwa argumenty p i q
|
|
Powrót do góry |
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 35963
Przeczytał: 14 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Pon 18:11, 08 Kwi 2024 Temat postu: |
|
|
Irbisol napisał: | I masz tu jedno x.
A nie dwa argumenty p i q |
A tu?
2=2
Ile mam argumentów?
dwa, czy jeden?
|
|
Powrót do góry |
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
Irbisol
Dołączył: 06 Gru 2005
Posty: 15707
Przeczytał: 42 tematy
|
Wysłany: Pon 20:30, 08 Kwi 2024 Temat postu: |
|
|
Nie wiem, ile. Mają taką samą wartość, ale nie wiem, czy to jeden, czy dwa różne.
|
|
Powrót do góry |
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 35963
Przeczytał: 14 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Pon 22:08, 08 Kwi 2024 Temat postu: |
|
|
Trzy kwadratury koła dla Irbisola!
http://www.sfinia.fora.pl/filozofia,4/algebra-kubusia-rewolucja-w-logice-matematycznej,16435-6250.html#792065
rafal3006 napisał: | Irbisol napisał: |
Wszystko zapisałem, co potrzeba.
Jeszcze ci się pierniczy, że funkcja tożsamościowa jest dwuargumentowa |
Cytuję przykład funkcji tożsamościowej z Wikipedii:
[link widoczny dla zalogowanych]
Kod: | https://pl.wikipedia.org/wiki/Funkcja_to%C5%BCsamo%C5%9Bciowa |
Wikipedia napisał: |
Przykład funkcji tozsamościowej:
Funkcja liniowa postaci
x<=>x jest tożsamością na zbiorze liczb rzeczywistych. |
Kwadratura koła dla Irbisola:
Czy ten przykład fukcji tożsamościowej z Wikipedii to jest dobry przykład, czy do dupy.
Proszę o precyzyjną odpowiedź:
dobry/do dupy (niepotrzebne skreślić)
P.S.
Obejrzyj sobie jak wygląda funcja tożsamościowa x<=>x
[link widoczny dla zalogowanych] |
http://www.sfinia.fora.pl/filozofia,4/algebra-kubusia-rewolucja-w-logice-matematycznej,16435-6250.html#792071
rafal3006 napisał: | Irbisol napisał: | I masz tu jedno x.
A nie dwa argumenty p i q |
A tu?
2=2
Ile mam argumentów?
dwa, czy jeden? |
Irbisol napisał: | Nie wiem, ile. Mają taką samą wartość, ale nie wiem, czy to jeden, czy dwa różne. |
Prawo Irbisa:
Dwa pojęcia (zdarzenia, zbiory etc) p i q są tożsame p=q wtedy i tylko wtedy gdy są w relacji równoważności p<=>q, albo odwrotnie.
A1B1: p=q <=> (A1: p=>q)*(B1: p~>q) = A1B1: p<=>q
Pierwsza kwadratura koła dla Irbisola:
Prawda to czy do dupy?
Prawda/ do dupy - niepotrzebne skreślić
Przypomnę Irbisolu, że sam udowodniłeś, że każdy matematyk zna twoje prawo Irbisa.
Dowód:
http://www.sfinia.fora.pl/filozofia,4/algebra-kubusia-rewolucja-w-logice-matematycznej,16435-6250.html#792059
Irbisol napisał: | Co z tymi matematykami, którzy nie znają prawa Irbisa tak bardzo, że to prawo jest w Wikipedii?
Dowód:
[link widoczny dla zalogowanych]
|
Podstawmy:
p=2
q=2
Stąd na mocy prawa Irbisa mamy:
A1B1: 2=2 <=> (A1: 2=>2)*(B1: 2~>2)= A1B1: 2<=>2
Dowód:
A1: 2=>2 =1 - każde pojęcie jest podzbiorem => siebie samego
cnd
B1: 2~>2 =1 - każde pojęcie jest nadzbiorem ~> siebie samego
cnd
Druga kwadratura koła dla Irbisola:
Czy dobrze tu użyłem twojego prawa Irbisa, czy do dupy?
dobrze / czy do dupy - niepotrzebne skreślić
Podpowiedź to fragment algebry Kubusia:
[link widoczny dla zalogowanych]
Kod: | https://www.dropbox.com/s/hy14p42kup25c32/Kompendium%20algebry%20Kubusia.pdf?dl=0 |
algebra Kubusia napisał: |
13.0 Algebra Kubusia w zbiorach
Niniejszy punkt to kompendium algebry Kubusia zawierające wszystkie potrzebne definicje i prawa algebry Kubusia konieczne i wystarczające do zrozumienia matematycznej obsługi zdań warunkowych "Jeśli p to q" na gruncie teorii zbiorów.
Definicja podstawowego spójnika implikacyjnego:
Podstawowy spójnik implikacyjny to spójnik związany w obsługą zdań warunkowych "Jeśli p to q" definiowanych warunkami wystarczającymi => i koniecznymi ~>
Definicje spójników implikacyjnych w algebrze Kubusia mają układ trzypoziomowy {1=>2=>3}:
1.
Elementarne spójniki logiczne w zdarzeniach:
~~> - spójnik zdarzenia możliwego (2.2.1)
=> - warunek wystarczający (2.2.2)
~> - warunek konieczny (2.2.3)
Elementarne spójniki logiczne w zbiorach:
~~> - element wspólny zbiorów (2.3.1)
=> - warunek wystarczający tożsamy z relacją podzbioru =>(2.3.2)
~> - warunek konieczny tożsamy z relacją nadzbioru ~>(2.3.3)
2.
Podstawowe spójniki implikacyjne definiowane spójnikami elementarnymi:
|=> - implikacja prosta (2.12)
|~> - implikacja odwrotna (2.13)
<=> - równoważność (2.14)
|~~> - chaos (2.15)
3.
Operatory implikacyjne definiowane podstawowymi spójnikami implikacyjnymi
||=> - operator implikacji prostej (2.12.1)
||~~> - operator implikacji odwrotnej (2.13.1)
|<=> - operator równoważności (2.14.1)
||~~> - operator chaosu (2.15.1)
13.1 Elementarne spójniki implikacyjne w zbiorach
Cała logika matematyczna w obsłudze zdań warunkowych „Jeśli p to q” stoi na zaledwie trzech znaczkach (~~>, =>, ~>) definiujących wzajemne relacje zbiorów/zdarzeń p i q.
13.1.1 Definicja elementu wspólnego zbiorów ~~>
Definicja elementu wspólnego ~~> zbiorów:
Jeśli p to q
p~~>q =p*q =1
Definicja elementu wspólnego zbiorów ~~> jest spełniona (=1) wtedy i tylko wtedy gdy zbiory p i q mają co najmniej jeden element wspólny
Inaczej:
p~~>q= p*q= [] =0 - zbiory p i q są rozłączne, nie mają (=0) elementu wspólnego ~~>
Decydujący w powyższej definicji jest znaczek elementu wspólnego zbiorów ~~>, dlatego dopuszczalny jest zapis skrócony p~~>q.
W operacji iloczynu logicznego zbiorów p*q poszukujemy jednego wspólnego elementu co kończy dowód, nie wyznaczamy kompletnego zbioru p*q.
