Forum ŚFiNiA Strona Główna ŚFiNiA
ŚFiNiA - Światopoglądowe, Filozoficzne, Naukowe i Artystyczne forum - bez cenzury, regulamin promuje racjonalną i rzeczową dyskusję i ułatwia ucinanie demagogii. Forum założone przez Wuja Zbója.
 
 FAQFAQ   SzukajSzukaj   UżytkownicyUżytkownicy   GrupyGrupy   GalerieGalerie   RejestracjaRejestracja 
 ProfilProfil   Zaloguj się, by sprawdzić wiadomościZaloguj się, by sprawdzić wiadomości   ZalogujZaloguj 

Algebra Kubusia - rewolucja w logice matematycznej
Idź do strony Poprzedni  1, 2, 3 ... 423, 424, 425
 
Napisz nowy temat   Odpowiedz do tematu    Forum ŚFiNiA Strona Główna -> Filozofia
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
Irbisol




Dołączył: 06 Gru 2005
Posty: 16097
Przeczytał: 25 tematów


PostWysłany: Pon 16:18, 10 Lut 2025    Temat postu:

Już ci pisałem, że pytam o co innego.
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
rafal3006
Opiekun Forum Kubusia



Dołączył: 30 Kwi 2006
Posty: 36704
Przeczytał: 28 tematów

Skąd: z innego Wszechświata
Płeć: Mężczyzna

PostWysłany: Pon 16:54, 10 Lut 2025    Temat postu:

Irbisol napisał:
Już ci pisałem, że pytam o co innego.

Wybij sobie raz na zawsze z głowy, że kiedykolwiek będę z tobą dyskutował o potwornie śmierdzącym gównie zwanym:
Zbiory równe = Zbiory równoliczne

Dla mnie powyższe gówno nie istnieje - było pożyteczne dla rozpracowania potwornie śmierdzącego gówna zwanego teorią mnogości.

Teraz możemy dyskutować tylko i wyłącznie o zbiorach tożsamych p=q na poziomie 7 klasy SP jak w cytacie niżej - kiedy dobijesz do poziomu ucznia 7 klasy SP, by zrozumieć tożsamość zbiorów nieskończonych TP=SK?

http://www.sfinia.fora.pl/filozofia,4/algebra-kubusia-rewolucja-w-logice-matematycznej,16435-10575.html#832199

rafal3006 napisał:
Irbisol napisał:
Ja cię pytam teraz o coś innego.
Skoro stwierdziłeś, że jakieś zdanie jest fałszywe, to po prostu to udowodnij.

Uparty jak Osioł, czytać nie umie.

Irbisolu,
Ty żądasz ode mnie bym się wypowiedział na temat wypocin matematycznego schizofrenika z Wikipedii, bredzącego o poniższych gównach.
Zbiory równe = Zbiory równoliczne

Moja odpowiedź jest tu identyczna:
Nigdy, przenigdy nie będę z tobą rozmawiał w temacie prawdziwości powyższego gówna!

Zdołasz to zapamiętać, czy do usranej śmierci będziesz bełkotał o w/w gównie z angielskiej Wikipedii.

Teraz uważaj, chętnie z tobą podyskutuję, ale wyłącznie w temacie definicji zbiorów tożsamnych p=q rodem z 7 klasy szkoły podstawowej!
Jesteś w stanie?

http://www.sfinia.fora.pl/forum-kubusia,12/algebra-kubusia-matematyka-jezyka-potocznego,21937-25.html#800825
Algebra Kubusia napisał:
Algebra Kubusia - matematyka języka potocznego
32.0 Dowód śmieciowości ziemskiej teorii mnogości
...

32.5.2 Poprawna definicja zbiorów tożsamych p=q w algebrze Kubusia

Poprawna definicja zbiorów tożsamych wraz z przykładem dla zbiorów nieskończonych (równoważność Pitagorasa) jest tylko i wyłącznie jedna

W algebrze Kubusia stosujemy indeksowanie wg poniższej tabeli T0:
Kod:

T0
Fundament algebry Kubusia w obsłudze zdań warunkowych „Jeśli p to q”
Matematyczne związki warunku wystarczającego => i koniecznego ~>:
      A1B1:     A2B2:  |     A3B3:     A4B4:
A: 1: p=>q = 2:~p~>~q [=] 3: q~>p = 4:~q=>~p [=] 5: ~p+q
      ##        ##           ##        ##            ##
B: 1: p~>q = 2:~p=>~q [=] 3: q=>p = 4:~q~>~p [=] 5:  p+~q

Prawa Kubusia:        | Prawa kontrapozycji dla warunku wystarczającego =>:
A1: p=>q = A2:~p~>~q  | A1: p=>q  = A4:~q=>~p
B1: p~>q = B2:~p=>~q  | B2:~p=>~q = B3: q=>p

Prawa Tygryska:       | Prawa kontrapozycji dla warunku koniecznego ~>:
A1: p=>q = A3: q~>p   | A2:~p~>~q = A3: q~>p
B1: p~>q = B3: q=>p   | B1: p~>q  = B4:~q~>~p
Gdzie:
p=>q = ~p+q - definicja warunku wystarczającego =>
p~>q = p+~q - definicja warunku koniecznego ~>
## - różne na mocy definicji warunku wystarczającego => i koniecznego ~>
p i q muszą być wszędzie tymi samymi p i q inaczej błąd podstawienia

1.
Prawo Irbisa dla zbiorów:

Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q (A1) i jednocześnie zbiór q jest podzbiorem => zbioru p (B3)
A1B3: p=q <=> (A1: p=>q)*(B3: q=>p) = A1B3: p<=>q

Przykład dla zbiorów nieskończonych to równoważność Pitagorasa.
1P.
Prawo Irbisa dla równoważności Pitagorasa:

Dwa zbiory TP i SK są tożsame TP=SK wtedy i tylko wtedy gdy zbiór TP jest podzbiorem => zbioru SK (A1) i jednocześnie zbiór SK jest podzbiorem => zbioru TP (B3)
A1B3: TP=SK <=> (A1: TP=>SK)*(B3: SK=>TP)= A1B3: TP<=>SK

Szczegółowy dowód prawa Irbisa dla równoważności Pitagorasa.
Twierdzenia składowe to:
A1.
Twierdzenie proste Pitagorasa (udowodnione wieki temu):
Jeśli trójkąt jest prostokątny TP to na 100% => zachodzi w nim suma kwadratów SK
A1: TP=>SK =1
To samo w zapisie formalnym:
A1: p=>q
Czytamy:
Bycie trójkątem prostokątnym TP jest (=1) warunkiem wystarczającym => do tego, by zachodziła w nim suma kwadratów SK wtedy i tylko wtedy gdy zbiór TP jest podzbiorem => zbioru SK (A1)

##

B3.
Twierdzenie odwrotne Pitagorasa względem A1 (udowodnione wieki temu):
B3.
Jeśli w trójkącie zachodzi suma kwadratów SK to ten trójkąt na 100% => jest trójkątem prostokątnym TP
B3: SK=>TP =1
To samo w zapisie formalnym:
B3: q=>p =1
Czytamy:
Bycie trójkątem ze spełnioną suma kwadratów SK jest warunkiem wystarczającym => do tego, aby ten trójkąt był prostokątny TP wtedy i tylko wtedy gdy zbiór SK jest podzbiorem => zbioru TP (B3)
Gdzie:
## - twierdzenia różne na mocy definicji

2.
Innymi słowy:

Każda równoważność prawdziwa p<=>q definiuje tożsamość zbiorów p=q (i odwrotnie)
A1B3: p<=>q = (A1: p=>q)*(B3: q=>p) <=> A1B3: p=q

Nasz przykład dla zbiorów nieskończonych.
2P.
Dla równoważności Pitagorasa TP<=>SK zapisujemy:

Równoważność Pitagorasa TP<=>SK definiuje tożsamość zbiorów TP=SK (i odwrotnie)
A1B3: TP<=>SK = (A1: TP=>SK)*(B3: SK=>TP) <=> A1B3: TP=SK

3P.
Co oznacza tożsamość zbiorów A1B3: TP=SK?