Jeśli zbiory p i q mają element wspólny ~~> to z reguły błyskawicznie go znajdujemy:
p~~>q=p*q =1
co na mocy definicji kontrprzykładu (poznamy za chwilkę) wymusza fałszywość warunku wystarczającego =>:
p=>~q =0 (i odwrotnie)
Przykład:
Jeśli dowolna liczba jest podzielna przez 8 to może ~~> być podzielna przez 3
P8~~>P3 = P8*P3 =1
Istnieje (=1) wspólny element zbiorów P8=[8,16,24..] i P3=[3,6,9..24..] np. 24
13.1.2 Definicja warunku wystarczającego => w zbiorach
Definicja podzbioru => w algebrze Kubusia:
Zbiór p jest podzbiorem => zbioru q wtedy i tylko wtedy gdy wszystkie elementy zbioru p należą do zbioru q
p=>q =1 - wtedy i tylko wtedy gdy relacja podzbioru => jest (=1) spełniona
Inaczej:
p=>q =0 - wtedy i tylko wtedy gdy relacja podzbioru => nie jest (=0) spełniona
Definicja warunku wystarczającego => w zbiorach:
Jeśli p to q
p=>q =1
Zajście p jest (=1) wystarczające => dla zajścia q wtedy i tylko wtedy gdy zbiór p jest (=1) podzbiorem => zbioru q
Inaczej:
p=>q =0
Zajście p nie jest (=0) wystarczające => dla zajścia q wtedy i tylko wtedy gdy zbiór p nie jest (=0) podzbiorem => zbioru q
Matematycznie zachodzi tożsamość logiczna:
Warunek wystarczający => = relacja podzbioru =>
Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
p=>q = ~p+q
Przykład:
A1.
Jeśli dowolna liczba jest podzielna przez 8 to na 100% => jest podzielna przez 2
P8=>P2 =1
Podzielność dowolnej liczby przez 8 jest warunkiem wystarczającym => dla jej podzielności przez 2 wtedy i tylko wtedy gdy zbiór P8=[8,16,24..] jest podzbiorem => zbioru P2=[2,4,6,8..]
Udowodnić relację podzbioru P8=>P2 potrafi każdy matematyk.
W zapisie formalnym mamy tu:
p=P8=[8,16,24..] - zbiór liczb podzielnych przez 8
q=P2=[2,4,6,8..] - zbiór liczb podzielnych przez 2
Gdzie:
p - przyczyna (część zdania po "Jeśli …")
q - skutek (część zdania po "to…")
Podsumowując:
Kod: |
Definicja warunku wystarczającego =>:
Zapis formalny:
A1: p=>q = ~p+q
Zapis aktualny (przykład):
A1: p=P8
A1: q=P2
A1: P8=>P2=~P8+P2
|
13.1.3 Definicja warunku koniecznego ~> w zbiorach
Definicja nadzbioru ~> w algebrze Kubusia:
Zbiór p jest nadzbiorem ~> zbioru q wtedy i tylko wtedy gdy zbiór p zawiera co najmniej wszystkie elementy zbioru q
p~>q =1 - wtedy i tylko wtedy gdy relacja nadzbioru ~> jest (=1) spełniona
Inaczej:
p~>q =0 - wtedy i tylko wtedy gdy relacja nadzbioru ~> nie jest (=0) spełniona
Definicja warunku koniecznego ~> w zbiorach:
Jeśli p to q
p~>q =1
Zajście p jest (=1) konieczne ~> dla zajścia q wtedy i tylko wtedy gdy zbiór p jest (=1) nadzbiorem ~> zbioru q
Inaczej:
p~>q =0
Zajście p nie jest (=0) konieczne ~> dla zajścia q wtedy i tylko wtedy gdy zbiór p nie jest (=0) nadzbiorem ~> zbioru q
Matematycznie zachodzi tożsamość logiczna:
Warunek konieczny ~> = relacja nadzbioru ~>
Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
p~>q = p+~q
Przykład:
B1.
Jeśli dowolna liczba jest podzielna przez 2 to może ~> być podzielna przez 8
P2~>P8 =1
Podzielność dowolnej liczby przez 2 jest warunkiem koniecznym ~> dla jej podzielności przez 8 wtedy i tylko wtedy gdy zbiór P2=[2,4,6,8..] jest nadzbiorem ~> zbioru P8=[8,16,24..]
W zapisie formalnym mamy tu:
p=P2=[2,4,6,8..] - zbiór liczb podzielnych przez 2
q=P8=[8,16,24..] - zbiór liczb podzielnych przez 8
Gdzie:
p - przyczyna (część zdania po "Jeśli …")
q - skutek (część zdania po "to…")
Podsumowując:
Kod: |
Definicja warunku koniecznego ~>:
Zapis formalny:
B1: p~>q = p+~q
Zapis aktualny (przykład):
B1: p=P2
B1: q=P8
B1: P2~>P8=P2+~P8
|
|
Trzecia kwadratura koła dla Irbisola:
Zgadzasz się w 100% z powyższym?
Jesli NIE, to poproszę o obalenie choćby jednego zdania z powyższego cytatu.
Ostatnio zmieniony przez rafal3006 dnia Pon 23:00, 08 Kwi 2024, w całości zmieniany 15 razy
|
|
Powrót do góry |
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
Irbisol
Dołączył: 06 Gru 2005
Posty: 15707
Przeczytał: 42 tematy
|
Wysłany: Wto 7:58, 09 Kwi 2024 Temat postu: |
|
|
Po co mi te pytania zadajesz?
Na razie jeszcze nie poradziłeś sobie z policzeniem, ile funkcja tożsamościowa ma argumentów.
|
|
Powrót do góry |
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 35963
Przeczytał: 14 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Wto 9:35, 09 Kwi 2024 Temat postu: |
|
|
Irbisol napisał: | Po co mi te pytania zadajesz?
Na razie jeszcze nie poradziłeś sobie z policzeniem, ile funkcja tożsamościowa ma argumentów. |
Póki co to ty się rozłożyłeś na banalnym pytaniu 5-cio latka
http://www.sfinia.fora.pl/filozofia,4/algebra-kubusia-rewolucja-w-logice-matematycznej,16435-6250.html#792093
Rafal3006 napisał: |
Trzy kwadratury koła dla Irbisola!
http://www.sfinia.fora.pl/filozofia,4/algebra-kubusia-rewolucja-w-logice-matematycznej,16435-6250.html#792065
rafal3006 napisał: | Irbisol napisał: |
Wszystko zapisałem, co potrzeba.
Jeszcze ci się pierniczy, że funkcja tożsamościowa jest dwuargumentowa |
Cytuję przykład funkcji tożsamościowej z Wikipedii:
[link widoczny dla zalogowanych]
Kod: | https://pl.wikipedia.org/wiki/Funkcja_to%C5%BCsamo%C5%9Bciowa |
Wikipedia napisał: |
Przykład funkcji tozsamościowej:
Funkcja liniowa postaci
x<=>x jest tożsamością na zbiorze liczb rzeczywistych. |
Kwadratura koła dla Irbisola:
Czy ten przykład fukcji tożsamościowej z Wikipedii to jest dobry przykład, czy do dupy.
Proszę o precyzyjną odpowiedź:
dobry/do dupy (niepotrzebne skreślić)
P.S.
Obejrzyj sobie jak wygląda funcja tożsamościowa x<=>x
[link widoczny dla zalogowanych] |
http://www.sfinia.fora.pl/filozofia,4/algebra-kubusia-rewolucja-w-logice-matematycznej,16435-6250.html#792071
rafal3006 napisał: | Irbisol napisał: | I masz tu jedno x.
A nie dwa argumenty p i q |
A tu?
2=2
Ile mam argumentów?
dwa, czy jeden? |
Irbisol napisał: | Nie wiem, ile. Mają taką samą wartość, ale nie wiem, czy to jeden, czy dwa różne. |
Prawo Irbisa:
Dwa pojęcia (zdarzenia, zbiory etc) p i q są tożsame p=q wtedy i tylko wtedy gdy są w relacji równoważności p<=>q, albo odwrotnie.
A1B1: p=q <=> (A1: p=>q)*(B1: p~>q) = A1B1: p<=>q
Pierwsza kwadratura koła dla Irbisola:
Prawda to czy do dupy?
Prawda/ do dupy - niepotrzebne skreślić
Przypomnę Irbisolu, że sam udowodniłeś, że każdy matematyk zna twoje prawo Irbisa.
Dowód:
http://www.sfinia.fora.pl/filozofia,4/algebra-kubusia-rewolucja-w-logice-matematycznej,16435-6250.html#792059
Irbisol napisał: | Co z tymi matematykami, którzy nie znają prawa Irbisa tak bardzo, że to prawo jest w Wikipedii?
Dowód:
[link widoczny dla zalogowanych]
|
Podstawmy:
p=2
q=2
Stąd na mocy prawa Irbisa mamy:
A1B1: 2=2 <=> (A1: 2=>2)*(B1: 2~>2)= A1B1: 2<=>2
Dowód:
A1: 2=>2 =1 - każde pojęcie jest podzbiorem => siebie samego
cnd
B1: 2~>2 =1 - każde pojęcie jest nadzbiorem ~> siebie samego
cnd |
Powtórzę moje pytanie:
2<=>2
Ile argumetów na tozsamościowa funkcja logiczna jak wyżej?
Zawieszam dyskusję dpóki nie odpowiesz
Ostatnio zmieniony przez rafal3006 dnia Wto 9:38, 09 Kwi 2024, w całości zmieniany 2 razy
|
|
Powrót do góry |
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
Irbisol
Dołączył: 06 Gru 2005
Posty: 15707
Przeczytał: 42 tematy
|
Wysłany: Wto 9:54, 09 Kwi 2024 Temat postu: |
|
|
To, co napisałeś, to nie jest funkcja tożsamościowa.
To jest relacja argumentu i wyniku funkcji.
Aż żal patrzeć, jak się wykładasz na najbanalniejszym banale.
|
|
Powrót do góry |
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 35963
Przeczytał: 14 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Wto 10:27, 09 Kwi 2024 Temat postu: |
|
|
Dwa dowody iż 2=2 na gruncie prawa Irbisa!
Czy kto ma nadziję że Irbisol wypowie się w temacie prawdziwości/fałszywości tych dowodów na gruncie jego własnego prawa, prawa Irbisa (nieznanego ziemskim matematykom)
Irbisol napisał: | To, co napisałeś, to nie jest funkcja tożsamościowa.
To jest relacja argumentu i wyniku funkcji.
Aż żal patrzeć, jak się wykładasz na najbanalniejszym banale. |
Prawo Irbisa:
Dwa pojęcia (zdarzenia, zbiory etc) p i q są tożsame p=q wtedy i tylko wtedy gdy są w relacji równoważności p<=>q, albo odwrotnie.
A1B1: p=q <=> (A1: p=>q)*(B1: p~>q) = A1B1: p<=>q
Przypomnę Irbisolu, że sam udowodniłeś, że każdy matematyk zna twoje prawo Irbisa.
Dowód:
http://www.sfinia.fora.pl/filozofia,4/algebra-kubusia-rewolucja-w-logice-matematycznej,16435-6250.html#792059
Irbisol napisał: | Co z tymi matematykami, którzy nie znają prawa Irbisa tak bardzo, że to prawo jest w Wikipedii?
Dowód:
[link widoczny dla zalogowanych]
|
Dowód tożsamości iż:
2=2 [=] 2<=>2
Definicja tożsamości logicznej [=]:
Prawdziwość dowolnej strony tożsamości [=] logicznej wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości [=] logicznej wymusza fałszywość drugiej strony
Gdzie:
"=", [=], <=> - tożsame znaczki tożsamości logicznej
Dowód 1
2=2 [=] 2<=>2
Podstawmy:
p=2
q=2
Stąd na mocy prawa Irbisa mamy:
A1B1: 2=2 <=> (A1: 2=>2)*(B1: 2~>2)= A1B1: 2<=>2
Dowód:
A1: 2=>2 =1 - każde pojęcie jest podzbiorem => siebie samego
cnd
B1: 2~>2 =1 - każde pojęcie jest nadzbiorem ~> siebie samego
cnd
Dowód 2.
Prawo Irbisa:
Dwa pojęcia (zdarzenia, zbiory etc) p i q są tożsame p=q wtedy i tylko wtedy gdy są w relacji równoważności p<=>q, albo odwrotnie.
A1B1: p=q <=> (A1: p=>q)*(B1: p~>q) = A1B1: p<=>q
Prawo Kubusia:
B1: p~>q = B2: ~p=>~q
Po podstawieniu mamy.
Tozsama wersja prawa Irbisa:
Dwa pojęcia (zdarzenia, zbiory etc) p i q są tożsame p=q wtedy i tylko wtedy gdy są w relacji równoważności p<=>q, albo odwrotnie.
A1B2: p=q <=> (A1: p=>q)*(B1: ~p=>~q) = A1B2: p<=>q
Wyznaczenie zbiorów p i q w logice ujemnej ~p i ~q wymaga przyjęcia wspólnej dziedziny D dla p i q
Mamy do udowodnienia:
2=2 [=] 2<=>2
p=2
q=2
p=q - z założenia!
Przyjmijmy wspólną dziedzinę:
LN=[1,2,3,4,5,6,7,8,9..] - zbiór liczb naturalnych
Stąd łatwo liczymy zbiory ~p i ~q:
~p=[LN-2] - zbiór liczb naturalnych pomniejszony o jeden element 2
~q=[LN-2] - zbiór liczb naturalnych pomniejszony o jeden element 2
Stąd mamy:
~p=~q
Podstawiamy do A1B2:
A1B2: 2=2 <=> (A1: 2=>2)*(B2: [LN-2]=>[LN-2] = A1B2: 2<=>2
Dowód:
A1: 2=>2 =1 - zbiór jednoelementowy [2] jest podzbiorem =>siebie samego [2]
B2: [LN-2]=>[LN-2] - zbiór nieskończony [LN-2] jest podzbziorem siebie samego
Dowód porawności przyjetej dziedziny:
dla p=q (2=2) mamy:
p+~(p)
Zapis tożsamy:
p+~p = [2]+[LN-2] = LN = D =1 - dziedzina
p*~(p)
Zapis tożsamy:
p*~p = [2]*[LN-2] = [] =0 - zbiór pusty
Jak widzimy wszystko gra i buczy.
Pytanie do Irbisola:
Czy dobrze zastosowałem twoje własne prawo Irbisa w dowodach 1 i 2
TAK/NIE
Innych odpowiedzi nie akceptuję.
Ostatnio zmieniony przez rafal3006 dnia Wto 10:57, 09 Kwi 2024, w całości zmieniany 5 razy
|
|
Powrót do góry |
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
Irbisol
Dołączył: 06 Gru 2005
Posty: 15707
Przeczytał: 42 tematy
|
Wysłany: Wto 10:29, 09 Kwi 2024 Temat postu: |
|
|
Nie czytam tego. Kręcisz się w kółko i nadal nie masz pojęcia, ile argumentów ma funkcja tożsamościowa.
|
|
Powrót do góry |
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 35963
Przeczytał: 14 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Wto 10:36, 09 Kwi 2024 Temat postu: |
|
|
Czy Irbisol jest w stanie zaakcetować swoje własne prawo Irbisa?
.. wbijając ty samym osikowy kołek w samo serce jego gówno-boga zwanego KRZ!
Irbisol napisał: | Nie czytam tego. Kręcisz się w kółko i nadal nie masz pojęcia, ile argumentów ma funkcja tożsamościowa. |
Link do moich dowodów 1 i 2:
http://www.sfinia.fora.pl/filozofia,4/algebra-kubusia-rewolucja-w-logice-matematycznej,16435-6250.html#792127
rafal3006 napisał: | Dwa dowody iż 2=2 na gruncie prawa Irbisa!
Czy kto ma nadziję że Irbisol wypowie się w temacie prawdziwości/fałszywości tych dowodów na gruncie jego własnego prawa, prawa Irbisa (nieznanego ziemskim matematykom) |
Jak wszyscy widzą Irbisol włączył właśnie swoje "w koło Macieju" i nie potrafi powiedzieć czy moje dowody 1 i 2 są poprawne na gruncie jego własnego prawa Irbisa.
Poczekam aż się w tym temacie wypowie, bo tu gra idzie o prawdziwość/fałszywość jego własnego prawa Irbisa!
Pewne jest jedno Irbisolu:
Póki co jesteśmy jedynymi ludźmi na ziemi akceptującymi prawo Irbisa, nazwane tak na twoją cześć bo jako jedyny ziemianin uznałeś jego prawdziwość.