TP=SK
Każdy trójkąt ze zbioru trójkątów prostokątnych TP ma swój jeden, unikalny odpowiednik w zbiorze trójkątów ze spełnioną sumą kwadratów SK (i odwrotnie)

Wnioski
1.
Udowodniona prawem Irbisa (pkt. 1P) tożsamość zbiorów nieskończonych TP=SK jest warunkiem wystarczającym => dla zachodzenia równoliczności zbiorów nieskończonych TP~SK, co udowodniono ciut wyżej w punkcie 3P.
Gdzie:
„~” – znaczek równoliczności zbiorów
2.
W tej sytuacji pisanie w definicji tożsamości zbiorów nieskończonych TP=SK rodem z teorii mnogości o równoliczności zbiorów nieskończonych TP~SK jest pisaniną matematycznego idioty, bowiem udowodnienie prawem Irbisa tożsamości zbiorów TP=SK gwarantuje => nam równoliczność zbiorów TP~SK
Nie ma więc potrzeby w definicji tożsamości zbiorów TP=SK wspominać o równoliczności zbiorów TP~SK.

Podsumowując:
Zapiszmy raz jeszcze prawo Irbisa w zapisach formalnych tzn. bez związku z jakimkolwiek przykładem.

1.
Prawo Irbisa dla zbiorów:

Dwa zbiory p i q są tożsame p=q wtedy i tylko wtedy gdy zbiór p jest podzbiorem => zbioru q (A1) i jednocześnie zbiór q jest podzbiorem => zbioru p (B3)
A1B3: p=q <=> (A1: p=>q)*(B3: q=>p) = A1B3: p<=>q

Na mocy prawa Irbisa możemy powiedzieć że:
1.
Warunkiem koniecznym ~> prawdziwości tożsamości zbiorów p=q jest prawdziwość matematycznego twierdzenia prostego A1: p=>q albo prawdziwość matematycznego twierdzenia odwrotnego B3: q=>p
1A.
Innymi słowy:
Jeśli udowodnimy prawdziwość jednego, dowolnego twierdzenia matematycznego (prostego A1: p=>q albo odwrotnego B3: q=>p) to tożsamość zbiorów może zajść (p=q)=1, albo może nie zajść (p=q)=0 w zależności od dowodu prawdziwości/fałszywości twierdzenia przeciwnego
2.
Warunkiem wystarczającym => fałszywości tożsamości zbiorów p=q jest fałszywość matematycznego twierdzenia prostego A1: p=>q albo fałszywość matematycznego twierdzenia odwrotnego B3: q=>p


Ostatnio zmieniony przez rafal3006 dnia Pon 16:59, 10 Lut 2025, w całości zmieniany 2 razy
Powrót do góry
Zobacz profil autora
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
Irbisol




Dołączył: 06 Gru 2005
Posty: 16097
Przeczytał: 25 tematów


PostWysłany: Pon 18:20, 10 Lut 2025    Temat postu:

rafal3006 napisał:
Irbisol napisał:
Już ci pisałem, że pytam o co innego.

Wybij sobie raz na zawsze z głowy, że kiedykolwiek będę z tobą dyskutował o potwornie śmierdzącym gównie zwanym:
Zbiory równe = Zbiory równoliczne

Właśnie o tym NIE CHCĘ dyskutować, schizofreniku.
Do ciebie najprostsze zdania nie docierają.


Ostatnio zmieniony przez Irbisol dnia Pon 18:26, 10 Lut 2025, w całości zmieniany 1 raz
Powrót do góry
Zobacz profil autora
Wyświetl posty z ostatnich:   
Napisz nowy temat   Odpowiedz do tematu    Forum ŚFiNiA Strona Główna -> Filozofia Wszystkie czasy w strefie CET (Europa)
Idź do strony Poprzedni  1, 2, 3 ... 423, 424, 425
Strona 425 z 425

 
Skocz do:  
Nie możesz pisać nowych tematów
Nie możesz odpowiadać w tematach
Nie możesz zmieniać swoich postów
Nie możesz usuwać swoich postów
Nie możesz głosować w ankietach

fora.pl - załóż własne forum dyskusyjne za darmo
Powered by phpBB © 2001, 2005 phpBB Group
Regulamin