Żaden ziemski matematyk nie zna twojego prawa Irbisa w wersji jak niżej!
Prawo Irbisa:
Dwa pojęcia (zdarzenia, zbiory etc) p i q są tożsame p=q wtedy i tylko wtedy gdy są w relacji równoważności p<=>q, albo odwrotnie.
A1B1: p=q <=> (A1: p=>q)*(B1: p~>q) = A1B1: p<=>q
Dlaczego nie zna?
Bo powyższe prawo Irbisa to wbicie osikowego kołka w samo serce twojego gówno-boga zwanego KRZ.
Ostatnio zmieniony przez rafal3006 dnia Wto 10:51, 09 Kwi 2024, w całości zmieniany 7 razy
|
|
Powrót do góry |
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
Irbisol
Dołączył: 06 Gru 2005
Posty: 15707
Przeczytał: 42 tematy
|
Wysłany: Wto 10:55, 09 Kwi 2024 Temat postu: |
|
|
Schizofreniku, dopiero co ci pisałem, że to tzw. prawo Irbisa jest w Wikipedii.
Doliczyłeś się już, ile argumentów ma funkcja tożsamościowa?
|
|
Powrót do góry |
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 35963
Przeczytał: 14 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Wto 11:00, 09 Kwi 2024 Temat postu: |
|
|
Irbisol napisał: | Schizofreniku, dopiero co ci pisałem, że to tzw. prawo Irbisa jest w Wikipedii. |
W takim razie proszę o potwierdzenie iż moje dowody 1 i 2 są matematycznie poprawne.
Dopóki tego nie zrobisz, zawieszam dyskusję - bo gra idzie tu o prawdziwość fałszywość twojego prawa Irbisa!
http://www.sfinia.fora.pl/filozofia,4/algebra-kubusia-rewolucja-w-logice-matematycznej,16435-6250.html#792131
rafal3006 napisał: | Czy Irbisol jest w stanie zaakcetować swoje własne prawo Irbisa?
.. wbijając ty samym osikowy kołek w samo serce jego gówno-boga zwanego KRZ!
Irbisol napisał: | Nie czytam tego. Kręcisz się w kółko i nadal nie masz pojęcia, ile argumentów ma funkcja tożsamościowa. |
Link do moich dowodów 1 i 2:
http://www.sfinia.fora.pl/filozofia,4/algebra-kubusia-rewolucja-w-logice-matematycznej,16435-6250.html#792127
rafal3006 napisał: | Dwa dowody iż 2=2 na gruncie prawa Irbisa!
Czy kto ma nadziję że Irbisol wypowie się w temacie prawdziwości/fałszywości tych dowodów na gruncie jego własnego prawa, prawa Irbisa (nieznanego ziemskim matematykom) |
Jak wszyscy widzą Irbisol włączył właśnie swoje "w koło Macieju" i nie potrafi powiedzieć czy moje dowody 1 i 2 są poprawne na gruncie jego własnego prawa Irbisa.
Poczekam aż się w tym temacie wypowie, bo tu gra idzie o prawdziwość/fałszywość jego własnego prawa Irbisa!
Pewne jest jedno Irbisolu:
Póki co jesteśmy jedynymi ludźmi na ziemi akceptującymi prawo Irbisa, nazwane tak na twoją cześć bo jako jedyny ziemianin uznałeś jego prawdziwość.
Żaden ziemski matematyk nie zna twojego prawa Irbisa w wersji jak niżej!
Prawo Irbisa:
Dwa pojęcia (zdarzenia, zbiory etc) p i q są tożsame p=q wtedy i tylko wtedy gdy są w relacji równoważności p<=>q, albo odwrotnie.
A1B1: p=q <=> (A1: p=>q)*(B1: p~>q) = A1B1: p<=>q
Dlaczego nie zna?
Bo powyższe prawo Irbisa to wbicie osikowego kołka w samo serce twojego gówno-boga zwanego KRZ. |
|
|
Powrót do góry |
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
Irbisol
Dołączył: 06 Gru 2005
Posty: 15707
Przeczytał: 42 tematy
|
Wysłany: Wto 11:04, 09 Kwi 2024 Temat postu: |
|
|
To przedstaw te dowody bez zbędnego spamu "czy ktoś ma nadzieję".
Więc jak jest z tym prawem Irbisa, który miał zmasakrować KRZ, a jest w Wikipedii od dawna? Zmasakrował?
|
|
Powrót do góry |
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 35963
Przeczytał: 14 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Wto 13:55, 09 Kwi 2024 Temat postu: |
|
|
Poprawna definicja równoważności tożsamościowej a<=>a w algebrze Kubusia!
[link widoczny dla zalogowanych]
Kod: | https://pl.wikipedia.org/wiki/Funkcja_to%C5%BCsamo%C5%9Bciowa |
Definicja funkcji tożsamościowej według Wikipedii:
rafal3006 napisał: | Funkcja tożsamościowa (funkcja identycznościowa, tożsamość, identyczność) – funkcja danego zbioru w siebie, która każdemu argumentowi przypisuje jego samego. Intuicyjnie: funkcja, która „nic nie zmienia”. |
Kluczowe dla obalenia definicji funkcji tożsamościowej jest wytłuszczone zdanie.
Nie jest prawdą, że definicji się nie obala - jak twierdzą co niektóre, matematyczne jełopy, broniąc potwornie śmierdzącego gówna zwanego KRZ.
Przykład gówna z Wikipedii:
[link widoczny dla zalogowanych]
Wikipedia napisał: | Trawa jest zielona wtedy i tylko wtedy gdy 2+2=4 |
Powyższy przykład to według fanatyków KRZ (czytaj: idiotów) równoważność prawdziwa.
Irbisol napisał: | Więc jak jest z tym prawem Irbisa, który miał zmasakrować KRZ, a jest w Wikipedii od dawna? Zmasakrował? |
Cieszy mnie Irbisolu, że jak widzę, rozumiesz prawo Irbisa.
Sęk w tym, że matematycy tego nie akceptują
Poprawna definicja równoważności tożsamościowej a<=>a to twoje prawo Irbisa
W swojej definicji równoważności tożsamościowej matematycy popełniają błąd czysto matematyczny co widać na ich przykładzie z Wikipedii.
Cytuję przykład funkcji tożsamościowej z Wikipedii:
[link widoczny dla zalogowanych]
Kod: | https://pl.wikipedia.org/wiki/Funkcja_to%C5%BCsamo%C5%9Bciowa |
Wikipedia napisał: |
Przykład funkcji tożsamościowej:
Funkcja liniowa postaci
x=>x jest tożsamością na zbiorze liczb rzeczywistych. |
O co chodzi w tym błędzie czysto matematycznym?
W przykładzie jest mowa o funkcji tożsamościowej, a w zapisie matematycznym użyty jest wyłącznie znaczek warunku wystarczającego => w jedną stronę, co ma zero wspólnego z definicją jakiejkolwiek tożsamości.
Zapis bez tego trywialnego błędu funkcji tożsamościowej musi być tylko i wyłącznie taki:
x<=>x - czyli musi tu być spełniony warunek wystarczający => w dwie strony, a nie w jedną, jak to jest w gówno-Wikipedii.
W algebrze Kubusia może być mowa o równoważności tożsamościowej a<=>a zdefiniowanej prawem Irbisa.
Prawo Irbisa:
Dwa pojęcia (zdarzenia, zbiory etc) p i q są tożsame p=q wtedy i tylko wtedy gdy są w relacji równoważności p<=>q, albo odwrotnie.
A1B1: p=q <=> (A1: p=>q)*(B1: p~>q) = A1B1: p<=>q
Definicja tożsamości logicznej [=]:
Prawdziwość dowolnej strony tożsamości [=] logicznej wymusza prawdziwość drugiej strony
Fałszywość dowolnej strony tożsamości [=] logicznej wymusza fałszywość drugiej strony
Gdzie:
"=", [=], <=> - tożsame znaczki tożsamości logicznej
Definicja równoważności tożsamościowej p<=>q w AK:
Dwa pojęcia p i q są w równoważności tożsamościowej p<=>q wtedy i tylko wtedy gdy po obu stronach znaczka równoważności występują identyczne zapisy słowne z dokładnością do każdej literki i każdego przecinka.
Zapis ogólny równoważności tożsamościowej na bazie prawa Irbisa jest tu taki:
A1B1: p=q <=> (A1: p=>q)*(B1: p~>q) = A1B1: p<=>q
Z definicji funkcji równoważności tożsamościowej w AK mamy:
p=a
q=a
Gdzie:
a - dowolny zapis słowny identyczny z dokładnością do każdej literki i każdego przecinka.
Przykłady:
a=2
a=x
a=x^2-4
a=zbiór trójkątów prostokątnych
a=zbiór sum kwadratów w trójkątach
a=pies
a=miłość
a=krasnoludek
a=suche majtki na dnie morza
etc
Przykładowa równoważność tożsama ale nie tożsamościowa w myśl definicji wyżej to równoważność Pitagorasa zdefiniowana prawem Irbisa:
TP=SK <=> (A1: TP=>SK)*(B1: TP~>SK) = A1B1: TP<=>SK
Gdzie:
A1: TP=>SK=1 - twierdzenie proste Pitagorasa udowodnione wieki temu
Prawo Tygryska:
B1: p~>q = B3: q=>p
Nasz przykład:
B1: TP~>SK = B3: SK=>TP =1
Gdzie:
B3: SK=>TP =1 - twierdzenie odwrotne Pitagorasa udowodnione wieki temu
Zauważmy, że równoważność Pitagorasa:
A1B1: TP<=>SK
Nie jest równoważnością tożsamościową w myśl powyższej definicji bo po obu stronach znaczka <=> nie mamy tu identycznych zapisów słownych z dokładnością do każdej literki i każdego przecinka.
Dowód:
Zbiór trójkątów prostokątnych <=> Zbiór trójkątów ze spełniona sumą kwadratów
TP<=>SK
W równoważności Pitagorasa chodzi o to, że dla każdego trójkąta prostokątnego można zapisać unikalną i jedyną sumę kwadratów definiującą dokładnie ten sam trójkąt prostokątny (i odwrotnie)
Oczywiście łatwo na bazie równoważności Pitagorasa zapisać równoważności tożsamościowe typu a<=>a
Przykład:
Zbiór trójkątów prostokątnych <=> Zbiór trójkątów prostokątnych
TP<=>TP
Wszyscy zdrowi na umyśle widzą, że bez sensu jest wprowadzanie do logiki matematycznej równoważności tożsamościowej a<=>a, bo mamy najprostsze prawo matematyki klasycznej i logiki matematycznej:
a=a - po kiego grzyba wprowadzać tu pojęcie równoważności tożsamościowej?
(patrz prawo Irbisa)
Prawa algebry Boole’a dotyczące oczywistej i trywialnej równoważności tożsamościowej to przykładowo:
a+a=a
a*a=a
Dowód na przykładzie:
a=[suche majtki na dnie morza]
1.
a+a=a
czyli:
[suche majtki na dnie morza]+[suche majtki na dnie morza] = [suche majtki na dnie morza]
cnd
2.
a*a=a
czyli:
[suche majtki na dnie morza]*[suche majtki na dnie morza] = [suche majtki na dnie morza]
cnd
Ostatnio zmieniony przez rafal3006 dnia Wto 18:01, 09 Kwi 2024, w całości zmieniany 8 razy
|
|
Powrót do góry |
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
Irbisol
Dołączył: 06 Gru 2005
Posty: 15707
Przeczytał: 42 tematy
|
Wysłany: Wto 19:43, 09 Kwi 2024 Temat postu: |
|
|
rafal3006 napisał: | W swojej definicji równoważności tożsamościowej matematycy popełniają błąd czysto matematyczny co widać na ich przykładzie z Wikipedii.
Cytuję przykład funkcji tożsamościowej z Wikipedii:
[link widoczny dla zalogowanych]
Kod: | https://pl.wikipedia.org/wiki/Funkcja_to%C5%BCsamo%C5%9Bciowa |
Wikipedia napisał: |
Przykład funkcji tożsamościowej:
Funkcja liniowa postaci
x=>x jest tożsamością na zbiorze liczb rzeczywistych. |
O co chodzi w tym błędzie czysto matematycznym?
W przykładzie jest mowa o funkcji tożsamościowej, a w zapisie matematycznym użyty jest wyłącznie znaczek warunku wystarczającego => w jedną stronę, co ma zero wspólnego z definicją jakiejkolwiek tożsamości. |
Owszem, ma to wiele wspólnego z definicją tożsamości. Chociażby to, że ją spełnia.
|
|
Powrót do góry |
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 35963
Przeczytał: 14 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Śro 0:19, 10 Kwi 2024 Temat postu: |
|
|
...
Ostatnio zmieniony przez rafal3006 dnia Śro 1:20, 10 Kwi 2024, w całości zmieniany 5 razy
|
|
Powrót do góry |
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 35963
Przeczytał: 14 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Śro 1:19, 10 Kwi 2024 Temat postu: |
|
|
Irbisol napisał: | rafal3006 napisał: | W swojej definicji równoważności tożsamościowej matematycy popełniają błąd czysto matematyczny co widać na ich przykładzie z Wikipedii.
Cytuję przykład funkcji tożsamościowej z Wikipedii:
[link widoczny dla zalogowanych]
Kod: | https://pl.wikipedia.org/wiki/Funkcja_to%C5%BCsamo%C5%9Bciowa |
Wikipedia napisał: |
Przykład funkcji tożsamościowej:
Funkcja liniowa postaci
x=>x jest tożsamością na zbiorze liczb rzeczywistych. |
O co chodzi w tym błędzie czysto matematycznym?
W przykładzie jest mowa o funkcji tożsamościowej, a w zapisie matematycznym użyty jest wyłącznie znaczek warunku wystarczającego => w jedną stronę, co ma zero wspólnego z definicją jakiejkolwiek tożsamości. |
Owszem, ma to wiele wspólnego z definicją tożsamości. Chociażby to, że ją spełnia. |
Co ty bredzisz płaskoziemco?
Od kiedy to warunek wystarczający => spełniony w jedną stronę jest tożsamy z równoważnością?
Innymi słowy twoim zdaniem:
p=>q = p<=>q?
Definicja równoważności tożsamościowej p<=>q w AK:
Dwa pojęcia p i q są w równoważności tożsamościowej p<=>q wtedy i tylko wtedy gdy po obu stronach znaczka równoważności występują identyczne zapisy słowne z dokładnością do każdej literki i każdego przecinka.
Owszem, jak wiesz że równoważność p<=>q jest prawdziwa (=1) to warunek wystarczajacy p=>q również jest prawdziwy, ale odwrotnie nie zachodzi!
Czyli z faktu że warunek wystarczający => jest prawdziwy p=>q=1 nie wynika (=0) że prawdziwa jest równoważność p<=>q =1.
Wynika z tego, że poprawna definicja równoważności tożsamościowej jest wyłącznie taka:
p<=>q =1
nigdy zaś taka:
p=>q =1
Prawo irbisa:
Każda równoważność prawdziwa p<=>q=1 definiuje tożsamość pojęć (zdarzeń, zbiorów etc) p=q
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) <=> p=q
Wielkie prawo Irbisa:
Prawo Irbisa definiuje tożsamość matematyczną i logiczną:
p=q
niezależnie od tego:
I.
czy jest to równoważność tożsamościowa p=q gdzie:
p=a
q=a
Gdzie:
a - dowolny zapis słowny
Przykład:
a=suche majtki na dnie morza
a<=>a - tu oczywiście tożsamość równoważnościowa jest spełniona
II.
Czy też jest to równoważność nie tożsamościowa
gdzie p i q to nie są identyczne zapisy z dokładnością do każdej literki i każdego przecinka
Przykład to równoważność Pitagorasa:
TP<=>SK = (A1: TP=>SK)*(B1: TP~>SK) =1*1=1
Tu po obu stronach znaczka <=> nie mamy identycznych zapisów słownych a mimo wszystko na podstawie prawa Irbisa zachodzi tożsamość zbiorów:
TP=SK
Kwadratura koła dla Irbisa:
Czy zgadzasz się na „Wielkie prawo Irbisa”?
TAK/NIE
Innymi słowy:
Czy zgadzasz się że zero-jedynkowa definicja równoważności tożsamościowej a<=>a jest identyczna jak równoważności nie tożsamościowej p<=>q
Jeśli powiesz NIE!
To łatwo ci udowodnię, że jesteś w błędzie - tylko czy przeczytasz?
Na 100% równoważność tożsamościowa nie jest zero-jedynkową definicją warunku wystarczającego a=>a co usiłuje przemycić tu gówienko zwane Wikipedią.
Ostatnio zmieniony przez rafal3006 dnia Śro 1:55, 10 Kwi 2024, w całości zmieniany 3 razy
|
|
Powrót do góry |
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
Irbisol
Dołączył: 06 Gru 2005
Posty: 15707
Przeczytał: 42 tematy
|
Wysłany: Śro 6:24, 10 Kwi 2024 Temat postu: |
|
|
rafal3006 napisał: | Irbisol napisał: | rafal3006 napisał: | W swojej definicji równoważności tożsamościowej matematycy popełniają błąd czysto matematyczny co widać na ich przykładzie z Wikipedii.
Cytuję przykład funkcji tożsamościowej z Wikipedii:
[link widoczny dla zalogowanych]
Kod: | https://pl.wikipedia.org/wiki/Funkcja_to%C5%BCsamo%C5%9Bciowa |
Wikipedia napisał: |
Przykład funkcji tożsamościowej:
Funkcja liniowa postaci
x=>x jest tożsamością na zbiorze liczb rzeczywistych. |
O co chodzi w tym błędzie czysto matematycznym?
W przykładzie jest mowa o funkcji tożsamościowej, a w zapisie matematycznym użyty jest wyłącznie znaczek warunku wystarczającego => w jedną stronę, co ma zero wspólnego z definicją jakiejkolwiek tożsamości. |
Owszem, ma to wiele wspólnego z definicją tożsamości. Chociażby to, że ją spełnia. |
Co ty bredzisz płaskoziemco?
Od kiedy to warunek wystarczający => spełniony w jedną stronę jest tożsamy z równoważnością? |
A gdzie ja twierdzę, że jest tożsamy z równoważnością?
Z tobą naprawdę nie ma kontaktu.
|
|
Powrót do góry |
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 35963
Przeczytał: 14 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Śro 6:58, 10 Kwi 2024 Temat postu: |
|
|
Czy Irbisol zaakceptuje wielkie prawo Irbisa?
Tytułowe pytanie dotyczy prawa Irbisa, które to prawo Irbisol akceptuje.
Czy ktoś ma nadzieję, że Irbisol wypowie się w temacie wielkiego prawa Irbisa?
Irbisol napisał: | rafal3006 napisał: | Co ty bredzisz płaskoziemco?
Od kiedy to warunek wystarczający => spełniony w jedną stronę jest tożsamy z równoważnością? |
A gdzie ja twierdzę, że jest tożsamy z równoważnością?
Z tobą naprawdę nie ma kontaktu. |
Brawo, teraz sprawdzimy czy z tobą jest kontakt.
Jak wszyscy widzimy Irbisol doskonale wie, że warunek wystarczający p=>q to fundamentalnie co innego niż równoważność p<=>q, co wynika z prawa Irbisa.
Prawo Irbisa:
Każda równoważność prawdziwa p<=>q=1 definiuje tożsamość pojęć (zdarzeń, zbiorów etc) p=q
A1B1: p<=>q = (A1: p=>q)*(B1: p~>q) <=> p=q
Wielkie prawo Irbisa:
Prawo Irbisa definiuje tożsamość matematyczną i logiczną:
p=q
niezależnie od tego:
I.
Czy jest to równoważność tożsamościowa p<=>q
gdzie zapisy po obu stronach znaczka <=> są identyczne zapisy z dokładnością do każdej literki i każdego przecinka, czyli:
p=a
q=a
Gdzie:
a - dowolny zapis słowny
Przykłady:
a=2
a=x
a=suche majtki na dnie morza
a<=>a - tu oczywiście równoważność tożsamościowa jest spełniona
II.
Czy też jest to równoważność nie tożsamościowa
gdzie p i q to nie są identyczne zapisy z dokładnością do każdej literki i każdego przecinka
Przykład to równoważność Pitagorasa:
TP<=>SK = (A1: TP=>SK)*(B1: TP~>SK) =1*1=1
Tu po obu stronach znaczka <=> nie mamy identycznych zapisów słownych a mimo wszystko na podstawie prawa Irbisa zachodzi tożsamość zbiorów:
TP=SK
Wniosek z wielkiego prawa Irbisa:
Równoważność tożsamościowa p<=>q gdzie p=a i q=a (a = zapisy identyczne) generuje identyczną tabelę zero-jedynkową równoważności p<=>q jak równoważność nie tożsamościowa p<=>q gdzie po obu stronach znaczka <=> zapisy nie są identyczne.
Kwadratura koła dla Irbisa:
Czy zgadzasz się na „Wielkie prawo Irbisa” oraz z wnioskiem wynikającym z tego prawa?
TAK/NIE
Ostatnio zmieniony przez rafal3006 dnia Śro 7:46, 10 Kwi 2024, w całości zmieniany 6 razy
|
|
Powrót do góry |
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
Irbisol
Dołączył: 06 Gru 2005
Posty: 15707
Przeczytał: 42 tematy
|
Wysłany: Śro 7:52, 10 Kwi 2024 Temat postu: |
|
|
Najpierw dokończ temat funkcji tożsamościowej.
I pokaż, jak prawo Irbisa, od lat zapisane w Wikipedii rozwala KRZ.
Oraz nie zapomnij o "błędzie czysto matematycznym", który znalazłeś w Wikipedii.
Ostatnio zmieniony przez Irbisol dnia Śro 8:32, 10 Kwi 2024, w całości zmieniany 1 raz
|
|
Powrót do góry |
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 35963
Przeczytał: 14 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Śro 9:16, 10 Kwi 2024 Temat postu: |
|
|
Wstęp do alternatywnego obalenia KRZ na podstawie definicji funkcji tożsamościowej z Wikipedii!
II.
2024-04-01 Końcowa, pełna wersja algebry Kubusia po n liftingach:
"Algebra Kubusia - matematyka języka potocznego" w pdf (Stron: 1076):
[link widoczny dla zalogowanych] Kod: | https://www.dropbox.com/s/hy14p42kup25c32/Kompendium%20algebry%20Kubusia.pdf?dl=0 |
Podstawowy dowód wewnętrznej sprzeczności wszelkich ziemskich logik matematycznych zbudowanych na definicjach zero-jedynkowych, to prawo Grzechotnika udowodnione na poziomie 5-cio latka w punkcie 1.7 algebry Kubusia
Wstęp do alternatywnego obalenia KRZ na podstawie definicji funkcji tożsamościowej z Wikipedii!
Algebra Kubusia napisał: |
13.0 Algebra Kubusia w zbiorach
Niniejszy punkt to kompendium algebry Kubusia zawierające wszystkie potrzebne definicje i prawa algebry Kubusia konieczne i wystarczające do zrozumienia matematycznej obsługi zdań warunkowych "Jeśli p to q" na gruncie teorii zbiorów.
Definicja podstawowego spójnika implikacyjnego:
Podstawowy spójnik implikacyjny to spójnik związany w obsługą zdań warunkowych "Jeśli p to q" definiowanych warunkami wystarczającymi => i koniecznymi ~>
Definicje spójników implikacyjnych w algebrze Kubusia mają układ trzypoziomowy {1=>2=>3}:
1.
Elementarne spójniki logiczne w zdarzeniach:
~~> - spójnik zdarzenia możliwego (2.2.1)
=> - warunek wystarczający (2.2.2)
~> - warunek konieczny (2.2.3)
Elementarne spójniki logiczne w zbiorach:
~~> - element wspólny zbiorów (2.3.1)
=> - warunek wystarczający tożsamy z relacją podzbioru =>(2.3.2)
~> - warunek konieczny tożsamy z relacją nadzbioru ~>(2.3.3)
2.
Podstawowe spójniki implikacyjne definiowane spójnikami elementarnymi:
|=> - implikacja prosta (2.12)
|~> - implikacja odwrotna (2.13)
<=> - równoważność (2.14)
|~~> - chaos (2.15)
3.
Operatory implikacyjne definiowane podstawowymi spójnikami implikacyjnymi
||=> - operator implikacji prostej (2.12.1)
||~~> - operator implikacji odwrotnej (2.13.1)
|<=> - operator równoważności (2.14.1)
||~~> - operator chaosu (2.15.1)
13.1 Elementarne spójniki implikacyjne w zbiorach
Cała logika matematyczna w obsłudze zdań warunkowych „Jeśli p to q” stoi na zaledwie trzech znaczkach (~~>, =>, ~>) definiujących wzajemne relacje zbiorów/zdarzeń p i q.
13.1.1 Definicja elementu wspólnego zbiorów ~~>
Definicja elementu wspólnego ~~> zbiorów:
Jeśli p to q
p~~>q =p*q =1
Definicja elementu wspólnego zbiorów ~~> jest spełniona (=1) wtedy i tylko wtedy gdy zbiory p i q mają co najmniej jeden element wspólny
Inaczej:
p~~>q= p*q= [] =0 - zbiory p i q są rozłączne, nie mają (=0) elementu wspólnego ~~>
Decydujący w powyższej definicji jest znaczek elementu wspólnego zbiorów ~~>, dlatego dopuszczalny jest zapis skrócony p~~>q.
W operacji iloczynu logicznego zbiorów p*q poszukujemy jednego wspólnego elementu co kończy dowód, nie wyznaczamy kompletnego zbioru p*q.
Jeśli zbiory p i q mają element wspólny ~~> to z reguły błyskawicznie go znajdujemy:
p~~>q=p*q =1
co na mocy definicji kontrprzykładu (poznamy za chwilkę) wymusza fałszywość warunku wystarczającego =>:
p=>~q =0 (i odwrotnie)
Przykład:
Jeśli dowolna liczba jest podzielna przez 8 to może ~~> być podzielna przez 3
P8~~>P3 = P8*P3 =1
Istnieje (=1) wspólny element zbiorów P8=[8,16,24..] i P3=[3,6,9..24..] np. 24
13.1.2 Definicja warunku wystarczającego => w zbiorach
Definicja podzbioru => w algebrze Kubusia:
Zbiór p jest podzbiorem => zbioru q wtedy i tylko wtedy gdy wszystkie elementy zbioru p należą do zbioru q
p=>q =1 - wtedy i tylko wtedy gdy relacja podzbioru => jest (=1) spełniona
Inaczej:
p=>q =0 - wtedy i tylko wtedy gdy relacja podzbioru => nie jest (=0) spełniona
Definicja warunku wystarczającego => w zbiorach:
Jeśli p to q
p=>q =1
Zajście p jest (=1) wystarczające => dla zajścia q wtedy i tylko wtedy gdy zbiór p jest (=1) podzbiorem => zbioru q
Inaczej:
p=>q =0
Zajście p nie jest (=0) wystarczające => dla zajścia q wtedy i tylko wtedy gdy zbiór p nie jest (=0) podzbiorem => zbioru q
Matematycznie zachodzi tożsamość logiczna:
Warunek wystarczający => = relacja podzbioru =>
Definicja warunku wystarczającego => dla potrzeb rachunku zero-jedynkowego:
p=>q = ~p+q
Przykład:
A1.
Jeśli dowolna liczba jest podzielna przez 8 to na 100% => jest podzielna przez 2
P8=>P2 =1
Podzielność dowolnej liczby przez 8 jest warunkiem wystarczającym => dla jej podzielności przez 2 wtedy i tylko wtedy gdy zbiór P8=[8,16,24..] jest podzbiorem => zbioru P2=[2,4,6,8..]
Udowodnić relację podzbioru P8=>P2 potrafi każdy matematyk.
W zapisie formalnym mamy tu:
p=P8=[8,16,24..] - zbiór liczb podzielnych przez 8
q=P2=[2,4,6,8..] - zbiór liczb podzielnych przez 2
Gdzie:
p - przyczyna (część zdania po "Jeśli …")
q - skutek (część zdania po "to…")
Podsumowując:
Kod: |
Definicja warunku wystarczającego =>:
Zapis formalny:
A1: p=>q = ~p+q
Zapis aktualny (przykład):
A1: p=P8
A1: q=P2
A1: P8=>P2=~P8+P2
|
13.1.3 Definicja warunku koniecznego ~> w zbiorach
Definicja nadzbioru ~> w algebrze Kubusia:
Zbiór p jest nadzbiorem ~> zbioru q wtedy i tylko wtedy gdy zbiór p zawiera co najmniej wszystkie elementy zbioru q
p~>q =1 - wtedy i tylko wtedy gdy relacja nadzbioru ~> jest (=1) spełniona
Inaczej:
p~>q =0 - wtedy i tylko wtedy gdy relacja nadzbioru ~> nie jest (=0) spełniona
Definicja warunku koniecznego ~> w zbiorach:
Jeśli p to q
p~>q =1
Zajście p jest (=1) konieczne ~> dla zajścia q wtedy i tylko wtedy gdy zbiór p jest (=1) nadzbiorem ~> zbioru q
Inaczej:
p~>q =0
Zajście p nie jest (=0) konieczne ~> dla zajścia q wtedy i tylko wtedy gdy zbiór p nie jest (=0) nadzbiorem ~> zbioru q
Matematycznie zachodzi tożsamość logiczna:
Warunek konieczny ~> = relacja nadzbioru ~>
Definicja warunku koniecznego ~> dla potrzeb rachunku zero-jedynkowego:
p~>q = p+~q
Przykład:
B1.
Jeśli dowolna liczba jest podzielna przez 2 to może ~> być podzielna przez 8
P2~>P8 =1
Podzielność dowolnej liczby przez 2 jest warunkiem koniecznym ~> dla jej podzielności przez 8 wtedy i tylko wtedy gdy zbiór P2=[2,4,6,8..] jest nadzbiorem ~> zbioru P8=[8,16,24..]
W zapisie formalnym mamy tu:
p=P2=[2,4,6,8..] - zbiór liczb podzielnych przez 2
q=P8=[8,16,24..] - zbiór liczb podzielnych przez 8
Gdzie:
p - przyczyna (część zdania po "Jeśli …")
q - skutek (część zdania po "to…")
Podsumowując:
Kod: |
Definicja warunku koniecznego ~>:
Zapis formalny:
B1: p~>q = p+~q
Zapis aktualny (przykład):
B1: p=P2
B1: q=P8
B1: P2~>P8=P2+~P8
|
13.1.4 Definicja kontrprzykładu w zbiorach
Definicja kontrprzykładu w zbiorach:
Kontrprzykładem dla warunku wystarczającego p=>q nazywamy to samo zdanie z zanegowanym następnikiem kodowane elementem wspólnym zbiorów p~~>~q=p*~q
Rozstrzygnięcia:
Prawdziwość warunku wystarczającego p=>q=1 wmusza fałszywość kontrprzykładu p~~>~q=p*~q=0 (i odwrotnie)
Fałszywość warunku wystarczającego p=>q=0 wmusza prawdziwość kontrprzykładu p~~>~q=p*~q=1 (i odwrotnie)
Przykład:
A1.
Jeśli dowolna liczba jest podzielna przez 8 (P8) to na 100% => jest podzielna przez 2 (P2)
P8=>P2=1
Podzielność dowolnej liczby przez 8 jest warunkiem wystarczającym => dla jej podzielności przez 2, bo zbiór P8=[8,16,24..] jest podzbiorem => zbioru P2=[2,4,6,8…], co każdy matematyk udowodni.
Na mocy definicji kontrprzykładu, z prawdziwości warunku wystarczającego A1 wynika fałszywość kontrprzykładu A1’ (i odwrotnie)
A1’
Jeśli dowolna liczba jest podzielna przez 8 (P8) to może ~~> nie być podzielna przez 2 (~P2)
P8~~>~P2 = P8*~P2 =[] =0
Dowód wprost:
Nie istnieje (=0) wspólny element zbiorów P8=[8,16,24..] i ~P2=[1,3,5,7,9…] bo dowolny zbiór liczb parzystych jest rozłączny z dowolnym zbiorem liczb nieparzystych.
Dowód "nie wprost":
Na mocy definicji kontrprzykładu fałszywości zdania A1' nie musimy udowadniać, ale możemy, co zrobiono wyżej.
Uwaga na standard w algebrze Kubusia:
Kontrprzykład dla warunku wystarczającego => A1 oznaczamy A1’
13.1.5 Nietrywialny błąd podstawienia ###
Piętą Achillesową logiki matematycznej ziemian jest nieodróżnianie w rachunku zero-jedynkowym definicji warunku wystarczającego p=>q od definicji warunku koniecznego p~>q.
Fatalny sutek powyższego, to brak zero-jedynkowej definicji warunku koniecznego p~>q w logice matematycznej ziemian.
Geneza tego błędu jest następująca:
I.
Weźmy przykład ilustrujący warunek wystarczający p=>q w logice matematycznej:
A1.
Jeśli dowolna liczba jest podzielna przez 8 to na 100% => jest podzielna przez 2
P8=>P2 =1
Podzielność dowolnej liczby przez 8 jest warunkiem wystarczającym => dla jej podzielności przez 2 wtedy i tylko wtedy gdy zbiór P8=[8,16,24..] jest podzbiorem => zbioru P2=[2,4,6,8..]
Udowodnić relację podzbioru P8=>P2 potrafi każdy matematyk.
Podsumowując:
Kod: |
Definicja warunku wystarczającego =>:
Zapis formalny:
A1: p=>q = ~p+q
Zapis aktualny (przykład - punkt odniesienia):
A1: p=P8
A1: q=P2
A1: P8=>P2=~P8+P2
|
###
I.
Weźmy przykład ilustrujący warunek konieczny p~>q w logice matematycznej:
B1.
Jeśli dowolna liczba jest podzielna przez 2 to może ~> być podzielna przez 8
P2~>P8 =1
Podzielność dowolnej liczby przez 2 jest warunkiem koniecznym ~> dla jej podzielności przez 8 wtedy i tylko wtedy gdy zbiór P2=[2,4,6,8..] jest nadzbiorem ~> zbioru P8=[8,16,24..]
Podsumowując:
Kod: |
Definicja warunku koniecznego ~>:
Zapis formalny:
B1: p~>q = p+~q
Zapis aktualny (przykład - punkt odniesienia):
B1: p=P2
B1: q=P8
B1: P2~>P8=P2+~P8
|
Gdzie:
p i q muszą być wszędzie tymi samymi p i q inaczej popełniamy nietrywialny błąd podstawienia ###
Zapiszmy powyższe definicje warunku wystarczającego => i koniecznego ~> w tabeli prawdy.
Dowód:
Kod: |
Nietrywialny błąd podstawienia ###:
Definicja warunku wystarczającego =>: | Definicja warunku koniecznego ~>:
Zapis formalny: | Zapis formalny:
1. A1: p=>q = ~p+q ## B1: p~>q = p+~q
------------------------------------------------------------------------
Zapis aktualny (punkt odniesienia): | Zapis aktualny (punkt odniesienia)
2. A1: p=P8 ### B1: p=P2
3. A1: q=P2 ### B1: q=P8
4. A1: P8=>P2=~P8+P2 ### B1: P2~>P8=P2+~P8
## - różne na mocy definicji
### - nietrywialny błąd podstawienia
p i q musi być wszędzie tymi samymi p i q inaczej błąd podstawienia
|
Zauważmy że:
1.
Suma logiczna (+) jest przemienna stąd w linii 4 zachodzi pozorna tożsamość logiczna [=].
2.
W rzeczywistości pozorna tożsamość [=] w linii 4 nie zachodzi, bowiem mamy tu do czynienia z nietrywialnym błędem podstawienia ###
3.
W liniach 2 i 3 doskonale widać na czym ten nietrywialny błąd podstawienia ### polega:
Warunek wystarczający A1: p=>q jest tu obserwowany z punktu odniesienia p=P8 i q=P2
Natomiast:
Warunek konieczny B1: p~>q jest tu obserwowany z innego punktu odniesienia p=P2 i q=P8
Prawo punktu odniesienia:
Porównywanie czegokolwiek z czymkolwiek jest matematycznie poprawne wtedy i tylko wtedy gdy patrzymy na problem z tego samego punktu odniesienia.
Stąd mamy:
Definicja nietrywialnego błędu podstawienia ###:
Nietrywialny błąd podstawienia ### występuje wtedy i tylko wtedy gdy w zapisie formalnym mamy do czynienia ze znaczkiem różne na mocy definicji ##, zaś w zapisie aktualnym skolerowanym z zapisem formalnym zachodzi tożsamość logiczna [=].
Nietrywialny błąd podstawienia ### wymusza wprowadzenie do logiki matematycznej prawa Kłapouchego, zapobiegającego niejednoznaczności logiki matematycznej, o czym będzie za chwilkę. |
|
|
Powrót do góry |
|
|
Zobacz poprzedni temat :: Zobacz następny temat |
Autor |
Wiadomość |
rafal3006
Opiekun Forum Kubusia
Dołączył: 30 Kwi 2006
Posty: 35963
Przeczytał: 14 tematów
Skąd: z innego Wszechświata Płeć: Mężczyzna
|
Wysłany: Śro 9:25, 10 Kwi 2024 Temat postu: |
|
|
Irbisol napisał: |
Najpierw dokończ temat funkcji tożsamościowej.
I pokaż, jak prawo Irbisa, od lat zapisane w Wikipedii rozwala KRZ.
Oraz nie zapomnij o "błędzie czysto matematycznym", który znalazłeś w Wikipedii.
|
Irbisolu bez problemu udowodnię ci że jest błąd czysto matematyczny w definicji funkcji tozsamosciowej x=>x zdefiniowanej w Wikipedii.
Warunkiem koniecznym byś zrozumiał mój dowód jest twoja akceptacja (albo obalenie!) wstępu do tego dowodu podanego w moim poście wyżej.
Nie zamierzam dyskutować ze zapętlonym słupem potrafiącym wydusić z siebie wyłacznie "w koło Macieju":
Gówno mnie obchodzi co tam napisałeś - odpowiedz na moje pytanie.
Powtórzę:
Zrozumiesz alternatywny dowód obalenia KRZ oparty na gównie zwanym funkcją tożsamościową x=>x w wersji z Wikipedii wtedy i tylko wtedy gdy zrozumiesz mój wstep do tego dowodu w tym moim poście przedstawiony.
http://www.sfinia.fora.pl/filozofia,4/algebra-kubusia-rewolucja-w-logice-matematycznej,16435-6250.html#792269
rafal3006 napisał: | Wstęp do alternatywnego obalenia KRZ na podstawie definicji funkcji tożsamościowej z Wikipedii! |
Ostatnio zmieniony przez rafal3006 dnia Śro 9:28, 10 Kwi 2024, w całości zmieniany 2 razy
|
|
Powrót do góry |
|
|
|
|
Nie możesz pisać nowych tematów Nie możesz odpowiadać w tematach Nie możesz zmieniać swoich postów Nie możesz usuwać swoich postów Nie możesz głosować w ankietach
|
fora.pl - załóż własne forum dyskusyjne za darmo
Powered by phpBB © 2001, 2005 phpBB Group
|